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Abstract—An important topic situated in the emerging re-
search field of Cooperative Intelligent Transport Systems (C-
ITS) addresses the mutual interconnection between vehicles,
mobile devices and the traffic and transport infrastructure
in an ever-changing environment. Originating from completely
different application areas, most services and functions offered
by these traditionally closed and heterogeneous systems have been
developed independently from each other. Hence, considering
the vision of realizing cooperative behavior by out-of-the-box
seamless integration makes it inevitable to re-design the overall
cross-system collaboration. One possible conceptual solution for
integration may be found in the overall system’s adaptation
to Hardware/Software Plug-and-Play properties. In our case,
device independent provision and dynamic reconfiguration of
functionality at run-time (applying self-* capabilities) will be
the concrete usage scenario for demonstrating this concept.
Therefore, a flexible integration architecture based on universally
applicable Electronic Control Units (ECUs) is needed to assure
the feasibility of software components on the above mentioned
affected heterogeneous devices. In this paper, a new approach on
implementing and testing of such an architecture will be outlined.
Plug-and-Play functionality shall be provided by a homogeneous,
virtualized software-platform (L4 microkernel-based hypervisor)
for heterogeneous hardware devices. Due to virtualization, former
fixed hardware/software-bindings will vanish and give way to
a flexible management of separated container, each providing
secure access to software-based functionality. The hereby enabled
context-sensitive reaction behaviour (e.g. en-/disabling, migrating
or upgrading/updating of software-based functions) will have to
be tested in a virtual field test environment to ensure the retention
of the required automotive degree of safety and reliability.

I. INTRODUCTION

Within the foreseeable future, the current trend of steadily
advancing intermodal mobility will push existing traffic and
transport systems to the limits of capacity. Despite generally
declining accident figures, serious accidents causing plenty
of casualties and fatalities still remain a constant problem
[1]. Accompaniments like traffic jams and traffic disturbances
annually generate an enormous economic loss, averaging out at
250 million per day in Germany alone. Moreover, congestion
caused fuel consumption of about 33 million liters per day
leads to an additional and particularly senseless environmental
impact [2]. Therefore, the introduction and establishment of
intelligent traffic and transport systems is intended to improve
road traffic as a whole by increasing overall safety, efficiency
and environmental friendliness.

Hitherto approaches addressing this problem area have
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been traditionally separated into two independent domains:
the car itself on the one and its respective environment on
the other hand. Hereby, increasing in-car intelligence over
the years has strongly concentrated on continuous technical
improvement to exculpate the driver from driving-related tasks,
starting from Computer-Assisted, over Highly-Automated to
the final state of Autonomous Driving. In contrast, with the
help of advanced applications, Intelligent Transport Systems
(ITS) target on yielding global intelligent behavior into the
overall system environment. Based on a centralized analysis,
processing and smart combination of different heterogeneous
and mostly isolated information sources from alongside the
road infrastructure at run-time, e.g. originating from video
surveillance systems, roadside weather sensors or provided by
vehicles via floating car data (FCD), it supports the vision
of a global intelligent and up-to-date navigation and routing.
Irrespective of this, in the meantime a third column, originating
from an entire different sector - the area of Information
and Communication Technology (ICT) - is about to establish
itself in the area of traffic and transportation. The increasing
proliferation of smart mobile devices (e.g. smartphones or
tablets) slowly introduces a novel, pervasive, low-cost and
still solid platform, providing sufficient support for sensing,
communication and entertainment.

