
ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: K. Ramirez-Amaro et al., Transferring skills to humanoid robots by extracting semantic representations from

observations of human activities, Artificial Intelligence (2015), http://dx.doi.org/10.1016/j.artint.2015.08.009

JID:ARTINT AID:2881 /FLA [m3G; v1.159; Prn:1/09/2015; 15:57] P.1 (1-24)

Artificial Intelligence ••• (••••) •••–•••

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Transferring skills to humanoid robots by extracting semantic
representations from observations of human activities

Karinne Ramirez-Amaro a,∗, Michael Beetz b, Gordon Cheng a

a Faculty of Electrical Engineering, Institute for Cognitive Systems, Technical University of Munich, Germany
b Institute for Artificial Intelligence, University of Bremen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:

Received in revised form 22 July 2015

Accepted 19 August 2015

Available online xxxx

Keywords:

Activity recognition

Human understanding

Knowledge-based

Semantic representation

Skill transfer

In this study, we present a framework that infers human activities from observations

using semantic representations. The proposed framework can be utilized to address

the difficult and challenging problem of transferring tasks and skills to humanoid

robots. We propose a method that allows robots to obtain and determine a higher-level

understanding of a demonstrator’s behavior via semantic representations. This abstraction

from observations captures the “essence” of the activity, thereby indicating which aspect of

the demonstrator’s actions should be executed in order to accomplish the required activity.

Thus, a meaningful semantic description is obtained in terms of human motions and object

properties. In addition, we validated the semantic rules obtained in different conditions,

i.e., three different and complex kitchen activities: 1) making a pancake; 2) making a

sandwich; and 3) setting the table. We present quantitative and qualitative results, which

demonstrate that without any further training, our system can deal with time restrictions,

different execution styles of the same task by several participants, and different labeling

strategies. This means, the rules obtained from one scenario are still valid even for new

situations, which demonstrates that the inferred representations do not depend on the

task performed. The results show that our system correctly recognized human behaviors

in real-time in around 87.44% of cases, which was even better than a random participant

recognizing the behaviors of another human (about 76.68%). In particular, the semantic

rules acquired can be used to effectively improve the dynamic growth of the ontology-

base knowledge representation. Hence, this method can be used flexibly across different

demonstrations and constraints to infer and achieve a similar goal to that observed.

Furthermore, the inference capability introduced in this study was integrated into a joint

space control loop for a humanoid robot, an iCub, for achieving similar goals to the human

demonstrator online.

 2015 Elsevier B.V. All rights reserved.

1. Introduction

Transferring skills to humanoid robots based on observations of human activities is widely considered to be one of

the most effective ways of increasing the capabilities of such systems [1,2]. It is expected that semantic representations

of human activities will play a key role in advancing these sophisticated systems beyond their current capabilities, which

will enable these robots to obtain and determine high level understanding of human behavior. The ability to automatically
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recognize human behavior and react to it by generating the next probable motion or action according to human expectations

will substantially enrich humanoid robots.

The main steps involved in inferring and reproducing the goal of the demonstrator’s activity are [3]: 1) extracting the

relevant aspects of the task; 2) processing the perceived information to infer the goal of the demonstrator; and 3) reproduc-

ing the best motion to achieve the inferred goal. Thus, in order to infer the desired goal, we first need a perception module

that can determine which aspects of the activity are important. The most challenging aspect of this process is extracting

the (visual) information from different sources, e.g., body movements, changes in the environment, and the gaze of the

demonstrator, to obtain meaningful information about the system.

However, not all aspects of a task are observable but they may need to be inferred, such as the goal of the demonstrator,

which in most systems is given by the researchers (as noted by [2]). Therefore, it is necessary to design a method that can

process the perceived goal-relevant information to make inferences about the goal of the demonstrator. A powerful tool for

accomplishing this aim is semantic representation, since the meaning of human behaviors can be extracted and expressed

using the relationships between human motions and objects. In this study, we use the latter point as a definition for the

semantics of human behavior.

Finally, the robot needs to decide how to execute the inferred goal, which means the robot determines which aspects of

the observed (inferred) task should be performed in order to achieve a similar task that of a human. This mapping between

the robot and the demonstrator is a very difficult problem, which is known as the “correspondence problem” because the

robot and the human sometimes have different embodiments [4]. It has been shown that it is more useful to extract the goal

from the demonstrator’s activity, rather than simply copying the human’s actions [2]. This allows the robot to evaluate and

then decide the best way to achieve the goal, while considering its own constraints, i.e., whether to use the demonstrator’s

method or its own method to achieve the same outcome.

Thus, the robot requires some knowledge about the objects and actions, as well as their relationships. For instance, the

system could have an ontology-based knowledge representation, which provides the ability to deal with partial informa-

tion from the perceived environment. This is possible as the ontology representation has a hierarchical structure in the

knowledge base, where the inferred instances inherit the properties and relations of the parental class. In other words, it

is possible to infer new properties between instances that are not provided manually. This is a major advantage due to the

fact the system can be more adaptable and flexible than classic approaches [5].

1.1. System overview

In this study, we present a framework that comprises three main modules: 1) observation of human motions and object

properties; 2) hierarchical interpretation of human behaviors; and 3) activity imitation by a robot. A description of our

framework and the connections between these modules is depicted in Fig. 1.

The first module (see Fig. 1.1) allows robots to perceive different types of visual information from different sources, such

as video recordings. Thus, the visual features obtained from the environment (raw video) are analyzed and preprocessed,

and three general motions are segmented from the videos, i.e., move, not move, and tool use. We refer to these motions as

human motions. In addition, two main types of information are acquired from the objects and their properties present in the

scene: ObjectActedOn and ObjectInHand.

The second module (see Fig. 1.2) interprets the visual data obtained from the first module and processes this information

to infer the observed human intentions (the goal). This module represents the core of our framework because it is respon-

sible for identifying and extracting the meaning of human motions by generating semantic rules that define and explain

these human motions, i.e., it infers human behaviors such as reach, take, pour, and cut. At this point, the system evaluates

whether the input information provided can be used to infer the human activity. It should be noted that this is the step

where most systems fail [6]. For example, if we only have objects such as bread, knife, and cucumber during the training

stage, then the system will be limited to only accepting these values in order to infer human activities correctly. However,

we enhance our system by the inclusion of a knowledge base, which means that if we have new objects such as pancake

and spatula during the testing stage, then the system can look for their corresponding class and infer the human activity

associated with that class. Thus, if the evaluation fails, the system will use its knowledge base to obtain an alternative and

equivalent state for the system that contains instances of the desired class. This represents a very important advantage of

our system, as with the knowledge base means that we do not need to recompute the semantic rules every time we meet

a new situation, i.e., the generated rules will even be preserved in different scenarios (see Section 4).

The input of the third module is the inferred activity from Module 2. In this module, the robot executes the motion

primitive that may yield a similar activity to that observed. This means that given an activity, the robot needs to execute a

skill plan to command the desired primitives from a library, until the inferred activity is successfully achieved by the robot.

1.2. Experimental setup

To validate our framework, we first recorded two real and challenging tasks1: pancake, and sandwich making. The experi-

mental setup was similar for both tasks (see Fig. 2), where it comprised three cameras located in different positions and a

1 The new recorded datasets are publicly available via the following link http://web.ics.ei.tum.de/~karinne/DataSet/dataSet.html.
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Fig. 1. The framework comprises three main modules: 1) perception of relevant information, 2) inference of the observed goal, and 3) execution of the goal

by the robot. The core of our framework is defined in the second module, which defines the semantic rules and the enhancement of the system by the

knowledge base.

Fig. 2. Setup used for dataset acquisition and the robotic experimental setup. a) The location of the cameras during the pancake making scenario. b) The

recording setup in the sandwich-making scenario. c) Robot setup used for the experimental validation in this study.

gaze camera with attached markers. In this study, we only used video information of the second camera in both scenarios

(see Section 6), i.e., information from the gaze camera and the markers was not considered.

In addition, we use a robotic setup to successfully validate the proposed framework (see Section 7.3). The Robot Control

System comprises the humanoid robot iCub, a control unit, and a workstation running GNU/Linux OS. Data communication

between the PC and the control unit was via a local network, based on TCP/IP.

The following sections provide detailed descriptions of our proposed framework. Section 2 describes the state-of-the-

art in this research area. Section 3 briefly explains the procedure implemented to segment the observed human motions

and objects. Section 4 introduces the method used to obtain the semantic rules and the ontology-based knowledge rep-

resentation. After, Section 5 presents the procedure employed to transfer the observed activities to the humanoid robot.

Section 6 describes the datasets used and the results obtained are analyzed in Section 7. Finally, Section 8 gives our conclu-

sions.
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2. State-of-the-art

Automatically segmenting, recognizing, and understanding human activities based on observations has attracted the at-

tention of researchers from different disciplines, such as computer vision [7–9], artificial intelligence [10,11,6], cognitive

science [12–15], robotics [16–18], and neurology [19] each of whom has focused on solving a subset of the complex prob-

lem of interpreting human activities for different purposes, e.g., surveillance systems [7,20], monitoring patients [10,21],

and anticipation of human behaviors thereby allowing robots to assist humans in an efficient manner [22–24]. The goal of

human activity recognition was described by Aggarwal and Ryoo [10] as to: “automatically analyze ongoing activities from

an unknown video”. These authors also identified various types of human activities, which they categorized on different

levels, depending on their complexity, such as gestures, actions, interactions, and group activities. For example, gestures

refer to general human movements such as raising a leg or stretching an arm. Therefore, the approach employed depends on

the complexity of the activity and several challenges must be addressed, including automatically segmenting the observed

human motions, identifying the important features of motions, determining the importance of the object(s) for the task, and

defining different levels of abstraction. One of the main issues in these problem domains is, that it is not easy to translate

methods from one area to solve a similar problem in another area. Therefore, human activity recognition is still far from

being an off-the-shelf technology [10]. Thus, how can we transfer the findings and advantages of one technique to solve a

similar problem in a different domain?

