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ABSTRACT

The understanding of earthquake dynamics is greatly supported by
highly resolved coupled simulations of the rupture process and seis-
mic wave propagation. This grand challenge of seismic modeling re-
quires an immense amount of supercomputing resources, thus opti-
mal utilization by software is imperative. Driven by recent hardware
developments the increasing demand for parallelism and data local-
ity often requires replacing major software parts to bring efficient
numerics and machine utilization closely together.

In this thesis I present a new computational core for the seismic
simulation package SeisSol. For minimal time-to-solution the new
core is designed to maximize value and throughput of the floating
point operations performed in the underlying ADER discontinuous
Galerkin discretization method. Included are auto-tuned sparse and
dense matrix kernels, hybrid parallelization from many-core nodes
up to machine-size and a novel high performance clustered local time
stepping scheme.

The presented computational core reduces time-to-solution of Seis-
Sol by several factors and scales beyond 1 million cores. At machine-
size the new core enabled a landmark simulation of the 1992 Landers
earthquake. For the first time this simulation allowed the analysis of
the complex rupture behavior resulting from the non-linear interac-
tion of frictional sliding and seismic wave propagation at high geo-
metric complexity.

ZUSAMMENFASSUNG

Das Verstdandnis der Erdbebendynamik wird von hochauflosenden,
gekoppelten Simulationen des Bruchprozesses und der seismischen
Wellenausbreitung unterstiitzt. Fiir die benétigten hohen Auflosun-
gen wird eine immense Menge an Hochstleistungsrechenresourcen
verwendet, daher ist eine optimale Ausnutzung durch die Software
unerlédsslich. Getrieben durch aktuelle Entwicklungen in der Hard-
ware erfordern die hoheren Anforderungen an Parallelisierung und
Datenlokalitdt hdufig das Ersetzen ganzer Softwareteile, um gleichzei-
tig eine effiziente Numerik und Maschinenauslastung zu gewdahrleis-
ten.

In dieser Dissertation prédsentiere ich einen neuen Rechenkern fiir
die seismische Simulationssoftware SeisSol. Der neue Kern maximiert
den Wert und Durchsatz der Gleitkommaoperationen in der zugrun-
deliegenden ADER-DG Diskretisierungsmethode, um die Rechenzeit
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zum gewdiinschten Ergebnis zu minimieren. Beinhaltet sind automa-
tisch optimierte Matrixkernel, hybride Parallelisierung von Vielkern-
architekturen bis hin zum kompletten Grofirechner, sowie ein hoch-
performantes gruppiertes lokales Zeitschrittschema.

Der prasentierte Kern reduziert die Rechenzeit von SeisSol um
einen substantiellen Faktor und skaliert bis hin zu mehr als einer Mil-
lionen Recheneinheiten. Durch den Kern wurde eine wegweisende
Simulation des Landers-Erdbebens von 1992 auf einem kompletten
Grofirechner ermoglicht. Zum ersten Mal erlaubte diese Simulation
die Analyse des damit verbundenen komplexen Bruchprozesses, wel-
cher aus der nichtlinearen Interaktion des Reibungsprozesses gekop-
pelt an die seismische Wellenausbreitung resultiert, in einer kom-
plizierten Geometrie.
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INTRODUCTION

Earthquakes cover a broad spectrum of scales. Seismic waves travel
through entire Earth and can be measured thousands of kilometers
away from the source. In contrast, the generation of earthquakes is
sensitive to a resolution of a few meters, critical for seismic hazard
assessment and a highly nonlinear phenomenon. Only very few field
observations are available in the source region of earthquakes. Thus
computer simulations have become an indispensable tool to study the
causes and effects of earthquakes.

DYNAMIC RUPTURE Physics-based dynamic rupture modeling is
able to capture this source complexity. Dynamic rupture earthquake
simulations include the source process as part of the solution by cou-
pling seismic wave propagation and frictional sliding. Simpler kine-
matic approaches assume a prescribed rupture process and may lack
information about physical earthquake dynamics.

However, accurate dynamic rupture simulations pose major chal-
lenges to the simulation environments. Realistic representations of
the fault systems introduce a high geometric complexity, since the
complex fault systems are described as non-planar interfaces (e.g.
[50]). Common features include curved faults, kinks, branches or even
fault roughness. Usually proper discretization for multiphysics dy-
namic rupture simulations is obtained by aligning faces or nodes of
the computational mesh to the faults.

Once a proper discretization is found, initial fault stresses are pre-
scribed and nonlinear friction laws are assumed for the rupture phy-
sics. After initiation of the rupture, e.g. by defining a nucleation zone,
frictional sliding generates seismic waves. The seismic waves propa-
gate through the volume of the computational domain and may trig-
ger additional slip. Therefore accurate simulation of the rupture pro-
cess and seismic wave propagation is equally important.

Seismic waves propagate at speeds dictated by heterogeneities of
the material (e.g. [43]). Thus, heterogeneities of the fault system’s sur-
rounding medium have to be captured properly in the multiphysics
modeling environment for both, accurate wave and accurate rupture
propagation (e.g. [30, 17, 58]). Material features might be highly lo-
calized, which adds a second level of geometric complexity to the nu-
merical discretization. Additionally seismic waves are reflected from
surface topography. Thus, precise representations of surface topogra-
phy further increase the geometric complexity.
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Since no analytic solutions exist for realistic scenarios, the SCEC/
USGS Spontaneous Rupture Code Verification Project [29] aims at verifi-
cation of the scientific community’s software packages. As of March
2014, the project lists 39 benchmarks, 36 participating modelers and
14 sets of results for every benchmark in average [3]. The computa-
tional approaches use Finite Difference (FD) schemes (e.g. [17, 45]),
Finite Element Methods (FEM), e.g. [4, 58, 49], or even hybrid FD-
FEM approaches [48].

In comparison to FD packages, the flexibility of simulation environ-
ments utilizing FEM is advantageous, when the accurate discretiza-
tion of complex fault systems, surface geometries and heterogeneities
in the medium is required. The prize of this flexibility is an increased
complexity of the implementations and increased computational work
for FEM, at least for low-order simulations. Additionally, Discontinu-
ous Galerkin (DG)-FEM do not impose continuity across the elements
boundaries and thus the discontinuities of the rupture process are em-
bedded very naturally into the formulations.

The SeisSol software package' is the topic of this thesis and uses,
among others (e.g. [4, 58]), DG-FEM for spatial discretization. To-
gether with the use of unstructured tetrahedral meshes and the ADER
scheme in time, this allows for accurate discretization of fault systems,
surface topography and material heterogeneities [23, 49, 22].

Hrc Highly resolved, three-dimensional earthquake simulations de-
mand an immense amount of supercomputing resources. This de-
mand is driven by accurate representations of geometric features and
the need for resolved, high frequencies in the simulations.

Thus, aside from numerical challenges, software packages simulat-
ing earthquakes are required to scale on state-of-the-art supercom-
puters. Recent forward simulations of seismic wave propagation suc-
cessfully utilized large factions of some of the largest supercomputers
worldwide (e.g. [31, 9, 32, 19, 63, 44, 6, 12, 60, 5]).

However, only very few of the performed landmark-simulations
coupled dynamic rupture propagation directly to seismic wave prop-
agation (e.g. [31], [18]). Taking the total number of simulation environ-
ments in the SCEC/ USGS Spontaneous Rupture Code Verification Project
[29] into account, a gap between latest physics-driven developments
and HPC capabilities is visible. Reason is the required, high degree
of algorithmic development, optimization and testing required to ex-
ploit all levels of parallelism offered by state-of-the-art supercomput-
ing architectures [6].

In this thesis I present a new computational core for SeisSol’s com-
putationally intensive wave propagation component. My core is tai-
lored to complex geometries and heterogeneous materials, adopts re-

1 https://github.com/SeisSol/SeisSol
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quirements of the targeted supercomputers in the algorithmic design
phase, and includes careful optimization for all levels of concurrency.

COMPUTATIONAL CORE My new computational core for SeisSol,
presented in this thesis, is designed to maximize value and through-
put of the floating point operations performed in the underlying
ADER DG-FE discretization. In contrast to a pure performance re-
engineering, the design of my core also restructures the algorithmic
layout of SeisSol. This restructuring brings together efficient numerics
and machine utilization.

The commonly used explicit time stepping schemes in earthquake
simulations usually rely on the Courant-Friedrichs-Lewy (CFL)-con-
dition for stability. This condition limits the maximum time step an
element might have and is influenced by the order of convergence,
occurring wave speeds and size of the considered element. In contrast
to explicit schemes, unconditionally stable, implicit time integrators
allow for larger time steps, but require the solution of large systems
of equations.

Explicit, global time stepping (GTS) schemes use the same, mini-
mum time step for all elements and thus ease implementation of the
used time integration. However, when performing simulations with
heterogeneous materials and adaptive meshes, this might result in
a huge waste of computational resources if the time steps of many
elements are largely underestimated.

A solution is offered by local time stepping (LTS) schemes (e.g.
[24, 13, 53, 56, 25, 64, 54]). These schemes use different time steps
for the elements in the computational domain. While the offered so-
lutions successfully reduce the computational demands, large-scale
implementations of the schemes are challenging due to the heteroge-
neous dependencies in time. Recent developments (e.g. [13, 53, 56])
suggest to reduce heterogeneity of the LTS algorithms by the intro-
duction of clusters. The clusters summarize elements in the compu-
tational domain advancing with a common time step. Additionally
the authors of [13, 53, 56] utilize multi-level partitioning to address
distributed memory machines.

To address LTS challenges, the presented computational core fea-
tures a novel high performance clustered LTS scheme. This scheme
clusters elements with similar time steps together without requiring
connectivity of clustered elements. Additionally, the presented, clus-
tered LTS scheme follows ideas of multirate approaches (e.g. [55, 56])
by introducing a single fundamental time step. Here, all clusters ad-
vance with integer multiples of this time step. The resulting clustered
local time stepping scheme is able to capture homogeneous and het-
erogeneous time step variations in the computational domain, main-
tains a large fraction of the theoretical speedup offered by LTS, and
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sustained petascale performance using a simple weighted partition-
ing.

On the engineering-side my computational core addresses all im-
portant performance characteristics of the used supercomputers. Here,
my core implements a customized memory layout streamlined to my
clustered local time stepping scheme. This memory layout features
arbitrary vector-alignment, supports hardware prefetching, includes
NUMA-aware initialization, and allows for in-place communication.
The computational part of the core incorporates auto-tuned sparse
and dense matrix kernels and includes hybrid, asynchronous paral-
lelization.

In summary, this thesis studies the individual design decisions of
my computational core, discusses the hardware-aware implementa-
tion and studies the obtained, unique algorithmic and computational
performance in different setups.

OVERVIEW This thesis is split into the three major parts i Algo-
rithm, ii Supercomputing, and iii Simulations.

First, Pt. i summarizes the fully discrete form of the used modal
ADER-DG method for the elastic wave equations in Ch. 2.

Next, we derive the clustered LTS scheme of our new computa-
tional core in Ch. 3, the second chapter of Pt. i. Only the extensive
algorithmic restructuring of SeisSol’s initial LTS approach and the far-
reaching design decisions in Ch. 3, rigorously aiming at node-level
performance and scalability, enable our computational core for petas-
cale performance in LTS setups. The discussed approaches cover all
algorithmic parts of our clustered LTS scheme in multi-partition set-
tings. This includes design decisions on a per-element basis in Ch. 3.1,
the clustering of elements with similar time steps for regularity in
Ch. 3.2, the partitioning and the introduction of communication lay-
ers for distributed memory machines in Ch. 3.3, and the time man-
agement and scheduling in chapters 3.4 and 3.5.

Pt. ii, the second part of this thesis, maps the clustered LTS scheme
of Ch. 3 to supercomputing systems. After introducing our targeted
supercomputers in Ch. 4, we systematically address all technical lay-
ers of the machines in our computational core. First, Ch. 5 intro-
duces the data structures and derives a high performance memory
layout supporting vectorization, shared memory parallelization and
distributed memory parallelization. Next, in Ch. 6, we discuss how
our computational core realizes hybrid parallelization. Our clustered
LTS scheme is designed to be asynchronous, thus details of message
progression using a dedicated communication core are covered. The
last chapter of Pt. ii, Ch. 7, introduces the innermost kernels of our
computational core. These kernels drive the single core performance
of our computational core and discussions of arithmetic intensities
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and the value of the performed hardware floating point operations
are included.

After the derivation of our clustered LTS scheme in Pt. i and the
mapping to supercomputers in Pt. ii, the final part of this thesis, Pt. iii,
studies the performance of our computational core in different se-
tups. First, we study the single-node and small-scale performance of
our computational core using different LTS configurations in Ch. 8.
These small-scale results build the baseline for the large-scale evalua-
tion up to machine-size in the remaining chapters. Ch. 9 performs a
global time stepping weak scaling and shows that our computational
core is prepared for simulations with more than 10'? degrees of free-
dom. Next, Ch. 10 studies the performance of multiphysics dynamic
rupture earthquake simulations up to machine size. The presented,
full-machine GTS production run of the 1992 Landers earthquake
sustained petascale performance and shows the applicability of our
computational core. Finally, Ch. 11 applies all of our computational
core’s functionality to seismic wave propagation in Mount Merapi.
Especially the presented, sustained petascale performance of a clus-
tered LTS simulation with production character summarizes the com-
pelling results of the algorithmic design decision made in Pt. i and
the engineering decisions made in Pt. ii.






Part I

ALGORITHM

This part covers all algorithmic design decisions of our
clustered local time stepping scheme.

The first chapter of this part, Ch. 2, summarizes the fully
discrete form of the used ADER-DG scheme for elastic
wave equations.

In the second chapter, Ch. 3, we design a clustered local
time stepping scheme aiming at high node-level perfor-
mance and scalability. The individual algorithmic design
decisions cover constraints on LTS relations of neighbor-
ing elements, the clustering, and the multi-partition layout
of our clustered LTS scheme.






NUMERICS

This chapter gives a brief recapitulation of SeisSol’s underlying nu-
merics. We start this chapter with the introduction of basic concepts,
used in our formulation of the ADER-DG scheme. First, Ch. 2.1 re-
capitulates the reference coordinates and the reference tetrahedron.
Both, the reference coordinates and the reference tetrahedron, are
used in the spatial DG discretization, together with mappings to and
from the meshed tetrahedrons. Next, Ch. 2.2 defines a set of polyno-
mial, hierarchical, orthogonal basis functions in terms of the reference
element. These basis function are used in Ch. 2.3 to define the unique
mass matrix, unique stiffness matrices and unique flux matrices.