Nevertheless, the current type of interplay between the
above mentioned participants still lacks the possibility of
working together ad-hoc and directly in a cooperative way
- a prerequisite for effective real-time communication, co-
ercively required in highly dynamic environments like the
transportation landscape. Consolidated by the term “Smart
Mobility” [3], the current trend of mutually interconnecting
vehicles, road infrastructure and mobile devices tries to unify
the former independently developed approaches under the
enhanced definition of Cooperative Intelligent Transportation
Systems (C-ITS). C-ITS, a sub-category of existing ITS ser-
vices, tries to overcome these drawbacks by fostering lo-
cal and decentralized vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) interchange via dedicated short-range
communication technologies (e.g. IEEE 802.11p). Therefore,
the mutual interconnection between different participating road
users as well as responsible road authorities will extend the
former solely concentrated processing of namely distributed
but still isolated data silos. However, in the future this will
lead to higher pretense regarding the ability of cooperative
collaboration among the participating services and functions.
Unfortunately, by the majority, C-ITS clients utilize tradi-



tionally closed systems, developed independently from each
other and running on heterogeneous hardware devices. Due to
these diverging evolutionary histories and application domains
a system-inherent incompatibility exists, which naturally pro-
hibits a simple out-of-the-box seamless integration. Therefore,
for realizing the vision of an effective cooperative behavior it
is inevitable to re-design the overall cross-system collaboration
capabilities.

Hence, a flexible integration architecture based on univer-
sally applicable ECUs is needed to provide a homogeneous and
common run-time environment which assures the feasibility
of software components on previously mentioned affected
heterogeneous devices (Figure 1). This approach will allow
for the overall system’s adaptation to Hardware/Software Plug-
and-Play properties and thus lay the foundation for device
independent provision as well as dynamic reconfiguration of
functionality (e.g. migrating SW components between different
ECUs) at run-time.
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Fig. 1: KIA4SM vision - homogeneous platform for heteroge-
neous devices

II. FOUNDATION

The proposed restructuring will affect the participating de-
vice categories (vehicles, mobile devices, traffic and transport
architecture) to a varying degree. In particular, the projection
poses a challenge to the existing type of in-car architecture.
Compared to the fast change cycles prevailing in the sector
of ICT or ITS-related fields, the automotive domain is still
subject to a rather long-lasting and inflexible development
life-cycle process, prohibiting quick reaction/response times to
upcoming trends. The current automotive engineering practices
reflect this problem by more or less sticking to the principle
of designing a dedicated ECU per new (software-based) func-
tionality. This results in a strong hardware-/software-binding,
which complicates subsequent update or change of existing
functionality due to the lack of a consistent platform. But
with already up to 100 different microprocessors (tightly in-
terconnected with each other) [4] situated inside a modern car,
this practice will soon encounter its limits. A car’s restricted
package space in combination with the perpetual need to
further reduce weight and energy consumption leads to high
cost pressure in modern-day car manufacturing. In particular,
this affects the upcoming trend of electric cars, in which
the energy consumption of every single component has direct
impact on the car as a whole - and especially on a car’s range.

Therefore, hardware consolidation, originating from rather
traditional areas like professional server hosting or computing
centre operation, can be considered as a promising approach to
solving the structural problems mentioned above [5]. Tightly
coupled with virtualization, this trend will shift the focus
from the existing multitude of small and specialized hardware
devices to a manageable number of general-purpose ones.
Additionally, this trend will rise the overall hardware compat-
ibility between the in-car platform itself and its surrounding
environment (ICT, ITS), which is already used to utilizing less-
specific hardware. As a result, a reduced but dependable set
of powerful ECUs has to deal with an ever-increasing number
of software-based functionality. But in contrast to ICT and
ITS applications, in the majority automotive functions are in
a way safety critical and have to be clustered by different
safety integrity levels (ASIL) [6]. Hardware consolidation
hereby implicates new challenges regarding the partitioning
of these former strictly separated software components, which
are now intended to reside on the same ECUs. Regarding the
functional safety aspect, the resulting mixed-criticality system
still has to guarantee a strong isolation between the different
SW components.

A proven concept for solving these safety-related issues can
be found in microkernel-based paravirtualization, a technology
that is able to comparably combine software of different criti-
cality (e.g. non real-time and real-time aspects). An interesting
approach, known from the area of embedded systems, may
be found within the L4 family. The kernel itself acts as a
Type-1 Hypervisor, which allows for partitioning of different
software components via separated container, making them
work on user mode level. The example of PikeOS [7] shows a
commercially successful implementation, originating from the
field of avionics, an engineering discipline where even stricter
safety expectations than in the automotive domain exist.

