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Abstract— In this work we present a novel method that gener-
ates compact semantic models for inferring human coordinated
activities, including tasks that require the understanding of dual
arms sequencing. These models are robust and invariant to
observation from different executions styles of the same activity.
Additionally, the obtained semantic representations are able
to re-use the acquired knowledge to infer different types of
activities. Furthermore, our method is capable to infer dual-
arm co-manipulation activities and it considers the correct
synchronization between the inferred activities to achieve the
desired common goal. We propose a system that, rather than
focusing on the different execution styles, extracts the meaning
of the observed task by means of semantic representations.
The proposed method is a hierarchical approach that first
extracts the relevant information from the observations. Then,
it infers the observed human activities based on the obtained
semantic representations. After that, these inferred activities
can be used to trigger motion primitives in a robot to execute
the demonstrated task. In order to validate the portability of
our system, we have evaluated our semantic-based method
on two different humanoid platforms, the iCub robot and
REEM-C robot. Demonstrating that our system is capable to
correctly segment and infer on-line the observed activities with
an average accuracy of 84.8%.

I. INTRODUCTION

Enabling robots to learn new tasks typically requires that
humans demonstrate the desire task several times [1]. This
implies that the acquired models will greatly capture the
execution style of the person demonstrating the desired
activity. This however, could lead to a major problem for
the generalization of the acquired model, since it will be
almost impossible to teach robots all possible variations
of one specific activity. Then, the ideal case is to enable
robots with reasoning mechanisms to allow them to learn
new activities by generating a model that interprets the
demonstrated activities in a general manner, thus allowing
the inclusion of different variations of the same activity.

Even when it is possible to observe stereotypical and pre-
defined motion patterns from repetitive human movements
[2], the execution of an activity or a similar activity can be
performed in many different forms depending on the person,
the place or the environment constraints. In other words,
everybody has its own style to perform a desired activity.
For example, Fig. 1 shows at least three different real-life
demonstrations of the activity cutting the bread performed
by random people. We can observe that the first participant
is using a common style of holding the bread with his left
hand and execute the cutting activity with his right hand,
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Fig. 1. Overview of our approach that is capable to deal with different
demonstrations styles, since it extract the meaning of the observations.

Fig. 1.b.1. In a different form, the participant in the middle
chooses to roll the bread with his left hand while cutting
the bread with his right hand, Fig. 1.b.2. Finally, the third
participant, which is left-handed, holds the bread with his
right hand and cuts the bread with his left hand, Fig. 1.b.3.
This indicates that we need to design a system that should
handle all these different execution styles.

In our previous work [3], we presented a system which
allows our iCub humanoid robot to extract the meaning of
human activities using our proposed hierarchical approach
to obtain semantic models. Later, we extended our system
by including the activity recognition of both hands at the
same time as presented in [4]. Even when our system is
able to recognize activities of both hands, it was limited to
only execute the activities of a single hand. Then, this paper
enhances our current system in the following forms: a) we
add robustness to variations on the demonstration styles for
different activities; b) then, we include a method to tackle the
problem of co-manipulation activities; c) finally, we improve
the portability of our system and we tested it in two different
humanoid platforms.

This paper is organized as follows, Section II presents the
related work. Then, Section III describes the main modules
of the presented system. Afterward, Section IV explains
the steps to extract the low-level features. Then, Section
V presents the semantic representations method. Section
VI introduces the transference of the semantic models to



humanoid robots. Finally, section VII briefly expresses the
obtained results followed by the conclusions.

II. RELATED WORK

Learning and understanding human activities can greatly
improve the transference and generalization of the acquired
knowledge among different robotic platforms. These robotic
platforms have different embodiments and different cognitive
capabilities [5], therefore the transference of trained mod-
els from one platform to another is not straight forward
and typically the obtained models work fine only for the
tested platforms [6]. However, if instead of learning how
the motions are executed, we learn the meaning of such
movements, then we can transfer these learned models to
different situations and among different robotic platforms as
proposed in this work.

Segmenting and recognizing human activities from
demonstrations have been (partially) achieved using human
poses mainly observed from external videos, e.g. using Con-
ditional Random Fields (CRF) [7], Dynamic Time Warping
[8], or by encoding the observed trajectories using Hidden
Markov Models (HMMs) mimesis model [9]. However, the
above techniques realize on the generation of trajectories
which depend on the location of objects and human postures,
this means that if a different environment is being analyzed
or its executed by a different demonstrator, then the trajec-
tories are altered completely, thus, new models have to be
acquired for the classification, this implies that the proposed
techniques need considerable time to finally learn a specific
task [1]. Additionally, such techniques require a sophisticated
visual-processing method to extract the human poses [10].

