
Technische Universität München

Zentrum Mathematik

Wissenschaftliches Rechnen

Dynamic programming with radial basis

functions and Shepard’s method

Alex Joachim Ernst Schreiber

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Uni-

versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. F. Krahmer

Prüfer der Dissertation: 1. Univ.-Prof. Dr. O. Junge

2. Univ.-Prof. Dr. M. Gerdts,

Universität der Bundeswehr München

Die Dissertation wurde am 22.10.2015 bei der Technischen Universität München

eingereicht und durch die Fakultät für Mathematik am 22.01.2016 angenommen.

Abstract

In this thesis, we investigate a discretization of the optimality principle in dy-

namic programming based on radial basis functions and Shepard’s moving least

squares approximation method. We prove the convergence of the discrete value

function for increasingly dense sets of centres, develop an adaptive version of the

algorithm and generalize a Dijkstra-like algorithm of Bertsekas which allows an

efficient calculation of the value function. We illustrate the theory with numerous

numerical experiments.

Zusammenfassung

Diese Arbeit beschäftigt sich mit einer Diskretisierung des Optimalitätsprinzips

der dynamischen Programmierung, welche auf radialen Basisfunktionen und Shep-

ards Methode der beweglichen Kleinste-Quadrate-Approximation basiert. Wir

zeigen die Konvergenz der diskreten Wertefunktion für zunehmend dichtere Zen-

trenmengen, entwickeln eine adaptive Variante des Algorithmus und verallgemein-

ern einen Dijkstra-artigen Algorithmus von Bertsekas zur effizienten Berechnung

der Wertefunktion. Wir illustrieren die Theorie anhand zahlreicher numerischer

Experimente.

3

Acknowledgements

First, I would like to thank my supervisor Prof. Dr. Oliver Junge for introducing

me to this interesting topic, for his continuous support and for countless helpful

and interesting discussions. Thank you for your confidence, help and advice at

every stage of my PhD.

I am grateful to Prof. Dr. Roberto Ferretti, Prof. Dr. Lars Grüne, Dr. Péter

Koltai and Prof. Dr. Holger Wendland for helpful discussions and to Stephanie

Troppmann, Andreas Bittracher, Dr. Daniel Karrasch and Michael Kratzer for

proofreading.

Finally, I want to thank all the members of the M3 research unit at the Tech-

nische Universität München for the friendly and constructive atmosphere over the

years. Working in this group was and continues to be a great experience.

5

Contents

0. Introduction 9

1. Preliminaries 13

1.1. Discrete-time control systems . 13

1.2. Dynamic programming . 16

1.3. Continuous-time control systems 19

1.4. Radial basis functions . 20

2. The Shepard discretization of the optimality principle 25

2.1. Discretization of the optimality principle 25

2.2. Stationary vs. non-stationary approximation 28

2.3. Convergence for decreasing fill distance with discounting 29

2.4. Implications of (non-)discounting for dynamic programming . . . 32

2.5. Convergence for decreasing fill distance with the Kružkov transform 33

2.6. Construction of a stabilizing feedback 36

2.7. Summary and outlook . 40

3. Implementation and numerical examples 43

3.1. Implementation . 43

3.2. Example: A simple 1D example 44

3.3. Example: Shortest path with obstacles 45

3.4. Example: An inverted pendulum on a cart 46

3.5. Example: Magnetic wheel . 50

3.6. Dependence on the shape parameter 53

3.7. Dependence on the set of centres 53

3.8. Dependence on the shape function 56

4. Adaptive choice of the centres 61

4.1. Adaptive construction of the centres 61

4.2. Convergence of the algorithm . 63

4.3. Implementation . 67

4.4. Numerical examples . 67

4.4.1. A 1D example with non-smooth solution 67

4.4.2. A basic growth model with explicit solution 69

4.4.3. An inverted pendulum on a cart 71

4.4.4. An office robot . 71

7

Contents

5. Shepard value iteration and stochastic shortest path problems 75
5.1. Shortest path problems and Dijkstra’s algorithm 76

5.2. Stochastic shortest path problems 77

5.3. A Dijkstra-like algorithm for stochastic shortest path problems . . 80

5.4. Application on continuous-time control systems 85

A. Regularity of the value function without discounting 89
A.1. Lipschitz continuity of the value function 89

A.2. Nondifferentiability of the value function 96

Bibliography 101

8

0. Introduction

The present thesis presents an approach to efficiently approximating optimal value

functions of optimal control problems.

An optimal control problem poses the task of finding optimal solutions for control

systems, which are a generalization of dynamical systems. Dynamical systems are

ubiquitous when considering physical or technical systems where they describe the

changing state of a system over time. If, in addition, the system can be influenced

(by a control function) in the course of time, one has a control system. Usually

there is also a cost function which, like the dynamics, depends on the state and

the control at the particular time.

The objective is either steering the system towards a certain state, the target,

or minimizing the total cost, which accumulates over time.

If one tries to achieve this objective not just for one specific initial state of

the system, but for all possible initial conditions at once, an appropriate tool

is the (optimal) value function. It describes the smallest possible total cost in

dependence on the initial condition.

The most concrete examples of optimal control problems are shortest-path prob-

lems, which can be imagined as the situation where a virtual driver tries to move

a vehicle on a plane (possibly with obstructions) from a given starting position

to a certain target on the shortest path or, more generally, in minimal time if the

velocity is not constant.

Here, the state space is the plane, the possible controls are the allowed speed

vectors and the cost can be constant or e.g. the kinetic energy.

There is an important distinction of control systems whether they are considered

in continuous or in discrete time. Our methods apply to the discrete-time setting,

but continuous-time control systems can be discretized by standard methods (any

numerical integrator for ODEs) from numerical analysis.

Among the approaches towards optimal control problems in continuous time

stand out two major methods, Pontryagin’s maximum principle ([Pon87]) which

gives a necessary condition for an optimal value function, and the Hamilton-

Jacobi-Bellman (HJB) equation ([Bel54]) which provides both a necessary and

sufficient condition.

This thesis deals exclusively with methods related to the latter approach because

it has an analogue in discrete time, the Bellman equation. It has the form of a

fixed point equation for the optimal value function of the system. In its most

9

0. Introduction

basic and simplified form (without a control input) it splits the value function

V (x0) =

∞∑
i=0

c(xi)

along a (discrete) trajectory x0, x1, x2, . . . with xk+1 = f(xk) into

V (x0) = c(x0) + V (x1) = c(x0) + V (f(x0))

where f is the dynamics.

More generally (if c also depends on a control input u), it is given by ([Bel57])

V (x) = inf
u∈U

[c(x, u) + V (f(x, u))].

The iteration with the corresponding operator

Γ: V 7→ Γ(V), Γ(V)(x) = inf
u∈U

[c(x, u) + V (f(x, u))]

is called dynamic programming.

From the value function it is possible to construct a policy for the choice of

optimal controls, a feedback, which assigns a control to each point of the state

space. If this feedback is plugged into the control system one gets a closed-loop

system: a dynamical system with a cost functional. Without discounting, it is

also possible to approximate the maximal domain of stability (points which can

be steered towards the target) for this closed-loop system by finding the subset of

the state space where the value function is finite. However, most authors consider

control systems with discounting, which assigns smaller weights to summands of

the cost functional which are added at a later time.

The state space is usually infinite and the Bellman operator nonlinear because

of the infimum on the right-hand side. For these reasons control problems do not

allow for an exact analytical solution, in general.

Although methods from nonlinear [Cla04] and nonsmooth [CLSW98] analysis

might be tried to deal with the non-linearity, usually some kind of space discretiza-

tion is necessary. The methods which have been used so far include finite differ-

ence ([CD83, BCD97]), finite element ([Fal87]) and, more recently, set-oriented

methods ([JO04, GJ05]).

Usually their discretization suffers from the curse of dimensionality : The nu-

merical effort scales exponentially with the dimension of the problem, because

the volume of the state space and hence the size of the discrete state space scale

exponentially.

We do not use a discretization of the state space, but instead discretize the

space of functions on the state space. To this end we employ linear function

10

spaces generated by radial basis functions (RBF), radially symmetric functions

with distinct centres of symmetry.

Usually, one uses translations of a fixed shape function, but in some cases one

scales the translated functions differently (in spatial direction). Radial basis func-

tions have the form φi(x) = ϕ(σ‖x − xi‖), and hence the functions in the RBF

space have the form
n∑
i=1

αiϕ(σ‖x− xi‖), αi ∈ R.

Here, x1, . . . , xn are the centres, ϕ is the shape function, σ is the shape parameter

and the αi are the coefficients of the linear combination.

Owing to their self-evident definition, radial basis functions have been used for

a long time; recently, interest grew in compactly supported radial basis functions,

particularly due to the extensive work of Schaback and Wendland ([Sch95, Wen95,

SW00b, SW00a, Wen04]).

What is interesting about radial basis functions? On the one hand,

the discretization of control problems by the use of radial basis functions can be

implemented efficiently. This is possible because the radial symmetry of the basis

functions allows for the use of distance matrices (the matrix of pairwise distances

of a set of points) which are sparse for basis functions with compact support.

However, the main advantage of radial basis functions concerns the curse of

dimensionality. The discretization is meshfree, at least in principle, in other words,

it does not rely on a regular grid, but basically any point set {x1, . . . , xn} can be

used, though with different quality of the obtained approximation.

Note, however, that per se this does not avoid the curse of dimensionality: For

general optimal control problems, it might be impossible to avoid the curse of

dimensionality by using radial basis functions with compact support. The volume

of their support in relation to the volume of the state space shrinks exponentially

so that the number of basis functions which are required for a good approximation

grows exponentially. If one uses basis functions with global support, this argument

does no longer hold, but there is no advantage to be expected in compensation

for the increased numerical effort.

However, radial basis functions can help to alleviate the curse of dimensionality,

under the requirement that the centres are distributed according to the relevance

of different regions to the control problem. An appropriate distribution of the

centres can be chosen a priori for specific control problems; or they can be cho-

sen “automatically” by an adaptive algorithm. The latter approach will also be

presented in this thesis.

Radial basis functions have been used with Hamilton-Jacobi-Bellman equations

and the related and generally better-known Hamilton-Jacobi equations, e.g. in

11

0. Introduction

[CQO04, HWCL06, AWJR12]. Here we consider radial basis functions in the

discrete-time setting, i.e. for the Bellman equation.

For our implementation it is necessary to project functions onto a finite-di-

mensional approximation space. In most applications of radial basis functions,

one uses interpolation at the centres of the basis functions for this projection.

However, we deal with a different approach, namely a moving least squares ap-

proximation method under the name Shepard’s method ([She68]) which essentially

approximates function values by a convex combination of function values at nearby

centres. One of the main advantages of Shepard’s method compared to interpo-

lation with RBFs is that the projection with the corresponding Shepard operator

is (under additional assumptions) contractive and thus allows for the application

of Banach’s fixed point theorem.

This thesis is organized as follows.

Chapter 1 gives a brief review on control systems, radial basis functions and

Shepard’s method.

Chapter 2 is the core of this thesis. We derive the Shepard-RBF discretization

of the optimality principle for optimal control problems and prove the convergence

of the value iteration scheme. We also prove the convergence of the approximate

value function to the exact value function for increasingly dense centre sets. For

this proof, one has to distinguish between discounted and undiscounted control

systems. Two crucial aspects are that the regularity of the value function (which

we have postponed to the appendix) and the dependence of the value function

on the target set have to be addresses separately for undiscounted systems. In

a subsequent section we develop statements about the constructed approximate

optimal feedback and the stability region of the corresponding closed-loop system.

In Chapter 3 we describe the implementation of the algorithm and give several

numerical experiments. We also vary some of the parameters and choices from

the numerical experiments and compare the convergence behaviour.

Chapter 4 is devoted to the investigation of a variant of the dynamic program-

ming algorithm where an adaptive refinement of the set of centres is used. In

numerical experiments we compare the convergence speed with the one from the

non-adaptive procedure.

In Chapter 5, we apply a slight generalization of Bertsekas’ Dijkstra-like al-

gorithm ([Ber07]) for stochastic shortest path problems on our discretizations of

control systems. This is possible because the Bellman equation under the Shepard-

RBF discretization corresponds to a fixed point equation obtained for stochastic

shortest path problems.

12

1. Preliminaries

1.1. Discrete-time control systems

Throughout this thesis we consider time-invariant, or autonomous, discrete-time

control systems of the form

xk+1 = f(xk, uk), k = 0, 1, 2, (1.1)

Here, f : Ω × U → Ω is a continuous map defined on compact sets Ω ⊂ Rs,

0 ∈ U ⊂ Rd, referred to as state space and control space, respectively. In addition,

we assume that a continuous cost function c : Ω×U → [0,∞) is given as well as a

constant discount rate 0 < β = βD ≤ 1. We use the notation βD if it is important

to distinguish it from βK , which will appear in (1.10).

Consider the cost functional

J(x0, (uk)) :=

∞∑
k=0

βkc(xk, uk)

which assigns the total cost along the trajectory to the initial point x0 and the

control sequence (uk)k∈N0
. The optimal value function, or simply value function,

is defined by

V (x0) := inf
(uk)

J(x0, (uk)), (1.2)

i.e. the greatest lower bound on the total cost for trajectories starting from x0.

Note that both J and V have values in [0,∞], so they may attain the value ∞.

It is a priori not clear whether the infimum on the right-hand side is attained for

some control sequence.

Finite horizon approximation and discounting

A control system is discounted if the discount rate β is less than one, and undis-

counted if β = 1. In general, we are more interested in undiscounted systems,

although they are more difficult to treat both in theory and numerically.

As an approximation to undiscounted systems, one often considers the finite

horizon approximation

JK(x0, (uk)) :=

K∑
k=0

c(xk, uk)

13

1. Preliminaries

for some large fixed integer K. This is a rough simplification which makes com-

putation easy as long as K is not too large. Moreover, it also directly implies the

continuity of the corresponding optimal value function in a straight-forward way.

JK is continuous as a composition of continuous maps and the correspondingly de-

fined VK is continuous because the space UK+1 of finite control sequences is com-

pact. It is also easy to give an a apriori bound, namely VK ≤ K maxΩ×U c(x, u).

The finite horizon approximation has, besides its approximation error, the disad-

vantage that the resulting optimal value function does not fulfil the optimality

principle (1.4). For this reason, we do not investigate it further.

However, the use of a discount rate 0 < β < 1 shares some similarity with

the use of the finite horizon approximation, as both approximations give lower

weight to those summands of the cost functional which arise at later times of the

trajectory. With a discount rate the weights are 1, β, β2, . . . while for the finite

horizon approximation it is 1, . . . , 1, 0,

Discounting also leads to a bounded value function with an a priori bound.

In fact, it is immediate that one has V ≤ maxΩ×U c(x, u)(1 + β + β2 + . . .) =

maxΩ×U c(x, u) 1
1−β .

Equilibrium points and target sets

In the undiscounted case, finiteness of V can not be expected generally. A neces-

sary condition for finiteness is that limk→∞ c(xk, uk) = 0 for some control sequence

(uk).

To avoid infiniteness of V everywhere in Ω one requires the existence of an

equilibrium point, which by convention is the point 0 ∈ Ω, and fulfils f(0, 0) = 0

and c(0, 0) = 0. Here, obviously V (0) = 0 for the optimal control sequence uk ≡ 0.

For many problems, one also requires a compact target set T ⊂ Ω and that

c(x, u) is bounded from below by a constant δ > 0 for all x ∈ Ω \ T and u ∈ U . If

one assumes c(x, u) > 0 for all 0 6= x ∈ Ω, u ∈ U and T has 0 as an interior point,

then the existence of such a δ > 0 is immediate because then 0 ∈
◦
T , so 0 is not in

the compact set Ω \
◦
T , which implies min

(Ω\
◦
T)×U

c(x, u) > 0.

One then redefines J and V as if the cost function were zero on all of T ,

specifically c(x, u) = 0 for all x ∈ T, u ∈ U , and as if the trajectory can be kept

in T after this set has been reached so that VT ≡ 0.

So the accumulated cost is

J(x0, (uk)) :=

K∗−1∑
k=0

c(xk, uk), K∗ = inf{k ∈ N | xk ∈ T},

and again V (x0) := inf(uk) J(x0, (uk)). Note the difference from the finite horizon

approximation where K is a constant while here, K∗ = K∗((xk)) depends on the

trajectory.

In order to unify our notation, we set T = {} whenever no target set is given.

Alternatively, one could choose T = {0} with the same effect.

14

1.1. Discrete-time control systems

For some problems, one is actually not interested in the accumulated cost but

only in steering the system towards the target. Then the goal is to design control

sequences for each initial point x0 that stabilize the system in the sense that

discrete trajectories defined by xk+1 = f(xk, uk), k = 0, 1, 2, . . . , reach T in a

finite number of steps for all initial conditions x0 in a maximal subset S ⊂ Ω, the

region of stabilization. Points x0 which allow such control sequences are said to

be controllable to the target.

In those cases a cost function c need not be given in the problem formulation.

In order to use the methods presented in this thesis to tackle control problems,

it can be adequate to construct “artificial” cost functions. A generic choice is

c(x, u) = Cx‖x‖2 + Cu‖u‖2 for constants Cx, Cu > 0, the easiest way to define a

function with c(0, 0) = 0 and otherwise c(x, u) > 0 for (x, u) ∈ Ω× U .

If one considers discounted systems, there is no need for stabilization or for an

equilibrium point, let alone a target set. Still, in practice there will usually be an

equilibrium point because discounted systems are in most cases approximations

to undiscounted systems.

Feedbacks

So far, we considered the situation where control sequences (uk) ∈ UN had to be

chosen in dependence on a given initial point x0 with the aim to obtain a low

accumulated cost.

The definition of the trajectory and the accumulated cost is such that the

trajectory “has no memory”: The optimal control uk in the kth step only depends

on xk, but neither on the way on which the trajectory reached xk nor on the

number k of steps from x0 to xk. This is true even in the discounted case in

accordance with the fact that the discounting sequence (1, β, β2, . . .) has been

chosen as a geometric sequence: If the point xk is given, the task of minimizing

∞∑
i=k

βic(xi, ui)

is essentially the same as minimizing

∞∑
i=0

βic(x̃i, ũi)

for the initial point x̃0 := xk; they just differ by the constant rate βk.

For that reason, one can restrict to the search for a map u : Ω → U called

feedback, and choose uk := u(xk) to define a control sequence implicitly. So the

iteration (1.1) changes to

xk+1 = f(xk,u(xk)), k = 0, 1, 2, . . . , (1.3)

15

1. Preliminaries

A feedback turns a control system into a closed-loop system, i.e. a dynamical

system x 7→ f(x,u(x)) without control.

In the next section, we provide a rigorous argument why it is possible to restrict

to feedbacks in order to find optimal control sequences.

1.2. Dynamic programming

In order to construct such a feedback, we utilize the optimality principle, which

is given by the Bellman equation, cf. [Bel57, Ber05],

V (x) = inf
u∈U

[c(x, u) + βV (f(x, u))], x ∈ Ω\T, (1.4)

where V : Ω→ [0,∞] is the optimal value function. This equation is valid because

the accumulated cost for x consists of the cost in the first step c(x, u) and the

accumulated cost from f(x, u), discounted by the factor β. It can be derived from

the definition of V :

V (x0) = inf
(uk)

J(x0, (uk))

= inf
(uk)

∞∑
k=0

βkc(xk, uk)

= inf
(uk)

[c(x0, u0) +

∞∑
k=1

βkc(xk, uk)]

= inf
u0

[c(x0, u0) + β inf
(uk)k≥1

∞∑
k=0

βkc(xk+1, uk+1)]

= inf
u0

[c(x0, u0) + βV (x1)]

= inf
u0

[c(x0, u0) + βV (f(x0, u0))].

From the right-hand side of the Bellman equation, one defines the Bellman

operator

Γ(V)(x) := inf
u∈U

[c(x, u) + βV (f(x, u))]. (1.5)

By means of the optimal value function V , we define a feedback by

u(x) = argminu∈U [c(x, u) + βV (f(x, u))],

whenever the minimum exists, e.g. if V is continuous, as in this case the right-

hand side is continuous in u ∈ U and U is a compact set.

If β < 1, this is a β-contraction. Consequently, by Banach’s fixed point theorem,

there is a unique fixed point.

16

1.2. Dynamic programming

Lemma 1.1. If β < 1, the Bellman operator Γ: L∞(Rs,R) → L∞(Rs,R) is a

contraction and thus possesses a unique fixed point.

If β = 1, Γ is just non-expanding. In this case, the existence of a fixed point

of Γ is not clear. On the other hand, if there is a fixed point V , it is not unique,

because then V + C, for any constant C ∈ R, is a fixed point as well. For the

undiscounted case, however, one needs a point of equilibrium or even a target

set anyway, as explained in the last section. This yields the boundary conditions

V |T = 0 and V |Rs\Ω = ∞. If no target set is specified, the boundary condition

reads as V (0) = 0, with the additional requirement that V be continuous in 0,

because in this case trajectories might never reach 0 but only converge to 0.

In the remainder of this chapter, we consider only undiscounted control systems

with target sets which contain zero as interior point.

The Kružkov transform.

In general, some part of the state space Ω will not be controllable to the target

set T . By definition, if β = 1, V (x) = ∞ for points x in this part of Ω. From

a theoretical viewpoint, this does not pose any problem: On the contrary, the

optimal value function allows thus to characterize the controllable subset of Ω.

However, the case beta = 1 might not only have the problem that the Bellman

operator might no longer be a contraction. Also for the numerical implementation

parts of Ω with V = ∞ could lead to the problem that infinite values at certain

points might propagate through the approximation procedure to other points.

This could lead to infinite approximate values also for points which have actually

finite values.

An elegant way to deal with the fact that V might attain the value ∞ (and

also with the missing contraction, as we will see), is by the Kružkov transform (cf.

[Kru75]) on V to get the function

v(x) := exp(−V (x)), (1.6)

where we use the continuous extension exp(−∞) := 0. Under this transformation,

the optimality principle (1.4), after applying exp(− ·) on both sides, takes the form

v(x) = sup
u∈U

[
e−c(x,u)v(f(x, u))

]
, x ∈ Ω\T, (1.7)

the boundary conditions transform to v|T = 1 and v|Rs\Ω = 0. The right-hand

side of this fixed point equation yields the transformed Bellman operator

Γ(v)(x) :=

 supu∈U
[
e−c(x,u)v̄(f(x, u))

]
x ∈ Ω\T,

1 x ∈ T,
0 x ∈ Rs\Ω

(1.8)

17

1. Preliminaries

on the Banach space L∞(Rs,R), where

v̄(x) :=

{
v(x) x ∈ Rs\T,
1 x ∈ T. (1.9)

Since we assumed c to be bounded from below by δ > 0 outside of the target

set, we obtain ‖Γ(v)− Γ(w)‖∞ ≤ βK‖v − w‖∞ with

βK := e−δ = sup
x∈Ω\T

sup
u∈U

e−c(x,u) < 1. (1.10)

The contraction rate βK is specific to the Kružkov transform, like the contraction

rate βD for discounted system.