As the virtualization technology already provides an ad-
equate and solid foundation for addressing safety-related as-
pects, the main part of our own research will build upon the
existing work and will lie its focus on the second field of
interest - flexibility. As already depicted in chapter 1, in the
context of KIA4SM the term flexiblity addresses the subject of
enabling Hardware/Software Plug-and-Play functionality based
on universally applicable ECUs. This goal can be decomposed
into two objectives:

1) A common platform as foundation for device in-
dependent (vehicles, mobile devices, traffic and
transport architecture) provision and execution of
software-based functionality.

2)  Mechanisms that allow for online dynamic reconfig-
uration, based on

a) en-/disabling and relocation/migration of
software-based functionality

b) adaptive (data-centric) routing policy

c) flexible scheduling of tasks per ECU

The foundation for device independent provision and ex-
ecution of functionality will be provided by the above men-
tioned L4 microkernel-based paravirtualization, which facili-
tates the required common run-time environment. For provid-
ing the additionally needed reliable context-sensitive reaction
behavior, which triggers an actual reconfiguration, in various



fields of software-intensive systems, the concept of self-* is
already considered as a promising approach. Among others,
suitable applications can be found in the areas of comput-
ing centres and robotics. Unfortunately, existing automotive
system architectures (e.g. AUTOSAR) are usually configured
statically at compile-time and therefore lack in opportunities
to dynamically change their behavior at run-time. Therefore,
a novel in-car platform, which is based on two pillars - a
common run-time environment and the principle of self-* -
will be required for keeping up the current standards regarding
safety and reliability by utilizing a certain degree of flexibility.

By finally mapping and expanding this approach to the
remaining C-ITS clients (mobile devices, traffic and transport
architecture), also the previously mentioned pretense of adapt-
ing the overall system to the aspired Plug-and-Play behavior
will become feasible. The common run-time environment acts
as a basis for the implementation of universally applicable
ECUs. Based on this, self-*-enhanced reconfiguration will then
handle the device independent provision and (inter)change of
functionality at run-time.

So, in this paper, a new approach on implementing and
testing of such a platform will be outlined. The proposed
joint basis for this ECU platform will rely on the previ-
ously mentioned L4-based microkernel, offering safety and
strong modularity by sticking to the principles of separation
by virtualization. A dynamic container-management, related
to hardware/software Plug and Play (PnP) functionality, can
provide (automotive) context-sensitive reaction behavior. This
especially affects well known concepts, like en-/disabling, re-
locating/migrating, upgrading and updating of software-based
functions, which originate from existing desktop operating sys-
tems. By adapting these concepts to the context of distributed
embedded systems, the dynamic interaction and cooperation of
affected components will have to be tested in a virtual field test
environment to ensure the retention of the required automotive
degree of safety and reliability.

The remainder of the paper is organized as follows. Sec-
tion III presents related work concerning the topics platform,
self-* behaviour and existing virtual field testing approaches
with regard to the automotive environment. In section IV the
applied methods used to design the novel platform will be
discussed. In section V, the logical view on the proposed novel
in-car ECU platform will be outlined by showing the overall
architecture. In section VI, the proposed self-* approach will
be outlined in detail, providing information about the overall
reconfiguration process and required platform-related adapta-
tions. Section VII provides further details regarding the overall
hybrid simulator test setup. The concluding section VIII finally
will give a short summary.

III. RELATED WORK

A comparable holistic approach of providing a flexible
integration architecture based on the principles of Plug-and-
Play by utilizing universally applicable ECUs has not yet been
set up in this form. Nevertheless, several research projects
originating from related subject areas have already addressed
relevant aspects and therefore can provide useful preliminary
work.