Recent studies focuses on determining the levels of ab-
straction to extract meaningful information from the pro-
duced task to obtain what and why certain task was recog-
nized. Hierarchical approaches are capable to recognize high-
level activities with more complex temporal structures [11].
Such approaches are suitable for a semantic-level analysis
between humans and/or objects which can be modeled us-
ing object Affordances to anticipate/predict future activities
[12], or using Graphical Models to learn functional object-
categories [13], or Decision Trees to capture the relationships
between motions and object properties [3]. For example, [14]
suggests to use a library of OACs (Object-Action Complexes)
to segment and recognize an action using the preconditions
and effects of each sub-action which will enable a robot to
reproduce the demonstrated activity. However, this system
requires a robust perception system to correctly identify the
object attributes which are obtained off-line. Based on the
OAC:s principle, Yang et. al. [15] introduced a system that
can understand actions based on their consequences, e.g.
split or merge. Nevertheless, this technique greatly needs
a robust active tracking and segmentation method to detect
changes of the manipulated object, its appearance and its
topological structure, i.e. the consequences of the action.
Then, based on the affordance principle, Aksoy et. al. [16]
presented the called Semantic Event Chain (SEC), which
determines the interactions between the hand and the objects,

expressed in a rule-character form, which also depends on
a precise vision system.

III. SYSTEM MODULES DESCRIPTION

Most of the recognition systems are designed to fit per-
fectly the studied task, however most of these systems can
not easily scale toward new tasks or to allow different input
sources [6]. This section presents the overall design and main
components of our proposed framework. The main advantage
of our system is its levels of abstraction that enhance its
scalability and adaptability to new situations. For instance,
our perception module permits the use of different input
sources, such as: single videos [3], multiple videos [17] and
virtual environments [18] which can bootstrap the learning
process.

Our framework contains four main modules (see Fig. 2):
1) Perceive the relevant aspects of the demonstrations; 2)
Generate or re-use semantic rules; 3) Infer the goal of the
demonstrator; and finally, 4) Execute the inferred behavior
by a robot.
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Fig. 2. Main modules of our proposed system

The Perception Module, enables robots to perceive differ-
ent types of input information from different sources. This
module extracts features obtained from the environment (in-
put source), analyzes the features and generates meaningful
information. Three primitive motions are segmented from the
input data, i.e. move, not move and tool use. In addition,
the information from the environment is also extracted,
for example the objects in the scene and their properties,
in our case we considered the following two properties:
ObjectActedOn and ObjectinHand.

The Semantic Module represents the core of our system.
It interprets the data obtained from the Perception module
and processes that information to automatically infer and
understand the observed human behaviors. It is responsible
for identifying and extracting the meaning of human motions
by generating semantic rules.

The Inference module includes knowledge-base to enhance
the inference capability of our system. This is an important
feature, in case of failure, the system uses its knowledge base
to obtain an alternative and equivalent state of the system
which contains instances of the desired class. With the
knowledge-base we do not need to recompute the semantic
rules every time we face a new situation.



The Robot Primitives module uses the inferred activity and
enables an artificial system, i.e. allows a robot to reproduce
the inferred action in order to achieve a similar goal as the
one observed. This implies that given an activity, the robot
needs to execute a skill plan and command the primitives
from a library to generate a similar result.

Our system is based on a hierarchical approach, where
different levels of abstraction are defined. This abstraction
of the observation captures the essence of the activity, which
means that our system is able to indicate which aspect of
the demonstrator’s activity should be executed in order to
accomplish the inferred activity.

A. Levels of abstraction

Studies from the Psychology and Cognitive communities
suggest that goal-directed activities exhibit recurrent inter-
correlated patterns of activities [19]. Inspired by the above
findings we propose our two levels of abstractions:

o The first one gathers (perceive) low-level features infor-
mation from the environment, i,e. atomic hand motions
such as: move, not move and tool use, as well as
basic object properties, e.g. ObjectActedOn and Object-
InHand, (see Section IV);

o Whereas, the second part handles the difficult problem
of interpreting the perceived information into meaning-
ful classes using our proposed reasoning engine, i.e. the
high-level human activities, such as: reach, take, cut,
etc. (see Section V).