Starting from the elastic wave equations in Ch. 2.4, we then de-
rive the fully discrete formulation of the ADER-DG method. For this
purpose chapters 2.5 and 2.6 apply the DG machinery for spatial dis-
cretization. First, we cover the ADER time integration in Ch. 2.7, fol-
lowed by the volume integration in Ch. 2.8 and the numerical flux
in Ch. 2.9. Finally, the individual integrators lead to the final fully
discrete formulation in Ch. 2.10.

2.1 REFERENCE COORDINATES

In this chapter we recapitulate the reference tetrahedron Ty together
with a reference ¢;¢283-coordinate system and face parameters x; and
X2. We use all three in the following chapters for the definition of the
basis function and the corresponding matrix structures.

Our reference tetrahedron is defined by a set of sorted vertices Tr =
(0,€1, e, ¢3) with the following coordinates:

0 1 0 0
o=|o]|,aa=]0]|,.&a=[|1|,&=|0 (1)
0 0 0 1

Vertex 0 coincides with the origin and ¢, . .., €3 with the unit vectors
of our reference ¢1§2G3-coordinate system.

Assume a given tetrahedron Ty = (X1, X2, X3, X4) in physical x1xpx3-
coordinates with vertices ¥y, . .., X4. Further, we assume that the point
X1 is the representation of the origin o in physical coordinates and that
the vectors X; — X1, i = 2,3,4 represent the unit vectors ¢, ...,€; of
the ¢18283-system in physical coordinates. Then the coordinate trans-
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formation E(¢) maps each point & € T in reference coordinates to a
unique point ¥ € Ty in physical coordinates [11, Ch. 3.5.4.5]:

Lh L I3 [ m
=20 =|m m m|C+|p|, (2)
np np nj p3
with

h L I3 Xo1 — X11 X31 — X11 X41 — X11

my mpomz o f X22 — X120 X32 — X120 X4 — X712 (3)

ny ny ns X23 — X13 X33 — X13  X43 — X13

p1 P2 P3 X11 X12 X13

By inverting the transformation matrix (incl. the translation) we
obtain the back-transformation Z~!(¥) from physical coordinates to
reference coordinates:

L L I3 p1
E=E'®) =|m m ms I-1p| | (4)
n np ng p3

We additionally require parametrizations of the reference element’s
faces (9Tr);, i € 1,...,4 in the upcoming scheme. Following [23]
we define the face-parameters (x1,x2)" to obtain the face’s volume
coordinates E (i, (x1,x2)T) € (9Tr); in the reference system by:

wzm,) ifi=1

2/ x1, 0, x2 ifi=2

C(ll (Xl/XZ)T) = ( ! ) (5)
0, x2, x1)¥ ifi=3
1—x1—x2 x1, x2)7 ifi=4.

Two face-neighboring tetrahedrons in x;x2x3-coordinates have dif-
ferent mappings to the reference element. We assume that the shared
face in the reference tetrahedron is given by i for the first tetrahedron
and j for the second tetrahedron. To use (5) for both faces we define
the mapping X, from parameters of an element-face to those of the
neighboring element’s face [23] :

(x2 x1)" ifh =1
Kn(h, (X1, 22)") = (1—x1—x2 x2)7 ifh=2 (6)
(x1, 1—x1—x2)" ifh=3.

The index h again depends on the mappings of both tetrahedrons to
the reference element. It summarizes the three possible vertex combi-
nations two triangular faces can have.



2.2 BASIS FUNCTIONS

Assuming (%1, £2)7 are the given face-parameters of our first tetra-
hedron, &(i, (£1,£2)T) gives the associated volume coordinates of the
first tetrahedron in the reference system. Combining (5) and (6), the
second tetrahedron’s coordinates are given by 5 G, %n(h, (%1, %2)T)).

2.2 BASIS FUNCTIONS

The discontinuous Galerkin Finite Element scheme recapitulated in
the following chapters requires a discrete expansion basis. We ap-
proximate a quantity g € R inside our reference tetrahedron Tr by
gn € R via a modal expansion:

Q

B
(&) ~ qu(©) :bzl?b%(g)- (7)
=1

In (7) the constant coefficients §, are the modes and 4);](5) are the
spatially dependent basis functions.

The choice of the basis functions ¢, not only dictates the perfor-
mance-relevant sparsity patterns of important matrix structures (mass,
stiffness, flux) but also has a great influence on the accuracy of the
final discontinuous Galerkin scheme. In literature a variety of options
for the proper choice of basis functions exists (e.g. [16, 39]).

In this thesis we utilize a commonly used set of polynomial, orthog-
onal and hierarchical basis functions based on the Jacobi Polynomials.
As described in [39, Ch. 3.2] the construction of the used tetrahedral
basis follows the ideas of tensor product modal expansions. The in-
troduction of a collapsed coordinate system allows to introduce a set
of one-dimensional primal functions ¢y, quﬂi and ¢, .

#h) = PO,
1— P
Wbt = (F51) B, ®

1— p+q
W) = (—L) PP,
2

with the Jacobi polynomials PiP defined as:

P = <2_n}q)!n(1_’7)_“(1+’7)_ﬁaa;7nn ((=m= ). o)

Together with the mapping from tetrahedral ¢;{>83- to hexahedral
N117213-coordinates,
21 202
= — 1, =
e B b=
we can then define the polynomial expansion up to degree P as prod-
uct of the primal functions [39, Ch. 3.2]:

Ppar(©) = Po(n)Wh ()W, (13), p+q+r<P. (11)

-1, m3=-1+2, (10)

11
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Figure 1: Illustration of the hierarchical expansion basis. The triangle in the
front with nodes ¢30,0, ¢0,3,0 and ¢ 3 contains all additional basis
functions P = 3 adds to P < 2.

Fig. 1 illustrates the hierarchical structure of the basis. We see that
every new polynomial degree P + 1 adds the basis functions ¢y,
with p+g+7r = P +1 to those of the previous degree with p + g+
r < P. For the mapping of the triple (p,q,7) to the index b used in
(7) we sort the basis functions on the outer level by the hierarchical
structure. Every contribution of the hierarchical level is then sorted
by the indices r, g and p:

= ¢po0, }P=1
$1 = $o00, } p_>
¢2 = P1,00, P3 = Po1,0, P2 = $o01 P_3
$5 = 2,00, P6 = P1,1,0, $7 = Po20, P8 = P1,01, (12)

$9 = Po,1,1, P10 = Po0,2

2.3 GLOBAL MATRICES

Based on the reference tetrahedron (see Ch. 2.1) and the basis func-
tions (see Ch. 2.2) we are now able to define the global set of matrices
required in the upcoming discontinuous Galerkin scheme.
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These are the mass matrix M, the three stiffness matrices K%, the

four left state flux matrices F~" and the 48 right state flux matrices
1:+,i,j,h:

M :/TR‘Pl‘l’mdg

K = . o (‘Pm)gc d‘f c,kel,2,3
. ! ) } i,j€1,2,34

—i _ R R N
F ~ Jem), Z (C(Z’X)) P (C(Z’X)) dx Imel,..., B.

(13)
2.4 ELASTIC WAVE EQUATIONS

The elastic wave equations are a variable coefficient linear system of
hyperbolic partial differential equations and the basic set of equations
used for seismic wave propagation in SeisSol. In the homogeneous
three-dimensional case they are given as [46]:

gt + A Gy, + Aqy, + ARy, = 0. (14)

g is the nine-dimensional space-time-dependent vector of quantities:

T
q(x,t) = (011 02 B g2 B g1 Ms) . (15)
ol 022 and ¢33 are the normal stresses and 012, 022 and ¢!3 the shear
stresses of the six-dimensional stress tensor. The particle velocities in
physical x;i-, x2- and x3-direction are summarized by the quantities
uq, up and us.

13
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Furthermore the three space-dependent Jacobians A*!, A*> and A*

are defined by:
0 00 0 0 0 —A-2u 0 O
0O 00 O 0 O A 0
0O 00 0 0 O —A 0
0 00 0 0 O 0 —u 0
A"F) =] 0o 00 0 0 O 0 0 0
0O 00 O 0 O 0 0 —u
100 0 0 0 0 0 0
0 00 —pp' o0 0 0 0 0
00 0 0 —pt 0 0 0
0 0 0 O 0 0 —A 0
0 0 0 O 0 0 0 —A—2u 0
0 0 0 0 0 0 —A 0
0 0 0 ©0 0 0 —u 0 0
A2(X)=fo o0 0 0 0 0 0 0 —u
0 0 0 O 0 0 0 0 0
0 0 0 —p' 0 0 0 0 0
0 —p 10 0 0 0 0 0 0
0 0 0 0 —plo 0 0 0
00 0 0 O 0 0 0 A
00 0 0 O 0 0 0 A
00 0O 0 O 0 0 0 —A—2pu
00 0O 0 O 0 0 0 0
A*(X)=fo 0 0 0 0 0 0 -—u 0
00 0O 0 O 0 —u 0 0
00 0 0 0 —p' 0 o0 0
00 0 0 —p' 0 0 0
00 —p20 0 0 0
(16)

The parameters of the Jacobians summarize the properties of the ma-
terial. A(X) and p(X) are the Lamé parameters, whereby u is the shear
modulus and A does not have a direct physical interpretation. The
density of the material is given by p(¥) > 0.
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The nine eigenvalues s, ...,s9 of the Jacobians determine the Rie-
mann structure of the elastic wave equations:

o A+2u S i o T

s1(¥) = — , X) = Los3(¥) = =

1(X) 0 (%) 0 3(%) p

$4(X) = s5(%) = s6(¥) =0, (17)
- U S U . A+2u

s7(X) = /=, sg(¥)=,/~, s9(¥X)= .

7(%) o 8(%) p 9(X) 5

s1 and sg correspond to the P-wave velocities, while s, s3, 57 and sg
correspond to the S-wave velocities.
The corresponding matrix of A*!’s right eigenvectors R is given by:

A+2y 0 0 0 0 0 0 0 A+2u
A 0 00100 O A
A 0 00010 O A
0 #0000 0 u 0
R = 0 0 01 00GO0 O 0 (18)
0 0 uw 000 u O 0
ss, 0 0 000 0 0 s
0 s 00000 s, 0
087000530

2.5 SPATIAL DISCRETIZATION

In this section we use the discontinuous Galerkin Finite Element
method in a modal formulation to discretize the system (14).

First we split the given spatial domain Q) € R? in K pairwise dis-
junct tetrahedrons T:

K
Q= Tk (19)
k=0

Using the modal basis functions ¢p(%) (see Ch. 2.2) up to polynomial
degree P € N leads to a spatial approximation of order O = P + 1.
Additionally using the transformations E, ' (¥) to map each tetrahe-
dron k to reference coordinates (see Ch. 2.1), we obtain for X € Tj:

g (%, t Gr1,6(t) o (Ex(X))
¥ Bo = (¥
q(g_c', t) _ 72 x,t s C]h(x, t) _ E QkZ,b(t)(Pb (Hk x)) (20)
b1

15
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The time-dependent modal coefficients Q; = {qk,l-,j} denote the 9 x
Bp per-element degrees of freedom (DOFs), where Bp denotes the
required number of basis functions.

2.6 WEAK FORMULATION

To derive the weak form we multiply (14) with test functions. Choos-
ing our basis 4),,1(3;1(3?)) as test functions and additionally integrat-
ing over a control volume T} € R® we obtain:

3
/ qePm dX + Z/ A¥qe ¢pydX =0 Vmel,..., Bo. (21)
Ty =17 Tk

Application of the chain rule gives:

3

/Tk qt4)m df = Z <Ak Axcq ((Pm)xc df - /Tk Axc (q(l)m)xc df) (22)

c=1

Next we apply the divergence theorem and obtain:

— 3 - -
faonar= L ([ #qu, av) - [ Fouds @

where we also introduced the numerical flux F as an approximation
in the surface integral. The numerical flux is derived in Ch. 2.9 for a
face-aligned coordinate system exploiting the rotational invariance of
the system (14).

Approximation of the solution g in (23) via the discrete finite ele-
ment space gives:

B

Y (((Qk)h)t /Tk PoPm df)

b=1

B 3
:bg:l (C 1AkC(Qk)b /Tk 4)b(4)m)xc dx) _/aTk F(Pm ds.

(24)

Here (Qx), € R’ is the vector of modal coefficients per basis function
bel,..., Bpin element k.

2.7 TIME PREDICTION

We use Cauchy-Kovalewski procedure as a per-element time predic-
tion of the DOFs and therefore as main ingredient for our time dis-
cretization. First we write the governing system (14) in terms of refer-
ence coordinates [41]:

q: + AC:lCIg] + A§2q§2 + A§3q(:3 =0. (25)
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Here we introduce the Jacobians in reference coordinates A%, which
are a linear combination of the Jacobians A*c:

Aber = i %o e, €1,2,3 (26)
C:1 afc 7 T d .

Following [41], we project (25) onto the basis ¢, and obtain, to-
gether with insertion of the spatial discretization g;, (see (20)), the
time derivatives (Qy), of the DOFs:

(Qu); = - <A51 Qx (K1) "y ang, (&) A, (Kés)T> ey
(27)

M~ is the inverse of the mass matrix and (K% )T the transposed stiff-
ness matrices (see (13)).

The Taylor series of the DOFs Qy for order O € IN™ about expan-
sion point t( is then given by:
0-1 d o
Qx(to,t) = Y, (td,to) ' aatko(to)- (28)

d=0 :

Here, we use (27) recursively to obtain higher derivatives o4 /0t1Q;
with the DOFs itself as initial condition for the zeroth derivative:
°/9t°Qy = Qx(to).

The time integrated DOFs T over interval [f,f + At] are obtained
by integrating the Taylor series approximation (28) analytically:

R BrAt
Tilto, &, AF) = / Qi (fo, 1) dt
t

B 0-1 (i_\_’_At . to)d—‘rl . (i_\_ to)d+1 ad (29)
- L (@+1); 5 Qxlo)

2.8 VOLUME INTEGRATION

To formulate the volume integration in reference coordinates, we ap-
ply the change of variables theorem to the second sum in (24):

B

3 3
Z(ZAW@%/%@M%M>:@]M£@mﬂ - (30)
b=1 \c=1 T =1 m

A,“EE are the linear combinations of A;°, obtained with (26). K¢ are
the stiffness matrices of (13) and |Ji| the determinant of the Jacobian
matrix corresponding to the transformation E;l from the reference
tetrahedron Ty to T.