A. Platform

Based on well-established concepts applied in domains
like avionics and automation, within the RACE (Robust and
Reliable System Architecture for Future eCars) project [8] a
centralised automotive ECU-platform has been developed. The
platform offers a generic safety-critical runtime-environment
which allows for the execution of mixed-critical functionality.
Comparable to KIA4SM, the architecture has to support the
combination of safety (fail-operational behaviour) and flexibil-
ity (flexible assignment of software-based functions to ECUs).
Sensors and actuators are encapsulated within so-called smart
aggregates and therefore decoupled from the actual computing
nodes. Communication is realised via middleware-based RTE,
applying a data-centric approach and guaranteeing determin-
istic behaviour. However, RACE solely concentrates on the
vehicular ICT architecture, excluding the C-ITS environment.
By utilizing middleware-based Plug-and-Play mechanisms [9],
new components and functions may be added at a later point
in time. Unfortunately, no information concerning the point in
time of an actual reconfiguration (parking vs. driving state of
the vehicle) is provided. As the underlying operating system
(based on PikeOS separation kernel) utilizes a static/fixed
scheduling approach, it is therefore arguable to which extent
the overall system can be reconfigured dynamically. Because
of the cyclic execution fashion of applications it seems con-
ceivable that relocation/migration of software components is
restricted to within a single RTE partition [8].

Within the project Adaptive City Mobility (ACM), the sub-
project Software Defined Car develops an open and flexi-
ble ICT-architecture allowing for a future multimodal usage
of small electrical vehicles. Based as well on the concepts
of hardware consolidation and virtualisation, in contrast to
KIA4SM a central electronic control unit (CECU) is intended
to facilitate the parallel execution of mixed-critical function-
ality. Therefore, the platform itself is sub-divided into three
strictly isolated partitions, reflecting the different types of
stakeholders: a protected manufacturer partition executing real-
time driving-related functions, an operator partition which is
open for app installations as well as a user partition concerning
interactions with a mobile device. In contrast to KIA4SM,
execution of software-based functionality is not provided by
the hypervisor itself but is taken over by a separate operating
system (FreeRTOS for real-time applications, Android for
Infotainment) [10] which is acting as intermediary inside an
isolated partition. Reconfiguration therefore only affects the
application level. To all appearances, relocation/migration of
software-based functionality at run-time is excluded due to the
fact that a closed environment with all possible interferences
known at design time is expected [10]. Comparable to RACE,
the project solely concentrates on the vehicular ICT architec-
ture, excluding the C-ITS environment.

The project SafeAdapt (Safe Adaptive Software for Fully
Electric Vehicles) [11] deals with the development of a
novel and reconfigurable electric/electronic (E/E) architec-
ture in order to manage the complexity when addressing
the need for safety, reliability and cost efficiency in future
Fully Electrical Vehicles (FEVs). In contrast to KIA4SM,
the approach therefore will extend the existing AUTOSAR
concept, by introducing a so-called SafeAdapt Platform Core
which encapsulates the basic adaptation mechanisms needed



for relocating and updating software-based functionalities. By
applying hardware consolidation, the number of ECUs shall
be reduced and multiple functions have to be combined onto
generic platforms. Safety and availability shall be increased
by relocating applications between ECUs in case of failure.
Furthermore, SafeAdapt seeks to abolish mechanical fall-back
solutions and therefore fosters the achievement of fault toler-
ance (fail-operational as well as fail-safe states) by providing
software-based redundancy via automatic context-switching to
a redundantly operated function on a different ECU [11].
Nevertheless, in contrast to KIA4SM, reconfiguration based
on the migration of software-based functionality during run-
time won’t be addressed. By addressing the overall design
methodology (methods, tools, building blocks) including the
certification of individual components (regarding the automo-
tive ISO 26262 standard), SafeAdapt additionally focuses on a
rather holistic development approach which exceeds the scope
of KIA4SM. But comparable to RACE, the project solely
concentrates on the vehicular ICT architecture, excluding the
C-ITS environment.

