

1

Gentle Coupling of

Pedestrian Behavior Model Implementations:

a Pedestrian Simulator Interoperability Protocol
Peter M. Kielar1, Daniel H. Biedermann2 und Felix Dietrich3

1Chair of Computational Modeling and Simulation · Technische Universität München ·

Arcisstraße 21 · 80333 Munich · peter.kielar@tum.de
2Chair of Computational Modeling and Simulation · Technische Universität München ·

Arcisstraße 21 · 80333 Munich · daniel.biedermann@tum.de
3Chair of Scientific Computing in Computer and Science · Technische Universität München ·

Boltzmannstraße 3 · 85748 Garching · and · Department of Computer Science and Mathematics ·

Hochschule München · Lothstrasse 64 · 80335 Munich · felix.dietrich@tum.de

Zusammenfassung

Die Simulation von Fußgängerströmen ist eine moderne Methode um Fußgängerverhalten

computergestützt vorherzusagen. Die zeitgenössische Fußgängerforschung befasst sich fort-

laufend mit der Entwicklung von neuen und ausgeklügelten hybriden Fußgängerverhaltens-

modellen. Solche Modelle verbinden bestehende Fußgängerverhaltensmodelle in einem ein-

zelnen Konzept. Leider hat sich gezeigt, dass beim Koppeln dieser Modelle nicht nur die

Softwarearchitektur eines Personenstromsimulators zugeschnitten werden muss, was ein le-

gitimier Ansatz ist, sondern auch eine vermeidbare Veränderung der Implementierung der

Fußgängerverhaltensmodelle durchgeführt werden muss. Hier zeigen wir, dass unser entwi-

ckeltes Interoperabilitätsprotokoll es Forschern ermöglicht hybride Modelle in einem Fuß-

gängersimulator zu integrieren ohne die originalen Implementierungen der Fußgängerverhal-

tensmodelle anzupassen.

Abstract

Pedestrian flow simulations are a modern method for computationally predicting pedestrian

behavior. In contemporary research, the development of new and sophisticated hybrid pedes-

trian behavior models is ongoing. These models couple other pedestrian behavior models into

a single concept. However, it was shown that a coupling of different models not only leads

to alterations of the simulator software architecture, which is a legit approach, but also en-

forces an avoidable change of the pedestrian behavior model implementations. Here we show

that our developed interoperability protocol enables researchers to integrate hybrid models

in a pedestrian simulator without changing original behavior model implementations.

1 Introduction

Pedestrian simulations are an approach to forecast pedestrian behavior. The results of simu-

lations help to assess threads to pedestrians beforehand in different environments. Pedestrian

simulations implement pedestrian models in a computer program. Therefore, a computer sci-

mailto:peter.kielar@tum.de
mailto:daniel.biedermann@tum.de
mailto:felix.dietrich@tum.de

Peter M. Kielar, Daniel H. Biedermann und Felix Dietrich

2

ence background is mandatory to create sophisticated pedestrian simulation systems. In ad-

dition to pedestrian models, such systems consist of different software modules which are

essential for running a pedestrian simulation, e.g., pedestrian handling modules, result writ-

ers, analysis algorithms, time step handler, and geometry modules.

We identified an additional component of pedestrian simulation systems that was no focused

in research yet. This is an interoperability module that enables multiple pedestrian behavioral

models to be smoothly coupled without changing the underlying model implementations.

Pedestrian model coupling is an emerging research topic in pedestrian dynamics that inherits

opportunities for improving pedestrian behavior forecasts by creating hybrid models. Despite

the work done regarding the theoretical aspects of model coupling, the computational in-

teroperability perspective is undeveloped. This results in inflexible pedestrian simulation ar-

chitectures and large software implementation expenses. Here we provide a new middleware

concept in form of an interoperability protocol for pedestrian model coupling that enables

researcher to couple pedestrian models with low effort. The main advantage is that the orig-

inal implementations of the coupled models stay unchanged. Therefore, the developed in-

teroperability protocol saves time and improves flexibility in hybrid model development. The

protocol enables to exchange pedestrian data on an arbitrary data channel. In general, the

exchange of data and commands message passing is outsourced to a protocol handler module.

The concept works for simulator networks as well as for models within a single simulator.