Now for each x inΩ, u ∈ U and v1, v2 ∈ L∞(Rs,R) we have

|e−c(x,u)v̄1(f(x, u))− e−c(x,u)v̄2(f(x, u))| =e−c(x,u)|v̄1(f(x, u))− v̄2(f(x, u))|
≤e−c(x,u)|v1(f(x, u))− v2(f(x, u))|
≤βK |v1(f(x, u))− v2(f(x, u))|,

and hence

|Γ(v1)(x)− Γ(v2)(x)| =
∣∣∣∣sup
u∈U

[
e−c(x,u)v̄1(f(x, u))

]
− sup
u∈U

[
e−c(x,u)v̄2(f(x, u))

]∣∣∣∣
≤ sup
u∈U

∣∣∣e−c(x,u)v̄1(f(x, u))− e−c(x,u)v̄2(f(x, u))
∣∣∣

≤βK |v1(f(x, u))− v2(f(x, u))|.

We then have by the Banach fixed point theorem

Lemma 1.2. If β = 1, the Kružkov transformed Bellman operator Γ: L∞(Rs,R)→
L∞(Rs,R) is a contraction and thus possesses a unique fixed point.

It might seem redundant to define v̄ and plugging it into (1.8) instead of plugging

in v instead. This is indeed the case if one only considers iterations with Γ because

Γ(v) = Γ(v) with the operator from (1.9).

However, in (2.2) we will consider iterations of a composed operator S ◦ Γ for

which it is important to enforce the condition vT ≡ 1 on the function resulting

from this operator.

Note that for discounted systems, the transformed Bellman equation would read

v(x) = sup
u∈U

[
e−c(x,u)v(f(x, u))β

]
, x ∈ Ω\T, (1.11)

and the Bellman operator

Γ(v)(x) :=

 supu∈U
[
e−c(x,u)v(f(x, u))β

]
x ∈ Ω\T,

1 x ∈ T,
0 x ∈ Rs\Ω.

(1.12)

18

1.3. Continuous-time control systems

The latter is no contraction, because v 7→ vβ is expanding close to v = 0.

So one can consider the Kružkov transform as a substitute for the discounting

in the sense that both lead to Bellman operators which are contractions, but the

combination of discounting and the Kružkov transform does not work in general.

In the whole thesis we will implicitly assume the Kružkov transform for Shepard

discretized undiscounted control systems.

1.3. Continuous-time control systems

The methods which we develop in this thesis apply to discrete-time control sys-

tems. However, in many cases one considers discrete-time control systems which

are time-discretizations of continuous-time control systems. For that reason we

collect some facts about continuous-time control systems in this section. We refer

to [BCD97] for a standard work on this topic.

Assume a continuous map f : Ω × U → Rs and a continuous cost function

c : Ω×U → [0,∞) on compact sets Ω ⊂ Rs, U ⊂ Rd, 0 ∈ U , as state and control

space, respectively. For an initial point x0 and the choice of a measurable control

function u : [0,∞)→ U the trajectory is given by the solution of the initial value

problem

x(0) = x0, ẋ(t) = f(x(t), u(t)).

The cost functional is

J(x0, u) :=

∫ ∞
0

c(x(t), u(t))e−λtdt

with discount rate λ ≥ 0, and the optimal value function is

V (x0) := inf
u∈U

J(x0, u), (1.13)

where U = {u : [0,∞)→ U measurable}.
For time-τ -sampling the correspondence between the discrete and continuous

discount rates β and λ is given by β = e−λτ . The continuous-time analogue of

the Bellman equation is the Hamilton-Jacobi-Bellman equation ([Bel54, Bel57,

CD83]). It reads

λV (x) = sup
u∈U

[−f(x, u) · ∇V (x)− c(x, u)],

where ∇V is the gradient of V , hence f(x, u) ·∇V (x) is the directional derivative

of V in the direction of f(x, u). If there is no discounting, λ = 0, a possible

interpretation for the equation is that −c(x, u) describes the decrease of V along

the trajectory in the direction f(x, u).

Clearly, a discrete-time dynamical system can be obtained from a continuous-

time one via the time-τ map, τ > 0,

19

1. Preliminaries

f τ (x0) = x(τ)

if the flow of the vector field is used.

For control systems this is possible as well, but a difference is that for a complete

equivalence it is necessary to use the infinite-dimensional control space Uτ :=

{u : [0, τ) → U measurable}. For x0 ∈ Ω and u ∈ Uτ the discrete-time system

map is given by

f τ (x0, u) = x(τ),

where x(·) is the solution of the ODE

x(0) = x0, x′(t) = f(x(t), u(t)),

and the discrete-time cost function is

cτ (x0, u) =

∫ τ

0

c(x(t), u(t))dt.

1.4. Radial basis functions

In this section we recall some facts about radial basis functions and Shepard’s

method. We refer to [Fas07] for a more detailed discussion.

Approximation with radial basis functions

The value function V from (1.2) or its Kružkov transform v from (1.6) can be

expressed in closed form only for simple optimal control problems, such as linear-

quadratic ones. In general, we need to approximate it numerically within a finite-

dimensional approximation space W .

In this thesis we are going to use radial basis functions for this purpose, expressly

radially symmetric functions ϕi : Rs → R of the form ϕi(x) = ϕσ(‖x − xi‖2) =

ϕ(σ‖x−xi‖2) on some set X = {x1, . . . , xn} ⊂ Rs of centres. The shape parameter

σ controls the “width” of the radial basis functions (see Figure 1.1, left) and has

a significant impact on the numerical results.

We assume the shape function ϕ : R → [0,∞) to be nonnegative, typical

examples include the Gaussian ϕ(r) = exp(−r2) and the Wendland functions

ϕ(r) = max{0, P (r)}, normalized in the sense that ϕ(0) = 1 and at least once con-

tinuously differentiable. Here, P is an appropriate polynomial which leads to ϕ be-

ing strictly positive definite (see next subsection), having a certain smoothness and

the minimal possible degree. Moreover they have the structure P (r) = (1−r)lQ(r)

where Q is a polynomial with positive coefficients; as a consequence P (r) > 0 for

0 < r < 1 and P (r) < 0 for r > 1 and so

ϕσ(r) =

{
P (σr) for 0 < r < 1/σ,

0 for r > 1/σ.

20

1.4. Radial basis functions

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
σ = 0.8

σ = 1.0

σ = 1.2

σ = 1.5

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
ϕ3,0
ϕ3,1
ϕ3,2
ϕ3,3

Figure 1.1.: Left: Wendland’s function ϕ3,1 for some shape parameters. Right:

The shape of some Wendland functions.

See Figure 1.1, right, for some examples for Wendland function.

In case that the shape function ϕ has compact support, we will need to require

that the supports of the ϕi’s cover Ω.

We only use Wendland functions in this thesis.

Interpolation with radial basis functions

One way to use radial basis functions for approximating some function g : Ω→ R
is by (scattered data) interpolation: One uses the ansatz

g̃(x) =

n∑
i=1

αiϕi(x), αi ∈ R,

and requires g̃ to fulfil the interpolation conditions g̃(ξi) = g(ξi) at some points

ξi ∈ Ω, i = 1, . . . , n. The coefficient vector α = (α1, . . . , αn) is then given by

the solution of the linear system Aα = g(ξ) with A = (ϕj(ξi))ij and g(ξ) =

(g(ξ1), . . . , g(ξn)). In order to guarantee the unique solvability of this system, one

usually aims at making A positive definite by choosing suitable shape functions

(cf. [Fas07], Chapter 3).

Formally, for some function g : Ω→ R, we can define its interpolation approxi-

mation Ig : Ω→ R by

Ig =

n∑
i=1

g(xi)u
∗
i ,

where the u∗i : Ω→ R are cardinal basis functions associated with the centres X,

i.e. a Kronecker basis of the approximation space span(φ1, . . . , φn) with u∗i (xi) = 1

and u∗i (xj) = 0 for i 6= j. Note that Iv depends linearly on v.

However, using interpolation for approximation has some shortcomings in our

context. As an improvement, we use a least-squares type approach for function

21

1. Preliminaries

approximation known as Shepard’s method, cf. [She68], which we will develop in

the next sections. Shepard’s method has several advantages over interpolation:

(a) Computing the approximation on a finite set of points only requires a matrix-

vector product (in contrast to solving a system of linear equations for inter-

polation),

(b) the discretized Bellman operator remains a contraction, since the operator

associated to the Shepard approximation is non-expanding (cf. Lemma 1.3),

and

(c) the approximation behaviour for an increasing number of centres is more

favourable. For Shepard’s method, in contrast to interpolation, one gets con-

vergence if one considers shape functions with compact support and the sup-

ports of the basis functions are scaled proportionally to the fill distance (to

be defined in (2.8)) of the centres, giving rise to sparse matrices in the imple-

mentation.

Weighted least squares

Given some approximation space A = span(a1, . . ., am), ai : Ω → R, the set of

centres X = {x1, . . . , xn}, m ≤ n, and a weight function w : Ω → (0,∞), we

define the discrete inner product

〈g1, g2〉w :=

n∑
i=1

g1(xi)g2(xi)w(xi),

for g1, g2 : Ω → R and the induced norm ‖ · ‖w. The weighted least squares

approximant g̃ ∈ A of some function g : Ω → R is then defined by minimizing

‖g − g̃‖w. The solution is given by g̃ =
∑m

i=1 αiai, where the optimal coefficient

vector α = (α1, . . . , αm) solves the linear system Gα = gA with Gram matrix

G = (〈ai, aj〉w)ij and gA = (〈g, aj〉w)j .

Moving least squares

When constructing a least squares approximation to some function g : Ω→ R at

x ∈ Ω, it is often natural to require that only the values g(xj) at some centres xj
close to x should play a significant role. This can be modelled by introducing a

moving weight function w : Ω× Ω→ R+
0 , where w(ξ, x) is small (or even zero) if

‖ξ − x‖2 is large. In the following, we will use a radial weight

w(ξ, x) = ϕσ(‖ξ − x‖2),

22

1.4. Radial basis functions

where ϕσ = ϕ(σ·) is the shape function introduced before. The corresponding

discrete inner product is

〈g1, g2〉w(·,x) :=

n∑
i=1

g1(xi)g2(xi)w(xi, x).

The moving least squares approximation g̃ of some function g : Ω → R is then

given by g̃(x) = g̃x(x), where g̃x ∈ A is minimizing ‖g − g̃x‖w(·,x). The optimal

coefficient vector αx is given by the solution of the Gram system Gxαx = gxA with

Gx = (〈ai, aj〉w(·,x))ij and gxA = (〈g, aj〉w(·,x))j .

Shepard’s method

We now simply choose A = span(1) as approximation space. Then both the

Gram matrix Gx = 〈1, 1〉w(·,x) =
∑n

j=1w(xj , x) and the right-hand side gxA =

〈g, 1〉w(·,x) =
∑n

i=1 g(xi)w(xi, x) are scalar. Thus we get

αx = gxA/G
x =

∑n
i=1 g(xi)ψi(x), where

ψi(x) :=
w(xi, x)∑n
j=1w(xj , x)

. (1.14)

We define the Shepard approximation Sg : Ω→ R of g : Ω→ R as

Sg(x) = αx · 1 =

n∑
i=1

g(xi)ψi(x), x ∈ Ω. (1.15)

Note again that Sg depends linearly on g. What is more, for each x, Sg(x) is a

convex combination of the values g(x1), . . . , g(xn), since the ψi form a partition

of unity,
∑n

i=1 ψi(x) = 1 for all x ∈ Ω.

Another important property of the Shepard operator is that it is non-expansive.

This yields a contractive Bellman-Shepard operator, to be defined in (2.1).

For the next lemma, let W := span(ψ1, . . . , ψn).

Lemma 1.3. The Shepard operator S : C0(Rs,R) → W ⊂ C0(Rs,R) has norm

1.

Proof. Since, by assumption, the ψi are nonnegative and, as mentioned above, for

each x ∈ Ω, Sg(x) is a convex combination of the values g(x1), . . . , g(xn), we have

for each x ∈ Ω

|Sg(x)| ≤
n∑
i=1

|g(xi)ψi(x)| ≤ max
i=1,...,n

|g(xi)|
n∑
i=1

|ψi(x)| = max
i=1,...,n

|g(xi)| ≤ ‖g‖∞,

so that ‖Sg‖∞ ≤ ‖g‖∞. Moreover, for constant g one has Sg = g and conse-

quently ‖Sg‖∞ = ‖g‖∞.

23

2. The Shepard discretization of the
optimality principle

In this chapter we define the Bellman-Shepard operator, which gives an iterative

method to approximate the value function of a control problem. This operator

makes use of the Shepard approximation, which depends on a set of centres. We

prove that if the fill distance of a sequence of sets of centres shrinks to zero, the

approximate value function converges to the exact value function. The distinction

of control problems on whether they are discounted or not, leads to the split of

the convergence proof for decreasing fill distance into Sections 2.3 and 2.5.

For undiscounted problems, we also show in Section 2.6 results about the quality

of the approximate feedback (which one gets from the approximate value func-

tion) with regard to its ability to find trajectories along which the value function

decreases.

The content of this chapter has mainly been published in [JS15].

2.1. Discretization of the optimality principle

We want to compute an approximation to the fixed point V resp. v of the Bell-

man operator (1.5) resp. (1.8) by value iteration, which means by iterating Γ on

some initial function Ṽ 0 resp. ṽ0. 1 We would like to perform this iteration in-

side the finite-dimensional approximation space W ⊂ L∞(Rs,R), i.e. after each

application of Γ, we need to map back into W .

Discretization using radial basis functions Abstractly, choosing some (finite

dimensional) approximation space W ⊂ L∞(Rs,R) as well as some projection

operator Π : C0(Rs,R)→W , one defines the discrete Bellman operator

Π ◦ Γ :W →W .

If the operator Π is constructed such that ‖Π‖ ≤ L and Γ such that ‖Γ‖ ≤ β,

then Π ◦ Γ has the norm ‖Π ◦ Γ‖ ≤ Lβ. If these maps can be arranged such that

Lβ < 1, Π ◦ Γ is a contraction, possessing a unique fixed point Ṽ = (Π ◦ Γ)[Ṽ] by

Banach’s fixed point theorem.

1In this section we always write V, V 0, etc. rather than v, v0, etc., but the considerations
concern both the discounted and the Kružkov case.

25

2. The Shepard discretization of the optimality principle

−0.5 0 0.5 1 1.5 2 2.5

2

3

4 Prescribed values

Shepard approximation

RBF interpolation

Figure 2.1.: Example of a Shepard approximation and an interpolation with radial

basis functions.

In the following we will consider RBF interpolation and Shepard’s method for

radial basis functions as choices for the approximation operator Π.

As a simple motivation, we plot in Figure 2.1 an example of both approximation

methods in a one-dimensional case with four prescribed values (black x’s in the

figure) and the two approximating functions. One sees that the Shepard approxi-

mation does not interpolate the given values exactly. However, it looks smoother

than the RBF interpolation and fulfils monotonicity: Its maximum and minimum

are bounded by the maximum and minimum of the prescribed values. This is a

consequence of Lemma 1.3.

Next, we consider RBF interpolation and Shepard’s method for the discretiza-

tion of the Bellman operator.

Interpolation

Choosing A = span(ϕ1, . . . , ϕn), we define the Bellman interpolation operator to

be

I ◦ Γ : A → A.

In general, the operator I is expansive and not necessarily monotone. If the max-

imal expansion rate is denoted by L, in the worst case the contraction rate β of

Γ has to compensate for L, specifically βL < 1. However, L is not known, in gen-

eral. For that reason, one cannot rely on the iteration with I ◦Γ to be convergent

(although in most of our numerical experiments it turned out to converge) and

move our focus in this thesis towards the value iteration with Shepard’s method.

Shepard’s method

Correspondingly, we define the Bellman-Shepard operator as

Γ̃ := S ◦ Γ :W →W (2.1)

26

2.1. Discretization of the optimality principle

for the Shepard space W = span(ψ1, . . . , ψn). 2 Explicitly, the value iteration

then reads

Ṽ k+1 := S
(
Γ[Ṽ k]

)
, k = 0, 1, 2, . . . , (2.2)

where, as mentioned, some initial function Ṽ 0 ∈ W has to be provided.

As a composition of the contraction Γ and the non-expansive Shepard operator

S, cf. Lemmas 1.1 resp. 1.2, and 1.3, we get the following theorem about the

Shepard value iteration.

Theorem 2.1. The Bellman-Shepard operator Γ̃ : (W , ‖ · ‖∞)→ (W , ‖ · ‖∞) is a

contraction,

‖Γ̃(V1)− Γ̃(V2)‖ ≤ β‖V1 − V2‖,
thus the iteration (2.2) converges to the unique fixed point Ṽ ∈ W of Γ̃.

Explicit formulas for the Bellman-Shepard discretization

In the case of a Kružkov transformed value iteration, (1.8) yields the iteration

vk+1(x) = Γ[vk](x) =

 supu∈U
{
e−c(x,u)vk(f(x, u))

}
x ∈ Ω\T,

1 x ∈ T,
0 x ∈ Rs\Ω,

(2.3)

and if we expand this in a Shepard basis as in (1.15), we get

S ◦ Γ[vk](x) =

n∑
i=1

ψi(x)

 supu∈U
{
e−c(xi,u)vk(f(xi, u))

}
xi ∈ Ω\T,

1 xi ∈ T,
0 xi ∈ Rs\Ω.

(2.4)

For later use in Section 5.2, we will now consider the related iteration with Γ◦S,

instead of with S ◦ Γ, which converges to the fixed point Γ(v) instead of v.

If we expand vk in (2.3) a Shepard basis as in (1.15), we get

Γ ◦ S[vk](x) =

 supu∈U
{
e−c(x,u)

∑n
i=1 v

k(xi)ψi(f(x, u))
}

x ∈ Ω\T,
1 x ∈ T,
0 x ∈ Rs\Ω.

(2.5)

As in Chapter 1 was specified, v, vk, etc. refer to Kružkov transformed value

functions, while V, V k, etc. refer to discounted systems. For discounted control

systems instead of Kružkov transformed ones, the previous equation becomes

Γ ◦ S[V k](x) = inf
u∈U

{
c(x, u) + β

n∑
i=1

V k(xi)ψi(f(x, u))

}
, (2.6)

and so the fixed point equation has the form

V (x) = inf
u∈U

{
c(x, u) + β

n∑
i=1

V (xi)ψi(f(x, u))

}
. (2.7)

2To simplify the notation, we use the letter W to denote both an abstract approxima-
tion space and the Shepard space.

27

2. The Shepard discretization of the optimality principle

2.2. Stationary vs. non-stationary approximation

Our aim is to prove that for decreasing fill distance, the approximate value function

converges to the exact one. The approximate value function is the fixed point of

the Bellman-Shepard operator. As an auxiliary result we show in this section

that the sequence of Bellman-Shepard operators corresponding to an increasingly

dense set of centres converges to the identity.

For the set of centres X we define the number

h := hX,Ω := max
x∈Ω

min
ξ∈X
‖x− ξ‖, (2.8)

which is called the fill distance of X in Ω. This is the radius of the largest open

ball inside Ω that is disjoint from X.

In non-stationary approximation with radial basis functions, the shape param-

eter σ from Section 1.4 is kept constant while the fill distance h goes to 0. Non-

stationary interpolation is convergent (cf. [Fas07, Theorem 15.3]). On the other

hand, stationary interpolation, i.e. letting 1/σ shrink to 0 proportionally with h

(σ = C1/h for a constant C1 > 0), does not converge (for a counter example see

[Fas07, Example 15.10]). For Shepard’s method instead of interpolation, though,

the exact opposite holds: Non-stationary approximation does not converge (cf.

[Fas07, Chapter 24]), while stationary approximation does, as we will show below.

In practice, this is an advantage, since stationary approximation allows us to keep

the associated matrices sparse.

Assume we are given a Lipschitz continuous function g : Ω→ R, and a sequence

of sets of centres X(j) ⊂ Ω with fill distances h(j). We consider the Shepard

operators S(j) associated with the sets X(j) and shape parameters

σ(j) := C1/h
(j) (2.9)

for some constant C1 > 0. Under the assumption that h(j) → 0 we get conver-

gence of the respective Shepard approximants S(j)g : Ω → R to g as shown in

the following result, which is a minor generalization of the statement preceding

Theorem 25.1 in [Fas07] from C1 functions to Lipschitz functions.

From now on, we consider only shape functions with compact support. Oth-

erwise, the following lemma would require additional assumptions on the sets of

centres X(j).

Lemma 2.2. Let g : Ω→ R, be some Lipschitz continuous function with Lipschitz

constant Lg. Then

‖g − S(j)g‖∞ ≤ Lg
ρ

C1
h(j)

where ρ is a number such that supp(ϕ) ⊂ Bρ(0) = {x ∈ Rs| ‖x‖ ≤ ρ}.

Proof. By the scaling effect of σ(j) we have

supp(ϕσ
(j)

) ⊂ Bρ/σ(j)(0)

28

2.3. Convergence for decreasing fill distance with discounting

as well as

sup
x∈B

ρ/σ(j)
(x0)
|g(x)− g(x0)| ≤ Lg

ρ

σ(j)
, x0 ∈ Ω,

and, as a consequence,

|g(x0)− S(j)g(x0)| ≤ Lg
ρ

σ(j)
= Lg

ρ

C1
h(j), x0 ∈ Ω,

because the Shepard approximation is given by a convex combination of values of

g inside a ρ/σ(j)-neighbourhood.

The analogue result holds true for Lipschitz continuity up to perturbation, as

we will show in the next lemma.

A function is called Lipschitz continuous with Lipschitz constant L > 0 up to

a constant perturbation ε > 0, if

|g(x)− g(y)| ≤ L‖x− y‖+ ε

for all x, y ∈ Ω.

Lemma 2.3. If in the last lemma, g is only Lipschitz continuous with Lipschitz

constant L > 0 up to a constant perturbation ε > 0, then

‖g − S(j)g‖∞ ≤ Lg
ρ

C1
h(j) + ε.

Proof. Here, the first inequality from the last proof becomes

sup
x∈B

ρ/σ(j)
(x0)
|g(x)− g(x0)| ≤ Lg

ρ

σ(j)
+ ε, x0 ∈ Ω,

leading to

|g(x0)− S(j)g(x0)| ≤ Lg
ρ

σ(j)
+ ε = Lg

ρ

C1
h(j) + ε, x0 ∈ Ω.

