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Abstract

Speech Emotion Recognition (SER) has achieved some substantial progress in the
past few decades since the dawn of emotion and speech research. In many aspects,
various research efforts have been made in an attempt to achieve human-like emotion
recognition performance in real-life settings. However, with the availability of speech
data obtained from different devices and varied acquisition conditions, SER systems
are often faced with scenarios, where the intrinsic distribution mismatch between
the training and the test data has an adverse impact on these systems.

To address this issue, this thesis makes use of autoencoders as an expressive
learner to introduce a set of novel feature transfer learning algorithms. They are
based on the goal to achieve a matched feature space representation for the target
and source sets while ensuring source domain knowledge transfer. Partly inspired
by the recent successes of feature learning, this thesis first incorporates sparse
autoencoders into semi-supervised feature transfer learning. Furthermore, in the
unsupervised setting, i.e., without the availability of any labeled target data in the
training phase, this thesis takes advantage of denoising autoencoders, shared-hidden-
layer autoencoders, adaptive denoising autoencoders, extreme learning machine
autoencoders, and subspace learning with denoising autoencoders, for feature transfer
learning.

Experimental results are presented on a wide range of emotional speech databases ,
demonstrating the advantages of the proposed algorithms over other modern transfer
learning methods. Besides normal phonated speech, these transfer learning methods
are also evaluated on whispered speech emotion recognition, which shows that these
methods can be applied to create a recognition model owing a completely trainable
architecture that can adapt it to a range of speech modalities.
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1

Introduction

1.1 Motivation

In our daily life, speech plays a prominent role in human communication. Accordingly,
Automatic Speech Recognition (ASR) is dedicated to enable a machine to possess the
ability to recognize and understand spoken words as well as humans do [1]. Although
linguistic expression can be highly ambiguous, it can still often be interpreted correctly
by today’s advanced ASR techniques.

In speech, however, a listener can not only hear what a speaker is saying, but also
perceive how a speaker is saying it. The listener’s perceptions include the speaker’s
emotions. The emotions can be perceived by the listener due to the fact that changes
in the autonomic and somatic nervous system have an indirect yet strong influence
on the speech production process [2]. It means that apart from linguistic information
such as words and sentences, speech also carries rich emotional information such
as anger and happiness. Besides interpreting spoken words by ASR, therefore, an
intelligent machine should also have the ability to recognize emotions from speech, so
that the communication between humans and machines becomes natural and friendly
just like human-to-human communication. This kind of capability is known as Speech
Emotion Recognition (SER) or acoustic emotion recognition. The introduction of
SER allows machines to extract and interpret human emotions by analyzing speech
patterns with machine learning methods.

SER leads to many practical applications. For example, SER is being applied
to develop communicative platforms for use by children with autism spectrum
conditions [3], such as in the EU-funded ASC-Inclusion project1. In e-learning
applications, SER can be used to improve students’ learning experience by adjusting
learning material delivery based on the their emotional states [4]. Further, robots
use SER abilities to guide their behavior and further socially communicate affective
reinforcement [5]. Therefore, it is not surprising that SER has grown in a major

1http://asc-inclusion.eu/
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1. Introduction

research topic into speech processing, human-computer interaction, and computer-
mediated human communication over the last decades (see [6, 7, 8, 9, 10]).

Many SER engines achieve promising performance only under one common
assumption, namely that the training and test data are drawn from the same corpus
and the same feature space for parametrization is used. However, with speech data
increasingly obtained from different devices and varied recording conditions, we are
often faced with scenarios where such data are typically highly dissimilar in terms
of acoustic signal conditions, speakers, spoken languages, linguistic content, type
of emotion (e.g., acted, elicited, or naturalistic), or the type of labeling scheme
used, such as categorical or dimensional label [1, 11, 12, 13]. When labeling an
emotional corpus, even worse, there is no certain ground truth but a subjective
ambiguous ‘gold standard’ because different human raters may exhibit different
emotional states in responses to the same speech. The profound differences across
emotional speech datasets are known as the distribution mismatch or dataset bias.
The distribution mismatch is prone to give rise to significant performance downgrades
for SER systems, since in training these systems we will not have prepared for data
subsequently encountered in use. For example, if a system builds upon a classifier
using features extracted from adults’ speech corpora to identify children’s emotional
state, its performance can be expected as very low. In this example, this comes, as –
among other factors – there is a relevant difference of certain features such as pitch
between adults and children on which emotion phenomena rely heavily.

The best solution to alleviate the mismatch, of course, is to gain access to all
variations by acquiring large amounts of emotional speech data. However, labeling
emotional data not only requires skilled human raters but also is slow and expensive.
Furthermore, it is impossible to anticipate all variations. So it is inevitable that
there is a ‘mismatch’ between training and test data.

Such an inherent mismatch suggests that an SER system should stop hoping for
annotated data that are not available, and instead embrace complexity and then
make use of existing data so as to retrieve useful information within data for a related
target task [14]. Transfer learning (also referred to as domain adaptation) has been
proposed to deal with the problem of how to reuse the knowledge learned previously
from ‘other’ data or features [15, 16]. To help advance the field of SER, this thesis
puts a strong emphasis on addressing a mismatch between training and test data
by integrating transfer learning into SER systems. In this mismatch, specifically,
a model is trained on one database while tested on another disjoint one. As an
example, the labeled corpus may be acted speech obtained through previous human
labeling efforts. For a classification task on a newly spontaneous corpus where the
data’s features or data’s distribution may be different. As a result, one may not be
able to directly apply the emotion models learned on the acted speech to the new
spontaneous data. In this case, new solutions presented in this thesis could transfer
the classification knowledge from the acted data to the new spontaneous data.

For the major purpose of reducing a mismatch between training and test data,

2



1.2. Contributions

the following challenges are discussed in this thesis:

1. Labeled target domain test data are partially available. At present, a
number of emotional speech corpora exist, but they are highly dissimilar and
very small. In this case, a small amount of labeled data is usually insufficient to
train a reliable acoustic model, which is likely to lead to low recognition accuracy.
This means that there is the data scarcity problem in the field of SER [17, 18].
Furthermore, directly combining different corpora into the training set yields
performance degradation simply because of the aforementioned differences
across these corpora. Here, the combined training data typically consist of
disjoint data dramatically different from the test data, and a small amount of
target domain data which come from the same corpus as the test data. Hence,
the first challenge this thesis deals with is how to make use of the combined
data to produce satisfactory performance for emotion recognition.

2. Labeled target domain test data are completely unavailable. In emo-
tion recognition, like many other machine learning tasks, data are of paramount
importance. One always needs to label speech data tailored to a target task
and then uses them extensively to build on a recognition model, in the hope
that they provide objective guidance for discovering the relation between the
inputs and the target task. It is evident that such a model only achieves
success for the reason that the data distribution is stable between the training
and test data. The task of emotion recognition becomes more interesting but
more challenging when the whole training data only come from other domains
remarkably different from the target domain, i.e., the training data without
any labeled target domain data.

1.2 Contributions

To deal with the two above challenges of both normal phonated speech and whispered
speech emotion recognition, this thesis attempts to make the following contributions:

1. To address the first challenge, this thesis contributes to the use of different sets
of training data by proposing a novel feature transfer learning method. This
method discovers knowledge in acoustic features from a small amount of labeled
target data (similar to the test data) to achieve considerable improvement
in accuracy when applying the knowledge to other domain training data
(significantly different from the test data).

2. Further, this thesis puts more effort into the second challenge. Accordingly,
a general framework, encompassing five feature transfer learning methods, is
proposed to enhance the generalization of an emotion recognition model and

3



1. Introduction

make it adaptable to a new domain. This framework enables SER to continue
to enjoy the benefits of existing speech corpora.

3. Apart from normal phonated speech at which current studies mainly have made
considerable efforts to date, in fact, whispered speech is another common form of
speaking to communicate, which is produced by speaking with high breathiness
and no periodic excitation. This thesis finally sheds light on whispered speech
emotion recognition. It extends these transfer learning methods by showing
how feature transfer learning can be applied to create a recognition engine
owing a completely trainable architecture that can adapt it to a range of speech
modalities, such as normal phonated speech and whispered speech.

1.3 Overview of this Thesis

The chapters are roughly grouped into three parts: a brief overview of SER is
discussed in Chapter 2; Chapters 3 and 4 primarily present the theory of feature
transfer learning and the experimental results; and conclusions and directions for
the future work are given in Chapter 5.

Chapter 2 briefly reviews a typical SER system in general, and two fundamental
components of this system, acoustic features and statistical modeling, are discussed
in particular. It also provides background details for feedforward neural networks.
Chapter 3 describes the distribution mismatch, and transfer learning with emphasis
on transfer learning in speech processing. It also describes theoretically a set of
feature transfer learning methods, which are proposed in this thesis, for dealing with
the challenges outlined in Section 1.1. Chapter 4 contains practical evaluations of
the methods presented in Chapter 3 on the task of SER. Chapter 5 summarizes the
presented thesis and points out possible directions for future work.

4



2

Speech Emotion Recognition

This chapter gives an overview of acoustic features and statistical modeling methods
for SER. Figure 2.1 presents a fundamental SER system made of feature extraction
(i.e., computation of acoustic features) and statistical modeling (i.e., training classifiers
and making predictions of emotions).

Feature Extraction Model Learning

Training Speech

Test Speech

Feature Extraction Recognition
Recognized

Emotions

str xtr

ste xte

Figure 2.1: Overview of a typical speech emotion recognition system.

For SER, the raw speech signal is typically transformed into some new space
of explanatory variables in which, hopefully, the emotion recognition problem will
become much easier to solve. This transformation stage is known as feature extraction,
which ends up producing acoustic features. Feature extraction might also be taken
into account in order to reduce computation cost. For example, if the goal is real-time
speech emotion detection in a distributed system, the client side with restricted
computing ability must deal with large numbers of raw data per second, and sending
these data directly to the server side may cause a computationally infeasible problem.
In this case, the aim of the feature extraction stage is to create concise and useful
features that are easy to compute, and yet that also preserve useful discriminatory
information.

5



2. Speech Emotion Recognition

The core purpose of statistical modeling is to assign each input signal to one
of discrete emotional states by leveraging the acoustic features obtained by feature
extraction. A statistical modeling algorithm often produces a model which is
determined in the training phase based on the training speech data. Once the
model is trained well, it can then identify the emotional state of test speech signals.

This fundamental system (shown in Figure 2.1) plays the central role in this
thesis, because this thesis will incorporate a variant of novel feature transfer learning
algorithms into this fundamental SER system. Thereby, the following sections turn
to an exploration of this fundamental system. The most important acoustic features,
which are commonly used, are firstly discussed in Section 2.1. Statistic modeling
methods used for the state-of-the-art SER systems are then presented in Section 2.2.
Finally, metrics for assessing the quality of SER systems are discussed in Section 2.3.

2.1 Acoustic Features

Acoustic features, normally consisting of prosodic and spectral features, often serve
to offer an extremely concise and discriminatory summary of raw speech data in
SER systems [10]. Table 2.1 depicts acoustic features commonly used for SER. It is
recognized that prosodic features such as pitch and the voicing probability are very
important parameters which convey much of the emotional information in speech.
For example, high intensity is associated with the emotion of surprise and anger
while low intensity is associated with the emotion of sadness and disgust [19]. Among
the most important prosodic features are the intensity, the fundamental frequency
F0, the voicing probability, and the formants [9, 20].

Besides prosodic features, various spectral features classically used to represent the
phonetic content of speech for ASR, such as Linear Prediction Cepstral Coefficients
(LPCCs) [21] and Mel-Frequency Cepstral Coefficients (MFCCs) [22], also efficiently
work for recognizing emotions from speech signals. It is found that, the emotional
state of a given speech signal leads to a remarkable impact on the distribution of the
spectrum across the frequencies [19].

To facilitate acoustic feature extraction for SER, the openSMILE feature extrac-
tion toolkit [23, 24], which has become new standard of feature extraction in the
field, is the first choice. The feature sets obtained by the openSMILE toolkit have
been widely used, and usually adopted to build the baseline recognition systems for
the recent computational paralinguistics challenges [25, 26, 27, 28]. For this reason,
the feature sets chosen for this thesis are available in the toolkit and the feature
extraction is fully dependent on it so that one can easily reproduce the findings of
this thesis.

It is widely agreed that acoustic features can be categorized into segmental (short-
time) and supra-segmental (long-time) types in accordance with their temporal
structure [10, 20]. In the following two sections segmental features and supra-
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2.1. Acoustic Features

Time domain descriptors

zero-crossing rate, amplitude

Energy

Root Mean Square (RMS) energy, logarithmic energy, loudness

Spectrum

linear magnitude spectrum, nonlinear magnitude/frequency scales

band spectra, filterbank spectra

Spectral descriptors

band energies, spectral slope/flatness

spectral centroid/moments/entropy

Cepstral features

MFCCs, PLP cepstral coefficients

Linear prediction

Linear Prediction (LP) coefficients, LP residual, LP spectrum, LPCCs

Voice quality

jitter, shimmer, Harmonics-to-noise ratio

Tonal features

semitone spectrum, pitch class profiles

Nonlinear vocal tract model features

critical band filterbanks, Teager energy operator envelopes

Table 2.1: Acoustic features commonly used for SER.

segmental features are characterized shortly. As the focus of this thesis is placed on
feature transfer learning and not on acoustic features, the reader is referred to [20]
and [24] for further discussion.

2.1.1 Segmental Features

Segmental features, also known as acoustic Low Level Descriptors (LLDs), are
extracted from each short-time frame (usually 25 ms in length) based on short-time
analysis. Segmental features mainly include short-term spectra and derived features:
MFCCs, Linear Prediction Coding (LPC), LPCCs, Wavelets [29], and Teager energy
operator based features [29, 30, 31]. Segmental features have proven to be successful

7



2. Speech Emotion Recognition

at a variety of audio processing tasks including ASR [32], speaker recognition [33],
music information retrieval applications such as genre classification [34, 35], emotion
recognition [9, 10, 20, 24, 36], and computational paralinguistics [20].

Despite segmental features such as MFCCs are normally used for modeling
segments such as phones for ASR, they have also served for emotion recognition.
In emotion recognition, these features are either classified by using, for example,
dynamic Bayesian networks and Hidden Markov Models (HMMs), or combined by
applying some functionals , for example, taking the mean values of the features across
the speech signal, and then modeled with statistical classifiers such as Support Vector
Machines (SVMs) and Multilayer Perceptrons (MLPs). One evident advantage of
segmental features for SER is that they retain the temporal information of the
speech signals. The temporal information strongly reflects the change in the speech
signals carrying an emotional state. In [19], an HMM-based classification model was
proposed based on the short time log frequency power coefficients, MFCC, and LPCC.
In [37], the authors used MFCCs as a representation in order to explore the temporal
properties of emotion by a suite of hybrid classifiers based on HMMs and deep belief
networks. In [38], the multi-taper MFCCs and Perceptual Linear Predictions (PLPs)
were modeled using Gaussian Mixture Models (GMMs). Recently, an EmoNet
integrating with deep learning approaches was the wining submission in the 2013
EmotiW challenge, where three types of MFCC features are used, comprising the 22
cepstral coefficients, their first-order derivatives and second-order derivatives [39, 40].

Although extracting segmental features at a fixed temporal length was usually
considered in the previous work, few efforts have shown that different temporal
lengths would be beneficial for modeling the underlying characteristics that result
from different emotional states [41, 42]. In [42], the segmental features were extracted
with 400 ms and 800 ms analysis frames, and therefore a novel fusion algorithm was
introduced to fuse recognition results from classifiers trained on those multitemporal
features.

Apart from the short-term characteristics, there are attempts at modeling long-
term information in a speech signal based on the assumption that speech emotion is
a phenomenon varying slowly over time. Wöllmer et al. [43] made use of LLDs such
as signal energy, pitch, voice quality, and cepstral features which are modeled to
explore contextual information of speech signals by using Long Short-Term Memory
(LSTM) recurrent networks. One alternative method to explicitly extract long-term
information hidden in a speech signal is the modulation spectrogram features [44, 45,
46]. The features, inspired by the auditory cortical, are extracted from a long-term
spectro-temporal representation, using an auditory filterbank and a modulation
filterbank. As a result, the modulation spectrogram features are intended to express
both slow and fast change in spectrum in a way to capture information associated
with speech intelligibility by quantifying the power of temporal events relating to
articulatory movements in the speech signal [47]. In other words, those features are
integrated with many important properties existing in human speech perception but

8



2.1. Acoustic Features

missing from conventional short-term spectral features. Besides, the modulation
spectrogram features, Amplitude Modulation-Frequency Modulation (AM-FM) has
drawn attention in emotion recognition [31]. In [31], a smoothed nonlinear energy
operator, which can track the energy needed to result in an AM-FM signal and
separate it into amplitude and frequency components, was used to generate amplitude
modulation cepstral coefficient features.

Although little recent research has shown that it is possible to directly use raw
speech signal to model phone classes due to deep learning that is capable of finding
the right features for a given task of interest, the computational cost is high and
the performance is likely to be worse than for conventional features [48, 49, 50].
Therefore, segmental features are still of fundamental importance for SER. As
shown above, MFCCs are the most frequently used segmental features for emotion
recognition [19, 24, 37, 38, 39, 40], so the following section gives a short overview of
the computation of MFCCs.

2.1.1.1 Mel-Frequency Cepstral Coefficients

Motivated by perceptual or computational considerations, Mel-Frequency Cepstral
Coefficients (MFCCs) are designed to provide a compact representation of the short-
term spectral envelope, based on the orthogonal Discrete Cosine Transformation
(DCT) of a log power spectrum on a nonlinear mel scale of frequency. Generally, the
procedure of MFCCs calculation is shown as follows:

1. Power spectrum representation of a windowed signal.

2. Map the power spectrum onto the mel scale.

3. Take the logarithms of the powers at each of the mel frequencies.

4. Take the decorrelation of the mel log powers by DCT.

It is worth noting that, human hearing perception is taken into consideration
during the calculation of MFCCs. Because the human hearing understands lower
frequencies more easily than higher ones [20], the power spectrum is mapped onto a
mel scale by using triangular overlapping windows:

mel(f) = 2595 log

(
1 +

f

700

)
, (2.1)

where f indicates a linear frequency scale in Hz, and mel(f) represents a mel scale.

In addition to coefficients 0 up to 16 or higher used for SER, their first order
delta coefficients and second order delta coefficients are often appended to them.

9



2. Speech Emotion Recognition

Statistical functionals

Means

arithmetic, quadratic, root-quadratic

geometric mean, flatness, mean of absolute values

Moments

variance, standard deviation, skewness, kurtosis

Extreme values

maximum, minimum, range

Percentiles

quartiles and inter-quartile ranges

percentiles and various inter-percentile ranges

Regression

linear/quadratic regression, derivations

irreversibility, regression errors

Peak statistics

number of peaks

arithmetic mean of the peak amplitudes

absolute peak amplitude range

arithmetic mean of rising slopes

Segment statistics

number of segments

mininum, mean, maximum segment length

arithmetic mean of segment length, standard deviation of segment length

Modulation functionals

DCT coefficients, LPC coefficients

modulation spectrum, rhythmic features

Table 2.2: Common statistical and modulation functionals used for generating
supra-segmental features in SER.

2.1.2 Supra-segmental Features

Unlike ASR which focuses on short-term phenomena such as phones, SER focuses
on the long-term phenomena which do not change every second but evolve slowly

10



2.1. Acoustic Features

over time. There are so-called supra-segmental features which tend to express
the change of low-level features over a given period of time. The aim of supra-
segmental features is to create a single, fixed length feature vector, summarizing
serial LLDs (cf. Section 2.1.1) of possibly variable length [51]. This is the prominent
approach to gathering paralinguistic feature information, because it offers a larger
reduction of data that otherwise might rely too strongly on the phonetic content [20,
25]. Moreover, supra-segmental features became widespread in SER and other
paralinguistic recognition tasks [20, 24, 52], and they were repeatedly reported to be
superior to segmental ones in terms of classification accuracy and test time.

Supra-segmental features are derived by a projection of the multivariate time
series comprised of LLDs such as MFCCs and pitch onto a single fixed dimension
vector independent of the length of the entire utterance [12]. Such a projection is
implemented by applying functionals. Simple examples of functionals are the mean,
variance, minimum, and maximum. More advanced functionals are, for example,
the local extrema in the input series or their distribution. The common functionals
including statistic and modulation functionals which are used in SER are summarized
in Table 2.2.

In contrast to segmental features (i.e., LLDs), the advantage of supra-segmental
features is that they provide a representation of the variable length speech with
a fixed length. Hence, they can make use of static modeling, such as k-Nearest
Neighbors (k-NN) (see [53, 54]) and SVMs (see [25, 55, 56]), to analyze patterns
in speech. In return, these approaches ease the way to build SER systems and
considerably save the computation cost and test time, especially when the input
speech is long.

It also seems that, the use of supra-segmental is a satisfactory solution to protect
the users’ privacy as well as to reduce the data transmission bandwidth from the
client side to the server side for distributed recognition systems [57]. The procedure
of extracting supra-segmental features is irreversible even if they originate from
segmental features, for example MFCCs and pitch (see [58, 59]), which can be
employed to reconstruct the audio. Therefore, they avoid the reconstruction of
the speech signal and then allow to reduce the risk of leaking the speakers’ speech
content.This irreversibility minimizes the risk of the users’ privacy violation. Further,
supra-segmental features appear to save transmission bandwidth when compared to
raw speech and LLDs as the vector size is always the same per utterance [57].

However, one of the major drawbacks of supra-segmental features is the loss of the
temporal information, since they employ statistics of the LLDs features and neglect
the sampling order. A solution to overcome the problem is to calculate statistics
over rising/falling slopes or during the plateaux at minima/maxima [51, 60, 61]. An
alternative solution is feature frame stacking. The general principle is simple: A
defined number of frames are concatenated to a super-vector [20].
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2.2 Statistical Modeling

When acoustic features provide the discriminatory information of the speech signal,
the major role of statistical modeling is to use the these features to predict emotions
and to get information about the underlying data mechanism [62]. This chapter
gives a brief overview of the statistical modeling methods for SER and further a
theoretical introduction to the modeling methods of interest in this thesis.

In the field of emotion recognition as well as other paralinguistic tasks, most
studies have focused on classification of an utterance, where approach is normally to
look for a function f(x) – an algorithm that operates on an utterance x to output one
category of emotional states. A wide diversity of classifiers have been used for the task
of SER, which include HMMs [9, 19, 20, 37, 51, 63, 64, 65], GMMs [66, 67, 68, 69],
SVMs [11, 13, 70, 71], Artificial Neural Networks (ANNs) or Deep Neural Networks
(DNNs) [37, 40, 72, 73, 74, 74, 75, 76], k-NN [54, 77, 78], Bayesian networks [53],
logistic regression [67], decision trees [79], ensemble learning [80, 81], and Extreme
Learning Machine (ELM) [82, 83].

Apparently, the HMM classifier is among the most popular classifiers as it has
been used in almost all speech tasks. The HMM is made of a first-order Markov
chain, in which the states are unknown from the observer [84]. The HMM model
is theoretically formulated under Bayesian probability theory, and hence can form
the theoretical basis for use in capturing the temporal information of the data.
The parameters of an HMM can be determined efficiently using the Expectation
Maximization (EM) algorithm for maximizing the likelihood function [85]. In the
HMM framework for SER, each utterance is represented as a sequence of low-level
features. Thereby, given a sequence of low-level features, the HMM classifier estimates
a maximum likelihood score and then infers the hidden state path with the highest
probability as the predicted emotion of the utterance. One of the most useful
properties of HMMs is their ability to be invariant with respect to local warping of
the time axis [85]. Such a property is tailored to meet the need of the analysis for
the short time behavior of human speech as considered in [64].

There are viable alternatives to making use of the HMM model for SER. For
example, in the conventional HMM the hidden states are not defined explicitly,
instead, in [65] the hidden states are defined by the temporal sequences of affective
labels. Hence, the hidden states during the training process are known. This approach
transforms the emotion classification problem into a best path-finding optimization
problem in the HMM framework.

As well as being of great interest in its own right, the SVM model may have
gradually dominated emotion recognition using the supra-segmental features. There
are three reasons why it happened. First, the parameters of the SVM model are
derived using convex optimization, leading to the global optimality. Second, it has
good data-dependent generalization guarantees [86]. Third, there is growing popu-
larity of the use of supra-segmental features as by openSMILE toolkit. Importantly,
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the kernel trick enables the SVM classifier to map the original feature space to a
high-dimensional space where data points, it is hoped, can be more easily classified
using a linear margin-based classifier.