B. Behaviour

The project DynaSoft (Dynamic, self-organizing software
systems) [12] wants to develop new design processes for future
dynamic and self-organizing automotive software systems, in
order to increase redundancy and reliability inside a vehicle
by likewise simplifying the replacement of and improving the
ability to retrofit components through dynamic allocation of
software to ECUs according to the driving situation. In contrast
to KIA4SM, DynaSoft therefore sticks to a model-based design
approach, utilizing the EAST-ADL?2 architecture description
language and virtual prototyping based on SystemC descrip-
tion and modeling language. Like DynaSoft, the DySCAS
(Dynamically Self-Configuring Automotive Systems) project
as well focused on dynamic reconfiguration of automotive
software systems [13]. Besides the intra-vehicular architecture,
the project additionally addressed the management of sporadic
system resources, e.g. a user’s mobile device. In contrast to
KIA4SM, the main focus on reconfiguration/self-configuration
of software tasks lies on the middleware level [14].

C. Test

X-in-the-Loop (XiL) simulation describes a technique that
is used throughout several engineering disciplines (e.g. auto-
motive, avionic) during development and test of complex real-
time embedded systems. Affecting the fields of automotive
engineering, in particular Hardware-in-the-Loop (HiL) and
Vehicle-in-the-Loop (ViL) are promising realizations. Regard-
ing HiL, new functionality, implemented on a real hardware
device (e.g. ECU) will be tested in detail, against a simulated,
mostly software-based version of an overall (plant) system
(e.g. car), in which it will operate from later on. ViL instead
combines the advantages of a real (test) vehicle with safety
and reproducibility aspects of a driving simulation.

VIRES Virtual Test Drive (VID) [15], [16] provides a
complete toolchain for real-time driving simulation applica-
tions by utilizing a four-step-based iterative Xil-approach,
considering the aspects software/model, driver, vehicle and
hardware. Key aspect is the assessment of advanced driver
assistance systems (ADAS) and active safety systems. Besides

traffic and scenario simulation, VIRES VTD provides a solid
base for simulating different types of required sensors inside
a virtual 3D environment (e.g. ray-tracing based laserscanner).
A similar physics-based simulation platform, concentrating
on ADAS and active safety, can be found in TASS PreS-
can [17]. In addition to VIRES VTD it also addresses the
design and evaluation of V2V and V2I communication as
well as autonomous driving applications. Unfortunately, for
both products there is no information stating to what extent a
complete vehicle finally can be included into the simulation
itself. The OpenDS driving simulator [18] lays its focus on
realistic vehicle, engine and environment physics and allows
for an integration of real car steering controls (via CAN-bus).
An exemplary test-bed implementation, taking special care on
safely diagnosing and updating an ECU remotely and at run-
time, is offered by Boczar et.al. [19]. Vehicle control/steering
signals are sent from a computer-based open-source racing-
car simulator (TORCS) to the underlying ECU network. After
interpretation by corresponding ECUs, relevant information
for actuating elements is sent back to the simulator and the
resulting behaviour can be visualized in real-time.

IV. APPLIED METHODS

In order to achieve the required context-sensitive reaction
behaviour, different methods have to be applied for introducing
and supporting self-* properties on software as well as on
hardware level.

A. Organic Computing

The Organic Computing (OC) paradigm addresses the
challenges of complex distributed systems by enriching them
with life-like (organic) behaviour, resulting in the applica-
tion of self-* capabilities (e.g. self-organization and self-
configuration). Instead of having to predefine a system’s be-
haviour to all possible occuring situations at design-time, the
system will be endowed with a certain degree of freedom
allowing for an intelligent way of reaction to unknown sit-
uations during run-time [20]. For adaptation purposes, the OC
approach proposes a generic observer-controller architecture,
designed in dependence on the MAPE (monitor, analyze,
plan, execute) cycle, which originates from the concept of
Autonomic Computing developed by IBM [21]. The observer
has to collect data from the system and out of this computes in-
dicators, which characterize the global state and the dynamics
of the system. The controller has to compare these indicators
with goals defined previously by the user and decides if
reaction is required at all and what action has to be taken.
Combined with the underyling system under observation and
control (SuOC) an organic system can be formed (Figure 2,
left side).

