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Abstract

Aim of this paper is the study of waves propagation in a fractional, non-local
1D elastic continuum. The non-local effects are modeled introducing long-range
central body interactions applied to the centroids of the infinitesimal volume ele-
ments of the continuum. These non-local interactions are proportional to a proper
attenuation function and to the relative displacements between non-adjacent ele-
ments. It is shown that, assuming a power-law attenuation function, the governing
equation of the elastic waves in the unbounded domain, is ruled by a Marchaud-
type fractional differential equation. Wave propagation in bounded domain instead
involves only the integral part of the Marchaud fractional derivative. The disper-
sion of elastic waves, as well as waves propagation in unbounded and bounded
domains are discussed in detail.

1 Introduction

Elastic waves propagation in solid mechanics has been widely studied in the context of physical
and engineering problems since the end of the nineteenth century. Propagation of elastic waves
in 1D domains are usually analyzed with the well celebrated D’Alembert or Riemann solutions
(see e.g. [1]). The main feature of waves propagation in unbounded elastic solids is related to
the constant speed of the traveling disturbances that depends on the mass density as well as on
some mechanical parameters, whereas it is independent of the wavelength. Such independence
has not been observed in experimental measures of elastic waves speed in real materials. As in
fact, it is well known that, as soon as the wavelength decreases, a lower propagation speed is
usually detected and this effect is known as dispersion of elastic waves. Such a phenomenon is
the main responsible of traveling disturbances shape changes in 1D elastic waveguides and it
is commonly detected in lattice-type materials. Similar effects may be also detected in waves
scattering across periodic or, nearly-periodic elastic waveguides ([31]).

Detailed discussion of waves propagation in crystal lattices, faced in the context of lattice
mechanics may be found in basic book (see [6] and [5] among others). At the borders of the
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Brillouin zone, as soon as the wavelength become comparable to the lattice distances, there are
large deviations between the speed of traveling waves, predicted with continuum mechanics,
and that evaluated by means of the lattice dynamics theory. This phenomenon is due to the
lack of a specific parameter related to the structure of the solid in the continuum mechanics
model ([34]).

In this context, several studies involving structured elastic continuum are available from
the beginning of the sixties ([28], [17], [33], [29]) by means of suitable extensions of the theory
of deformable directors ([16]), up to more recent studies ([17], [25]) introducing various forms
of the theory of micro-morphic continuum. Alternatively, a different approach accounting for
the discrete nature of the solids has been proposed at the end of the sixties ([24]) and later
on applied to several fields of physical and engineering context ([18], [19], [20], [3], [2]). In
those latter approaches it has been assumed that the stress-strain relation is defined in an
Hilbert space with assigned metric depending on the relative distance of the state variables
([22]). Very recently a general framework for non-local 1D solid with Eringen integral model
appeared in scientific literature [4].

The governing equations of the problem, studied in the context of non-local elasticity,
yield dispersion relations for unbounded domains but as far as bounded elastic solids are
analyzed the frequency-wavenumber (w— k) relations involve escape frequencies corresponding
to non-propagating waves ([9]). This aspect cannot be explained in the 1D model of elastic
waves propagation since the presence of escape frequencies in classical mechanics is due to the
presence of elastic external restraints along the waveguide, not included in the model.

A different, physically-based, approach to non-local mechanics has been recently intro-
duced in the context of fractional calculus ([14]) and after that, successively investigated
either in variational and thermodynamic context ([11], [13]).

The non-local effects have been accounted for introducing, in the equilibrium equation of
a generic volume element an additional contribution representing the resultant of the long-
range forces exchanged between the considered element and the surrounding non-adjacent
volume elements of the solid. The mathematical model of the long-range interactions has been
assumed dependent on the product of the interacting volumes, on their relative displacements,
as well as on a proper, monotonically decreasing function. This latter function, dubbed
attenuation function, or distance decaying function, contains additional parameters related to
the inner microstructure of the material. Under the assumption of power-law decay a fractional
differential equation of Marchaud-type has been obtained in unbounded domain ([14]). Similar
fractional equation with a different fractional order may be also obtained, in unbounded
domains, by the integral model of non-local elasticity with a proper, fractionally decaying
attenuation function as recently proposed by [26]. Non-local approaches with long-range
elastic forces have been conducted in static setting in order to capture the mechanical behavior
of materials exhibited during load tests. In other studies ([35]) dynamic analysis of elastic
continuum with long-range interactions have been performed in the context of exponential
decay of the long-range effects. Yet, if we assume that similarity properties of the long-
range interactions keep at smaller observation scales then the fractional power-law is, in the
authors’ opinion, the best choice for the decaying function, because it is typical of self-similar
transformations ([7], [8]).