As for the robotics domain, the problem of activity recognition involves solving the question: what do we want the robot to

learn? [2], either in terms of a similar motion or extracting the meaning of the motion. The first problem is mostly inves-

tigated by analyzing the trajectories produced by human motions, i.e., using trajectory level methods. The second problem

involves determining different levels of abstraction to extract meaningful information from the task with Artificial Intelli-

gence methods, e.g., using semantic representation techniques. In the following subsections, we analyze these problems in

more detail to solve the issue of activity recognition based on observations.

2.1. Trajectory level

In the robotics community, there has been a tendency to use trajectory level representations, i.e., the Cartesian and Joint

spaces, to segment and learn a correct model of human motions. Thus, the robots learn and extract the parameters involved

in a task/skill based on demonstrations, typically from several trials of the same task and mostly in one specific scenario

[25,26], e.g., using programming-by-demonstration techniques [18], which are powerful and well-established methods that

are used widely in the robotics community to teach robots new activities based on observations. In addition, an interesting

approach was presented by Billard et al. [18], that identifies a general policy for learning the relevant features of the task,

where they identified what to imitate by detecting the time-invariants of the demonstrator [27]. Recently, Ude et al. [28]

proposed the concept of using a library of dynamic motion primitives (DMPs), which allows the generalization of DMPs to

new situations. The advantage of this approach is that it considers perturbations and includes feedback [29]. Therefore,

relevant parameters are identified to reproduce motions similar to those made by the demonstrator, while similar motions

can be adjusted based on the parameterization of the given goal, where the goals are generally provided manually in this

case, i.e., the system (robot) will not be able to extract the meaning of the action because they do not possess reasoning

capabilities. Therefore, the transfer of the models obtained to new situations is not straight forward.

Some techniques have been proposed for classifying human motions based only on the shape of the trajectory, without

considering the object’s information into account, e.g., using similarity measurements such as dynamic time warping [30]

or using a multi-step hierarchical clustering algorithm motivated by classification and regression trees [31]. These latter

techniques rely on the generation of trajectories depending on the locations of objects, so the trajectories will be altered

completely if a different environment is being analyzed, thus new models must be acquired for classification. Another draw-

back of this approach is that segmentation of the trajectories into meaningful classes is mostly conducted by the researchers,

i.e., it is performed manually. Another approach was presented by Beetz et al. [11] where a hierarchical action model is con-

structed from observed human tracking, based on linear-chain Conditional Random Fields, which uses pose-related features

applied to labeled training data. The latter approach considers the information related to objects, but several parameters

need to be adjusted in advance, which means that recognizing activities from the same class in a different environment is

not possible.

These type of trajectory level techniques are very useful for extracting relevant information from activities, as well as for

transferring these models to artificial systems such as robots. Transferring the models acquired from human demonstrations

to robots is another challenging task when building adaptive and autonomous robots, mainly because it requires the gener-

ation of task-specific robot motions that should fit naturally in a human environment. This means the robot should generate

motions based on the current task, the object type and the current state, while also considering information related to the

context and environment. This requires the analysis of stereotypical and pre-planned human motion patterns in order to

acquire the desired task [32]. Therefore, the major advantage of these approaches is their ability to analyze the details of

human movements [10]. However, this analysis can only be performed by using very sophisticated perception systems to

identify the poses of human joints, e.g., motion capturing systems or state-of-the-art tracking systems [33]. Another draw-

back of these methods is the inability to generalize the learned models to new situations, mainly since they depend on the
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correct identification of human poses that are difficult to extract from 2D videos, which is the problem addressed in this

study.

2.2. Semantic representation

Recent studies have focused on determining the levels of abstraction to extract meaningful information from a task to

determine what the specific task might be and why it is recognized. Hierarchical approaches are capable of recognizing

high level activities with more complex temporal structures [10]. These approaches are suitable for the semantic-level

analysis of humans and/or objects. They can also cope with less training data by incorporating prior knowledge into their

representations. This prior knowledge is mostly included manually by an expert, who gives a semantic meaning to the

sub-activities that comprise the high level activity. These mechanisms help to understand the meaning of the recognized

task and allow the system to be more flexible and adaptable to new situations. This area is the main focus of our research

and a more extensive analysis of these techniques is provided in the following.

A pioneering study of high level representations was introduced by Kuniyoshi et al. [34], who proposed the mapping of

continuous real-world events onto symbolic concepts, using an active attention control system. A similar study by Jakel et

al. [35], employed a (partially) symbolic representation of manipulation strategies to generate robot plans, based on pre-

and post-conditions. However, these frameworks cannot reason about the intentions of the user or extract the meanings of

actions. Another study that addressed this problem was presented by Fern et al. [36], who introduced a logic sub-language

to learn specific-to-general event definitions, using manual correspondence information.

With respect to the inclusion of the term semantics in the recognition of human behaviors, Park et al. [6] defined seman-

tic descriptions using the linguistic “verb argument structure” based on 〈agent–motion–target〉 triples for the recognition of

human behaviors defined by the relationships of subject–verb–object relationships. To obtain these triples, the authors asso-

ciated visual features with natural language verbs and symbols from a defined vocabulary to build the semantic descriptions

of video events. An advantage of natural-language descriptions is the rich syntactic and semantic structure used to represent

domain-free rules and contexts. However, the number of triples must be defined in advance and multiple triples may be

needed for a specific action depending on the complexity of the action. Therefore, the re-usability of these triples in new

situations is not possible.

From a robotics viewpoint, Takano et al. [37] proposed an approach for encoding observed trajectories based on hidden

Markov model (HMM) as mimesis models in order to segment and generate humanoid robot motions through imitation.

They transformed the motion patterns into location proto-symbols in a topological space, called the proto-symbol space.

However, one of the weak points of this mimesis model is the need to find a physical meaning for each dimension of the

proto-symbol space. This issue was addressed by Inamura et al. [17] where a physical meaning was obtained using natural

language. This system allows the generation of novel motion patterns, but its use is limited to the joint angles when creating

the proto-symbol space. This means that this system cannot work with the datasets proposed in our study, because the joint

angles are not available.

Another interesting definition of semantic representations was given by Turaga et al. [5], where they suggested the

semantics of human activities requires higher level representations and reasoning methods. They discussed the following

approaches: graphical models (belief networks, Petri nets, etc.), syntactic approaches (grammars, stochastic grammars, etc.),

and knowledge and logic approaches (logic-based approaches, ontologies, etc.). Therefore, the semantic definition of these

activities will depend on the approach used. For example, context-free grammars and stochastic context-free grammars

have been used by previous researchers to recognize high level activities [10]. These grammars are typically used as a

formal syntax for the representation of human activities. This means, these grammars directly describe the semantics of

activities.

The concept of object–action complexes (OACs) introduced by Wörgötter et al. [13] is employed to investigate the trans-

formation of objects by actions, i.e., how object A (cup-full) changes into object B (cup-empty) by executing action C

(drinking).2 This approach was used recently to segment and recognize an action from a library of OACs using the precondi-

tions and effects of each sub-action, which allows a robot to reproduce the demonstrated activity [38]. However, this system

requires a robust perception system to correctly identify the attributes (full-empty) of the objects, which are obtained and

executed off line. Analogous to OACs and based on the affordance principle, Aksoy et al. [14] presented the semantic event

chain, which determines the interactions between the hand and objects, where they are expressed in a rule–character form.

These interactions are based on the changes in the visual environment represented in a dynamic graph, where the nodes

are the centers of the image segments and the edges are defined based on whether or not two segments touch each other.

In other words, the spatial relationship between the graphs is stored in a transition matrix, which represents the semantic

event chain. One drawback of this technique is that it is highly dependent on time and the perception system to define the

object interactions. Thus, if the computer vision system fails, this approach will be affected greatly.

Recently, Koppula and Saxena [22] modeled the activity and object affordances to anticipate or predict future activities.

They introduced an anticipatory temporal conditional random field that models the spatio-temporal relationships by object

affordances based on the concepts and methods introduced in [12]. This technique performs very well, but the type of

2 This action is defined by the current attribute of object A.
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interaction will define the affordances that are considered from a predefined library. Based on this previous studies, the

same authors [23] proposed the sampling of the spatio-temporal structure in addition to the future nodes to enhance

temporal segmentation and to address the anticipation problem by considering multiple graph structures. However, the

structure of the graphs needs to be fully known and this method relies on correct temporal segmentation. We consider that

the latter approach can be enhanced by using our method to segment and infer activities. Another study that addressed the

problem of human intentions was presented by Gehrig et al. [39], where their framework combined motion, activity, and

intention recognition by humans using visual information obtained from a monocular camera combined with the knowledge

domain. This system is restricted to manual annotations of the domain (time of day and the presence of the object). In

addition, the relationship between the activity and motion is neglected.

Yang et al. [40] introduced a system that can understand actions based on their consequences, e.g., split or merge, but

the core of this technique relies on a robust active tracking and segmentation method, which can detect changes in the

manipulated object, its appearance, and its topological structure, i.e., the consequences of the action. Subsequently, this

system was improved by including a library of plans that comprised primitive action descriptions, as presented in [41].