2.3. Convergence for decreasing fill distance with
discounting

In this section we show that the approximate solution Ṽ from Theorem 2.1, which

depends on the set of centres X, converges to the exact solution V if the fill

distance h of X converges to zero.

As we show in Section A.1 in the Appendix, V is Lipschitz continuous for

undiscounted control systems.

However, for discounted control systems, one only gets Lipschitz continuity up

to an arbitrarily small perturbation:

29

2. The Shepard discretization of the optimality principle

Theorem 2.4 (Lipschitz continuity of V up to perturbation). Let V be the optimal

value function of a discrete-time control system with discount rate 0 < β < 1, and

let the system dynamics f and the cost function c be Lipschitz continuous with

Lipschitz constants Lf and Lc, respectively.

Then V is Lipschitz continuous with Lipschitz constant L = L(ε) > 0 up to an

arbitrary constant perturbation ε > 0. If the discount rate is such that βLf < 1,

then V is even Lipschitz continuous with Lipschitz constant Lc
1

1−βLf .

Proof. Let Mc := max(x,u)∈Ω×U |c(x, u)|. For any ε > 0, one can choose k ∈ N
such that

2((βLf)k + (βLf)k+1 + . . .)Mc < ε.

Then

|J(x0, (uk))− J(y0, (uk))| =
∣∣∣∣∣
∞∑
k=0

βkc(xk, uk)−
∞∑
k=0

βkc(yk, uk)

∣∣∣∣∣
≤
∞∑
k=0

|βkc(xk, uk)− βkc(yk, uk)|

≤
∞∑
k=0

βkLcL
k
f‖x0 − y0‖

≤‖x0 − y0‖Lc(1 + βLf + (βLf)2 + · · ·+ (βLf)k−1)︸ ︷︷ ︸
=:L

+ε.

Consequently,

|V (x0)− V (y0)| =| inf
(uk)

J(x0, (uk))− inf
(uk)

J(y0, (uk))|

≤ inf
(uk)
|J(x0, (uk))− J(y0, (uk))|

≤L‖x0 − y0‖+ ε.

If the discount rate is chosen such that βLf < 1, then

|J(x0, (uk))− J(y0, (uk))| ≤
∞∑
k=0

βkLcL
k
f‖x0 − y0‖

≤‖x0 − y0‖Lc
1

1− βLf
,

and so

|V (x0)− V (y0)| ≤ ‖x0 − y0‖Lc
1

1− βLf
.

The following example shows that, in general, V is not Lipschitz continuous, so

it is in fact necessary to allow for a perturbation.

30

2.3. Convergence for decreasing fill distance with discounting

Example. We set Ω = [0, 1], U = {0}, β = 1
2 ,

f(x) := f(x, 0) :=

2x− 1 for x ≥ 2

3 ,

0 for x = 0,

a smooth monotone interpolation for 0 < x < 2
3 .

and

c(x, 0) := x.

Then V is not Lipschitz continuous in a neighbourhood of 1.

Proof. The system is deterministic, because it has only one control and so an

initial value already determines a trajectory. Define (xk) by x0 := 1 and (yk) by

y0 :=
(
1− 1

2K

)
for some K ∈ N. Then

V (1) = V (x0) =

∞∑
k=0

βk xk︸︷︷︸
=1

= 2 = 1 +
1

2
+

1

4
+ · · ·+ 1

2K−1
+

1

2K
V (1)

and

V

(
1− 1

2K

)
=V (y0) =

∞∑
k=0

βkyk

=

(
1− 1

2K

)
+

1

2

(
1− 1

2K−1

)
+

1

4

(
1− 1

2K−2

)
+ · · ·+ 1

2K−1

(
1− 1

2

)
+

1

2K
V

(
f

(
1

2

))
,

where 1
2K V (1) > 1

2K V
(
f
(

1
2

))
and thus

V (1)− V
(

1− 1

2K

)
>

1

2K
+ · · ·+ 1

2K
= K

1

2K

and
V (1)− V

(
1− 1

2K

)
1−

(
1− 1

2K

) =
V (1)− V

(
1− 1

2K

)
1

2K
> K,

so differential quotients of V can be arbitrarily large in a neighbourhood of 1, and

so V is not Lipschitz continuous.

It might appear counterintuitive that for discounted systems one only gets Lip-

schitz continuity up to perturbation instead of Lipschitz continuity as for undis-

counted systems. An explanation is that in the corresponding Theorem A.8, a

necessary assumption is that the system is globally controllable or, equivalently,

has a finite optimal value function, which is a rather strong condition in the undis-

counted case. For discounted systems the finiteness of the optimal value function

is already a consequence from the boundedness of the cost function.

31

2. The Shepard discretization of the optimality principle

However, Lipschitz continuity up to arbitrary perturbation suffices to prove the

convergence of the approximate solution to the exact solution for the optimal

value function for discounted control systems.

Theorem 2.5. Assume a control system with the assumptions from Theorem

2.4 and let V be Lipschitz continuous with Lipschitz constant LV (ε) > 0 up to

perturbation ε > 0.

Assume a sequence of sets of centres X(j) ⊂ Ω with fill distances h(j) > 0,

σ(j) = C1/h
(j), C1 > 0, the associated shape parameters, S(j) : C0(Rs,R) → W

the associated Shepard operators and Ṽ (j) ∈ W the unique fixed points of Γ̃(j) =

S(j) ◦ Γ. Moreover, assume h(j) → 0 for j →∞. Then

‖V − Ṽ (j)‖∞ → 0.

Proof. First, we show that

‖V − Ṽ (j)‖∞ ≤
1

1− β

(
ρ

C1
LV (ε)h(j) + ε

)
.

Let e(j) be the norm of the residual of V in the Bellman-Shepard equation,

expressly

e(j) := ‖V − Γ̃(j)(V)‖∞ = ‖V − S(j)V ‖∞.
Then

‖V − Ṽ (j)‖∞ ≤ ‖V − Γ̃(j)(V)‖∞ + ‖Ṽ (j) − Γ̃(j)(V)‖∞
= e(j) + ‖Γ̃(j)(Ṽ (j))− Γ̃(j)(V)‖∞
≤ e(j) + β‖Ṽ (j) − V ‖∞,

where the last inequality is by Theorem 2.1. Consequently,

‖V − Ṽ (j)‖∞ ≤
e(j)

1− β ≤
1

1− β

(
ρ

C1
LV (ε)h(j) + ε

)
→ ε

1− β

for h(j) → 0, where the last inequality is by Lemma 2.3. The expression on the

right-hand side can be made arbitrarily small, as ε can be chosen freely, and hence

we have ‖V − Ṽ (j)‖∞ → 0 for j →∞.

2.4. Implications of (non-)discounting for dynamic
programming

In Section 2.3 we considered discounted control systems, i.e. that 0 < β < 1.

While there might be some justification of discounting in applications (in the sense

that those costs which have to be paid in the future are not as important as the

32

2.5. Convergence for decreasing fill distance with the Kružkov transform

immediate costs), in most cases the discount rate is just an artificial modification

of the original problem in order to simplify the theory, to force finiteness of the

value function and sometimes also to allow for a finite horizon approximation.

Often one is interested in the case that there is no discounting, because the

undiscounted value function might be the relevant quantity. In this case one gets

a better numerical solution by approximating the undiscounted value function

directly, instead of by first modifying the given problem with the introduction of

a discount rate.

We recall two crucial differences of undiscounted control problems in comparison

with discounted ones:

• The finiteness of the undiscounted value function in certain regions implies

the controllability of these regions to the target in the sense of Section 1.1.

• As was explained in section 1.2, if there is no discounting, one needs the

Kružkov transform in order to get a contraction and convergence for the

value iteration.

2.5. Convergence for decreasing fill distance with
the Kružkov transform

Theorem 2.5 showed that the approximate solution obtained for the optimal value

function with the value iteration (2.2) converges to the exact optimal value func-

tion if a sequence of sets of centres is considered with fill distance converging to

0. There it was assumed that the discount rate is less than one.

In this section we prove that the corresponding result holds also true if no

discount rate is present, but instead the Kružkov transform is applied.

For the proof of the following theorem, we employ Lemma 2.2 in order to show

convergence of the approximate value functions for decreasing fill distance. To this

end, we need to assume that the value function V , and hence also its Kružkov

transform v, is Lipschitz continuous. This is true, according to Theorem A.8 in

the Appendix, under the following assumption:

Assumption 2.6. We assume that a discrete-time control system is given that

is stabilizable on all of Ω, and that there is a feedback so that the closed-loop

system has 0 as an asymptotically stable fixed point. Furthermore, we assume

that f ∈ C1(Ω× U,Ω), c ∈ C2(Ω× U, [0,∞)).

From now on, we need a target set T as explained in Section 1.2 which yields a

contraction rate βK as in (1.10).

Theorem 2.7. Assume a control system with Assumption 2.6 and let Lv be a

Lipschitz constant for v. Assume a sequence of sets of centres X(j) ⊂ Ω with fill

distances h(j) > 0, let σ(j) = C1/h
(j), C1 > 0, be the associated shape parameters,

33

2. The Shepard discretization of the optimality principle

S(j) : C0(Rs,R)→ W the associated Shepard operators and ṽ(j) ∈ W the unique

fixed points of Γ̃(j) = S(j) ◦ Γ. Then

‖v − ṽ(j)‖∞ ≤
Lvρ

C1(1− βK)
h(j).

Moreover, if h(j) → 0 for j →∞, then

‖v − ṽ(j)‖∞ → 0.

Proof. Let e(j) be the norm of the residual of v in the Bellman-Shepard equation,

e(j) = ‖v − Γ̃(j)(v)‖∞ = ‖v − S(j)v‖∞.

Then

‖v − ṽ(j)‖∞ ≤ ‖v − Γ̃(j)(v)‖∞ + ‖ṽ(j) − Γ̃(j)(v)‖∞
= e(j) + ‖Γ̃(j)(ṽ(j))− Γ̃(j)(v)‖∞
≤ e(j) + βK‖ṽ(j) − v‖∞.

Consequently,

‖v − ṽ(j)‖∞ ≤
e(j)

1− βK
≤ Lvρ

C1(1− βK)
h(j),

where the last inequality is by Lemma 2.2.

It follows that if h(j) → 0 for j →∞, then

‖v − ṽ(j)‖∞ → 0 for j →∞.

Treating the case without target

So far, we have assumed the boundary condition V |T = 0 for the target set T ,

which contains zero as an interior point. On the other hand, for the proof of

Theorem A.8 that V is Lipschitz continuous, it is necessary that c(x, u) > 0 for

all x ∈ (Ω \ {0})× U . These assumptions contradict each other.

The boundary condition V |T = 0 can be relaxed, though. For the existence

of the contraction factor βK in (1.10), it is sufficient that there is a boundary

condition V |T = VT (and the function VT : T → R+
0 need not be zero), in other

words, it suffices that the exact optimal value function is known a priori on a

neighbourhood T of the equilibrium point 0.

However, this assumption is no essential restriction on control problems, as

we show now. To this end we prove that we can change a given control system

in a target set T2 = T such that the value function V for the new problem is

known on T and deviates from the value function of the original system only

34

2.5. Convergence for decreasing fill distance with the Kružkov transform

slightly: If a sequence of target sets (T (j))j with diam(T (j)) → 0 is given, then

‖V (j) − V ‖∞ → 0 as we will show next. We extend the control space with a

special control u∗, which allows to move directly to zero, but only at a large cost,

increasing fast with distance from zero. Then u∗ is an optimal control only for

states x which are sufficiently close to zero.

Let L be a Lipschitz constant for V and 0 ∈ T0 ⊂ T1 ⊂ T2 = T ⊂ Ω. Let

U∗ := U ∪ {u∗}, f(x, u∗) := 0 and

c(x, u∗) :=

C‖x‖2 for x ∈ T1,

a C2 interpolation for x ∈ T2 \ T1,

L‖x‖ for x ∈ Ω \ T2,

with a constant 0 < C < 1 such that c(x, u∗) ≤ c(x, u) for all x ∈ T1 \ T0, u ∈ U
(This is possible because

c(x,u)
‖x2‖ is a C0(T1 \ T0) function.).

We modify the one-step cost c(x, u) for x ∈ T0, u ∈ U into c̃(x, u) such that

c(x, u∗) ≤ c̃(x, u) even for all x ∈ T1, u ∈ U :

c̃(x, u) :=

{
c(x, u) for x ∈ X \ T0,

max{c(x, u), c(x, u∗)} for x ∈ T0.

Proposition 2.8. The value function Ṽ of the new problem (with u∗, and with c̃

instead of c) fulfils

Ṽ (x) = C‖x‖2 for x ∈ T1.

Proof. The value function is bounded from below by the cost for the first time

step: V (x) ≥ minu∈U∗ c̃(x, u) ≥ c(x, u∗) = C‖x‖2.

On the other hand, the choice of u0 = u∗ gives x1 = 0 and the total cost of

C‖x‖2. So, in fact, V (x) = C‖x‖2.

Theorem 2.9. Consider sequences 0 ∈ T (j)
0 ⊂ T

(j)
1 ⊂ T

(j)
2 with diam(T

(j)
2)→ 0.

Let V (j) be the value functions of the new problems (with u∗ and c̃) associated to

T
(j)
i , i = 0, 1, 2. Then ‖V (j) − V ‖∞ → 0.

Proof. It holds that V (j) ≤ V + (diam(T
(j)
2))2. To see this, let an optimal tra-

jectory (xn, un) of the original problem for the initial point x0 ∈ Ω be given. As

xk → 0 for k → ∞, there is a first xn along the trajectory with xn ∈ T1. We

consider the control sequence (u0, . . . , un−1, u
∗) for the modified control problem

with value function V (j). Then

V (j)(x0) ≤
n−1∑
i=0

c(xi, ui) + C︸︷︷︸
<1

‖xn‖2

≤
n−1∑
i=0

c(xi, ui) + (diam(T
(j)
2))2

≤V (x0) + (diam(T
(j)
2))2.

35

2. The Shepard discretization of the optimality principle

On the other hand, one can also see that V (j) ≥ V − L diam(T
(j)
2). To this

end, we consider an optimal trajectory (xn, un) for the modified control problem

with value function V (j) for the initial point x0 ∈ Ω. Then there is a first xn with

xn ∈ T (j)
2 . Now there are two cases:

If un−1 6= u∗, V (j)(x0) ≥
∑n−1

i=0 c(xi, ui) and

V (x0) ≤
n−1∑
i=0

c(xi, ui) + V (xn)

≤
n−1∑
i=0

c(xi, ui) + L diam(T
(j)
2).

So V (j)(x0) ≥ V (x0)− L diam(T
(j)
2).

But if un−1 = u∗, one gets V (j)(x0) ≥
∑n−2

i=0 c(xi, ui) + L‖xn−1‖ and V (x0) ≤∑n−2
i=0 c(xi, ui) + L‖xn−1‖. This shows that V (j)(x0) ≥ V (x0).

2.6. Construction of a stabilizing feedback

So far, we were concerned with the approximation of the value function V , but did

not investigate the feedback u. The reason is that from a theoretical viewpoint,

the construction of one of them yields the other one without much effort: From an

optimal feedback u one can directly calculate an optimal trajectory (xk) by (1.1),

and then calculate V (x0) from (1.2), because the optimality of the feedback u, and

hence of the control sequence (uk) = u(xk) for x0 has been assumed. The other

way round, an optimal feedback can be defined from the optimal value function

V by

u(x) := argminu∈U [c(x, u) + V (f(x, u))], x ∈ Ω.

However, for numerical reasons it is important to analyze the feedback in more

detail because the correspondence between optimal value function and optimal

feedback is no longer an exact correspondence if these maps are replaced by ap-

proximations.

In the preceding section, we analyzed the error that the approximate value

function has in comparison with the exact optimal value function. Here, we will

show how that implies the stability of the feedback derived from the right-hand

side of the optimality principle (1.4).

In this section we consider undiscounted problems, i.e. β = 1 because for dis-

counted problems the stabilization is not necessary for the finiteness of the value

function. As common in dynamic programming, we use the approximate value

function Ṽ (x), x ∈ S := {x ∈ Ω : Ṽ (x) < ∞}, in order to construct a feedback

which stabilizes the closed-loop system on a certain subset of Ω.

36

2.6. Construction of a stabilizing feedback

This feedback is (following the exact case from above)

ũ(x) := argminu∈U [c(x, u) + Ṽ (f(x, u))], x ∈ S.

Note that the argmin exists, since U is compact and c, f and Ṽ are continuous.

We will give two related, yet independent theorems which state that the exact

value function resp. the approximate value function descend along discrete tra-

jectories defined by the feedback as long as the one-step cost is above a certain

level. One cannot expect the (exact or approximate) value function to drop ac-

cording to the one-step cost in each step. The deviation can be bounded, though.

In our first theorem this deviation depends only on the approximation error of

Ṽ in comparison to V . We will make frequent use of the minimal one-step cost

c0(x) := minu∈U c(x, u) at a point x.

Theorem 2.10. Assume that the approximate value function fulfils

‖V − Ṽ ‖L∞(Ω) ≤ ε.

Then we have for the descent in each step

V (f(x, ũ(x))) ≤ V (x)− c0(x) + 4ε.

Proof. Let u∗ be the optimal control for x, i.e.

V (x) = c(x, u∗) + V (f(x, u∗)).

As a consequence,

Ṽ (x) ≥ c(x, u∗) + Ṽ (f(x, u∗))− 2ε ≥ c(x, ũ) + Ṽ (f(x, ũ(x)))− 2ε,

implying

Ṽ (f(x, ũ(x))) ≤ Ṽ (x)− c(x, ũ) + 2ε ≤ Ṽ (x)− c0(x) + 2ε,

and so

V (f(x, ũ(x))) ≤ V (x)− c0(x) + 4ε.

So the value function decreases along a trajectory of ũ as long as c0(x) > 4ε.

In our next theorem, we will treat the change of the approximate value function

instead of the exact value function.

We define the Bellman residual

e(x) := inf
u∈U

[c(x, u) + Ṽ (f(x, u))]− Ṽ (x), x ∈ S,

and show that Ṽ decreases along a trajectory of the closed-loop system if the set

Rη := {x ∈ S | e(x) ≤ ηc̃(x)}, η ∈ (0, 1),

37

2. The Shepard discretization of the optimality principle

where the Bellman residual is (at least by a constant rate) smaller than c̃(x) :=

c(x, ũ(x)), contains a sublevel set of Ṽ and we choose the initial condition in this

set. One can show that the ratio of the descent of the approximate value function

and the one-step-cost can be controlled as long as the value function is not too

small.

Evidently, the inequality in the definition of Rη can only be checked a posteriori

after some approximate optimal value function Ṽ has been computed. The size

of the largest sublevel set of Ṽ which is contained in Rη strongly depends on the

example and the approximation quality of Ṽ (cf. also examples 3.3 and 3.4).

Theorem 2.11. Suppose that DC = {x ∈ S | Ṽ (x) < C} ⊂ Rη for some C > 0.

Then for any x0 ∈ DC , the associated trajectory generated by the closed-loop

system xj+1 = f(xj , ũ(xj)), j = 0, 1, . . ., stays in DC and satisfies

Ṽ (x`) ≤ Ṽ (x0)− (1− η)

`−1∑
j=0

c(xj , ũ(xj)).

Proof. Since e(x) = c̃(x) + Ṽ (f(x, ũ(x)))− Ṽ (x), we have for xj ∈ DC ⊂ Rη

Ṽ (xj+1) = Ṽ (xj)− c̃(xj) + e(xj) < Ṽ (xj) < C,

thus xj+1 ∈ DC , which shows that the closed-loop trajectory stays inDC . Further,

Ṽ (xj+1) = Ṽ (xj)− c(xj , ũ(xj)) + e(xj)

≤ Ṽ (xj)− (1− η)c(xj , ũ(xj)),

which shows the decay property.

The strong assumption of Theorem 2.11 is harder to obtain if c̃ is small. For

that reason, we give a variant of the proposition which is similar to Theorem 5 in

[GJ05].

To this end, we define the function δ which connects c0 and V in the sense that

δ(s) := sup
x∈{c0≤s}

V (x),

where c0 is defined as before by c0(x) := minu∈U c(x, u), and {c0 ≤ s} is a

shorthand notation for c−1
0 ([0, s]).

Theorem 2.12. Assume that the approximate value function fulfils

‖V − Ṽ ‖L∞(Ω) ≤ ε

and

e(x) ≤ max{ηc0(x), ε0}

38

2.6. Construction of a stabilizing feedback

for all x ∈ D ⊂ Ω, some ε0 > 0 and some η ∈ (0, 1). Then for each x ∈ D and

x′ = f(x, ũ(x)) one has

Ṽ (x′) ≤ Ṽ (x)− (1− η)c(x, ũ(x))

or

Ṽ (x′) ≤ δ(ε0/η) + ε−min
x∈D

c0(x).

Proof. If Ṽ (x′) ≤ δ(ε0/η) + ε−minx∈D c0(x), there is nothing to show.

Otherwise Ṽ (x′) > δ(ε0/η) + ε−minx∈D c0(x).

On the other hand,

V (x) = min
u∈U

[c(x, u) + V (f(x, u))]

≥min
u∈U

[c(x, u) + Ṽ (f(x, u))]− ε

=c(x, ũ(x)) + Ṽ (f(x, ũ(x)))− ε
=c(x, ũ(x)) + Ṽ (x′)− ε
≥c0(x) + Ṽ (x′)− ε
≥min
x∈D

c0(x) + Ṽ (x′)− ε

>δ(ε0/η),

so V (x) > δ(ε0/η), implying c0(x) > ε0/η, i.e. ηc0(x) > ε0 by definition of δ, and

so e(x) ≤ ηc0(x) by the bound on e. This in turn implies

Ṽ (x′) = Ṽ (x)− c(x, ũ(x)) + e(x)

≤ Ṽ (x)− c(x, ũ(x)) + ηc0(x) ≤ Ṽ (x)− (1− η)c(x, ũ(x)).

By iteration of the statement of the theorem, one gets the following corollary.

If the first case of the theorem occurs in each of the l steps, the first case in the

corollary occurs. If, however, in at least one step the second case of the theorem

occurs, the second case in the corollary occurs.