Further, ANNs exhibit a great degree of flexibility to model these two different
types of acoustic features for SER. This means that the ANN can estimate an
affective label from a fixed length feature vector summarizing the utterance, as
well as from a temporal sequence of low-level features. The nonlinear mapping
property of ANNs is highly advantageous to find complex relationships in data. For
example, an ANN/HMM system performs automatic emotion independent phone
group partitioning based on using feedforward ANNs, before performing temporal
modeling by HMMs [87]. In SER context, furthermore, Convolutional Neural Net-
works (CNNs), a variant of feedforward ANNs [88], serve as a feature extractor to
learn affect-salient features, where simple features are learned in the lower layers,
and affect-salient, discriminative features are obtained in the higher layers [89]. For
the purpose of integrating emotional context, it is often effective to apply Recurrent
Neural Networks (RNNs) to deal with emotion recognition problems [43, 75].

DNNs, the state-of-the-art ANNs, have shown great success in a wide range of
applications such as computer vision, ASR, natural language processing, and audio
recognition. Their success emerged in automatic emotion recognition from speech
as well. Le and Provost [37] proposed a suite of hybrid classifiers where HMMs
are used to capture the temporal information of emotion and deep belief networks
are used to compute the emission probabilities. Further, an alternative method to
take full advantage of DNNs is emoNet where an MLP is initially constructed by
a deep belief network in an unsupervised way, and then inspired by a multi-time-
scale learning model it pools the activations of the last hidden layer in order to
aggregate information across frames before the final softmax layer [39, 40]. These
two approaches were found to be competitive with the state-of-the-art methods.

In this section, only the key aspects of SVMs and ANNs as needed for application
in SER are given. More general treatments of the two models can be found in the
books by Bishop [85], and Schuller and Batliner [20].

2.2.1 Support Vector Machines

Support Vector Machines (SVMs) are one of the most widely used classifiers for various
applications in machine learning, since a recognition system using an SVM model
tends to achieve the satisfying recognition result. Recent research running a large
number of classification experiments on 121 data sets concluded that the SVM is likely
to achieve the best performance [90] when compared to other 17 classes of supervised
classifiers. For paralinguistic tasks, the SVM is also extensively employed to build
the baseline systems on the basis of supra-segmental features [20, 27, 91, 92, 93].

Motivated by statistical learning theory, the determination of the SVM parameters
is equivalent to solving a convex quadratic programming problem [94, 95]. Therefore,
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this convexity property guarantees that any local solution is also a global optimum [85,
96]. In addition, the kernel trick for the SVM offers a computationally efficient
mechanism for transforming input data to a high-dimensional space, in which the
data are linearly separable.

Formally, given training examples and corresponding binary labels (xi, yi), i =
1, . . . , N , where xi ∈ Rn and yi ∈ {−1, 1}, the SVMs solve the following minimization
problem

arg min
(w,b,ξ)

1

2
‖w‖2 + C

N∑
i=1

ξi, (2.2)

subject to yi
(
wTφ(xi + b)

)
≥ 1− ξi, ξi ≥ 0.

Here, the penalty parameter C controls slack variables ξi to penalize data points
which violate the margin requirements, and φ(·) denotes a feature space mapping
function. In the feature space defined by φ(·), the SVMs look for a linear separating
hyperplane by maximizing the margin. The margin constructed pivots around a
subset of data points of the training data, which are called the support vectors since
they support the hyperplanes on both sides of the margin. Figure 2.2 illustrates the
separating hyperplane, margins, and support vectors for an SVM.

It is worth emphasizing the importance of applying the feature space mapping
function φ(·) in the formation of SVMs. An obvious but crucial remark is that a
nonlinear classification function plays a vital role in optimally classifying nonlinearly
separable data. In applying the SVM for nonlinear separable data, therefore, the
input data are linearly mapped to much higher (or even infinite) dimensional space
in which the data are linearly separable. This nonlinear feature space mapping is
defined by φ(·). Such a strategy, referred to as the kernel trick, enables SVMs to
efficiently classify the data in very high dimensional spaces. Given the nonlinear
feature space mapping function φ(·), specifically, the kernel function on two examples
xi and xj is defined as

k(xi,xj) = φ(xi)
Tφ(xj). (2.3)

The simplest example of kernels is the linear kernel with the identity function, in
which case φ(x) = x and k(xi,xj) = xTi xj. Another commonly used kernel is a
Gaussian kernel (or radial basis function kernel) defined by

k(xi,xj) = exp

(
−||xi − xj||

2σ2

)
, (2.4)

where σ is the width.
There is intrinsic sparsity in SVMs, providing a clue to the relationship between

the solution of the SVM and the different types of the training data. The support
vectors determine the location of the maximum margin hyperplane. As a result, the
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m
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Figure 2.2: Separating hyperplane and margins for an SVM. Samples on the margin
are known as the support vectors, which are indicated by the gray dots and bold
circles. The separating hyperplane is achieved by maximizing the margin.

test phase of the SVM does rely only on those data which are the support vectors.
In contrast, the rest of the data can be moved around freely without affecting the
separating hyperplane. Hence, the solution of the SVM is ideally independent of the
rest of the data points.

However, the training phase of finding the solution of the SVM has to make use
of the whole training data since the support vectors are unknown in advance. So it is
important to have efficient algorithms for solving the linearly constrained quadratic
problem arising from the SVM. This class of algorithms include stochastic gradient
descent, protected conjugate gradients, sub-gradient descent, and coordinate descent.
In particular, one well-known coordinate descent algorithm called Sequential Minimal
Optimization (SMO) [97] is widely used to solve the problem.

SVMs are fundamentally applicable for two-class tasks. In practice, however,
multiclass problems are often encountered. This method can be extended to tackle a
multiclass problem by combining several binary SVMs: One-versus-all classification
uses one binary SVM for each class, and then classifies new instances relying on
which class has the highest output function, while one-versus-one classification uses
one binary SVM for each pair of classes, and then classifies new instances relying on
which class has the most votes [98].

Available implementations of SVMs include LIBLINEAR [99], LIBSVM [100],
WEKA [101]. Note, throughout the thesis, SVMs are the favorite classifier, which is
consistently applied to build the final recognition model.
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Figure 2.3: A feedforward neural network comprising an input layer, a hidden layer,
and an output layer.

2.2.2 Neural Networks

Artificial Neural Networks (ANNs) are another frequently used model for SER. They
are also known as Feedforward Neural Network (FFNN), Deep Neural Networks
(DNNs), Multilayer Perceptrons (MLPs), or simply neural networks. Figure 2.3
visualizes the structure of an FFNN with one hidden layer. Consisting of simple
but nonlinear modules, ANNs are amenable to nonlinearly transforming the input
of the previous layer into a new space of the next layer. It turns out to be good at
learning very complex functions with the combination of a sufficient number of such
transformations.

Formally, layer l, where l = 0, . . . , nl, first computes a weighted linear combination
of its input vector h(l−1) from the previous layer, starting with the raw input vector
x = h(0),

z(l) = W(l)h(l−1) + b(l), (2.5)

with a vector b(l) and a matrix W(l) of adaptive parameters. The vector b(l) is
referred as biases, the matrix W(l) is referred to as weights, which are adapted during
training. The data entrance to the network is called the input layer, supplying the
input pattern x for the network. The results z(l) are called activations. They are
then passed through a differentiable and nonlinear activation function f(·), such as

16



2.2. Statistical Modeling

the sigmoid function (see Section 2.2.2.1), to result in a new representation of the
input h(l−1) in the form,

h(l) = f(z(l)). (2.6)

The layers between the input layers and the last layers are known as the hidden
layers. With nonlinear activation function, the hidden layers can been viewed as
expressing the input in a nonlinear way so that targets become linearly separable by
the last layer [102].

Similar to Equation (2.6), the last layer nl, known as the output layer, gives a set
of network output

y = h(nl) = f(z(nl)), (2.7)

which is used to make predictions, as well as to link the input patterns x and the
corresponding targets t. The output layer may use an activation function different
from the one used in the hidden layers, e.g., the softmax function [85].

An objective function, typically convex in y, describes a measure of the difference
between the target vectors and the actual output vectors of the network. Given a
training set consisting of a set of input vectors {xi}, where i = 1, . . . , N , along with
a corresponding set of target vectors {ti}, the objective (or cost) function can be
defined as the Sum of Squared Error (SSE)

J (W,b) =
N∑
i=1

‖ti − yi‖2, (2.8)

whose value is expected to be minimized during training. Thus, the adaptive
parameters W and b are determined by minimizing J (W,b).

In addition to the SSE, it is very common to use the Negative Log-Likelihood (NLL)
as the objective function. This is equivalent to a maximum likelihood approach.

Although both the SSE and NLL objective functions are suited for neural networks,
there is a clear contrast between them in use. When the target t is a discrete label,
i.e., for classification problems, the training of the SSE objective function is more
robust to outliers than the NLL objective function since the SSE is bounded. It is
found that, however, the NLL objective function usually results in faster convergence
and a better local optimum [103, 104]. In sum, there is a common choice of an
objective function based on the type of the problem to be solved. For a regression
problem, the SSE objective function is generally used, for a classification problem,
the NLL objective function is often considered.

2.2.2.1 Activation Functions

The neural network model is very powerful due to its nonlinearity property. As
described in Equation (2.6), activation functions serve as the element-wise nonlinearity
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Figure 2.4: Common activation functions in neural networks, along with their
derivatives: sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU).

applied in hidden units of a network. In this section, three types of popular activation
functions including the sigmoid, hyperbolic tangent, and Rectified Linear Unit (ReLU)
functions are summarized below. Figure 2.4 shows them and the corresponding
derivatives.

First, the sigmoid function that is a monotonically increasing function is widely
used in neural networks. We often refer to it as the logistic function. Mathematically,
the sigmoid(x) function and its derivative are defined as follows

f(x) =
1

(1 + exp−x)
, (2.9)

f ′(x) = f(x)(1− f(x)). (2.10)

Second, another popular activation function is the hyperbolic tangent function
tanh(x). The tanh(x) and its derivative take the following forms

f(x) =
expx− exp−x

expx + exp−x
, (2.11)

f ′(x) = 1− f(x)2. (2.12)

In practice, the hyperbolic tangent function that is symmetric with respect to the
origin (see Figure 2.4) is often recommended because it often converges faster than
the sigmoid function [105]. In fact, however, the hyperbolic tangent function has
linear relation with the sigmoid: tanh(x) = 2 sigmoid(2x)− 1.

Third, the most popular activation function is the ReLU at present, whose
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definition and derivative are given by

f(x) = max(0, x), (2.13)

f ′(x) =

{
1 x > 0,

0 x ≤ 0.
(2.14)

The ReLU is onesided and allows a network with many layers to obtain sparse
representations in hidden units, further leading to learning much faster than smoother
activation functions such as the tanh(x) [106].

Apart from those three activation functions commonly found in the literature,
there are many other neural network activation functions such as the softplus
introduced by Dugas et al. [107] and the maxout [108]. Many variants are available.
For example, recently, a parametric rectified linear unit is proposed, which adaptively
learns the parameters of the rectifiers [109].

2.2.2.2 Backpropagation

For the task of determining a set of weights and biases of a neural network, it
is critical to compute the gradient of an objective function J (W,b). The use
of gradient information can lead to a significant reduction of computational cost.
Backpropagation (BP) is often used to compute the gradient information because it
is relatively simple and powerful [110, 111, 112, 113].

In fact, the BP approach is a practical application of the chain rule, which makes
the task of computing the gradient of an objective function with respect to each
weight in the network computationally efficient. This whole approach computes
the gradients in two passes, namely the forward pass and the backward pass. For a
multilayer network, the forward pass computes the activations of all of the layers by
successive use of Equations (2.5) and (2.6). According to the chain rule, the backward
pass computes the gradient of the objective with respect to the parameters of the
network. Once the forward pass has been complete, the backward pass propagates
gradients through all layers, starting at the top layer (i.e., the output layer) and
working backwards until the bottom (i.e., the input layer) is reached.

First of all, the intuition of the backward pass is discussed. Given a FFNN with
nl layers and an objective function J (W,b), applying the chain rule for the gradient
of the objective function with respect to a weight wij and a bias bi results in

∂J
∂wij

=
∂J
∂zi

∂zi
∂wij

, (2.15)

∂J
∂bi

=
∂J
∂zi

∂zi
∂bi

. (2.16)
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It is very convenient to introduce an error term

δi
def
=
∂J
∂zi

. (2.17)

Then, substituting Equation (2.17) into Equation (2.15) and (2.16) has

∂J
∂wij

= δi
∂zi
∂wij

, (2.18)

∂J
∂bi

= δi
∂zi
∂bi

, (2.19)

which imply that the desired gradients are achieved by multiplying the value of δ
by ∂zi

∂wij
or ∂zi

∂bi
. Thus, for the evaluation of the gradients, it is needed to compute

the value of δ for each hidden and output nodes in the network, and then apply
Equations (2.18) and (2.19).

Following this intuition, the backward pass starts with the output nodes and the
error term is obtained

δ
(nl)
i =

∂J
∂h

(nl)
i

f ′(z
(nl)
i ), (2.20)

where the fact h
(nl)
i = yi is applied.

For each hidden layer l = nl − 1, nl − 2, . . . , 1, the error term is given by

δ
(l)
i =

∂J
∂z

(l)
i

=
∂J
∂h

(l)
i

∂h
(l)
i

∂z
(l)
i

=
∑
j

(
∂J

∂z
(l+1)
j

∂z
(l+1)
j

∂h
(l)
i

)
f ′(z

(l)
i )

=
∑
j

(
w

(l+1)
ji δ

(l+1)
j

)
f ′(z

(l)
i ). (2.21)

In the end, the required gradients are written as

∂J
∂w

(l+1)
ij

= h
(l)
j δ

(l+1)
i , (2.22)

∂J
∂b

(l+1)
i

= δ
(l+1)
i , (2.23)

where l = 0, . . . , nl−1. Because the calculation of the value of the error term δ needs
the derivative f ′(·) with respect to its input, the activation function f(·), which is
adopted for neural networks, is differentiable. The most commonly used activation
functions and their derivatives are presented in Section 2.2.2.1.
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Algorithm 2.1 Backpropagation (BP) for multilayer Feedforward Neural Networks
(FFNNs) using matrix-vectorial notation

1: Perform a forward pass, computing the activations of all of the hidden and output
units, using Equation (2.5) and (2.6).

2: For the output layer nl, evaluate

δ(nl) =
∂J
∂h(nl)

◦ f ′(z(nl)). (2.25)

3: For each hidden layer l = nl − 1, nl − 2, . . . , 1, recursively compute

δ(l) =
((

W(l+1)
)T
δ(l+1)

)
◦ f ′(z(l)). (2.26)

4: Evaluate the gradients of J w.r.t. W(l) and b(l), l = 0, 1, . . . , nl − 1,

∂J
∂W(l+1)

= δ(l+1)(h(l))T , (2.27)

∂J
∂b(l+1)

= δ(l+1). (2.28)

In practice, matrix multiplication is likely to speed up learning of a network. For
that consideration, the BP is shown in Algorithm 2.1 using matrix-vectorial notation,
in which the error term in matrix form is given by

δ
def
=
∂J
∂z

, (2.24)

and the symbol “◦” denotes the element-wise product operator, also known as the
Hadamard product.

Gradient Checking

When analytic gradients are computed using the BP algorithm, in practice, the results
should be compared with the numerical gradients so as to ensure the correctness of
the software implementation. This procedure is often called gradient checking.

The numerical gradient is usually computed by the symmetrical central differences
of the form

∂J
∂wij

=
J (wij + ε)− J (wij − ε)

2ε
. (2.29)

The value of variable ε has a strong effect on the numerical accuracy of the results
obtained using Equation (2.29). For the models used in this thesis, ε = 10−4 is
chosen since it always gave satisfying performance.
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2.2.2.3 Gradient Descent Optimization

Neural networks can be simply viewed as a class of nonlinear functions from a set of
input variables to a set of output variables specified by a set of weights and biases.
On the one hand, neural networks are very good at disentangling the nonlinear
information. On the other hand, there is little hope of finding a global minimum
for the objective function because the objective function has a highly nonlinear
dependence on the weights and biases. For these reasons, neural network learning
becomes difficult.

Gradient descent is often used to repeatedly adjust the weights in a small step
towards the direction of the negative gradient

W(τ+1) = W(τ) − η∇J (W(τ)), (2.30)

where τ indicates the iteration step and the variable η > 0 is the learning rate.

In each step, batch methods use the whole training data at once to compute
the gradients ∇J (W(τ)) and then update the weights, which have been found
very useful for training neural networks. Many sophisticated batch optimization
methods such as conjugate gradient and Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) [114], have proved more efficient and much more stable than
standard gradient descent [115]. The intuition behind these algorithms is to compute
an approximation to the Hessian matrix, so that it can take more rapid steps towards
a local optimum.

The Stochastic Gradient Descent (SGD), however, an online version of gradient
descent, is the predominant optimization method for training neural networks on
large datasets [88]. In this method, an update to the weights is based on the gradient
value of the objective for one example only. This update is repeated for a number
of small sets of examples selected from the training data. The simple procedure
is often surprisingly fast, resulting in a good set of weights and scales easily with
the number of training examples when compared with more elaborate optimization
methods [116].

The most obvious drawback of neural networks is that they are very prone to get
stuck in poor local minima [117]. It turns out that there are many serious problems,
such as the overfitting and the vanishing gradient problems [118] , during training
with the gradient descent procedure. Hence, particular care must be taken to ensure
that the procedure converges fast as well as finds a good set of parameters which are
more negligible than the global minimum. A number of simple but useful tricks that
can be used to facilitate neural network learning are introduced as follows.

A trick that is often used to address the overfitting problem is that of regular-
ization, which explicitly adds a penalty term to an objective function in order to
regularize the behavior of the weights towards the desired direction. One of the
simplest forms of regularizer is given by the sum-of-squares of the weight matrix
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elements, for example, the objective function of the SSE (see Equation (2.8)) turns
to have the form

J (W,b) =
N∑
i=1

‖ti − yi‖2 +
λ

2

nl∑
l=1

‖W(l)‖2, (2.31)

where the penalty term λ > 0. This method is well known as weight decay or L2

weight decay, leading the weight values towards zero. In this case, the weights’
update for the BP procedure is accordingly rewritten as

∂J
∂W(l)

= δ(l+1)(h(l))T + λW(l). (2.32)

Besides, an L1 penalty that induces the sparsity property can be applied to help
control overfitting [119].

Another trick frequently used to speed up the convergence of the neural network
training is called the momentum update [120]. The intuition behind the momentum
update is to accumulate a velocity vector in directions of persistent reduction in the
objective across iterations. The momentum update is given by

W(τ+1) = W(τ) − η∇J (W(τ)) + µ
(
W(τ) −W(τ−1)) , (2.33)

where η > 0 is the learning rate and µ is the momentum term. The term µ is usually
set to values such as {0.5, 0.9, 0.95, 0.99}

With the increasing growth of deep learning, a variant of the momentum update
has recently been widely used, namely the Nesterov momentum update [121, 122].
The Nesterov momentum update is written as

W(τ+1) = W(τ)− η∇J
(
W(τ) + µ

(
W(τ) −W(τ−1)))+µ

(
W(τ) −W(τ−1)) . (2.34)

Inspired by convex optimization, it has better convergence rate and seems to work
more effectively for optimizing some types of neural networks in practice than the
momentum update described above [121, 122].

A powerful trick that is frequently used to control overfitting at present is
dropout [123, 124]. This randomly drops units with probability q during training so
as to prevent units from co-adaptation too much. Dropout can be viewed alternatively
as a process of constructing new inputs by multiplying noise [119]. The probability
q is tunable but is usually set to either 0.2 or 0.5. It is observed that, dropout is
more effective than other common regularizers, such as the aforementioned weight
decay and L1 penalty regularization. Also combining dropout with unsupervised
pretraining may result in an improvement.
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2.2.2.4 Deep Learning

Neural networks have been gaining popularity and have been rebranded as deep
learning in the machine learning community since greedy layer-wise unsupervised
pre-training was first proposed to train very deep neural networks in 2006 [125,
126, 127]. These methods have dramatically advanced the state-of-the-art in speech
processing [128, 129, 130, 131], image recognition [132], object detection [133], drug
discovery [134], natural language understanding [135], language translation [136],
and paralinguistic tasks [40, 137]. Naturally, deep learning is a very broad family of
machine learning methods.

The wide-spreading success of deep learning has substantially encouraged both
industry and academics across the board. In speech recognition, many of the
major commercial speech recognition systems (e.g., Microsoft Cortana, Xbox, Skype
Translator, Apple Siri, and iFlyTek voice search) heavily depend on deep learning
methods. Such large successes of deep learning also happened in image recognition.
The real impact of deep learning in image recognition emerged when deep CNNs
won the ImageNet Large-Scale Visual Recognition Challenge 2012 by a large margin
over the then-state-of-the-art shallow learning methods [132]. Since then, the error
on the ImageNet task was further reduced at a rapid rate by different deep nets with
large amount parameters such as GoogLeNet[138]. Performance obtained by using
deep learning, on the ImageNet task, is close to that of humans [109]. Besides, deep
learning has been the most prevalent in image-related classification.

Whereas supervised learning has been the workhorse of recent successes of
deep learning, unsupervised learning also plays a key role in the renewed interest
of deep learning. For small datasets, unsupervised learning is used to initialize
neural networks, allowing to train a deep supervised network. By that, it can
prevent overfitting and often yields notable performance gains when compared to
models without using unsupervised learning. This recipe is referred to as greedy
layerwise unsupervised pre-training [126, 127, 139]. Moreover, it is highly believed
that unsupervised learning will become far more important in the future of deep
learning [102].

Advances in hardware have also been an important contributing factor for deep
learning. In particular, fast Graphics Processing Units (GPUs) are tailored to suit the
needs of matrix/vector computation involved in the forward pass and the backward
pass of deep learning. GPUs have been shown to train networks 10 or 20 times faster,
leading training times of weeks back to days. Most popular deep learning software
frameworks, such as Caffe [140], Theano [141], or CURRENNT [142], support parallel
GPU computing.

Up to now, in this section, the key topics needed to understand neural networks,
such as activation functions (see Section 2.2.2.1), BP (see Section 2.2.2.2), and
gradient descent (see Section 2.2.2.3), have been briefly discussed. On the basis
of them, this thesis will present several novel feature transfer learning methods

24



2.3. Classification Evaluation

which are exemplified by SER. Other important topics of neural networks, espe-
cially such as Convolutional Neural Networks (CNNs) [88], Recurrent Neural Net-
works (RNNs) [143], Long Short-Term Memory (LSTM) networks [144], Restricted
Boltzmann Machines (RBMs) [125], are not given in this thesis. The interested
reader is encouraged to refer to good surveys on the subject [102, 145, 146, 147, 148].

2.3 Classification Evaluation

In this section, the focus is placed on classification evaluation methods, which provide
a way of judging the quality of different classification systems. Evaluation criteria are
normally obtained by comparing discrete predicted class labels with the ground truth
targets [20]. Without loss of the general case, the classification task mathematically
can be seen as a mapping f from a vector x to a scalar y ∈ {1, . . . , c}

f : X→ {1, . . . , c} x 7→ y. (2.35)

After training, the classification system is evaluated on a different set of examples,
which is known as a test set. Given a test set Xte, each test example is labeled to
one target class t ∈ {1, . . . , c}, so the test set satisfies the following condition

Xte =
c⋃
t=1

Xte
t =

c⋃
t=1

{xt,n | n = 1, . . . , Nt}, (2.36)

where Nt is the number of examples in the test set that belong to class t, leading to
the size of the test set |Xte| =

∑c
t=1Nt.

In the general case of two or more class classification problems (i.e., c ≥ 2),
the most frequently used measure is the overall probability that a test example is
classified correctly [149], which is given by

Acc =
# correctly classified test examples

# test examples

=

∑c
t=1 |{x ∈ Xte

t | y = t}|
|Xte|

. (2.37)

This is known as accuracy (Acc) or simply recognition rate.
Another common measure is called recall that evaluates the class-specific perfor-

mance. Analogous to Equation (2.37), the recall has the dependence on the examples
only with class t

Recallt =
|{x ∈ Xte

t | y = t}|
Nt

. (2.38)

It is usually desired to take the distribution of all classes into consideration when
evaluating the general performance of a classification system. Let pt = Nt/|Xte|
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denote the prior probability of class t in the test set, the Weighted Average Recall
(WAR) is given by

WAR =
c∑
t=1

pt Recallt. (2.39)

Further, if the distribution of examples among classes is highly imbalanced, one
may prefer to replace the priors pt for all classes by the constant weight 1

c
. This is

known as Unweighted Average Recall (UAR) or unweighted accuracy

UAR =

∑c
t=1 Recallt

c
. (2.40)

It is worth noting that, the UAR is often used as the officially-recommended measure
for paralinguistic tasks [25, 26, 27]. For this reason, the UAR is adopted as the
primary metric to evaluate the recognition performance in this thesis.