However, this system was not implemented in a robot and it will fail if the plan is not known a priori. Another study based

on plan recognition by Kautz et al. [42] states that human behavior follows stereotypical patterns, which can be expressed

as preconditions and effects. However, these constraints must be specified in advance, which is a problem when trying to

use them in different domains.

Ontology-based activity recognition was proposed by Patterson et al. [9], where a model can generalize object instances

by its classes using abstract reasoning. One problem with this model is that the activities are misclassified in some cases

because the activities belong to the same class as the object. For example, the activities doing laundry and getting dressed are

misclassified because they have the same object class (clothes). In terms of recognition using knowledge representations,

the method introduced in [43] employs a practical approach for defining robot knowledge, which combines description

logic knowledge bases with data mining and (self-)observation modules. The robot collects experiences while executing

actions and uses them to learn models and aspects of action-related concepts, which are grounded in its perception and

action system. However, in this knowledge representation system, it is necessary to manually specify the object–action

relationships.

The semantic or symbolic representation techniques used to recognize human activities combine the information ob-

tained from image sequences with their trajectories, thereby yielding more accurate systems for recognizing human activities

in real scenarios. These techniques allow us to abstract the recognition problem by mapping continuous motions into sym-

bolic events which allow us to recognize human activities as well as segmenting them over time. These transformations

depend greatly on the context because they need to define the preconditions, postconditions, effects, and/or affordances

produced by the activities, which are not always the same. For example, the lifting activity could produce different effects,

e.g., lifting for a cup from the table will mean that the top of the table is empty while the effect of lifting a fork from a drawer

will result in the drawer being lighter. Thus, these activities will be classified as different, although they represent the same

behavior (lifting). Another disadvantage of these techniques is, they also depend on a highly accurate perception system to

detect the effects of the activity performed or the object affordances.

Action recognition and segmentation are very difficult and challenging problems. As noted above, the computer vi-

sion and machine learning communities are focused mainly on solving the problem of recognition while disregarding the

problem of segmentation, which is generally performed manually. However, the robotics community needs to solve both

problems in an effective, reliable, and fast manner to allow robots to make the best decisions. In the present study, we

address the non-trivial problems of the segmentation, recognition, and transference of human activities to a robotic sys-

tem. Thus, our system has the advantages of the techniques mentioned above but it successfully overcomes their problems

to obtain good performance, with accuracy greater than 85% when segmenting and recognizing human activities in real

scenarios. These findings are presented in the following sections.

3. Definition and extraction of visual information

Transferring the observed tasks from humans to robots typically requires sophisticated perception methods [6,40,22,12,

7,44]. These methods need to process the visual input as rapidly and accurately as possible to automatically extract and

interpret information from incoming sources, e.g., videos. This is a very complex problem since these techniques need to

segment the continuous stream of human behavior and object information into meaningful classifications, preferably online.

Nevertheless, most of the available techniques focus only on obtaining the best accuracy [7] and they typically work with

offline applications [44].

In, this section, we describe the first module of our proposed framework (see Fig. 1) where the main goal is to perceive

and extract the relevant information online from the observed human activities, which also includes information about

objects. To achieve this aim, we propose a new hierarchical approach for recognizing high level human activities based

on simple motions. Therefore, in this study, we split the complexity of the recognition problem into two parts: the first

gathers (perceives) information from the objects using simple perception techniques, e.g., color-based tracking, which we

explain briefly in this section; and the second part handles the difficult problem of assigning the perceived information to

meaningful classifications using an inference module. The levels of abstraction in our approach are presented in Section 4.
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Table 1

Definitions of human motions and object properties.

Name Meaning Formula Example

Hand motions (m)

Move The hand is moving ẋ > ε Moving from position A to position B

Not move The hand stops moving ẋ→ 0 Hold the bread

Tool use Complex motion using two objects:

one is used as a tool and the second

is the object that receives the action

oh(t)= knife and oa(t)= bread Cutting the bread where the objects are

the knife and bread

Object properties

Object acted on (oa) The hand moves toward an object d(xh, xo)= ‖xh(t)− xo(t)‖→ 0 Reaching the bread, where oa(t)= bread

Object in hand (oh) The object is in the hand, i.e., oh is

currently manipulated

d(xh, xo)≈ 0 Hold/take the bread, where oh(t)= bread

An important aspect of module 1 is defining what is considered to be relevant information, i.e., what is the highest level

of abstraction for recognizing the intentions of humans based on observable data. For example, in the case of low level hand

motions (m), we can segment them into three main categories: move, not move, or tool use. These simple motions can be

recognized in different scenarios but they cannot define an activity by themselves. Therefore, we need to add contextual

information, such as the objects in the scene and their properties. Thus, the motion information combined with the object

properties has more meaning than the separate entities. The properties which can be easily recognized from observations are

ObjectActedOn (oa) and ObjectInHand (oh). These properties are implemented in our knowledge base as Computable Properties

for which the argument is the time frame t , as explained in Section 4.2. Definitions and examples of identified motions and

object properties are given in Table 1.

In our previous study [44], we demonstrated this hierarchical approach using an unsupervised state-of-the art learning

algorithm based on independent subspace analysis (ISA) [8] to extract spatio-temporal features from videos. The results sug-

gested the accuracy of correctly identifying human behaviors exceeded 70%, which is very good compared with single-layered

approaches (around 25%). Another advantage of our hierarchical approach is that time required for the training process is

reduced from 2–3 days to 1–2 hours.3 However, the ISA algorithm needs to be executed offline to classify human motions.

Another disadvantage of this method is that segmentation of object properties required manual labeling annotations. There-

fore, in order to solve the issues described above and to demonstrate that our system does not rely on a complex perception

system, we propose the use of the simplest computer vision technique to perform online recognition of simple human mo-

tions, including the object properties. Thus, we employ the well-known color-based tracking4 algorithm, which is typically

used to detect, segment, and track an object in an image. Developing a new perception technique was beyond the scope of

this study.

To implement the color-based algorithm, we used the Open Source Computer Vision (OpenCV) library [45] to obtain the

color features ( f v ). This technique is used to determine the hand position (xh), which is used to compute its velocity (ẋh).

The velocity is then used to define hand motions (m). A similar procedure is performed for the objects in the scene, to

determine the object properties (oa or oh). The algorithms and more detailed information about our color-based system are

presented in [46]. It is important to note the recognized object (oi ) can only satisfy one of the object properties mentioned

above, i.e., oa(t) = oi or oh(t) = oi , and not both in the same frame t . However, it is still possible to have more than one

object in the scene, e.g., o1 = pancake and o2 = spatula, where the object properties are oa(t)= o1 and oh(t)= o2 . If more

than two objects are recognized in the scene and one of them is true for oa and the other is true for oh (as in the previous

example), then the motion is classified as tool use.

4. Inference of the demonstrator’s goal

This module is the most important in our framework. As inputs, this module receives the hand motion (m) and the

properties of the object(s), (oa or oh), identified by the previous module (see Fig. 1). To produce the output, it infers one of

the following human activities: reaching, taking, cutting, pouring, releasing, etc. If the inference process fails, the system obtains

the parental class of the object from the knowledge base and use this new class to infer the human activity. Therefore, we

use the parental class rules to infer the correct human activity that is best associated with the current object. This last step

represents the enhancement of our system compared with classic approaches.

4.1. Extracting semantic representations

Semantics refer to the study of meaning and several methods have been used to define semantics in the domain of human

behavior such as linguistic descriptions [6,17], syntactic approaches [5,10], and graphical models [13,22]. In general, the

3 The experiments were performed with a PC-desktop with 8 GB RAM and an Intel® Core™ i7.
4 The color-based algorithm extracts image blobs based on the color of the objects and it will segment the video by thresholding the given color(s), i.e.,

the color feature is an attribute of an specific object which is previously defined.
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Fig. 3. Method for inferring human activities. First, the input video is segmented into hand motions and two object properties. Next, we compute the rules

if we are in the training phase, but if not, we use the rules obtained to infer human activities.

semantic representations used in previous methods are given a priori by an expert [10]. Therefore, we propose a method that

automatically identifies the semantics of human behavior, which involves finding meaningful relationships between human

motions and object properties in order to understand the activity performed by humans, i.e., the semantic representations

are used to interpret a visual input to understand human activities. Next, to define the semantics of human behavior, we

propose two levels of abstraction: low level abstraction, which describes generalized motions (obtained from module 1) such

as move, not_move, or tool_use, and high level abstraction, which represents human behaviors such as idle, reach, take, cut, pour,

put something somewhere, release, etc. The hierarchical approach that we propose uses information about general motions

and object properties to infer human behaviors.

A decision tree classifier is used to learn the mapping between human motions and human behaviors based on object

information. A previous study also used decision trees to define domain-specific rules to determine meaningful semantic

representations with spatial and temporal constraints [6]. However, this approach only recognized interactions with two

sequential activities, where the individual leaf node represents an interaction type that can be obtained with different

combinations of 〈agent–motion–target〉 triples, and thus the semantics of a human behavior are not unique. Therefore, this

method cannot guarantee that the learned rule can be used in a different situation. This point is very important when

defining semantics, i.e., the possibility of re-using an extracted meaning in different scenarios. Hence, our system focuses on

solving the problem by using a decision tree classifier but we employ a different definition of triples to make the semantics

of human behavior generalizable to new scenarios.