Corollary 2.13. Assume that the approximate value function fulfils

‖V − Ṽ ‖L∞(Ω) ≤ ε

and

e(x) ≤ max{ηc0(x), ε0}
for all x ∈ D ⊂ Ω, some ε0 > 0 and some η ∈ (0, 1). Then for each x0 ∈ D and

the corresponding sequence

xl+1 = f(xl, ũ(xl))

39

2. The Shepard discretization of the optimality principle

one has

Ṽ (xl) ≤ Ṽ (x0)− (1− η)

l−1∑
j=0

c(xj , ũ(xj))

or

Ṽ (xl) ≤ δ(ε0/η) + ε−min
x∈D

c0(x).

as long as x0, . . . , xl−1 ∈ D.

2.7. Summary and outlook

In this chapter, which is central to this thesis, we have constructed the Bellman-

Shepard operator as discretization of the Bellman operator and have shown that

it is a contraction on the Shepard space. Therefore the value iteration converges

to the unique fixed point of the Bellman-Shepard operator. A proof of the conver-

gence of the approximate value function towards the exact one for a sequence of

centre sets with decreasing fill distance has been given, both for discounted and

undiscounted control systems.

Another aspect was the suitability of the method for the construction of tra-

jectories because an approximate value function gives rise to a corresponding

feedback. We have shown conditions for this feedback to induce trajectories along

which the value function respectively the approximate value function decreases.

These estimates allow for points of the state space to be stabilized, i.e. steered

close to the target by the feedback.

For an implementation one has to make some choices, specifically of the shape

functions, the set of centres and of a scheme for the specification of the shape pa-

rameter for different sets of centres. In Chapter 3 we will give numerical examples

and also compare some of the different choices which are possible for the Shepard

discretization in a benchmark example.

There are many ways in which the approach presented in this chapter can be

extended. One possibility for an extension is not to fix the shape parameter σ at

the same value for all basis functions ϕi. One could, e.g. either try to choose σ

greedily in an optimal way for each ϕi or to implement a multilevel type scheme

which works with a scale of values for σ.

The choice of the centre set can be further investigated. Its only important

parameter in the convergence proofs is the fill distance. So one has full flexibility

in designing the set of centres. An interesting question is if it is generally better

to choose the set of centres in a universal form independent of a specific control

problem, to adapt it to individual control problems, or even to use an adaptive

algorithm, which adds to an initial set of centres further centres in an improved

or even optimal way. A criterion which has been applied successfully in similar

situations, e.g. in [Grü97] aims at reducing the residual in the Bellman equation

40

2.7. Summary and outlook

uniformly, by refining regions with large residual. In Chapter 4 we will present an

algorithm which incorporates a corresponding adaptive refinement step.

One drawback of the value iteration used here is that the images of all possible

centre-control value pairs have to be computed and the corresponding matrix

entries have to be stored. It would be nice to have some sort of “fast marching”

type algorithm which needs this reachability information only locally. In Chapter

5 we show a connection between the Bellman-Shepard discretization of control

problems and stochastic shortest path problems. This allows for the application

of a Dijkstra-like algorithm ([Ber07]), which was originally designed for stochastic

shortest path problems, on an equivalent discretized Bellman equation.

As a final remark, the approximation space that we use here is rather smooth—

in contrast to the value function which in general is only Lipschitz-continuous.

If one considers a relaxed version of the optimality principle, e.g. in the sense of

[LR06], smoother solutions might exist which can be approximated with higher

efficiency. If one aims for higher-order convergence, higher-order moving least

squares approximations could then be tried, cf. [Fas07]. We did not find convinc-

ing results while investigating in these directions, though.

41

3. Implementation and numerical
examples

This chapter is dedicated to the numerical implementation of our method. We

start with some details about the implementation, present several numerical ex-

amples and compare the impact which different choices for the discretization have.

Parts of this chapter have been published in [JS15].

3.1. Implementation

A function

ṽ ∈ W = span(ψ1, . . . , ψn)

is defined by the vector v̂ = (v̂1, . . . , v̂n) ∈ Rn of its coefficients, i.e. ṽ =
∑n

i=1 v̂iψi,

cf. Section 1.4. We can evaluate ṽ on an arbitrary set of points Y = {y1, . . . , ye} ⊂
Ω by the matrix-vector product A(Y)v̂, where A(Y) is the e×n-matrix with entries

aij = ψj(yi).

In order to compute v̂k+1 in the value iteration (2.2), and assuming the Kružkov

transform, we need to evaluate Γ[ṽk] on X as in (2.3), i.e. we have to compute

Γ[ṽk](xi) =

{
supu∈U

[
e−c(xi,u)ṽk(f(xi, u))

]
xi ∈ X\T,

1 xi ∈ X ∩ T.

In general, this is a nonlinear optimization problem for each xi. For simplicity and

computational speed, we choose to solve this by simple enumeration, i.e. choosing

a finite set Ũ = {u1, . . . , um} ⊂ U of control values and approximate

Γ[ṽk](xi) ≈ max
j=1,...,m

{
e−c(xi,uj)ṽk(f(xi, uj))

}
(3.1)

for each xi ∈ X\T . This introduces an additional error, which, in principle, could

be minimized by using some more sophisticated NLP solver (such as fminsearch

in Matlab) at the expense of a drastically increased run time. For a thorough

discussion of the effect of the discretization of the control space onto the value

function see, e.g. [FF94].

Let Y ′ = {f(xi, uj) | i = 1, . . . , n, j = 1, . . . ,m}, then the values ṽk(f(xi, uj))

are given by the matrix-vector product A(Y ′)v̂k. From this, the right-hand side

of (3.1) can readily be computed.

43

3. Implementation and numerical examples

Remark. 1. We have formulated our approach for a discrete-time control sys-

tem which may, as mentioned in Section 1.3, be obtained via time-sampling

from a continuous-time system. In fact, the systems in the following numer-

ical experiments have been obtained this manner. One of the central ques-

tions in this case is the error introduced by the time sampling. We do not

consider this problem here and refer instead to [CD83, CDF89, Fal87, FF94].

2. In some cases, our numerical examples are given by restrictions of problems

on Rs to a compact domain Ω ∈ Rs. In general the dynamical system on

Rs is a map f1 : Rs × U → Rs which does not restrict to a map f2 :=

f1|Ω : Ω × U → Ω. This can be achieved by replacing f2 with f := Π ◦ f2

where Π is a Lipschitz-continuous projection of Rs onto Ω. In our numerical

experiments, it did not matter whether the projection step was included,

which is why we decided to omit it from our implementation.

Distance matrices and kd-trees

For the numerical realization of our algorithms we have to evaluate radially sym-

metric functions on large sets of points leading to expressions like ϕσ(‖xi − yj‖)
which have to be evaluated for many pairs of points (xi, yj) ∈ X × Y where

X = {xi} ⊂ Ω is the set of evaluation points and Y = {yj} is the set of centres.

In order to calculate all of them simultaneously and fast, it is best to construct a

distance matrix which contains all the pairwise distances ‖xi − yj‖ for all points

xi ∈ X and yj ∈ Y .

However, as we use basis functions with compact support U1/σ(0), most of these

expressions ϕσ(‖xi−yj‖) equal 0 whenever ‖xi−yj‖ ≥ 1
σ . Therefore, it is desirable

to find for each point xi ∈ X all points yj ∈ Y which are close to xi. To that end,

we employ a tool called kd-trees in the implementation by Guy Shechter, which

can be found on ([MCF]). The corresponding algorithm subsequently divides the

state space in parts in which one continues to search for nearby points.

3.2. Example: A simple 1D example

We begin with the simple one-dimensional system

f(x, u) = x+ aux

on Ω = [0, 1], U = [−1, 1], with parameter a = 0.8 and cost function

c(x, u) = ax.

Apparently, the optimal feedback is u(x) = −1, yielding the optimal value func-

tion V (x) = x. For j from 10 to 1000, we choose equidistant sets X(j) =

{0, 1/j, . . . , 1− 1/j, 1} of centres, Ũ = {−1,−0.9, . . . , 0.9, 1}, T = [0, 1/(2j)] and

44

3.3. Example: Shortest path with obstacles

10−3 10−2 10−1
10−3

10−2

10−1

fill distance h(j) = 1/j

L
∞

-e
rr

or

Figure 3.1.: L∞-error of the approximate value function Ṽ (j) = − log(ṽ(j)) in

dependence on the fill distance 1/j, where j is the number of centres.

use the Wendland function ϕσ(r) = max{0, (1−σr)4(4σr+ 1)} as shape function

with parameter σ = j/5. In Figure 3.1, we show the L∞-error of the approximate

value function Ṽ (j) in dependence on the fill distance h(j) = 1/j of the set of

centres X(j). We observe a linear decay of the error in h(j).

3.3. Example: Shortest path with obstacles

Our next example is supposed to demonstrate that state space constraints can

trivially be dealt with, even if they are very irregular: We consider a boat in the

Mediterranean Sea surrounding Greece (cf. Fig. 3.2) which moves with constant

speed 1. The boat is supposed to reach the harbour of Athens (marked by an x

in the map) in shortest time. Accordingly, the dynamics is simply given by

f(x, u) = x+ hu,

where we choose the time step h = 0.1, with U := {u ∈ R2 : ‖u‖ = 1}, and the

associated cost function by

c(x, u) ≡ 1.

In other words, we are solving a shortest path problem on a domain with obstacles

with complicated shape.

In order to solve this problem by our approach, we choose the set of centres

X as those nodes of an equidistant grid which are placed in the Mediterranean

Sea within the rectangle shown in Fig. 3.2, which we normalize to [−10, 10]2.

We extracted this region from a pixmap of this region with resolution 275 by

257 pixels. The resulting set X consisted of 50301 centres. We choose U =

{exp(2πij/20) : j = 0, . . . , 19} ⊂ C under the identification C ∼= R2. The choice

of 20 equidistant points as discretization of the control space does not introduce

45

3. Implementation and numerical examples

Figure 3.2.: Isolines of the approximate optimal value function for the shortest

path example, giving the approximate length of the shortest path

from a point in the Mediterranean Sea to the port of Athens (which

is marked by an x in the map).

a significant discretization error. In fact, we compared the numerical solution to

the ones obtained for much finer control space discretizations and there are no

visible differences. The position of Athens in our case is approximately given by

A = (−4, 4) and we choose T = A+ 0.004 · [−1, 1]2. We again use the Wendland

function ϕσ(r) = max{0, (1 − σr)4(4σr + 1)} as shape function with parameter

σ = 10.

In Figure 3.2, we show some isolines of the approximate optimal value function.

The computation took around 10 seconds on a 2.6 GHz Intel Core i5.

3.4. Example: An inverted pendulum on a cart

Our next example is two-dimensional as well, with only box constraints on the

states, but the stabilization task is more challenging: We consider balancing a

planar inverted pendulum on a cart that moves under an applied horizontal force,

cf. [JO04] and Figure 3.3.

The configuration of the pendulum is given by the offset angle ϕ from the

vertical upright position. We do not include the position or motion of the cart

in the state space. Correspondingly, the state of the system is x = (x1, x2) :=

(ϕ, ϕ̇) ∈ R2. The equation of motion becomes(
mr cos2(ϕ)− 4

3

)
ϕ̈− 1

2
mr sin(2ϕ) ϕ̇2 +

g

`
sin(ϕ)− mr

m`
cos(ϕ)u = 0, (3.2)

46

3.4. Example: An inverted pendulum on a cart

'

u
M

m

`

Figure 3.3.: Model of the inverted pendulum on a cart.

where M = 8 kg is the mass of the cart, m = 2 kg the mass of the pendulum

and ` = 0.5 m is the distance of the centre of mass from the pivot. We use

mr = m/(m + M) for the mass ratio and g = 9.8m/s2 for the gravitational

constant. The stabilization of the pendulum is subject to the cost

c(x, u) = c((ϕ, ϕ̇), u) =
1

2

(
0.1ϕ2 + 0.05ϕ̇2 + 0.01u2

)
. (3.3)

For our computations, we need to obtain a discrete-time control system. To this

end, we consider the time sampled system with sampling period h = 0.1 and keep

the control u(t) constant during this period. The time sampling map has been

computed via five steps of the classical Runge-Kutta scheme of order 4 with step

size 0.02. We choose Ω = [−8, 8] × [−10, 10] as the region of interest, T = {0}
as the target set and the set X of centres as an equidistant 128 × 128 grid (cf.

Code 1), and Ũ = {−128, 120, . . . , 120, 128}. The parameters and also the control

space were chosen as in [JO04] to allow for a comparison. We again use the

Wendland function ϕσ(r) = max{0, (1 − σr)4(4σr + 1)} as shape function, the

shape parameter σ is chosen such that the support of each ϕi overlaps with the

supports of roughly 20 other ϕi’s, i.e. σ ≈ 2.22 here.

In Figure 3.4, we show the behaviour of the (relative) L∞-approximation error

during the value iteration. We observe geometric convergence as expected by

Theorem 2.1. The computation of the optimal value function took 13 seconds.

In Figure 3.5, we compare the resulting value function (left) to the one computed

by the method from [JO04] (right) on a partition of 2048×2048 boxes. Note that

the latter one is a pointwise lower bound on the true value function. In our

experiments, the functions on partitions with fewer elements took considerably

smaller values and we therefore believe that the Shepard-RBF approximation is

accurate.

In Figure 3.6, some isolines of the approximate value function are shown, to-

gether with the complement of the set R1 (cf. Theorem 2.11) as well as the first 50

points of a trajectory of the closed-loop system with the optimal feedback. Note

that the discrete-time system has been derived from a controlled ordinary differ-

ential equation and that we work with a fixed time step, leading to the oscillatory

behaviour of the feedback trajectory close to the origin.

47

3. Implementation and numerical examples

20 40 60 80 100 120 140 160

100

10−5

10−10

C · 0.85k

k

‖ṽ
−
ṽ k
‖ ∞

/‖
ṽ
‖ ∞

Figure 3.4.: Inverted pendulum: Relative L∞-error of ṽk in dependence on the

number of iterations k in the fixed point iteration (2.2). Here, we

used the iterate ṽ173 as an approximation to the true fixed point ṽ,

since the error is approximately at machine precision then.

ϕ̇

ϕ
−5 0 5

−10

−5

0

5

10

ϕ̇

ϕ
−5 0 5 0

2

4

6

8

10

−5

0

5

10

Figure 3.5.: Inverted pendulum: Approximate optimal value function on a 128×
128 grid using the Shepard-RBF method described here (left) and the

graph based method from [JO04] on a partition of 2048× 2048 boxes

(right).

48

3.4. Example: An inverted pendulum on a cart

ϕ̇

ϕ
0 2 4 6

1

2

3

4

5

6

−8

−6

−4

−2

0

2

4

6

8

Figure 3.6.: Inverted pendulum: Approximate optimal value function Ṽ =

− log(ṽ(·)) (isolines colour coded), together with the set Ω\R1, where

the Bellman residual e is larger than c̃ (black dots) and a trajectory

of the closed-loop system starting at the initial value (1, 0) (blue).

49

3. Implementation and numerical examples

1 %% an inverted pendulum on a cart
2 m = 2; M = 8; l = 0.5; g = 9.8; q1 = 0.1; q2 = 0.05;
3 r0 = 0.01; m_r = m/(m+M);
4 vf = @(x,u) [x(:,2), ... % vector field
5 (g/l*sin(x(:,1)) - 0.5* m_r*x(:,2) .^2.* sin(2*x(:,1)) - ...
6 m_r/(m*l)*u.*cos(x(:,1)))./(4.0/3.0 - m_r*cos(x(:,1)).^2), ...
7 0.5*(q1*(x(:,1) .^2) + q2*(x(:,2) .^2) + r0*u.^2)];
8 h = 0.02; steps = 5; % step size
9 f = @(x,u) rk4u(vf ,[x zeros(size(x,1) ,1)],u,h,steps);% control system

10 phi = @(r) max(spones(r)-r,0) .^4.*(4*r+spones(r)); % Wendland func.
11 T = [0 0]; v_T = 1; % boundary cond.
12 shepard = @(A) spdiags (1./ sum(A’) ’,0,size(A,1),size(A,1))*A;% Shep.op.
13 S = [8 ,10]; % radii of domain
14 L = 33; U = linspace (-128,128,L)’; % control values
15 N = 128; X1 = linspace(-1,1,N);
16 [XX ,YY] = meshgrid(X1*S(1),X1*S(2)); X = [XX(:) YY(:)]; % nodes
17 XU = kron(X,ones(size(U,1) ,1)); UX = kron(ones(size(X,1) ,1),U);
18 ep = 1/sqrt ((4* prod(S)*20/N^2)/pi); % shape parameter
19 fcXU = f(XU ,UX);
20 A = shepard(phi(ep*sdistm(fcXU (: ,1:2) ,[T;X],1/ep))); % Shepard matrix
21 C = exp(-fcXU (:,3)); % one step costs
22

23 %% value iteration
24 v = zeros(N^2+1 ,1); v0 = ones(size(v)); TOL = 1e-12;
25 while norm(v-v0 ,inf)/norm(v,inf) > TOL
26 v0 = v;
27 v = [v_T; max(reshape(C.*(A*v),L,N^2)) ’]; % Bellman op.
28 end

Code 1: Matlab code for the inverted pendulum example. Here, A =

sdistm(X,Y,r) is the sparse matrix of pairwise Euclidean distances between the

points in the rows of X and Y not exceeding distance r. An implementation is

available on the webpage [1] of the authors of [JS15].

Finally, the behaviour of the L∞-error of the approximate optimal value func-

tion in dependence on the fill distance h is shown in Figure 3.7. Here, we used

the value function with fill distance h = 0.02 as an approximation to the true one.

Again, we observe an essentially linear decay of the error. The corresponding

Matlab code for this example is given in Code 1.

3.5. Example: Magnetic wheel

Lastly, we consider an example with three-dimensional state space: The stabiliza-

tion of a magnetic wheel, used in magnetic levitation trains, cf. [GMM79] and

Figure 3.8.

A point in state space is given by the gap s (in meters) between the magnet

and the track, its change rate ṡ = v (in m/s) and the electrical current J (in

Ampere) through the magnet. The control is the voltage u applied to the circuit.

50

3.5. Example: Magnetic wheel

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.1

0.2

0.3

0.4

0.5

h(j)

‖ṽ
−
ṽ

(j
) ‖
∞
/‖
ṽ
‖ ∞

Figure 3.7.: Inverted pendulum: Relative L∞-error of the approximate optimal

value function ṽ(j) in dependence on the fill distance of the centres.

Here, we used the value function for fill distance 0.02 as an approxi-

mation to the true one.

s R

LN U

Ls

track

m
ag

n
et

J

Figure 3.8.: Model of the magnetic wheel.

51

3. Implementation and numerical examples

Figure 3.9.: Magnetic wheel example: The set {x ∈ Ω | ṽ(x) > 10−20} from two

perspectives.

The dynamics is given by

ṡ = v,

v̇ =
CJ2

mm4s2
− µg,

J̇ =
1

Ls + C
2s

(
−RJ +

C

2s2
Jv + u

)
,

where C = LN2s0, the target gap s0 = 0.01, the inductance LN = 1 of the

magnet, the magnet mass mm = 500, the ratio of the total mass and the magnet

mass µ = 3, the resistance R = 4, the leakage inductance Ls = 0.15 and the

gravitational constant g = 9.81. The system is subject to the cost function

c(x, u) = c((s, v, J), u) =
1

2

(
100(s− s0))2 + v2 + 0.002u2

)
. (3.4)

We consider the time sampled system with sampling period h = 0.001, approx-

imated by one explicit Euler step and keep the control u(t) constant during

the sampling period. The model has an unstable equilibrium at approximately

x0 := (s0, v0, J0) = (0.01, 0, 17.155), which we would like to stabilize by an op-

timal feedback. We choose Ω = [0, 0.02] × [−4, 4] × [J0 − 80, J0 + 80] as state

space, T = {x0} as the target set, Ũ = {6 · 103a3 | a ∈ {−1,−0.99, . . . , 0.99, 1}}
as the set of controls, an equidistant grid X of 30 × 30 × 30 centres in Ω, the

Wendland function ϕσ(r) = max{0, (1 − σr)4(4σr + 1)} as shape function with

shape parameter σ = 11.2, such that the support of each ϕi overlaps with the

supports of roughly 10 other ϕi’s. The computation of the value function took

around 60 seconds. In Figure 3.9, we show a subset of the stabilizable subset of

Ω, i.e. we show the set {x ∈ Ω | ṽ(x) > 10−20}.

52

3.6. Dependence on the shape parameter

3.6. Dependence on the shape parameter

In this and the following two sections, we explore the impact of different choices

for some numerical aspects of our method. These include the shape parameter,

the set of RBF centres and the shape functions.

As a benchmark example, we use the inverted pendulum from Section 3.4.

The basis functions depend heavily on the shape parameter. As long as the set

of centres is chosen as a regular grid, it is usually best to choose a uniform shape

parameter for all basis functions.

Unfortunately, the choice of this shape parameter is not obvious.

We suggested to use stationary approximation in Section 2.2, meaning that for

changing sets of centres, the shape parameter is chosen inversely proportional to

the fill distance of the centre set, explicitly σ(j) := C1/h
(j) in (2.9) for a constant

ratio C1 > 0. For our experiments we chose the shape parameter such that about

10 other centres are in the support of each basis function. This specification

is consistent with the existence of such a constant ratio C1 > 0 which, for the

pendulum example and equidistant centre sets is C1 = 0.32.

We compared this choice to C1 = 0.32 · C2 for some numbers C2 close to 1.

Figure 3.10 shows

• the relative L∞-approximation error for the first 100 value iterations for a

relatively dense centre set (h = 0.0315), and

• the error of the numerical solution (estimated by the comparison with the

numerical solution for a fine centre set) for centre sets with different fill

distance h(j),

where the five graphs correspond to the scaling parameter values C2 = 0.5, 0.7,

etc.

In (a) we see that the shape parameter is irrelevant for the convergence of

the value iteration; in L∞-norm the convergence corresponds to the worst case

estimate for the contraction in all five cases.

More interesting is (b), the comparison of the errors of the limit functions from

the value iteration. Our choice of C2 = 1, i.e. C1 = 0.32 appears to be reasonable:

The asymptotic behaviour of the L∞-error compares well to other C2-values.

3.7. Dependence on the set of centres

So far, we used equidistant sets of centres for the Shepard discretization. In

this section, we compare the equidistant choice with sets of centres consisting of

random points and two (related) types of so-called pseudo-random points, which

we briefly introduce here. More details can be found in [KN74] or [Nie92].

53

3. Implementation and numerical examples

20 40 60 80 100

10−2

10−1

100

Number of iterations k

‖Ṽ
−
Ṽ
k
‖ ∞

/‖
Ṽ
‖ ∞

C2 = 0.5
C2 = 0.7
C2 = 1.0
C2 = 1.4
C2 = 2.0

(a)

0.05 0.1 0.15 0.2 0.25

0.5

1

1.5

Fill distance h(j)

‖V
−
Ṽ

(j
) ‖
∞
/‖
V
‖ ∞

C2 = 0.5

C2 = 0.7

C2 = 1.0

C2 = 1.4

C2 = 2.0

(b)

Figure 3.10.: (a) Relative L∞-error in dependence on the number of iterations of

the value iteration. (b) Relative L∞-error of the approximate value

function in dependence on the fill distance.