In this paper, the propagation of elastic waves in 1D case is faced in the context of fractional
power-law long-range interactions. The propagating phenomenon is analyzed in unbounded
continuum domain providing the frequency-wavenumber curves assessing the presence of the
elastic waves dispersion. Standing waves analysis in bounded domain as well as disturbances
propagation in bounded 1D elastic waveguides are also assessed. The formulation of the
field equations are here derived from the weak form of motions equations as in Hamiltonian
mechanics.



2 The 1D Elastodynamics in Presence of Fractional
Long-Range Interactions

Fundamentals of the elastodynamics problem within the physically-based approach to non-
local mechanics ([14]) in presence of long-range central interactions will be shortly outlined in
this section for clarity’s sake as well as to introduce appropriate notation.

Let us assume to deal with a 1D homogeneous elastic domain with Young elastic modulus
E, uniform mass density p, in the region [a,b] € R of an Euclidean space as in Fig.(1) and let
us denote the generic volume element as dV (z) = Adx, with A the cross section area of the 1D
solid. Tt is assumed that the axial external body force field f (z,t)dV (x) with f (z,t), where
t is the time, is equilibrated by the contact forces coming from adjacent volumes, N (z,t)
and N (x 4 dx,t) that play the same role of lattice interactions between particles involved in
next nearest (NN) models in [5]. Other contribution to the equilibrium of the external load
field f (x,t) in such a physically-based approach to non-local mechanics is represented by the
long-range body forces between volume dV (z) and the non-adjacent volume elements dV" (),
as like as in next to nearest neighborhood (NNN) interaction lattice models ([30]).

Such internal body forces, denoted as @ (x,t) are the resultant of the long-range interac-
tions ¢ (x,&,t) that each volume dV (&) with £ € [a, b] exerts on volume dV (z). In particular
it is assumed that ¢ (z,&,t) is proportional to the product of interacting volumes, and, under
the assumption of linear elastic state of the solid, to the product of the relative displace-
ment, indicated as 7 (z,&,t) = u(x,t) —u (&, t). Since all physical interactions decay with
the inter-distance, the long-range interaction forces ¢ (z,&,t) will be also proportional to a
distance-decaying function g (z,&) depending of the material at hands.

The choice of the distance decaying function is a crucial step in the mechanics of the non-
local continuum with long-range interactions. Selection of the function g (z,£) in the class of
Helmoltz or bi-Helmoltz type decaying functions yields, with the physically-based model, an
integro-differential formulation of the governing equations ([35]).

In the authors’ opinion, the evidence of long-range effects is manifested at micro or meso-
scale, and only an accurate description of the material micro-structure might suggest the
correct form and the parameters of the function g (z,§). Some recent attempt to model
materials micro-structure has been formulated in the context of fractal geometry ([15]), that,
in the authors’ opinion corresponds to a model in which self-similar interactions are introduced.
This leads towards particles interactions with fractional power-law decaying function. Based
on such considerations, in the following, the function g (z, &) will be assumed as:

(1) g(r,6) = ol 1

, O<a<l1
F(l—()é) |ZL'—£|1+Q

where T"(+) is the Euler gamma function, (5 is a coefficient accounting for the percentage
of the non-local interactions with 0 < s < 1, ¢, is a dimensional parameter, [c,] = L4
that rules the intensity of the long-range interactions. The real coefficient « is related to the
fractal dimension of the inner micro-structure and it may be selected after proper experimental
set-up, that is underway in the authors’ research activities. The governing equation of the
proposed model is obtained by a variational approach as:

H (i u,e,1) = /h{%/b (2,12 d:n——/ (2,1) dm}dt—l—
@) /{ // (2,6)n x&,)déd:nJrA/ (u,a:,t)d:n}dt

where H (u,u,e,m) is the extended Hamiltonian (see e.g. [35]), P (u,,?) is the potential
energy of the external force field and ' = p1FE, with f; = 1 — 55 is the reduced elastic
modulus that accounts for long-range effects.