2.4 Significance Tests

Apart from these above measures to compare different systems, it is often of interest
to further estimate the p-value obtained by significance tests, to show whether system
B performing significantly better than system A is due to ‘luck’. The following section
briefs on one frequently used type of significance tests for classification tasks.

The z-test as a simple variant of the binomial test described by Dietterich [150] is
widely used to assess whether the accuracies of two recognition systems A and B are
significantly different. Let pA and pB denote the probabilities of correct classification,
and without loss of generality, assume that pB > pA. Then, one gives a hypothesis
that the observed performance differences are the results of identical random processes
from the average probability of correct classification, pAB = (pA + pB)/2, and rejects
this hypothesis at a given level of significance.

If a random variable Nc denotes the number of correct classifications on the test
set, then under the null hypothesis Nc follows a binomial distribution with probability
pAB

Nc ∼ Bin(N, pAB), (2.41)

where Bin(·) denotes the binomial distribution function and N is the number of
examples in the test set.

Since the binomial distribution can be approximated by a normal distribution
with the estimated average NpAB and variance NpAB(1− pAB), the standard score
z is given by

z =
Nc −NpAB√
NpAB(1− pAB)

=
pB − pAB√
pAB(1− pAB)

√
N, (2.42)
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where pB is substituted for Nc/N .
Given the probability of observing the improved accuracy of B

P (Nc > pBN) = 1− P (Nc ≤ pBN), (2.43)

one-tailed p-values are calculated as

p = 1− Φ(z) < α, (2.44)

for the significance level α and the standard normal cumulative distribution function
Φ(·).

In general, the p-value represents the probability of rejecting the null hypothesis.
For example, if the p-value is lower than α (typically set as α < 0.05 in practice),
then one disproves the null hypothesis and therefore concludes there are significant
performance differences in the above case, i.e., system B is better than system A.

One remarkable advantage of the z-test is that its calculation is very simple and
easy, only depending on the accuracies of both systems and the size of the test set.
However, the z-test is likely to overestimate significance [150]. In spite of that, the
z-test is among the most broadly used. Throughout the thesis, the z-test is adopted
and the significance level α is 0.05 unless stated otherwise.
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Feature Transfer Learning

This chapter presents the topic of feature transfer learning. This can be extremely
useful in practice when the training set and the test set present a distribution
mismatch. This chapter starts by describing the distribution mismatch (Section 3.1),
which causes an adverse effect on classification. Then, it moves on to introducing
transfer learning and gives an overview of the related work with particular focus
on importance weighting methods and domain adaptation in speech processing
(Section 3.2). Next, a coarse framework of feature transfer leaning is laid out in
Section 3.3. Based on the major purpose of this thesis, i.e., reducing the problem
of a distribution mismatch, a variant of novel autoencoder-based feature transfer
learning methods is discussed in Section 3.4.

3.1 Distribution Mismatch

Many traditional machine learning methods may live up to expectations due to
one common assumption that training examples are drawn according to the same
feature space and the same probability distribution as the unseen test examples.
This assumption is important because it permits the estimation of the generalization
error and the uniform convergence theory gives essential guarantees on the accurate
classification. In real life, however, this common assumption rarely holds. By contrast,
one is often faced with the situations in which the training data are different from
that of unknown test data. The difference between the training and test data is
known as the distribution mismatch or dataset bias.

With the availability of rich data obtained from different devices and varied
acquisition conditions, unfortunately, a distribution mismatch happens in both
speech processing and image processing. For example, a common technique in speech
recognition is speaker adaptation which consists in adapting one previously trained
model to a new speaker (or even a group of speakers). In object recognition, it is
found that popular image datasets contain the existence of different types of built-in
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bias such as selection bias, capture bias, category or label bias, and negative set
bias [151, 152]. Besides, mismatches arise even when image datasets are neutrally
composed of images from the same visual categories. The mismatches can be due to
many external factors in image data collection, such as cameras, labels, preferences
over certain types of backgrounds, or annotator tendencies. In automatic dialog act
tagging, classifiers are trained on labeled sets, but then applied on new utterances
from different genre and/or language [153]. In cross-corpus emotion recognition from
speech, a classification engine trained on one corpus is evaluated by another which
may differ from labeling concepts and interaction scenarios. In the above two cases,
it is natural to observe the distribution mismatch.

In more general terms, we are all used to knowing the situation in which one
has a large number of labeled examples on a task drawn from one certain domain
(the source domain or the auxiliary domain in some studies), while one needs to
solve the same task on a domain of interest (the target domain) with few or even no
labeled data. In this situation, rather than tediously collecting and labeling data
and building a system from scratch, it is desirable to effectively take advantage of
examples from both domains, no matter how different the two domains might be.

3.2 Transfer Learning

This thesis takes advantage of transfer learning (also referred to as domain adaptation)
to address the general problem (i.e., the distribution mismatch) by leveraging over
prior knowledge found in one source when facing a new target task. The insight
behind transfer learning is that prior experience gained in learning to perform one
task can help with a related, but different task. The research topic of transfer
learning has long been studied in the psychological literature [154, 155]. It was found
that people appear to have the ability to transfer aspects of their prior knowledge
to guide their behavior in new settings. Similarly, researchers in the community of
machine leaning have put considerable efforts into replicating such transfer ability in
an artificial intelligence machine [15, 16].

The goal of transfer learning is to provide performance improvements in the
target task due to knowledge from the source task. There are three common types of
performance improvements along with the increase in the number of target training
examples [15], illustrated in Figure 3.1:

1. Higher start: the initial performance achievable in the target task is higher
than learning from the target task alone.

2. Higher slope: performance grows more rapidly than learning from scratch.

3. Higher asymptote: the final performance level is better compared to the final
level without transfer.
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Figure 3.1: Three ways in which transfer learning might provide the performance
improvements along with the increase in the number of target training examples.
The negative transfer occurs when a transfer method is forced to learn unrelated
sources. (The figure is taken from [15])

.

In addition to those benefits, a transfer learning method might even hurt per-
formance, which is called negative transfer. For a target task, the effectiveness of a
transfer learning method relies on the source task and the similarity between the
source and the target. If the similarity is close and the transfer learning method can
use it, the performance in the target task can dramatically improve through transfer.
However, if the source task is not sufficiently related or if the similarity is not well
exploited by the transfer learning method, the performance may not simply fail to
improve, but it may decline. Hence, one of the major challenges in developing transfer
learning methods is to achieve positive transfer between appropriately related tasks
while preventing negative transfer between tasks that are less related [15, 16].

Transfer learning is strongly related to multitask learning, which is to optimize
the performance over multiple tasks simultaneously by improving generalization of
a model from related tasks [156]. In order to improve performance of a categorical
emotion recognition task, for example, the multitask learning framework using the
deep belief network was applied to leverage the information of two related tasks
(arousal and valence) [157]. Transfer learning can be even regraded as a particular
form of multitask learning. For example, the shared-hidden-layer autoencoder model
(Section 3.4.5) is an instance of multitask learning that makes transfer learning
successful with neural networks in general. Although multitask learning is typically
used as a supervised learning method, the more general term of transfer learning is
considered in the context of unsupervised learning and reinforcement learning [158]
as well.

An extreme case of transfer learning is one-shot learning [159], where a new task
may be learned from a single training example (or just a few). One-shot learning is
possible because a model that has previously learned provides the model information
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that helps it to learn new tasks with fewer training examples. A related case of
one-shot learning is zero-shot learning [160], which tackles a more extreme situation
where no training examples are available.

Self-labeling approaches are popular among the various ways of transfer learning.
Self-labeling includes self-training and co-training. Generally speaking, these are
iterative methods that train an initial model based on the labeled source data, use
that to recognize the target data, then use the recognized labels for retraining the
model. The learning process involves the prediction work from the machine oracle
(e.g., the prediction uncertainty), the human oracle (e.g., the label uncertainty or
human agreement level), and the combinations thereof. Recently, the effectiveness
of self-labeling was empirically investigated in SER [161]. Active learning by label
uncertainty was found very efficient to reduce human labeling effort when building
a classifier for acoustic emotion recognition [55]. Zhang et al. [162] successfully
introduced co-training for the purpose of exploiting unlabeled data in acoustic
emotion recognition, where co-training is used to build two learners by maximizing
the mutual agreement on two distinct ‘views’ of the unlabeled data set. More recently,
a cooperative learning was proposed in order to take advantage of active learning
and self-training [163]. The cooperative learning method allows sharing the labeling
effort between human and machine oracles while easing the drawbacks of active
learning and self-training.

Several research projects have made use of transfer learning. One of the famous
such projects is the FP7 ERC starting grant project iHEARu1. It absorbs transfer
leaning and then attempts to develop a universal sound analysis system for com-
putational paralinguistics, which can be easily learned and can be adapted to new,
previously unexplored characteristics [164].

In general, transfer learning techniques are categorized into two classes depend-
ing on whether the target domain data are either partially labeled or completely
unlabeled. If there are a small amount of labeled target data, which are drawn from
the same distribution of the test data, the problem closely resembles semi-supervised
learning and is called semi-supervised transfer learning. In semi-supervised transfer
learning, correspondences of labeled target data are often used to learn domain
transformations [165]. On the other hand, if no labeled target data are available,
the problem is known as unsupervised transfer learning like unsupervised learning.
Unsupervised transfer learning uses strategies which assume a known class of trans-
formations between the domains, the availability of discriminative features which are
common to or invariant across both domains, a latent space where the difference in
distribution of source and target data is minimal [11, 166], and a mapping ‘path’ by
which the domain transformation maps the source data onto the target domain [167].

1http://www.ihearu.eu/
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3.2.1 Importance Weighting for Domain Adaptation

A naive approach to alleviating the dataset bias problem is to assign more weight to
those training examples that are most similar to the test data, and less weight to those
that poorly reflect the distribution of the target (test) data. This idea of weighting
the input data based on the test data is known as Importance Weighting (IW) for
covariate shift. The goal is to estimate importance weights β, from training examples
{xtri }ntr

i=1 and test examples {xtei }nte
i=1 by taking the ratio of their densities

β(x) =
pte(x)

ptr(x)
, (3.1)

where pte(x) and ptr(x) are test and training input densities [168, 169, 170]. Normally,
the IW optimization is formulated as a convex optimization model, which can be
efficiently solved by gradient descent and feasibility satisfaction iteratively.

For example, Kanamori et al. proposed Unconstrained Least-Squares Importance
Fitting (uLSIF) to estimate the importance weights by a linear model [168]. A similar
idea called Kullback-Leibler Importance Estimation Procedure (KLIEP) is proposed
in [169], where the importance function is formulated as a linear or kernel model, such
as Gaussian kernels, resulting in a convex optimization problem with a sparse solution.
Its goal is to estimate weights to maximize similarity between the test and weight-
corrected training distributions, but distribution similarity is formulated with respect
to Kullback-Leibler (KL) divergence. In addition, Kernel Mean Matching (KMM)
gave a straightforward way to estimate the importance weights, in order to lead
the weighted training distribution towards the test distribution [171]. In doing so,
distribution similarity is measured as the disparity in the weighted example means
of the data mapped in a reproducing kernel Hilbert space.

The three methods have recently been shown to lead to significant improvement
in acoustic emotion recognition when Hassan et al. first considered to explicitly
compensate for acoustic and speaker differences between training and test databases
[170]. For this reason, the three methods serve as the models for fair comparison
in the validation phase. Here, the characteristics of these methods are shortly
introduced. For more details on these algorithms, the interested reader is referred to
[168, 169, 171, 172, 173].

3.2.1.1 Kernel Mean Matching

Kernel Mean Matching (KMM) was proposed to deal with dataset bias by inferring
the importance weight directly by distribution matching of training and test sets
in feature space in a non-parametric way [171, 172]. As a result, the means of the
training and test examples in a reproducing kernel Hilbert space are close. The
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objective function is given by the discrepancy term between the two empirical means

J =

∥∥∥∥∥ 1

ntr

ntr∑
i=1

βiΦ(xtri )− 1

nte

nte∑
i=1

βiΦ(xtei )

∥∥∥∥∥
2

, (3.2)

where Φ(·) are the canonical mapping functions.

Using Kij
def
= k(xtri , x

tr
j ) and κi

def
= ntr

nte

∑nte

j=1 k(xtri , x
te
j ), the objective function above

can be regarded as the quadratic problem for finding suitable β

arg minβ
1
2
βTKβ − κTβ

s. t. βi ∈ [0, B] and

∣∣∣∣ntr∑
i=1

βi − ntr
∣∣∣∣ ≤ ntrε, (3.3)

where the upper limit of importance weight B > 0 and ε > 0 are tuning parameters,
and k is the kernel function. Since KMM optimization is formulated as a convex
problem, it can be solved efficiently using interior point methods or any other
successive optimization procedure and leads to a unique global solution. It can be
seen from the above that the solution β depends only upon the input training and
the test data without any requirement for estimating the true distributions. An
advantage of KMM, hence, is that it may avoid the curse of dimensionality.

In practice, a Gaussian kernel is typically chosen as the kernel in the learning
algorithm. Thus, there are three parameters that need to be tuned for the algorithm:
the Gaussian kernel width σ , the upper limit of importance weight B, and ε. To
reduce the great effort at tuning these parameters, it is suggested to use values of
σ = 0.1, B = 1000, and ε = (

√
ntr − 1/

√
ntr) are used.

3.2.1.2 Unconstrained Least-Squares Importance Fitting

Unconstrained Least-Squares Importance Fitting (uLSIF) formulates the direct im-
portance estimation problem as a least-squares function fitting problem [168, 173].
The resulting formulation can be seen as a convex quadratic problem, which can be
efficiently solved. Specifically, the importance β(x) is formulated by the following
linear mode in the form

β̂(x) = αTΦ(x), (3.4)

where α = (α1, . . . , αb)
T , is a parameter to be learned, b is the number of parameters,

Φ(x) = (Φ1(x), . . . ,Φb(x))T are basis functions so that Φ(x) ≥ 0.
To derive the parameters α, the following squared error is minimized

J =
1

2

∫ (
β̂(x)− pte(x)

ptr(x)

)2

ptr(x) dx

=
1

2

∫
1

2
β̂(x)2ptr(x) dx−

∫
β̂(x)pte(x) dx + C, (3.5)
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where C = 1
2

∫
β(x)pte(x) dx is a constant and is ignored in the objective function.

The squared error above is further rewritten as

J =
1

2
αTHα− hTα, (3.6)

where

H =

∫
Φ(x)Φ(x)T dx, (3.7)

h =

∫
Φ(x)pte(x) dx. (3.8)

Using the empirical approximation, one obtains the unconstrained formulation

arg min
α

1

2
αT Ĥα− ĥTα +

µ

2
αTα, (3.9)

where Ĥ is the b× b matrix and ĥ is the b-dimensional vector

Ĥ =
1

ntr

ntr∑
i

Φ(xtri )Φ(xtri )T , (3.10)

ĥ =
1

nte

nte∑
i

Φ(xtei ), (3.11)

and µ is a quadratic regularization term.
In contrast to KMM, an advantage of the above unconstrained formulation is

that the solution can be efficiently computed by solving a system of linear equations.
Therefore, the computation is fast and stable.

3.2.1.3 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler Importance Estimation Procedure (KLIEP) also directly gives an
estimate of the importance function by using the divergence between the importance-
weighted test distribution and the true test distribution in terms of KL diver-
gence [169].

Based on the basic importance model (see Equation (3.1)), an estimate of the
test density pte(x) is given by

p̂te(x) = β̂(x)ptr(x). (3.12)

In KLIEP, the parameters α are determined so that the KL divergence from
pte(x) to p̂te(x) is minimized
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KL(pte(x)‖p̂te(x)) =

∫
pte(x) log

pte(x)

β̂(x)ptr(x)
dx

= C −
∫
pte(x) log β̂(x) dx, (3.13)

where C = pte(x) log pte(x)
ptr(x)

dx is independent of α.

Ignoring the constant term and using the linear model (see Equation (3.4)), one
defines the objective function

J =

∫
pte(x) log β̂(x) dx

≈ 1

nte

nte∑
i=1

log β̂(xtei )

=
1

nte

nte∑
i=1

log

(
b∑
l=1

αlΦl(x
te
i )

)
. (3.14)

Using the empirical approximation based on the training examples, the KLIEP
optimization problem is given by

arg max
α

nte∑
i=1

log

(
b∑
l=1

αlΦl(x
te
i )

)

s.t.
ntr∑
j=1

b∑
l=1

αlΦl(x
tr
j ) and α ≥ 0, (3.15)

which is a convex optimization problem and leads to the global solution. The solution
α tends to be sparse, which contributes to speeding up the test phase.

3.2.2 Domain Adaptation in Speech Processing

ASR is faced with many similar mismatch problems, and the speech community has
done a considerable amount of related work to reduce the mismatch problem. In
return, ASR systems are capable of adapting to new environments and unknown
target speakers.

Vocal Tract Length Normalization (VTLN) is a frequently-used way of doing
fast speaker adaptation [174]. The underlying aim is to cushion the effect of vocal
length variation on speakers. Based on the observation that the effect of vocal tract
length can be modeled well by a linear warping of the frequency axis, it warps the
frequency axis of the acoustic features by a speaker-specific warping factor, usually
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towards a global average vocal tract length. The resulting spectral estimates are
more homogeneous across speakers and thus more suitable for speech processing.
However, its performance is somehow confined to a manually designed frequency
warping function. Interestingly, VTLN may have different usage. A method, called
vocal tract length perturbation, uses VTLN to augment mel log filter bank training
data [175]. In this method, VTLN is used to generate random distortions, creating
an augmented dataset. In turn, a learner trained on the augmented data can learn
to be invariant to vocal tract length differences.

A technique of speaker adaptation that estimates a set of transformations to
mitigate the mismatch between an initial model and the adaptation data is called
Maximum Likelihood Linear Regression (MLLR). Specifically, MLLR computes a
set of linear regression-based transformations for the mean and variance parameters
of an HMM system. The transformation matrices are computed to maximize the
likelihood of the adaptation data and can be implemented using the forward-backward
algorithm. By applying the transformations to shift the component means and modify
the variance in the initial model, each state in the HMM system more easily generates
the adaptation data. A notable advantage of this method is that arbitrary adaptation
data can be used [176].

Cepstral Mean Normalization (CMN) is a simple method to make speech recog-
nition systems more robust to acoustic environment changes. This is performed by
subtracting the mean value of the cepstrum calculated across the whole utterance.
The method does not require prior knowledge of the new environment, so it adapts
quickly to changing environment.

One major research direction focuses on leveraging neural networks to compensate
for the effects of the mismatch problems in an automatic way. To enable adaptation
using small amounts of unlabeled speech data from a new speaker, a feed-forward
network based method is proposed to factor the speech knowledge into speaker-
independent models, continuous speaker-specific parameters, and a transformation
which alters the models in accordance with the speaker parameters [177]. In [178, 179],
auto-associative neural networks are used in a way of capturing the speaker-specific
features so that the effects of the mismatch problem are optimally minimized. Due
to the recent popularity of DNNs for acoustic modeling, a large number of speaker
adaptation techniques placed focus on DNN acoustic models [180, 181]. An intuitive
way is to modify part or all of DNN weights using the available adaptation data based
on the standard BP training procedure [182]. To enable very fast adaptation using
only a very limited amount of adaptation data, a small size of speaker-dependent
code is designed as a compact description of each speaker [181], which is estimated by
optimizing the overall composite network performance. As a result, speech features
are transformed into a speaker-independent space based on the speaker code in order
to normalize speaker variations.

Domain adaptation has also been increasingly studied for cross-corpus exper-
iments [12, 13, 183]. For acoustic emotion recognition, it is empirically reported
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Figure 3.2: Overview of a basic recognition system integrating target adaptation.
Target adaptation is achieved by feature transfer learning in this thesis.

that performance decreases greatly when directly operating cross-corpora-wise [12].
In [183], adding unlabeled emotional speech to agglomerated multi-corpus training
sets can improve recognition performance across emotion models, emotion elicitation
methods, and acoustic conditions. Recently, domain adaptation has even been intro-
duced to explore the similarities between the acoustic structure of music and speech
signals in the communication of emotion. Inspired by denoising autoencoder based
transfer learning, Coutinho et al. [184] demonstrated that domain adaptation using
LSTM networks is suitable for cross-modal time-continuous predictions of emotion
in the acoustic domain.

3.3 Feature Transfer Learning

Feature transfer learning aims to distill a common representation across the source
domain and the target domain, which can make the two domains appear to have
similar distributions, leading to positive transfer. For feature transfer learning to
occur, a target adaptation module needs to be added to the top of the feature
extraction in a basic recognition system. Such an adaptation module aims to adapt
a classifier trained on the source data for use in the target data (see Figure 3.2). In
order to alleviate the distribution mismatch (see Section 3.1), normal feature transfer
leaning methods either alter the original feature space or map the original feature
space into a new space which is predictive across both domains.

Probably the simplest approach of feature transfer learning might be the feature
augmentation method introduced by Daumé III [185]. In this approach, feature
transfer learning is achieved by taking each feature in the original problem and
duplicating each feature to three versions: a general version, a source-specific version,
and a target-specific version. Therefore, the augmented source data contain only
general and source-specific versions, while the augmented target data consist of
general and target-specific versions. Afterwards, the augmented data are fed into
common supervised learning algorithms. The most appealing advantage of this
approach is that it is extremely easy to implement.

Besides, more sophisticated feature transfer approaches have been proposed for
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the last decade. Blitzer et al. [186] introduced the concept of pivot features from
structural correspondence learning to identify correspondences among features from
different domains. Specifically, pivot features are features which behave in the same
way for discriminative learning in both domains. Non-pivot features from different
domains, which are correlated with many of the same pivot features, are assumed
to correspond. In the context of multitask learning, Argyriou and Evgeniou [187]
presented a sparse feature method to learn a low-dimensional representation shared
across multiple related tasks.

Feature transfer learning has really emerged as the major research direction in
transfer learning in recent years due to the increasing growth of feature learning.
Feature learning (or representation learning) tries to automatically learn transfor-
mations of the data that make it easier to extract useful information when building
classifiers or other predictors [146]. Feature learning approaches most commonly
used for transfer include sparse coding, Principal Component Analysis (PCA), and
autoencoders. The goal of these approaches is to learn either a low-dimensional
latent feature space or a shared feature space. The resulting feature space can
serve as a bridge of transferring meaningful knowledge from the source domain to
the target domain. PCA is a simple, non-parametric method, which is typically
used to project the data along the direction of maximal variance. But combining
PCA and a Bregman divergence-based regularization became an effective transfer
learning method which can result in a subspace wherein the distribution difference
between two domains is minimized [188]. Sparse coding was originally proposed
as an unsupervised feature learning model [189]. Based on sparse coding, Raina
et al. [190] presented a self-taught learning framework to exploit the unlabeled data.
Besides, the use of sparse coding and dictionary learning also works well in the
context of transfer leaning and multitask leaning [191]. The core idea is that the task
parameters can be well approximated by sparse linear combinations of the atoms of
a dictionary on a high or infinite dimensionality.

A notable advantage of feature learning is that it can produce distributed (or
sparse) and abstract features [146]. Distributed features are expressive, which means
that a reasonably-size learned representation can capture a huge number of possible
input configurations. In other words, they are insensitive to small variations of a
given input. More abstract concepts are generally invariant to most local changes
of the input. That makes the representations that capture these concepts generally
highly nonlinear functions of the raw input. Thus, distributed and abstract features
potentially have greater predictive power.

The focus of this thesis is mainly placed on autoencoder based feature transfer
learning. Unlike sparse coding which consists in solving a convex optimization
problem, the solution of the autoencoder model is determined by optimizing a
neural network. Autoencoders embrace the great advantage of feature learning, i.e.,
producing distributed and abstract features. That is true of deep architectures,
where they tend to result in progressively more abstract features at higher layers
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of representations [146]. As an example, a deep architecture can automatically
find patterns in a hierarchy in the large amount of raw image data, including
edges and circles, semantic textons, motifs, discriminative parts of the image (e.g.,
eyes and noses), and objects. For speech, deep architectures can discover multiple
spectral bands and phone classes from the raw time speech signal [48, 50]. Most
importantly, autoencoder based feature transfer learning algorithms have shown an
advantage for transfer learning tasks because, in practice, they won the two transfer
learning challenges held in 2011. Other examples of the successful application of
such algorithms can be found in sentiment classification [166, 192].