IV. EXTRACTING LOW-LEVEL FEATURES FROM
OBSERVATIONS

In our previous work [3], we proposed to extract the
following low-level features from observations, i.e three
primitive human motions are segmented into one of the
following categories:

o move: The hand is moving, i.e. £ > ¢

o not move: The hand stops its motion, i.e. £ — 0

e tool use: Complex motion, the hand has a tool and it

is acted on a second object, i.e. on(t) = knife and

04(t) = bread.
where 2 is the hand velocity. Notice, that those kind of
abstract motions can be recognized in different scenarios,
however these segmented motions can not define an activity
by themselves. Therefore, we need to add the object informa-
tion, i.e. the motions together with the object properties have
more meaning than as separate entities. The object properties
that we define in this work are:

o ObjectActedOn (0,): The hand is moving towards an

object, i.e. d(xp, 7o) = /D1y (Th — T0,)2 — 0

o ObjectinHand (op,): The object is in the hand, i.e. oj is

currently manipulated, i.e. d(zp,x,) = 0.
where d(-,-) is the distance between the hand position (zp)
and the position of the detected object (z,). The output of
this module determines the current state of the system (s),
which is defined as the triplet s = {m, 04, 0y, }. The definition
and some examples of the motions and object properties are
further explained in [4].

Since we expect noise on the perception of these low-
level features, we implemented a 2nd. order low-pass filter
to smooth the obtained velocities. We choose the digital
Butterworth filter with normalized cutoff frequency.

V. INFERRING HIGH-LEVEL HUMAN ACTIVITIES

This module receives as input the state of the system (s),
composed by the hand motion segmentation (m) and the
object properties (o, or op). Each of these perceived states
populates the training sample (.5), to infer the desired target
function (c), which represents the high-level activities.

In this work, the semantics of human behavior refers
to find meaningful relationships between human motions
and object properties in order to understand the activity
performed by the human. In order to achieve that, we use the
C4.5 algorithm [20] to compute a decision tree (1°), which
learns the target function c¢ by selecting the most useful
attribute (A) that classifies as many training samples (S) as
possible by using the information gain measure:

Gain(S, A) = Entropy(S) — Z ‘i;]l Entropy(Sy) (1)

vEValues(A)
where Values(A) is the set of all possible values of the
attribute A, and S, = s € S|A(s) =wv as a collection of
samples for S.

Our proposed method consists of two steps to recognize
human activities. The first one will extract the semantics of
human basic activities, this means that target concept value
is of the form:

Class c : ActivityRecognition : S — {Reach, Take, Release,
Put_Something_Somewhere, Idle, GranularActivity}

(@)
where GranularActivity represents the set of activities that
depend on the context. Therefore, to identify such kind of
activities a second step is needed [4]. This step uses eq.(1)
and the new target concept value:

Class c : ActivityRecognition : S — {Cut, Spread,

Sprinkle, Unwrapping, Dispose} G

A. Inferring parallel activities at the same time

One of the major advantages of extracting semantic rep-
resentations is its generalization capability. Even when the
obtained tree (71') is trained to recognize the activities of a
specific hand, it should be robust enough to also recognize
similar activities performed by the other hand. This gener-
alization capability is tested and exploited in our semantic-
based framework, since the obtained Tree 7T (see Fig. 4)
is robust when recognizing similar activities performed by
both hands at the same time, without further changes in the
algorithm.

B. Co-manipulation activities

One of the features of observing people from videos
is to capture the natural way that people executes every-
day activities in realistic environments, as the ones used
in this work. However, the correct recognition of parallel
activities sometimes is not enough, especially when dealing
with collaborative activities, e.g. co-manipulation where two



hands work together to achieve a common goal. In this
case, the correct activity recognition and their correct order
of execution (synchronization) are both highly important to
achieve the desired task.

For instance, in the case of cutting the bread task (see Fig.
1), it is important that the system first detects that the left
hand moves the bread to the desired position before cutting
the bread with the right hand. In order to cope with the
co-manipulation problem, we proposed to build on demand
a dependency table that will store the sequence where the
observed activity is inferred as well as the hand executing
such activity, as shown in Fig. 3.

. . ) L Dependency
Inferring Co-manipulation Activities table

Right Frames|Activity|Hand

1 Al [Right

15 A2 [Rright

Hand 22 | A3 |Right

1 15 20 22 25 30 35 25 | A4 |Right

Video frames 30 | A3 | et

35 A5 _|Right

Fig. 3. Proposed approach to deal with collaborative activities by
automatically building a dependency table. Activities A1, A2, etc. represents
the inferred activities, e.g. reach, take, cut, etc. Red labels represent the
activities inferred from the left hand, and blue labels indicates the right
hand activities.