The field equations of the elastodynamics in conjunction with the natural boundary condi-
tions may be obtained by variations with respect to the state variables of the elastic problem,
namely @ (z),u (z),e(x) and n (z,§) yielding:

(3) pusy — Eugy + Bac B [(xf)ggu) (x,t) + (xf?g‘_u> (m,t)] = f(x,t)

where we denoted [-],, = 0?/0t? and [],, = 0%/0x2. The natural boundary conditions asso-
ciated to the proposed Hamiltonian reads:

(4a) E Ae (a,t) = A 09 (a,t) = —F, (t)

(4b) E Ae (b,t) = A o9 (b,t) = F, (t)

where o(¥) (z,t) = Ee (z,t) is the well-known, local Cauchy stress and, at the limit it corre-
sponds to the contact interactions between adjacent volumes of the NN lattice models. The
very remarkable result exploited in Eq.(4a,4b) has been discussed in detail on rigorous basis
in previous papers (see [11], [13]) but it may be also easily explained by considering that non-
local interactions have been modeled as body forces and then they do not affect the mechanical

boundary conditions involving only contact forces. The integral operators (xf)g +u> (z,t) and

(xf?g‘_u) (x,t) in eq.(3) represent the integral parts of the Marchaud fractional derivatives

(D%, u) (x,t) and (D¢ u) (2,t) on the finite domain that are written as:

« _ u(m,t) o xu(x7t) —U(g,t) _
(mDa—l—u) (:Evt) - T (1 . Oé) (:E N a)a + T (1 _ Oé) /a (l‘ - é)l-i-oe d& -
B u(z,t) o
(5&) - F (1 _ Oé) (x o a)a + <$Da+u> (IIJ‘,t)
o _ u(a:,t) a bu(a:,t)—u(f,t) _
(xDb—u) (‘Tvt) - F(l—a) (b_x)a +F(1—a) /x (§—$)1+a df—
B u(z,t) o
(5b) - T (1 — a) (b — a)a + (xDb—u) (‘Tat)

For unbounded waveguides the field equation of the elastic waves propagation is obtained
for a — —o0, b — oo in eq.(3). In this case, the Marchaud fractional derivatives will involve
only the integral terms in egs.(5a,5b) and they will be denoted as (, D u) (z,t) and (,D%u) (z,t).
In this setting the governing equation of the waves propagation reverts to

(6) pust (2,t) — Etgy (2,t) + Boca B [(:D3u) (z,t) + (2 D) (z,1)] = f (z,1)

that is a fractional differential equation with constant coefficients that will be extensively
used in the next section to study dispersion and disturbance propagation of elastic waves
in unbounded domains. Other generalization of the classical wave equation that involves
fractional differentiation in time can be found in literature in ([27]) and ([23]).

The integro-differential problem represented in eq.(3) possesses an equivalent mechanical
model that may be used to better clarify the physics of the proposed model of non-local
elasticity. As in fact, the fractional differential equation may be reverted into a discrete
version introducing the difference operator d/dx = A/Axz so that the following system of
ordinary differential equations is obtained as:

M’U,j + K(Z) (Uj+1 + 2Uj — u]'_l) +
7 Vil nt n nt
@) YK —w) — % K (un — ) = Fy(t)
h=1 h=j+1
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with (j = 1,...,n) where Fj (t) = f (x,t) AV, M = pAAz is the mass of volume AV = AAxz,
_ ~1
and K = EA/Ax, K}(gg) = AV2ac, EBs/ <F (1—-a)lz; — xh|1+a> are, respectively, the
local and non-local stiffness, and F} (t) = f (z,t) AV.
Eq.(7) corresponds exactly to the equilibrium equations of the point-spring model depicted

in Fig.(2) where only four points have been reported for clarity. The dynamic equilibrium
equations of such a model may be cast in matrix form as:

(8) Mii + (K“) + K(”£)> u=F

with, M a diagonal mass matrix, and:

KO —g®O 0
oK  _ g

9 K =
©) (sym)
K@
nt nt nt
(10) K™ — Koo —Ky,
O v

are the stiffness matrices of the local and long-range (non-local) interactions where the diagonal

n
terms read: K j(-;zz) = hzl K;ZZ).
h#j

Because of the equivalence between the fractional differential equation and its discretized
version as Ax — 0 reported in eq.(7), the proposed model has been dubbed as physically-based
model of non-local mechanics. It must be remarked that eq.(7) coincides with the NN Born-
Von Karman monoatomic lattice model assuming Az = d, being d the lattice constant whereas
if also the springs connecting non-adjacent elements are present then it may be thought as an
NNN Born-Von Karman lattice model. The equivalent mechanical representation of the local
elastic model here proposed will be used in the next section to provide waves propagations in
bounded waveguides.