3.4 Feature Transfer Learning based on Autoen-

coders

3.4.1 Notations

To facilitate discussion, this section first introduces some notations. In this thesis, the
superscript notations t and s are used to distinguish the target domain and the source
domain. Therefore Dt represents data in the target domain, Ds represents data in
the source domain. Let us assume a given target training set of nt examples Xt =
{xt1, . . . ,xtnt

} , along with a corresponding label set tt = {tt1, . . . , ttnt
} drawn from

some distribution Dt, and a source training set of ns examples Xs = {xs1, . . . ,xsns
} ,

along with a corresponding label set ts = {ts1, . . . , tsns
} drawn from some distribution

Ds. Given the dimension of features n and the overall number of classes nc, the
target training set and the source share the same feature space and label space, i.e.,
each input feature vector xi ∈ Rn and the corresponding class label ti ∈ {c1, . . . , cnc}.
However, we do not assume that the target data Xt was drawn from the same
distribution as the source data Xs, which means the classifiers learned from the
source set cannot classify the (target) test data well due to different data distribution.
In addition, the size of Xt is often inadequate to train a good classifier for the test
data. Transfer learning aims to help improve the learning of the target predictive
function in Xt using the knowledge in Xs [16]. Note that, the following sections
apply the above definitions to introduce different autoencoder based feature transfer
learning algorithms. Throughout the thesis, we assume θ refers to the tunable
parameters in the proposed autoencoder models.

3.4.2 Autoencoders

The most common example of feature learning approaches is the autoencoder network.
An autoencoder, also known as a single-hidden layer feedforward neural network, is
an unsupervised learning method which sets the target values to be equal to the
input and then learns new representations from the data in a nonlinear parametric
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closed form [193, 194, 195]. It is typically composed of an encoder that takes
the input data and computes a different representation, and a decoder that takes
the new representation given by the encoder and generates a reconstruction of the
original input. When learning proceeds to minimize recognition error based on the
Backpropagation (BP) procedure, autoencoders are not only expected to preserve as
much information as possible, but are also expected to make the new representation
have desired properties.

There are variants of autoencoders which are often used as a key element in deep
learning to find common data representation from the input [126, 196]. For example,
a successful autoencoder variant is the denoising autoencoder put forward by Vincent
et al. [197], based on the motivation of robustness to small input perturbations.
The denoising autoencoder simply injects noise in the input and then sends the
corrupted form through the autoencoder. Further, it is trained to reconstruct the
clean and complete input (i.e., to denoise). In doing so, it has to capture the essential
structure of the data distribution. In emotion recognition applications, the denoising
autoencoder is found very suitable to model gender information in speech emotional
features [70]. In addition to the denoising autoencoder, if a sparsity constraint is
imposed on the representation, such autoencoders are called sparse autoencoders. The
aim is to have a majority of the elements of the representation close to zero. Besides,
Contractive autoencoders encourage the intermediate representation to be robust
to small changes of the input around the training examples by using a well chosen
penalty term. This penalty term corresponds to the Frobenius norm of the Jacobian
matrix of the encoder activations with respect to the input [198]. The contractive
autoencoder is strongly related to the denoising autoencoder. It is shown that, in
the limit of small Gaussian corrupted input noise, the denoising reconstruction error
amounts to a contractive penalty on the reconstruction [199].

The aforementioned autoencoders directly ignore the 2D image structure. This
is not only a problem when dealing with realistically sized inputs, but also brings
redundancy to the parameters, forcing each feature to be global (i.e., to span the
entire visual field). In fact, the trend in vision and object recognition often used
by the most successful models such as CNNs is to discover localized features that
repeat themselves all over the input. Convolutional autoencoders are different from
common autoencoders because they include a pooling layer, such as max-pooling,
and make use of shared weights among all locations in the input. The reconstruction
is hence due to a linear combination of basic image patches based on the internal
representation [200]. One major advantage of a convolutional autoencoder is that
the resulting representations given by the convolutional autoencoder are likely to
tolerate translation of the input image.

An autoencoder, like a basic neural network (Section 2.2.2), consists of an input
layer, a hidden layer, and an output layer, illustrated in Figure 3.3. Formally, in
response to an input example x ∈ Rn, the hidden representation h ∈ Rm, or code is
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Figure 3.3: An autoencoder architecture. An autoencoder, a special feed-forward
neural network, consists of an input layer, a hidden layer, and an output layer.

z(1) = W(1)x + b(1), (3.16)

h = f(z(1)), (3.17)

where f(·) is specified as an activation function (typically a logistic sigmoid function
or hyperbolic tangent non-linearity function applied component-wise), W(1) ∈ Rm×n

is a weight matrix, and b(1) ∈ Rm is a bias vector. This process that nonlinearly
transforms an input into a new representation is known as the encoder. After the
autoencoder training, the encoder usually produces the representation more robust
than the original input, which can be applied to the subsequent process.

The decoder maps the hidden representation h back to a reconstruction y ∈ Rn

z(2) = W(2)h + b(2), (3.18)

y = f(z(2)), (3.19)

where W(2) ∈ Rn×m is a weight matrix, and b(2) ∈ Rn is a bias vector. If the two
weight matrices are constrained to be of the form W(2) = (W(1))T , this is known as
tied weights which appears to reduce the number of adaptive parameters.
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Algorithm 3.2 Backpropagation (BP) for autoencoders using matrix-vectorial
notation

1: Perform a forward pass, computing the activations of the hidden and output
units, using Equations (3.16–3.19).

2: For the output layer, evaluate

δ(2) = −2(x− y) ◦ f ′(z(2)). (3.21)

3: For the hidden layer, compute

δ(1) =
((

W(2)
)T
δ(2)
)
◦ f ′(z(1)). (3.22)

4: Evaluate the gradients of J w.r.t.W(1),b(1),W(2), and b(2).

∂J
∂W(1)

= δ(1)xT ,

∂J
∂W(2)

= δ(2)(h(1))T ,

∂J
∂b(1)

= δ(1),

∂J
∂b(2)

= δ(2).

(3.23)

Given a set of input examples X, the autoencoder (AE) training consists in finding
a set of parameters θ =

{
W(1),W(2),b(1),b(2)

}
by minimizing the reconstruction

error. Many different objective forms can be used as a measure of the reconstruction,
in dependence on the distributional assumptions on the input given the representation.
If the input is interpreted as either binary vectors or discrete vectors, the cross-
entropy objective function can be used. For the real-valued input, the SSE (see
Section 2.2.2) can be used

J AE(θ) =
∑
x∈X

∥∥x− y
∥∥2. (3.20)

The minimization is usually realized either by BP with SGD or more advanced
optimization techniques such as the L-BFGS or conjugate gradient algorithms.

As discussed in Section 2.2.2.2, standard neural networks often apply the BP
algorithm to compute the gradient of the objective function with respect to the
parameters. Here, like the standard BP algorithm (see Algorithm 2.1), the BP
algorithm for basic autoencoders with the objective function in Equation (3.20) is
presented in Algorithm 3.2. In the following sections, a number of novel autoencoders
will be given based on the basic autoencoder, so that feature transfer learning
would profit from the internal representations learned by these autoencoders. For
the purpose of helping the reader implement these transfer learning algorithms,
the process of computing the gradient information can be achieved by accordingly
modifying Algorithm 3.2.
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Figure 3.4: Two normal cases of autoencoders, i.e., under-complete autoencoders
(number of input units is greater than number of hidden units) and over-complete
autoencoders (number of input units is less than number of hidden units).

The topology structure of the autoencoder completely relies on the size of the
input layer n and the number of hidden units m. Based on the relation between them,
there are two normal cases of autoencoders, namely under-complete autoencoders
and over-complete autoencoders, illustrated in Figure 3.4. The under-complete
autoencoder corresponds to an autoencoder in which the number of the input units
is more than that of the hidden units, i.e., n > m. The under-complete autoencoder
attracted major attention of the early work because it can easily avoid learning
useless representations. It is agreed that an under-complete autoencoder is sometimes
equivalent to PCA if linear activation functions or only a sigmoid activation function
are used. This implies that such an autoencoder can only capture a set of directions
of variation that are the same everywhere in space [146, 194]. By contrast, the
over-complete autoencoder, with an explicit constraint that the input dimension
is less than the hidden dimension n < m, is also applicable and becoming more
interesting. Recent work showed that the over-complete framework allows such
autoencoders to capture the structure of the input distribution. Hence, the hidden
layer size of an autoencoder is very crucial to controlling both the dimensionality
reduction and the capacity.

3.4.3 Sparse Autoencoder

Speech is produced by modulating a relatively small number of parameters of a
dynamical system [201, 202], and this implies that its true underlying structure is
much lower-dimensional than is immediately apparent in a window that contains
hundreds of coefficients [128]. It is believed, therefore, that speech emotional features
also have such underlying structure if there is a method that can effectively exploit
information embedded in a large data set. To allow for feature transfer learning,
one can use the underlying feature structure learned from target data to reconstruct
other source data accordingly and preserve the data’s own information as much as
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possible. The Sparse Autoencoder (SAE) is used to exploit the underlying feature
structure on target data, represented by a set of weight matrices and a bias vector.
Given source data are fed to the learned autoencoder structure to reconstruct its
own. This section describes briefly the SAE, and then presents in detail the sparse
autoencoder feature transfer learning.

Sparsity is of strong interest in computational neuroscience and machine learning.
Olshausen and Field [189] first presented in computational neuroscience that sparsity
can be induced by sparse coding which can result in the sparse representation of
natural images sufficient to account for the principal spatial properties of simple-cell
receptive fields. In pursuit of sparsity, a learning algorithm usually attempts to
convert its input into a new sparse representation, whose elements are mostly either
close to zero or equal to zero. Sparsity has been widely used in various autoencoders
to produce a sparse distributed representation [127, 165]. It has also been a key
element of modern neural networks. For example, the L1 penalty term, leading to a
solution with sparse parameters, has been found useful to prevent the overfitting issue
in neural networks. Plus, the widespread acceptance of the ReLU activation function
(see Section 2.2.2.1 ) is due to its ability to easily produce sparse representation [106].

Sparsity has a lot of notable advantages. An advantage of sparsity is that
a sparse representation may facilitate information disentangling in deep learning
algorithms. A dense representation is highly sensitive to any change in the data.
In contrast, a sparse representation is more robust because small input changes
produce almost negligible effects on the set of non-zero features. Another advantage
is that a spare representation is more prone to be decoded by a linear model at a
very low computational cost. Also sparsity plays a key role in learning Gabor-like
filters [203]. A sparse variant of deep belief networks is proposed to faithfully mimic
certain properties of the visual area V2 in the cortical hierarchy. The first layer
of the network results in localized, oriented, edges filters. Further, the network
can effectively discover high-level features in the image data. Nevertheless, it is
worth noting that, bringing too much sparsity to a model may adversely affect the
generalization performance since it limits the capacity of the model.

An SAE is a simple autoencoder on whose objective function is often imposed a
sparsity penalty in addition to the reconstruction squared error. A sparsity penalty
term acts as a regularizer or as a log-prior on the representations h. For example, it
is common to make use of the Laplace prior or the Student-t prior [189] to construct
the sparsity penalty.

Another common form of a sparsity penalty for SAEs is to exploit some distri-
bution similarity measure so as to lead the representation towards some low target
value. Here, a sparsity penalty, which was introduced in [203], is given in detail. The
idea of such a penalty is to constrain the expected activation of the hidden units to
be sparse. To this end, a regularizer is added so that it penalizes a deviation of the
expected activation of the hidden units from a (low) fixed level ρ such as ρ = 0.05.
Similar to normal autoencoders introduced in Section 3.4.2, thus, an SAE tries to

45



3. Feature Transfer Learning

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

ρ̂j

S
P

(ρ
||ρ̂

j
)

ρ = 0.2
ρ = 0.6

Figure 3.5: Sparsity penalty function SP(ρ||ρ̂j) with respect to ρ̂j given ρ = 0.2 or
ρ = 0.6, which is successfully applied to a sparse autoencoder.

solve the following optimization problem

J SAE(θ) =
∑
x∈X

∥∥x− y
∥∥2 + β

m∑
j=1

SP(ρ||ρ̂j), (3.24)

where

SP(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(3.25)

is a sparse penalty term, ρ̂j = 1
N

∑N
i=1 hj(xi) is the average activation of hidden unit

j (averaged over the training set), m is the number of hidden units, ρ ∈ [0, 1) is a
sparsity level, and β controls the weight of the sparsity penalty term.

In the above objective function, in fact, the penalty SP(ρ||ρ̂j) is just the KL
divergence between the Bernoulli random variable with mean ρ and the Bernoulli
random variable with mean ρ̂j. The KL divergence is a measure of the difference
between two different distributions [204]. The KL divergence satisfies KL(p||q) ≥ 0
and has the crucial property that KL(p||q) = 0 if, and only if q = p, and otherwise it
rises monotonically as q diverges from p. Analogous to the KL divergence, the penalty
function SP(ρ||ρ̂j) reaches its minimum of 0 at ρ̂j = ρ, and dramatically grows as ρ̂j
comes close to 0 or 1 (cf. Figure 3.5). By that, ρ̂j is expected to approximate ρ in
the learning phase. To induce sparsity in the representation, hence, ρ is often set to
a small value, for example, ρ = 0.01 in this thesis.

Despite SAEs involve the sparse penalty term, it is still easy to find a solution to
the objective function through the BP algorithm. The learning of SAEs proceeds
in a similar way as common autoencoders, which was presented in Algorithm 3.2.
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Algorithm 3.3 Sparse Autoencoder (SAE) Feature Transfer Learning

Input: Two labeled data sets Xt and Xs, and the corresponding class set
{c1, . . . , cnc}, nc is the overall number of classes.

Output: Learned classifier C for the target task.
1: Initialize reconstructed data X̃s = ∅.
2: for k = 1 to nc do
3: Initialize an autoencoder SAEk(θ).
4: Choose class-specific examples Xt

ck
from Xt.

5: Train SAEk(θ) using Xt
ck

.
6: Choose class-specific examples Xs

ck
from Xs.

7: Reconstruct the source Xs
ck

: X̃s
ck

= SAEk
Recon(Xs

ck
) (cf. Equation (3.27)).

8: Update the reconstructed data X̃s = X̃s ∪ X̃s
ck

.
9: end for

10: Learn a classifier C by applying supervised learning algorithm s (e.g., SVMs) to
the reconstructed data X̃s.

11: return The learned classifier C.

However, it is still necessary to replace Equation (3.22) with the following term

δ(1) =
((

W(1)
)T
δ(2) + βSP(ρ||ρ̂)1

)
◦ f ′(z(1)), (3.26)

where SP(ρ||ρ̂) ∈ Rm, 1 is a row vector, whose size depends on the number of training
examples N .

3.4.3.1 Sparse Autoencoder Feature Transfer Learning

Since speech can be segmented into units of analysis, such as phonemes, previous
work tends to learn a sparse representation in speech related tasks via stacked
autoencoders. For example, Dahl et al. [205] proposed a context-dependent model
for large vocabulary speech recognition that uses deep belief networks for phone
recognition. This is not applicable in emotion recognition from speech since common
units of analysis can be hardly found. However, emotional features are highly
correlated in terms of a specific emotion, thus examples with the same emotional
state can be assumed to share implicitly a common structure. The autoencoder has
shown the capability of discovering a common structure in the data. Motivated by
these, a sparse autoencoder-based feature transfer learning method is presented for
semi-supervised transfer learning.

For class label ck in the target training data Xt, first apply an SAE to class-specific
examples Xt

ck
⊂ Xt to learn a set of parameters W1, W2, b1, and b2. To transfer

each of the class-specific examples Xs
ck

from the source data Xs, i.e., Xs
ck
⊂ Xs,

to the target domain, then compute features X̃s
ck

based on the learned set of the
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Figure 3.6: Flowchart of sparse autoencoder (SAE) feature transfer learning for a
two-class problem. Examples with different labels are indicated by the dots and
circles.

parameters by the forward pass

X̃s
ck

= SAERecon(Xs
ck

), (3.27)

where SAERecon(x) = f(W(2)f(W(1)x+b(1))+b(2)) is the output of the autoencoder.
The aim of Equation (3.27) is to force the input source Xs

ck
to reconstruct itself

through computing a sparse nonlinear combination of the parameters learned on the
target data. The reconstructing procedure, in turn, decreases the difference between
the source data and the target data, as well as completes the feature transfer from
the source domain to the target domain.

A formal description of the framework is given in Algorithm 3.3 and its flowchart
is demonstrated in Figure 3.6. As can be seen from the algorithm, at each iteration
step, examples belonging to class ck in the target set are used to train an SAE
denoted SAEk(θ) which captures a general mapping structure for the input examples.
Then, the algorithm moves to transfering information from the source to the target
domain. For the source set, examples with the corresponding class are reconstructed
by using SAEk

Recon(Xs
ck

) , as described in Equation (3.27), according to the mapping

structure learned by the trained autoencoder SAEk(θ∗). Next, like most emotion
recognition systems, this algorithm uses these reconstructed features as input to
standard supervised classification algorithms C – here, SVMs. Finally, a test partition
is used to evaluate the classifier. Apparently the small amount of the labeled target
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Figure 3.7: A denoising autoencoder (DAE) architecture. An input x is corrupted
(via qD) to x̃. The black crosses (“×”) illustrate a corrupted version of the input x
made by qD.

data play a key role in the transfer method. Hence, the presented transfer method
suits for a semi-supervised transfer learning problem.

3.4.4 Denoising Autoencoders

A Denoising Autoencoder (DAE) – a more recent variant of the basic autoencoder – is
trained to reconstruct a clean ‘repaired’ input from a corrupted version [197]. In doing
so, the learner must capture the underlying structure of the input distribution in
order to reduce the effect of the corruption process [146]. It turns out that in this way
more robust features are learned compared to a basic autoencoder. Due to this useful
characteristic, the DAE has been broadly adopted to efficiently help provide better
representation in SER [70, 206, 207]. Furthermore, a DAE with bidirectional LSTM
recurrent neural networks has been successfully applied to acoustic novelty detection,
aiming at identifying abnormal/novel acoustic signals [208]. The architecture of a
DAE is given in Figure 3.7.

A DAE closely resembles an autoencoder introduced in Section 3.4.2. In a DAE,
however, there is a particular process, adding artificially noise to the input. That
is, an input example x ∈ Rn is converted to a corrupted version x̃ by means of
a corrupting function x̃ ∼ qD(x̃|x), which could be either a binary masking noise
(deleting random elements of the input), or additive isotropic Gaussian noise, or
salt-and-pepper noise in images.

In particular, a binary masking noise randomly chooses a part of the input
elements and has their value set to 0. Mathematically, a corrupting function using a
binary masking noise can be written as

x̃ = Bin(n, 1− pn) ◦ x (3.28)
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Algorithm 3.4 Denoising Autoencoder (DAE) Feature Transfer Learning

Input: Unlabeled target data set Xt, labeled source set Xs.
Output: Learned classifier C for the target task.

1: Initialize an autoencoder DAE(θ), θ =
{
W(1),W(2),b(1),b(2)

}
.

2: Train DAE(θ) using Xt.
3: Obtain the encoder: Encoder(x) = f(W(1)x + b(1)) (cf. Equation (3.17)).
4: Generate the target representation Ht: Ht = Encoder(Xt).
5: Generate the source representation Hs: Hs = Encoder(Xs).
6: Learn a classifier C by applying supervised learning algorithm s (e.g., SVMs) to

the source representations Hs.
7: return The learned classifier C.

where Bin(·) denotes the binomial distribution function, n denotes the dimension of x,
and the symbol “◦” denotes the Hadamard product, also known as the element-wise
product, pn ∈ [0, 1) is the given corruption level.

After the corrupting process, the corrupted version x̃ of the input runs through
the encoder and decoder. Then, the objective function is used to measure the
difference between the reconstruction and the clean input. It turns out that such an
autoencoder has the ability to meaningfully capture the structure of the input data.

Typically one can simply perform BP to compute gradients, similar to regular
autoencoders (Algorithm 3.2). The only difference is the corruption of the input.
More details on DAEs can be found in [197].

3.4.4.1 Denoising Autoencoder Feature Transfer Learning

DAEs have been successfully applied to feature transfer learning. For example,
Glorot et al. [166] applied a stacked DAE with sparse rectifiers to domain adaption
in large-scale sentiment analysis. Another successful application of DAE feature
transfer learning was applied in the field of image processing [209].

Here, denoising autoencoder feature transfer learning is given as follows. The
pseudocode is described in Algorithm 3.4. For the purpose of discovering the
knowledge from the target domain, the unlabeled target data Xt are fed into the
training procedure of a DAE. Then, both the target data Xt and the source data Xs

are transformed to their new representations (Ht and Hs) according to the feature
encoding function (Equation (3.17)). In this way, the difference between the target
data and the source data in the new space only learned on the target data is hopefully
decreased. Afterwards, these representations are taken to build a standard supervised
classifier.

During yielding the feature transformation, however, this method apparently
ignores an attempt to explore the information behind the source data, and forces
the source data to generate their new representation under the characteristics as

50



3.4. Feature Transfer Learning based on Autoencoders

given by the target data. In this case, one may unexpectedly lose those examples of
the source data that are not following these characteristics, such that one may lose
information useful for the subsequent supervised classifier to a certain degree. Even
worse, negative transfer learning may arise, which may lead the learner to performing
worse than no transferring at all [16]. Nevertheless, the denoising autoencoder
transfer method is appealing since it is a simple but efficient transfer technique.

3.4.5 Shared-hidden-layer Autoencoders

The idea behind transfer learning is to exploit commonalities between different
learning tasks in order to share statistical strength, and transfer knowledge across
tasks [15, 146, 210]. As an example, for a low-level visual feature space together with
attribute and object-labeled image data, a convex multitask feature learning approach
was introduced to learn a shared lower-dimensional representation by optimizing
a joint loss function that favors common sparsity patterns across both types of
prediction tasks [211]. This idea also seems to be very helpful for multimodal learning,
which involves discovering relationships across multiple sources. For example, a
shared representation learning structure based on deep autoencoders was found to
be a very efficient way of modeling correlations across speech and visual signals [212].
Similar to this work, a recent approach proposes a multimodal deep Boltzmann
machine model for learning joint representations in multimodal data [213]. The key
idea is to learn a joint density model over image and text inputs.

Based on the motivation of the ‘sharing idea’ in transfer learning, this section
proposes an alternative structure of autoencoder that attempts to minimize the
reconstruction error on both source set and target set [206]. The Shared-hidden-layer
Autoencoder (SHLA) shares the same parameters for the mapping from the input
layer to the hidden layer, but uses independent parameters for the reconstruction
process. This makes it much easier to discover the nonlinear commonalities across
different sets. The structure of the SHLA is shown in Figure 3.8.

Following the notations used for the introduction of autoencoders in Section 3.4.2,
this section presents the formulations of the SHLA method as follows. Given a source
set of examples Xs, and a target set of examples Xt, the two objective functions,
similar to Equation (3.20), are formed as follows

J s(θs) =
∑
x∈Xs

‖x− y‖2 , (3.29)

J t(θt) =
∑
x∈Xt

‖x− y‖2 , (3.30)

where the parameters θs =
{
W(1),Ws(2),b(1),bs(2)

}
, and θt =

{
W(1),Wt(2), b(1),

bt(2)
}

share the same parameters {W(1),b(1)}.

51



3. Feature Transfer Learning

...

...

... ...

Input layer

Hidden layer

{
x : x ∈ Xs ∪Xt
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{y : y ∈ X̂s} {y : y ∈ X̂t}

Figure 3.8: Structure of the Shared-hidden-layer Autoencoder (SHLA) on the source
set Xs and target set Xt. The SHLA shares the same parameters for the mapping
from the input layer to the hidden layer, but uses independent parameters for the
corresponding reconstructions X̂s and X̂t.

Besides, optimizing the joined distance for the two sets leads to the following
overall objective function

J SHLA(θ) = J s(θs) + γJ t(θt), (3.31)

where θ =
{
W(1),Ws(2),Wt(2),b(1),bs(2),bt(2)

}
are the parameters to be optimized

during training, and the hyper-parameter γ controls the strength of the regularization.
Training the SHLA is equivalent to training a basic autoencoder, and the standard

BP algorithm can be applied. Nevertheless, it is necessary to make the following
modifications to the original BP for the SHLA.

∂J t

∂W(1)
= δt(1)(xt)T , (3.32)

∂J s

∂W(1)
= δs(1)(xs)T , (3.33)

∂J SHLA

∂W(1)
=

∂J s

∂W(1)
+ γ

∂J t

∂W(1)
, (3.34)

∂J SHLA

∂b(1)
= δt(1) + γδs(1). (3.35)

By explicitly adding the regularization term from the target set, the SHLA is
equipped with extensive flexibilities to directly incorporate the knowledge of the
target set. Hence, during minimizing the objective function, the shared hidden layer
is biased to make the distribution induced by the source set as similar as possible to
the distribution induced by the target set. This helps to regularize the functional
behavior of the autoencoder. It further turns out to lessen the effects of the difference
in the source and target sets.
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Algorithm 3.5 Shared-hidden-layer Autoencoder (SHLA) Feature Transfer Learning

Input: Unlabeled target data set Xt, the labeled source set Xs.
Output: Learned classifier C for the target task.