The method proposed in this study is depicted in Fig. 3 and it comprises two steps: the first step generates a tree that

can determine the basic human activities in a general form, i.e., reach, take, put, release, and idle; and the second extends the

tree obtained tree to recognize more complex activities. We refer to these types of activities as granular activities, e.g., cut,

pour, spread, and flip. The major differences between these types of behaviors is the environment (context) as explain in the

following subsections.

4.1.1. Method for identifying basic human activities

To learn the decision tree, we require a set of training samples D , which comprise a set of instances (S) and the target

concept (c). The set of instances is the set of items over which the concept is defined. Each instance (s ∈ S) describes a

specific state of the system and it is represented by its attributes (A). The concept or function that needs to be learned is

called the target concept, which is denoted by c. In general, c can be any n-valued function defined over the instances S,

i.e., c : S→{0,1, ..,n}. In our method the target concept corresponds to the value of the attribute ActivityRecognition. When

learning the target concept (c), the learner is presented with a set of training examples (D), each of which comprises one

instance s and its target concept value c(s). We refer to the ordered pair 〈s, c(s)〉 as a state-value pair to describe the training

sample (D). In this study, the set of instances S is described by a triple with the following attributes:

1. Hand_motion (with the possible values: Move, Not_move, and Tool_use)

2. ObjectActedOn (with the possible values: Something, None)

3. ObjectInHand (with the possible values: Something, None)
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Fig. 4. Some of the state-value pairs used to generate the decision tree. Top: three input attributes and their corresponding values per frame. Bottom:

representation of the target concept values. Note that every column describes the duration of each activity in the frames. For example, the activity Reach

requires 15 frames and the activity Take is executed in three frames.

and the target concept value:

• Class c : ActivityRecognition : S → {Reach, Take, Release, Put_Something_ Somewhere, Idle, Granular5}

Therefore, some examples of the state-value pair (〈s, c(s)〉) are:

〈{ Not_Move , None , None } , IdleMotion〉

〈{Move , Something , None }, Reach 〉

〈{Not_Move, None, Something}, Take 〉

The first three elements correspond to the current state s, whereas the final item represents the target concept value c.

Fig. 4 illustrates the training sample set.

According to the principle of Occam’s razor: “It is preferable to choose the simplest hypothesis that fits the data” [47].

Therefore, in order to learn the target function c from a set of training instances S , we use the C4.5 algorithm [48] to

compute the decision tree, where shortest trees are preferred over longer trees and it is guaranteed that attributes closest

to the root achieve the highest information gain. In addition, decision trees can be represented as sets of if–then rules to

improve human readability. The core aim of the C4.5 algorithm is to select the most useful attribute to classify as many

samples as possible using the information gain measure:

Gain(S, A)= Entropy(S)−
∑

v∈Values(A)

|Sv |

S
Entropy(Sv), (1)

where Values(A) comprises the set of all possible values of the attribute A and Sv = s ∈ S|A(s)= v is a collection of samples

for S , and the entropy is defined as:

Entropy(S)=

c∑

i=1

−pi log2pi, (2)

where pi is the probability of S belonging to class i.

The method for inferring human activities is presented in Algorithm 1, which as input takes the train or test dataset

(D = 〈s, c(s)〉). Note, that steps 1–3 in Algorithm 1 are performed only once and the function Compute_Tree(〈s, c(s)〉, A) is

called, where s represents the training instances, c(s) is the attribute for which value has to be predicted by the tree, and

A is a list of the other attributes that may be tested by the taught decision tree. This function returns the tree obtained T

which captures the rules that can be used later to infer human activities, even in new scenarios. This leads us to the second

most important point of the algorithm where steps 4–8 are performed whenever a new dataset is considered. Thus, we do

not learn a new tree, but instead we use the tree obtained T to infer the target concept c for the new states of the system.

Fig. 3 shows the key features of this methodology.

5 Granular activities define classes such as flipping, pouring, and cutting. These activities are difficult to generalize because they depend on the context.
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Algorithm 1 Inferring human activities.

Require: Dataset (D = 〈s, c(s)〉)

{Note that Dataset can be the training set or a new set}

1: if Training phase then

2: T = Compute_Tree(〈s, c(s)〉, A). {This function returns a decision tree that correctly classifies the given instances using Eq. (1) and Eq. (2).}

3: return T , the decision tree that best classifies s and that determines the hypothesis h ∈ H such that h(s)= c(s) for all s ∈ S . {The set of hypotheses

H is referred to as the semantic rules.}

4: else

5: for each current state s do

6: Determine: the target class c(s) from the set of hypotheses H obtained from step 3

7: end for

8: return c(s), the inferred human activity

9: end if

4.1.2. Method for recognizing complex human activities

In order to correctly infer complex activities, such as cut, pour, spread, and flip, more attributes must be considered. For

instance, we may consider the type of object that is being manipulated, such as the cut and spread activities, which both

use a knife as a tool but they represent different activities. A distinction between these two activities is that the object on

which they act, (oa), is either bread or mayonnaise, respectively. Therefore, a second stage is needed to extend our obtained

tree T so we can infer these granular activities.

In the second step, the input comprises the activities clustered as Granular in the previous step and we learn a new

tree, which represents an extension of our previous tree. The method employed is similar to that explained in Section 4.1.1.

Thus, the set of instances S is described by the same attributes A but with different values. For example, the Hand_motion

attribute now has only two possible values: move or not_move. The attribute ObjectActedOn represents the new possible

values: pancake, dough, bread, cheese, electric stove, etc.; whereas the ObjectInHand attribute has four possible values: bottle,

spatula, knife, and plastic wrap. Note that the values of the last attribute are the parental classes of the objects. The next

subsection explains the class definitions.

Some examples of the new state-value pairs (〈s, c(s)〉) are as follows:

〈{move , pancake , spatula } , Slide_out〉

〈{move , bread , knife } , Cut 〉

〈{not_move, cheese, bottle}, Sprinkle 〉

The two-step method is depicted in Fig. 3, which shows the generation of the decision tree T using the two-step method

during the training stage.

4.2. Knowledge and reasoning engine

In the field of robotics, especially human–robot interactions, it is important to provide robots with decision-making

capabilities in order to increase their adaptability and flexibility in different environments. These capabilities can be achieved

with semantic representations. The semantics (construction of meaning) can be enhanced if a knowledge base and reasoning

engine are integrated into the system [49]. Developing a proper knowledge base requires the careful analysis of the domain,

choosing the appropriate vocabulary, and encoding the reasoning engine to obtain the desired inferences [49]. The last point

is very important because the main goals of the reasoning process are: 1) to create representations of the world, 2) to use

an inference process to derive new representations of the world, and 3) to use these new representations to deduce what

to do next.

Knowledge and reasoning play a crucial role in handling partially observable information because they are capable of

inferring or predicting different behaviors in the same manner as humans. This is partly because the knowledge base system

can combine general knowledge with the current perception of the world to infer hidden aspects of the current state. The

key factor here is to define mechanisms for obtaining appropriate reasoning rules to allow the inference of meaningful

relationships in the perceived environment. Therefore, the following questions arise: how do these rules have to be defined?,

who defines these rules (e.g., an expert)?, how can we guarantee these rules will be valid for different situations?, and what is the level

of generalization for these rules? These questions need to be answered because a good knowledge-reasoning system should be

able to adapt and be flexible to changes in the environment by updating the relevant knowledge.

Abstract concepts such as action, space, time, and physical objects are sometimes defined by an ontology representation.

The Web Ontology Language (OWL) is commonly employed to represent knowledge because it uses semantic data modeling,

e.g., Resource Description Framework (RDF), which is an action representation based on Description Logics (DL) such as

Prolog queries. Therefore, knowledge was represented by OWL in the present study. In addition, we used KnowRob [43] as

our base line ontology, which is an extension of the OpenCyc ontology, a general upper ontology that covers a broad range

of human knowledge. We mainly used two branches of the KnowRob ontology: TemporalThings and SpatialThings, where

the first one contains the important subclasses of Actions and the second describes abstract spatial concepts such as places
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Fig. 5. Illustration of the two types of computables: Computable Classes and Computable Properties. Left: The manually created classes inside the ontol-

ogy. Right: The perceived instances created on demand, using the Computables Classes, as well as the relationship between these instances given by the

Computable Properties.

Algorithm 2 General representation of the inputs and outputs for a knowledge and the reasoning system.

Require: KB← KnowRob

{KB = Knowledge Base}

1: TELL(KB,Perceive_Object(O instance))

2: TELL(KB,Perceive_Action(Ainstance))

{In this step, the Computable Classes are executed and new instances are generated in the KB}

3: human_activity← ASK(KB, Relation_Query(?))

{In this step, the Computable Properties are obtained from the KB}

4: return human_activity

and object classes. KnowRob is mainly implemented in Semantic Web Implementation (SWI) prolog [50], which loads the

ontology information as RDF triples, and reasoning is performed by the Thea OWL parser library [51].

Reasoning with Computables is another important characteristic of KnowRob because it allows the possibility of comput-

ing new relations during the reasoning process (on demand) instead of defining them manually. This is important because

the environment which we evaluated our system is mostly dynamic, i.e., the states change over time. There are two types

of computables: Computable Classes, which create instances of their target class, and Computable Properties, which compute

relations between instances (see Fig. 5). Computable Classes are to define more straightforward because they retrieve stored

instances from a dataset, e.g., from MySql, or they are created when a new instance is perceived by any sensor in the sys-

tem. By contrast, defining Computable Properties is not an easy task since they determine new relationships between objects

and activities. Therefore, in the following work we focus on the appropriate definition of those properties.