3 Analysis of waves propagation in 1D solid with
fractionally decaying long-range interactions

The elastic model studied in the context of fractional decay of long-range interactions is
applied, in this section to unbounded waveguides, aiming to provide the effects of the long-
range interactions on traveling disturbances as well as on the speed of traveling waves. In
the first part of this section the analysis of a disturbance traveling along the waveguide will
be analyzed and the dispersion of elastic waves will be examined, in terms of the frequency-
wavenumber relations. In the second part of this section the analysis of elastic waves in
bounded waveguides will be expoloited to highlight the presence of boundary effects that are
a crucial aspect of non-local elasticity.

3.1 Dispersion of elastic waves in 1D unbounded waveguide

Analysis of traveling disturbances in unbounded waveguides is ruled by the fractional dif-
ferential equation reported in eq.(6). Let us assume that, at time instant ¢ = 0, the initial



displacement and velocity of the solid reads: u (x,0) = @ (z)and u; (2,0) = v (z). Let us de-
note as @ (k, t) the spatial Fourier transform as @ (k,t) = [*_ u(z,t) e "*dz where i = /=1
is the imaginary unit, x is the wavenumber. Then, by assuming f (z,t) = 0, and making the

spatial Fourier transform of Eq.(6) the following differential equation is readily obtained:
(11) Gyt (Ko t) + cih (k) G (K, t) = 0

where the wavenumber function h(k) is related to the fractional form of the decaying function
as:
(12) h(k) = Bir? + 2cq cos(am/2) |k|* B2; (0 <a <1)

In the former equation, the second term is proportional to the Fourier transform of the
spatial Riesz fractional derivatives. It may be observed that, in the latter equation the case
« = 1 may be recovered observing that for this value of o the sum of left and right fractional
derivatives vanishes and the local case w = [1¢k is recovered. The solution of the second-
order, linear differential equation reported in Eq.(11) is provided by the linear combination:

(13) @ (K, t) = dj cos (clmt) + dg sin (cl mt)

where ¢, = \/E/ p is the speed of elastic waves in the context of classical mechanics and d
and dy are related to the initial condition as:

Q(R,O):/ i (x) e " dr

[e.e]
(K, 0) = / v (z) e " dy
—00

It has to be remarked that as 8y = 0, that is for a classical local continuum, the function
@ (k,t) in eq.(13) coincides with the classical solution of waves propagation on 1D Cauchy
solid. A numerical solution of a traveling Gaussian type disturbance along the waveguide has
been reported in Fig.(3) for different values of the fractional differentiation order . The initial
conditions of the traveling disturbance has been assumed as: @ (z) = 1/ (v/27s) exp [—z?/s?]
and v (z) = 0 where s is a scale parameter ruling the spread of the Gaussian initial disturbance.
The parameters chosen for the simulation are: p = 5.1 x 10~%kg/mm?, L = 1000mm, E =
72kN/mm?, A = 100mm?, s = 20, ¢ = lmm®~* and 3 = 0.9.

It is well-known that disturbance propagation in unbounded waveguide, faced in the frame-
work of classical continuum mechanics (2 = 0 or @ = 1) involves the presence of a cou-
ple of identical disturbances traveling in opposite directions with constant speed ¢; as from
D’Alambert solution of the wave equation. A different scenario appears for the non-local
model of elastic continuum investigated in the paper. In fact in Fig.(3) it may be seen that as
soon as the differentiation index « takes on real numerical values the shapes of the traveling
disturbance along the waveguide is sharply modified.

Observation of the propagating disturbance shows that as long as the central core of the
disturbance propagates away from the perturbed zone this location does not came at rest
but an alternating sequence of positive and negative displacement concentrations are involved
in the central zone of the waveguide. It may be observed that the time interval between
two positive (or negative) peaks of the perturbed pulse is related to the fractional order of
differentiation «. Values of the parameter « close to one leads to waves scattering similar to
the local case (see Fig.3) that is exactly achieved for v — 1.