1: Initialize an autoencoder SHLA(θ), θ =
{
W(1),Ws(2),Wt(2),b(1),bs(2),bt(2)

}
2: Train SHLA(θ) using Xt and Xs.
3: Obtain the encoder: Encoder(x) = f(W(1)x + b(1)) (cf. Equation (3.17)).
4: Generate the target representation Ht: Ht = Encoder(Xt).
5: Generate the source representation Hs: Hs = Encoder(Xs).
6: Learn a classifier C by applying supervised learning algorithm s (e.g., SVMs) to

the source representations Hs.
7: return The learned classifier C.

Besides, the SHLA can be regarded as an instance of multitask learning [156].
From the point of view of multitask learning, the low layer of the SHLA can be
shared across all domains, while domain-specific parameters of the last layer can be
learned on top of a shared representation (associated respectively with {Ws(2),bs(2)}
and {Wt(2),bt(2)}). In this way, improved generalization can be achieved by the
SHLA due to the shared parameters.

3.4.5.1 Shared-hidden-layer Autoencoder Feature Transfer Learning

Algorithm 3.5 depicts the pseudocode of the shared-hidden-layer autoencoder feature
transfer learning. As can been seen from Algorithm 3.5, this method is analogous
to the denoising autoencoder feature transfer learning (see Section 3.4.4.1), but it
learns the common knowledge of the source data and the target data simultaneously.
Generally speaking, the overall algorithm can be divided roughly into three phases –
feature learning, classifier training, and testing. In detail, this method first applies
the source data and target data in the training of an SHLA in an unsupervised
manner. After the training, it results in the feature transformation which would in
particular balance the ‘conflicts’ between the two mismatched data in an optimization
way. Subsequently, this method yields the new representations by using the encoder
described by the shared parameters (W(1) and b(1)) and trains a supervised classifier
on the new representations of the source data. Finally, the classifier is tested on the
target data.

3.4.6 Adaptive Denoising Autoencoders

It is known that a conventional DAE is good at capturing the structure of the input
data (Section 3.4.4). For the purpose of transfer learning, however, the DAE model
appears to lack the ability to access the knowledge of the source domain, which
may cause the difficulty of performing the transfer between the source domain and
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target domain. Recently, a novel method using a DAE in conjunction with a new
variant of DAEs, namely Adaptive Denoising Autoencoders (A-DAEs), was used for
unsupervised transfer learning. This section starts with introducing the A-DAE
model following the notations used for the autoencoder (Section 3.4.2) and then
presents the new transfer learning method on the basis of DAEs and A-DAEs.

The A-DAE model is partially inspired by [214, 215], in which a knowledge transfer
model incorporates prior knowledge from a pre-trained model. More specifically,
SVMs, such as adaptive SVMs [215] and adaptive least-square SVMs [214], are
used to learn from the source model ws by regularizing the distance between the
learned model w and ws. To this end, an adaptive regularization term is used
to measure the distance between them. Furthermore, such models can be easily
extended to a multi-model knowledge transfer model, aiming to exploit the knowledge
from multiple source datasets [214]. The similar idea of exploiting prior models has
also been considered for one-shot learning [159], metric-learning, and hierarchical
classification [215].

Besides, there has been a large body of related work on model based transfer
learning in the field of neural networks [216, 217, 218, 219] by extending the model
compression idea [220]. The aim is to transfer the knowledge in a complex and
large-size DNN ( or even a big ensemble of neural networks) to a small-size DNN,
which thus mimics the model learned by the large net and achieves similar accuracy.
In the industry, these techniques are highly appealing because they can allow devices
with limited computational and storage resources, such as smart phones and wearable
devices, to run a ‘low-cost’ neural network as powerful and accurate as a large-size
neural network with a very large number of parameters. Unlike the aforementioned
methods which perform knowledge transfer depending on the parameters of the
models, the neural network methods depend on either the logits (activations before
softmax) [216], or the posterior probabilities (softmax outputs) [217], or the posterior
probabilities and the intermediate representations [219].

However, previous studies motivated by such an idea seem appealing under one
key assumption that a few labeled target examples are available for the learners
such as SVMs. In contrast, a successful approach is the A-DAE model, extending
this idea to an unsupervised scenario [11]. In the case of the A-DAE model, the
learned model corresponds to a well trained DAE. That is, a DAE is first learned in
a fully unsupervised way from the target domain adaptation data, resulting in the
weight matrices Wt(1) (input to hidden layer) and Wt(2) (hidden to output layer)
from Equation (3.20) as well as the bias vectors bt(1) and bt(2).

An adaptive DAE next forces its weights to adapt to the provided weights as well
as minimize the reconstruction error between the input and the output at the same
time. The output bias vectors bt of the DAE are not adapted. Hence, given a source
example x ∈ Xs and the weights Wt(1) and Wt(2) of a DAE, which were estimated
without supervision from the target domain adaptation data (i.e., without knowledge
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Figure 3.9: Visualization of the projection of the vector ws onto wt.

of target labels), the objective function of an A-DAE is formulated as follows

J A−DAE(θ) =
λ

2

(
2∑
l=1

∑
j

∥∥∥ws(l)
j − βw

t(l)
j

∥∥∥2)
+
∑
x∈Xs

‖x− y‖2 , (3.36)

where y denotes the reconstruction, and the hyper-parameter β controls the amount
of transfer regularization. The weights Ws(1) and Ws(2) are initialized randomly and
learned during training, while the weights Wt(1) and Wt(2) are kept constant during
training. The parameter β acts as a weighting factor, which scales the importance of
the old model. If β is set equal to 0, the adaptive DAE corresponds to the original
DAE model without any adaption to previous knowledge. It is worth noting that
like a DAE, the A-DAE model has a corrupting process, which artificially injects
noise into the input.

Without loss of generality, the intuition of the adaptive DAE for incorporating
prior knowledge can be understood by expanding the weight decay regularization
term (see Section 2.2.2.3)∥∥ws − βwt

∥∥2 = ‖ws‖2 + β2
∥∥wt

∥∥2
−2β ‖ws‖

∥∥wt
∥∥ cos θ, (3.37)

where θ is the angle between the two column vectors ws and wt as given in Figure 3.9.
On the one hand, apart from minimizing the original term ‖ws‖2, the optimiza-

tion problem aims to use the term −2β ‖ws‖ ‖wt‖ cos θ to make the transfer by
maximizing cos θ, which is equivalent to minimizing the angle θ between the ws and
wt. Note that, the term cos θ is maximized only if θ is 0. On the other hand, the
term ‖x− y‖2 in the objective function also causes ‖ws‖ to adjust to the training
data and prevents ws being close to wt. Thus, an adaptive DAE training consists
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Figure 3.10: Overview of the recognition system integrating the proposed adaptive
DAE feature transfer learning method. The function “Encoder” refers to the feed-
forward procedure (i.e., Equation (3.17)) from input data to the activations of the
hidden layer of a pre-trained DAE.

of optimizing a trade-off between the reconstruction error on the training data and
target domain knowledge transfer.

As discussed above, the objective function of the A-DAE includes the adaptive
regularization term with respect to the weight matrices, in addition to the recon-
struction error. Hence, care must be taken in computing the gradients of these
weights. For the BP algorithm of the adaptive DAE model, one can use the following
equations in place of the ones in the standard BP algorithm (see Algorithm 3.2).

∂J
∂W(1)

= δ(1)xT + λ
(
Ws(1) −Wt(1)

)
, (3.38)

∂J
∂W(2)

= δ(2)(h(2))T + λ
(
Ws(2) −Wt(2)

)
. (3.39)

3.4.6.1 Adaptive Denoising Autoencoders Feature Transfer Learning

Adaptive denoising autoencoders feature transfer learning is a novel three-stage
data-driven approach for unsupervised domain adaptation. It is based on adaptive
DAEs which can learn from a source training set with the guidance of a template
learned previously from target domain adaptation data, which yields a common
representation across source and target domains. This proposed method for domain
adaptation can be divided into three main stages: firstly, unsupervised learning of
target prior knowledge with DAEs on target domain adaptation data; secondly, using
such prior knowledge to regularize the training of source data with adaptive DAEs;
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Algorithm 3.6 Adaptive Denoising Autoencoder (A-DAE) Feature Transfer Learn-
ing

Input: Unlabeled target data set Xt, the labeled source set Xs.
Output: Learned classifier C for the target task.

1: Initialize a denoising autoencoder DAE(θt), θt =
{
Wt(1),Wt(2),bt(1),bt(2)

}
.

2: Train DAE(θ) using Xt.
3: Initialize an A-DAE(θs), θs =

{
Ws(1),Ws(2),bs(1),bs(2)

}
.

4: Train A-DAE(θs) using Xs and the learned parameters Wt(1) and Wt(2) .
5: Obtain the encoder: Encoder(x) = f(Ws(1)x + bs(1)) (cf. Equation (3.17)).
6: Generate the target representation Ht: Ht = Encoder(Xt).
7: Generate the source representation Hs: Hs = Encoder(Xs).
8: Learn a classifier C by applying supervised learning algorithm s (e.g., SVMs) to

the source representations Hs.
9: return The learned classifier C.

and thirdly encoding target data and source data with a feed-forward procedure.
In general, the aim is to capture source domain knowledge in training an adaptive

DAE with the guidance of the prior knowledge previously learned from target domain
data by a DAE. Algorithm 3.6 presents this proposed method and Figure 3.10 depicts
the basic recognition method integrated with the proposed domain adaptation
method. The proposed method is composed of the following three stages: First, a
DAE is learned in a fully unsupervised way from the target domain adaptation data,
resulting in the weight matrices Wt(1) (input to hidden layer) and Wt(2) (hidden to
output layer) from Equation (3.20) as well as the bias vectors bt(1) and bt(2).

Finally, we encode target data and source data via Equation (3.17) using the
weights (Ws(1) and bs(1)) learned by the adaptive DAE. Then, this transformed
representation of the source data is used to train a standard supervised classifier
(e.g., SVMs) for a recognition system as shown in Figure 3.10, while the transformed
target data is used for evaluation.

3.4.7 Extreme Learning Machine Autoencoders

Recently, Extreme Learning Machine (ELM) has been proposed for training single
hidden layer feedforward neural networks since traditional BP algorithms for neural
networks tend to converge to local optima and suffer from slow convergence. In
ELM, the hidden nodes are randomly initiated and then fixed without iteratively
tuning. The only trainable parameters are the weights between the hidden layer and
the output layer. In this way, ELM is treated as a linear-in-the-parameter model
which amounts to solving a linear system. Therefore, these trainable parameters can
be analytically derived by solving a generalized inverse problem.

The advantages of ELM in efficiency and generalization performance over tra-
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ditional BP algorithms have been demonstrated on a wide range of problems from
different fields [221]. For example, even with randomly generated hidden nodes, ELM
has fast learning speed and is prone to reach a global optimum. The ELM has also
drawn considerable attention in the field of emotion recognition [40, 82, 222]. Han
et al. [82] used a DNN as feature extractor to obtain the effective emotional features
from short-term acoustic features (see Section 2.1.1) and fed the resulting utterance-
level features to the ELM classifier. It is worth noting that, the generalization ability
of ELM is comparable to SVMs and its variants [221].

Extreme Learning Machine Autoencoders (ELM-AEs) are a special case of ELM,
where the output is equal to the input. Unlike the existing autoencoders used in
neural networks, such as BP-based denoising autoencoders or sparse autoencoders,
the input weights and biases are generated by searching the path back from a random
space. Theoretical studies of ELM have shown that with commonly used activation
functions, random feature mapping can maintain universal approximation capability,
and more importantly, salient information can be exploited for hidden layer feature
representation. In [223], Kasun et al. first showed empirically that ELM-AEs are
comparable to DAEs and other DNN frameworks for a handwritten digit recognition
task on the MNIST data. Nevertheless, ELM-AEs have not been used for transfer
learning, to the best of my knowledge. This section gives a brief on the ELM-AE
theory, and then demonstrates ELM-AE feature transfer learning, which is motivated
by DAE feature transfer learning (see Section 3.4.4)

ELM-AEs are analogous to conventional autoencoders in terms of the topology
structure and the forward pass, but have a particular training framework. An
ELM-AE randomly generates the parameters of the hidden nodes W(1) and b(1),
and only tunes the weights of the output layer W(2) in the training phase. Given N
training examples of X, the input data is first mapped to a random feature space
(called ELM feature space) by a nonlinear activation (associated with Equation (3.17)).
In this case, the outputs of the final layer turn to be written as follows

Y = W(2)H, (3.40)

where H = [h1, . . . ,hN ] are the hidden representations, h ∈ Rm, and m denotes
the number of hidden units. The weights W(2) are determined by minimizing the
reconstruction error in the squared error sense

arg min ‖W(2)H−X‖2, (3.41)

where X = [x1, . . . ,xN ] are the input data, x ∈ Rn, and n denotes the size of the
input layer. It is evident that the cost function of the ELM-AE model is equivalent
to that of the normal autoencoder model(see Section 3.4.2). Furthermore, different
norms of output weights, such as L2 norm, can be considered so as to achieve better
generalization performance [221].
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The output weights are then calculated by

W(2) = XH†, (3.42)

where H† is the Moore-Penrose generalized inverse of matrix H. In practice, instead
of costly computing the Moore-Penrose inverse in the above expression, one can
make use of the orthogonal projection method and add a regularization term C as
suggested in [224] to improve the generalization capability and further obtain the
solution faster

W(2) = XHT

(
I

C
+ HHT

)−1
, (3.43)

where I is an identity matrix. Note that, if the size of the input layer is not equal to
the number of hidden units (i.e., n 6= m), this thesis uses Equation (3.43) to compute
the output weights, otherwise uses Equation (3.42).

The ELM-AE training algorithm can be summarized as follows:

1. Randomly generate the hidden node parameters W(1) and b(1).

2. Calculate the hidden layer outputs in the random feature space.

3. Compute the output weight matrix W(2) through Equation (3.42) or Equa-
tion (3.43).

Different from the conventional autoencoder model which believes that hidden
nodes serve as an encoder to produce the meaningful representations of the input
data, ELM-AEs show that, output weights instead of hidden nodes serve as the
encoder. From the point of view of the ELM theory, hidden nodes are important for
learning, but do not need to be tuned and are independent of training data. Output
weights correspond to building the transformation from the feature space to input
data. It turns out that the representations H̃, which are learned by ELM-AEs, are
defined via the weights W(2) in the form

H̃ =
(
W(2)

)T
X. (3.44)

3.4.7.1 ELM Autoencoder Feature Transfer Learning

Previous studies have shown that both autoencoders and the variants are efficient
models that have the ability to learn the structure of the data. Thanks to this
important ability, a variety of autoencoder-based feature transfer learning methods
have been proposed. The ELM-AE model not only inherits this natural ability from
autoencoders, but also evolves towards more greater predictive power. This is because
ELM can approximate any continuous target function provided the number of hidden
nodes is large enough. In this light, this section presents an ELM autoencoder feature
transfer learning algorithm, which is illustrated in Algorithm 3.7.
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Algorithm 3.7 Extreme Learning Machine Autoencoder (ELM-AE) Feature Transfer
Learning

Input: Unlabeled target data set Xt, the labeled source set Xs.
Output: Learned classifier C for the target task.

1: Randomly initialize ELM-AE(θ), θ =
{
W(1),b(1)

}
.

2: Train ELM-AE(θ) using Xt, resulting in W(2).
3: Obtain the encoder: Encoder(x) = (W(2))Tx (cf. Equation (3.44)).
4: Generate the target representation Ht: Ht = EncoderELM-AE(Xt).
5: Generate the source representation Hs: Hs = EncoderELM-AE(Xs).
6: Learn a classifier C by applying supervised learning algorithm s (e.g., SVMs) to

the source representations Hs.
7: return The learned classifier C.

Similar to DAE feature transfer learning (cf. Section 3.4.4), this algorithm
leverages ELM-AEs to model the essential structure of the target data. To this end,
an ELM-AE is trained with the target data in accordance with the ELM theory. Next,
it creates the transformation with the learned output weights for compensation for
the mismatch between the source domain and the target domain. This transformation
is achieved by using Equation (3.44). Then, the transformed source data are used to
train a supervised classifier. Ultimately, such a classifier is evaluated on the target
data.

3.4.8 Feature Transfer Learning in Subspace

To cope with the typical inherent mismatch between the source data and target
data, this section presents a feature transfer learning method using DAEs to build a
high-order subspace of the source and target domain, where features in the source
domain are transferred to the target domain by an additional regression neural
network [225].

In the literature, there exists a large body of work in the spirit of feature transfer
learning in subspace. The basic idea is to align the source and target data in the
learned subspace by altering the distributions of either the source or the target
data, or both. In [226], the authors proposed a method, called generalized transfer
subspace learning through low-rank constraint, which can be applied to visual domain
adaptation for object recognition. This method projects both, source and target
data to a generalized subspace where each target example can be represented by
a certain combination of source examples. By using a low-rank constraint during
this transfer, the structures of the source and the target domains are retained. In
doing so, good alignment between the domains is ensured through the use of only
relevant data in some subspace of the source domain in reconstructing the data in
the target domain. Furthermore, the discriminative power of the source domain is
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naturally passed on to the target domain. Gopalan et al. [167] discussed a two-stage
unsupervised adaptation approach that generates intermediate domains between
source and target to deal with the domain shift based on the Grassmann manifold.
To this end, this approach learns the ‘path’ between the source and target domains by
exploiting the geometry of their underlying space and by pursuing interpolations that
are statistically optimal. It derives intermediate cross-domain data representations
by sampling points along this path, and then trains a discriminative model using
these representations.

Subspace learning can also be found in voice conversion [227, 228, 229], which aims
to change specific information in the speech of a source speaker to that of a target
speaker while preserving linguistic information. Basically, these voice conversion
methods made use of some generative and graphical models, such as deep belief
nets, conditional restricted Boltzmann machines, and recurrent temporal restricted
Boltzmann machines, to build a high-order eigen space of the source/target speakers,
where it is hopefully easier to convert the source speech to the target speech than
in the original acoustic feature space such as cepstrum space. In addition to some
graphical model, a neural network is adopted to connect and convert the speaker
individuality abstractions in the high-order space. A noticeable advantage of these
methods is that they have a deep nonlinear architecture, ensuring that the complex
characteristics of speech can be captured more precisely than by a shallow model.

Motivated by the work [227], the author of this thesis proposed a feature transfer
learning method by using a combination of DAEs and regression Neural Networks
(NNs) [225]. The intuition behind this proposed approach is that the mismatch
between the target and source domains in subspace is measured by a model, which
thus alters the source data towards the target domain. Specifically, this approach
first trains exclusive DAEs for source and target data in an unsupervised way so
as to build two independent subspaces. By training a DAE for input data, the
subspace gets implicitly grounded by the input data modality, allowing to give a
high-order feature representation for each input example. Besides, it maps the target
data into the source subspace as well. Then, a regression NN is used to discover
the difference between the resulting features for target data in the source subspace
and the ones in the target subspace. It is expected that the NN becomes a link
which is able to compensate for the disparity between the source domain and the
target domain as desired. Therefore, the proposed algorithm feeds the resulting
high-order representations for the source data into the NN to predict new high-order
representations in the target subspace. In turn, it leads to reducing the disparity
between high-order features for source data. Ultimately, this framework uses the new
high-order features for source data in the target subspace as training set and the
original subspace features for target data as test set to carry out normal supervised
algorithms for classification.

Figure 3.11 and Algorithm 3.8 depict an overview of the proposed method, which
is composed of the following three steps. This approach first prepares two different
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Figure 3.11: Overview of the proposed feature transfer learning in subspace method.
The function “NN” refers to a regression neural network with one hidden layer.
The sets S and S̃t are high-order features in the source subspace and in the target
subspace. The sets T and T̃s are high-order features in the target subspace and in
the source subspace.

Algorithm 3.8 Feature Transfer Learning in Subspace

Input: Unlabeled target data set Xt, labeled source set Xs.
Output: Learned classifier C for the target task.

1: Train DAEt using Xt.
2: Train DAEs using Xs.
3: Generate the target representations in the target subspace T via DAEt.
4: Generate another target representations in the source subspace T̃s via DAEs.
5: Train NN with the target pairs T and T̃.
6: Generate the source representations in the source subspace S via DAEs.
7: Estimate the source representations in the target subspace S̃t on S via NN.
8: Learn a classifier C by applying supervised learning algorithm s (e.g., SVMs) to

the source representations S̃t.
9: return The learned classifier C.

DAEs for the source domain data Xs and the target domain data Xt so as to capture
the domain-individuality information, which leads to generating the features in
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high-order subspace via encoding original features for the source or target data from
the input layer to the hidden layer of the corresponding DAEs (see Equation (3.17)).
It is worth noting that, the two DAEs are configured with the same number of hidden
units. In addition, one can also generate the high-order features for the target data
in source subspace, which is built by the DAE for the source domain. As a result,
there are the high-order features of the source data in the source subspace S, the
features of the target data in the target subspace T, and the features of the target
data in the source subspace T̃s.

Next, a regression neural network, consisting of one hidden layer, is used to
exploit the difference between the source subspace and the target subspace. At this
point, the NN is trained to minimize the squared error for the target data between
the high-order features T in the target subspace and its ‘other’ version T̃s in the
source subspace. Specifically, given a target example in the target subspace ht ∈ T
and the respective version in the source subspace of it h̃t ∈ T̃s, the NN learns by
solving the following optimization problem

JNN(θ) =
∑
ht∈T
h̃t∈T̃s

∥∥∥ht − g(h̃t)
∥∥∥2 , (3.45)

where

g(x) = f(W(2)(f(W(1)x + b(1))) + b(2)),

θ = {W(1),W(2),b(1),b(2)}. (3.46)

Here f(·) is a nonlinear activation function, the parameters W(1) ∈ Rk×m,W(2) ∈
Rm×k are the weights and b(1) ∈ Rk,b(2) ∈ Rm are the bias terms, m denotes the
number of hidden nodes for the DAE model, k denotes the number of hidden nodes
for the NN. Note that, the size of the input layer is the same as the output layer in
the special architecture of the NN.

Finally, the features of the source data S from the source subspace are transferred
to the target subspace by means of the trained NN, which leads to a new form of the
source data S̃t in the target domain. In the end, the new form of the source data S̃t

and the features of the target data T will be taken to build a standard supervised
classifier for speech emotion recognition in the following exemplary use-case.
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Speech Emotion Recognition (SER) that focuses on recognizing emotional states
from speech signals has drawn considerable attention in the past few decades since
the dawn of emotion and speech research. Previous work in this field has delivered
highly promising results for the community. Standard machine learning methods that
have been proven successful for SER include HMMs using segmental features and
SVMs using supra-segmental features. In addition to accurately making predictions,
SER has recently turned to research producing reliable confidence measures (i.e.,
beyond simple posterior probabilities) for each prediction, which are crucial for any
real-world application [230, 231].

However, there is very little work on the distribution mismatch problem. Schuller
et al. [12] investigated different types of normalization (i.e., speaker normalization
and corpus normalization) to deal with the high variances in cross-corpora evaluation
experiments. Zhang [161] approached the challenge of data scarcity (i.e., small
amount of labeled examples, limited number of speakers, and high-level labeling
disagreement) by applying semi-autonomous data enrichment and optimization
approaches to take advantage of richly unlabeled data.

Different from previous work, this chapter focuses on using the feature transfer
leaning methods presented in Chapter 3 to overcome the distribution mismatch
problem in SER. Accordingly, comprehensive experiments regarding SER are de-
signed to justify the effectiveness of these methods. In this chapter, first, a set of
eight emotional speech databases is introduced, which are used for experimental
evaluations. Then, an experimental setup including the descriptions of a generic label
mapping and the selected feature set is given in Section 4.2. Next, the effectiveness
of sparse autoencoder (SAE ) feature transfer learning is evaluated on six databases
in Section 4.3. Afterwards, Sections 4.4 to 4.6 present a systemic evaluation of the
shared-hidden-layer autoencoder (SHLA) feature transfer learning, adaptive denois-
ing autoencoder (A-DAE) feature transfer learning, and feature transfer learning
in subspace, respectively. Based on two public databases, finally, Section 4.7 shows
that whispered speech emotion recognition can also benefit from autoencoder feature
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Table 4.1: Overview of the 8 selected speech emotion databases: database 1–4
shown here (ABC, AVIC, EMO-DB, and eNTERFACE). Age (adults or children).
Recording environment (env.). Sampling rate (Rate). Number of female (# female)
and male (# male) subjects. Number of utterances per binary valence (# Valence
negative (neg.), # Valence positive (pos.)), and overall number of utterances (# All).