4.2.1. New algorithm for expanding the ontology

In order to define meaningful relationships between activities and objects, we use the semantic rules obtained as de-

scribed in the previous Section 4.1. These rules generate new instances and new relationships between instances (objects-

properties). These object properties are obtained by the definition of new computables. The created instances and relation-

ships are then added to the ontology as part of the inferred knowledge base. A very general way of representing the inputs

and outputs for a knowledge and reasoning system is represented in Algorithm 2.

A key point of our reasoning engine is, that inference mechanisms are used to derive new representations about the

world, i.e., these are not manually included in the knowledge base. It is important to note that in order to define our

knowledge base, we focus on the domain of everyday human activities. To enhance our ontology, we made some modifica-

tions to the KnowRob ontology, mainly to reduce its complexity. In general, to obtain an instance of basic human activities,

such as reach, take, and release, six node levels are necessary to travel in a KnowRob ontology path, and these classes are

included manually in the knowledge base. By contrast, the maximum distance is four node levels in our ontology. Another

important improvement in our system is that human activities are inferred and not manually included in the ontology.

The new classes are added on demand (see Fig. 6). This means that our basic ontology is optimized because it will grow
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Fig. 6. Example of the semantic descriptions for activities and objects. On the right-handed side, it is possible to observe the dynamic growth of the

knowledge base, using the inference mechanism described and implemented in this study. The new nodes in the ontology are created automatically on

demand.

automatically as required. In order to facilitate this dynamic growth we need to define new Computable Properties and new

Computable Classes.

The structure of our ontology is mainly defined based on the semantic rules obtained. The human motions are classified

as move, not_move or tool_use and the inferred activities define new sub-classes on demand. This is very important if we want

to predict the intentions of people. For the reasoning engine, the grounding aspect is also very important because it defines

the connections between the reasoning process and the actual environment. The state of the environment is detected by

the sensors in the system (robot), which we emulated using the labeling information stored in a data-base (MySql). We

define three Computable Classes, i.e., one for each subclass of the class Motion. We can then retrieve the generated instances

as follows:

rdfs_instance_of (?InstM, comp_humAct:‘Motion’), (3)

where, ?InstM is the instance obtained for the class Motion and the output is similar to: ?InstM = NotMove0, ?InstM =

Move1, ?InstM = ToolUse6, etc. This represents the second step of Algorithm 2. An illustration of the instances obtained is

shown in Fig. 6.

The next step is to define two properties of the objects: ObjectActedOn and ObjectInHand. Hence, we create one Com-

putable Property for each and we can then query the properties of the instances as follows:

rdf_triple(comp_humAct:‘objectActOn’, ?F, ?V), (4)

rdf_triple(comp_humAct:‘objectInHand’,?F, ?V), (5)

where objectActOn and objectInHand represent the target names of the defined Computable Properties, ?F represents the

selected frame, and ?V corresponds to the value of the property, which is the name of the object. These queries are

equivalent to the first step of Algorithm 2. Possible output values from the query (4) are: ?F = ‘o − 1’, ?V = PancakeMix,

which means that for the occurrence 1, ObjectActedOn belongs to the class PancakeMix. In addition, the output values from

the query (5) for the same time instance: ?F = ‘o − 1’, ?V = ‘none’, which means that for occurrence 1, the value of

ObjectInHand is none. Thus, the hand is empty but it is acting on the pancake mix.

In order to semantically represent the objects inside our working environment, we need to describe them in a structured

and articulated form. This is achieved by obtaining a description with the semantic map, which contains information about

the properties and relationships between the objects inside the visual input. These types of information are described using

OWL properties, where the objects defined in the semantic map are described as instances of the classes inside the ontology,

i.e., each object instance inherits the properties and relationships of its class. For example, Pancake_1 is an instance of the

Class Pancake (see Fig. 6), which is defined in the semantic map and it inherits the motion–object relationship described in

the queries (4) and (5).
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Fig. 7. Integration of the system into the control block of the iCub. This process includes information from external views obtained from videos (a) and

environmental information obtain from the camera on the iCub (b). The environmental constraints are added to the desired joints to control the robot’s

movement. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Our system is enhanced by adding knowledge and reasoning sub-modules, which can deal with incomplete information

to infer human activities, even when we use semantic rules in an untrained scenario. Fig. 1 depicts the combination of the

semantic module and its improvement using the knowledge and reasoning engine. For example, given the perceived state of

the environment, our system infers the concept value c(s) using the semantic rules. If the system successfully infers the

human activity, then this value will define the inferred goal g . In the case of failure, the system will execute the Knowledge

Base sub-module and this will generate an equivalent state of the system to infer the correct concept value, where in this

case, we refer to this value as the enhanced concept value c(senhanced), which is later used to infer the goal g .

The procedure described above is possible because our system can backtrack the knowledge-based ontology until it iden-

tifies a similar parental class to that perceived; therefore, inference is possible using this new instance. For example, if we

take the sandwich scenario and we assume the perception module recognizes the hand motion m = tool_use and a new

object pepper with the object property oh(t), then for this example, our system will fail to infer the human behavior because

the object pepper was not defined. However, our system compensates for this failure by searching the knowledge-base to find

the parental class of this new object, where in the case of pepper belongs to the class Bottle. This produces a new instance

bottle_1 that represents the equivalent state of the system si . Using this equivalent state si , our system can correctly infer

the human activity using the corresponding predicate from the reasoning engine. In this example, the possible outputs may

be activity = Pouring or activity = Sprinkle, depending on the value of oa(t) (see Fig. 12, purple box).

Briefly, the main contributions of this study in terms of the knowledge-base and reasoning engine are as follows. 1) The

description of a new model for the semantic environment. 2) The representation of a new hierarchical structure to define

new Computable Classes based on the ontology in a meaningful manner. 3) The definition of new Computables Properties to

extract the properties of an object, such as computeObjectActedOn and computeObjectInHand. 4) The implementation of

new prolog predicates to relate the new obtained instances with the object properties, in order to infer human activities (as

described in Section 7.2.4).

5. Goal transfer to the robot and execution

We used an iCub, which is a 53-degrees of freedom humanoid robot [52], to experimentally validate our framework (see

Fig. 7). The strong humanoid design of the iCub provided an appropriate testing platform to demonstrate the similarities

between the observed human motions and the robot’s execution. It is important to stress that our system is not limited

to a theoretical domain, but instead it provides a functional system that is capable of interacting in real scenarios. This

integration was a very challenging task and its solution was not trivial because it required the implementation of interfaces

between high level control (decision-making modules) and the low level control (motion control) to generate a functional

system.

This section describes the final module of our system, which involves the integration of the perception and inference

modules into the control loop of a robot, where several challenging and difficult problems must be addressed. For example,

one important factor is the transition from offline learning to online learning systems. The perception and semantic modules

can be implemented easily for offline systems, as we have shown in our previous study [44]. Nevertheless, the inclusion

of offline systems in a robotic platform is not very useful because they cannot be reactive, which makes the robot very

limited in terms of its functionality. Therefore, a perception module is required to work online, as described in Section 3.
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Algorithm 3 The run() method within the thread class.

1: begin CtrlThread::run()

2: activity = inferActivity() {This function segments and infers the observed human activities.}

3: executePrimitive(activity) {This function commands the desired primitive for the iCub robot.}

4: return The iCub moves its limbs to achieve a similar motion to that observed

Fig. 8. View used for the pancake-making scenario. 1–5) Examples of human activities performed with the right hand: 1) Reach, 2) Hold, 3) Pour, 4) Flip,

and 5) Slide_out.

This module is expected to be as fast and accurate as possible within the control-loop of any humanoid robot. In other

words, the communication between the perception and inference modules must be online, as shown in Fig. 7.

Two main modules are implemented within a thread-loop: inferActivity() and executePrimitive(), as shown in Algorithm 3.

The function inferActivity() segments and interprets the visual data from the video sources (see Fig. 7, red diagram). The red

highlighted block in Fig. 7 represents the new capacity that we have implemented in the robot, which is the interpretation

of human observations. These capacity will trigger (online) the motion primitives (executePrimitive()) which the robot needs

to execute in order to achieve a goal similar to that observed.

The process executePrimitive() (line 3 from Algorithm 3) obtains visual information from the robot’s cameras to detect

the object(s) in its working area. This information is mapped to the joint space and used as feedback for the control loop.

It is important to note that the modular architecture of the framework allows us to replace any module to more complex

behaviors acquired, e.g., the vision module can be replaced with a more advanced detection system or the control approach

can be replaced by a more robust and adaptive control law, e.g., [53]. The function executePrimitive() transforms the observed

human behavior into robot motions as follows:

1. We define a plan execution library, which is given the inferred goal (g), can select the primitives (p) from the library

repertoire that must be performed by the robot. For example, if the inferred goal is reaching, then the execution plan

will comprise the following steps: 1) look for the target (o1), 2) identify the position of o1 , and 3) move the hand

toward o1 .

2. From the execution plan, we obtain n-primitives (p(n)) which the robot needs to execute. These primitives are retrieved

from the primitive library. According to this example, the first primitive p(1) will trigger the iCub’s gaze controller [54]

to look for the object. Next, p(2) will find the object and the IKGaze controller will retrieve the fixation point. Finally,

p(3) will allow the Cartesian interface of the robot to control its arm in joint space (q).