We use the time integrated DOFs (29) to define the final, fully dis-
crete volume operator Vj:

3
Ve(Tp) = Y ASTiKE M (31)

c=1

17
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Note that the inverse mass matrix M~ is required in the final formu-
lation and that we drop |Ji| on purpose as it will cancel out in the
final formulation.

2.9 SURFACE INTEGRATION

In this chapter we formulate the solution of the face-normal gener-
alized Riemann problem stemming from the surface integral in (24).
To simplify the following considerations we rotate the quantities of
two neighboring tetrahedrons Ty and Tj, to a common face-aligned
coordinate system first. This step exploits the rotational-invariance
of (14) and allows us to formulate the face-normal Riemann prob-
lem. For a given tetrahedron k and face i with face-normal direction
ki = (Mxy, Nxy, ny,)! the rotation, Uy ;, of the DOFs to the face-aligned
coordinate system is given by [23]:

1,1 1,2
uk,i uk,z' O3x3
_ 2,1 2,2
uk,i - uk,,i uk,,i O3><3 ’ (32)

33
03x3 O3x3 U}

with
2 2 2
X1 le txl
ut=1.2 2 g
k,i X7 X7 xp |7
2 2 2
X3 SJC3 tX3
2Ny, Sy, 28x,tx; 2Ny tx
12 _
Ui = | 20,8y, 2Sxtx, 2Nty |/
2My,Sx;  28xytx; 2Myyty,
My,My,  SxpSy;  Explyy
2,1
uk,i - Ny,  Sx3Sx; tx3tx2 4
MMy, SxySy; sty
HX2SX1 + nxlsxz sztxl + le txz nXthl + nxl txz
22
uk,i - nX3SxZ + anSX3 SX3 txz + SXZ tX3 nXS tX2 + an tX3 4
nX3SX1 + nX] SX3 SX3 txl + S.X1 txg, nX3 tX1 + nxl tX3
My, Sy, ty
33 _
uk,i - nJCZ SXZ tx2

The two additional vectors § and f are orthogonal to each other and
tangential to face i. The outer-pointing normal 7iy; of face i points
from Tj to Ty,. We call direction Ty — Ty, right and direction Ty, — Ty
left. Further we use the notation x < x¢ for all values lying on the left
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side of the straight line through x¢ with direction n;; and x > x¢ for
all values on the right side.

In our discretization the face-normal Generalized Riemann Prob-
lem GRPp of order P is the following one-dimensional, face-normal,
initial value problem at point xy € dTj; and time ¢ty [59, Ch. 19.2]:

i+ A%)4x =0 (33)
1 = Uiqi(xo,to), if x <x
9(x,to) = {q Ao bo), i x <30 )
qr = Ukiqx, (X0, to), if x > xo.
- AZZA;?, ifx<x0
Alx) = _oam s (35)
A=Ay, ifx>x

qx(xo, to) and gy, (xo, to) are the degree P boundary extrapolated finite
element approximations (20) of the two neighboring tetrahedrons Tj
and Ty,. A; is the constant Jacobian A;" in Ty and A, the Jacobian A;;l
in Tk]..

As described in [59, Ch. 19.4] the solution of the GRPp can be com-
puted via P classical Riemann problems in the derivatives 9/ /dt/g,
and 9//dt/g, at space-time point (xo,tp). Following [46, Ch. 9] we
solve these classical Riemann problems via eigenvector decomposi-
tions of the jumps 9/ /dtiq, — 9/ /dt/q;. The eigenvectors of A; associ-
ated to negative (left-going) waves combined with those of A, associ-
ated to positive (right-going) waves gives R, the combined matrix of
eigenvectors:

RV = (v )
A+2,, 0 0 000 O 0 A +2u,
A 0 0 010 O A
A 0 0 001 O A
0 w0 000 0 0
= 0 0 0O 100 O 0 0
0 0 w 000 u O 0
(so); 0O 0 000 O O (s1)r
0 (ss)y 0 000 0 (s2) 0
0 0 (s;);, 0 00 (s3)y O 0
(36)

Entries with subscript [ refer to material parameters of Ty and those
with r to parameters of Ty,. The wave strengths a; are obtained by
decomposition of the jumps into eigenvectors:

&= (“m Xj2 .- 06;,9)T = (er) B <§tjﬂr - ;;Lil ) - (37)

19
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We derive the constant left-side middle states g by jumping over the
left-going waves starting from the left states 8/ /dt/g;:

o/ ;
g = S0+ Y o, . (38)
p:(Sp)1<O

Rearrangement of the terms in (38) together with (37) separates Ty's
contribution to the middle states from that of Ty :

o/ ~1 i
a =g (o 0) (RY) S

S o) ()

We get the time-dependent left-side middle state 4™ (¢) as solution of
the GRPp by combining the middle states 4;" of the derivatives via
the Cauchy-Kovalewski procedure [59, Ch. 19.4]:

(39)

q"(t) = j;)]-ﬂj : (40)

Additionally multiplying the left-side middle-state 4™ with matrix A,
and rotating back from face-coordinates with U, ! defines our numer-
ical flux:

SN P4y
_ I
Fei(t) :Uk,il (Az — A (rl{ ol 09><6> (R r) ) }:{;ﬁﬁql
]:
(41)

. N Ry
+U; Al (rllr ryory 09><6) (R ) Zéﬁﬁq"
=
(41) shows that the complete flux computation reduces to multipli-
cation with two face-local matrices once time-derivatives have been
obtained from the Cauchy-Kovalewski procedure (27). We call these
matrices flux solvers and define them as:

Ag=u) (Al — A (r? ol 09><6> (RH) 1> Ui

. (42)
Alj,i: ul:,ilAl (rllr rlzr Vl3r O9><6> (Rly) Ui

To derive the fully discrete formulation we rewrite the surface in-
tegral in (24) and insert the flux (41) together with the flux matrices
and the flux solvers introduced in (13) and (42):

4 . ~ N ..
/a _Fguds =) |5 (ApQeF~ + Af,QuF i) 43)
k i=1

S; is a scalar coming from change of variables theorem and denotes
the area of face i in physical x1x;x3-coordinates. Qk are the time pre-
dictions of tetrahedron k’s DOFs obtained via Cauchy-Kovalewski
(27) and QAki those of k’s ith face neighbor.



2.10 TIME STEPPING

Integration of (43) in time with (29) over the interval [fy, fx + Aty
gives the per-face formulation of the surface operator:

Fieil Ter Tei) = Fii(Te) + Fi(Te) (44)
with
S; ‘
kz(,ﬁf) ‘U " Akzﬁ lM?l’ (45)
Fii(Te) = ‘; " AL T M1 (46)

Similar to the volume operator we include the effect of the inverse
mass matrix M~! and 1/|J| already in this definition to account for
the final fully discrete formulation.

2.10 TIME STEPPING

By integrating (Qy); in (24) in time and by the definition of the mass
matrix M we get:

i ([ o ar [ gpuaz) = (01 = i) i),

(47)

where QZ’CH are the DOFs at the next time step t:"“ = t:" + Aty and
|Jx| is the determinant coming from the change of variables theorem.

We get the final fully discrete form via integration of (24) in time
and inserting the time operator (29), the volume operator (31) and the
surface operator (44):

QU = Q¥ + Wi(Tr) — kal (T, Tri) - (48)
i=1

The effect of the inverse mass matrix M~ ! and |Ji| is already included
in the volume and surface operator.

Additionally, we split (48) to get a two-step scheme. The first step
updates the DOFs with all local contributions of tetrahedron k itself:

QM = QU + Vi(Ty) kaz (T7) - (49)

The second step uses the time integrated DOFs of the face-neighbors
k; only to compute the complete DOFs Q{**" at time step £}

Qutt = Qptt — kat %) (50)

21
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For stability the per-element time step Aty is limited by AfCTL, the
maximum allowed time step imposed by the CFL-condition: 0 <
At < At%FL. We use a maximum, which resembles 50% of the sta-
bility of Runge-Kutta-schemes [23, 24]:

1 d
AL = : :
k 20 —1 max; s (51)
d is the insphere diameter of tetrahedron Tj. s; are k’s eigenvalues in
(17), thus max; |s;| = |s1| = s¢ holds.
SUMMARY

This chapter introduced the fully discrete formulation of our modal
ADER-DG discretization for the elastic wave equations. First, we de-
fined a unique reference element in Ch. 2.1 and defined a set of hier-
archical, polynomial basis functions in Ch. 2.2. Together with appro-
priate mappings of our tetrahedrons in the computational domain to
the reference element, this allowed us to use a set of global, unique
matrices (mass, stiffness, flux) in our ADER-DG discretization.

The derivation of the spatial discretization in Ch. 2.5 and the weak
formulation in Ch. 2.6 led us to the time integrator in Ch. 2.7, the
volume integrator in Ch. 2.8 and the surface integrator in Ch. 2.9.
The combination of all integrators resulted in our two-step scheme of
Ch. 2.10. Here, we split our discrete formulation into a local contribu-
tion (49) and a neighboring contribution (50). Finally, we formulated
the per-element time step limitations resulting from the CFL-condi-
tion (51).

In theory we are able to implement a solver for the elastic wave
equations at this point. However, since we aim at efficient, large scale
earthquake simulations, multiple design decision are outstanding from
an algorithmic and performance engineering perspective. For this
purpose we derive a clustered local time stepping scheme in the next
chapter, Ch. 3, and exploit the locality of the CFL-condition (51). This
scheme trades some of the theoretical optimality, where every ele-
ment advances with its maximum allowed time step, for regularity
requirements of modern supercomputers. Afterwards, Pt. ii maps the
derived clustered local time stepping scheme to supercomputing sys-
tems.
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Eq. (48) allows for arbitrary per-element time steps Aty as long as the
element-local CFL-requirements are met [24]. To utilize Local Time
Stepping (LTS), [24] and [13] introduce per-element flux-buffers to
which neighboring tetrahedrons write their contributions. The pro-
posed LTS scheme in [24, 13] then sweeps over the mesh and updates
an element’s DOFs only if the flux-buffer contains all neighboring
contributions of possible intermediate neighboring time steps. When-
ever a tetrahedron is updated it also updates the neighboring flux-
buffers. Here the tetrahedron uses its time derivatives to compute 7,
in the neighboring contribution of the boundary operator F in (46) to
update the flux-buffers.

In contrast to [24] and [13] we follow a different paradigm for the
derivation of our LTS scheme. We force the elements to provide time
data for LTS, which is accessed in a read-only fashion by face-neigh-
bors in the update step. Additionally clustering similar time steps
together reduces the irregularity of our scheme and removes the re-
quirement to use sweeps touching all elements. We start the deriva-
tion of our LTS scheme in Ch. 3.1 by deriving time stepping rela-
tions two neighboring tetrahedrons are allowed to have. Based on
this derivation Ch. 3.2 describes the clustering of the LTS scheme
and the individual steps required to perform the setup. Ch. 3.3 ex-
tends our clustering with a layout capable of handling multiple par-
titions and thus featuring distributed memory systems. Additionally,
Ch. 3.4 derives a time management scheme to formalize our elements’
dependencies in time. Finally, Ch. 3.5 presents a scheduling method
favoring critical work in multi-partition settings aiming at large-scale
simulations.

3.1 LTS RELATIONS

Our LTS scheme limits the possible relations neighboring elements
can have to two general cases. Assume a given tetrahedron k with
a face-neighbor k; and corresponding time steps Aty and At,. Both
elements are initially in sync, £* = t:ikf. We differentiate between the
case Aty = %-Atki, r € NT, and the case Aty = r-Aty, r € NT.
The Global Time Stepping (GTS) relation Aty = Aty (r = 1) is part
of both cases and the decision which implementation is used for GTS
depends on the neighboring elements” LTS configurations. Note that
limiting the time step differences to r € N™ instead of arbitrary rates

23
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r € R" is imposed for efficiency reasons of the final scheme rather
than being a limitation of the ADER-scheme.

In the first case, At = %Atk]., we require the neighboring tetrahe-
dron k; to store its derivatives Dy.:

Dy = (Q 2ol £l ... 22%ql). (52)
We can use the formulation of the ADER time integration in (29) to
compute the time integrated DOFs in arbitrary intervals after the
expansion point to. Thus k;’s time derivatives Dy, computed at ex-
pansion point ty = t::‘i can be used for integration intervals [tZik" +
Ati, t:ff + At}] within the limits of the CFL-condition: 0 < Atf{ <
At < AtfiFL [24].

For our neighboring elements k and k; with AtEFL > At = %Atki <
AtkCiFL, r € INT we use k;’s derivatives Dy, in one or multiple time
steps of k to derive the time integrated DOFs 7 ; in (50), e.g. three
times if Aty = 1At (r = 3).

On the contrary the second case, Aty = r - Aty, requires us to
evaluate the boundary operator ‘Fkt' in (50) over the entire interval
(%, % + Ati]. This interval covers multiple time steps of k; if r > 1.
The linearity of ]-",;“1. allows us to sum up multiple successive time
integrated DOFs of k; together and evaluate the corresponding neigh-
boring flux contribution only once when updating k’s DOFs:

-1

Z A;tl‘ﬁf(tzki + ZAtki, tZki + ZAtki/ Atki)F+,i,j,hM—1
=0

-

—

= N B (53)
= Al | Y T (8" + 10k, 15 + 10k, At) | FHIAMTT
I=0

Here i, j and h denote the respective indices of the shared k-k;-face
from k’s perspective.

The complete time information of k;, required for the update of k,
is only available after the " time prediction of k;. Thus we require
the neighboring tetrahedron k; to sum its time integrated DOFs in a
time buffer By, until the entire time interval [t;*, £;* + Aty] is covered:

r—1
B, = Y Tr, (1% + 1AL, 15 + AL, Aty,) . (54)
1=0

EXAMPLE In the following we examine a simple example with two
neighboring tetrahedrons k; and k». For illustrative purposes we con-
sider updates and dependencies between k; and k; only. Of course
the final scheme is required to respect all dependencies and perform
all updates imposed by the four face-neighbors of every tetrahedron.
Assume elements ki and k; have the LTS relation Aty, = 3 - Aty, and
neighbor each other via kq’s local face iy, and k>’s local face i, . Ini-
tially both tetrahedrons are synchronized, tle = t,’zzz ko updates three
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times more often than ki, thus requires k; to provide derivatives Dy, .
Conversely k; only updates once for every three updates of ky, there-
fore k; is required to provide a buffer By, .