Corpus ABC AVIC EMO-DB eNTERFACE

Age adults adults adults adults

Language type German English German English

Content fixed variable fixed fixed

Emotion type induced natural acted acted

Recording env. studio studio studio normal

Time (hh:mm) 1:15 1:47 0:22 1:00

Rate (kHz) 16 44 16 16

# male 4 11 5 34

# female 4 10 5 8

# Valence neg. 213 553 352 855

# Valence pos. 217 2 449 142 422

# All 400 3 002 494 1 277

transfer learning.

4.1 Emotional Speech Databases

To comprehensively investigate the performance of the proposed feature transfer
learning methods, a large number of eight well known and public available emotional
speech databases have been chosen to cover traditional acted emotional speech to
fully natural and spontaneous affective speech, children speech, adult speech, German
speech, English speech, French speech, and whispered speech. Specifically, the chosen
databases include ABC, AVIC, EMO-DB, eNTERFACE, FAU AEC, GEWEC, and
SUSAS. Statistic for the eight emotional speech databases are summarized in
Tables 4.1 and 4.2. Naturally, these databases emerge the inherent database biases
for cross-corpus experiments, which lead to problems worth to be addressed: the
cross-speaker problem (associated with the speaker independent problem), the cross-
language problem (English vs. German, or French vs. German), the cross-age
problem (children vs. adults), and the cross-speech-mode problem (normal phonated
mode vs. whispered mode).
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Table 4.2: Overview of the 8 selected speech emotion databases: database 5–8 shown
here (FAU AEC, GEWEC, SUSAS, VAM). Age (adults or children). Recording
environment (env.). Sampling rate (Rate). Number of female (# female) and male
(# male) subjects. Number of utterances per binary valence (# Valence negative
(neg.), # Valence positive (pos.)), and overall number of utterances (# All).

Corpus FAU AEC GEWEC SUSAS VAM

Age children adults adults adults

Language type German French English German

Content variable fixed fixed variable

Emotion type natural acted natural natural

Recording env. normal studio noisy noisy

Time (hh:mm) 9:20 0:13 1:01 0:47

Rate (kHz) 16 44.1 8 16

# male 21 2 4 15

# female 30 2 3 32

# Valence neg. 5 823 640 1 616 876

# Valence pos. 12 393 640 1 977 71

# All 18 216 1280 3 593 947

4.1.1 Aircraft Behavior Corpus

The Aircraft Behaviour Corpus (ABC) [232] was introduced for the special application
of automatic public transport surveillance about passenger emotions. During the
recording, a certain emotion was induced by a script, which guided the subjects
through a given storyline: Pre-recorded cabin announcements controlled by an unseen
test-conductor were automatically played back by five speakers at different positions.
Subjects had to imagine that they are on a vacation (and return) flight, made of six
scenes: take-off, serving of wrong food, turbulence, sleeping, talking to the person
in the next seat, and landing. The scene setup consisted of an airplane seat for the
subject, which was put in front of a blue screen. Eight German-speaking subjects in
gender balance from 25 to 48 years (average 32 years) old actively participated in
the recording. 11.5 h of audiovisual recording material was obtained and – after pre-
segmentation – was annotated independently by three experienced male labelers using
a pre-defined, closed set of emotion categories, including neutral, tired, aggressive,
cheerful, intoxicated, and nervous. In total, there are 431 clips with an average
per-clip length of 8.4 s.
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4.1.2 Audio-Visual Interest Corpus

The Audio-Visual Interest Corpus (AVIC) introduced by Schuller et al. [233] provides
spontaneous emotion samples of non-restricted spoken content. It was used as dataset
for the INTERSPEECH 2010 Paralinguistics Challenge [234]. In its scenario setup,
a product presenter leads a subject through an English commercial presentation.
In the recording, there are 21 subjects (10 female). The Level of Interest (LOI) is
annotated for every sub-turn (pause based sub-division of speaker turns) with three
discrete labels ranging from boredom (the subject is bored with the conversation
and/or the topic, is very passive, and does not follow the discourse; also referred to
as LOI1 ), over neutral (the subject follows and participates in the discourse and it
can not be recognized, whether the subject is interested in or indifferent towards the
topic; also referred to as LOI2 ) to joyful interaction (presenting a strong wish of the
subject to talk and learn more about the topic; also referred to as LOI3 ). These
three discrete levels were obtained from Majority Voting (MV) over four individual
raters opinions and after combining the original 5 level annotation to only 3 levels to
avoid too much sparsity in some of the 5 levels. For the evaluations in this thesis,
all 3 002 phrases are used, in contrast to only 996 phrases with high inter-label
agreement as e.g., utilized in [233].

4.1.3 Berlin Emotional Speech Database

A well known set of normal phonated emotional speech – the Berlin Emotional Speech
Database (EMO-DB) [235] – is chosen to test the effectiveness of SER. It covers
anger, boredom, disgust, fear, happiness, neutral, and sadness as speaker emotions.
The spoken content is again pre-defined by ten German emotionally neutral sentences
like “Der Lappen liegt auf dem Eisschrank” (The cloth is lying on the fridge.). Ten
(five female) professional actors speak ten sentences. The actors were asked to express
each sentence in all seven emotional states. The sentences were labeled according to
the state they should be expressed in, i.e., one emotion label was assigned to each
sentence. 494 phrases are marked as minimum 60 % natural and minimum 80 %
agreement by 20 subjects in a listening experiment. This selection is usually used in
the literature reporting results on the corpus (e.g., [236, 237, 238]), therefore, it is
also used for this thesis.

4.1.4 eNTERFACE Database

The eNTERFACE database [239] is a publicly audiovisual emotion corpus. The
emotional categories contain anger, disgust, fear, joy, sadness, and surprise. 42
subjects (eight female) from 14 nations participated in the recording. The recording
scenario is an office environment, where pre-defined English spoken content are
provided. To induce the emotions, each subject was instructed to listen to six

68



4.1. Emotional Speech Databases

successive short stories, with each story eliciting a certain emotion. Afterwards, they
had to react to each of the situations by speaking previously read phrases that fit
the short story. Five phrases are available for each emotion, such as “I have nothing
to give you! Please don’t hurt me!” in the case of fear. Two labelers independently
judged whether the reaction expressed the induced in an unambiguous way. Only in
this case, this sample was added to database. In total, there are 1 277 samples in the
database.

4.1.5 FAU Aibo Emotion Corpus

The FAU Aibo Emotion Corpus (FAU AEC) [240, 241] is well known to the SER
community as was adopted for the INTERSPEECH 2009 Emotion Challenge task [25].
It features recordings of 51 children interacting with Sony’s pet robot Aibo, using
a Wizard of Oz (WOZ) setup. The corpus comprises spontaneous, German speech
that is emotionally colored. The children at age of 10–13 years from two different
schools were made believe that the Aibo was responding to their commands, whereas
the robot was actually remote-controlled and did not respond to their commands.
Sometimes the robot disobeyed in order to elicit negative emotional actions. Speech
was transmitted with a high quality wireless head set and recorded with a DAT-
recorder (16 bit, 48 kHz, down-sampled to 16 kHz). The recordings were segmented
automatically into “turns” by splitting the speech with a pause threshold of 1 s. Five
advanced students of linguistics listened to the turns in sequential order and annotated
each word independently from each other as neutral (default) or as belonging to one
of ten other classes. Since many utterances are only short commands and rather long
pauses can occur between words due to Aibo’s reaction time, the emotional/emotion-
related state of the child can change also within turns. Hence, the data is labeled on
the word level. The MV is carried out: if three or more labelers agreed, the label
was attributed to the word. In the following, the number of cases with MV is given
in parentheses: joyful (101), surprised (0), emphatic (2 528), helpless (3), touchy,
i.e., irritated (255), angry (84), motherese (1 260), bored (11), reprimanding (310),
rest, i.e., non-neutral, but not belonging to the other categories (3), neutral (39 169);
4 707 words had no MV; all in all, there were 48 401 words. The unit of analysis
are not single words, but semantically meaningful, manually defined chunks (18 216
chunks, 2.66 words per chunk on average). Heuristic algorithms were used to map
the decisions of the five labelers on the word level onto a single emotion label for the
whole chunk.

This thesis concentrates on the two-class problem consisting of the cover classes
NEGative (subsuming angry, touchy, reprimanding, and emphatic) and IDLe (con-
sisting of all non-negative states). Speaker independence is guaranteed by using the
data of one school (OHM, 13 male, 13 female) for training and the data of the other
school (MONT, 8 male, 17 female) for testing. Note that, a ground truth label as well
as a human agreement score are assigned for each instance in the database. There
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are two reasons for chunks with low emotional human agreement: 1) not all words in
a NEG chunk have to be NEG themselves; some words may also be produced in the
state IDL. 2) Even if all words in a chunk are labeled as NEG, the agreement of the
five labels for single words may be low, e.g., 3 out of 5. Of course, combinations of
both phenomena can occur as well. A detailed description of the FAU AEC database
can be found in [25, 240, 241].

4.1.6 Geneva Whispered Emotion Corpus

In addition to the above outlined databases which only contain normal phonated
speech, one database, called Geneva Whispered Emotion Corpus (GEWEC), con-
taining whispered speech is employed to evaluate the effectiveness of the feature
transfer learning methods. The corpus provides normal phonated/whispered paired
utterances. Two male and two female professional French-speaking actors in Geneva
were recruited to speak eight predefined French pseudo-words (“belam”, “molen”,
“namil”, “nodag”, “lagod”, “minad”, and “nolan”) with a given emotional state in
both normal phonated and whispered speech modes following the lead given by the
Geneva Multimodal Emotional Portrayals (GEMEP) corpus that was used in the
INTERSPEECH 2013 Computational Paralinguistics Challenge [242]. Speech was
expressed in four emotional states: angry, fear, happiness, and neutral. The actors
were requested to express each word in all four emotional states five times. The
utterances were labeled based on the state they should be expressed in, i.e., one
emotion label was assigned to each utterance. As a result, GEWEC consists of 1 280
instances in total. To give an in-depth evaluation of the proposed method, labels for
binary valence/arousal from the emotion categories were further generated. In the
valence dimension, angry and fear have negative valence, happiness and neutral have
positive valence. In the arousal dimension, neutral is assigned as low arousal; angry,
happiness, and fear are assigned as high arousal. An overview of the corpus is found
in Table 4.9.

Recording was done in a sound proof chamber using professional recording
equipment. All recordings were recorded with a 16 bit PCM encoded single channel
at a sampling rate of 44.1 kHz. The distance from the microphone was about 0.5 m
during recording. Recordings were accompanied by visual cues on a screen, which
indicated which word has to be vocalized and which emotional state needs to be
expressed. Cues were visible on the screen for 1 s length, separated by a blank screen
of 2 s. The cue duration of 1 s was chosen such that the actors were guided to vocalize
each word with a duration of about 1 s, which ensures that the vocalizations were
comparable in length.

Pre-processing steps were applied to each utterance before feature extraction, in
which all utterances were normalized to mean energy, as well as scaled to a mean of
70 dB Sound Pressure Level (SPL) and added manually a fade-in/fade-out duration
of 15 ms.
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4.1.7 Speech Under Simulated and Actual Stress

The Speech Under Simulated and Actual Stress (SUSAS) [243] database was a first
reference for spontaneous recordings. To increase the difficulty, speech is partially
masked by field noise. The 3 593 actual stress speech samples are used for the
upcoming evaluation in this thesis, which were recorded in subject motion fear and
stress tasks. Seven subjects (three female) in roller coaster and free all actual stress
situations are contained in this set. Next to neutral speech and fear two different
stress conditions have been collected: medium stress, and high stress, and screaming.
SUSAS is also restricted to a pre-defined spoken content of 35 English air-traffic
commands, such as “brake”, “help” or “no”. Thus, only single words are contained.

4.1.8 Vera Am Mittag Database

The Vera am Mittag (VAM) database [244] includes audiovisual recordings extracted
from the German TV talk show (i.e., Vera Am Mittag). The corpus used consists
946 spontaneous and emotionally colored utterances from 47 guests of the talk show,
which were recorded from unscripted and authentic discussions. The topics were
mainly personal issues, such as friendship crises, fatherhood questions, or love affairs.
To obtain non-acted emotions, the guests were not told that the recordings were going
to be analyzed for scientific purposes. For annotation of the speech data, the audio
recordings were manually segmented to the utterance level, whereas each utterance
contained at least one phrase. A large number of human annotators were involved
with rating the data (17 annotators for one half of the data, six for the other). The
labeling bases on a discrete five scale for three dimensions mapped onto the interval
of [−1, 1]: the average results for the standard deviation are 0.29, 0.34, and 0.31
for valence, activation, and dominance. The averages for the correlation between
the evaluators are 0.49, 0.72, and 0.61, respectively. The correlation coefficients
for activation and dominance show suitable values, whereas the moderate value for
valence indicates that this emotion primitive was more difficult to evaluate, but may
partly also be a result of the smaller variance of valence.

4.2 Experimental Setup

Most of the experiments are based on the first emotion recognition challenge, i.e.,
the INTERSPEECH 2009 Emotion Challenge. Hence, the overview of the training
set and the test set of the dataset used for this challenge is particularly shown in
Table 4.3. Apart from the database, the feature set is introduced in Section 4.2.2.

It is well known that training a neural network is difficult and time-consuming.
Autoencoders also have the same difficulty. To facilitate training an autoencoder, the
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Table 4.3: Number of examples for the 2-class problem of the FAU Aibo Emo-
tion Corpus (FAU AEC), which was used for the INTERSPEECH 2009 Emotion
Challenge [25]. Negative emotions (NEG); Neutral and positive emotions (IDL).

# NEG IDL
∑

Train 3 358 6 601 9 959

Test 2 465 5 792 8 257∑
5 823 12 393 18 216

toolkit minFunc1 was applied which implements L-BFGS to optimize the parameters
of the autoencoders. Logistic sigmoid functions are always chosen as the activation
function for autoencoders. UAR is always chosen as a primary performance metric,
which has also been the competition measure of the first challenge on emotion
recognition from speech [25] and follow-up ones. It equals the sum of the recalls per
class divided by the number of the classes, and appears more meaningful than overall
accuracy in the case of presence of class imbalance. Besides, WAR is used as the
secondary metric. To validate statistical significance of the results, a one-sided z-test
is taken. As for the basic supervised learner in the classification step, SVMs with
the L2-regularized L2-loss support vector classifier implemented in LIBLINEAR [99]
are used. Throughout the experiments, a fixed penalty factor C = 0.5 for the linear
SVMs is used.

For appropriately selecting the hyper-parameters of the autoencoders, k-fold cross
validation is adopted. Therefore, the training set is split into four folds (k = 4) and
each model is trained four times with a different fold held out as validation data.
The predictions made by the four models are used to obtain a UAR value when
reporting test set results. According to the performance on the validation data, the
best particular model in each family of models is chosen.

4.2.1 Mapping of Emotions

In order to generate a unified set of labels across databases, the diverse emotion
groups are mapped onto the valence axis in the dimensional emotion model. Based
on psychology theory, categorical emotions can be decomposed into valence and
arousal (or activation in some studies) in continuous dimensions [245, 246]. Va-
lence (i.e., positive vs. negative) subjectively describes a feeling of pleasantness or
unpleasantness, while arousal (i.e., low vs. high) subjectively describes a state of
feeling activated or deactivated. Valence and arousal are the best established and
widely used emotional dimensions at present [20]. In this thesis, valence is mainly

1http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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Table 4.4: Emotion categories mapping onto negative and positive valence for the
eight selected databases.

Corpus Negative Positive

ABC aggressive, nervous, cheerful, intoxicated,

tired neutral

AVIC boredom neutral, joyful

EMO-DB anger, boredom, fear, joy, neutral

disgust, sadness

eNTERFACE anger, disgust, joy, surprise

fear, sadness

FAU AECa negative idle

GEWEC anger, fear happiness, neutral

SUSAS high stress, screaming, fear medium stress, neutral

VAMb q4, q3 q2, q1

a Label negative and idle correspond to the 2-class labels defined in the FAU
AEC database.

b Abbreviations q1-q4: quadrants in the arousal-valence plane.

investigated simply because this thesis sticks to the INTERSPEECH 2009 Emotion
Challenge two-class task [25], where binary valence was featured. Hence, Table 4.4
gives these mapping only regarding valence. But both, valence and arousal are
considered when the GEWEC database (Section 4.1.6) is selected. In fact, these
mappings are based on the original mappings, as suggested in [247] and adopted for
cross-corpus experiments [12, 24]. It is worth noting, that the controversial issue
of the mapping of neutral may arise, since in theory, it should be projected onto a
third state rather than positive valence. However, because not all databases included
a neutral state, it was decided for a binary mapping here in order to be able to
evaluate performances across database using the same labels and have two more
balanced binary classes for each database. Hence, neutral is popularly mapped to
low arousal and positive valence. Thus, as shown in Table 4.4 for the FAU-AEU
database (Section 4.1.5), the idle label belongs to the positive valence label.

4.2.2 Features

As for acoustic features, a standardized feature set is chosen as is provided by the
INTERSPEECH 2009 Emotion Challenge [25] which contains 12 functionals applied
to 2× 16 acoustic LLDs including their first order delta regression coefficients (∆)
as shown in Table 4.5. In detail, the 16 LLDs are MFCC 1–12, RMS frame energy,

73



4. Evaluation

Table 4.5: Overview of the standardized INTERSPEECH 2009 Emotion Challenge
feature set [25].

LLDs (16× 2) Functionals (12)

(∆) MFCC 1–12 Arithmetic Mean

(∆) RMS Energy Moments: SD, kurtosis, skewness

(∆) ZCR Extremes: value, rel. position, range

(∆) Prob. of voicing, F0 Linear Regression: offset, slope, MSE

Zero Crossing Rate (ZCR) from the time signal, probability of voicing from the
autocorrelation function, and the pitch frequency F0 (normalized to 500 Hz). Then,
12 functionals – arithmetic mean, moments including the Standard Deviation (SD),
kurtosis, and skewness, four extremes (i.e., minimum and maximum value, relative
position, and ranges) as well as two linear regression coefficients with their Mean
Square Error (MSE) – are applied to the LLDs and their deltas. Thus, the total
feature vector per utterance contains 16 × 2 × 12 = 384 attributes. To ensure
reproducibility, the open source openSMILE2 toolkit version 2.0 [23, 52], which
has matured to be a standard for feature extraction in automatic speech emotion
recognition, was used with the pre-defined challenge configuration. More details on
the feature set can be found in [24, 25].

4.3 SAE Feature Transfer Learning

4.3.1 Experiments

Sparse Autoencoder (SAE) feature transfer learning (Section 3.4.3) assumes that a
small amount of labeled data from the target domain are available. In the experiments,
six standard databases are chosen: The FAU AEC set is treated as target set, which
consists of a training and test partition (roughly half and half) naturally given by
recordings at different elementary schools, while eNTERFACE, SUSAS, EMO-DB,
VAM, and AVIC seve as source set. To implement the sparse autoencoder algorithm,
a small part of examples (the size ranging from 50 to 950 chunks) are randomly
chosen from the FAU AEC training set to obtain a common feature structure, where
the same number of examples are chosen from positive valence and negative valence.
In the sparse autoencoder learning process, the number of hidden units was fixed
to 200, and the sparsity level ρ was set to 0.01. The reported performance in
UAR is the average over 20 runs to avoid ‘lucky’ or ‘unlucky’ selection. Then, the
common feature structure is used to reconstruct each source database, as described

2http://sourceforge.net/projects/opensmile/
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Figure 4.1: WAR and UAR comparison for the increase of number of examples
chosen from the FAU AEC training set for the source data eNTERFACE. S:##.#
is the WAR and UAR if only using source data. Reconstructed: classifier trained on
reconstructed source data by a sparse autoencoder method. Target + Reconstructed:
classifier trained on target and reconstructed source data. Target: classifier trained
on target data. Target + Source: classifier trained on target and original source
data.

in Algorithm 3.3. Finally, the FAU AEC test data are classified by the classifier
trained on the reconstructed data.

As for metrics, both UAR and WAR are selected. Furthermore, the hyper-
parameters of all SVMs are chosen by cross-validation on the training set. Be-
fore training SVMs, furthermore, the Synthetic Minority Oversampling Technique
(SMOTE) [248] is always applied to balance training examples between the positive
and negative classes. For a two-class problem, the chance level thus always resembles
50.0 % UAR. Following the setup given in Section 4.2, here the baseline UAR for the
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Figure 4.2: WAR and UAR comparison for the increase of number of examples
chosen from the FAU AEC training set for the source data SUSAS. Explanations:
cf. Figure 4.1.

FAU AEC two-class task is 66.9 %.

4.3.2 Experimental Results

During the evaluation, a variety of combinations of the target data, the reconstructed
data, and the source data, were considered in order to provide a full picture of
the suggested method’s effects. Figures 4.1 and 4.2 report the results for the
source data being eNTERFACE and SUSAS. Reconstructed data by the sparse
autoencoder, possibly in combination with target data, significantly (one sided
z-test) outperform the target data alone. For the eNTERFACE database with
induced emotion types, sparse autoencoder data achieves mostly the highest test
UAR and WAR when the number of chosen examples is in the range of 50 to 550.
For instance, the reconstructed data’s UAR obtains 63.5 % compared with only the

76



4.3. SAE Feature Transfer Learning

50 150 250 350 450 550 650 750 850 950
55

60

65

70

S: 29.9

Number of examples chosen

W
A

R
[%

]
Target Target + Source
Reconstructed Target + Reconstructed

(a)

50 150 250 350 450 550 650 750 850 950

55

60

65

S: 50.0

Number of examples chosen

U
A

R
[%

]

(b)

Figure 4.3: WAR and UAR comparison for the increase of number of examples
chosen from the FAU AEC training set for the source data EMO-DB. Explanations:
cf. Figure 4.1.

target’s UAR of 60.1 %, the target and the reconstructed data’s UAR of 61.6 %, and
the target and the source data’s UAR of 57.1 %, while 150 target examples are used.
Afterwards, when the size of target training continues increasing, the performance
of target data gradually overtakes the sparse autoencoder data since no more extra
information in the eNTERFACE can be transferred to the FAU AEC target domain.
In comparison with eNTERFACE, SUSAS’s actual stress data, which is collected
in a noisy recording, always obtains the highest test UAR. At 150 target examples
available, the reconstructed data’s UAR reaches 65.2 % which is sharply larger than
only the target’s UAR of 61.2 %, the target and reconstructed data’s UAR of 62.8 %,
and the target and source data’s UAR of 57.9 %. It is worth noting that, with
the increase of target training size, its UAR stably goes up to 66.8 % at 950 target
examples available, which approaches the baseline UAR 66.9 % with the whole FAU
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Figure 4.4: WAR and UAR comparison for the increase of number of examples
chosen from the FAU AEC training set for the source data VAM. Explanations: cf.
Figure 4.1.

AEC training set (9 958 examples) applied. Surprisingly, the WAR comparison for
the increase of number of examples has the similar trend as the UAR trend. For
eNTERFACE, for example, the data reconstructed by the sparse autoencoder reaches
the WAR of 64.9 % with the 150 target examples available when compared to as the
source’s WAR of 48.2 %.

Experimental results on the source data EMO-DB, VAM, and TUM AVIC
are shown in Figures 4.3 to 4.5. As for EMO-DB with acted emotion, note that,
the sparse autoencoder method cannot transfer more useful information from the
source with the increase of target training size. Instead, its performance decreases
unexpectedly, which might indicate that negative transfer happens because EMO-DB
and FAU AEC are highly dissimilar. However, the method of combining target data
with reconstructed data steadily rises in line with the size of the target data. For
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Figure 4.5: WAR and UAR comparison for the increase of number of examples
chosen from the FAU AEC training set for the source data AVIC. Explanations: cf.
Figure 4.1.

the source data being VAM, the sparse autoencoder method performs better within
the range of target size ranging from 150 to 350. Afterwards, the performance of the
sparse autoencoder is still comparable with the method of using target data. For
the final source database TUM AVIC in the English language, there is no significant
improvement compared to the method of using target data. Nevertheless, it is worth
noting that, its UAR of the reconstructed data fluctuates around 62.5 %, and this
UAR value (62.7 %) at 50 target examples available is dramatically more than the
average UAR values over the other source data (59.1 %). If only a small number of
data are available in the target domain, e.g., only 50 examples, Figure 4.6 shows
UAR values for each source data and the corresponding reconstructed data. As can
be seen from Figure 4.6, when those source data as training set are input to an
emotion recognition system, respectively, only the chance level UAR is obtained for
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Figure 4.6: UAR comparison when 50 examples are chosen from the target data.
Average: 51.6 % UAR (source) and 59.9 % UAR (reconstructed).

the two-class task of FAU AEC. But the reconstructed data (average UAR 59.9 %)
significantly outperform the original source data (average UAR 51.6 %), which means
that knowledge transferred by the sparse autoencoder is useful for the classification
in emotion recognition. The performance improvement over each original source data
is large even though very few target data examples are used.