3. These steps are then executed until the final step of the execution plan is completed.

6. Examples of everyday human activities

In order to evaluate the robustness of our system under different constraints, we tested three real-world scenarios:

making a pancake, making a sandwich, and setting the table. These three tasks have different levels of complexity, because

they involve several combinations of the same activities (reach, take, etc.) using different objects.

6.1. Making pancakes

In our first scenario, we recorded videos of a human making pancakes. This task was executed nine times by the same

subject. The human motions were captured by three cameras located in different positions, but in the evaluation of our

framework, we only used the information obtained from camera 2, as shown in Fig. 8. This represents another advantage

of the present study compared with our previous study where three views were required as inputs for the system [44].

The pancake task involves objects that could be used as tools, such as the spatula, where these objects are important for

defining the tool use motion.

6.2. Making a sandwich

In the second scenario, we recorded a more complex activity: making a sandwich. These recordings also contained

information obtained from three external cameras. In addition this task was performed by eight randomly selected subjects
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Fig. 9. View of the actions performed when making a sandwich. Some examples of the activities executed with the right hand are: 1) Cut, 2) Put something

somewhere, 3) Unwrap 4) Sprinkle, and 5) Spread.

Fig. 10. Subject performing the setting the table. Example of activities using the right hand: 1) Take, 2) Reach, 3) Put something somewhere, 4) Open-drawer,

and 5) Release.

and each subject prepared approximately 16 sandwiches, where half of the sandwiches were prepared in normal time

conditions and the rest under time pressure (in a hurry). Fig. 9 shows that some activities were performed simultaneously

using both the right and left hands. For example, the left hand was holding the bread, while the right hand was cutting it

with a knife.

6.3. Setting the table

The final experimental set-up used videos from the TUM Kitchen Dataset [43], which contains observations of four

subjects setting a table at least four times (Fig. 10). The subjects were randomly selected and they performed the actions in

a natural manner. Thus, they required no further instructions about how to perform the action. It was possible to observe

fluent transitions between sub-actions (task). Furthermore, some tasks were performed in parallel, using both the left and

right hands, similar to the scenarios mentioned above.

7. Results

This section presents the results obtained after implementing our system using the iCub robot. It is important to stress

that the entire process is performed online by the robot, which is a very challenging task to achieve. First, Section 7.1

presents the results obtained by the real-time segmentation of 2D videos tested in two different tasks, i.e., sandwich making

and pancake making. Next, Section 7.2 presents the semantic rules, which were obtained offline using the sandwich making

dataset as training. In Section 7.2.1, we describe how the rules obtained were tested offline in two new scenarios: pancake

making and setting the table. Section 7.2.2 demonstrates the robustness and re-usability of the tree obtained, using the sand-

wich making dataset under different constraints, e.g., time conditions and labeling strategies. To the best of our knowledge,

these types of validations have not been described previously, but they are very important when discussing the generality

of the results obtained.

After demonstrating that the rules obtained could generalize to the same behaviors in different situations for offline

datasets, these rules were programmed for an online inference process conducted by the robot, and the results are presented

in Section 7.2.3. The datasets used for evaluation were a new video (different from the training video) showing the sandwich

making scenario and a pancake making video. Subsequently, Section 7.2.4 demonstrates the enhancement of our system by

including the knowledge-base and the reasoning engine. The results presented in Sections 7.1 and 7.2.3 describe the outcomes

of the inferActivity() process online (step 2 from Algorithm 3). Finally, Section 7.3 describes the experimental execution of

the inferred activity by the iCub robot, i.e., the executePrimitive() process was performed in real-time with the new pancake

making video.

7.1. Online segmentation of videos: extracting visual features

We tested our algorithm (Section 3) using two datasets: pancake making and sandwich making, as explained in Section 6.

The experiments were performed using only a subset of the whole video because our goal was to demonstrate the robot
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Fig. 11. Results obtained by the perception module after automatically segmenting the human motions and the object properties. a) The hand motion was

segmented as not moving and object recognition lacked any relevant information. b) The hand was moving and the object had the property oa(t)= something.

c) and e) The same segmentation values were used for the hand (not moving) and the object had the property oh(t) = something. d) The motion = move

and the object property oh(t)= something.

could extract simple activities from different environments. For the pancake scenario, we analyzed the video until the

pouring action was finished. For the sandwich scenario, we split the video until cutting the bread was finished. Note, the

sandwich scenario had time constraints: normal and fast. It was important to analyze these time conditions because the

lifetime of similar activities will either be shorter or longer. Some techniques are highly dependent on the execution time of

the observed activity, e.g., the ISA algorithm presented by [44]. For example, the reach activity in a normal condition required

about 39 frames, whereas in the fast condition, the lifetime of the same activity decreased to 16 frames. These constraints

are very challenging for real-time systems. Therefore, we executed our algorithm in these two conditions: normal and fast

speeds. The analysis described above was performed for the right and left hands, as shown in Fig. 11.

The videos used for testing had not been manually segmented and the results were obtained by our system on the fly.

However, because we used a color-based algorithm, we had to define some prior information such as the colors of objects

and the thresholds used (ε = 1.5 and d(xh, xo)= 70 from Table 1). These values were determined heuristically. The results

indicated that the human motions (move, not move or tool use) during pancake making were classified correctly in 92.76%

of the cases (right hand = 92.60% and left hand = 92.93%). For the sandwich making scenario, we found that the average

classification success rate in the normal and fast conditions was about 90.76% (right hand = 85.08% and left hand = 96.45%).

In addition, the objects in the scene and their properties were correctly identified in 95% of cases for the pancake making

scenario, but the recognition rate decreased to 85% for the sandwich making scenario because the objects in the scene were

smaller and they were occluded by larger objects. The results represent the averages obtained after testing at least two

input videos in each of the scenarios. This module is a basic visual process and it could be replaced with more sophisticated

object recognition algorithms. However, further discussion of perception algorithms is outside the scope of this study.

7.2. Semantic representation results

Weka data mining software was used to generate the decision tree [55] and the sandwich making scenario was used as

the training dataset. This scenario was selected because among the task examples presented in Section 6, this scenario had

the highest task complexity due to the presence of several sub-activities. We divided the procedure into two steps during

the training stage.

In the first step, we used the ground-truth data6 for the first subject in the normal conditions while making a sandwich.

We split the data as follows: the first 60% of the trials (instances of the dataset s) were used for training and the remaining

40% for testing. Thus, we obtained the tree Tsandwich shown at the top of Fig. 12. This learning process captured general

information about the objects, motions, and activities. In the top part of the tree obtained (see Fig. 12), it can be seen that

human basic activities could be inferred as: idle, take, release, reach, put something somewhere, and granular.

It is important to note, the first attribute that must be correctly segmented is the hand motion, e.g., if the hand is not

moving, we can predict the activity is either take or idle, which are defined by the object property ObjectInHand. Thus, using

the tree obtained, we can determine six hypotheses (Hsandwich), which represent semantic rules that describes the basic

human activities. Therefore, the rules obtained define the relationships between the image observations and representations,

which are given by each branch in the tree obtained. The taxonomy of the tree represents the syntax of the representations.

According to this syntax, we can construct machine/human-understandable descriptions of human activities, i.e., semantics.

Some examples of these rules are:

if Hand(Move) & ObjectInHand(None) & ObjectActedOn(Something)→Activity(Reach) (6)

if Hand(Not_Move) & ObjectInHand(Something)→Activity(Take) (7)

if Hand(Move) & ObjectInHand(Something)→Activity(PutSomethingSomewhere). (8)

6 The ground-truth data were obtained by manually segmenting the videos into hand motions, object properties, and human activities.
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Fig. 12. The top (magenta box) shows the tree obtained from the sandwich making scenario (Tsandwich). The bottom (purple box) shows the extension of the

tree, which represents the second stage of the learning process. In this branch of the tree, the names of the objects are used because the current context

defines the activity that is executed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

For the sandwich making dataset, the expected activities are cut, sprinkle, spread, etc. However, in the first-step method, these

activities were always clustered into the same class spread7:

if Hand(Tool_use)→Activity(Spread) (9)

Thus, the C4.5 algorithm was not capable of correctly separating the complex/granular activities into different rules, so the

second step proposed in Section 4.1.2 was required to classify these granular activities correctly. To achieve this, all of

the complex activities in the input dataset (s) were replaced with the label of Granular and they were inferred with the

following rule.

if Hand(Tool_use)→Activity(Granular) (10)

Next, all of the activities classified by this rule, formed the input for the second learning step in our system. The final tree is

shown in Fig. 12, where the top part (magenta box) represents the general and most abstract level of rules for determining

different basic activities and the bottom part (purple box) represents the extension of the tree, which considers the current

information related to objects to recognize granular activities correctly. Thus, in order to identify which granular activity is

being executed, we need to know which objects (or classes) are identified in the scene. Some examples of the extension of

the tree are as follows.

if Hand(Tool_use) & ObjectInHand(Knife) & ObjectActedOn(Bread)→Activity(Cut) (11)

if Hand(Tool_use) & ObjectInHand(Bottle) & ObjectActedOn(Bread_slice)→Activity(Sprinkle) (12)

We can see that the second rule has ObjectInHand with the value Bottle, which shows that the parental class of the ob-

ject was identified instead of the object itself, i.e., pepper ∈ Bottle. This will be explained later when we describe the

knowledge and reasoning results. The next step was to test the accuracy of the tree obtained Tsandwich , where we used the

remaining 40% of the sandwich dataset to test the accuracy of the rules obtained. Thus, we executed steps 4–8 from Algo-

rithm 1 to determine c(nsandwich_test), i.e., given the input attributes nsandwich_test = {Move, Something, None}, we determined

c(nsandwich_test). The state-value pairs from the test dataset nsandwich_test were in form of 〈nsandwich_test(t),?〉, where t represents

the time (frames). Next, the target value was determined for each state of the system c(nsandwich_test(t)). Finally, the results

obtained showed that c(nsandwich_test(t)) was classified correctly in 92.57% of the cases, compared to the ground-truth data.