In the case of KIA4SM, the OC principle may easily be
mapped onto the proposed L4 microkernel-based architecture,
which will make up the common run-time environment (Figure
2, right side). Both observer and controller are intended
to be implemented into independent and therefore isolated
software partitions (L4 tasks). Together with the remaining
software components running on the user level, microkernel
and hardware base will form the SuOC. By separating the
OC-related part from the rest of the system, the premise
that an organic system has to stay responsive and stable can



be guaranteed even if observer and controller stop working
[20]. Moreover, KIA4SM applies a decentral OC approach,
which means an observer/controller running on each univer-
sally applicable ECU. A comparable concept to KIA4SM,
also following the microkernel principles, can be found in the
CAROS (Connective Autonomic Realtime Operating System)
approach [22]. But unlike in KIA4SM, the proposed Organic
Manager itself is not part of the Operating System.

V. ARCHITECTURE

The proposed KIA4SM architecture concept is depicted
in Figure 3. It is driven by the idea of likewise combining
virtuality and reality by allowing the execution of the pro-
posed OC-enhanced operating system on physical as well as
virtual components. The architecture itself therefore can be
decomposed into three layers.
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B. Mesh Networking

Besides software-based reconfiguration, to a certain extent
KIA4SM shall also support self-adaptation on hardware level.
To allow for flexible re-routing in case of hardware failures
(ECU drop out, cable outage) or purposive physical removal
of components (e.g. switch off/disconnect a smartphone), the
physical communication infrastructure will rely on a mesh-
based networking topology - applied both inside and outside
a vehicle. Outside the vehicle, wireless mesh networks have
already sufficiently proven their capability in the context of
mobile ad hoc networks (MANET) and vehicular ad hoc
networks (VANET) [23]. Inside the vehicle, KIA4SM proposes
a mapping of existing proven routing concepts originating from
the wireless mesh background on their wired mesh counterpart,
by relying on Ethernet. But concerning existing automotive
(hard) real-time requirements regarding timing-related aspects,
an industrial Real-Time (RT) Ethernet standard has to be
applied [24]. Although relatively new, Ethernet-based mesh
networking is already addressed in enterprise networks and
data centres [25] via IEEE 802.1aq Shortest Path Bridging
(SPB) [26] and IETF Transparent Interconnection of Lots of
Links (TRILL) [27].

C. Data Centric Communication

In order to support reconfiguration on the logical com-
munication level as well, KIA4SM will follow a data-centric
approach. Data suppliers/consumers (sensors and actuators)
are thereby decoupled from the actual processing components
(applications) residing on respective ECUs. Therefore, data is
not directly delivered from sender to receiver. Instead, follow-
ing the Publish/Subscribe paradigm, a sender provides data
to which a receiver can easily register [28]. By applying this
concept to KIA4SM, components will be enabled to uphold
data exchange and communication after relocation/migration
of software-based functionality between different ECUs or
a change of the underlying network topology [29]. Existing
real world working examples successfully relying on this type
of communication can for example be found in the area of
wireless sensor networks [30], [31].

Fig. 3: KIA4SM overall architecture

A. Physical layer

The lowest layer will be made up of the physical compo-
nents, required for the execution of the homogeneous software
platform. It can be decomposed in the categories networking,
processing hardware and sensing/actuating components. As
described in Section IV-B, physical communication will rely
on an Ethernet-based mesh network. On the virtual side, this
task will be taken over by ns-3, a discrete-event network
simulator [32]. As an underlying processing hardware, both
x86- and ARM-based processor architecture will be utilized.
Their virtual counterparts will be provided via emulation
technology, by applying QEMU, a generic and open source
machine emulator [33]. Relevant data can be provided by
physical sensors and actuators (e.g. radar or lidar sensors) as
well as on a virtual base via sensor simulation (see Section
11-C).

B. Logical layer

The medium layer will consist of the OC-enhanced oper-
ating system presented in Section IV-A, which will act as the
common run-time environment. As already explained before,
it will be executable both on physical and virtual hardware.
Further details on the platform composition and relevant OC-
related enhancements will be provided in Section VI.