4.3.3 Conclusions

In this section, the proposed sparse autoencoder feature transfer learning method,
which uses a single-layer autoencoder to find a common structure in small target data
and then applies such structure to reconstruct source data in order to complete useful
knowledge transfer from source data into a target task was evaluated on six publicly
available corpora. In this method, each single-layer autoencoder focuses on discovering
nonlinear generalization of class-specific target examples. The reconstructed data
are to build a speech emotion recognition engine for a real-life task as given by
the INTERSPEECH 2009 Emotion Challenge. Experimental results show that
the proposed algorithm effectively transfers knowledge and further enhances the
classification accuracy. Besides, the results confirm some observations that transfer
learning can deliver a higher start as well as speed up the growth of performance
expected (see Section 3.2).
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4.4 SHLA Feature Transfer Learning

4.4.1 Experiments

Unlike sparse autoencoder feature transfer learning, shared-hidden-layer autoencoder
(SHLA) feature transfer learning copes with the typical inherent mismatch between
different corpora in acoustic emotion when no labeled data from the target domain
exists. As stated in Section 3.4.5, this approach learns common feature representations
shared across the training and test set in order to reduce the discrepancy in them. To
exemplify effectiveness of this approach, the INTERSPEECH Emotion Challenge’s
FAU AEC is selected as test database and two other databases are used as training
set for extensive evaluation.

In the SHLA learning process, the number of hidden units m was fixed to 200,
and attempted hyper-parameter γ and weight decay values λ were the following :
γ ∈ {0.1, 0.3, 0.5, 1, 2, 3}, λ ∈ {0.0001, 0.001, 0.01, 0.1}.

Models for Comparison

The following methods are provided for comparison:

• Matched Instance Number Training (MINT): randomly (repeated ten times)
picks a number of examples from the FAU AEC training set to train an SVM,
i.e., without the need of transferring in intra-corpus scenario. For comparison,
this number is given by the number of learning examples as in the ABC or
SUSAS sets, respectively.

• Cross Training (CT): uses ABC or SUSAS to train the standard (SVM)
classifier, i.e., without using SHLA-based representation learning.

• KMM: utilizes the KMM (see Section 3.2.1.1) on the ABC and SUSAS database
for covariate shift adaptation. The ‘tuning parameters’ in KMM follow heuris-
tics adopted in [170, 172].

• DAE: employs denoising autoencoders for representation learning in order
to match training examples to test examples (Section 3.4.4.1), which was
successfully applied to the transfer learning challenge and domain adapta-
tion [166, 210].

• SHLA: uses the proposed SHLA to extract common features on the training
and target test set, then trains standard SVMs using the learned features and
labels in the training set.
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Figure 4.7: Cross-corpus average UAR over ten trials using matched instance number
training (MINT), cross training (CT), the covariate shift adaptation KMM, and the
proposed SHLA for ABC and SUSAS.

Table 4.6: Cross-corpus average UAR over ten trials for the training sets ABC and
SUSAS.

UAR [%] MINT CT KMM DAE SHLA

ABC 58.32 55.28 62.52 56.20 63.36

SUSAS 62.41 57.32 60.41 62.08 62.72

4.4.2 Experimental Results

First, the cross-corpus scenario is evaluated, where acoustic emotion recognition
models are trained on ABC or SUSAS while tested on the FAU AEC test set (except
the MINT condition that uses FAU AEC data for training). The experiments are run
ten times for MINT, DAE, and SHLA methods that involve random sampling. The
averaged UAR over the ten trials is visualized in Figure 4.7, including the error bar,
and given quantitatively in Table 4.6. As can be seen, the SHLA method outperforms
all the other approaches.

More specifically, for the small database ABC, one can easily see that, the two
standard methods (CT and MINT) only obtain average UAR around the chance level
(55.28 % and 58.32 %). When the accuracy obtained by the DAE method reaches
56.20 %, the covariate shift adaptation KMM can boost the accuracy to 62.52 %.
However, with SHLA one reaches 63.36 %. This improvement has a statistical
significance at the p < 0.001 level compared with the baselines CT and MINT.

In comparison with ABC, although SUSAS’s average UAR from the CT method
is still close to chance level, it is worth noting that, the average UAR achieved by
the MINT method increases sharply to 62.41 % because of the larger size of SUSAS

82



4.5. A-DAE Feature Transfer Learning

leading to more examples chosen from the FAU AEC training set. But SUSAS
cannot obtain a great benefit from the covariate shift adaptation KMM, like ABC.
Nevertheless, the SHLA method still gives an average UAR of 62.72 %, which is
slightly larger than the maximum average UAR obtained by the MINT. Compared
with the four methods in use, the proposed SHLA method passes the significant
t-test at the p < 0.01 and p < 0.02 level against the CT and KMM methods.

Finally, the intra-corpus scenario is considered, which means that the SHLA
method carries out the representation learning between the FAU AEC training set
and its test set. In this case, the SHLA obtains an average UAR of 68.29% compared
to the baseline (the standard SVM) UAR of 67.04%. The improvement is significant
at the p < 0.05 level.

Overall, SHLA-based representation learning could be shown as useful in reducing
the difference for cross-corpus recognition.

4.4.3 Conclusions

The ‘shared-hidden-layer autoencoder’ (SHLA) shared across training and target
corpora was proposed for feature transfer learning. In this method, the SHLA is
used to explore the common feature representation in order to compensate for the
differences in corpora caused by language, speaker, and acoustic conditions. Such
learned representations were successfully applied to a standard machine learning
task: acoustic emotion recognition. Experimental results on three publicly available
corpora demonstrate that, the proposed method effectively and significantly enhances
the emotion classification accuracy and competes well with other domain adaptation
methods.

4.5 A-DAE Feature Transfer Learning

4.5.1 Experiments

This section performs experiments to assess the adaptive denoising autoencoder
(A-DAE) feature transfer learning algorithm (Section 3.4.6), where prior knowledge
learned from a target set is used to regularize the training on a source set. Its goal
is to achieve a matched feature space representation for the target and source sets
while ensuring target domain knowledge transfer. Here, the method is evaluated on
the FAU AEC as target corpus and two other standard speech emotion corpora as
sources.

For the training of the autoencoders, the toolkit minFunc was applied which
implements L-BFGS to optimize the parameters of DAEs and A-DAEs. For training
of the DAE, masking noise with a variance of 0.01 was injected to generate a corrupted
input. For the parameters of the DAE, the weight decay values λ were set to 0.0001,
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the number of epochs of DAE training was set to 250. In the A-DAE learning process,
the hyper-parameter β was fixed to 0.05.

Note that, the FAU AEC official test partition is always used as the ‘target’ test
set, its official training partition is partially used as ‘target’ training set, and the
further two corpora are exclusively used as additional ‘source’ training sets.

Models for Comparison

The following methods are used to evaluate the proposed approach in the context
of the current state-of-the-art: (1) MINT: randomly (repeated ten times) picks a
number of examples from the FAU AEC training set to train an SVM, i.e., without
the need of transferring to an intra-corpus scenario. For fair comparison, this number
is set by the number of training examples of the the ABC or SUSAS sets, respectively.
(2) CT: uses ABC or SUSAS to train the standard (SVM) classifier, which is the
‘classical’ cross-corpus testing, i.e., it involves no adaptation. (3) KLIEP [168], (4)
uLSIF [169], and (5) KMM [172]: utilize the modern domain adaption methods
on the ABC and SUSAS database for covariate shift adaptation, respectively. (6)
DAE: employs denoising autoencoders for representation learning in order to match
training examples to test examples; this was successfully applied to the transfer
learning challenge and domain adaptation [166, 210].

4.5.2 Experimental Results

For the cross-corpus setting, where acoustic emotion recognition models are trained
on ABC or SUSAS while evaluated on the FAU AEC test set (except the MINT
condition that uses FAU AEC data for training), the number of hidden units is fixed
to 256. Results of the averaged UAR over ten trials are reported in Table 4.7. As
can be seen, the A-DAE approach always shows a comparable performance to other
approaches [166, 168, 169, 172].

For the small database ABC, the two standard methods (CT and MINT) only
yield an average UAR around chance level (55.28 % and 58.32 %). With the benefits
of compensation for the existent mismatch, the covariate shift adaptation KMM
can achieve the accuracy of 62.52 %. The proposed A-DAE method outperforms all
other methods with 64.18 % UAR. This improvement has a statistical significance at
p < 0.001 with a one-sided z-test when compared to CT and MINT.

On the SUSAS database, the proposed A-DAE method shows a significant
improvement over other methods. Specifically, the A-DAE method gives an average
UAR of 62.74 %, which is slightly higher than the maximum average UAR obtained
by MINT. Moreover, it passes the significance test at p < 0.001 and p < 0.002 against
the CT and KMM methods, respectively. Also, it is worth noting that the average
UAR obtained by MINT increases dramatically to 62.42 % just due to the larger size
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Table 4.7: Average UAR over ten trials: Matched instance number training (MINT),
Cross training (CT), covariate shift adaptation methods KLIEP, uLSIF, and KMM,
DAE-based representation learning, and the proposed A-DAE method related to
training with ABC and SUSAS.

UAR [%] ABC SUSAS

MINT 58.32± 4.23 62.41± 3.85

CT 55.28± 0.00 57.32± 0.00

KLIEP [168] 55.07± 3.81 58.11± 3.56

uLSIF [169] 53.75± 1.68 57.94± 0.60

KMM [172] 62.52± 0.00 60.43± 0.00

DAE 55.86± 0.80 62.03± 0.69

A-DAE 64.18± 0.23 62.74± 0.27

of SUSAS leading to more examples being chosen from the FAU AEC training set in
comparison to ABC.

A-DAE vs. DAE

A comparison between the A-DAE and DAE methods is now made in detail because
A-DAE has its roots in DAE. Figure 4.8 provides UAR for different numbers of
hidden units m, where performance changes for different parameter settings are
analyzed. Based on Figure 4.8, it is worth noting that the proposed method obtains
the highest UAR of 64.67 % for ABC and of 63.02 % for SUSAS at m = 1 024 and
m = 512, respectively. Surprisingly, one could not obtain a sustained performance
growth with more hidden units for SUSAS. One reason is that the utterances of
ABC are more complex and have more variance (length and content) than those
of SUSAS which contain pre-defined short commands. Therefore, the increase in
hidden units potentially yields more generalization performance for ABC than for
SUSAS. In contrast, increasing the number of hidden units to m = 1024 in the
case of SUSAS reduces the corresponding performance because overfitting occurs.
Nevertheless, increasing the number of hidden units leads to additional improvement
indeed, which confirms that an over-complete first hidden layer works better than an
under-complete one when using unsupervised pre-training as in the theory of deep
architectures [249].
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Figure 4.8: Average UAR with standard deviation over ten trials with varying
number of hidden units (m) using DAE or A-DAE.

4.5.3 Conclusions

In this section, the unsupervised domain adaptation method based on adaptive
denoising autoencoders is examined by affective speech signal analysis. The method
is capable of reducing the discrepancy between training and test sets due to different
conditions (e.g., different corpora). A denoising autoencoder is first built on the
target domain adaptation set without using any label information with the aim to
encode the target data in an optimal way. These encoding parameters are used as
prior information to regularize the training process of an A-DAE on the training set.
In this way, a trade-off between the reconstruction error on the training data and a
knowledge transfer to the target domain is found, effectively reducing the existing
mismatch between the training and testing conditions in an unsupervised way. Results
with three publicly available corpora show that, the proposed method effectively and
significantly enhances the emotion classification accuracy in mismatched training
and test conditions when compared to other domain adaptation methods.
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4.6 Emotion Recognition Based on Feature Trans-

fer Learning in Subspace

4.6.1 Experiments

The feature transfer learning in subspace method introduced in Section 3.4.8 uses
denoising autoencoders to build high-order subspaces of the source and target
corpora, where features in the source domain are transferred to the target domain
by an additional neural network. This method is referred to as DAE-NN. To
exemplify effectiveness of this approach, three common emotional speech corpora, i.e.,
FAU AEC, ABC, and SUSAS, are selected for extensive and reproducible evaluation.

The DAE-NN method involves the parameter optimization of DAEs and a regres-
sion neural network. For training of the DAE, masking noise with a variance of 0.01
was used to generate the corrupted input. The number of hidden units m was fixed
to 200 for the two DAEs and the NN, and the weight decay technique with a defined
value of 0.0001 was considered. The number of epochs for the DAEs was set to 250
and the number for NNs was decreased to 50.

Models for Comparison

To evaluate this presented approach in the context of the current state-of-the-art,
the following methods are considered for comparison:

• MINT: in this reference ‘method’ we randomly (repeated ten times to reduce
singularity effects) pick a number of examples from the FAU AEC official
training set to train an SVM, i.e., without the need of transferring in an
intra-corpus scenario. For a fair comparison, the number is given by picking
the same number of learning examples as is given by the ABC or SUSAS
sets, respectively. In other words, this can be considered as baseline reference
using exclusively target-type data, but each with the same amount of training
examples as will later be used coming from non-target data.

• CT: uses the source corpora ABC or SUSAS to train the standard (SVM)
classifier directly, i.e., without using any methods to reduce the mismatch
between source and target data. This is the ‘classical’ cross-corpus testing.

• KMM: utilizes the KMM method (see Section 3.2.1.1) on the ABC and SUSAS
database for covariate shift adaptation. It is thus the first reference with
application of transfer learning.

• DAE: employs denoising autoencoders for representation learning in order to
match training examples to test examples, which was successfully applied to
the transfer learning challenge and domain adaptation [166, 210], and may
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Table 4.8: Average UAR over ten trials: MINT, CT, covariate shift adaptation
KMM, DAE feature transfer representation learning, and the proposed DAE-NN
method related to training with ABC and SUSAS.

UAR [%] MINT CT KMM DAE DAE-NN

ABC 58.32 55.28 62.52 56.20 63.63

SUSAS 62.41 57.32 60.41 62.08 64.73

be considered as close reference from a method point of view, as a DAE is
also used, yet, without the linking between source and target domain during
transferring as is proposed in the DAE-NN method.

• DAE-NN: finally uses the DAE-NN method to compensate for the mismatch
between the features on the training and test sets, then trains standard SVMs
using the compensated features and labels in the training set.

4.6.2 Experimental Results

In the case of a cross-corpus scenario, emotion recognition engines are trained on ABC
or SUSAS while tested on the FAU AEC test set. The experiments are run ten times
for each training set, and we evaluate the performance by UAR. When using ABC
or SUSAS, averaged UAR over the ten trials is visualised in Figure 4.9, including
the error bars, and given quantitatively in Table 4.8 for reference comparison. As
can been seen, the DAE-NN method always achieves larger average UAR for ABC
and SUSAS when compared to the MINT and CT cases. It also exceeds the UAR
achieved by the DAE method and the covariate shift adaptation KMM.

More specifically, for the small database ABC (composed of only 430 examples),
one can easily see that, the standard method (CT) only obtains an average UAR
around the chance level (55.28 %) due to the inherent mismatch between the ABC
used for training and the FAU AEC test set. The accuracy obtained by the DAE
reaches 56.20 %, the covariate shift adaptation KMM can boost the accuracy to
62.52 %. However, with DAE-NN one reaches 63.63 %, which yields 1.11 % absolute
improvement when compared to KMM. This improvement has a high statistical
significance at the p < 0.001 level compared with the baseline CT and even the one
of MINT, i. e., even when using 430 target domain examples.

In comparison with ABC, SUSAS’s average UAR in ‘classical do-nothing’ cross-
corpus testing (CT method) is also close to chance level. Here, however, it is worth
noting that, the average UAR achieved by training with an equivalent number of
target domain examples as found in SUSAS (i. e., 3.6 k examples, MINT method)
increases sharply to 62.41 % because of the eight times larger size of SUSAS than
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Figure 4.9: Cross-corpus average UAR over ten trials using MINT, CT, the covariate
shift adaptation KMM, the DAE feature transfer learning, and the feature transfer
learning DAE-NN for ABC and SUSAS.

ABC leading to eight times more examples chosen from the FAU AEC training set.
Unlike ABC, SUSAS cannot obtain a great benefit from the covariate shift adaptation
KMM but can achieve a comparable performance by DAE. Again, the DAE-NN
method gives the highest average UAR of 64.73 %, which is again surprisingly even
exceeding the average UAR obtained by the MINT ‘method’. Compared with all
four reference methods, the superiority of the proposed DAE-NN method passes the
significant test at the p < 0.001 level.

It is worth noting that, the UAR from the DAE-NN for the SUSAS database is
slightly larger than the one for the ABC. Thus, it is believed that this can partially
be attributed to the larger size of the SUSAS corpus. Overall, the DAE-NN-based
feature transfer learning could be shown as highly useful in reducing the difference
for cross-corpus recognition.

4.6.3 Conclusions

A feature transfer learning method, referred to as DAE-NN, was proposed to address
a situation where training and test set come from different corpora. The method
uses denoising autoencoders to build a subspace for the source domain and the target
domain, and makes use of regression neural networks in order to reduce the mismatch
between target data and source data on subspace feature level. The proposed method
was successfully applied to the speech emotion recognition task. Experimental
results with three publicly available corpora demonstrate that, the presented method
remarkably improves the emotion classification accuracy and competes well with
other domain adaptation methods.
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4.7 Recognizing Whispered Emotions by Feature

Transfer Learning

4.7.1 Experiments

Whispered speech, as an alternative speaking style for ‘normal phonated’ (non-
whispered) speech, has so far received little attention in speech emotion recognition.
Currently, speech emotion recognition systems are exclusively designed to process
‘normal’ phonated speech, and can result in significantly degraded performance on
whispered speech because of the fundamental differences between these two – normal
phonated speech and whispered speech – in vocal excitation and the vocal tract
transfer function. This section, motivated by the recent successes of feature transfer
learning, sheds some light on this topic by proposing three feature transfer learn-
ing methods based on denoising autoencoders (Section 3.4.4), shared-hidden-layer
autoencoders (Section 3.4.5), and extreme learning machines autoencoders (Sec-
tion 3.4.7). Without the availability of labeled whispered speech data in the training
phase, in turn, the three proposed methods can help modern emotion recognition
models trained on normal phonated speech to reliably handle also whispered speech.
Throughout extensive experiments on the GEWEC data and the EMO-DB data, the
three methods are compared to alternative methods reported to perform well for a
wide range of speech emotion recognition tasks and find that the proposed methods
provide significant superior performance on both, normal phonated and whispered
speech.

Whispered Speech Emotion Recognition

SER has grown into a major research topic in speech processing, human-computer
interaction, and computer-mediated human communication over the last decades
(see [7, 8, 9, 10]). In general, it focuses on using machine learning methods to
automatically predict ‘correct’ emotional states from speech. Apart from normal
phonated speech for which current studies mainly have made considerable efforts to
date, whispered speech is another common form of speaking to communicate; it is
produced by speaking with high breathiness and no periodic excitation. With the
absence of periodic vibration of the vocal folds during the production, whispered
speech’s structure is significantly altered which results in reduced perceptibly and a
significant reduction in intelligibility. In the meantime, it was already found that
whispered speech can encode prosodic information, and thereby still convey clues
carrying emotion information [250, 251]. Naturally, whispered speech plays an
important role in our daily life in order to intentionally confine the hearing of speech
to listeners who are nearby. For example, people whisper to the user interface over
the cellphone when offering privacy information in terms of date of birth, credit card
information, billing address to make hotel, flight, and table reservations. Further,
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one may at times wish not to disturb others around as when preferring to whisper
information. Another area of interest are patients with speech disabilities who are
affected by a temporary or long-term limitation in the vocal fold structure or disease
of the vocal system such as functional aphonia or laryngeal disorders [252] and
therefore can only produce whisper-like sounds. For SER, however, only a handful
of efforts have been devoted to recognizing whispered speech by now [253, 254].
Especially, the issue of how to build a practically feasible emotion recognition system
tailored for whispered speech has not been addressed, yet, as past work mainly
analyzed the differences of the prosodic features in emotions of Chinese whispered
speech [253, 254]. Hence, to be more useful in practice, it would be highly desirable
to enable an emotion recognition system to process whispered speech as well with
promising accuracy.

In the speech community, there has been a considerable amount of related
work on whispered speech [252, 255, 256, 257, 258, 259, 260]. In [259], the authors
addressed F0 modeling in whisper-to-audible speech conversion and then proposed a
hybrid unit selection approach for whisper-to-speech conversion based on the finding
that F0 contours can be derived from the mapped spectral vectors. Furthermore,
to improve the intelligibility of whispered speech in various noise contexts, an
unsupervised learning of phonemes was proposed based on convolutive non-negative
matrix factorization [257]. For the task of acoustic voice analysis in computer
laryngeal diagnostics, the authors in [252] developed three methods for fundamental
frequency determination of the voice of patients with laryngeal disorders, including
auto-correlation, spectral, and cepstral methods. Moreover, these methods were
combined in a system for acoustic analysis and screening of the pathological voices
in the everyday clinical practice.

Collecting naturalistic real-life emotional speech is always challenging mainly due
to privacy reasons. Obviously, this factor is amplified by an order of magnitude in
the case of whispered emotional speech. Luckily, rather than tediously collecting
and labeling whispered speech and designing a dedicated system from scratch, past
studies also have shown that a workable scheme in an attempt to deal with whispered
speech is to explore normal phonated speech data to create and develop systems
that would be much more robust against variability and shifts in speech modes (e.g.,
normal phonated and whispered modes) [255, 261]. For example, the authors in [255]
recently considered a feature transformation estimation method in the training phase
which results in a more robust speaker model for speaker identification on whispered
speech. Three estimation methods are proposed to model the transformation from
normal phonated speech to whispered speech. This solution seems also reasonably
feasible and worthwhile in SER, because it allows for one single recognition system
to process both, normal phonated and whispered speech simultaneously. Another
important reason is that massively available normal phonated speech is a potential
benefit of the recognition system in the era of big data considering the alluded to
scarceness of real-life whispered emotional data. For these reasons, this strategy, i.e.,
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Figure 4.10: Examples of waveforms (top row) and spectrograms (bottom row) for
the same speech signal “nolan” expressed in two emotional states neutral and anger
by different genders in normal (left column) and whispered speech (right column)
styles taken from GEWEC. (a) Neutral emotion for the female speaker. (b) Neutral
emotion for the male speaker. (c) Anger emotion for the same female speaker. (d)
Anger emotion for the same male speaker.

deploying normal phonated speech data for whispered speech-based tasks, is adopted
in this study for creating a whispered speech emotion recognition system.

A major concern of a whispered speech emotion recognition system is as follows:
normal phonated speech fundamentally differs from whispered speech in their use of
the spectrum both perceptually and for speech production. Figure 4.10 visualizes
the differences for normal phonated speech and whispered speech expressed in two
given emotional states. Specifically, the absence of periodic vibration of the vocal
folds during production of whispered speech leads to a lack of 1) voiced excitation,
2) harmonic structure, 3) acoustic cues signaling the fundamental frequency (F0),
4) shifted formant locations, and 5) changes in formant band width (see [255, 262,
263, 264, 265, 266]). Speech emotion systems built with ‘normal’ phonated speech
signals are thus challenged, and can deliver significantly degraded performance, when
they encounter whispered speech that accordingly differs from the limited conditions
under which they were originally developed and ‘trained’. Hence, such differences
between the test data and training data render whispered speech emotion recognition
a challenging task.

There has been a considerable amount of related work to overcome the problem of
training/test feature distribution mismatch in the field of SER [267, 268] in general.
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For example, an iterative feature normalization scheme designed to reduce the speaker
variability, while preserving the signal information critical to discriminate between
emotional states, is proposed in [267]. Furthermore, the authors in [268] analyzed
how speaker variability affects the feature distribution in detail, and further presented
a speaker normalization approach based on joint factor analysis to compensate for
some of the effects identified.