First k1 and k, compute their time predictions via (27) and (29). k;
directly stores the derivatives and k; initializes the buffer By, with the

time integrated DOFs over interval [12, ;> + Aty ]:

_ n 9 AN 92 An 9°-1 ~n
Dy = (lel ﬁlel ﬁlel WQ;J) ,
L) (55)
Bk2 = 77{2 (tkz’ tkz’ Atkz) .

Directly after computing the individual time information both tetra-
hedrons update their DOFs with the element-local contributions ac-
cording to Eq. (49) (see Fig. 2a):

i1
Q" = Qi+ Vi, (T (12, 811, At ) )
- n n
= Froi, (ﬁl(tkf/fkf,Afkl)) ,
QZ;nz-H = QZZZ + sz (77(2(#22, t;zz,Atkz)>

(ﬁz (tzzzl tZZZ, Atkz)) ‘

(56)

o fk_Z/ikl

In the next step only k; is allowed to complete its first time step. k;
has to wait until k»’s buffer contains all three successive time predic-
tions of ky. Fig. 2b shows the neighboring update of k», which updates
ky’s DOFs with ki’s contribution via (50):

Qi = Q= FL (Ta( 6z, Any) ). (57)

Here we use ki’s derivatives Dy, to get ﬁl(tzll,tZ;,Atkz). Now k>’s
DOFs are at time tZZZH = B + Aty,.
Next we compute the time integrated DOFs ﬁz(tzﬁl,t?ﬂ,mkz)

2 2

and update k;’s buffer By, and DOFs accordingly (see Fig. 2c):

Bio = Tey (12842 Bty ) + Tra (27, 62, At1,) 5%

2

M2+2 +1 +1 +1
Qi = QP 4+ Vi, (T (127, 121, at,) )

(59)
(T (2,624, A1) ).

- ‘Fk_Z/ikl

kq still requires ky’s time integrated DOFs over the interval [t;, +
2 Aty te, + 3 - Aty,] in the buffer By,. Thus only k; is allowed to
complete its second time step by using k;’s derivatives Dy, again (see
Fig. 2d):

np+2 _ ~xm+2 o+
ka - ka ka/ikl

(7o (51 527, Bt ) (60)
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26
ny ny 2 ~ng 01 “ny
Dy, = (Qm xQ 5 QR %le)
Br, = Tie, (122,112, Aty,)
SR SR
3 3
+ ) +
N2+
A~
2
e
tt 2 ot
k1 k1 ko ko k1 k1
(@) k; and kp compute time predic- (b) k finishes its first time step by using
ki’s derivatives Dy, in the neighbor-

tions, set the derivatives Dy, and the
buffer By, accordingly, and update
their DOFs with element-local con-

tributions.

ing flux computation.

By, = T, (2,402, M) + T, (6704227, Aty
+1 +1
) b

A A
Z M

- ey

< <
+ +

n n

ty, o te) o

(d) ko finishes its second time step by
using kq’s derivatives D, in the

(c) k» computes its next time prediction,
neighboring flux computation.

updates the buffer By, accordingly,
and updates its DOFs with element-
local contributions.

2
B, =Y T, (t;‘;ﬂt;‘;“,Atkz)

1=0
1 3 1
et A 2 et

z z

ey ey

9 9

+ +
m e

ki 3 ko k1 k1 ko

(f) kq finishes its first time step by us-

(e) ky computes its next time prediction,

updates the buffer By, accordingly, ing ko’s buffers By, in the neighbor-

ing flux computation. ky finishes its

and updates its DOFs with element-
local contributions. third time step by using k;’s deriva-
tives Dy, in the neighboring flux
computation.

Figure 2: Time marching scheme for two neighboring tetrahedrons k; and
ky with Ay, = 3 - Aty, and initial times tle = #2. (a), (c) and
(e) show the time prediction steps, which set the derivatives Dy,
of ki and the time buffer By, of k», combined with the element-
local updates of the DOFs (white). (b), (d) and (f) show the update
with the neighboring time information (gray). Only dependencies
between ki and k; are considered in the given example ignoring

additional neighbors for illustrative purposes.
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At this point k;’s DOFs are at time step tZ22+2 = > + 2 Aty,, while
k1’s DOFs still contain k;’s local contribution of the first time step
only.

Now k; computes the time integrated DOFs 77(2(t222+2, tZZZJrz,Atkz)
and updates its time buffer By, and DOFs (see Fig. 2e):

2
1 1
By, = Zﬁz(tZ§+ ,t,’j;* ,Aty,), (61)
1=0

M2+3 +2 +2 gnp+2
Qi = Q2 4+ Vi, (Toy (8272, 1272, M) )

— Foi (T (5272627, 88,) ).

ko, ik

(62)

After this step the time buffer By, covers the entire interval [t,’:ll, t,’:ll +
Aty,]. Thus next, not only k; is allowed to finish the time step by using
Dy, once again, but also k; by using k;’s buffer By, (see Fig. 2f):

m—+1 _ ~xn+1 +
Qk11 - le Y- fklrikl (Bkz)
(ACATUSIE

As illustrated in Fig. 2f after the single time step of k; and the three

of k, both tetrahedrons are synchronized again, tZ;“ = tZ22+3'

(63)
no+3 _ ~%,n+3 +
ka - ka - karikl

3.2 CLUSTERING

In this section we derive the clustering of our LTS scheme. Here we
consider the entire mesh containing all tetrahedrons, cluster elements
together based on their time step and normalize the setup to match
all of our requirements.

tCFL
min

INITIAL CLUSTERING We define the minimum time step A

and maximum time step AtSEL over all time steps:

CFL __ .
Atmin - kznm A max

YAy sy

t%FL, AFSEL — kmax AtEFL. (64)

Our clusters C;’s time intervals Cj are pairwise disjunct and overlap
the entire interval of possible time steps:

c; = [, n- ALY,
Cr = [y - AfCL ner ML),
I (65)
CE: Tl'---‘rL—l'AtglfrI;/ rl-...'T’L'Atgl;I];>/
L
FL FL
U C; ) [At;in/ Atgax]' (66)

=1
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For sizes of the clusters we choose integers r; € IN™, which matches
our two possible LTS relations of Ch. 3.1. In the initial clustering
phase we assign every tetrahedron k € 1, ... K to the matching cluster
based on the local time step AtEFL.

Note that our initial clustering does not require any connectivity
of tetrahedrons sharing the same cluster. This property proves to
be crucial when using LTS in application runs. Here, the used un-
structured, adaptive, tetrahedral meshes tend to result in clusters
scattered loosely throughout the computational domain. We discuss
application-specific details of LTS in chapters 8 and 11.

NORMALIZATION To reduce the LTS overhead we allow per tetra-
hedron k only a single buffer By and a single set of derivatives Dy.
This step reduces the amount of data stored per element, but also the
number of possible LTS configurations. While the derivatives Dy al-
low for face-neighbors with multiple different smaller time steps, the
limitation to a single buffer allows for face-neighbors with a unique
larger time step only. Additionally we limit the dependency of clus-
ters to a single time level. Therefore we restrict face-neighbors k; of
a tetrahedron k € C; to the direct neighboring clusters only: k; €
Ci_1, ifl >1ork; € Ciork; € Cyq, ifl < L. This step reduces
heterogeneity of the final algorithm, e.g. by reducing the number of
possible sends and receives in a distributed memory setting.

As shown in lines 1-15 of Alg. 1, we impose these requirements
by iterating over the mesh. If the cluster id I of an element k € C;
is larger than the follow-up id Imin + 1 of the minimum neighboring
cluster id Imin: I > Imin + 1, we move element k to cluster C; 1.

Moving an element to a lower cluster might lead to violations of
our normalization-criterion after the iteration, if we touched any face-
neighbor of this element already. Therefore in lines 17-22 of Alg. 1 we
repeat our procedure until we reach a consistent state.

3.3 MULTIPLE PARTITIONS

In this chapter we discuss the high-level layout of our clustered lo-
cal time stepping algorithm for settings with multiple partitions. The
design aims at scalability when utilizing high node-numbers in dis-
tributed memory settings using the Message Passing Interface (MPI).
We recapitulate that only the second step (50) of our two-step scheme
depends on face-neighboring information. In combination with the
clustering (65) and our normalization we can define an efficient asyn-
chronous communication scheme for multiple partitions.

PARTITIONING SeisSol uses static, adaptive, unstructured, tetra-
hedral meshes for discretization of the spatial domain. In a multi-
partition setting we have to assign the elements of our mesh to dif-
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Algorithm 1 Normalize clustering

1: procedure maximumbDifference

2: r=0
3: forkel,...,Kdo
4 Iy = ciq[K] > Get cluster of the element.
5: Imin = I
6: fork; € ky,ko, k3, k4 do > Iterate over face-neighbors.
7: Imin = min (Iin, ciq [ki]) > Derive minimum id of
face-neighbors.
8: end for
9: if [ > lpin + 1 then
10: Cid[k] = Imin + 1 > Lower time step / associated id.
11: r=r+1 > Increase reduction counter.
12: end if
13: end for
14t returnr
15: end procedure
16:
17: procedure normalizeClustering
18: r=1
19: while r>o0 do
20: r = maximumDifference()
o1 end while

22: end procedure
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ferent computational resources. Therefore in the partitioning step,
which is part of preprocessing, we have to find a balance between
load-balancing and communication.

We use the graph partitioning tool METIS [40] to accomplish this
goal. METIS creates the dual-graph of our mesh. The vertices in the
dual-graph are associated with our tetrahedrons and edges connect-
ing vertices in the dual-graph are equivalent to tetrahedral faces. Ev-
ery vertex and edge in the dual-graph has an associated weight, which
defaults to 1. Given the dual-graph and corresponding weights we
use k-way partitioning of METIS. Objective function is to balance the
sum of the vertex weights per partition equally (load balancing) and
to reduce the overall edge-cut of edges connecting partitions (com-
munication avoidance).

In our clustered LTS scheme we use for all elements of a cluster
C; the ratio between the cluster’s time step rq -... -7 - Atgr]; and
the time step AtSEL of the first cluster to derive the vertex weights in
the dual-graph. An element of the first cluster C; updates ry-... 774
more often than an element of C;. Therefore for a cluster C; we set the
weight of every associated vertex to w; = 1/ (r1-...-7,_1). In prac-
tice we only use the initial clustering for our partitioning strategy,
because the normalization step (see Alg. 1) reduces the time step of
very few elements only. Ch. 8 and Ch. 11 apply our clustering to two
application-specific examples using different cluster-configurations.
Here, the normalization reduces the time step of less than 1.1 %o of
the elements in every considered configuration.

Note that our approach is fairly simple, but proves to be efficient at
scale. However the partitioning step is completely decoupled from
the actual simulation and therefore might be optimized in future
work. Possible extensions could derive more advanced models for the
vertex weights, e.g. also consider required integrations from deriva-
tives via (29) in LTS settings. Additionally, non-constant weights for
the edges could be used to account for network topologies and LTS
dependent communication frequencies and communication volumes
between elements. As we will see in chapters 7-11 SeisSol’s perfor-
mance characteristics are completely known a-priori. It follows that
in the ideal case the partitioning would include an auto-tuning step,
which also resolves cluster dependencies and adjusts the partitioning
accordingly. This is possible even without running the actual setup
for which the partitioning is derived.

COMMUNICATION LAYERS Inside a partition p we denote the in-
dividual elements belonging to cluster C; with C;,. Note that not
necessarily all cluster-partition combinations C; , exist, since a parti-
tion might only have elements of a subset of clusters. To ease notation
we also use the term cluster when referring to C ;..
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For every cluster C;, we introduce a communication layer and
strictly separate it from interior elements. The communication layer
contains all elements required for computation, which are involved
in communication. In contrast the interior is completely independent
from communication within a time step of C; .

A communication layer itself is split into a ghost layer, face-neigh-
bors of elements in C;, which reside in neighboring partitions, and
a copy layer, elements of C;, in our partition p, which have face-
neighbors located in neighboring partitions. Both, the ghost and the
copy layer, are further subdivided in communication regions. Each
region is associated with a neighboring pair correlating uniquely to a
specific cluster-partition combination of the neighboring elements.

EXAMPLE Fig. 3 visualizes our clustered LTS scheme in a distribu-
ted memory setting. For illustrative purposes our example consists of
a small triangular partition p including communication layers. Neigh-
boring partitions are p;, p» and ps. Partition-boundaries are high-
lighted via solid lines in Fig. 3. Partition p holds elements of time
stepping clusters C; 5, C;_1, C; and C;;1 annotated with C; 5, Cj—1,p,
Cip, Ciy1,p Tespectively. The copy and ghost layers cover elements of
several cluster-partition combinations. In Fig. 3a we color all elements
of the copy layers in blue, those of the ghost layers in orange and in-
terior elements in gray.

Fig. 3b shows the specific layout of time stepping cluster C; in
partition p: C;,. The interior of C; ), consists of four elements and is
highlighted in gray. The six elements of C;,’s copy layer are colored
in blue. Our copy layer is subdivided in five different copy regions.
Every of the copy regions is visualized using a different pattern in
the coloring scheme. We use the same patterns for the ghost regions
matching the respective patterns of the associated copy regions. For
example the two-element copy region of C;, communicating with
Ciy1,p, has a flat color. The corresponding ghost region consists of
three elements of C;; 1 ,, and is orange.

A special case is the copy-element marked with a yellow star. This
element neighbors the two time stepping clusters C; and C;;4 in par-
tition p3. Thus the same element can be part of multiple copy regions.
In Fig. 3b the two copy regions are illustrated via the checkerboard
and wavy pattern.

The copy-element marked with a yellow square is also part of two
copy-regions. Here the element neighbors the same cluster C; in two
different partitions. Consequently it is part of two copy regions. These
are the vertically-striped region related with C; ,, and the checkered
region associated with C; ,,. Analogue the ghost-element with a yel-
low triangle is part of two ghost-regions.

We address this issue in the implementation-specific Ch. 5.3 by du-
plicating the corresponding elements in memory.
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32 CLUSTERED LOCAL TIME STEPPING

(a) Elements of the interior, copy layers and ghost layers are col-
ored for all time stepping clusters.

(b) Only the interior, copy layer and ghost layer of C;, are col-
ored. Patterns in the coloring denote different communication

regions in the copy and ghost layer.