C. Environmental layer

The environmental layer will provide a simulated driving
environment, thereby trying to reflect most relevant aspects
of the physical world. In KIA4SM, driving-related environ-
ment will consist of three different frameworks, which will
be combined via a simulator coupling approach [34]. First
of all, road traffic simulation tools (e.g. SUMO [35]) will
provide a realistic model of intermodal traffic participants,
including road vehicles, public transport and pedestrians. For
realizing decentralized V2V and V2I communication between
the different road users, an existing VANET simulator will be
utilized (Veins/OMNeT++) [36]. Finally, a simulated physical
representation as well as a graphical 3D visualization of the
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participants will be provided by an open-source racing car
simulator [37]. This simulated physical environment will at the
same time serve as a container for proposed sensor simulation.

VI. APPROACH

As proposed in Section IV, for introducing flexibility
in a previously static system environment, several enhance-
ments/adaptations have to be conducted. Therefore, at first a
general abstract system reconfiguration process will be defined
(Section VI-A). Afterwards, the necessary specific platform-
related adaptations that have to be undertaken will be depicted.
As a starting point, the vehicular ECU network architecture
will be chosen. It comprises all relevant physical components
(hardware, network, sensors/actuators) in a predefined (at least
at the beginning) closed system environment. Later on, the
concept will be expanded and therefore the remaining ICT
and ITS devices will be included by breaking down existing
vehicular system boundaries.

A. Phase I: Two-stage OC workflow

The proposed two-stage process can be seen in Figure
4. Two-stage thereby means that the overall reconfiguration
process will be decomposed firstly into a safety-related and
secondly into an efficiency-related component. The impulse for
a potentially required adaptation of the system can be triggered
by system external or internal events (Figure 4, upper layer)
which will affect a particular (initial) system state. During the
observer phase (orange phase), the need for context-sensitive-
reaction behaviour will be investigated. If a need for adaptation
is identified, the first controller phase (green phase) will check
for a potentially required application of adequate reconfigu-
ration mechanisms (e.g. relocation/migration of functionality)
in order to guarantee resilience. This method can be seen
as a type of software-based redundancy. This will lead to a

new safe but not coercively optimized system state which will
be processed to and executed by the SuOC (yellow phase).
Therefore, afterwards two different optimization scenarios -
either load balancing or energy saving - can be applied to
improve the overall system’s efficiency (green phase). This
will lead as well to a new but this time safe and optimized
system state (yellow phase) which from there on can be seen
as the system’s new valid (initial) system state (simultaneously
closing and restarting the feedback loop).

B. Phase II: Transformation to OC-enhanced microkernel

The application of the proposed two-stage process from
section VI-A onto the actual microkernel-based architecture
demands modifications on the same. Therefore, the over-
all Observer/Controller pattern is subdivided into four sub-
components, representing the MAPE cycle (see section IV-A)
already known from Autonomic Computing. The interplay
between and the composition of the components can be seen
in figure 5 (green block, medium and lower image). A central
monitoring module (orange) gathers relevant data from the
local underlying system. It represents the observer aspect of
the organic system. The combination of local and relevant
global data (delivered via the intra-vehicular network and
monitored by other ECUs inside the distributed system) then
is to be forwarded to the analysis (pink) and planning/learning
(brown) modules, which together make up the controller part.
Afterwards, the decisions made will be communicated back to
the SuOC.

The most complicated aspect will be the derivation of an
efficient online planning/learning methodology and therefore
the main focus will concentrate on this subject. We propose a
combination of both offline and online based machine learning
techniques (Figure 5, orange and green boxes). The underlying
problem to be solved can be described as the mapping of
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tasks to machines regarding the attributes space and time,
meaning at first a matching of tasks to eligible processors/cores
and afterwards calculating a valid schedule. This problem can
be described as multi-objective optimization problem, often
depicted in literature by multiprocessor scheduling or task
allocation in distributed systems [38].