A generic approach for reducing the mismatch problem in SER is based on IW
(Section 3.2.1). The essential idea is to assign more weight to those training examples
that are most similar to the test data, and less weight to those that poorly reflect the
distribution of the test data. With this idea on mind, the authors in [168] proposed
unconstrained least-squares importance fitting (uLSIF) to estimate the importance
weights by a linear model. Additionally, one can model the importance function
by a linear (or kernel) model, which leads to a convex optimization problem with
a sparse solution, called the Kullback-Leibler importance estimation procedure, or
KLIEP [169]. Kernel mean matching (KMM) was proposed to directly estimate the
resampling weights by matching training and test distribution feature means in a
reproducing kernel Hilbert space [172]. The three methods have recently been shown
to lead to significant improvement in SER when the authors in [170] first considered
to explicitly compensate for acoustic and speaker differences between training and
test databases.

Another possible solution to address the problem of these differences is to deploy
feature learning (or representation learning). Feature learning, i.e., learning suited
transformations of the data that render it easier to extract salient information when
building classifiers or other predictors, has been considered from many perspectives
within the realm of machine learning [146, 165, 206, 207]. The key idea of feature
learning is to employ deep architectures, resulting in an abstract representation.
Generally, more abstract concepts are invariant to most local changes of the input.
Following the concept of feature learning, feature transfer learning has been proposed
to deal with the problem of how to reuse the knowledge learned previously from
‘other’ data or features [16]. This rather essential characteristic suggests that feature
transfer learning would be well suited for the scenarios where the data distribution
in the test domain is different from the one in the training domain but the task
remains the same [165, 206]. For example, feature transfer learning based on a sparse
autoencoder for discovering knowledge in acoustic features from small labeled target
data to improve performance of SER when applying the knowledge to source data
was proposed in [165].

Motivated by feature transfer learning, the present section will demonstrate that
such a concept considerably benefits an emotion recognition system for whispered
speech when it uses normal phonated speech data for training as well. Specifically, this
work is centered around the idea of a transformation from the normal phonated speech
domain to the whispered speech domain without the need of labels for the whispered
data. The resulting transformation can alleviate the disparity between the two
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Table 4.9: Overview of the selected two databases for whispered emotion recognition.

[#] Emotiona Valenceb Arousalc

A F H N − + − +

GEWEC:

Normal 160 160 160 160 320 320 160 480

Whispered 160 160 160 160 320 320 160 480

EMO-DB:

Normal 127 55 64 78 182 142 78 246

a Emotion categories: anger (A), fear (F), happiness (H), and neutral
(N).

b Binary valence: negative (−), positive (+).
c Binary arousal: low (−), high (+).

datasets and then support effective supervised learning in building a whispered speech
emotion recognition system. Accordingly, the focus of the present work is placed
on exploring standard, but powerful feature transfer learning techniques based on
autoencoders including denoising autoencoders (DAE) [197] (cf. Section 3.4.4) , a more
recent variant, i.e., shared-hidden-layer autoencoders (SHLA) [206] (cf. Section 3.4.5),
and extreme learning machine autoencoders (ELM-AE) [223] (cf. Section 3.4.7). As
a result, the proposed feature transfer learning methods successfully endow a speech
emotion model that can adapt to a range of speech modalities, including in particular
normal phonated speech and whispered speech.

Experimental Setup

The GEWEC and EMO-DB databases are chosen for evaluation, which are shown in
Table 4.9. In order to run experiments based on a common set of emotional states,
only those emotional states in EMO-DB appearing in the GEWEC data are retained
for experiments. In this way, EMO-DB here ends up consisting of 322 utterances as
shown in Table 4.9.

For optimization of the parameters in the autoencoders such as DAE and SHLA,
we applied the third party software minFunc implementing L-BFGS gradient de-
scent. In the experiments, attempted hyper-parameters for DAE and SHLA are
the following: the maximum iteration number itermax ∈ {20, 40, 50, 100, . . . , 300},
the number of hidden units m ∈ {64, 128, . . . , 1 024}, the weight decay value
λtr(λte) ∈ {10−3, 10−2, 10−1}, and the hyper-parameter for SHLA γ ∈ {0, 0.1, . . . , 1}.
In addition, masking noise with a variance of 0.01 is injected to inputs during
the training of the DAE and the SHLA. For the ELM-AE, the number of hid-
den units m ∈ {64, 128, . . . , 1 024, 2 000, . . . , 7 000}, and the regularization term
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C ∈ {10−5, 10−4, . . . , 108} are attempted.

4.7.2 Experimental Results

Acoustic Feature Analysis

Feature selection on GEWEC is now considered to reveal which features derived from
the two different speech modes are important for the task of interest. By means of
one feature selection algorithm for ranking using the information gain with respect to
the class implemented in the WEKA toolkit [101], we compare the features obtained
on the normal phonated speech with those obtained on the whispered speech from
the GEWEC data in Figure 4.11.

For all tasks, it can be observed that the relative importance of LLDs remarkably
differs between the two speech modes. For instance, the F0-related features appear
crucial for normal phonated speech while they appear entirely irrelevant for whispered
speech, which is expected due to the absence of the fundamental frequency in
whispered speech. Besides, the probability of voicing and ZCR for whispered speech
show increased relevance in the emotion and arousal cases. One possible reason
causing such change is that for whispered speech, discrimination performance is
mainly affected by the high-frequency region whereas for normal phonated speech,
discrimination performance is mainly affected by the low-frequency region [266].

As for the types of functionals, it can be observed that, the relative importance
of means and moments increases for whispered speech when compared to normal
phonated speech, whereas the relevance of regression coefficients decreases. This can
be explained by the fact that the means and moments are more robust to extract,
whereas computing reliable regression coefficients may be more difficult in a more
noisy setting as is given for most LLDs in case of whispered speech.

Overall, the acoustic feature analysis shows that relevant features for use in a
speech emotion recognition model construction are different from normal phonated
speech and whispered speech, and using normal phonated speech as training set to
recognize emotional states from whispered speech can be assumed as challenging.

Benchmark Tests on GEWEC

A number of experiments are first run where the training and the test set varies in
the combinations of normal phonated speech and whispered speech within the data
GEWEC. These include matched and mismatched as well as multi-condition training
and testing. Table 4.10 lists all nine different training and test set combinations.
Apart from emotion categories, the discrimination between binary valence and the
discrimination between binary arousal is also evaluated. A practical and challenging
leave-one-speaker-out cross validation strategy is used to meet speaker independent
criteria.
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Figure 4.11: Full INTERSPEECH 09 feature set (Full, bottom) vs. 50 best features
selected by measuring the information gain with respect to the class on whispered
(W) speech and normal phonated speech (N) in the GEWEC data for binary arousal
and valence, and quaternary emotion classification. The percentage of the selected
low-level descriptors (LLDs) and types of functionals is shown.

As may be expected and can be seen from Table 4.10, the recognition system
using supra-segmental features works best when both the training and test data are
entirely drawn from normal phonated speech, leading to the highest UAR of 74.1 %
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Table 4.10: Recognition results for emotion categories and binary valence and binary
arousal in leave-one-speaker-out testing for different train/test combinations.

UAR [%] Train on

Test on Normal Whispered Both

Emotion:

Normal 74.1 41.7 58.3

Whispered 44.5 46.7 50.6

Both 59.3 44.2 59.5

Valence:

Normal 73.1 61.7 70.5

Whispered 57.2 57.6 59.4

Both 65.2 59.0 64.9

Arousal:

Normal 58.6 60.1 61.9

Whispered 62.2 57.6 59.4

Both 60.4 58.9 60.6

for the four-class emotion classification problem. Further—also as one may expect—,
whispered speech (in matched condition) reaches a significantly lower UAR of 46.7 %.
Using whispered speech for training seems to downgrade in particular the recognition
of valence. It seems plausible that a training set drawn from whispered speech should
be a better way for whispered speech emotion recognition (i.e., matched condition
learning). However, there is no significant reduction in the system using normal
phonated speech based on Table 4.10. For binary valence and binary arousal, it is
even surprisingly observed that, the system trained with normal phonated speech
sometimes obtains slightly higher UAR than the ones when trained with whispered
speech when testing on whispered speech. Further, a multi-condition training is only
truly beneficial for whispered speech.

Results on GEWEC

Here the results obtained by the emotion recognition system using the proposed and
further domain adaptation methods are reported.

A basic model without any adaptation and the three ‘IW’ methods are used
for comparison, listed as follows, to evaluate the three feature transfer learning
approaches:
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Table 4.11: Average UAR over ten trials on GEWEC: no Transfer Learning (‘none’),
and the methods KLIEP, uLSIF, and KMM, and the feature transfer learning methods
DAE, SHLA, and ELM-AE. Significant results (p-value < 0.05, one-sided z-test) are
marked with an asterisk, judged relative to ‘none’. The best UAR is highlighted in
bold. Speaker-independent classification by SVM.

GEWEC Whispered (test), Normal (train)

UAR [%] Emotion Valence Arousal

None 45.3± 0.0 63.0± 0.0 65.1± 0.0

KLIEP [168] 46.1± 0.6 63.8± 0.4 60.9± 0.9

uLSIF [169] 45.1± 0.4 63.0± 0.5 64.7± 0.5

KMM [172] 47.8± 0.0 62.8± 0.0 65.0± 0.0

DAE ∗53.7± 1.6 63.6± 1.1 67.2± 2.1

SHLA ∗54.5± 1.6 63.5± 1.2 ∗70.6± 2.9

ELM-AE ∗52.3± 0.4 65.0± 0.9 ∗74.6± 1.0

Table 4.12: Average UAR over ten trials on GEWEC: no Transfer Learning (‘none’),
and the methods KLIEP, uLSIF, and KMM, and the feature transfer learning methods
DAE, SHLA, and ELM-AE.

GEWEC Normal (test), Whispered (train)

UAR [%] Emotion Valence Arousal

None 52.2± 0.0 62.8± 0.0 69.0± 0.0

KLIEP [168] 56.7± 0.6 62.6± 0.6 65.4± 1.4

uLSIF [169] 49.2± 0.2 62.9± 0.4 67.1± 0.3

KMM [172] 55.8± 0.0 66.6± 0.0 72.7± 0.0

DAE 53.1± 1.7 66.9± 1.8 ∗76.4± 3.9

SHLA ∗58.3± 1.8 66.0± 1.9 ∗81.1± 5.2

ELM-AE ∗63.7± 0.7 ∗72.9± 0.7 ∗85.6± 0.2

• ‘None’: employs a conventional speech emotion system, i.e., involving no
adaptation, to predict emotions for a given whispered utterance.

• KLIEP [168], uLSIF [169], and KMM [172]: utilizes these modern domain
adaptation methods for covariate shift adaptation, respectively before SVM
classification.
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First, similar to a cross-corpus setting, speech emotion recognition models are
trained on normal phonated speech while tested on whispered speech. Because of
the random initialization in the autoencoders and the IW methods, the results of the
averaged UAR over ten trials, along with a significance level computed by a one-sided
z-test, are given in Table 4.11. It is found that, the DAE, SHLA, and ELM-AE
outperform all the other approaches. In detail, the best performing methods for
the three tasks, which achieve UARs of 54.5 %, 65.0 %, and 74.6 %, respectively, use
autoencoders. For all the three tasks, the IW methods just achieve similar results as
in the ‘None’ condition. On two of the three tasks, however, the autoencoder-based
methods exhibit a statistically significant improvement over the ‘None’ condition.
Note that, the SHLA improves on the DAE, showing that it can leverage information
both from the training set and the test set in a more effective way. However, the
ELM-AE generally outperforms the SHLA, which may indicate that the ELM-AE
tends to attain more generalization performance.

To further test the effectiveness of the feature transfer learning methods at
reducing the mismatch problem, more experiments for recognizing emotions from
normal phonated speech are considered, specifically in which the training data
is whispered speech, and the test data is normal phonated speech. Table 4.12
summarizes these results. It shows that, the feature transfer learning methods
consistently outperform all the other methods since they achieve the highest UARs
for the three tasks as well. In other words, they are also found effective for normal
phonated speech emotion recognition systems when a mismatch to the training data
is given.

Results on EMO-DB

Although the transfer-learning system was originally intended for coping with whis-
pered speech, one would be curious to see if such an approach can be suitable also for
normal phonated speech in a cross-corpus setting since normal phonated speech is a
more common way in our daily life. Therefore, the feature transfer learning methods
are further tested on normal phonated speech. In doing so, the recognition models
obtained by the feature transfer learning methods as well as the other concurrent
methods for comparison, which are originally developed for whispered speech in
Section 4.7.2, are now evaluated to make predictions on the data of the EMO-DB
corpus. Note that, these models are trained in a way of transferring the knowledge
from whispered speech to normal speech within GEWEC. Following the experimental
settings, these results are presented in Table 4.13.

It is found that, the feature transfer learning methods can retain a competing
performance as in the ‘None’ condition (i.e., a usual cross-corpus setting training
on one corpus and testing on another), where the training and test data come from
normal phonated speech, whereas all of the IW methods lead to a significant reduction
in performance. In addition, for the emotion and arousal tasks, the feature transfer
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Table 4.13: Average UAR on EMO-DB: All the models are originally trained to
transfer the knowledge from whispered speech to normal speech within GEWEC
while directly testing on EMO-DB.

UAR [%] Emotion Valence Arousal

None 49.9± 0.0 84.2± 0.0 75.0± 0.0

KLIEP [168] 17.1± 0.9 66.4± 0.6 34.9± 0.7

uLSIF [169] 19.7± 0.6 67.8± 0.3 34.1± 0.3

KMM [172] 15.8± 0.0 68.2± 0.0 27.4± 0.0

DAE 54.5± 1.5 72.2± 1.9 78.6± 3.9

SHLA 55.4± 1.6 69.5± 1.8 ∗82.1± 1.8

ELM-AE ∗57.4± 0.4 76.0± 0.3 ∗85.5± 1.0

Table 4.14: Comparison of running time (s) of the DAE, SHLA, and the ELM-AE
on GEWEC.

Hidden units DAE SHLA ELM-AE

64 4.734± 0.500 11.348± 2.091 0.020± 0.005

128 9.098± 2.808 15.799± 1.543 0.035± 0.005

256 14.023± 2.904 27.159± 3.885 0.086± 0.0569

512 23.062± 4.828 42.896± 8.322 0.154± 0.029

1 024 35.952± 11.126 61.502± 14.604 0.337± 0.040

learning methods significantly improve the performance in UAR over the ‘None’
condition, which may indicate that the knowledge of whispered speech automatically
found by the proposed methods might be beneficial for normal phonated speech
recognition to some degree. Overall, these findings may suggest that the autoencoder-
based methods have great advantages to generate feature representations which are
common to or invariant across both whispered and normal phonated speech.

Comparison between the Autoencoder-based Methods

Furthermore, the running time of DAE, SHLA, and ELM-AE on GEWEC are
compared. As can be seen from Table 4.14, the ELM-AE has the least amount of
needed running time with respect to the DAE and SHLA, simply because its training
phase avoids tuning the parameters iteratively.

Another set experiments are next conducted to take a closer look at the differences
between the autoencoder methods. Figure 4.12 demonstrates how the number of
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hidden units m influences the performance of the different autoencoder-based methods
on GEWEC and EMO-DB. It can been seen that, the change in the number of
hidden units – within a particular range – has a strong influence on the proposed
methods. That is, it is possible to obtain a sustained performance growth with more
hidden units.
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Figure 4.12: Average UAR with standard deviation over ten trials obtained by DAE,
SHLA, and ELM-AE with changes in the number of hidden units (m) for the emotion
labeling scheme. (a) On GEWEC. (b) On EMO-DB.

4.7.3 Conclusions

Autoencoder-based feature transfer learning has been successfully applied to SER
primarily for cross-corpus classification of emotions (see Sections 4.3 to 4.6), rather
than whispered speech classification. This section extended these works by 1)
showing how autoencoder-based feature transfer learning can be applied to create a
recognition engine with a completely trainable architecture that can adapt itself to
other speech modalities, such as normal phonated speech and whispered speech, and
2) by considering novel autoencoder realizations by ELM.
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To reach the goal of this work, i.e., developing an emotion recognition system
which is trained on normal phonated speech that can offer reliable performance also
for whispered emotional speech, this section applied three feature transfer learning
methods using denoising autoencoders, shared-hidden-layer autoencoders, and ex-
treme learning machines autoencoders for whispered speech emotion recognition.
The results demonstrate that such feature transfer learning methods can significantly
enhance the prediction accuracy on a range of emotion tasks and are able to out-
perform alternative methods. At the same time, the proposed methods do not hurt
system performance on normal phonated speech.

It was further found that, autoencoder-based feature transfer learning not only
can reduce the mismatch between the training set and test set by discovering common
features across multiple modes or different corpora, which has been repeatedly shown
in previous work like [166, 192], but also can greatly improve the learning performance
of a target task by transferring useful information in one source task to the target task
in an unsupervised way. Note that, here, whispered speech as the source obviously
offers helpful information so as to improve the target task of normal phonated speech
emotion recognition. Such benefit has been constantly demonstrated in other transfer
learning methods and been widely applied in a number of applications such as
web-document classification [269] and WiFi-based indoor localization [270], but has
never been found for autoencoder-based feature transfer learning before. Hence, this
work provides a new insight into autoencoder-based feature transfer learning.

By that, the results are very encouraging beyond the original intentions: Not
only could it be possible to implement a speech emotion recognition engine robust
to whispering, but it could also be possible to exploit whispered speech to improve
the recognition of normal speech. In a similar fashion, one can now imagine to use
all sorts of atypical and inhomogenous databases of emotional speech to train on the
various corpora available an engine that is showing better performance simply by
having been trained on ‘much more data’ that has, however, been transferred in a
meaningful way to a target domain.
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Summary and Outlook

This chapter summarizes the results obtained and concludes this thesis (Section 5.1).
Further, it sketches possible future directions of research (Section 5.2).

5.1 Summary

This thesis was strongly oriented to the practical problem of the distribution mismatch
within emotional speech corpora (cf. Sections 1.1 and 3.1). To approach this problem,
this thesis advanced the state-of-the-art in transfer learning with autoencoders (cf.
Section 3.4). To be more specific, six novel feature transfer learning methods based on
autoencoders were proposed to find common features across different data domains in
this thesis. Every method was systematically evaluated on a wide range of emotional
speech corpora, covering the distribution mismatches caused by the cross-language
setting, the cross-speaker setting, the cross-age setting, and the cross-speech-mode
setting. Although all methods were evaluated for Speech Emotion Recognition (SER)
tasks, they are general methods, which are applicable to any task beyond SER.

The first proposed method, incorporating sparse autoencoders in feature transfer
learning (Section 3.4.3.1), was found dramatically efficient for transferring knowledge
in the real-life situation where a small amount of labeled target domain data are
available and rich data from other domains are at hand. This proposed feature
transfer learning method was systematically evaluated on six databases for SER
tasks (Section 4.3).

Next, this thesis was fully dedicated to even more challenging unsupervised trans-
fer learning. For unsupervised transfer learning, there is no labeled target domain
data. In this case, this thesis promoted autoencoders for unsupervised transfer learn-
ing with the inspiration of feature learning [146], multitask learning [156], extreme
learning machine [221], as well as subspace learning [227]. As a consequence, five
unsupervised feature transfer learning methods using denoising autoencoders and
the variants were proposed in Sections 3.4.4 to 3.4.8 and extensively evaluated in
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Chapter 4, respectively. In particular, these methods include denoising autoencoder
feature transfer learning (Section 3.4.4), shared-hidden-layer autoencoder feature
transfer learning (Section 3.4.5), adaptive denoising autoencoder feature transfer
learning (Section 3.4.6), extreme learning machine autoencoder feature transfer
learning (Section 3.4.7), and feature transfer learning in subspace (Section 3.4.8). Ex-
perimental results showed that these methods could achieve significant improvement
in comparison with the state-of-the-art transfer learning methods.

Finally, the focus of the thesis was placed on the application of unsupervised
feature transfer learning for whispered speech emotion recognition (Section 4.7),
which has drawn little attention in the filed of SER so far. Three of feature transfer
learning methods introduced in Section 3.4, namely feature transfer learning using
denoising autoencoders, shared-hidden-layer autoencoders, and extreme learning
machine autoencoders, were further extended to develop a whispered speech emotion
recognition system. Such a system was evaluated on two public databases containing
normal phonated speech and whispered speech. The results indicate that these
feature transfer learning algorithms are promising and efficient methods to make
the recognition system adapt rapidly to different speech modalities, and outper-
form alternative transfer learning methods (e.g., kernel mean matching [171] and
unconstrained least-squares importance fitting [168]) by a large margin.

5.2 Outlook

This thesis has proposed a set of autoencoder-based feature transfer learning algo-
rithms for automatically exploring abstract representations to reduce the distribution
mismatch. Despite their significant achievement for a wide range of novel and real-
life SER problems, there are several ideas along this line of research worth being
investigated in future.

It is natural to believe that deep architectures, for example, deep neural net-
works [102] and deep autoencoders [166], are able to extract complex structure and
build internal representation from rich inputs. Thus, one potential direction is to
expand the shallow architecture of the proposed algorithms to a deep architecture.
Furthermore, this thesis has only made use of static modeling (i.e., SVMs), which
does not take account of the fact that human emotion is slowly varying and highly
context-dependent, therefore, another line of research would improve performance by
using long-term context modeling, such as deep LSTM neural networks, to exploit
contextual information.

With the popularity of the Internet, the amount of data will constantly increase,
and the diversity of data will be significantly enhanced. While a large volume of
data may maximize benefits achievable using feature transfer learning methods for
a pattern recognition engine, they also pose problems: There are dirty data with
incompleteness, misspellings, differential precision, and obsolete information. Besides
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automatic learning of features for transfer learning, these problems give rise to the
necessity of data selection techniques, such as cooperative learning [163] and active
learning [55], since the accurate predictions of a recognition engine heavily depend
on good quality data. Thus, the next step is to integrate autoencoder-based feature
transfer learning in such data selection techniques for building good systems, which
can identify and clean dirty data.

This thesis has shed light on whispered speech emotion recognition, and has
investigated the use of enacted data for the experiments, which is known to lead
to overestimated performance. In the future, spontaneous (whispered) data should
be considered, which will make recognition systems even more applicable in real-
file settings. Obviously, however, collecting spontaneous whispered emotion large
quantities will remain quite a challenge.

Overall, all developed algorithms in this thesis are aligned to reach the ultimate
goal, i.e., to reduce the distribution mismatch. Hopefully, the research presented
here can inspire others to pursue more projects on both algorithmic development
and real-life application towards building a universal analysis system like Schuller
et al. [164] envision in the iHEARu project.
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ABC Aircraft Behaviour Corpus

A-DAE Adaptive Denoising Autoencoder

FAU AEC FAU Aibo Emotion Corpus

AM-FM Amplitude Modulation-Frequency Modulation

ANN Artificial Neural Network

ASR Automatic Speech Recognition

AVIC Audio-Visual Interest Corpus

BP Backpropagation

CMN Cepstral Mean Normalization

CNN Convolutional Neural Network

CT Cross Training

DAE Denoising Autoencoder

DCT Discrete Cosine Transformation

DNN Deep Neural Network

ELM Extreme Learning Machine

ELM-AE Extreme Learning Machine Autoencoder

EM Expectation Maximization

EMO-DB Berlin Emotional Speech Database
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FFNN Feedforward Neural Network

GEMEP Geneva Multimodal Emotional Portrayals

GEWEC Geneva Whispered Emotion Corpus

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HMM Hidden Markov Model

IW Importance Weighting

k-NN k-Nearest Neighbors

KL Kullback-Leibler

KLIEP Kullback-Leibler Importance Estimation Procedure

KMM Kernel Mean Matching

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno

LLD Low Level Descriptor

LOI Level of Interest

LP Linear Prediction

LPC Linear Prediction Coding

LPC Linear Prediction Coding

LPCC Linear Prediction Cepstral Coefficient

LSTM Long Short-Term Memory

MFCC Mel-Frequency Cepstral Coefficient

MINT Matched Instance Number Training

MLLR Maximum Likelihood Linear Regression

MLP Multilayer Perceptron

MNIST Mixed National Institute of Standards and Technology

MSE Mean Square Error
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MV Majority Voting

NLL Negative Log-Likelihood

NN Neural Network

PCA Principal Component Analysis

PLP Perceptual Linear Prediction

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RMS Root Mean Square

RNN Recurrent Neural Network

SAE Sparse Autoencoder

SD Standard Deviation

SER Speech Emotion Recognition

SGD Stochastic Gradient Descent

SHLA Shared-hidden-layer Autoencoder

SMO Sequential Minimal Optimization

SMOTE Synthetic Minority Oversampling Technique

SPL Sound Pressure Level

SSE Sum of Squared Error

SUSAS Speech Under Simulated and Actual Stress

SVM Support Vector Machine

UAR Unweighted Average Recall

uLSIF Unconstrained Least-Squares Importance Fitting

VAM Vera am Mittag
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