To analyze the results, we obtained the confusion matrix shown in Table 2a, where the main diagonal of the table indicates

7 The spread activity had the most instances in the training dataset, so most of the instances were correctly classified when this activity was selected.
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Table 2

Confusion matrix (expressed in %) obtained from the sandwich making, setting the table, and pancake making scenarios, where a = Reach, b = Take, c = Put

something somewhere, d = Release, e = Granular, and f = Idle.

Actual

class

Classified as

a) Sandwich b) Set the table c) Pancake

a b c d e f a b c d e f a b c d e f

a 86.9 3.4 3.4 0.6 0 5.4 86.9 0 10.4 1.7 0.8 0 94.2 3.8 0 0 0 1.9

b 2.6 76 8 13.3 0 0 5.5 44.4 38.8 11.1 0 0 0 93.1 6.8 0 0 0

c 0.8 0.3 91.1 1.1 3.5 2.8 0 0 99.2 0.4 0 0.2 1.7 3.1 92.3 0 1.3 1.3

d 7.2 0.5 1 46.3 0 44.8 0 0 3.4 63.9 0 32.5 4.4 0 4.4 68.8 0 22.2

e 0 0 1.2 0 98.7 0 0 0 0 0 100 0 0 0 4.5 0 95.4 0

f 2.6 0 0 2.3 0 94.9 1.6 0 0 4.2 0 94.1 0.1 0 0 0.7 0 99.1

that human activities were classified correctly in most cases. Therefore, the semantic rules obtained from the tree Tsandwich

generalized the human activities very well for the sandwich scenario.

7.2.1. Generalization to different scenarios

The next challenge was to test the semantic rules in unknown scenarios, where we used the set of hypotheses Hsandwich

to infer human activities in new situations, and thus we did not generate new hypotheses to infer human basic activities.

Two new scenarios were used for testing: pancake making and setting the table using manually annotated labels. In Sec-

tion 7.2.3, we present the results obtained using the automatic segmentation method from the vision module as inputs. The

terminologies for these new scenarios are npancake and nsetTable , where we aimed to obtain the target values c(npancake(t))

and c(nsetTable(t)). First, we entered the data from nsetTable into our Algorithm 1 and performed steps 4–8, which showed that

c(nsetTable) was classified correctly in 91.53% of cases, and the corresponding confusion matrix is shown in Table 2b. This ta-

ble shows the best results are along the main diagonal, which indicates that most of the instances were classified correctly.

However, we can also see that the off-diagonal elements in this table are better than the results obtained for the sandwich

making scenario (see Table 2a). For example, for the activity Taking, 38.8% of the instances were classified incorrectly as

the activity PutSomethingSomewhere. From the tree obtained, Tsandwich (see Fig. 12), we can see that the difference between

these two activities was the value of the attribute Hand_Motion, which in this case was labeled incorrectly as Move, and

thus the activity was classified incorrectly as PutSomethingSomewhere.

The second new scenario npancake was tested and we found that c(npancake) was classified correctly 97.15% of the cases

(Table 2c). These results indicate that the tree obtained, Tsandwich , could generalize the definition of human basic activities in

kitchen scenarios. We should stress that a similar tree was obtained when we used the labeled information obtained from

the setting the table or pancake making actions as training set, as shown in [56]. Therefore, the tree obtained extracted the

meaning of the basic human activities in a general form.

7.2.2. Testing the robustness of the semantic rules

The previous results were obtained using the label information when one human performed different activities with the

right hand. Thus, the labeling process was executed by one expert user. In order to test the robustness of the hypothesis

obtained, Hsandwich , we conducted more experiments and analyzed the results, so the following two experiments were

performed.

1. Different conditions and people using both hands. In this experiment, we tested the variation in possible styles

when performing the same activity by analyzing the activities performed by several people (males and females) and by

constraining the time conditions during the execution of these activities. This analysis used the sandwich making scenario

because it had more subjects and different time constraints, as described in Section 6.2.

In this experiment, eight people who were not involved with our project were instructed to prepare a sandwich. Half

of the subjects were females and the other half were males (Fig. 13). Each subject prepared the sandwiches under two

conditions: normal and fast speeds. Fig. 13 shows that one of the male subjects (S8) was left-handed, which implies the

granular activities (cut, sprinkle, etc.) were performed using the left hand instead of the right hand, in contrast to the other

subjects. We should also note that the meaning of the sandwich making task was not interpreted in the same way by all

of the subjects. For instance, subject 3 prepared the sandwich with one bread slice (a half sandwich without toasting the

bread). The following results demonstrate that our system robustly identified the activities performed even when there were

variations.

In general, we found that each person had their own style and interpretation of the required task, i.e., preparing a

sandwich. Thus, the following two questions must be considered: is there a general principle followed by humans when executing

basic activities? and do humans interpret the motions of other humans in the same way?

In order to answer the first question, we performed the following experiment. A different person from those who pre-

pared the sandwiches manually labeled the attributes of the human motions and the object properties. This was performed
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Fig. 13. Different styles of preparing a sandwich. Subjects 1, 2, 7, and 8 were males and the remainder were females.

by each of the eight subjects, in the two conditions, and for each hand; therefore, 32 videos were labeled in total8 by the

same person. We then used this information to test our obtained hypothesis Hsandwich . The results suggested that although

the subjects performed the task in different ways, the semantic rules obtained were still valid with a high accuracy of

greater than 90%. Furthermore, the rules were not affected when the subject executed the task in the normal (94.75%) or

fast (95.02%) conditions. These rules were also not gender-dependent (females = 95.6%, males = 93.85%). These results

demonstrate that we all follow similar principles when performing a task, thereby answering the first question. Moreover,

the rules obtained were also valid when the motions of the left hand were analyzed by the expert who labeled the videos.

The average accuracy was 95.05% in this case. To answer the second question, we performed the following experiment.

2. Labeling strategies of different subjects: In the previous experiment, only one expert person labeled 32 videos. The

next challenge was to test whether the results obtained were affected when the labeling process was performed by different

people. The goal was to determine whether the activities performed by other people were perceived in different ways and

if this was reflected in the labeling process. We expected that people would use different labeling strategies to segment

human activities, but that the rules obtained would be the same.

Therefore, we performed an experiment where we asked four students,9 who were not involved with the project, to

label four videos of the same subject (S1): one in normal speed condition with the right hand, the second in the same

condition with the left hand, and the other two in the fast condition with the left and right hands. Note that the students

who labeled the videos received no instructions.

The results are presented in Fig. 14, which show that accuracy of recognition decreased to 74.62% in the normal condition

and to 78.75% in the fast condition. These two percentages represent the worst results, but it is interesting that both results

corresponded to labels for the right hand. This lower accuracy may have occurred because we do not always perceive when

another person stops their motion, which indicates that a robot is not expected to automatically segment these motions with

100% accuracy, but instead they should perform in the same manner as humans. In addition, we found that the labeling

strategy employed by females and males was fairly similar, as we expected.

The results obtained after testing human activities performed by both hands demonstrated our comprehensive approach.

We found that rules obtained using the right hand (Hsandwich) were also valid for inferring the activities performed by

humans with the left hand. Therefore, the obtained semantic rules were independent of the hand performing the activity

because the meaning was the same.

7.2.3. Online recognition by the iCub

In the next step, we tested the information obtained from module 1 (see Section 7.1), i.e., from the automatic segmen-

tation of human motions and object properties. The results after employing the semantic rules as the input for the online

perceived information in the pancakemaking scenario were accurate in 91.32% of cases (right hand = 89.39% and left hand =

93.25%) and in 83.57% of cases in the sandwich making scenario (right hand = 75.75% and left hand = 91.39%). The errors in

activity recognition occurred because objects were misclassified by the perception module, especially for the right hand in

the sandwich making scenario when the knife was occluded by the hand and the bread. However, it is clear that the results

obtained were better than those when the non-experts labeled the data (see Fig. 14).

These results demonstrate that the definitions of rules allowed the inference of basic human activities in different sce-

narios with high accuracy. Fig. 14 presents the results obtained under all of the test constraints, where the accuracy ranged

8 These data labels were then treated as the ground-truth data and the person who labeled these data was considered an expert because they experienced

a training stage.
9 The educational levels of the students ranged from high school to master students, where two students were females and the rest were males.
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Fig. 14. Results obtained by the system (the robot) and human under several labeling constraints. The results show that recognition was performed more

accurately by the system than the non-expert human.

from 74.62% when external people labeled the data up to 93.25% when the system used very simple hand and object

recognition to automatically segment the motions and object properties. These results represent the first step toward the

generalization of these types of activities.

7.2.4. Knowledge base and reasoning engine results

In the previous subsections, we demonstrated that semantic rules obtained for human activities did not change under

different constraints, e.g., time constraints, different scenarios, gender, or the hand used to execute the activity. In this

subsection, we present the results obtained when we used the semantic rules to improve our reasoning engine and the

knowledge base.