Both figures have five graphs for different scaling factors C2 for the

shape parameter.

54

3.7. Dependence on the set of centres

Definition 3.1 (pseudo-random sequence, [Nie92]). A pseudo-random (or low-

discrepancy) sequence in [0, 1]s is a sequence of points x1, . . . whose initial subse-

quences XN := (x1, . . . , xN) have low discrepancy DN (XN) := supB∈B |λN (B)−
λs(B)| where λs is the s-dimensional Lebesgue measure, λN is 1

N times the point

measure induced by XN and B is the set of cuboids in [0, 1]s which are parallel

to the axes.

This is only a “pseudo-definition” as it is not universally agreed what a “low”

discrepancy is. Anyway, the best known sequences fulfil the inequality

DN (XN) ≤ C(s)
(lnN)s

N
, for all N ∈ N,

with a constant C(s) > 0 which depends only on the dimension s. The sequences

to be defined below fulfil this asymptotic behaviour, although with constants C(s)

which are larger than the smallest known ones.

The name “pseudo-random” refers to the fact that pseudo-random sequences

share similarities with random sequences. Specifically, both have low discrepancy.

A classic example for pseudo-random sequences in one dimension are the van

der Corput sequences.

Definition 3.2 (Van der Corput sequence, [Nie92]). The van der Corput sequence

for some integer b ≥ 2 is given by xn =
∑∞

j=0 aj(n)b−j−1, n = 1, 2, . . . for the

base-b representation n =
∑∞

j=0 aj(n)bj .

The points of this sequence lie in the interval [0, 1].

For the multidimensional case one can combine van der Corput sequences for

different bases to define Halton points.

Definition 3.3 (Halton points, [Nie92]). For the dimension s and pairwise rel-

ative prime integers (e.g. pairwise disjoint prime numbers) p1, . . . , ps, we have s

van der Corput sequences xk1, x
k
2, . . . for the bases pk, for k = 1, 2, . . . , s. The

corresponding Halton sequence in [0, 1]s is defined as

(x1
1, . . . , x

s
1), (x1

2, . . . , x
s
2),

In order to avoid that some special property of Halton points have an effect for

the Shepard discretization, we also use another multidimensional pseudo-random

sequence for comparison. Namely, the multidimensional van der Corput sequence

is constructed from the one-dimensional one by using the standard bijection be-

tween Rs and R (or [0, 1]s and [0, 1]) which combines digits in the sense that,

e.g. for dimension s = 2 and base b = 10 the point (0.a1
1a

1
2a

1
3 . . . , 0.a

2
1a

2
2a

2
3 . . .) is

mapped to 0.a1
1a

2
1a

1
2a

2
2a

1
3a

2
3 . . . and correspondingly for s ≥ 3 and other bases b.

More formally, we have the following definition.

55

3. Implementation and numerical examples

Definition 3.4. Let ϕs : Rs → R be given by, using the representations xk =∑∞
j=0 a

k
j (n)b−j−1,

ϕs(x) :=

s∑
k=1

∞∑
j=0

akj (n)b−(s(j+1)+k).

We use the inverse of φs to map a van der Corput sequence into [0, 1]s.

Definition 3.5 (Multidimensional van der Corput sequence). Let (xn) be the van

der Corput sequence for basis b ≥ 2. Then we define the multidimensional van

der Corput sequence by

xs(n) := ϕ−1
s (xn).

We give a compact implementation for the construction of this sequence in

Code 2.

1 function X = md_vdC_sequence(n,s)
2 % n = Number of points , s = dimenSion , b = Basis of b-ary numbers = 2
3 b = 2;
4 dig = floor(log(n)/log(b)/s)+1;
5 [Dig ,N] = meshgrid (0:s*dig -1,1:n);
6 A = mod(floor(N./b.^Dig),b);
7 B = kron(b.^-(1:dig)’ , eye(s));
8 X = A*B;

Code 2: Matlab code for the construction of the multidimensional van der Cor-

put sequence.

For the application for the pendulum example, one has to rescale the square

[0, 1]2 with the set of centres to the rectangular state space.

In Figure 3.12 we have drawn error plots corresponding to the ones in Figure

3.10. This time the convergence of the value iteration is somewhat different for the

four centre sets, but not significantly. The convergence behaviour of the limiting

functions suggests that equidistant centre sets behave much better than random

or pseudo-random sets of centres.

3.8. Dependence on the shape function

A crucial aspect of RBF methods is the question which shape function is used. In

most cases we use the Wendland function ϕ3,1(r) := (1− r)4
+(4r + 1).

Here, we test and compare different shape functions for the inverted pendulum

example.

As mentioned in Section 1.4, the Wendland functions ([Wen95, Fas07]) are

defined by ϕ(r) = max{0, P (r)}, where P is an appropriate polynomial which

56

3.8. Dependence on the shape function

5 10
0

0.2

0.4

0.6

0.8

1

(a)

0 0.5 1
0

0.5

1

(b)

Figure 3.11.: The first points of Halton sequences: Left: The first few members of

the one-dimensional Halton sequence in their order of appearance.

Right: The first few unordered members of the two-dimensional Hal-

ton sequence.

leads to ϕ being strictly positive definite, having a certain smoothness and among

these having the minimal possible degree. For their construction, the following

integral operator is applied.

Definition 3.6. Let

(Iϕ)(r) :=

∫ ∞
r

tϕ(t)dt, r ≥ 0,

assuming the integral exists and is finite.

Obviously, this operator maps polynomials to polynomials and the same holds

true for piecewise polynomials. The Wendland functions ϕs,k are defined as fol-

lows.

Definition 3.7. One sets f+ := max(0, f),

ϕl(r) = (1− r)l+ and

ϕs,k := Ikϕ[s/2]+k+1.

By definition of the Gauss bracket in [s/2], we have that ϕ2,k = ϕ3,k for all

k ∈ N. Consequently, the Wendland functions in dimensions 2 and 3 agree. The

first few are given by

ϕ3,0(r) = (1− r)2
+,

ϕ3,1(r) = (1− r)4
+(4r + 1),

ϕ3,2(r) = (1− r)6
+(35r2 + 18r + 3) and

ϕ3,3(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1).

57

3. Implementation and numerical examples

20 40 60 80 100

10−2

10−1

100

Number of iterations k

‖Ṽ
−
Ṽ
k
‖ ∞

/‖
Ṽ
‖ ∞

equidistant

random

Halton points

multidim. van der Corput sequence

(a)

0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.5

1

Fill distance h(j)

‖V
−
Ṽ

(j
) ‖
∞
/‖
V
‖ ∞

equidistant

random

Halton points

multidim. van der Corput sequence

(b)

Figure 3.12.: (a) Relative L∞-error in dependence on the number of iterations of

the value iteration. (b) Relative L∞-error of the approximate value

function in dependence on the fill distance.

Both figures have four graphs for equidistant (cyan), random (red),

Halton points (blue) and multidimensional van der Corput (green)

sets of centres.

58

3.8. Dependence on the shape function

20 40 60 80 100

10−2

10−1

100

Number of iterations k

‖Ṽ
−
Ṽ
k
‖ ∞

/‖
Ṽ
‖ ∞

ϕ3,0
ϕ3,1
ϕ3,2
ϕ3,3

0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.2

0.4

0.6

0.8

1

Fill distance h(j)

‖V
−
Ṽ

(j
) ‖
∞
/‖
V
‖ ∞

ϕ3,0
ϕ3,1
ϕ3,2
ϕ3,3

Figure 3.13.: (a) Relative L∞-error in dependence on the number of iterations of

the value iteration. (b) Relative L∞-error of the approximate value

function in dependence on the fill distance.

Both figures have four graphs for different shape functions.

We have already plotted these functions in Figure 1.1, right, in Chapter 1.

In Figure 3.13 we have drawn error plots corresponding to the ones in Figure

3.10. The convergence of the value iteration does not depend on the shape func-

tion; with the exception of the first few iterations, the convergence corresponds

to the worst case for all shape functions.

One sees that those Wendland functions which are defined by higher-order poly-

nomials have the tendency to lead to somewhat smaller errors of the approximate

solution. This is at the expense of a slightly increased numerical effort, though.

59

4. Adaptive choice of the centres

Discretizations with radial basis functions allow for the choice of diverse centre

sets. In order to take advantage of this flexibility, we compared different options

in Section 3.7. It turned out that the RBF discretization with random or pseudo-

random sets of centres behaves significantly worse than with equidistant sets of

centres. This experience calls for a more sophisticated way of selecting the centres

for the basis functions.

In this chapter we develop an algorithm for adaptively adding new centres to

an existing set of centres. As the aim is to achieve a small (global) error of the

approximate solution, we try to add centres in regions with comparatively large

(local) error. An estimate between the error and the residual allows for finding

the regions with large error, because the calculation of the residual is possible

without knowledge of the exact solution.

We remind the reader that in Section 1.4, we specified to use radial basis func-

tions for designing the approximation space A, i.e. functions ϕi : Ω ⊂ Rs → R of

the form ϕi(x) = ϕσi (x) = ϕ(σ‖x − xi‖2) on some set X = {x1, . . . , xn} ⊂ Ω of

centres. In this chapter we use the notation ϕi(x;σ) instead of ϕσi (x) to make the

notation more readable.

The shape parameter σ, which controls the “width” of the radial basis functions,

had, up to now, to be chosen globally for a set of centres X. In this chapter we

allow to choose it individually for the different basis functions.

To simplify matters we only consider discounted control systems here, so we

always have 0 < β < 1. In particular, this will be required already in Lemma 4.1.

4.1. Adaptive construction of the centres

In Theorem 2.5 we showed the convergence of the approximate value function

towards the true value function for any sequence (X(j))j of centre sets for which

the fill distance decreases to zero. In practice, it would be desirable to construct

this sequence such that, e.g. the error decreases as fast as possible.

To this end, we are now going to describe a construction of such a sequence based

on an adaptive refinement of X(j) in state regions where the Bellman residual

e(j)(x) := inf
u∈U

[c(x, u) + βṼ (j)(f(x, u))]− Ṽ (j)(x), x ∈ X(j),

is large. Here, Ṽ (j) is the approximate value function corresponding to the centre

set X(j). More precisely, in order to construct X(j+1), we are going to refine those

61

4. Adaptive choice of the centres

Figure 4.1.: Subdivision: One centre from the left is assumed to be in X̂ and thus

subdivided to get the figure on the right.

centres x ∈ X(j) for which |e(j)(x)| is larger than a fixed fraction of the maximal

residual maxx∈X(j) |e(j)(x)|.
Instead of using the same shape parameter σ(j) for all basis functions in A(j) we

are going to work with a shape vector of individual σ
(j)
i for each centre xi ∈ X(j).

For each xi, we choose the largest σ
(j)
i > 0 such that the support of the associated

basis function ϕi(x;σ
(j)
i) contains at least a fixed number nc ∈ N of other centres

from X(j).

Our procedure for choosing centres and regions for refinement resembles the

one in [DH07].

During the adaptive refinement, the set of centres will have varying “fineness”

in different regions. In order to keep track of this, we imagine the state space

being partitioned into disjoint boxes with centres xi ∈ X(j) and radii (vectors of

half edge lengths) hi ∈ (R+)s. In each iteration of the adaptive refinement of

X(j), some centres xi will be refined by replacing xi by the vertices of the box

with centre xi = (x1
i , . . . , x

s
i) and radius hi/2, i.e. by the 2s points

vert(xi) =

(
xji ±

hji
2

)
j=1,...,s

.

In Figure 4.1 an example of a refinement of a centre in the two-dimensional case

is given.

The adaptive algorithm reads as follows:

Algorithm 4.1 (Adaptive Dynamic Programming). Fix θ ∈ [0, 1] and some ini-

tial centre set X(0) ⊂ Ω. For j = 0, 1, 2, . . . ,

a) compute Ṽ (j) and e(j)(x) for all x ∈ X(j),

62

4.2. Convergence of the algorithm

b) set X̂(j) := {x̂ ∈ X(j) | |e(j)(x̂)| > θmaxx∈X(j) |e(j)(x)|},

c) set X(j+1) := (X(j) \ X̂(j)) ∪
⋃
x̂∈X̂(j) vert(x).

The calculation of vert(x) contains the implicit task of updating the hi for new

centres in the course of the algorithm.

We terminate the algorithm as soon as supx∈X(j) |e(j)(x)| < TOL for a given

tolerance TOL > 0.

4.2. Convergence of the algorithm

Grüne ([Grü97]) proposed an adaptive finite difference scheme for the solution of

the Bellman equation and showed the convergence of the approximate solution to

the exact solution under the algorithm. Due to the similarity of our algorithm,

some of the results can be restated in our context.

First, there are estimates between the error and the residual of an approximate

solution. The first inequality is easier to prove, but the second one is more impor-

tant to use because it implies that a sequence of approximate solutions converges

to the exact solution if the sequence of corresponding residuals converges to zero.

Lemma 4.1. (Estimate between error and residual) We have

1

2
max
x∈Ω
|e(j)(x)| ≤ sup

x∈Ω
|V (x)− Ṽ (j)(x)| ≤ 1

1− β max
x∈Ω
|e(j)(x)|.

Proof. This works exactly as the proof for Theorem 2.2 in [Grü97].

These estimates can be localized in the following sense.

Lemma 4.2. (Estimate between error and residual, local version) It also holds

1

2
e(j)(x) ≤ sup

y∈BMf (x)
|V (y)− Ṽ (j)(y)|

where Mf := max(x,u)∈Ω×U ‖f(x, u)‖ and

sup
x∈K
|V (x)− Ṽ (j)(x)| ≤ 1

1− β max
x∈K

e(j)(x)

if K ⊂ Ω fulfils f(x, u∗) ∈ K and f(x, ũ) ∈ K for all x ∈ K, where u∗ and ũ are

the optimal control values with respect to V and Ṽ (j), respectively.

Proof. See [Grü97], Theorem 2.3.

From now on, we make the following assumptions. Of special importance is

d), which assures that the shape parameters σ
(j)
i do not deviate too much locally

from each other.

63

4. Adaptive choice of the centres

Assumption 4.3. For a point x ∈ Ω we define I(x) := I(x)(j) := {i|x ∈
suppϕi(·, σ(j)

i)}, σ(j)(x) := maxi∈I(x) σ
(j)
i and σ(j)(x) := mini∈I(x) σ

(j)
i .

a) At each point x ∈ Ω the supports of at most n̂c ∈ N basis functions ϕi intersect,

where n̂c is independent of j.

b) There is some ε > 0 such that
∑n

i=1 ϕi(x, σ
(j)
i) ≥ ε for all x ∈ Ω and all j.

c) The unscaled shape function ϕ is Lipschitz continuous with constant L1 > 0.

d) There is a σ̂ > 0 such that
σ(j)(x)
σ(j)(x)

≤ σ̂ for all x ∈ Ω and all j.

e) The map f and the cost function c satisfy the Lipschitz conditions

‖f(x, u)− f(y, u)‖ ≤ Lf‖x− y‖, |c(x, u)− c(y, u)| ≤ Lc‖x− y‖

for all x, y ∈ Ω, u ∈ U and some constants Lf > 0 and Lc > 0.

We will need the next two lemmas as prerequisite for Lemma 4.6.

Lemma 4.4. The basis functions ψ
(j)
i (x) = ϕi(x, σ

(j)
i)/

∑
k∈I(x) ϕk(x, σ

(j)
k) are

locally Lipschitz continuous with Lipschitz constant 2n̂cσ
(j)L1/ε

2.

Proof. We have∣∣∣∣ ddxψ(j)
i (x)

∣∣∣∣ =

∣∣∣∣∣ϕ′i(x, σ
(j)
i)
∑

k∈I(x) ϕk(x, σ
(j)
k)− ϕi(x, σ(j)

i)
∑

k∈I(x) ϕ
′
k(x, σ

(j)
k)

(
∑

k∈I(x) ϕk(x, σ
(j)
k))2

∣∣∣∣∣
≤
L1σ

(j)
i n̂c + 1

∑
k∈I(x) L1σ

(j)
k

ε2

≤ 2n̂cL1σ
(j)

ε2
.

For the next lemma, we need the Shepard operator S from (1.15).

Lemma 4.5. Assume that f : Ω → R is Lipschitz continuous with constant

L0 > 0. Then Sf is Lipschitz continuous with Lipschitz constant

L =
2n̂2

cL1L0σ̂

ε2
.

Proof. We have

d

dx
Sf(x) =

∑
i∈I(x)

f(xi)
d

dx
ψ

(j)
i (x)

=
∑
i∈I(x)

(f(xi)− f(xk))
d

dx
ψ

(j)
i (x) + f(xk)

∑
i∈I(x)

d

dx
ψ

(j)
i (x)

︸ ︷︷ ︸
=0

64

4.2. Convergence of the algorithm

since
∑

i∈I(x) ψ
(j)
i (x) =

∑
i ψ

(j)
i (x) = 1 for all x ∈ Ω, where k is some arbitrary

index from I(x). So

∣∣∣∣ ddxSf(x)

∣∣∣∣ ≤
∑
i∈I(x)

L0 ‖xi − xk‖2︸ ︷︷ ︸
≤1/σ(j)(x)

 2n̂cL1σ
(j)(x)

ε2
≤ 2n̂2

cL1L0σ
(j)(x)

ε2σ(j)(x)
≤ 2n̂2

cL1L0σ̂

ε2
.

From now on, let Nj be the number of centres in X(j) and v̂(j) ∈ RNj be the

coefficients of Ṽ (j) with respect to the basis ψ
(j)
1 , . . . , ψ

(j)
Nj

of W(j), i.e.

Ṽ (j)(x) =
∑
i=1

v̂
(j)
i ψ

(j)
i (x).

Lemma 4.6. (Hölder continuity) For any set X(j) ⊂ Ω of centres which satisfies

Assumption 4.3, any two centres xm, xn ∈ X(j) and any two points x, y ∈ Ω, the

inequalities

|v̂(j)
m − v̂(j)

n | ≤ H‖xm − xn‖γ and |Ṽ (j)(x)− Ṽ (j)(y)| ≤ H‖x− y‖γ

hold for constants H > 0 and 0 < γ < 1 independent of X(j).

Proof. The proof works along the lines of Theorem 2.9 in [Grü97]. The only

step which has to be adapted is the inductive proof that the iterates of the value

iteration

v(j),0 ≡ 0, v(j),k+1 = Γ̃v(j),k

are Lipschitz continuous with Lipschitz constants Lk > 0 which do not depend

on the set of centres X(j): Assume v(j),k−1 is Lipschitz continuous with Lipschitz

constant Lk−1. Then

|(Γv(j),k−1)(xm)− (Γv(j),k−1)(xn)| ≤ βLk−1Lf‖xm − xn‖+ Lc‖xm − xn‖

and so Γv(j),k−1 is also Lipschitz continuous with a Lipschitz constant L̂k =

βLk−1Lf + Lc. By Lemma 4.5, v(j),k = Γ̃v(j),k−1 = S(Γv(j),k−1) is also Lipschitz

continuous with Lipschitz constant Lk := LL̂k for the constant L > 0 from Lemma

4.5 which is independent of k and X(j).

On the other hand, we have ‖v(j),k − Ṽ (j)‖ ≤ βk‖v(j),0 − Ṽ (j)‖ because Γ̃(j) is

a β-contraction.

Now, the remaining part of the proof of Theorem 2.9 in [Grü97] can be applied

to see that Ṽ (j) is Hölder continuous.

From the equation v̂
(j)
m = infu∈U [c(xm, u) + βṼ (j)(f(xm, u))] one gets that a

Hölder condition is also fulfilled for the coefficients v̂
(j)
m .

The residual at centre points is not necessarily zero because the Shepard ap-

proximation is not an interpolation but it converges to zero for a local fill distance

shrinking to zero.

65

4. Adaptive choice of the centres

Lemma 4.7. Let h
(j)
i = maxk∈I(xi) ‖xk − xi‖2 for xi ∈ X(j). Then

|e(j)(xi)| ≤ H(h
(j)
i)γ

with the constants H and γ from Lemma 4.6.

Proof. From v
(j)
i = infu∈U [c(xi, u) + βṼ (j)(f(xi, u))] one gets

|e(j)(xi)| = | inf
u∈U

[c(xi, u) + βṼ (j)(f(xi, u))]− Ṽ (xi)| = |v̂(j)
i − Ṽ (xi)|

=

∣∣∣∣∣∣v̂(j)
i −

∑
k∈I(xi)

v̂
(j)
k ψ

(j)
k (xi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈I(xi)

(v̂
(j)
i − v̂

(j)
k)ψ

(j)
k (xi)

∣∣∣∣∣∣ ≤ H(h
(j)
i)γ .

The last two lemmas immediately yield

Theorem 4.8. For all x, y ∈ Ω,

|e(j)(x)− e(j)(y)| ≤ He‖x− y‖γ and |e(j)(x)| ≤ (H +He) max{h(x), h(xi)}γ

for some constant He > 0, h(x)(j) = maxxk∈I(x) ‖xk − x‖2 and the constant γ

from Lemma 4.6.

Proof. The first inequality follows from

|Ṽ (j)(x)− Ṽ (j)(y)| ≤ H‖x− y‖γ

in Lemma 4.6:

|e(j)(x)− e(j)(y)|
=|(inf

u∈U
[c(x, u) + βṼ (j)(f(x, u))]− Ṽ (x))− (inf

u∈U
[c(y, u) + βṼ (j)(f(y, u))]− Ṽ (y))|

≤Lc‖x− y‖+ βH‖x− y‖γLf +H‖x− y‖γ

≤He‖x− y‖γ

for some constant He > 0. For, the second inequality we need a centre xi close to

x and get from the first inequality of this theorem and Lemma 4.7

|e(j)(x)| ≤|e(j)(xi)|+ |e(j)(xi)− e(j)(x)|
≤H(h

(j)
i)γ +He‖xi − x‖γ

≤(H +He)(max{h(x), h(xi)}γ .

The algorithm terminates as soon as supx∈X(j) |e(j)(x)| < TOL, but only refines

centres x with |e(j)(x)| > θmaxx∈X(j) |e(j)(x)|. This implies that centres with

66

4.3. Implementation

|e(j)(x)| ≤ θ TOL are never refined and consequently also no centres for which

(H + He) max{h(x), h(xi)}γ < θ TOL. So the local fill distance is bounded

from below and, consequently, the algorithm eventually terminates. The error is

bounded by

sup
x∈Ω
|V (x)− Ṽ (j)(x)| ≤ 1

1− βTOL

according to Lemma 4.1.