The shape modification of traveling disturbance involves different propagation speed of
the elastic waves with different wavelength in the (w — k) spectrum. Such a phenomenon is
characteristic of crystal lattice models of real materials and it is detected from the deviation
of the (w — k) relations from the straight line w = ¢;x at the border of the Brillouin zone. In
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dispersive continuum this phenomenon is known as dispersion of elastic waves. This aspect
is captured by the proposed model of non-local elasticity and the proper (w — k) relations is
obtained introducing a double, space-time, Fourier transform of Eq.(3) in the unbounded case,
defined as: U (k,w) = ffooo ffooo u(x,t) e " WHtse) drdt that yields, after some straightforward
manipulations an (w — k) relation of the form:

(14) w (k) = ¢ (B1k® + 2Bacq cos(am/2) \ﬁ]a)l/2; 0<a<l

The particular case a = 1 yields the well-known (w — k) relation of the classical continuum
mechanics w = Bi¢k. For non-integer values of the fractional differentiation index « the
non-linear (w — k) relation involves different propagation speed ¢ (k) = dw (k) /dk at different
wavelenghts A = 1/k, i.e. as like as the typical behavior of dispersive media.

Various dispersion curves for different values of the fractional differentiation order « have
been reported in Fig.(4) without contact forces (e.g. 1 — 0) since they are inessential to
discuss the non-linear dispersion relation in Eq.(14). In Fig.(4a) the dispersion curves of the
proposed model show that as k — 0, dw (k) /dk|x=¢ — oo that is, a vertical slope x = 0. This
behavior is strictly related with the features of traveling disturbances along the waveguide
reported in Fig.(3a) because it implies that infinitely long elastic waves behaves statically.
This consideration means that the initial disturbance is transfered to all the long-range elastic
bonds between volume elements composing the waveguide and as soon as the disturbance
moves away from the initially perturbed core the same location is still loaded by all the long-
range forces. Such an effect is the main reason for the presence of compressive and tensile
disturbances in the initially perturbed core of the elastic waveguide as observed in Fig.(3).

A similar scenario does not appear with a smoother class of the distance-decaying function
g (z,€&) = g(x — &) yielding a dispersion relation in the form ([35]):

00 1/2
(15) w(k)=¢q (51/.;2 + 52A/_ g (z,€) (cos (k) — cos (kE)) d£>

that has been reported with dotted and dashed lines in Fig.(4b) for Helmoltz and Bi-Helmoltz
decaying functions, respectively defined as:

(16a) g(2,8) = (BEJAPP) e~ lv=¢I/!

(16b) 9(@,8) = (BB/A) {8/ i — ehetllta i3}

where [, 1 and [o are internal lengths dependent on the microstructure. The dispersion curves
have been contrasted with the (w — k) well-known relation of the Born-Von Karman model
w/e; = sin(nk/d), where d is the lattice distance, to show the degree of accuracy in the
description of the dispersive phenomenon.

It must be remarked that the dispersion curves obtained in Eq.(16) are totally in agreement
with the dispersion curves obtained by the integral model of non-local elasticity (see [18], [21],
[9]). This is not surprising since it has been widely shown that the proposed model of non-
local elasticity, returns the integral model of non-local elasticity in unbounded domains for
some specific class of distance decaying function as fractional-type ([14]) or Helmoltz and
bi-Helmoltz decay ([35]). The main difference between the introduction of the hypersingular
decay reported in Eq.(1) and smoother version of the long-range distance-decaying is related
to the behavior of the function g (z,§) as x — £. As in fact the presence of a non-essential
singularity as z — £ involves a supplementary restraint between adjacent volumes as u () —
u (&) that regularizes the displacement function in presence of concentrated loads as it has
been shown in previous studies (see [12]).



3.2 Standing wave analysis in bounded waveguides

Analysis of elastic waves in bounded waveguides is presented in this section to show the
physical effects of the boundaries involved in the proposed model of non-local elasticity. This
is an important issue of the paper since the presence of boundaries is hardly accounted for
in the existent non-local elasticity theories yet used by several authors in waves scattering
analysis.