2 Related work and theoretical background

Pedestrian research regarding behavioral models received increasing attention in recent

years. Walking models predict small scale walking behavior of pedestrians. Typical examples

of such models are the social force model (HELBING ET AL. 2000), the gradient navigation

model (DIETRICH & KÖSTER 2014), and cellular automata concepts (BLUE & ADLER 2001).

Navigation models describe pedestrian routing behavior, thus a walking path adjoining a

route network is forecast (GERAERTS & OVERMAS 2007; KNEIDL 2013). Strategical models

predict the location the tactical model should find a route to (KIELAR ET AL. 2014). In con-

temporary research, new hybrid approaches are developed. It was shown that the coupling of

existing models can improve the overall flexibility and feasibility of pedestrian simulations.

The hybrid concept of KNEIDL ET AL. (2013), CHOORAMUN ET AL. (2013), and BIEDERMANN

ET AL. (2014) are representative examples for hybrid models.

The rise of hybrid models creates new challenges for pedestrian dynamics researcher. The

coupling of models does not only demands to define a conceptual coupling, but also creates

computational interoperability requirements. Surprisingly, the software architecture related

research of hybrid models is not approached in pedestrian dynamics. Architectural pedestrian

simulator concepts exist (CURTIS ET AL. 2014; TOLL ET AL. 2015), but interoperability is not

in focus. Hence, available pedestrian simulation architectures do not cover computational

interoperability between arbitrary models in detail. We found modern approaches for simu-

lation and model interoperability in work published regarding general simulation software

architectures (DAHMANN ET AL. 2014) and simulation middleware concepts (AL-ZOUBI ET

AL. 2011). Hence, we use state of the art computer science background as guideline for cre-

ating the interoperability protocol for pedestrian simulators. Additionally, modern ap-

proaches for coupling software modules by using process and protocol based methods

(HOLZMANN 1991; SHETH 1999) are appropriately taken into consideration. For modelling

Gentle Coupling of Pedestrian Behavior Model Implementations

3

the protocol, we utilized well-established software modelling methods (HAREL 1987;

RUMBAUGH 2004) and crafted an interoperability protocol for pedestrian models and simu-

lators based on our fundamental knowledge regarding pedestrian model implementations.

3 Pedestrian interoperability protocol modelling

The interoperability protocol is similar to other packages and modules of a pedestrian simu-

lator. Therefore, we describe how the protocol handler module fits to generic pedestrian sim-

ulator architectures and provides details of the protocol processes and data exchange con-

cepts.

3.1 Pedestrian simulator integration

The protocol is a module implementable to pedestrian multi-simulator environments as well

as inner pedestrian simulator environments. Therefore, an instance of the protocol handler

can be either paired with a model in a simulator or a simulator in a simulator network. For

both cases, an instance of the protocol handler in the system is defined as controller, and the

other instances are labeled as clients. The user defines the components by configuration. In a

system implementing the protocol, the clients exclusively exchange commands and data via

the data channel; thus as long as the channel can carry the data transport burden, an arbitrary

number of clients can be integrated. The system comprises configurations, locks, shared data,

and simulation outputs. The locks are used for synchronizing and scheduling the clients’ ex-

ecution processes and the configurations provide initial information. The shared data con-

tainer stores results created by the models temporarily. The simulation results contain the

simulation output data of a model. We provide the top-down view on the protocol client and

host structure in Figure 1 for one host and two clients. For clarification, the dashed arcs define

the command flow between the components; the solid arcs model the simulation data flow.

Fig. 1:

The top-down model

description of a ge-

neric simulation sys-

tem implementing

the interoperability

protocol. The system

may be in a single

simulator or a net-

work system; thus

the Model / Engine

labels may swap.

3.2 Interoperability protocol

The steps each protocol handler has to execute during start-up, execution, and shut-down

process are defined in this Section. At the beginning of the start-up process, the controller

reads the configuration and gets access to the client control-schedule. The schedule is defined

as given in in Table 1. The clients’ protocol handler should be initialized with a configuration

consisting only of the entity block, which describes the client’s own properties. It is important

Controller

Simulation
Model /
Engine

Protocol
Handler

Client

Memory:
Simulation Data

Simulation
Model / Engine

Protocol Handler

Lock
Exchange

ChannelLock

Shared Data

Read /
 Write

Read /
 Write

Start /
Stop

Results

Write

Controller Config.