A very important characteristic of our system is that we can define the structure of our ontology in a dynamic form using

the semantic rules obtained, which facilitates the prediction of human behaviors. For example, if the activity is a sub-class

of not_move, then the human activity will either be take or idle according to the semantic rules (see the rules in Fig. 12).

The next step was to semantically relate the instances from the class Motion and the object properties described previ-

ously in Computables (3), (4), and (5), which was achieved by using the rules obtained in Section 7.2. For example, to infer

the activity Take, we define the following prolog predicate:

humanAct(?Occ,take) : −

rdfs_instance_of (?InstM, comp_humAct:‘Motion’),

InstM= ‘NotMove’,

rdf_triple(comp_humAct:‘objectInHand’,Occ, ?V),

(V = ‘Something’; V \ = ‘none’),

where ?Occ is the occurrence number that we want to infer and take is the name of the inferred class. From the predicate

above, we can see how the instances of the class Motion and the objects with the property of ObjectInHand are semantically

described and represented. This exemplifies the last step of our Algorithm 2. Similar prolog predicates are defined for the

remaining rules. An illustration of the growth of the knowledge base due to the instances inferred from the relationship

computed between the Motions and the object properties is shown at the right of Fig. 6.

With our system, we could ask the following query: humanAct(?Occ, ?Activity), when the input value of Occ = 1, then

the output for the inferred activity is ?Activity = Reach, i.e., humanAct(‘1’, ?Activity) = ‘Reach’. In this case, the instance of

PancakeMix_1 had the property of ObjectActedOn, whereas none of the objects had the property of ObjectInHand. Thus, when

a reaching activity was identified, we first moved toward the object that we wanted to manipulate, but we did not have the

object in our hands yet. Similar results were obtained for the remaining queries.

Another advantage of our system is the possibility of handling missing data. For example, we could submit the same

query to the system where both of the variables are unknown, i.e., humanAct(?Occ, ?Activity). Thus, the output would be

similar to Occ = 2 and ?Activity = Take, or Occ = 3 and ?Activity = Put, or ?Occ = 11 ?Activity = Release, etc. The properties

of the objects would also be retrieved. We also found that if we inferred the activities performed in consecutive instances,
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Fig. 15. Reaching activity performed by the human, which was inferred and executed by the iCub robot.

these activities followed a pattern that could define the plan which the human followed during the execution of the final

task. Further analysis is performed on this subject, which is outside the scope of the current study.

7.3. Execution of the iCub in real-time

Several experiments were performed to validate and evaluate the proposed method using a humanoid robot in realistic

scenarios. To illustrate the different contributions of this study, we present the results obtained by the proposed framework

for the pancake making scenario, using the rules generated from the sandwich making scenario. As mentioned in Section 1.1,

this system comprises three main subsystems, 1) image observation and segmentation, 2) interpretation of human intentions

and 3) activity imitation by the robot. These subsystems were implemented in an iCub following the control block shown

in Fig. 7, where the results of these subsystems were as follows.

1. Extracting relevant data from videos: The pancake video was played and the perception module (see Figs. 15.a.1–3))

retrieved the recognized human motions and the object properties (oa or oh). In this case, motion = move and

objectActedOn(oa(t))= pancakemix.

2. Interpreting human intentions: After the relevant information was recognized, the goal of the human was inferred.

Thus, one branch of the tree obtained from Fig. 12 (see Section 7.2) was executed as shown in Fig. 15.a.4), i.e., the

human activity inferred by the system, i.e., activity = Reach, was sent to the robot (see Fig. 15.a.5)).

3. Skill execution by the robot: Based on the inferred activity, a module selected the execution plan that needed to be

performed. The plan indicated the motion primitives that the robot had to execute in order to achieve a similar goal

to the human. If the inferred activity was reaching, then a position-based visual servoing module was executed to

reach the current position of the pancake mix10 in the robot’s environment. This module extracted 2D visual (image)

features from a stereo vision system with Augmented Reality (AR) markers. We used the ArUco library to detect the AR

markers, which is based on OpenCV. The 3D position and rotation with respect to the camera frame (iCub right eye)

were obtained from the image features, using the camera’s intrinsic parameters. When the marker was detected, the

next primitive consists of moving the right arm of the robot toward the desired Cartesian position, which was achieved

by using the inverse kinematics, as shown in Fig. 15b). In addition to pick and place activities, such as reach, take, put

something somewhere, and release, our system can handle more specific activities such as pouring (see Fig. 16). These

motion primitives followed a similar procedure to that described above.

In summary, during run-time, the robot could correctly segment and infer the human behaviors involved in the sandwich

making scenario with an average accuracy of 83.57%. This high accuracy was expected, since this was the dataset used,

to learn the decision tree, using ground-truth data. However, when a new video was shown to the robot, for which it

10 When the reaching activity was inferred, the ObjectActedOn value observed in the video was used as a target object for the robot. If an ObjectInHand

property was detected, this determined the type of object that the robot needed to grasp.
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Fig. 16. Pouring activity performed by a human, and that inferred and executed by the iCub.

had not received training (see Figs. 15 and 16), the recognition accuracy in this new scenario for online segmentation and

recognition was 91.32% when recognizing basic activities compared to the ground-truth, where the pouring activity was

classified as granular using the rule from Eq. (10). The accuracy was higher than the sandwich making scenario because the

system only considered the recognition of basic behavior and the sandwich dataset had produced more errors due to the

use of the color-based technique during the classification of objects, e.g., the knife was sometimes occluded; therefore, the

properties were not obtained correctly, thereby leading to misclassified activities. The higher accuracy of the results in the

new pancake making scenario were not due to an overfitting problem because the data from this new task were not used

for training.

The results presented in Sections 7.2.1 and 7.2.2 were obtained by offline recognition using ground-truth information.

However, the presentation of these results is highly relevant for explaining how the proposed method can generalize and

the possibility of implementing the results obtained in online systems, which was also addressed in the present study. In

particular, the results in Section 7.2.2 required the segmentation of the ground-truth by an expert, where the test used

random people to segment the data. Similarly, Koppula and Saxena [23] provided an interesting analysis of the ambiguity

in temporal segmentation, where they considered various types of segmentation and they concluded that their proposed

segmentation method was the closest segmentation to the ground-truth; however, no further analysis has made to include

different segmentation performed by random people. Therefore, our findings complement these results by including this

missing analysis. Our results demonstrate the segmentation of human motions might not always be the same due to the

fact that different people have their own strategies for segmenting human behaviors. Therefore, we cannot expect 100%

accuracy when an artificial system performs segmentation automatically. The results suggest that the worst case scenario

should be similar to that achieved by random people when segmenting motions (around 76.68% accuracy). Thus, the results

in Section 7.2.3 were better than expected (average accuracy of 87.44%) when using the simplest color-based algorithm to

enhance our semantic representations.

Testing algorithms in new scenarios has several challenges such as recognition of new behaviors, re-usability of models,

and accuracy. Our system can handle most of these challenges, but one limitation is the recognition of a new activity, which

is always clustered as granular in the present study. Thus, in future research we will analyze mechanisms for learning new

behaviors on-demand. Our first attempt to solve this issue by including memory and an active-learning module was presented

in our recent study [57]. However, the inclusion of the knowledge-based ontology proposed in the present study will also

help to control the growth of the decision tree, but this is still under investigation. A video that provides more details of

the experimental results can be found via the following link: http://web.ics.ei.tum.de/~karinne/Videos/AIJ13ramirezK.mp4.

8. Conclusions

Correctly identifying human activities is a challenging task for the robotics community, but its solution is very important

due to it is the first step toward more natural human–robot interaction. In this study we proposed a method for extracting

the meaning of basic human activities by combining hand motion information and two object properties. This information

is used as an input by our framework and the output is the inferred human activity, which can be executed by a robotic

system in real-time.
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We described the proposed method for generating semantic rules from human observations, which we tested under

different constraints. Overall, the results suggest that the best accuracy was obtained by our system with an accuracy

classification of 92%, whereas the worst was obtained by a human labeling another human with 74.62%. This demonstrates

that our approach can find rules to generalize basic human activities. Therefore, we developed a new (meaningful) method

that allows the extraction of semantic representations, which can be used to transfer skills to humanoid robots.

By adding new capabilities to the reasoning engine, we showed that it could compute new relationships between objects

and activities, thereby improving the dynamic growth of the knowledge base in a meaningful manner, which is necessary

because we cannot guarantee that knowledge stored manually in the system will be valid under different constraints/sce-

narios. We found that the activities followed predefined plans and that these plans could be obtained from the semantic

representations proposed in the present study. Another important characteristic of our system is that inference rules ob-

tained can be implemented in systems such as humanoid robots to allow more natural interactions with human. Therefore,

these semantic rules could enhance the planning process for robotic systems.

8.1. Contributions

The main contributions to this study are summarized as follows.

• Proposal and implementation of a multilevel framework that allows the flexible imitation of human behaviors based on

observations.

• Definition of a new method for obtaining semantic rules that capture the essence of human activities.

• The dynamic growth of the ontology-based knowledge representation was improved by using the semantic rules in the

reasoning engine.
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XMLVIEW: extended

Appendix A. Supplementary material

The following is the Supplementary material related to this article.
begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent

Label: MMC 1

caption: The following video provides more details about the proposed method for extracting the meaning of basic

human activities by combining hand motion information and two object properties. Furthermore, this video

shows the real-time results of a robotic system to infer human activities using the proposed method.

link: VIDEO : mmc1

end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent
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