4.3. Implementation

In comparison to Section 3.1 some additional points have to be addressed in the

case of the adaptive algorithm.

We implemented a function shapes which calculates the shape parameters just

small enough for the individual basis functions to fulfil the condition that each one

leads to the support of the associated basis function just large enough to contain

at least nc other centres.

A crucial point is the “subdivision” of centres with relatively large residuals,

i.e. their replacement by new centres as described in Section 4.1. To this purpose

it is necessary to save the radii hi ∈ (R+)s with each centre xi ∈ Rs. The shape

parameters σi ∈ R+ which are also associated with the individual centres can

be saved, too, but have to be recalculated with the function shapes after each

subdivision step.

In order that Assumption 4.3 d) be fulfilled we slightly modified Algorithm 4.1

in our implementation in such a way that more centres are refined than specified

in the original form in order to get more moderate transitions between fine and

coarse regions of the set of centres. Theorem 4.8 and the lemmas preceding it

continue to hold true in this case.

4.4. Numerical examples

4.4.1. A 1D example with non-smooth solution

We begin with Test 2 from [FF94]. Let

V (x) :=

∣∣∣∣1e − e−x2
∣∣∣∣ .

Assume a continuous-time control problem on Ω = [−2, 2] with U = [0, 1],

f(x, u) = u(x− 2)(x+ 2),

c(x, u) = −u(x− 2)(x+ 2)V ′(x)− (u2 − 2)V (x)

67

4. Adaptive choice of the centres

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8 optimal value function

numerical solution

102 103

10−1

100

Number of centres

residual/(1-β)

error

102 103

10−1

100

Number of centres

residual/(1-β)

error

Figure 4.2.: 1D example: Comparison of exact and approximate optimal value

function (above) and error and residual in dependence on the number

of centres during the adaptive algorithm (below left) and for sets of

equidistant centres (below right).

68

4.4. Numerical examples

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5 · 10−4
1 · 10−3

1.5 · 10−3

residual/(1-β)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−3

10−1

h

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2
−1

0
1
2
·10−2 error

Figure 4.3.: 1D example: Distribution of local residuals, fineness and the errors

in the last iteration step.

and continuous discount rate λ = 1. It turns out that V is the optimal value

function. We use a discrete Euler step with step size h = 0.005 to get a discrete-

time control system. The corresponding discrete-time discount rate is β = 1−hλ.

In Figure 4.2, above, we plot the value function, once the exact function and

once a numerical approximation, which we got from the method in Chapter 2, i.e.

with a prescribed, in this case equidistant, set of centres.

In Figure 4.2, below left, we show the L∞-error and the L∞-residual, rescaled

by the factor 1
1−β of the approximate value function Ṽ (j) in dependence on the

number of centres in each iteration step. In accordance with Lemma 4.1 the error

is smaller than the rescaled residual. In the below right figure we see the corre-

sponding plot for the non-adaptive procedure, as in Chapter 2, with comparable

numbers of equidistant centres in each step. It turns out that in this example, the

adaptive procedure does not give an advantage.

In Figure 4.3 one sees the local residuals, fineness and the errors in the last

iteration step of the adaptive algorithm.

4.4.2. A basic growth model with explicit solution

Next, we consider Example 4.1 from [GS04]. Its map

f(x, u) = u

69

4. Adaptive choice of the centres

2 4 6 8 10

29

29.5

30

30.5 opt. value function

numerical solution

102 103

10−3

10−2

10−1

Number of centres

residual/(1-β)

error

102 103

10−3

10−2

10−1

Number of centres

residual/(1-β)

error

Figure 4.4.: Growth example: Comparison of exact and approximate optimal

value function (above) and error and residual in dependence on the

number of centres during the adaptive algorithm (below left) and for

sets of equidistant centres (right).

allows the controller at each time step the choice what the next state is and its

cost function is given by

c(x, u) = ln(Axα − xu(t))

with constants A > 0 and 0 < α < 1. This example is different from the others in

the sense that there is no equilibrium point x0 with f(x0, 0) = c(x0, 0) = 0. The

exact solution of this problem is known and is given by

V (x) = B + C lnx

with C = α
1−αβ and

B =
ln((1− αβ)A) + αβ/(1− αβ) ln(αβA)

1− β .

In Figure 4.4, above, we plot the exact and the numerical solution for the value

function. In Figure 4.4, below left, we again draw the L∞-error and the rescaled

L∞-residual of the approximate value function Ṽ (j) in dependence on the number

70

4.4. Numerical examples

of centres in each iteration step and as comparison the corresponding plot for

equidistant sets of centres. This time, it turns out that the adaptive algorithm

manages to shrink the residual, and thus an upper bound for the error slightly

faster than the equidistant algorithm. The actual error itself is slightly larger than

in the non-adaptive setting, though.

4.4.3. An inverted pendulum on a cart

We revisit the planar inverted pendulum from Section 3.4.

We use an initial grid of N = 70 · 70 centres, yielding the approximate value

function shown in Fig. 4.5 (a). We then perform three steps of Algorithm 4.1,

yielding the approximate value functions shown in Fig. 4.5 (b)-(d). Also shown

are the centre sets X(0), . . . , X(3) by black dots.

As in the previous examples, we compare in Figure 4.6 the L∞-error and the

L∞-residual, rescaled by the factor 1
1−β , both for the adaptive algorithm, and the

non-adaptive algorithm with equidistant sets of centres. This time the adaptive

implementation of the algorithm gives a slight improvement for both the residual

and the error.

4.4.4. An office robot

We finally investigate a variant of the shortest path example in Section 3.3. We

consider an imaginary robot which is used in an office building (cf. Fig. 4.7).

The robot is supposed to drive from the office (red) to the coffee machine in the

common room (yellow) below (and back). The aim is to reach the coffee machine

in shortest possible time. The speed v(x) of the robot varies in different rooms

according to the colour in the image – it is 3 in the corridor (green) while it is

2 and 1 in the common room and the office, resp. Thus, the dynamics is simply

given by

f(x, u) = x+ v(x)hu,

where we choose the time step h = 0.1, with U := {u ∈ R2 : ‖u‖ = 1}, and the

associated cost function by

c(x, u) ≡
{

0 at the target set (coffee machine),

1 otherwise.

In order to solve this problem by our approach, we choose as initialization the

set of centres X as those nodes of an equidistant grid which are in one of the rooms

(or the corridor) outside of the obstacles. The position of the coffee machine in

our case is approximately at the origin.

In Figure (4.7), right, we show some isolines of the approximate optimal value

function. Again, we compare in Figure 4.8 the L∞-error and the rescaled L∞-

residual for the adaptive and non-adaptive algorithm with equidistant sets of

71

4. Adaptive choice of the centres

0 2 4 6 8
−10

−8

−6

−4

−2

0

ϕ

ϕ̇

0

2

4

6

(a)

0 2 4 6 8
−10

−8

−6

−4

−2

0

ϕ

ϕ̇

0

2

4

6

(b)

0 2 4 6 8
−10

−8

−6

−4

−2

0

ϕ

ϕ̇

0

2

4

6

(c)

0 2 4 6 8
−10

−8

−6

−4

−2

0

ϕ

ϕ̇

0

2

4

6

(d)

Figure 4.5.: Inverted pendulum: Approximate optimal value function and refined

centres (green points) in four steps of the algorithm.

72

4.4. Numerical examples

104 104.5 105

10−1

100

Number of centres

residual/(1-β)

error

104 104.5 105

10−1

100

Number of centres

residual/(1-β)

error

Figure 4.6.: Inverted pendulum: Error and residual in dependence on the num-

ber of centres during the adaptive algorithm (left) and for sets of

equidistant centres (right).

0 5

1

3

5

7

Figure 4.7.: Office robot: Left: Model of the office robot problem. Right: Isolines

of the approximate optimal value function.

73

4. Adaptive choice of the centres

102 103 104
10−1

100

Number of centres

residual/(1-β)

error

102 103 104
10−1

100

Number of centres

residual/(1-β)

error

Figure 4.8.: Office robot: Error and residual in dependence on the number of

centres during the adaptive algorithm (left) and for sets of equidistant

centres (right).

centres. The adaptive procedure leads to a somewhat smaller residual and error

for corresponding numbers of centres. In the non-adaptive case the scaled residual

sometimes appears to be smaller than the error. This is no contradiction to Lemma

4.1 because the actual L∞-norm of the residual is larger than the estimate by

calculating the maximum of it on finitely many centres.

74

5. Shepard value iteration and
stochastic shortest path problems

The value iteration introduced in Chapter 2 provides an efficient method to ap-

proximate the optimal value function of a control problem. For the value iteration,

however, it is not only necessary to calculate the dynamics and the costs for all

centre-control pairs, but also to store this information and revisit it for each iter-

ation. One could increase the efficiency of the method if one could achieve that

the information about the respective dynamics and costs is only used locally in

each step, in a region where the value function is updated.

To this end, we note that there is a connection between the Shepard discretiza-

tion of the optimality principle for undiscounted control systems, and stochastic

shortest path problems, which Bertsekas considers in [Ber07, Chapter 2]. The

Shepard discretization relies on a finite subset, the set of centres, of the state

space whereas stochastic shortest path problems are defined on a finite graph. It

turns out, however, that the Shepard discretization gives rise to the construction

of a graph, whose vertices correspond to the RBF centres, such that the explicit

formula (2.7) for the fixed point of the Bellman-Shepard operator Γ̃ = S ◦ Γ

from (2.1) is equivalent to the equation one gets from the dynamic programming

principle for a related stochastic shortest path problem.

From this observation stems the appealing idea to approximate the optimal

value function under Shepard discretization not by value iteration as we have

done in Chapters 2-4 but by solving the corresponding stochastic shortest path

problem instead. In some cases, this can be done by a Dijkstra-like algorithm

from [Ber07]. Bertsekas assumes a so-called consistently improving policy as a

sufficient condition to apply the algorithm. In this case one gets the same solution

as with Shepard value iteration, but with less numerical effort. The existence of

a consistently improving policy is a rather strong condition, though. Moreover, it

cannot be checked a priori.

For that reason we do not use this assumption, but note that without it the

application of the algorithm might introduce an additional error on the approxi-

mate solution, besides the approximation error from the spatial discretization with

Shepard’s method and possibly from the discretization in time of a continuous-

time control system.

We give an introduction to shortest path problems in Section 5.1, to stochastic

shortest path problems in Section 5.2, present the Dijkstra-like algorithm and

its properties in Section 5.3 and conclude the chapter with some notes on the

75

5. Shepard value iteration and stochastic shortest path problems

application on continuous-time control systems.

5.1. Shortest path problems and Dijkstra’s
algorithm

In this section we give a short introduction to shortest path problems in a directed

graph with a target and Dijkstra’s algorithm ([Dij59]) to solve them efficiently.

Note that this introduction only refers to deterministic problems and gives prere-

quisites for the remainder of this chapter in which we consider stochastic shortest

path problems and a stochastic version of Dijkstra’s algorithm.

Let G = (X,E) be a directed graph with a positive length c(i, j) > 0 assigned

to each edges (i, j). We define c(i, j) = ∞ if (i, j) is no edge. Furthermore, we

assume a special vertex 0 ∈ X, the target. We denote the set of vertices with X—

not with V which is more usual in the literature. The reason is that it corresponds

to the set of centres we use in this thesis.

The aim is to find paths of minimal length from any vertex to the target where

the length of a path is the sum of the lengths of all the edges along the path.

The distance between a vertex and the target is defined as the minimal length of

such a path. So “distance” is used here in an asymmetric way: Only paths to the

target and not from the target are considered. By definition, it is infinite for a

vertex, if there is no path from the vertex to the target.

Algorithm 5.1 (Dijkstra’s algorithm, [Dij59]). We use a subset of vertices P ⊂
X, a function V : X → [0,∞) and a map u : X → X which all change in the

course of the algorithm.

P is the set of accepted vertices at each stage, V (i) assigns to each vertex i

the (current) approximate distance from the target and u(i) the next vertex of an

(current) approximate optimal path from i to the target.

As initialization, one sets P := {} and

V (i) :=

{
0 if i = 0,

∞ if i 6= 0,

whereas u(·) can be initialized arbitrarily.

In each iteration,

a) the algorithm terminates as soon as mini∈X\P V (i) =∞, i.e.

• P = X or

• V (i) =∞ for all i ∈ X \ P.

b) the vertex i ∈ X \ P with minimal V (i) is added to P .

76

5.2. Stochastic shortest path problems

c) one updates

u(i) :=

{
u(i) if V (i) ≤ minj∈P (c(i, j) + V (j)),

argminj∈P (c(i, j) + V (j)) otherwise,

and

V (i) := min

(
V (i),min

j∈P
(c(i, j) + V (j))

)
.

Usually, the algorithm is given in a form where the optimal successor vertex

u(i) for each vertex is not saved, but only the function V is constructed. In this

case the map u can be reconstructed from V by u(i) := argminj∈X [c(i, j) +V (j)].

Theorem 5.1 ([Dij59]). The maps V : X → [0,∞) and u : X → X resulting

from the algorithm fulfil the following. X(i) equals the distance of i to the target

0.

We remark that a path of minimal length from a vertex i ∈ X to the target 0

is given by i,u(i),u(u(i)),u(u(u(i))),

5.2. Stochastic shortest path problems

Before we turn our focus to stochastic shortest path problems, we notice that a

deterministic shortest path problem can be regarded as an optimal control prob-

lem. For this, we assume a directed graph with labelled edges where we identify

the vertex set both with the state space and the control space. The control system

is then defined by f(i, j) = j and

c(i, j) =

{
the label of the edge ij if this edge exists,

∞ otherwise,

for all i, j ∈ X.

Throughout this chapter, we assume that as long as a path is outside the target,

some positive cost is being added to the total cost: c(i, u) > 0 for any i > 0 and

u ∈ U .

This control problem can be interpreted in the following way: An imaginary

player is given a vertex to start with; he can choose at each time step an edge

which begins at the current vertex. The vertex in which this edge ends defines

the next state for the player.

In a stochastic shortest path problem the player cannot choose the following

vertex, but instead, he chooses at each step a control u ∈ U from a finite control

space. The vertex i and the control u together impose a one-step cost c(i, u) and

a probability distribution over all possible successor vertices j, where pij(u) is the

probability of moving from state i to state j. The target 0 has the properties that

it is stable and does not impose any cost, i.e. p00(u) = 1 and c(0, u) = 0 for any

u ∈ U .

77

5. Shepard value iteration and stochastic shortest path problems

Feedbacks

A feedback—called a stationary (time-independent) policy in [Ber07], but we fol-

low here and in other cases our previous terminology—, namely the choice of a

control ui ∈ U for each state i, induces an expected value of the total cost

∞∑
k=0

c(ik, uk) =

K−1∑
k=0

c(ik, uk), K = min{k ≥ 0|ik = 0} (5.1)

for each initial state i = i0 to get to the target 0.

The aim is to minimize this total cost for each starting vertex, usually by the

choice of a feedback.

Note that the concept of a control sequence (uk)k as in (1.1) does not make

much sense in the stochastic setting because a reasonable player would not choose

all the controls of a path from the start, but choose them in dependence on the

actual vertex at each time. In theory, it would be possible to use a strategy other

than a feedback, but we do not consider them here because it would not give

any advantage to the player if he used different controls for the same vertex at

different times.

For the choice of a feedback, there is an associated directed graph, possibly

with loops and double-edges, in the following way. The vertices of the graph are

identified with the states 0, 1, 2, ..., n as before, and there is an edge from i to j

exactly if pij(ui) > 0.

Optimal feedbacks

By definition, there is an optimal feedback in dependence on the initial vertex

i ∈ X: It is a feedback for which the expected total cost (5.1) is minimal. It

should not come as a surprise that the dependence on the initial vertex is not

necessary.

Proposition 5.2 ([Ber07]). For a stochastic shortest path problem there is an

optimal feedback.

This can be proved by a stochastic version of the Bellman equation for stochastic

shortest path problems, which reads

V (i) = min
u∈U

[c(i, u) +

n∑
j=0

pij(u)V (j)], i = 0, . . . , n. (5.2)

It turns out that this formula is essentially the same as the explicit formula

for the Shepard-Bellman equation (2.7) if one sets i = x, j = xl and pij(u) :=

ψj(f(x, u)), as we assume here that β = 1 and that U is finite. Thus the Shepard-

Bellman operator can be interpreted as the Bellman operator for a stochastic

78

5.2. Stochastic shortest path problems

shortest path problem and one can try to approximate the solution of optimal

control problems with the method in this chapter.

The method relies on ideas in [Ber07] where it is proposed to use a stochastic

version of Dijkstra’s algorithm from Section 5.1.

Acyclic and monotone feedbacks

In the following definition, we call a feedback u acyclic if any path which can be

induced by it with positive probability, i.e. every sequence of vertices i0, i1, . . .

with pik,ik+1(u(ik)) > 0 for all k ≥ 0, can visit every vertex only once, with the

exception of the target vertex.

Definition 5.3 (acyclic feedback). A feedback is acyclic if the associated directed

graph as defined after (5.1) is acyclic.

By relaxing this condition to allow immediate repetitions of vertices, one gets

the following definition.

Definition 5.4 (weakly acyclic feedback). A feedback is weakly acyclic if the

associated graph is acyclic, with the exception that loops, i.e. edges (i, i) of vertices

i, are allowed, as long as the corresponding probability pii(u(i)) of staying on the

vertex is less than one for i 6= 0.

In general, acyclic feedbacks do not exist for a given stochastic shortest path

problem. If not, one can still try to find an acyclic feedback on a maximal subset

of the vertex set.

These definitions are independent of the cost function, unlike the following

stronger conditions.

Definition 5.5 (strictly monotone feedback). A feedback is strictly monotone if

its induced expected value V (i) of the total costs as in (5.1) has the property

that it drops with each transition with probability one: If pij(u(i)) > 0, then

V (i) > V (j).

A strictly monotone feedback which is also an optimal feedback is called a

consistently improving feedback in [Ber07]. Again, we use a relaxed form.

Definition 5.6 (weakly monotone feedback). A feedback is weakly monotone if

for V as before it holds: If pij(u(i)) > 0, then V (i) > V (j) or i = j. For each

i ∈ X, pii(u(i)) < 1.

Remark. A strictly monotone feedback is acyclic. A weakly monotone feedback

is weakly acyclic.

79

5. Shepard value iteration and stochastic shortest path problems

5.3. A Dijkstra-like algorithm for stochastic shortest
path problems

We use the following modification of Bertsekas’ ([Ber07]) algorithm for stochastic

shortest path problems, which itself is a generalization of Algorithm 5.1 (Dijkstra’s

Algorithm).

Algorithm 5.2. We use a subset of vertices P ⊂ X, a function V : X → [0,∞)

and a map u : X → U , which all change in the course of the algorithm.

P is the set of accepted vertices at each stage, V (i) assigns to each vertex i

the (current) approximate minimal expected distance from the target and u(i) a

(current) approximate optimal control for i.

As initialization, one sets P := {} and

V (i) :=

{
0 if i = 0,

∞ if i 6= 0,

whereas u(·) can be initialized arbitrarily.

In each iteration,

a) the algorithm terminates as soon as mini∈X\P V (i) =∞, i.e.

• P = X or

• V (i) =∞ for all i ∈ X \ P.

b) the vertex j ∈ X \ P with minimal V (j) is added to P .

c) for all i ∈ X \ P one defines

U(i) := {u ∈ U |pij(u) > 0 and pik(u) = 0 for all k ∈ X \ (P ∪ {i})}

and updates

u(i) :=

{
u(i) if V (i) ≤ minu∈U(i)

c(i,u)+
∑
j∈P pij(u)V (j)

1−pii(u)
,

argminu∈U(i)
c(i,u)+

∑
j∈P pij(u)V (j)

1−pii(u)
otherwise

and

V (i) := min

(
V (i), min

u∈U(i)

c(i, u) +
∑

j∈P pij(u)V (j)

1− pii(u)

)
.

Note that for the vertex i considered in part c) of the algorithm and the vertex

j just added to P in the same step of the algorithm, we always have j 6= i and

thus from pij(u) > 0 it follows pii(u) = 1 −
∑

k 6=i pik(u) < 1 and 1 − pii(u) 6= 0,

so all the fractions are well-defined.

In comparison to [Ber07] we have changed the algorithm in some respects.

80

5.3. A Dijkstra-like algorithm for stochastic shortest path problems

• Bertsekas states as an explicit requirement for his algorithm that an optimal

feedback exists which is strictly monotone. This is actually a sufficient

condition for the optimal value function to be found by the algorithm.

As our application of the algorithm is for value functions under the Shepard

discretization, which already introduces an approximation error, we do not

require the algorithm to solve the shortest path problem exactly. So we skip

the assumption Bertsekas poses that there be a strictly monotone optimal

feedback and instead try to solve the problem exactly on a preferably large

subset of the state space. In any case the algorithm gives an upper estimate

to the value function

Actually, it is already true for a subset of the state space that for the optimal

value function to be found by the algorithm it is necessary for the value

function to be induced by an acyclic feedback and sufficient to be induced by

a strictly monotone feedback. While in general the obtained value function

might not be optimal, the constructed subset P ⊂ X is exactly the set where

a stabilizing feedback exists, i.e. a feedback which moves any initial state of

P with probability 1 to the target without any repetition of states (with the

exception described in the next paragraph).

• We relax the algorithm slightly to adapt it to feedbacks which are only

weakly monotone resp. weakly acyclic instead of strictly monotone resp.

acyclic. If the graph associated to the feedback is considered, the require-

ment of a weakly acyclic feedback would amount to allowing feedbacks which

induce directed graphs that are acyclic with the exception that loops, i.e.

edges with the same start and end vertex are allowed. The same exception

applies for weakly monotone feedbacks.

Although this might seem only a minor generalization, it leads to the ad-

vantage that the relaxed version of the algorithm is then applicable in more

cases, especially for more time-discretizations of continuous-time control sys-

tems, as considered in the next section.

• Bertsekas uses an additional set L for vertices in X \P with (already) finite

V which is, in principle, not necessary.

• The feedback is not saved in the original version, so they only construct the

function V , not u. If the constructed value function is optimal, the feedback

can be reconstructed with the Bellman equation by defining

u(i) := argminu∈U [c(i, u) +
∑
j∈X

pij(u)V (j)].

For the general case, where the constructed Vd might not be optimal, we

prefer saving the feedback as well.