From the obtained dependency table depicted in Fig. 3, our
system is able to automatically generate execution sequences
for the collaborative task from observations. For example that
activity A; has to be executed by both hands at the same
time. Then, activity A, of the right hand has to be executed
before the activity Ao of the left hand, in other words, the
activity Ay of the left hand, should not be triggered before Ao
of the right hand has finished. The system can identify when
an activity has finished using the Robot primitive module of
each hand. This module triggers different event flags for each
activity: a) initialized, b) running or c) finished.

This analysis is very important since the activity recog-
nition of each hand is made in parallel in our system and
no information regarding the execution steps is known a
priori. Additionally, when transferring our semantic-based
system into robots, the correct execution sequence has to be
considered to successfully achieve the desired collaborative
task. This means that without the proposed dependency table,
the correct execution sequence can not be guaranteed, thus
leading to problems such as executing the cutting activity on
the table instead of on the bread.

VI. TRANSFERRING THE MODELS INTO HUMANOID
ROBOTS

As a final step, we validate our framework on two hu-
manoid robots!, the iCub humanoid robot which has 53
degrees of freedom [21], and REEM-C a full-size biped

'Another advantage of our proposed framework is its multi-robotic
platform modality, in this case YARP (http://wiki.icub.org/yarp/) and ROS
(http://wiki.ros.org/)

humanoid robot?. To control the iCub robot, our system has
been implemented in YARP as explained in our previous
work [4]. However, for controlling the REEM-C robot we
needed to transfer our modules into ROS. Then, to enable
the recognition of both hands at the same time, we exploit the
advantages provided by ROS using the namespace property
for launching the same process multiple times in parallel.

It is important to highlight that the robotic system retrieves
on-line the pose of the perceived hand and object(s) in the
scene from the perception module, which triggers the activity
recognition module, this means that the used videos have not
been labeled in any way and the recognition is performed
in real-time. This module sends the inferred activity to the
Robot Primitive module to execute the proper primitive on
the robot. For the REEM-C robot we have implemented the
different skills for both arms in joint space. The Perception
module obtains the 6D pose of the objects in the Cartesian
space, and the desired joint position is computed using
the Moveit!® package in ROS. This desired position is the
reference for the local joint position controller. For the graps
primitive, a predefined grasp pose has been implemented,
however more sophisticated controllers can be used such as
the one proposed in [22].

VII. RESULTS

For the obtained results, we use two data sets: pancake
and sandwich making, which are publicly available*. The
first one contains recordings of one human making a pancake
several times. The second data set contains a more complex
activity, which is making a sandwich performed by eight
random subjects under two time conditions, i.e. normal and
fast. This section presents the achieved results in two parts.
First, we present the semantic representations obtained using
our proposed method. Then, we present some results from
the on-line implementation on the iCub and the REEM-C
humanoids.

A. Results of human activities recognition

As mentioned in Section V, our proposed method consists
of two steps to recognize human activities. For the first step,
we use the information of the ground-truth® data of the first
subject for the scenario of making a sandwich. We split the
data as follows: the first 60% of the trails is used for training
and the rest 40% for testing. Then, we obtained the tree
Tsandwich shown in the top part of Fig. 4 (magenta box)
which infers the basic human activities defined in eq. (2).

Afterward, we apply the second step of our algorithm to
further classify the GranularActivities, defined in eq. (3) and
the extension of our tree is obtained as shown in the bottom
part of the tree (17" depicted in Fig. 4.

We tested the accuracy of the obtained tree Tsqndwich
using the remaining 40% of the sandwich data set to validate

Zhttp://pal-robotics.com/en/products/reem-c/

3http://moveit.ros.org

“http://web.ics.ei.tum.de/ karinne/Dataset/dataset.htm]

5The ground-truth was manually labeled by a person considered as an
expert since this person received a training session.
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Fig. 4. This figure shows the tree obtained from the sandwich making
scenario (Tsandwich)-

the robustness of the obtained rules. Then, given the input
attributes Nsandwichtest = {Move, Something, None}
we determine c(nsqndwich_test). Afterward, the state-value
pairs from the test data set ngqndwich.test are of the form
(Nsandwich.test(t), 7), where ¢ represents the time (frames).
After that, the target value is determined for each state
of the system c¢(Nsandwich_test(t)). Finally, the obtained
results show that ¢(nsandwich_test (t)) was correctly classified
92.57% of the instances using as input information manually
labeled data, i.e., during the off-line recognition.