Figure 3: Exemplary clustered local time stepping configuration for a parti-
tion p. Interior elements of the partition are gray, copy layer ele-
ments blue and elements of the ghost layers orange. The elements
marked with a yellow star, square and triangle are part of more
than one communication region.
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3.4 TIME MANAGEMENT

Following our considerations of chapters 3.1 and 3.2 we are able to
derive a clustered LTS setup starting from arbitrary per-element time
steps Aty. Additionally, in Ch. 3.3, we derived the high-level structure
of clustered LTS in multiple partitions. This step included partition-
ing and the introduction of copy and ghost regions for communica-
tion between neighboring partitions. From an algorithmic viewpoint
the only missing part for an operative clustered LTS scheme is the
time management.

WORK-ITEMS AND WORK-GROUPS In time management we de-
cide dynamically how to advance our clusters forward in time. For
this purpose we dynamically generate and (re-)order individual work-
items at runtime.

For the definition of our work-items we distinct between elements
in the copy layer and interior elements of every C; , (see Ch. 3.3). We
further use our two-step scheme in (49) and (50) to define two work-
items each for the copy layer and for the interior.

In every partition p we group the local work-items in work-groups.
As abbreviations for our work-groups we use L’g‘t for the local op-
erations (see (49)) on interior elements and £}, for those on copy
layer elements. Analogue we use N}™ and N, for the neighboring
updates (see (50)) of the interior and copy layer. For example adding
cluster C; , to work-group L£,’? implicitly means that we generate a
work-item, which is required to perform the local operations for all
copy layer elements of C; ..

WORK-ITEM GENERATION To utilize our work-items and -groups
we have to decide when we are allowed to create a new work-item by
adding a cluster C; , to the respective work-group. The generation of
work-items is required to respect dependencies in time discussed as
part of Ch. 3.1. For this purpose we define a set of conditions under
which a new work-item is allowed to be created. Our design will be
completely partition-local, even though work-items of the copy layer
depend on data of neighboring partitions. Thus, after derivation of
our local generation procedures, we discuss how to decide dynami-
cally if a cluster in £;0p or NV, SOP is eligible for an update or required
to wait for communication.

Whenever the processing of a work-item is finished and the corre-
sponding cluster is dropped from any of the work-groups, we might
be able to create a new work-item.

Alg. 2 shows the complete process of our item generation. In lines
1-11 we decide based on six conditions if a per-partition cluster C;,
meets all requirements to be added to ﬁg‘t and ,C;,Op. Input arguments
of the procedure are C; , itself, the synchronization time ¥ and the
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Algorithm 2 Generation of work items

=

N

e XN > B W

10:
11:
12:
: procedure generateNeighboring(C; ,, 7, ¢

13

14:
15:
16:
17:
18:
19:
20:
21
22:
23:
24:
: procedure generateWorklItems(C;,,, t¥7°)

25

26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37
38:
39:
40:

: procedure generateLocal(Cl,p, sync ¢

dofs tPI'Ed tdOfS)
I-1,p” "I4+1,p’ "I14+1,p

e (Crp & L) N(Cp ¢ L))
e+ ( Cl,p.td"fS < tYMC) Ae
e (CptPred <P ) Ne
e+ ( Cl,p.thd = Cl/p.tdOfS )Ae
d
e+ ( (Cl,p.tpred < tﬁel’p) V (Cl,p.tpred < tflﬁfp) ) Ae
if ¢ then > Add local items if all conditions are met.
int int
E%‘(‘)pe Cl,p U Egc‘op
,Cp — Cl,p U ,Cp
end if

end procedure

pred tpred
1-1,p’ l+1,]ﬂ)

e (Crp €N A(Cp & NpP)
e < (Cpp.tdofs < pyme) pe
d
e+ ( Cl,p.tpreCl < tffel,p YA e
e < (CpptPed > Cp 9ol ) Ae
d
e < (Cpp.tPred < tﬁel’p ) Ne
if e then > Add neighboring items if all conditions are met.
Nt Gy U
end if

end procedure

d .
tffel p t‘lifflsp < limits::max()

d o
tﬂel p tffr’flsp < limits::max()

if 3C;_1, p then > Get times of previous cluster if existent
tfﬁj‘i‘p  Cp_ypotPred

dofs dofs
tl—l,p < lel,p-t

end if
if 3C; 41, p then > Get times of next cluster if existent

pred red

dofs dofs
tl-‘r].,P < Cl+1,p.t

end if

dofs pred ydofs

I=1p” “I4+1,p” "I+1,p
pred tpred

I-1,p’ l+1,p)

generateLocal(Cl,p, syne ¢

generateNeighboring(C; ,, ¥, t

end procedure
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time levels t;ifgs/p, tﬂefp and t?ﬁflslp of the neighboring clusters. In the
context of Alg. 2, pred always refers to the time level of the predictions,
which is equivalent to the time of the last element local update (49).
Analogue dofs refers to the time of the last full time step via (50). Lines
26-36 initialize the neighboring time levels with a very large value, if
cluster C;_; or cluster C;1 1 does not exist in partition poratall (l =1
or | = L). This initialization ensures that in the corresponding corner-
cases all of the following conditions are still valid.

The first condition in line 2 of Alg. 2 ensures that work-groups L’g‘t
and L’;Op are not in possession of Cip already. Next, in line 3, we check
if the DOFs of Cl,p are at the desired synchronization time, which all
clusters” elements have to reach. We create work items only if this is
false. Otherwise, after all clusters reached our synchronization time,
we would either process the state via external routines, for example
by writing output, and continue with the next synchronization point
or shutdown our simulation completely because we reached the final
simulation time.

New time predictions update the buffers or derivatives or both of
the previous time step. Therefore we are allowed to generate local
operations only, if no face-neighbors of elements in C; , require C; ,’s
current time predictions in their neighboring flux computations. Due
to our normalization in Alg. 1 it is sufficient to check this condition
for C;_1,p, Cip and Cjyq,p. In line 4 of Alg. 2 we verify that the DOFs
of C;_1,, reached the same time as C; ,’s time prediction and therefore
Ci_1,p is finished using C; ,’s current derivatives. Similar in line 5 we
verify that C; , used its own predictions for the neighboring update.
The statement in line 6 is more complex, because Cj;1,, operates on
buffers of C;,, which are summed over multiple time steps of C .
Here generation of new local work items is valid in two cases. In
the first case C;,’s prediction time is before C; s prediction time.
This means that C;, is required to add at least one more set of time
integrated DOFs to its respective buffers, before C; 1, is able to use
this data. In the second case C;,’s and C;1,,’s prediction times are in
sync. Here we have to ensure that Cj, 1, already used C;,’s buffers in
the neighboring update step (50).

In lines 13-23 we decide if we are allowed to add a cluster to work-
groups A" and NV;** for neighboring updates. Compared to the gen-
eration of local work-items, the neighboring updates only change the
elements” DOFs. Consequently no information, which might still be
required, gets overwritten. However we have to ensure that all time
predictions for the neighborings updates are available. Again in lines
26-36 of Alg. 2 the input time levels tffefp and t]lperelo,lp are initialized
with a large number if C;_; , or Cj; 1, or both are not available.

The condition in line 14 ensures that C;, is neither scheduled in
N;f‘t nor in N,’*. As for the local items we only add neighboring
items if the synchronization time is not reached (line 15). Line 16
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checks that the predictions of C;_ ), are available, line 17 checks for
those of C;, and line 18 for the predictions of C, 1,

3.5 SCHEDULING

In Ch. 3.3 we divided the elements of each per-partition time step-
ping cluster C;, into an interior part and a copy layer. Additionally
we subdivided every copy layer again into copy regions and intro-
duced ghost regions as the counterparts of the copy regions. During
a simulation we have to send time predictions of the elements in a
copy region to the neighboring partition. Conversely predictions of
elements in a ghost region have to be received. Ch. 3.4 introduced
work-items and -groups within a partition, but left synchronization
across partition boundaries open. In this chapter we bring both con-
cepts together and discuss how and when our work-items are pro-
cessed. This includes introduction of our asynchronous inter-partition
communication.

CLUSTER OPERATIONS  Alg. 3 shows the operations a cluster C,
might perform. The first procedure localCopy in lines 1-9 returns im-
mediately in the case of ongoing sends (lines 2-4). Thus we ensure
that C; ,’s predictions in copy regions reached the respective ghost re-
gions located in neighboring partitions successfully before an update.

The generation of local work-items for cluster C; , directly follows a
full update of the DOFs (see Alg. 2, line 5). Therefore in line 5 of Alg. 3
we issue asynchronous receives for new time predictions in the ghost
regions. Whether a certain ghost region requires new data depends
on the relation of C;, and its neighboring cluster. We request new
data from neighbors with a smaller or identical time step in every of
Cip's time steps. Neighbors with a larger time step send derivatives.
Following (65) we evaluate the derivatives r; times in general (syn-
chronization is the only exception). Consequently for neighbors with
larger time steps we issue receives initially after synchronization and
then after every r! time step.

The call of localCopyOps for C;, in line 6 updates the time pre-
dictions of all elements in the copy layer. Additionally it updates the
DOFs of these elements with the local contributions according to (49).

In line 7 we call the procedure sendCopyRegions, which is again
communication related. Following our time predictions computed in
localCopyOps we might have new data available other partitions rely
on. Analogue to the receives in line 5 the communication frequency
depends on the time step relation of C; , and the neighboring clusters
associated with the respective copy regions. We asynchronously send
time predictions for copy regions neighboring smaller or equal time
step clusters in every of C; ,’s time steps. If a copy regions is associ-
ated with a neighboring cluster with a larger time step, we have to
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Algorithm 3 Cluster Operations

10:
11
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

1
2
3
4
5:
6
7
8
9

procedure localCopy()
if —this.sendsFinished() then

return false > Immediately return if sends are ongoing.

end if
this.receiveGhostRegions()
this.localCopyOps()
this.sendCopyRegions()
return true

: end procedure

procedure neighboringCopy/()
if —this.receivesFinished() then
return false > Immediately return if receives are ongoing.
end if
this.neighCopyOps()
return true
end procedure

procedure locallnterior()
this.localIntOps()
end procedure

procedure neighboringInterior()
this.neighIntOps()
end procedure
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sum up 7; time steps in the buffers before sending them. Therefore
we issues sends of these copy regions every r; time steps. The only
exception is a synchronization point in time, where we might send
out the data earlier, because the buffers might be completed in less
than r; time steps.

The two procedures locallnterior and neighboringlnterior in lines 19-
25 of Alg. 3 operate on the interior elements of C; ,. locallnterior com-
putes the time predictions and updates the DOFs with the local contri-
butions according to (49). neighboringInterior updates the DOFs of all
interior elements with the neighboring elements” contributions (see

(50))-

SCHEDULING Alg. 4 shows our scheduling scheme as part of the
advancelnTime procedure. At the entry point of advancelnTime we as-
sume that all clusters are synchronized in time and have to reach a
common synchronization point 5"

Due to the synchronization we are allowed to perform a single time
step of element-local operations for all clusters. Therefore, before en-
tering our time marching loop (lines 6-34), in lines 2-4 we call generate-
WorkItems for all clusters and effectively add all clusters of partition
p to £, and to L.

Next we enter the time marching loop covering lines 6-34. Line 6
defines the only exit point of our time marching scheme. It states that
all work-groups £,*, N;, LI and N} have to be empty on exit.
Whenever we finish a work-item, we instantly check if the changed
state of the system allows us to create new work-items. Thus empty
work-groups are equivalent to reaching the synchronization time Y
in all clusters.

Inside the time marching loop our first inner-loop iterates over all
clusters in £},*. Every-time the local operations of the copy layer ele-
ments were successful, we remove the cluster from L‘;Op (line 9) and
generate new work-items if possible (line 10). In the case that local-
Copy returned unsuccessful, the current cluster has ongoing sends
(see Alg. 3) and we leave the cluster in L’;Op for the time being.

Our next inner-loop in lines 14-19 iterates over all clusters in N, ;OP.
Similar to our first inner-loop, we leave a cluster untouched in N},*"
if a receive request for any of the cluster’s ghost regions is ongoing in
neighboringCopy. Else we remove the cluster from N, (line 16) and
generate new work-items if possible (line 17).

The remaining statements in the time marching loop of Alg. 4 oper-
ate on the inner elements of the clusters. First, if available, we get the
cluster on top of work-group Eg‘t (line 22) or ./\f;;nt (line 29). Then we
compute the local operations (line 23) or neighboring updates (line
30) for the interior elements of the respective cluster. The last two
steps, operating on both work-groups, remove the cluster from L’g‘t
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Algorithm 4 Scheduling

1
2
3
4
5:
6
7
8
9

10:
11
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34

procedure advanceInTime(t°Y"°)

forall C;, € pdo
generateWorkltems(C; ,, V1)
end for

while £, 2O AN £OQN LM £ D AN £ O do
forall C;, € £, do
if Cllc%.local(g(gpy() then
Ly* :ﬁpp\clfp
generateWorkltems(C; ,, t57)
end if
end for

forall C;,, € N,*" do
if C;,neighboringCopy() then
NP NPT,
generateWorkltems(C; ,, t57)
end if
end for

if L # @ then
C1,p < L*.top()
Cy,p-locallnterior()
Elpnt — ﬁ;ﬂnt \ Cl,p
generateWorklItems(C;,,, Y1)
end if

if N;,nt # @ then
Cip < ./\/';“t.top()
Cip .tnelghb?rlnglnter1or()
N =N\ G
generateWorkltems(C; ,, £*Y7)
end if
end while

35: end procedure
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(line 24) or ./\/;i,“t (line 31) and generate new work-items if possible
(line 25 or 32).

To maximize the overlap of communication and computation our
scheduling prioritizes all cluster-operations on copy layer elements.
In every iteration of the time marching loop we iterate over all clusters
in £,* and NV,**, but only work on a single cluster in £} and A",
In practice work-items in [,;Op and N, ;,:Op have low loads, because of
the low surface-area-to-volume ratio of our partitions. Thus we use a
simple first in, first out-queue for £, and N},

In contrast £} and A" have a high load. Here we assume that
clusters with small time steps define the crucial path of our simula-
tion and use sorted queues for £ and A" Whenever a cluster C,
is added to either £g‘t or ./\/;,“t, we use the cluster’s id I for the sort-
ing. Hence the top of the queue (lines 22 and 29) always refers to the
smallest time step cluster in the respective queue.

EXAMPLE In the following example we use the same triangular LTS
configuration for the layout of a partition p as in Ch. 3.3’s example.
The interior regions, ghost and copy layers of all clusters C; 5 ,, C;_1 p,
Cip and Cjyq, are illustrated in Fig. 3a. Fig. 3b shows the interior,
copy regions and ghost regions for cluster C; .