Read / Write

Read / Write

Read

Client

Memory:
Simulation Data

Simulation
Model / Engine

Protocol Handler

Read /
 Write

Read /
 Write

Results

Write

Start /
Stop

Read / Write

Client Config.

Read

Client Config.

Read

Peter M. Kielar, Daniel H. Biedermann und Felix Dietrich

4

to note that clients in the same parallel section do not have to have the same cycle runtime.

In general, the multiplicity of client calls is only dependent on the configuration. Thus com-

plex runtime systems can be crafted using this definition.

Table 1: Building blocks of the client control-schedule stored in the controller configu-

ration in the extended Backus-Naur Form. Client configuration contains an en-

tity element indication the clients own configuration only.

Schedule ≔ Structure

entity ≔ “(” “shared : id” “_” “lock : id” “_” “cycles : integer” “_” “end : integer “)” ;

parallel ≔ [parallel] | entity ;

sequence ≔ “{” [sequence] | parallel “}” ;

Figure 2 provides a state-chart diagram of the start-up and shut-down process of the protocol.

Each protocol handler executes the process right at start-up. The execution procedure for the

controller and the clients are presented as state-charts in Figure 3 and Figure 4. The controller

process is in charge of handling the schedule; thus the execution of models by sequencing

client processes. Both components check if the simulation has ended by tracking the simula-

tion steps internally. Clients are in charge of handling the shared data and running a simula-

tion cycle each time the controller allows execution, which is indicated by an existing lock.

Fig. 2:

The start-up and

shut-down process

for a protocol han-

dler. The client and

controller main pro-

cesses are modelled

as black boxes here.

Fig. 3:

The controller’s

main execution pro-

cess. This process is

embedded in the

“run controller pro-

cess” of the start-up

and shut-down state

chart

read configuration
simulator model /

 engine starting

contains

schedule?
read entitiy data

no
read schedule data

yes

write locks for all

clients read lock

no

run client process

lock

found?

yes

run controller process

read lock

no

lock

found?

stop simulator model /

engine execution

delete lock

yes

delete lock

locks

found?

no

yes

read all lock

select next sequence

from

start-up

no
restart schedule

next

exists?

select next parallel

yes

yes

next

exists?

no

select next entity

next

found?

no

entity

ended?

all entities

ended?

yes

no

write entity’s lock

no

read entity’s lock

no

lock

found?

yes

yes

write entity‘s lock

lock

found?

yes

read entity’s lock

no

yes

Gentle Coupling of Pedestrian Behavior Model Implementations

5

Fig. 4:

The client’s main execution

process. This process is embed-

ded in the “run client process”

of the start-up and shut-down

state chart.

3.3 Exchanged pedestrian data

The data exchanged between the pedestrian simulation models or engines depends on the

application. Thus, the hybrid model researchers have to define the exchangeable pedestrian

related data. Hence, a basic requirement for utilizing the interoperability protocol is that the

type definition can be translated to different simulation and model environments. A type table

is a static lookup table which is given as additional configuration to the protocol handlers.

The method for definition of a type table is given in Table 2. The lookup table enables the

handler to translate data stored in the shared data container to the local data environment of

the client. Zero entries indicate that a client cannot process the type and corresponding data.

Thus, multiple clients can interact with partial knowledge on the same shared data. Still, non-

obvious dependencies exist. Models or simulators running in parallel are executed in a se-

quence by the controller and are not allowed to change the same data sets entry. This

knowledge is hidden within the clients and the validity of the data exchange has to be ensured

within the hybrid pedestrian model concept.

Table 2: Building blocks of the pedestrian data lookup table stored in the protocol han-

dler configuration. Shared data receivers are identified by the lock ids.

Types lock : id 1 lock : id … lock : id n

“1 : type” ≔ “0” | “1” “0” | “1” “0” | “1”

“… : type” ≔ “0” | “1” “0” | “1” “0” | “1”

“m : type” ≔ “0” | “1” “0” | “1” “0” | “1”

3.4 Proof of concept

As proof of concept, we utilized the protocol on the coupling of the simulators MomenTum,

VADERE, and TransiTUM. TransiTUM (latin, “crossing”) is a software tool that was de-

veloped at the Technische Unveristät München. It is a generic framework, which enables the

multi-scale coupling of arbitrary pedestrian dynamics models (BIEDERMANN ET AL. 2014).