81

5. Shepard value iteration and stochastic shortest path problems

The next theorem gives an overview in the general situation where we do not

pose additional assumptions but define subsets of the set of centres and show

a chain of inclusions between them. It can be considered a generalization of

Bertsekas claim that if a strictly monotone optimal feedback exists, the optimal

value function is found by the algorithm. With the notation of the theorem, this

claim could be stated as follows (with the difference of weak instead of strict

monotonicity): If Xm = X, then X = Xd = Xa = Xm.

Theorem 5.7. Assume a stochastic shortest path problem. Let V be the optimal

value function, u∗ an optimal feedback, and Vd resp. u the approximate value

function resp. the feedback constructed by Algorithm 5.2.

Let Xa resp. Xm be the set of vertices i ∈ X for which an optimal weakly acyclic

resp. optimal weakly monotone feedback exists.

Let Xd be the set of vertices i ∈ X where the algorithm gives finite and optimal

values, i.e. Vd(i) = V (i) <∞.

Then it follows that

a) Vd is the cost function induced from the feedback u.

b) Xm ⊂ Xd.

c) u is weakly acyclic on the subset P ⊂ X where Vd is finite. Furthermore, we

have that Xd ⊂ Xa.

d) P is maximal in the following sense: i ∈ P if and only if there is a feedback

which steers i to 0 with probability one without revisiting a vertex which has

already been left (so only immediate loops are allowed). Furthermore, we have

that Xa ⊂ P .

The theorem shows (amongst others) that there is the chain of inclusions

Xm ⊂ Xd ⊂ Xa ⊂ P ⊂ X.

Proof. a) We have to show that Vd is the cost function induced from the feedback

u, specifically that

Vd(i) = [c(i,u(i)) +
∑
j∈X

pij(u(i))Vd(j)] for all i ∈ P. (5.3)

Actually, this holds not only at the end, but also at each stage of the algorithm

(if the updates of V and u in step c) of the algorithm are applied at once). For

distinction, we use the notation Vt and ut for the temporary maps during the

algorithm, while Vd and u still refer to the maps at the end of the algorithm.

Whenever the first case for an i ∈ X \ P in step c) of the algorithm occurs,

namely

Vt(i) ≤ min
u∈U(i)

c(i, u) +
∑

j∈P pij(u)Vt(j)

1− pii(u)
,

82

5.3. A Dijkstra-like algorithm for stochastic shortest path problems

no update of ut(i) and Vt(i) takes place, so all instances of (5.3) remain valid.

Otherwise, ut(i) and Vt(i) are updated such that

Vt(i) =
c(i,ut(i)) +

∑
j∈P pij(ut(i))Vt(j)

1− pii(u)
,

so

Vt(i) =pii(u)Vt(i) + c(i,ut(i)) +
∑
j∈P

pij(ut(i))Vt(j)

=c(i,ut(i)) +
∑

j∈P∪{i}

pij(ut(i))Vt(j)

=c(i,ut(i)) +
∑
j∈X

pij(ut(i))Vt(j).

This shows that (5.3) remains valid for i.

However, one has to check that from the change of Vt(i) and ut(i) all the other

instances of equation (5.3) remain valid. ut(i) does not occur in any of them,

so only the change of Vt(i) could be relevant. Actually there are no other

instances which are affected by the update of Vt(i) because from i ∈ X \ P
it follows that i has not been in P up to this phase of the algorithm, and

consequently for all i′ ∈ X the choice of U(i′) and hence ut(i
′) was such that

pi′i = 0 so Vt(i) does not appear on the right-hand side of (5.3) for j.

This shows the claim that the feedback and the value function constructed by

the algorithm fit together as in (5.3).

b) Now for the inclusion Xm ⊂ Xd. Assume an optimal weakly monotone feed-

back is given on Xm and the corresponding value function V with vertices

ordered accordingly:

0 = V (0) ≤ V (1) ≤ · · · ≤ V (K − 1)

where K is the number of elements of Xm. We show by induction that the

algorithm adds in step i + 2 a vertex (usually i + 1) with value V (i + 1) for

i = −1, 0, 1,

Assume that the states 0, 1, . . . , i have been added to P and that V (·) = Vd(·)
for these states. Then from the vertex i + 1 with the control u∗(i + 1) only

vertices in {0, . . . , i + 1} are reached because by definition the feedback u∗ is

assumed to be weakly monotone. So u∗(i+1) is a possible choice for state i+1

in step i+ 1, i.e. u∗(i+ 1) ∈ U(i+ 1).

On the other hand, one has V (k) ≤ Vd(k) for all k because V is the optimal

value function, and consequently

V (i) =
c(i, u∗(i)) +

∑
j∈P pij(u

∗(i))V (j)

1− pii(u∗(i))
≤
c(i, u) +

∑
j∈P pij(u)V (j)

1− pii(u)

83

5. Shepard value iteration and stochastic shortest path problems

for any u ∈ U .

So for the vertex i + 1 one will have Vd(i + 1) = V (i + 1) and u∗(i + 1) or an

equivalent choice (such that the right-hand side of (5.3) takes the same value).

In part a) of the next step (i+3) the vertex i+1 can be added to P (or another

vertex k and u∗(k) with U(i+ 1) = U(k) for a k > i+ 1; but then the order of

the vertices could be changed; so, without loss of generality, i+ 1 has actually

been chosen.). This concludes the inductive step and the proof of the inclusion

Xm ⊂ Xd.

c) The algorithm constructs a weakly acyclic feedback (on all of P): u(i) is

updated always in such a way that pij > 0 only if j is already in P or i = j. So

the order in which the vertices are added to P is an order which is acknowledged

by all pairs (i, j) with pij(u(i)) > 0. j has to be added to P before i or i = j in

order that pij(u(i)) > 0 is possible. The feedback from the algorithm is thus

weakly acyclic and by definition optimal on Xd. On the other hand, Xa was

defined as the subset of states where a weakly acyclic optimal feedback exists.

So Xd ⊂ Xa.

d) The inclusion Xa ⊂ P will be clear if we show that P is the set of all vertices

which have finite induces total costs for a weakly acyclic feedback. To that

end, we are going to show that for any vertex i the algorithm finds a finite

value Vd(i) for i exactly if there is a weakly acyclic feedback which controls i.

The direction “⇒” is true because we have already shown in the last paragraph

that the algorithm constructs an acyclic feedback on P .

Now for the direction “⇐”:

If the algorithm terminates with Vd(i) =∞ for a state i then there is no way

to control i with a weakly acyclic feedback, because with any control u(i) it

holds either that pii(u(i)) = 1 or that there is a transition from i to a j 6= i,

pij(u(i)) > 0 with Vd(j) = ∞, otherwise i would have been accepted with

u(i) or a better control at some stage of the algorithm and Vd(i) would be

finite. In the first case, it is obvious that with this u(i) the vertex i cannot be

controlled towards the target, while in the latter case, with any control u(j)

there is likewise a transition j → k with Vd(k) = ∞ if not pjj(u(j)) = 1 and

so on. So there remains a path of positive probability which never leaves the

area where Vd(·) =∞, contradicting the assumption that there were a acyclic

feedback to stabilize i, concluding the proof.

Remark. We get from Algorithm 5.2 a weakly acyclic feedback and a value func-

tion Vd which is optimal in the following sense: If the vertices are numbered

according to the steps in which they are added to P , a feedback which is weakly

acyclic and respects this ordering of vertices, induces a value function V which

fulfils Vd ≤ V .

84

5.4. Application on continuous-time control systems

To check for optimality of the approximate value function, one can apply value

iteration once and see where the value function changes. If it changes at a vertex

j ∈ P , it has not been optimal there and neither at other vertices i ∈ P from

which one can move to j, i.e. pij(u(i)).

By repeating this method recursively, one can construct the set of vertices where

the value function has not been optimal.

5.4. Application on continuous-time control systems

As explained in Section 5.2, a discrete-time optimal control problem can be treated

with the methods of this chapter because the Bellman-Shepard discretization (2.7)

leads to the same equation 5.2 as an equivalent stochastic shortest path problem.

In this section we consider optimal control problems which are originally defined

in continuous time, so that one must also choose the discretization in time. For

a fixed time discretization, e.g. the explicit Euler method, and a chosen method

to construct centre sets of prescribed fill distance for the Shepard discretization,

these discretizations depend only on two parameters, h > 0 and τ > 0 for space

and time discretization, respectively.

The question is if one can choose h and τ such that the resulting stochastic

shortest path problem has large subsets Xm resp. Xd of X if those are defined as

in Theorem 5.7. This is more likely for small h and large τ because, in general, a

large τ implies relatively large jumps ‖f(x, u) − x‖, and with a small parameter

h it might be possible to avoid cycles in the associated graph.

Event-based time discretization and variants

Algorithm 5.2 often does not allow for constructing the optimal value function

on a large subset of the state space because the underlying graph of an optimal

feedback is not acyclic, usually because the system dynamics are “too slow”.

A way to handle the different lengths of the continuous-time dynamics f(x, u)

is to use U × Rτ for a finite Rτ ⊂ R+ as an extended control space, in order to

explicitly allow different time steps for the time discretization. However, here the

numerical effort increases significantly because the control space gets larger. For

this reason we have not investigated this idea any further.

A similar approach is to use varying (sampled) time steps for the time dis-

cretization, but with an a priori choice instead of an extension of the control

space. These time steps can be specially designed to force relatively large sets Xm

resp. Xd as in Theorem 5.7 A possible way to do that is motivated by so-called

event-based methods ([AB02, GJJ+10]). The name event-based derives from the

fact that in a mesh-based space discretization of control problems the transition

of the state between different cells is considered to be an event. Usually, only such

events trigger new calculations of controls.

85

5. Shepard value iteration and stochastic shortest path problems

For radial basis or other meshfree methods this approach is not well-suited

because these events require a cell decomposition of the state space. A modified,

more empirical possibility which does not require regular updates is to use different

time steps which force “space steps” of similar lengths. The way to adjust the

time steps is to rescale in the following way:

Definition 5.8. For continuous-time maps f : Ω × U → Rs and c : Ω × U →
[0,∞), we define their rescalings

f̃(x, u) :=
f(x, u)

‖f(x, u)‖ and c̃(x, u) :=
c(x, u)

‖f(x, u)‖ .

These modified continuous-time maps f and c are then discretized with, e.g.

the explicit Euler method.

So the dynamics are discretized such that one gets jumps of constant length

instead of jumps which correspond to equal time steps. In this way, the control

problem becomes more like a shortest-path problem, in the sense that it can be

modelled on an Euclidean graph.

Comparison of the Dijkstra-like algorithm with Shepard value
iteration

The use of Algorithm 5.2 introduces in general an additional error on the approxi-

mate value function one gets from the Shepard discretization. As a compensation,

it may bring a speed-up compared to value iteration because each “edge” is con-

sidered just once for this algorithm, but several times (the number of iterations)

for value iteration.

However, one has to consider the following aspects:

• Usually the number of iterations for value iteration is not large; numeri-

cal experiments suggest: It does not depend much on the fill distance, for

smaller fill distance it seems to be a bit smaller. It seems to be approx-

imately inversely proportional to the time step, though. This is plausible

because for smaller time steps a larger number of steps is needed to move a

far-away point to the equilibrium.

• For higher-dimensional systems, the role of the number of iterations is, in

general, even less important because the numerical effort for value iteration

depends for higher-dimensional systems more on the state space than on the

number of iterations.

• The matrix-vector-multiplication which is used for value iteration is fast

because it is parallelized (in contrast to the rather sequential Dijkstra-like

algorithm); its time consumption does not depend much on the number of

centres.

86

5.4. Application on continuous-time control systems

0 2 4 6 8
−10

−8

−6

−4

−2

0

ϕ

ϕ̇

0

2

4

6

0 2 4 6 8
−10

−8

−6

−4

−2

0

ϕ

ϕ̇

0

2

4

6

Figure 5.1.: Inverted pendulum: Approximate optimal value function for the

Dijkstra-like algorithm. Left: With Algorithm 5.2. Right: With

Algorithm 5.2 and rescaling according to Definition 5.8.

• Algorithm 5.2 requires some additional operations, e. g. calculating subma-

trices. These can be implemented with sparse matrices, though.

Numerical example: An inverted pendulum on a cart

We again consider the inverted pendulum from Section 3.4 as an example to apply

Algorithm 5.2. In Figure 5.1 we have plotted the approximate value function in

the lower right quarter of the state space, once the approximation we got from

Algorithm 5.2 and once with the rescaled f̃ and c̃ from Definition 5.8. In the latter

case, the subset where the approximate value function is finite is considerably

larger as is clearly visible from the figure. As the approximate value function is in

both cases an upper bound to the correct value function, the rescaling of f and c

seems to be an improvement in this example.

87

A. Regularity of the value function
without discounting

In this Appendix we investigate the regularity of the optimal value function of

undiscounted optimal control problems. In Section A.1 we show its Lipschitz con-

tinuity (which is required in Section 2.5) and in Section A.2 we prove that it is

generally not differentiable, by providing a counter example. There are similar re-

sults in [Vel97, BCD97, RZS09]. However, the assumptions are different from ours

and to our best knowledge, the literature does not answer the question whether

the optimal value function is Lipschitz continuous or even differentiable in our

undiscounted setting.

A.1. Lipschitz continuity of the value function

The regularity proof for the value function without discounting is considerably

more complicated than the corresponding result, Theorem 2.4, in the discounted

case.

We assume that a discrete-time control problem is given that is stabilizable on

all of Ω, and that there is a feedback so that the closed-loop system has 0 as an

asymptotically stable fixed point. Furthermore, we assume that f ∈ C1(Ω×U,Ω),

c ∈ C2(Ω× U, [0,∞)).

Let Lf be a Lipschitz constant for f w.r.t. x and Lc and Lu be Lipschitz

constants for c w.r.t. x resp. u.

A crucial idea of the proof that V is Lipschitz continuous is that the number of

time steps needed to steer an arbitrary starting point into a neighbourhood of the

equilibrium point, turns out to be bounded. The proof will consist of two parts,

namely

1. finding a neighbourhood of the equilibrium point where V can be shown to

be Lipschitz continuous and

2. using the Lipschitz constants of f and c and the previously mentioned bound

on the number of steps needed to control arbitrary initial points into the

neighbourhood of the equilibrium point and extending the proof of Lipschitz

continuity from the neighbourhood to the whole state space.

89

A. Regularity of the value function without discounting

Local Lipschitz continuity

In the following, we consider the approximation by the linear-quadratic (LQ)

system

f̄(x, u) = Ax+Bu, c̄(x, u) = xTQx+ uTRu

where

A =
∂

∂x
f(0, 0), B =

∂

∂u
f(0, 0), Q =

1

2

∂2

∂x2
c(0, 0), R =

1

2

∂2

∂u2
c(0, 0).

Under the assumption that the original system is controllable, this linearized

system is controllable as well. Note that c is semi-convex by definition. Thus the

LQR system is well-posed and its optimal feedback is given by a linear-quadratic

regulator (LQR), which is a linear map U(x) = Ux, where U is a d × s matrix,

see, e.g. [Son98].

The optimal feedback u(x) = Ux for this LQ system is not an optimal feedback

for the original system, but it is still a locally stabilizing one as we will see; let V̄

be the derived (in general not optimal) value function

V̄ (x) =

∞∑
k=0

c(xk,Uxk), xk+1 = f(xk,Uxk)

of this feedback U for the original system.

Consider the matrix-valued map

M : Rs ×Rd → Rs×s,M(x, u) := fx(x, u) + fu(x, u) ·U.

The right-hand side is actually ∂
∂x(f(x,Ux)).

The spectral radius fulfils ρ(M(0, 0)) < 1 because the original system has 0

as an asymptotically stable fixed point. So there is a norm ‖ · ‖a on Rs and an

εa > 0 with ‖M(0, 0)‖a < 1 − 2εa. Let 0 ∈ Ω1 ⊂ Ω and 0 ∈ U1 ⊂ U be open

neighbourhoods such that

‖M(x, u)‖a ≤ 1− εa. (A.1)

for all (x, u) ∈ Ω1 × U1.

We choose even smaller open sets 0 ∈ Ω2 ⊂ Ω1, 0 ∈ U2 ⊂ U1 by further requiring

• Ω2 to be a open ball relative to the norm ‖ · ‖a,

• Ux ∈ U2 for all x ∈ Ω2 and

• u+ U(x̃− x) ∈ U1 for all x, x̃ ∈ Ω2 and u ∈ U2.

Now we show

90

A.1. Lipschitz continuity of the value function

Lemma A.1. Let (x, u) ∈ (Ω2 × U2). Then

φ : Ω2 → Ω, φ(x̃) := f(x̃, u+ U(x̃− x)).

is a contractive relative to the norm ‖ · ‖a with contraction factor 1− εa.

Note that in general φ does not map Ω2 to itself.

Proof. One has∥∥∥∥ ∂∂x̃φ(x̃)

∥∥∥∥
a

= ‖fx(x̃, u+ U(x̃− x)) + fu(x̃, u+ U(x̃− x)) ·U‖a

= ‖M(x̃, u+ U(x̃− x))‖a ≤ 1− εa

by (A.1) and, consequently, by the mean value theorem, φ is a contractive.

By setting (x, u) = (0, 0) one gets the following corollary. Noting that Ω2 is an

open ball relative to ‖ · ‖a, this time the map has images in Ω2.

Corollary A.2. f(·,U(·)) is a contraction on Ω2 relative to the norm ‖ · ‖a.

This allows us to show that V̄ is continuous on a neighbourhood of 0.

Corollary A.3. V̄ is continuous on Ω2, even Lipschitz continuous.

Proof. c was assumed to be Lipschitz continuous w.r.t. x resp. u with Lipschitz

constants Lc resp. Lu. By the equivalence of norms on finite-dimensional vector

spaces, c is also Lipschitz continuous w.r.t. x resp. u with some Lipschitz constants

La and Lau relative to the norm ‖ · ‖a. Consequently, x 7→ c(x,Ux) is Lipschitz

continuous with Lipschitz constant La + Lau‖U‖a relative to ‖ · ‖a.
Now one can show with the help of Lemma A.1 that V̄ is Lipschitz continuous

with Lipschitz constant
La+Lau‖U‖a

εa
relative to the norm ‖·‖a. This can be seen by

considering two points x0, x̃0 ∈ Ω2 and comparing their trajectories (xk) and (x̃k)

under the feedback U. Their mutual distances xk − x̃k relative to ‖ · ‖a develop

at most like a geometric sequence with contraction factor 1− εa. Then

one gets

V̄ (x)− V̄ (x̃) ≤
∞∑
k=0

|c(xk)− c̃(xk)|

≤
∞∑
k=0

(1− εa)k(La + Lau‖U‖a)

=
La + Lau‖U‖a

εa
.

In the next step we choose an even smaller open neighbourhood 0 ∈ Ω3 ⊂ Ω2

according to the following lemma.

91

A. Regularity of the value function without discounting

Lemma A.4. There is a neighbourhood 0 ∈ Ω3 ⊂ Ω2 such that each optimal

feedback of the original system on Ω3 has values in U2.

Proof. One has

min
x∈Ω,u∈U\U2

c(x, u) = δ2 > 0

because of the compactness of Ω and U , the fact that U2 is open and c(x, u) > 0

for u 6= 0. One can choose Ω3 such that

sup
x∈Ω3

V̄ (x) < δ2,

because V̄ (0) = 0, and consequently

sup
x∈Ω3

V (x) ≤ sup
x∈Ω3

V̄ (x) < δ2

because v is the optimal value function. Now, for points in Ω3, the optimal controls

are in U2.

We choose Ω3 according to this lemma, but with the additional condition that

Ω̄3 ⊂ Ω2. So the Hausdorff distance relative to the norm ‖ · ‖a between the sets,

da(Ω2,Ω3) is positive. We choose a neighbourhood 0 ∈ Ω4 ⊂ Ω3 such that all

optimal trajectories starting in Ω4 stay in Ω3 for all times. This is the case if

supΩ4
V ≤ supΩ4

V̄ ≤ minx∈Ω\Ω3,u∈U c(x, u). The last term is positive because of

compactness of (Ω \ Ω3) × U . In the proof of the following lemma we explicitly

need the cost functional

J(x0, (uk)) :=

∞∑
k=0

c(xk, uk)

from Chapter 1 which maps an initial point x0 and a control sequence (uk) onto

the total cost along the induced trajectory xk+1 = f(xk, uk), k = 0, 1, 2,

Theorem A.5. V is Lipschitz continuous on the neighbourhood Ω4 ⊂ Ω of 0.

Proof. We show the Lipschitz continuity for pairs of points which are close to each

other. The obtained Lipschitz constant will be independent of this choice of a pair

of points, though, implying the Lipschitz continuity on the whole set. For given

x0, x̃0 ∈ Ω4 with ‖x0 − x̃0‖a < da(Ω2,Ω3) we choose (uk) as an almost optimal

control sequence for x0: J(x0, (uk)) ≤ V (x0) + (La + Lau‖U‖a) 1
εa
‖x̃0 − x0‖a and

such that (xk) stays in Ω3. The latter is possible because Ω3 is open, so almost

optimality is enough for a trajectory to remain in Ω3. Note that optimality of the

control sequence cannot be assumed at this point, as it is not yet clear that V is

continuous. From the continuity of V and the Bellman equation the existence of

optimal controls will follow, but as long as the continuity of V has not been shown

only almost optimal controls can be assumed, i.e. control sequences which induce

a value at a point arbitrarily close to the optimal value function at this point.

92

A.1. Lipschitz continuity of the value function

The sequence (uk) gives us a sequence (xk). For the construction of the sequence

x̃k from the point x̃0, we define iteratively x̃k := f(x̃k−1, ũk−1) with

ũk := uk + U(x̃k − xk),

which can be considered a “linear correction” of uk with the feedback one has

from the linear-quadratic approximation system.

Consider

φk(x̃) := f(x̃, uk + U(x̃− xk)),

so by Lemma A.1

‖xk+1 − x̃k+1‖a ≤ (1− εa)‖xk − x̃k‖a

and iteratively one sees that (x̃k) stays in Ω2 because of the condition ‖x0−x̃0‖a <
da(Ω2,Ω3).

Consequently,

|J(x0, (uk))− J(x̃0, (ũk))| ≤ (La + Lau‖U‖a)
1

1− (1− εa)
‖x0 − x̃0‖a

= (La + Lau‖U‖a)
1

εa
‖x0 − x̃0‖a

and thus

V (x̃0) ≤ J(x̃0, (ũk)) ≤ J(x0, (uk)) + (La + Lau‖U‖a)
1

εa
‖x0 − x̃0‖a

≤ V (x0) + (La + Lau‖U‖a)
2

εa
‖x0 − x̃0‖a.