B. Robot execution results

The next important step is to extend our system from off-
line to on-line recognition using the Color-Based technique
as presented in [4]. This implies that we use as input the
data obtained from the automatic segmentation of human
motions and object properties from the perception module
in order to test the on-line recognition using the obtained
tree Tsgndwich- Compared with our previous work, we have
improved the performance of our algorithm and the obtained
results are presented in Table 1.

TABLE I
OBTAINED RECOGNITION ACCURACY OF BOTH HANDS PER DATA SET.

Data Set Accuracy of recognition (%)
Cut the bread (Common style-S01) 90.64
Cut the bread (rolling the bread-S04) 94.32
Cut the bread (left-hand style-S08) 75.41
Pour the pancake 84.42
Flip the pancake 79.18

First, we implemented our system in the iCub robot. In
this case, we tested the data set of pancake making only
for the right hand, where the activity pouring has not being
included in the semantic model. However, from Fig. 4 it is
possible to observe that the obtained taxonomy is preserved
among the granular activities. This means that our system
is able to learn new rules on demand using active learning
methods. Thus, when the iCub recognizes that it does not
know the new demonstrated activity, the system requires
that the user provides a label for the new activity, in this
case the label pour. Therefore, a new branch on the tree
Tsandwickh 18 included to recognize this new activity in the

future. Even when the system recognizes a new activity, this
does not affect the inference accuracy, which in this case
the average accuracy for both hands is 84.42%. A similar
procedure is followed for the activity flip with an average
recognition accuracy of 79.18%.

Another improvement of our system is its portability into
different robotic platforms, taking into account a more com-
plex scenario which includes parallel activities in collabora-
tion. In this new scenario, the REEM-C robot must perform
sequential activities with both hands. In this case, we are re-
using the same semantic tree Tsqpqwich to identify activities
either for the right or the left hand, without affecting the
recognition performance. Furthermore, the robot infers that
the activity reaching is detected for both hands, therefore the
robot executes both activities at the same time.

In addition, the system has been tested in a more complex
case, depicted in Fig. 5. Here, the demonstrator performs
the cutting activity in an odd-fashion, where she rolls the
bread during the execution. Even with this odd-variation
on the observation, our system is able to correctly infer
the cut activity. Thus, demonstrating the robustness of our
obtained semantic representations to the variations on the
demonstrations of the same activity. Additionally, we observe
that the left hand is executing the correctly recognized
activity of taking the bread, preserving the correct sequence
for the collaborative actions.

Notably, for these demonstrations of the same activity,
we test the robustness of the obtained models, this means
that no further training was performed to include the vari-
ance presented in these new observations. The average
accuracy for the on-line segmentation and recognition of
the overall activities for the scenarios shown in Table I
is 84.8% for both hands. In our previous work [23], we
concluded that the correct segmentation and recognition
of human activities is not unique and greatly depends on
the person interpreting the motions, especially when both
hands are involved. The following link presents a video
with more details about all these experimental results:

http://web.ics.ei.tum.de/~karinne/Videos/RamirezDChumanoids15.avi

VIII. CONCLUSIONS

One major problem of interpreting human everyday activ-
ities from observations is the fact that they greatly depend on
the execution style of the person demonstrating the activities,
leading to variations in the demonstrations. Although, each
person has his/her own way of executing the same task, we
(humans) have the capability to interpret all these different
variations, since we abstract the meaning of the observations.
Therefore, in this work we presented a framework that can
deal with such problems in a robust manner with an on-
line accuracy of recognition around 84.8%. Furthermore,
our system can handle parallel activities in both cases: a)
independent activities and b) in the more complex situation
where the activities are sequential and collaborative, e.g. co-
manipulation.

Our proposed method is able to automatically segment and
recognize dual-arm human activities from observations using
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Fig. 5. The robot observes the motions of both hands of the human, then it infers for each hand the observed human activity, which in this case the right
hand has been detected as cutting, while the left hand is holding/taking the bread. This means that the robot executes the activity cut using its right hand
and take with its left hand.

semantic reasoning tools. Our presented system is flexible
and adaptable to different variations of the demonstrated
activities, as well as to new situations due to the re-usability
of the learned rules, which allows the integration of new
behaviors. Furthermore, our presented multilevel framework
is applicable across different humanoid robots.
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