VADERE (latin, "to go") is a Java based simulation software developed at the Munich Uni-

versity of Applied Sciences. It is capable of specification, simulation, 2D- and 3D-visualiza-

tion, and analysis of microscopic models in pedestrian (e.g. DIETRICH & KÖSTER 2014) and

car dynamics. Operation is possible through a graphical user interface or a console. Momen-

Tum (latin, “movement force”) is a cellular automata based microscopic pedestrian simulator

integrating new concepts of pedestrian routing models developed at the Technische Unver-

istät München (KNEIDL 2013). The MomenTum software includes the 2D visualization and

analysis tool SiNewVis for assessing and evaluation of pedestrian movement simulation.

from

start-up
read lock

yes

lock

found?

no

read shared data

translate shared data

execute engine /

model for a cycle

translate shared datawrite shared data

is end?

no

delete lock
yes

Peter M. Kielar, Daniel H. Biedermann und Felix Dietrich

6

Each simulator is running in a single executable; thus a simulator network is given. We added

an additional component for taking the role of the controller. The component is referred to as

Demonstrator. We implemented our interoperability protocol using the file system as data

exchange channel for each component. Figure 5 provides the results of the successfully cou-

pling of MomenTum and VADERE via TransiTUM utilizing the interoperability protocol.

The configuration of the system is presented in Table 3 and the data exchange configuration

is shown in Table 4.

Table 3: The configuration of the four components.

Component Configuration

Demonstrator ≔ {(.\share.csv_.\t.lock_1_200)}

{(.\share.csv_.\m.lock_1_100)}{(.\share.csv_.\t.lock_1_200)}

{(.\share.csv_.\v.lock_1_100)}

TransiTUM ≔ (.\share.csv_.\t.lock_1 _200)

MomenTum ≔ (.\share.csv_.\m.lock_1_100)

VADERE ≔ (.\share.csv_.\v.lock_1_100)

Table 4: The data exchange table for all components.

Types “id :

unique”

“x :

double”

“y :

double”

“v_x :

double”

“v_y :

double”

“v_d :

double”

“target :

unique”

“origin :

unique”

m.lock “1” “1” “1” “1” “1” “1” “1” “1”

t.lock “1” “1” “1” “1” “1” “1” “1” “1”

v.lock “1” “1” “1” “1” “1” “1” “1” “0”

Fig. 5: A 2D visualization of the simulation results of MomenTum, VADERE, and

TransiTUM running in a coupled environment using the interoperability protocol.

The pedestrian data is exchanged between and changed by the models.

MomenTum Data

Change:

Cellular Automata

Model

VADERE Data

Change:

Continuous Walking

Model

TransiTUM Data Change:

Hybrid

Continuous / Cellular

Automata Model Swap
Pedestrian

Pedestrian Trajectory

Gentle Coupling of Pedestrian Behavior Model Implementations

7

3.5 Feasibility analysis

We modelled the lock system part of the start-up, processing, and shut-down process of a

client and a controller using a Petri-Net. Figure 6 presents the Petri-Net crafted with PIPE, a

free Petri-Net modelling and analysis tool (DINGLE ET AL. 2011). We used PIPE to analyze

the net and found that our mutual exclusive execution of the system works without deadlocks,

is invariant, and finite. The number of sequences and the number of cycles are calculated

based on the configurations by number of simulation blocks “end : integer” divided by the

length of a simulation block “cycle : integer” without reminder.

Fig. 6: The Petri-Net we created for a client and a controller, which can be extended to an

arbitrary number of clients. The net proves that the system works as described in

Section 3.2 regarding the crucial lock read and write operations.

4 Conclusion

Hybrid pedestrian models describe a merge of existing pedestrian models to create more so-

phisticated approaches. The model coupling demands a smooth integrating of the concepts

in a pedestrian simulator without changing the underlying model implementations.

We created a new interoperability protocol that is utilized as middleware in a pedestrian sim-

ulator or a pedestrian simulator network. The protocol handles data exchange and the mutual

exclusion execution of any number of clients. We proofed by a Petri-Net that our model is

finite and dead-lock free. Additionally, we implemented the protocol successfully in a hybrid

model environment; thus provide evidence that the protocol is applicable.