In this setting let us assume that the considered waveguide is located at abscissas a =
0,6 = L and that no external body force field is applied to the waveguide so that f (z,t) =0,
without loss of generality.

Some physical insights in waves propagation in elastic bounded waveguides may be shown
considering an elastic waveguide in the interval [0, L] fully restrained at x = 0 with prescribed,
assigned displacement at x = L.

In this case the integro-differential boundary value problem is written as:

(17) U — B Uzy + Ca o} |:<ng+“> (z,t) + (wﬁ?ﬂ> (!L”’t)] =0
u (0,t) = 0; u(L,t) = Uy sin ()

where Uy, is the amplitude and €2 the forcing frequency .

The solution of the elastic problem may be obtained considering the fractional operator
Do [s] (z) = (ng+s) (x) + (xf)l‘j‘_s> () that may be discretized by means of the fractional
finite difference operator ([32]), yet used in static context ([14]). Following [32] the discretized

form of the integral part of the Marchaud fractional derivative may be written as: D [s] () =
A s(z) + O (Az) where A s (z) is the fractional difference operator defined as:

A 5 (@) = p8ox
j=1 n

(18) x{z [(5oe)™® = (@) s (@) + 35 [(xj_»—a—<wj+1_r>—a]s<xr>}
h=1 r=j+1

leading to a discretized set of linear differential equation in the unknown functions u; (t) with
j = 1,2,..,n. It has previously shown ([14]) that as Az — 0 Eq.(18) coalesces with the
non-local terms reported in eq.(7). Propagation of elastic waves due to the presence of a
sinusoidally varying displacements of the rightmost edge has been reported in Fig.(5) and (6),
respectively for the local case (« — 1) and for the non-local fractional model with o = 0.5.
The parameters used for computation are: L = 200, n = 1201, E = 72kN/mm?, B; =
0.76, A = 100 mm?, whereas the parameter c, = 0.21mm®~* and p = 2.5 x 107 kg/mm?3.
The observation of the waves propagation shows that in presence of fractional long-range
interactions a marked scattering of the waves propagating away from the perturbed edge is
experienced as it is stressed by the absence of a marked wavefront separating the perturbed
space from the unperturbed zone of the waveguide.

The edge effects in elastic waves scattering are also shown in Figs.(7a,c) representing the
axial displacement of a double restrained waveguide with an initial sinusoidally varying shape
as u(z,0) = u(x) = sin (kx) and v (x,0) = v (z) = 0 with & = 1/mm for different values of
the fractional strength ¢, in Eq.(17). It may be observed that the presence of the two borders
modify the initial sinusoidal shape as time varies in presence of long-range interactions. The
extent of such a modification is influenced by the values of the coefficient c,.

The asymptotic condition (as t — 00) is a stationary, non-propagating, elastic wave that
may be obtained assuming a steady-state motion of the elastic waveguide in the form

(19) u(z,t) = () et

where we denoted w; and v (x) the j — th natural frequency and eigenmode, respectively of
the waveguide that are obtained replacing Eq.(19) into Eq.(17) yielding the boundary value
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problem:

d2 (z A

o0 { W3y (1) + B — oot [ (Do) ()] = 0
¥;(0) = 0; ¥; (L) =0

Such a problem may be solved by discretization with the aid of fractional finite differences

A% ¢ (x), 1 < k < n previously outlined. The boundary value problem is therefore reverted to
a discrete eigenvalue problem with eigenvalues w; obtained as solution of the secular equation:

(21) Det [wIM + K] =0

with K = K + K®9),

In order to make a feasible comparison between the local and the non-local discrete model
for different values of «, firstly, for each value of the parameter a the coefficient ¢, has been
selected to have the coincidence between the first natural circular frequency. In other words,
for every value of « the system’ stiffness is rescaled by proper choice of ¢, to fit the first local
natural frequency, that for the parameters selected in this example, is 413.13rad/s. Then, the
first fifteen natural frequencies for different values of the parameter o = 0;0.3;0.5 and 0.9 are
contrasted in Fig.(8).

It can be observed that with a = 1 the effect of long-range forces vanishes and the model
coincides with the 1D elastic bar. For values of « in the proximity of the unity, i.e. « = 0.9 in
Fig.(8), the non-local natural frequencies are lower than the local’s one as reported in other
works presented in literature. As soon as the value of a decreases, the bar stiffness increases
and consequently the lower frequencies are higher in the non-local model than in the local
one.