Fig. 4 and and Fig. 5 show an example execution of our time march-
ing scheme for partition p. The illustrations of the individual states
are split into three parts. The upper part shows the current status of
our work-groups, empty work-groups are marked with @. Priority
in the queues L’;Op, N, ,;:Op, L’ip“t and N, ;,nt reads from left to right. For
example in Fig. 4a C;_ , has highest priority in ﬁ;()p .

The second part of our states are the two arrays sends and receives on
the lower-left side. sends illustrates all outgoing, asynchronous com-
munication, while receives shows all incoming, asynchronous commu-
nication. Ongoing sends are colored in blue and ongoing receives in
orange. Using Fig. 4f as an example, we see two ongoing sends and
two ongoing receives. Here Cj1, sends the time predictions of its
respective copy region to C; 1 ,,, analogue C; , for a region to C; ,,. In
terms of incoming communication, C;, 1, receives ghost region data
from Cpyqp, and C;p, from Cjyq,p,. Further we can map C;,’s active
communication to Fig. 3b. In this case C;, — Cj;1,,, sends data of
the blue, wavy copy region and C;, — C; ,, data of the blue, check-
ered copy region. The receive C; ), < Cj1p, refers to receiving data
for the orange, wavy ghost region.

The third and last part of our states is the lower-right diagram,
which shows the progress in time of all clusters in partition p. Initially
all clusters are in sync (lower horizontal line) and have to reach the
next synchronization time ¥ in Alg. 4 (upper horizontal line). The
latests time predictions (tPd in Alg. 2) for each clusters are visual-
ized by white boxes. The full updates of the DOFs (t9°% in Alg. 2)
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(b) State after finishing the first two
work-items. One send and one
receive are ongoing.

(a) Initial state before entering the
time-marching loop.
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(c) State after emptying L;OP forthe (d)Ci o) finished its first time pre-
first time. Four sends and seven diction. Three sends and four
receives are ongoing. receives are ongoing.
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(e) Cj_1,p finished its first time pre- (f) C;_5, finished its first time step
dictions. Two sends and three and computed another time pre-
receives are ongoing. diction. Two sends and two re-

ceives are ongoing.

Figure 4: Possible series of states resulting from execution of Alg. 4. The
four uppermost bars show the current configuration of the work-
groups L,F, NP, £int and N, Priority of the work-items reads
from left to right. The two arrays sends and receives show all possi-
ble communication. Ongoing sends are blue, ongoing receives or-
ange. The right diagram summarizes the states’ progress. Finished
time steps are gray, time predictions white.
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are illustrated via gray boxes. Fig. 5d, for example, shows a progress
with five finished full updates and eight computed time predictions.
Three of these predictions still reach further in time than the corre-
sponding DOFs. At this state cluster C;_, , performed three full time
steps and four time predictions, one of which still covers future up-
dates of C;_5,. Cluster C;_1, finished one complete time step and
is in possession of a time prediction further in time than its DOFs.
In contrast, C;,’s DOFs are at the same level as its latest prediction.
However, C;_1,, still operates on C;,’s latest time predictions, while
Ciy1,p will use C;’s respective summed time integrated DOFs later.
Ci41,p only computed a single time prediction in Fig. 5d.

Obviously, in partition p, C; 5, has the smallest time step and the
other clusters’ time steps are defined by the rates r;_, = 2, 1,1 =
2 and r; = 3 (see (65)). This means that every of C;_1,’s elements
updates two times more of than the single element of C; ,, C;,’s
elements updates four time more often, and those of C;,1, twelve
times more often than C;_, ,’s element.

Now we discuss the execution of our advancelnTime procedure in
Alg. 4 and how it could lead to the different states in our example.
This is only one possible control flow starting from the initial syn-
chronized state, because of the used asynchronous communication
and the dynamics of our scheduling scheme in case of ongoing com-
munication. However note that our final results are still deterministic
and bit-reproducible since we preserve the logical order of the opera-
tions.

The first state in Fig. 4a shows the initial generation of work-items
after execution of lines 2-4 in Alg. 4. Here all clusters are initially
added to both work-groups £, and Eg‘t performing local opera-
tions.

Next our execution enters the time-marching loop in lines 6-34. We
do not have any ongoing receives, thus the first inner-loop of Alg. 4
computes the local operations for all clusters” copy layers. Fig. 4b
shows partition p’s state after the first two iterations. The associated
work items of clusters C;_,, and C;_1, finished successfully. C; 5,
consists of a single interior element only, thus all copy layer opera-
tions return immediately and no communication is issued. Cluster
Ci-1,p has a single ghost and copy region, consequently a single send
and a single receive are issued. We asynchronously send the time pre-
diction of C;_1,’s single-element copy region to C;_1p, and receive
the time prediction of the corresponding single-element ghost region
(see Fig. 3a).

The state after all iterations over L’;Op is illustrated in Fig. 4c. Now
all clusters finished their first local work-items and work-group [,;,Op
is empty. We have a total of four ongoing sends and and six receives.
No communication was issued for C;, — Ciy1,, and Cjp, — Ciy1,,
since Cj,’s time buffers are incomplete by now. The only finished
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request is C;_1, — Cj_1,, and was issued in the previous state (see
Fig. 4b) already. Therefore, while working on C;, and Cj 1 p, cluster
Ci_1, sent its copy layer information.

Work-group N, ;Op is empty and a local, interior work-item of [,g‘t
is computed next. Fig. 4d shows the state after the first execution
of lines 21-26 in Alg. 4. We prioritized the smallest time step cluster
Ciap in Eg‘t and computed its interior local operations. Now C;_ ,
successfully finished both of its first local work-items. Accordingly
our progress diagram shows that C; , ,’s time prediction of the first
time step is available. Meanwhile one send and three receives finished
successfully.

The execution of our time-marching loop in Alg. 4 continues and
we encounter that work-groups N, Fi,nt, £,F and N," are empty. We
reach lines 21-26 again and compute a single, prioritized work-item
of Ei;‘t again. This time cluster C;_;, is on top of Eg‘t and finishes
all of its first time step’s predictions. The call to generateWorkltems en-
counters that C;_5, qualifies for neighboring updates and adds the
cluster to groups N}, and V™ in Fig. 4e’s associated state. Addi-
tionally send C;, — C;_1,, and receive C;, < C;_1,, finished in
background.

The transition from Fig. 4e to Fig. 4f covers the computation of
multiple work-items associated with C;_,,. We start with the two
work-items in NV, ;nt and NV, ", After removing C;_, , from N,** we de-
termine, in line 17 of Alg. 4, that C;_, , qualifies for insertion in ﬁ;()p
and Eg‘t. Thus we compute both recently added work-items and add
Ci_p,p once again to ;" and Ni™ when calling generateWorkItems
in line 10. While executing all of the these work-items we assume
that receive C; , <— C , finished in background. The resulting state is
illustrated in Fig. 4f.

All of the following example states cover computation of multiple
work items. To reach the state in Fig. 5a from Fig. 4f’s state, we start
with A, and drop C;_,,. Next a single work-item of L} is pro-
cessed in lines 21 to 26. Cl,p is on top of L0t reaches the next time
prediction level for all elements and allows us to generate work-items
in NP and MM for C;_y,’s neighboring updates. Lines 28-33 come
next in our time-marching loop. We once again compute the single
neighboring update of C;_,’s element and drop C; 5, from ./\f;,“t.
However, we are are not allowed to add C;_,, to ﬁ;OP and Drf‘t be-
cause Cj_1, relies on C;_5 ,’s summed time buffer for its neighboring
updates.

Work-group E;Op remains empty and we continue with N;Op in
lines 14-19. \V, ;Op contains cluster C;_1,, at this state. We process the
remaining work-item of N, ;fop , which is the neighboring operations
of C;_1,,s copy layer element. This is the first time we require ghost
layer information from a neighboring partition. In our example we
received the required information from C;_1 ,, already in the state il-
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(@) C;_,p finished its second time
step. C;, computed its first set
of time predictions. One send
and one receive are ongoing.

(b) lel,p finished its first time step.
Ciy1,, computed its first com-
plete set of time predictions.
One receive is ongoing.
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(c) C—,p computed its third time
prediction and C;_q, its sec-
ond set of time predictions. One
send and two receives are ongo-

(d) G5, finished its third time
step and computed its fourth
time predictions. C; ), finished
its first time step. One send and

mng. one receive are ongoing.
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(e) Only C;_,, finished its work-
item in N;Op. Ci_1,p is blocked
by the ongoing receive.

Figure 5: Continuation of the possible series in Fig. 4 resulting from an ex-

ample execution of Alg. 4.

(f) Clusters C;_5,, C;_1,, and Cp
reached a common time level.
No communication is ongoing.
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lustrated in 4d, thus we can finish the work-item. The current state to-
gether with two more finished communication requests is illustrated
in Fig. 5a.

Our time-marching loop continues by computing the local, interior
operations of C; 1, as the only work-item of L’ip“t. At this state we are
not allowed to add any new work-items to our groups when calling
generateWorkltems in line 25. C; , is blocked because it requires C;_1
to add another set of time predictions to the respective buffers. C;,1
is required to wait until C;, finished computing the corresponding
time buffers.

The only non-empty work-group A;™ comes next in our time-mar-
ching loop (see lines 28-33 of Alg. 4). At this point we finish C;_1,’s
neighboring updates, drop the cluster from /\/’,},nt and call generate-
Workltems in line 32. The finished time step of C;_1, allows us to
add C; 5, to E;Op and E;“t because C; 5 ,’s time buffer is allowed to
be overwritten. Similar C;_;, does not require its own time predic-
tions anymore and we also add the cluster to ﬁ;()p and ﬁg‘t. Fig. 5b
illustrates the current state, where we additionally assume that send
Cir1,p = Ciy1,p, finished.

We continue with C; 5, and C;_1, in /J';,Op. The update of C;_1,, is
valid because the send C;_1, — C;_1,, finished already in the state
shown in Fig. 4c. However, the call of localCopy in line 8 of Alg. 4 also
issues send C;_1, = Cj_1p, and receive C;_1, < Cj_1 . .

Next, we process and drop C;_5,’s work-item from E;,nt but are
not allowed to add any new items to our work-groups. ﬁg“ is now
the only non-empty work-group and contains cluster C;_; , only. We
compute the local, interior operations for C;_;, and are allowed to
add C;_,, and Cj, to NP and ./\/;,m. This state is shown in Fig. 5c.

Ci_p,p in N comes next followed by the work-group N, con-
taining C;_ , and C; ,. We process both work-items and add C; , , to
work-groups £, and Ly after dropping C; 5 from N, o 7. Next, we
process Cj_, in Ly and C;, in A", But only after processing the
last remaining work-item, C; 5, in ,C;OP, we are allowed to add C; 5,
and C;_q, to N;Op and ./\fri,“t once again. Further assuming that the
receive Cjy 1, < Cjy1,p, finished, we see the current state in Fig. 5d.

The next processed work-group is NV, Y. We can drop Ci_2,p imme-
diately, because of the missing copy layer. In contrast C;_1,, returns
instantly and unsuccessfully from neighboringCopy in line 15 of Alg. 4.
Reason is the ongoing receive C;_1,, < C;_1,,, bouncing back in line
13 of Alg. 3. Thus our scheduling leaves C;_; , untouched in ;Op as
illustrated in Fig. se.

Instead we continue with N }if‘t and finish C;_, ,’s neighboring up-
date. Assuming that the receive C;_1, < C;_1 p, finished in the mean-
time, we now compute the neighboring contribution for C;_1,,’s copy
layer and remove C;_;, from N, ,fOP. The neighboring, interior oper-
ations of C;_1, are the only remaining work-item. We finish those,
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drop C;_y,, from NV, ’i,“t and generate new work-items by adding C;_» ,,
Ci_1,pand Cp, to £,F and £g‘t. This last state of our example is shown
in Fig. 5f.

SUMMARY

This chapter introduced our clustered LTS scheme, which exploits
heterogeneous time steps in the computational domain. Here, we
started our considerations on the basis of two neighboring elements
in Ch. 3.1. By limiting the possible LTS relations to two general cases,
we allowed for every element a single time buffer or a single set of
time derivatives or both. Next, Ch. 3.2 introduced our clustering and
a normalization step. We allowed for arbitrary elements in our clus-
ters, thus did not impose connectivity of a cluster’s elements. Ch. 3.3
extended our clustered LTS scheme to multiple partitions. This led to
a strict separation of elements in the clusters’ interior regions, copy
regions and ghost regions. Finally, Ch. 3.4 introduced our time man-
agement and Ch. 3.5 our scheduling. Ch. 3.5 closed with an extensive
example covering all of the introduced aspects.

The derivation of our clustered LTS scheme covered all algorithmic
design decisions of our computational core. However, our final imple-
mentation requires an appropriate layout of the involved data struc-
tures in memory and parallelization at all levels. For example, we as-
sumed asynchronous communication just to happen in background,
but left the actual implementation of the asynchronous data exchange
open. For this purpose we switch in the next part, Pt. ii, to an engi-
neering perspective. After the definition of our targeted supercomput-
ers, this leads us to the complete formulation of our computational
core, capable of running earthquake simulations at petascale perfor-
mance. A detailed performance evaluation of all introduced concepts
then follows in Pt. iii.



Part II

SUPERCOMPUTING

This part maps the clustered LTS scheme of Pt. i to super-
computing systems.

We start by introducing our targeted machines in Ch. 4.
The remaining chapters of this part systematically address
all technical layers of the targeted machines.

Ch. 5 studies all data structures of our computational core
and derives a memory layout supporting vectorization,
shared memory parallelization and distributed memory
parallelization.

Next, Ch. 6 introduces the hybrid parallelization of our
computational core aiming at machine-size simulations.
Discussion and auto-tuning of our innermost kernels in
Ch. 7 follows our hybrid parallelization. The innermost
kernels drive the single-core performance of our computa-
tional core and thus vectorization is covered as last level
of parallelism.






SYSTEMS

This chapter describes the four supercomputing systems SuperMUC-
1, SuperMUC-2, Stampede and Tianhe-2. All four systems are used in
small- and large-scale simulations throughout the remaining chapters
and build the targeted architectures for our computational core.

SuperMUC-1 and SuperMUC-2 are homogeneous supercomputers
and the floating point performance is delivered by fat-core Intel Xeon
CPUs. In contrast Stampede and Tianhe-2 are accelerated with Intel
Xeon Phi coprocessors and thus heterogeneous. Here the largest frac-
tion of the floating point performance is offered by the Intel Xeon Phi
cards connected to the host CPUs via PCI-E.