We target to improve the concept in future research by a creating a real parallel execution of

the models or engines that is not based solely on sequencing. In general, the research on

modern pedestrian simulator software architectures is promising since pedestrian dynamics

is in need of efficient simulators that carry the burden to run complex models with high com-

putational efficiently and little development effort.

systemStart
writeAllLocks

systemStarting

controllerInitializing

controllerRunning

allowClientToWork

sequenceStock

waitForLockX

existingLockX

missingLockX

processedSequences 3

deactivatingClient

controllerWaitForEnd

deactivatingController

controllerEnd systemClosing
systemEnded

clientEnd

3

clientEnding

processedCyles

cycleStock

clientSimulating

clientInitializing

clientRunning

Peter M. Kielar, Daniel H. Biedermann und Felix Dietrich

8

Literature

AL-ZOUBI, K., & WAINER, G. (2011). Distributed simulation using restful interoperability

simulation environment (rise) middleware. In Intelligence-Based Systems Engineering

129-157. Springer Berlin Heidelberg.

BIEDERMANN, D. H., KIELAR, P. M., HANDEL, O., & BORRMANN, A. (2014). Towards Transi-

TUM: A generic framework for multiscale coupling of pedestrian simulation models

based on transition zones. Transportation Research Procedia, 2, 495-500

BLUE, V. J., & ADLER, J. L. (2001). Cellular automata microsimulation for modeling bi-di-

rectional pedestrian walkways. Transportation Research Part B: Methodological, 35(3),

293-312.

CHOORAMUN, N., LAWRENCE, P. J., & GALEA, E. R. (2011). Implementing a hybrid space

discretisation within an agent based evacuation model. In Pedestrian and Evacuation Dy-

namics (pp. 449-458). Springer US.

CURTIS, S., BEST, A., & MANOCHA, D. (2014). Menge: A modular framework for simulating

crowd movement. University of North Carolina at Chapel Hill, Tech. Rep.

DAHMANN, J. S., & MORSE, K. L. (1998, JULY). High level architecture for simulation: An

update. Distributed Interactive Simulation and Real-Time Applications. In Proceedings

2nd International Workshop on, 19(20), 32-40.

DIETRICH, F., & KÖSTER, G. (2014). Gradient navigation model for pedestrian dynamics.

Physical Review E, 89(6), 062801

DINGLE, N. J., KNOTTENBELT, W. J., & SUTO, T. (2009). PIPE2: a tool for the performance

evaluation of generalised stochastic Petri Nets. ACM SIGMETRICS Performance Evalu-

ation Review, 36(4), 34-39.

GERAERTS, B., & OVERMARS, M. (2007). The corridor map method: a general framework for

real-time high-quality path planning. Computer Graphics and Image Processing, 18(2),

107. doi:10.1002/cav.166.

HAREL, D. (1987). Statecharts: A visual formalism for complex systems. Science of computer

programming, 8(3), 231-274.

HELBING, D., FARKAS, I., & VICSEK, T. (2000). Simulating dynamical features of escape

panic. Nature, 407(6803), 487-490.

HOLZMANN, G. J. (2007). Design and Validation of Computer Protocols.

KIELAR, P. M., HANDEL, O., BIEDERMANN, D. H., & BORRMANN, A. (2014). Concurrent Hi-

erarchical Finite State Machines for Modeling Pedestrian Behavioral Tendencies. Trans-

portation Research Procedia, 2, 576-584.

KNEIDL, A. (2013). Methoden zur Abbildung menschlichen Navigationsverhaltens bei der

Modellierung von Fußgängerströmen, Technische Universität München.

KNEIDL, A., HARTMANN, D., & BORRMANN, A. (2013). A hybrid multi-scale approach for

simulation of pedestrian dynamics. Transportation research part C: emerging technolo-

gies, 37, 223-237.

RUMBAUGH, J., JACOBSON, I., & BOOCH, G. (2004). Unified Modeling Language Reference

Manual, The. Pearson Higher Education.

SHETH, A. P. (1999). Changing focus on interoperability in information systems: from sys-

tem, syntax, structure to semantics. In Interoperating geographic information systems, 5-

29. Springer US.

VAN TOLL, W., JAKLIN, N., & GERAERTS, R. (2015). Towards Believable Crowds: A Generic

Multi-Level Framework for Agent Navigation