As a starting point, an offline-based design space explo-
ration (DSE) toolchain (orange box) will be utilized to calcu-
late possible and impossible task-to-processor/core combina-
tions, each leading to schedulable or non-schedulable system
configurations. A such potentially suitable toolchain may be
provided by AutoFocus [39], [40]. At first, an adequate model
of an ECU system and network has to be defined. Addtionally,
some kind of self-description of the to-be-mapped software
components (e.g. required system resouces, deadlines) as well
as of the available hardware (e.g. processor, memory) is
required in order to compute respective mappings. Resulting
valid and invalid computed combinations will have to be saved
in a database. Main research will now focus on the detection
of suitable patterns, which can help in identifying correlations
between valid and invalid combinations by analyzing their
corresponding transitions. Therefore, offline machine learning
(pattern recognition) algorithms will have to be applied.

As next step, a valid deployment configuration can be
applied as an initial system state (Figure 5, upper box). Gen-
erated information (resulting out of the offline analysis phase)
will additionally serve as knowledge base for the focused
online learning capability, which has to be fulfilled by the
OC-enhanced operating system (medium box). This will lay
the foundation for deciding where to relocate/migrate software
components in case of a required reconfiguration.

In order to expose the system to relevant events, potentially
triggering a need for reconfiguration (as described in section

VI-A), it will be connected to a simulator coupling set-up (see
section V-C) that provides a useful environment for ongoing
learning through generating sufficient data out of different
driving-related scenarios (Figure 5, blue block).

VII. TESTBED

The operation of field tests is usually an expensive, time
and resource consuming effort. However, an entire car can be
tested under realistic conditions and particularly in cooperation
with additional vehicles. But, thereby only a limited set of
potential scenarios can be realized, mostly ignoring possibly
hazardous situations. Existing XiLL approaches and virtual test
drive setups instead are executed in a rather static (virtual)
environment, providing the ability for safely testing of even
dangerous scenarios (see Section III-C). Unfortunately, they
are usually limited to a specific subset of a vehicle’s entire
functionality, and therefore lack in opportunities for testing
the big picture. Pure software-based simulation would offer
the highest flexibility concerning potential testing scenarios,
but is limited to the borders a simulation inevitably implicates.
Therefore, the idea of likewise combining the advantages of
both virtuality and reality, by placing an entire physical car
together with its virtual counterparts into the same simulation,
sounds very promising.

The underlying testing platform will rely on the concept of
an ECU network, representing a (future) vehicle’s electronic
architecture. A physical implementation thereof will be placed
on a 1/5 scale model RC car. Its virtual counterparts will
consist of a simulated network of emulated hardware instances,
running distributed on a high-performance server (see Figure
6). Each of the interlinked ECUs (both physical and virtual)
will thereby represent an instance of the OC-enhanced operat-
ing system, presented in section IV-A. Hence, the same type of
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Fig. 6: KIA4SM testbed: hybrid simulator combination of
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software can be executed both on real and emulated hardware.

Both platform types will be connected to the proposed
simulator coupling environment (see Section V-C), in order to
imitate a realistic testing environment, which will be capable
of executing different kinds of dynamic driving scenarios.
Relevant information, concerning vehicle-typical actuating el-
ements, will be sent to the simulator and the calculated driving
behavior can be visualized in real-time (both on simulator and
on model car). Therefore, data originating from real sensors
(plugged to a physical ECU) as well as from virtual sensors
(integrated in the racing-car simulator) shall be assimilated
similarly. As the same in-car platform is running on both
physical and virtual ECUs, also the testing of a hybrid vehicle,
combining instances of both worlds, seems to be conceivable.
Software will be able to run solely based on real ECUs,
solely based on virtual ECUs or even on a mixed set of both
components.

VIII. CONCLUSION

The anticipated result should exhibit that the currently
existing system boundaries of each particpiant can be broken
down by applying the novel integration architecture and there-
fore will be replaced by a cooperative, holistic and scalable
system concept. The aspired cooperative collaboration will
be based on the general ability of exchanging functionality
between participating devices as needed. Particularly concern-
ing the vehicle, this flexible fallback on existing residual
capacities of the overall system could lay the foundations for
context-sensitive reaction behaviour, allowing for a dynamic
reconfiguration at run-time by at the same time keeping up
the required level of automotive safety and reliability.
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