Most top-ranked systems in the June 2015 Top 500 list' are ei-
ther GPU-accelerated, BlueGenes or built of our targeted Intel Xeon
processors and Intel Xeon Phi coprocessors. In recent years a shift
towards GPU- and Intel Xeon Phi accelerated systems was visible
for the highest ranked systems of the Top 500 lists. Considering fu-
ture systems, Intel’s main focus for next-generation Intel Xeon Phis
is socketed. Presumably most upcoming supercomputers using the
Intel Xeon Phi technology will be homogeneous. Examples are the
planned 27+ PFLOPS Cori Phase-1I* of the National Energy Research
Scientific Computing Center and the planned 180+ PFLOPS Aurora3
of the Argonne Leadership Computing Facility. From this perspec-
tive, the results obtained on the homogeneous SuperMUC-2 have the
highest relevance for upcoming socketed Intel Xeon Phi systems.

SUPERMUC-1 The SuperMUC-1 system is located at the Leibniz
Supercomputing Center in Munich, Germany. With a sustained HPL-
performance of 2.9 PFLOPS and a theoretical peak performance of 3.2
PFLOPS in double-precision it is listed at position 20 of the June 2015
Topsoo list.

SuperMUC-1 consists of 9,216 dual-socket Intel Xeon E5-2680 v3
nodes. The nodes are connected with a commodity InfiniBand FDR10
network in a fat-tree topology. The fat-tree is organized in 18 islands
with 512 nodes each and a 4:1 bandwidth ratio of intra-island to inter-
island communication.

https://web.archive.org/web/20150905161941/http://top500.0rg/list/2015/
06/
https://web.archive.org/web/20150905132454/http://www.nersc.gov/users/
computational-systems/cori/
https://web.archive.org/web/20150911154757/http://www.alcf.anl.gov/
articles/introducing-aurora
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Every socket has a total of 8 cores with a base frequency of 2.7 GHz.
The theoretical double-precision peak performance of 346 GFLOPS
per node stems from two 256-bit (FMUL, FADD) floating point execu-
tion units per core. We refer to a core or node of SuperMUC-1 with
the abbreviation SNB-MUC.

SUPERMUC-2 SuperMUC-2 is also located at the Leibniz Super-
computing Center. SuperMUC-2 ranks directly behind SuperMUC-
1 at position 21 of the June 2015 Top 500 list. It sustained a HPL-
performance of 2.8 PFLOPS and has a theoretical peak performance
of 3.6 PFLOPS.

SuperMUC-2 contains 3,072 dual-socket Intel Xeon E5-2697 v3 nodes.
The nodes are connected via Infiniband FDR14 with a fat-tree topol-
ogy. Analogue to SuperMUC-1, the machine contains 512 nodes in
every of its 6 islands. Again the ratio of intra-island to inter-island
bandwidth is 4:1.

Every socket has 14 cores with a AVX base frequency of 2.2 GHz
and a marked TDP frequency of 2.6 GHz. The theoretical peak per-
formance in double-precision per socket is 493 GFLOPS at 2.2 GHz.
Here a core features two 256-bit floating point execution units ca-
pable of performing FMA-operations. We refer to a core or node of
SuperMUC-2 as HSW-MUC.

STAMPEDE Stampede is located at the Texas Advanced Computing
Center in Austin, TX, USA. The June 2015 Topsoo list ranks Stampede
at position 8 with a sustained HPL-performance of 5.2 PFLOPS. Stam-
pede is build of 6,400 nodes connected with a Mellanox FDR inifin-
band network in a two-level fat-tree topology. Each node is equipped
with two Intel Xeon E5-2680 CPUs and accelerated with an Intel Xeon
Phi SE10P coprocessor.

The host CPUs operate at 2.7 GHz and deliver, analogue to Super-
MUC-1, 346 GFLOPS per node. An Intel Xeon Phi SE10P coprocessor
has 61 cores operating at 1.1 GHz. Each of the coprocessor’s cores
is able to execute a 512-bit FMA-operation per cycle. Thus the float-
ing point performance of a single coprocessor is 1.1 TFLOPS. This is
equivalent to an aggregate node performance of 1.4 TFLOPS and a
theoretical, system-wide peak performance of 9.1 PFLOPS.

TIANHE-2 The last system, Tianhe-2, is based at the National Super
Computer Center in Guangzhou, China. Tianhe-2 is the top-system
of the June 2015 Topsoo list with a reported HPL-performance of
33.9 PFLOPS in double-precision. A total of 16,000 nodes are con-
nected with a custom interconnect in a fat-tree topology. Each of the
nodes is equipped with two Intel Xeon E5-2692 v2 CPUs and acceler-
ated with three Intel Xeon Phi 31S1P coprocessors.
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The two 12-core CPUs per node operate at 2.2 GHz and deliver
422 GFLOPS per node. A single Intel Xeon Phi 31S1P coprocessor
has 57 cores and operates at 1.1 GHz. This leads to a floating point
performance of 1.0 TFLOP per card and an aggregated, theoretical
performance of 54.9 PFLOPS for the entire system.
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DATA STRUCTURES

This chapter introduces the data structures of our computational core.
Ch. 5.1 starts by defining computational matrices and examining the
sparsity patterns of our time, volume and surface integrator. Next,
Ch. 5.2 encodes the per-element LTS information we require for our
clustered local time stepping scheme in a bitmask. Finally Ch. 5.3
introduces the memory layout of our computational core. Here we
consider all levels of parallelism by sorting and aligning our data.

5.1 MATRIX STRUCTURES

In this chapter we discuss the final matrix patterns of our compu-
tational core stemming from the derivative computation in (27), the
local update step (49) and the neighboring update step (50). The di-
mensions of all matrix operators exclusively depend on the number
of quantities or the number of basis functions or both. Our elastic
wave equations (14) have a fixed number of nine quantities. Thus we
consider the number of basis functions as only variable parameter.
Considering the definition of our basis in (11), the number of basis
functions By in dependency of the convergence rate O of our ADER-
DG scheme is given by:
0-(0+1)-(0+2)

Bp = 3 : (67)

COMPUTATIONAL MATRICES For all following chapters we rede-
fine the DOFs, time derivatives and time integrated DOFs as Bp x 9
matrices. This matches SeisSol’s view on the matrix operations, eases
visualization and is equivalent to transposing (27), (49) and (50). To
prepare the formulation of our final computational core, we also in-
troduce a new set of global and element-local matrices. Additionally
to transposing our existing matrices we also enhance them. Our new
computational stiffness and computational flux matrices also carry the
effect of the (diagonal) inverse mass matrix and our computational ja-
cobians and computational flux solvers the effect of the scalars J; and
Sk,i~
We define our new global matrices K&, Ké, F~ and FHii! as:

Ké =M YKE)T
Kée =M1K c,hel,23

: - . (68)
F' =M (F) i,j€1,23,4

i 1 ( F+,i,j,h)T
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n
N1

c=1

Figure 6: Structure of the recursive time derivative computation via (70) for
a sixth order scheme. Non-zero entries are gray, zeros white. Zero-
blocks of the stiffness matrices generating zeros in the derivatives
are colored in orange. Blocks of the stiffness matrices hitting zero-
blocks of the derivatives are colored silver.

Additionally we get for the element-local matrices Af; and Agc:

ISk
| Jk|
Al = | ](AE)T

AIT,i = ( AFN\T

M0 e1,2,3. (69)

This leads us to the definition of the recursive time derivative com-
putation (27):

ad—H 3 iy ad :
WQk = —C;K ‘ (atko> AL (70)

We obtain the element-local operations (49) as:

3 4 _
Q" = Qi+ Y KETAY + Y FITiAL (71)
c=1 i=1
And we obtain the neighboring updates (50) as:

4
ne+1 *,1p+1
Qkk = Qk g .

FHidkiti 'Hi Alti‘ (72)
i=1

SPARSITY PATTERNS Fig. 6 illustrates the recursive computation of
the time derivatives (70) for a sixth order scheme (Bg = 56). Non-zero
entries are gray, while zero-entries are white. The orange rectangles
highlight different zero-blocks in the matrices K. All matrices have
zero entries in rows 36-56. This is a result of the choice of our hierar-
chical expansion basis in Ch. 2.2. Computation of the first derivative
(d = 1) and thus evaluation of the innermost sum in Fig. 6 leads to
derivatives with non-zero entries in rows 1-35 only.

The next recursive derivative computation, annotated with d = 2
in Fig. 6, uses these first derivatives as input. The silver blocks cov-
ering columns 36-56 of the matrices hit the previously generated
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Figure 7: Sparsity patterns of matrix operations in the element-local con-
tribution to a time step (71) for a sixth order scheme. Non-zero
entries are gray and zero entries white.

=

Figure 8: Sparsity patterns of matrix operations in the neighboring elements’
contributions to a time step (72) for a sixth order scheme. Non-zero
entries are gray and zero entries white.

zero blocks. Thus the orange blocks in rows 21-35 of the second stiff-
ness multiplication generate zero-entries in rows 21-35 of the second
derivative.

The scheme continues accordingly and the higher order derivatives
shrink in every step analogue to our hierarchical basis. We exploit this
property in Ch. 5.3 to reduce the size of the derivatives if stored or
communicated and in Ch. 7.1 to reduce the computational effort of
the derivative computation.

Fig. 7 illustrates the sparsity patterns of all matrices in the local
update step (71) for a sixth order scheme. The first sum corresponds
to the volume integration and the second sum to the elements’ con-
tribution to the surface integral. In contrast to matrices Agc with 24
non-zero entries, matrices Ak_, ; are dense in general.

The sparsity patterns of the neighboring update step (72) are illus-
trated in Fig. 8. Compared to the local flux contribution, the choice
of the flux matrices in (72) is mesh-dependent. Thus in Fig. 8 we
have to choose one out of 12 matrices in every summand. Addition-
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Figure 9: Bitmask used to encode the LTS configuration of a single element.
The upper part shows the general layout of the mask. The lower
part illustrates three example configurations. Zero-bits in the ex-
amples are colored white, while 1’s are colored gray.

ally we operate on the four different time integrated DOFs of our
face-neighbors and effectively increase the pressure on the memory
subsystem compared to the local contributions.

5.2 LTS BITMASK

In Ch. 3.1 we introduced different relations two neighboring elements
might have in our clustered local time stepping scheme. This led to
the permanent storage of time derivatives or buffers or both per ele-
ment. Our time integration, volume integration and surface integra-
tion introduced in chapters 2.7, 2.8 and 2.9 operate on the time deriva-
tives or buffers or both. In this chapter we define a compact encoding
of a single element’s LTS configuration.

As illustrated in Fig. 9, we use a 11-bit bitmask for this purpose.
In implementation, our bitmask is embedded in the unsigned short
C++-data-type, which is guaranteed to have at least 16 bits. We use
the first four bits of our bitmask (ND in Fig. 9) to encode the type of
time data our face-neighbors provide for our element’s neighboring
updates. A neighbor provides time derivatives if the respective bit is
1 and buffers if it is set to 0. Later we use this information to decide
if we have to compute time integrated DOFs prior to a neighboring
update.

Bits 5-8 (GTS in Fig. 9) encode if we are in a global or local time
stepping relation with one of our face-neighbors. A neighbor has the
same time step as our element and is thus in GTS relation if the re-
spective bit is set to 1.

Bits 9-11 are element-local and describe what information our ele-
ment stores permanently. In the case of a 1 in bit 9 (LB in Fig. 9) our
element stores a time buffer. Setting bit 10 (LD in Fig. 9) means that
our element stores time derivatives. By setting bit 11 (LLB in Fig. 9)
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we are able to encode if the element’s time buffer is used to sum
multiple time steps.

Fig. 9 also includes three example LTS configurations an element
might have. The first example, Ex. 1, encodes the classical GTS rela-
tion where only bits 5-9 are set. The Os in bits 1-4 tell us that our
element operates on face-neighboring time buffers. Bits 5-8 encode
that the element is in GTS relation with all face-neighbors. Because
of bit 9 our element permanently stores its time integrated DOFs in a
buffer. However bit 11 shows that the buffer is overwritten with new
time integrated DOFs in every time step. Finally bit 10 encodes that
no derivatives are stored permanently.

Ex. 2, the second example in Fig. 9, is almost identical to Ex. 1.
The only difference is bit 2, which is set in this case. Therefore we
use the second face-neighbor’s time derivatives for our neighboring
update. This case is special, because bit 6 still tells us that we are in a
GTS relation with our second face neighbor. Aside from boundary or
dynamic rupture faces, this case occurs when our face-neighbor uses
its time buffer to sum up multiple time steps.

Fig. 9’s third example, Ex. 3, is one of many possible local time step-
ping configurations. We operate on time derivatives of face-neighbors
1 and 3 and on time buffers of neighbors 2 and 4. Neighbors 1 and
2 are in GTS relation, while 3 and 4 have an LTS relation with our
element. Combining the information of bits 3-4 and 7-8 with the lay-
out of our clustering scheme in Ch. 3.2, we know that our second
neighbor is part of the next larger time step cluster and our fourth
neighbor is part of the next lower time step cluster.

LOCAL TIME INTEGRATION Our neighboring elements’” contribu-
tion to the surface integral (72) operates on time integrated DOFs. We
use our bitmask to process the neighboring time predictions prior to
an element’s update. If the face neighbors provides time buffers and
thus the corresponding ND-bit is not set, we can directly proceed
with the buffers.

However, if the ND-bit is set, we have to derive the time integrated
DOFs from the neighbor’s derivatives via (29) first. Since At in (29)
is simply given by the element’s time step and f by the the time of
the element’s last complete time step (Clllﬁ,.ifd"fs in Alg. 2), we seek
for the scalar ty. to is the expansion point and thus the time of the
associated neighboring cluster’s last complete time step. Due to our
normalization step in Ch. 3.2, we have two options for the time step
of the neighboring element’s cluster. The first option is global time
stepping and the corresponding GTS-bit is set in Fig. 9. In this case
to = f and both scalars simply cancel out in (29). The second option
is true, if the corresponding GTS-bit is not set in Fig. 9. Here, we use
the last full update time of the next cluster for f in (29).
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5.3 MEMORY LAYOUT

This chapter discusses the mapping of our ADER-DG scheme to mem-
ory. Goal is a suitable memory layout for high-order discretizations.
In our considerations a suitable layout minimizes the final time-to-
solution of our simulations. It is important to note that this is not nec-
essarily the most compact, latency-optimized, throughput-optimized
or most cache-friendly storage format. Instead we aim at a layout,
which maximizes the performance of our entire computational core.
Our design includes memory alignment, considers prefetching and is
the backbone of our shared and distributed memory parallelization.