Changing the roles of x0 and x̃0, and noting that the two norms ‖ · ‖ and ‖ · ‖a
on a finite-dimensional space are equivalent, we conclude

|V (x0)− V (x̃0)| ≤ Lloc‖x0 − x̃0‖

for some Lloc > 0 independent of x0 and x̃0, which concludes the proof of Lipschitz

continuity on Ω4.

For the continuation in the next section we choose ε1 > 0 with U2ε1(0) ⊂ Ω4.

Global Lipschitz continuity

The generalization of the local Lipschitz continuity on U2ε1(0) to global Lipschitz

continuity on Ω is essentially based on the compactness of Ω as we will see in the

following.

Lemma A.6. V is bounded on Ω.

93

A. Regularity of the value function without discounting

Proof. Let x0 ∈ Ω and (uk)k a stabilizing control sequence for x0. Therefore the

sequence defined by xk+1 = f(xk, uk) converges to 0 and there is a k1 such that

xk1 ∈ Uε1(0). From the continuity of the system dynamics f it follows that there

is a neighbourhood N(x0) such that each x̃ ∈ N(x0) is steered to U2ε1(0) in k1

steps if the same control sequence (uk)k is applied.

By Lemma A.5 V is Lipschitz continuous and hence bounded on U2ε1(0), so it

is also bounded on N(x0) because c is bounded: For any x̃ ∈ N(x0) it holds that

V (x̃) ≤
k1−1∑
k=0

c(x̃k, uk) + V (x̃k1)

≤k1 sup
Ω×U

c(x, u) + Lloc diam(U2ε1(0))

=k1 sup
Ω×U

c(x, u) + Lloc2ε1.

Now by compactness of Ω, finitely many such sets N(x0) cover Ω. By taking

the supremum of the finitely many integers k1(x), V is also bounded on Ω by

sup
x∈Ω

k1(x) sup
Ω×U

c(x, u) + Lloc2ε1.

Let ∆ := supx∈Ω V (x) which is finite as was just shown. Let the cost function

c be bounded from below by δ3 > 0 outside of Uε1(0). A positive lower bound

exists because of the compactness of Ω \ Uε1(0) × U . Let k0 be an integer with

k0 ≥ ∆
δ3

and ε0 := ε1/L
k0
f . The definition of k0 is such that for any point x ∈ Ω

it is possible to reach Uε1(0) in at most k0 step, because as long as a trajectory

stays outside of Uε1(0) in each step a cost of at least δ3 is added, so in k0 +1 steps

at least (k0 + 1)δ3 > ∆, so Uε1(0) can be reached earlier if the control sequence is

chosen almost optimal.

From now on, let F : Ω4 → U be an optimal feedback which exists on Ω4

because V is continuous on Ω4 by Lemma A.5 and so the right-hand side of the

Bellman equation depends continuously on u ∈ U and U is compact such that an

optimal u ∈ U can always be chosen.

With the next lemma we show Lipschitz continuity of V locally, for pairs of

nearby points.

Lemma A.7. For any x0 ∈ Ω there is a neighbourhood x0 ∈ A ⊂ Ω such that any

x̃0 ∈ A fulfils the following statement. Let (uk) a control sequence which steers x0

in k0 steps to Uε1(0) and then continues as given by the optimal feedback F and

let

(ũk) := (u0, . . . , uk0 , F (x̃k0+1), F (x̃k0+2), . . .)

be a control sequence for x̃0. Then

|J(x0, (uk))− J(x̃0, (ũk))| ≤ L1‖x0 − x̃0‖
with a constant L1 > 0 independent of the points x0 and x̃0.

94

A.1. Lipschitz continuity of the value function

Proof. For the points x0, x̃0 with d := ‖x0− x̃0‖ < ε0 we consider the trajectories

(xk) and (x̃k) of f starting at x0, x̃0 for the control sequences (uk) and (ũk),

respectively. By the choice of (uk) and the definition of k0, one has xk0 ∈ Uε1(0).

In addition, one has ‖xk0 − x̃k0‖ ≤ ε0L
n
f = ε1, so x̃k0 ∈ U2ε1(0). It follows

|J(x0, (uk))− J(x̃0, (ũk))| ≤|c(x0, u0)− c(x̃0, u0)|+ |c(x1, u1)− c(x̃1, u1)|
+ . . .+ |c(xk0−1, uk0−1)− c(x̃k0−1, uk0−1)|
+ |V (xk0)− V (x̃k0)|
≤Lcd+ LcdLf + . . .+ LcdL

n−1
f + dLnfLloc

=d (Lc + LcLf + . . .+ LcL
n−1
f + LnfLloc)︸ ︷︷ ︸

=:L1

=‖x0 − x̃0‖L1

from Theorem A.5.

Theorem A.8 (Lipschitz continuity of V). Let V be the optimal value function of

a discrete-time control problem that is stabilizable on the compact state space Ω and

with the compact control space U , where the system dynamics f is in C1(Ω×U,Ω),

the cost function c is in C2(Ω × U,R+
0), and that has a feedback whose closed-

loop system has 0 as an asymptotically stable fixed point. Then V is Lipschitz

continuous.

Proof. Let x0 and x̃0 be two points in Ω with ‖x0 − x̃0‖ ≤ ε0 and (uk) a control

sequence such that the induced trajectory for the point x0 fulfils

V (x̃0) ≤ J(x̃0, (ũk)) + L1‖x0 − x̃0‖

From the preceding lemma, we get

V (x̃0) ≤J(x̃0, (ũk)) + L1‖x0 − x̃0‖
≤J(x0, (uk)) + 2L1‖x0 − x̃0‖
=V (x0) + 2L1‖x0 − x̃0‖.

Changing the roles of x0 and x̃0, we conclude

|V (x0)− V (x̃0)| ≤ 2L1‖x0 − x̃0‖.

Now we can skip the assumption ‖x0−x̃0‖ ≤ ε0, because a local Lipschitz constant

which does not depend from the choice of the pair of points is also a global

Lipschitz constant, showing the global Lipschitz continuity of V .

Corollary A.9. Under the assumptions of Theorem A.8 the Kružkov transformed

optimal value function (1.6) is also Lipschitz continuous.

95

A. Regularity of the value function without discounting

Proof. By the definition of v as v(·) = exp(−V (·)) and Lipschitz continuity of the

exponential function on (−∞, 0], the function v is also Lipschitz continuous.

In general, V and v can not be expected to be differentiable as we will see in

the next section.

We remark that one can get as a corollary the corresponding statement for

continuous-time systems. By the considerations of Section 1.3 continuous-time

control problems can be considered a special case of discrete-time control problems

because of its continuous evolution. The infinite dimensionality of the control

space turns out not to be a fundamental problem. For the feedback F : Ω4 → U

optimality can no longer be assured because U is no longer compact but for the

proof it is possible to take a feedback which is sufficiently close to optimality.

A.2. Nondifferentiability of the value function

In Section A.1 we showed the Lipschitz continuity of optimal value functions for

undiscounted discrete-time control problems under certain assumptions. A natu-

ral question is whether this result can be strengthened towards differentiability or

even smoothness of the optimal value function if the maps f and c have sufficient

regularity.

In general this is not possible. The main obstruction is that the definition

of the value function as well as the Bellman equation have an infimum on the

right-hand side taken over all possible controls u ∈ U , which in general leads to a

non-differentiable function V even if the single functions for the different u ∈ U
is smooth.

At some distance from the point of equilibrium there can be topological limi-

tations if branches of different solutions intersect each other. Perhaps the easi-

est example for such a case is given by the shortest path problem on the circle

S1 = {z ∈ C||z| = 1} ⊂ C. If the target set {1} is considered, then the distance

function on S1 is piecewise linear (along the curve, locally parametrized according

to path length) and has two points of non-differentiability, namely 1 and -1. The

non-differentiability at the point of equilibrium can be explained by the jump in

the cost function which is 0 in 1, and 1 elsewhere. However, the other irregu-

larity at -1 is a consequence of the branching between the paths which go along

the upper respectively the lower semicircle (in other words, paths with positive

respectively negative imaginary parts).

In this section we present an example which shows that an optimal value func-

tion does not need to be differentiable, not even in a neighbourhood of an equi-

librium point and not even in the case that the dynamics and cost function are

smooth. The example will work both in the case of continuous-time and discrete-

time systems with almost no modification.

96

A.2. Nondifferentiability of the value function

We will need the well-known smooth function

R→ R, x 7→
{

0 x ≤ 0,

e−
1
x x > 0,

from which we derive the odd function

φ : [−1, 1]→ [−1, 1], x 7→

−e · e 1

x x < 0,

0 x = 0,

e · e− 1
x x > 0,

which is a smooth bijection of [−1, 1] onto itself.

Example. First, we consider the discrete-time control system where

Ω = [−1, 1], U = [−1, 1],

f(x, u) = x+ φ(u)

and

c(x, u) = x2 + φ(|u|).

Proposition A.10. The optimal value function for this control system is V (x) =

|x|+ x2 and the optimal feedback is u(x) = φ−1(−x).

Proof. First, we show that V ≥ |x| + x2. To this aim, note that for any initial

point x0 and control sequence (uk) we have xk = x0 +
∑k

i=0 ui and for the total

cost

J(x0, (uk)) =

∞∑
k=0

c(xk, uk)

=

∞∑
k=0

(x2
k + φ(|uk|))

=

∞∑
k=0

(x2
k + |φ(uk)|)

≥
∞∑
k=0

x2
k +

∣∣∣∣∣ lim
k→∞

k∑
i=0

φ(ui)

∣∣∣∣∣
=

∞∑
k=0

x2
k +
∣∣∣ lim
k→∞

xk − x0

∣∣∣
≥x2

0 + |x0|.

The last inequality holds true because limk→∞ xk = 0 or otherwise
∑∞

k=0 x
2
k =∞

such that the inequality holds trivially.

97

A. Regularity of the value function without discounting

Thus, we have shown that V ≥ |x|+ x2.

On the other hand, the trajectory can be forced to be x1 = x2 = · · · = 0 by

choosing the control sequence with

u0 = φ−1(−x0)⇔ φ(u) = −x0 ⇔ f(x0, u) = 0

and u1 = u2 = · · · = 0, leading to

J(x0, (uk)) = x2
0 + φ(|u0|) = x2

0 + |x0|,

which shows V (x0) ≤ |x0|+ x2
0.

Together, from both parts, one gets V (x) = |x|+ x2.

One could ask why we did not just take the cost function c(x, u) = φ(|u|) instead

of c(x, u) = x2 + φ(|u|). The reason is that then the incentive to steer the system

to 0 would be missing, formally contradicting the requirement that c(x, u) > 0 for

x outside the target and any u ∈ U . The control function u ≡ 0 for any initial

point x0 would show that the optimal value function is actually V ≡ 0.

From this discrete-time control system it is possible to derive a correspond-

ing continuous-time example. We present it here for completeness, although

continuous-time control systems as such are not within the scope of this thesis.

Example. Consider the continuous-time control system defined by

Ω = [−1, 1], U = [−1, 1],

f(x, u) = φ(u)

and

c(x, u) = x2 + φ(|u|).

Proposition A.11. The optimal value function for this control system is

V (x) = |x|+ 1

3
|x|3.

Proof. We begin with the lower bound V (x) ≥ |x|+ 1
3 |x|3.

For an initial point x0, a piecewise continuous control function u : [0,∞)→ U

and the induced trajectory x : [0,∞)→ Ω, one has

x(t) = x0 +

∫ t

0

f(x(t), u(t))dt = x0 +

∫ t

0

φ(u(t))dt

98

A.2. Nondifferentiability of the value function

and thus, along the trajectory, the associated cost

J(x0, u(·)) =

∫ ∞
0

c(x(t), u(t))dt

=

∫ ∞
0

(x(t)2 + φ(|u(t)|))dt

=

∫ ∞
0

x(t)2dt+ lim
t→∞

∫ t

0

φ(|u(t)|)dt

=

∫ ∞
0

x(t)2dt+ lim
t→∞

∫ t

0

|φ(u(t))|dt

≥
∫ ∞

0

x(t)2dt+ lim sup
t→∞

∣∣∣∣∫ t

0

φ(u(t))dt

∣∣∣∣
=

∫ ∞
0

x(t)2dt+ lim sup
t→∞

|x(t)− x0|

≥
∫ ∞

0

x(t)2dt+ |x0|

≥|x0|+
1

3
|x0|3,

where the last inequality is true because max |φ| = 1⇒ |x′(t)| ≤ 1 implies∫ ∞
0

x(t)2dt ≥
∫ ∞

0

(|x0 − t|+)2 =
1

3
|x0|3,

and the second to last inequality,∫ ∞
0

x(t)2dt+ lim sup
t→∞

|x(t)− x0| ≥
∫ ∞

0

x(t)2dt+ |x0|, (A.2)

is valid because limt→∞ x(t) = 0 or otherwise there would be a sequence 0 <

t1 < t2, . . . with tk+1 > tk + 1 and |x(tk)| ≥ ε for all k and a 0 < ε < 1,

and consequently the intervals [tk, tk + 1] would be pairwise disjoint and so, from

|x′(t)| ≤ 1,∫ ∞
0

x(t)2dt ≥
∞∑
k=1

∫ tk+1

tk

x(t)2dt ≥
∞∑
k=1

∫ 1

0

(|ε− t|+)2dt︸ ︷︷ ︸
=ε3/3

=∞,

so
∫∞

0
x(t)2dt =∞ and (A.2) holds again.

For the upper bound, V (x) ≤ |x|+ 1
3 |x|3, we consider the feedback

u(x) =

1 x < 0,

0 x = 0,

−1 x > 0,

99

A. Regularity of the value function without discounting

which yields the trajectory x(t) = (x0 − t)+ if x0 ≥ 0 and x(t) = −(−x0 − t)+ if

x0 < 0 and the cost

J(x0,u(x(·))) =

∫ ∞
0

c(x(t), u(t))dt

=

∫ ∞
0

(x(t)2 + φ(|u(t)|))dt

=

∫ x0

0

(((|x0| − t)+)2 + 1)dt+

∫ ∞
x0

(x(t)︸︷︷︸
=0

2 + φ(|u(t)|︸ ︷︷ ︸
=0

))dt

=
1

3
|x0|3 + |x0|,

consequently V (x) ≤ |x|+ 1
3 |x|3.

Altogether, we have shown V (x) = |x|+ 1
3 |x|3.

Finally we want to remark that if the aim had just been to give a counterexample

to the smoothness (rather than differentiability) of V then it would have been

sufficient to take Ω = U = [−1, 1], f(x, u) = u, c(x, u) = x2 leading to V (x) =
1
3 |x|3.

100

Bibliography

[1] http://www-m3.ma.tum.de/Allgemeines/JuSch_DP_RBF.

[AB02] K. J. Åström and B. M. Bernhardsson. Comparison of Riemann and

Lebesgue sampling for first order stochastic systems. In Proceedings of

the 41st IEEE Conference on Decision and Control, volume 2, pages

2011–2016, Dec 2002.

[AWJR12] H. Alwardi, S. Wang, L. S. Jennings, and S. Richardson. An adaptive

least-squares collocation radial basis function method for the HJB

equation. J. Glob. Opt., 52(2):305–322, 2012.

[BCD97] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity so-

lutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston,

Boston, MA, 1997.

[Bel54] R. Bellman. Dynamic programming and a new formalism in the cal-

culus of variations. Proceedings of the National Academy of Sciences

of the United States of America, 40(4):pp. 231–235, 1954.

[Bel57] R. Bellman. Dynamic programming. Princeton University Press,

Princeton, NJ, 1957.

[Ber05] D. P. Bertsekas. Dynamic Programming and Optimal Control. Num-

ber Bd. 1 in Athena Scientific optimization and computation series.

Athena Scientific, 2005.

[Ber07] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II.

Athena Scientific, 3rd edition, 2007.

[CD83] I. Capuzzo-Dolcetta. On a discrete approximation of the Hamilton-

Jacobi equation of dynamic programming. Appl. Math. Optim.,

10(1):367–377, 1983.

[CDF89] I. Capuzzo-Dolcetta and M. Falcone. Discrete dynamic program-

ming and viscosity solutions of the Bellman equation. Ann. Inst. H.

Poincaré Anal. Non Linéaire, 6(suppl.):161–183, 1989.

[Cla04] F. Clarke. Lyapunov functions and feedback in nonlinear control. In

Optimal control, stabilization and nonsmooth analysis, volume 301 of

101

http://www-m3.ma.tum.de/Allgemeines/JuSch_DP_RBF

Bibliography

Lecture Notes in Control and Inform. Sci., pages 267–282. Springer,

Berlin, 2004.

[CLSW98] F. Clarke, Y. Ledyaev, R. Stern, and P. Wolenski. Nonsmooth analysis

and control theory, volume 178 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1998.

[CQO04] T. Cecil, J. Qian, and S. Osher. Numerical methods for high di-

mensional Hamilton-Jacobi equations using radial basis functions. J.

Comp. Phys., 196(1):327 – 347, 2004.

[DH07] T. A. Driscoll and Alfa R. H. Heryudono. Adaptive residual subsam-

pling methods for radial basis function interpolation and collocation

problems. Comput. Math. Appl., 53(6):927–939, 2007.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1):269–271, 1959.

[Fal87] M. Falcone. A numerical approach to the infinite horizon problem of

deterministic control theory. Appl. Math. Optim., 15(1):1–13, 1987.

[Fas07] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. World

Scientific, 2007.

[FF94] M. Falcone and R. Ferretti. Discrete time high-order schemes for

viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer.

Math., 67(3):315–344, 1994.

[GJ05] L. Grüne and O. Junge. A set oriented approach to optimal feedback

stabilization. Sys. Contr. Lett., 54(2):169 – 180, 2005.

[GJJ+10] L. Grüne, S. Jerg, O. Junge, D. Lehmann, J. Lunze, F. Müller, and

M. Post. Two complementary approaches to event-based control (Zwei

komplementäre Zugänge zur ereignisbasierten Regelung). Automa-

tisierungstechnik, 58(4):173–183, 2010.

[GMM79] E. Gottzein, R. Meisinger, and L. Miller. Anwendung des ”Magnetis-

chen Rades” in Hochgeschwindigkeitsmagnetschwebebahnen. ZEV-

Glasers Annalen, 103, 1979.

[Grü97] L. Grüne. An adaptive grid scheme for the discrete Hamilton-Jacobi-

Bellman equation. Numer. Math., 75(3):319–337, 1997.

[GS04] L. Grüne and W. Semmler. Using dynamic programming with adap-

tive grid scheme for optimal control problems in economics. J.

Econom. Dynam. Control, 28(12):2427–2456, 2004.

102

Bibliography

[HWCL06] C. S. Huang, S. Wang, CS Chen, and Z. C. Li. A radial basis collo-

cation method for Hamilton-Jacobi-Bellman equations. Automatica,

42(12):2201–2207, 2006.

[JO04] O. Junge and H. M. Osinga. A set oriented approach to global optimal

control. ESAIM Control Optim. Calc. Var., 10(2):259–270, 2004.

[JS15] O. Junge and A. Schreiber. Dynamic programming using radial basis

functions. Discrete and Continuous Dynamical Systems, 35(9):4439–

4453, 2015.

[KN74] L. Kuipers and H. Niederreiter. Uniform distribution of sequences.

Wiley-Interscience [John Wiley & Sons], New York-London-Sydney,

1974. Pure and Applied Mathematics.

[Kru75] S. N. Kružkov. Generalized solutions of Hamilton-Jacobi equations of

eikonal type. I. Mat. Sb. (N.S.), 98(140):450–493, 1975.

[LR06] B. Lincoln and A. Rantzer. Relaxing dynamic programming. IEEE

Trans. Auto. Ctrl., 51(8):1249 –1260, 2006.

[MCF] http://www.mathworks.com/matlabcentral/fileexchange/.

[Nie92] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo

Methods. Society for Industrial and Applied Mathematics, 1992.

[Pon87] L. S. Pontryagin. Mathematical Theory of Optimal Processes. Classics

of Soviet Mathematics. Taylor & Francis, 1987.

[RZS09] J. P. Rincón-Zapatero and M. S. Santos. Differentiability of the

value function without interiority assumptions. J. Econom. Theory,

144(5):1948–1964, 2009.

[Sch95] R. Schaback. Creating surfaces from scattered data using radial basis

functions. In in Mathematical Methods for Curves and Surfaces, pages

477–496. University Press, 1995.

[She68] D. Shepard. A two-dimensional interpolation function for irregularly-

spaced data. In Proc. 23rd ACM, pages 517–524. ACM, 1968.

[Son98] E. D. Sontag. Mathematical Control Theory: Deterministic Finite

Dimensional Systems. Springer, 1998.

[SW00a] R. Schaback and H. Wendland. Adaptive greedy techniques for

approximate solution of large rbf systems. Numerical Algorithms,

24(3):239–254, 2000.

103

http://www.mathworks.com/matlabcentral/fileexchange/

Bibliography

[SW00b] R. Schaback and H. Wendland. Numerical techniques based on radial

basis functions. Technical report, DTIC Document, 2000.

[Vel97] V. M. Veliov. Lipschitz continuity of the value function in optimal

control. J. Optim. Theory Appl., 94(2):335–363, 1997.

[Wen95] H. Wendland. Piecewise polynomial, positive definite and compactly

supported radial functions of minimal degree. Adv. Comp. Math.,

4:389–396, 1995.

[Wen04] H. Wendland. Scattered Data Approximation. Cambridge Monographs

on Applied and Computational Mathematics. Cambridge University

Press, 2004.

104

	Introduction
	Preliminaries
	Discrete-time control systems
	Dynamic programming
	Continuous-time control systems
	Radial basis functions

	The Shepard discretization of the optimality principle
	Discretization of the optimality principle
	Stationary vs. non-stationary approximation
	Convergence for decreasing fill distance with discounting
	Implications of (non-)discounting for dynamic programming
	Convergence for decreasing fill distance with the Kružkov transform
	Construction of a stabilizing feedback
	Summary and outlook

	Implementation and numerical examples
	Implementation
	Example: A simple 1D example
	Example: Shortest path with obstacles
	Example: An inverted pendulum on a cart
	Example: Magnetic wheel
	Dependence on the shape parameter
	Dependence on the set of centres
	Dependence on the shape function

	Adaptive choice of the centres
	Adaptive construction of the centres
	Convergence of the algorithm
	Implementation
	Numerical examples
	A 1D example with non-smooth solution
	A basic growth model with explicit solution
	An inverted pendulum on a cart
	An office robot

	Shepard value iteration and stochastic shortest path problems
	Shortest path problems and Dijkstra's algorithm
	Stochastic shortest path problems
	A Dijkstra-like algorithm for stochastic shortest path problems
	Application on continuous-time control systems

	Regularity of the value function without discounting
	Lipschitz continuity of the value function
	Nondifferentiability of the value function

	Bibliography