Similar considerations may be ensued from the observation of the corresponding standing
waves 1) (x) contrasted with the local eigenfunctions in Figs.(9) and (10). In particular, in
Figs.(9) the first four eigenfunctions are plotted. From this picture it can be noted that both
a =1 and a = 0 are eigenfunctions of local type, with the difference that the latter is stiffer
than the former, which conversely exactly coincides with the local bar.

It may be observed that, as far as the non-local effects have been accounted for, significant
differences both in the natural frequencies and in the standing wave shape functions are
experienced. As like as a wander off from zero and one (local behavior) the effect of the
border in the eigenmodes becomes relevant.

For higher eigenfunctions, as the eighth eigenfunction reported in Fig.(10), the stiffer
character of the non-local model with respect to the local one is more evident, because of the
presence of the long-range interactions. Fig.(10) shows in fact that the wavelength for oo = 0.3
and a = 0.9 (dashed lines) are bigger than the local (continuous line).

Finally, we stress that it has been proved in ([10]) that for very particular cases of boundary
conditions the proposed long-range interaction model reverts to the integral model of non-
local elasticity. Based on this consideration we conclude that the proposed model of non-local
elasticity is a generalization, on physical grounds, of the integral models of non-local elasticity
theory, proposed by Eringen and co-workers.

4 Conclusions

In this paper waves propagation in 1D elastic waveguides has been framed in the context of
fractional-type non-local continuum. The non-local effects have been accounted for in the
model, introducing long-range interactions between non-adjacent volumes, that are mono-
tonically decreasing with the interaction distance. Moreover, they are proportional to the
product of interacting volumes as well as to their relative axial displacements. Such an inter-
action model is totally equivalent to a 1D point-spring network with linear springs connecting

9



adjacent and non-adjacent volume elements. These latter springs possess distance-decaying
stiffness and they are physically equivalent to the long-range effects evidenced in NNN lattice
models of material. The model has been investigated either in unbounded domains to deal
with dispersion of elastic waves as well as in bounded domains to highlights edge effects in-
volved in the model. Waves propagation in unbounded domain has been found to be ruled by
a fractional differential equation of Marchaud-type. Different situation arises in the analysis
of bounded domain, since the governing equation proves to be an integrodifferential one with
hyper-singular kernel representing only the integral parts of the Marchaud fractional deriva-
tives. It has been shown that under the assumption of hypersingular, fractional decay of the
long-range interactions a sequence of tensile and compressive pulses is spread away from an
initial elongation of the central core of the elastic waveguides showing evident differences in
the propagation speed at different wavelengths. This behavior has been confirmed by the ob-
servation of the frequency-wavenumber relations showing marked non-linearity for non-integer
values of the differentiation index. Some numerical examples have been reported also for the
case of bounded domain introducing propagation of sinusoidal displacements as well as the
traveling of a sinusoidal shape along a double bounded waveguide.
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Figure 1: Equilibrium of a solid element with long-range interactions
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Figure 2: Spring-mass model with long range interactions
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Figure 4: Dispersion curves for: a) power-law fractional decaying long-range interac-
tions; b) exponential type decaying long-range interactions with [ = 0.38, [; = 0.32,

lo =0.22

14

0.4

0
xfL

Figure 3: Disturbance propagations for different «

Dispersion curves
e Helmoltz decay
= = = Bi-Helmoltz decay
Born-Von Karman

T T T T T
0.6 0.8
w/d




t (sec)

x (mm)

Figure 5: Classical local wave propagation

t (sec)

x (mm)

Figure 6: Non-local wave propagation

BERE exwi
LR

hlse sase

t (sec)

40 50 6

c=0 -~ c=1"7 c
o o o
Figure 7: Propagation of a sinusoidal initial deformation varying c,, with L = 50 mm,

a=0.>5

15



. (rad/s)

®

Figure 8: Comparison between

rameter «

N
e
=
W
I

R
10 11 12 13 14 15

\ N\
_z_i ="
A3 NN
b N
o4 T~ :\\
e LN
~ =% = gEli)
— — 503
o —mmeme a=0.5
— - - = a=09

Figure 9: First four eigenmodes varying o

16



0 40 80 120 160 200

Figure 10: Eighth eigenmode varying «

17