COLUMN-MAJOR STORAGE Starting at convergence rate 3 our DG
discretization has more basis functions than elastic quantities (10 vs.
9). Thus vectorization in the basis functions is beneficial and we use a
column-major storage for all our matrix structures in (70), (71) and
(72). As visualized in Fig. 6, Fig. 7 and Fig. 8 our column-major
storage is linear in the basis functions of our DOFs Qy, derivatives
0?/9t?Qy and time integrated DOFs T;. This supports vectorization
of the dominating matrix-matrix products.

MEMORY ALIGNMENT For optimal performance we align large
parts of our data to certain boundaries in the memory hierarchy.
The alignment of entire memory blocks is simple. For example the
posix_memalign or mm__malloc functions implement memory alignment
for the heap. Similar for the stack we use the attribute aligned to en-
sure aligned allocations.

However, alignment of the memory blocks only ensures that the
respective base pointers are aligned to proper boundaries. Our ADER-
DG scheme operates within memory blocks, for example during a
mesh iteration, and performs vector instructions on the respective
data. Load and store operations access cache lines having a size of 64
bytes on all considered architectures [36, 38]. Vector loads and stores
of data spanning across cache line boundaries impose performance
penalties. For example every second 256 bit (32 byte) operation on
unaligned memory is across a cache line split.

Accordingly inside a memory block, accessed via vector loads or
stores, our memory layout supports optimal alignment with respect
to the used vector instruction set. This translates to 16-byte alignment
for SSE3, 32-byte alignment for AVX and AVX2, and 64-byte for the
Knights Corner and AVX-512 instruction sets.

We perform vector operations in matrix-columns having the num-
ber of basis functions as size. Consequently our memory layout en-
sures proper alignment of these columns by zero-padding. This means
that we introduce artificial rows, if the size of the columns in bytes is
not already a multiple of the desired vector length.
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COMPRESSED DERIVATIVES Ch. 5.1 discussed the structure of the
time kernel in terms of increasing-size zero-blocks in higher deriva-
tives. We exploit this to reduce memory requirements of derivatives.
Instead of storing the full Bp x 9 x O-block, we use a compressed
storage format. For the d' derivative we only store the correspond-
ing non-zero block of size Bp_; x 9. This results in a total requirement
of Dy non-zeros:
0-1
Do =) Bo—g-9. (73)
d=0
We then realize vector alignment by using zero-padding for the indi-
vidual non-zero blocks.

GLOBAL MATRICES Ch. 2.3 defined the mass matrix, stiffness ma-
trices and flux matrices in terms of a unique reference tetrahedron.
Therefore all computations of our ADER-DG scheme share the same
global matrices in a mesh iteration. Following (68) we have to store the
three matrices K, the three matrices K¢ and the 52 matrices F~ and
FHiih,

Ch. 7.2 introduces our matrix kernels, the innermost and most per-
formance critical kernels. These matrix kernels exclusively operate
on our global data. Depending on the number and distribution of
non-zero entries in the matrices we use either dense or sparse matrix-
matrix multiplications. For this purpose, we vector-align the first en-
try of all matrices, but only introduce zero-padding for columns of
matrices stored as dense. For sparse matrices we linearly store the
non-zero entries (column-major).

To avoid jumps in memory, we allocate a single, memory page-size
aligned memory block for all global matrices. Our ordering of the
matrices inside our memory block supports the stride detection of
the hardware prefetcher (e.g. [36, 51]) by linearly following our order
of execution.

The first element-local operation is the computation of time deriva-
tives (70). Thus we store the three matrices K¢ first. Following the dis-
cussion of matrix structures in Ch. 5.1, we can exploit the zero-blocks
of matrices K for dense storage. In this case we only store the vector-
aligned non-zero block of size Bo_1 X Bp for a convergence rate O
scheme.

Next we compute the volume integration in (71). Consequently we
store the three matrices K¢ next. Again, following Ch. 5.1, we reduce
the dense size and store the vector-aligned non-zero block of size
Bp x Bo_1 only.

The final part of the element-local step (71) is the element’s local
contribution to the surface integration. Therefore we store the four
matrices F~ next.

The remainder of the memory block is occupied by the matrices
Fii required for the neighboring contribution (72). Due to the used
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Figure 10: Memory-aware sorting of elements in the two-dimensional exam-
ple shown in Fig. 3. The upper part shows the sorting of the entire
partition with respect to clusters, the clusters’” ghost layers, copy
layers and interior regions. The lower part also shows the sorting
by communication regions of C; ,'s ghost and copy layer.

unstructured meshes we are not able to derive a fixed linear ordering
in this case and simply store the matrices FHiil in ascending order.

ELEMENT-LOCAL DATA  We call all data, depending on the tetrahe-
drons, element-local. Our memory layout follows a common strategy
for all element-local memory blocks. The idea of our strategy is to
store element-local data consistent with the operations of our clus-
tered LTS scheme introduced in Ch. 3. This ensures consecutive ac-
cess of all non-neighboring information in our computational loops
over elements. As for our global matrices this technique simplifies
predictions of memory accesses and supports hardware prefetching.

We ensure linear memory access of non-neighboring data in our
work-items by sorting our elements. On the outermost level we sort
the elements by their local time stepping clusters. Next we sort the
individual elements of a cluster by the communication-related struc-
tures. First comes the ghost layer, then the copy layer and finally the
interior of every cluster. Further, we sort the elements in the ghost
and copy layers by their individual communication regions. If a tetra-
hedron is a member of more than a single ghost or copy region (see
Ch. 3.3), we duplicate it in every region. This duplication of elements
allows us to store all communication-related data of all copy and
ghost regions linearly in memory. Thus our sends and receives are
able to operate on this data directly. Otherwise we would have to
implement an additional step collecting the data in send and receive
buffers before issuing our communication.

Fig. 10 shows the sorting applied to our simple two-dimensional
example in Fig. 3 of Ch. 3.3. In the upper part we see that the element-
local data is sorted with respect to the individual LTS clusters in
the partition. Here inside every cluster the ghost layer data comes
first, followed by the copy layer and interior. Additionally the two el-
ements, which are part of multiple copy regions, are duplicated and
marked with a yellow star and square. The element, which is part of
ghost region of C;_1,, and Cj ;, is also duplicated and marked with a
yellow triangle.

The lower part of Fig. 10 shows the logical structure of C; ,’s element-
local data. Additionally following Fig. 3b the individual communica-
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tion regions are visualized with different patterns and C; ,’s copy and
ghost layer in the partition are sorted accordingly.

CONSTANT MATRICES As constant matrices we consider A,“EC, Ak’,i
and A,j’l. in (69). For a single element the entries of these matrices
depend on the material properties and the orientation and shape of
the tetrahedron. The material parameters and spatial discretization
are fixed for an entire run, thus all matrix entries are constant. Addi-
tionally we only access time buffer or time derivative data of ghost
layer elements, therefore we store constant matrices only for copy and
interior elements.

We use two memory blocks to store our constant matrices. The first
block contains matrices Agc and A, ; used in the derivative computa-
tion (70) and element- local update (71) As discussed we follow our
ordering of element-local data to support hardware prefetching. Ad-
ditionally for every element k we store the three matrices Aé” first and
then the four matrices A, ;. In sum this respects, in harmony with
the storage of the global matnces, our order of execution. The sec-
ond memory block contains the element-local matrices A,j,l. used for
the neighboring updates in (72). By following our sorting of element-
local data, we ensure linear access of matrices A,j’i in the neighboring
update work-items.

We support either storing the non-zeros only or the dense 9 x 9
block of matrices Ag“. Matrices A ; and A,‘& are fully occupied in
general and we store them as dense. No vector alignment is required
for any of the constant matrices.

INTERNAL STATE The internal state covers the DOFs, time buffers
and time derivatives. Together with the constant matrices, the internal
state is responsible for almost all of SeisSol’s memory consumption.

However, in contrast to the constant data, the memory consump-
tion of the internal state depends on the order O of the ADER-DG
method. As a consequence the dimensions of all matrix-columns in
the internal state depend on the number of basis functions. There-
fore we use zero-padding in the columns of all of the internal state’s
matrices to impose an alignment suitable for the respective vector
instruction set.

We allocate a single page-size aligned memory block for our DOFs.
Analogue to the constant data, our memory block only covers ele-
ments in the copy layers and interior regions. As before we ensure
linear access of the DOFs in our clusters” work-items by imposing
our ordering of element-local data.

Our storage scheme for the time data is the most complex. Here
we allocate three page-size aligned memory blocks, one for the copy
layers, one for the ghost layers and one block for the interior regions.
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After applying our sorting, the individual memory chunks of the
copy regions in the copy layers belong to a local cluster C; , and have
a unique associated LTS id of the neighborings partition’s cluster. Ad-
ditionally, we logically duplicate elements, which are part of more
than one copy region. Dependent on their respective LTS configura-
tions, elements in the clusters’ copy layers store vector-aligned time
buffers or vector-aligned compressed derivatives or both. Inside every
copy region we first store all buffers and second all derivatives. Copy
regions, which are not in global time stepping relation with their
neighboring partition, send either buffers or derivatives only, never
both. Thus, in this case, all communication relevant data is stored lin-
early in memory. Copy regions having a global time stepping relation
with their neighboring partition are a special case. Following Ch. 5.2
the neighboring partition of a copy region expects us to send, depen-
dent on the LTS configurations of our elements, time buffers and time
derivatives within the same copy region. Therefore we apply an addi-
tional sorting step and store copy elements providing derivatives to
the neighboring partition in front of those providing buffers. By doing
so we store all communication related data linearly in memory again.
Here, the corresponding communication-related memory chunk be-
gins after the buffers of the elements providing time derivatives and
reaches into the memory of the time derivatives until all respective
elements providing derivatives are covered. Our layout of the ghost
regions mirrors the communication related data of the corresponding
copy regions. Hence we perform the same splitting of time buffers
and derivatives together with our sorting. In sum, our memory lay-
out allows us to send copy region data and receive ghost region data
as is.

The time data of the interior elements covers our third page-aligned
memory block. Once again we apply our element-local sorting and
store in every region the buffers first, followed by the derivatives.

MEMORY CONSUMPTION Tab. 1 shows the memory consumption
of a single LTS element for convergence orders 2-8 in double precision
(8 bytes per value).

The second column shows the amount of memory in bytes an ele-
ment’s DOFs or time integrated DOFs occupy. Inside the parentheses
we also see the overhead in percent our 16-byte, 32-byte or 64-byte
vector-alignment adds to this. For example, for O = 5 we introduce
a 3% overhead for 16-byte and 32-byte alignment and a 14% over-
head for 64-byte alignment. This correlates to the 35 basis functions
or rows of a fifth order scheme, which are zero-padded to 36 rows for
16-byte and 32-byte alignment and to 40 rows for 64-byte alignment.
In general certain convergence rates naturally feature alignment. For
example the 56 basis functions of O = 6 are a multiple of 8 (64 bytes
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@ O Vv f Qp dt %Qk %Qk, compressed || internal%
2 288 (0, 0, 100) | 576 360 (20, 60, 220) 9, 10, 14

3 720 (0, 20, 60) | 2,160 | 1,080 (7, 33, 113) 20, 24, 30
4 1,440 (0, 0, 20) | 5760 | 2,520 (3, 14, 60) 33, 41, 48
5 2,520 (3, 3, 14) | 12,600 | 5,040 (3, 9, 37) 47, 57, 64
6 4,032 (0,0,0) | 24,192 | 9,072 (2, 5, 21) 58, 69, 75
7 6,048 (0,0, 5) | 42,336 | 15,120 (1, 3, 14) 68, 79, 83
8 8,640 (0,0,0) | 69,120 | 23,760 (1, 2, 9) 75, 85, 88

Table 1: Absolute and relative memory consumption in dependency of the
order of convergence using double-precision. The first column
shows the considered order of convergence. Columns two, three
and four show the memory requirements of (time integrated) DOFs,
derivatives and compressed derivatives in bytes. Values in parenthe-
sis represent the additional overhead in percent for 16-byte, 32-byte
and 64-byte vector alignment. The fourth column compares the non-
zero memory requirements of the internal state to the constant data.
Given are the relative requirements in percent for the DOFs plus
buffers (first number), DOFs plus compressed derivatives (second
number) and DOFs plus buffers plus derivatives (third number).

in double precision). Thus, in this case, it is sufficient to align the base
pointers only

The third column of Tab. 1 contains the memory consumption of
the derivatives in bytes. Compared to the number of bytes required
for our compressed storage in the fourth column, we see the benefit of
our storage scheme. For example, considering non-zeros only, we re-
duce the memory consumption by 2.7x for a sixth order scheme. The
parentheses in the fourth column again show the overhead our align-
ment adds to the compressed storage. Especially for 64-byte align-
ment this overhead is more severe than the alignment-overhead for
the (time integrated) DOFs shown the second column. The reason is
the alignment of the last derivatives containing only 1, 4 and 10 non-
zero rows. For 64-byte vector-alignment these are padded to 8 and 16
rows respectively, adding an overhead of 113%. In future implemen-
tations it might be beneficial to introduce a mixed format and use
unaligned storage for derivatives having a small numbers of rows.

The fifth and last column of Tab. 1 compares the memory consump-
tion of the internal state’s non-zeros to those of the constant matrices.
Here we assume sparse storage for the three constant matrices Agf.
This results in a total memory consumption of 3 -24 + 8 -9 -9 entries
for matrices Agf and AJ; and thus a total of 5760 bytes in double preci-
sion. The first number in the fifth column of Tab. 1 shows the relative
memory consumption of the internal state if an element stores DOFs
and time buffers only. Additionally the second number shows the rel-
ative consumption for storage of DOFs and compressed derivatives,
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while the third number shows the consumption for storage of DOFs,
buffers and compressed derivatives.

In summary the fifth column’s numbers show the benefit of us-
ing high orders from a memory consumption’s viewpoint. Low-order
simulations use only a small fraction of the memory to encode the ac-
tual solution. The break-even point of constant to non-constant data
depends on the LTS configurations, vectors alignment and partition-
ing, but is around orders O =4 to O = 5 (see Tab. 1).

SUMMARY

This chapter introduced the data structures of our computational core
together with an appropriate memory layout. First, Ch. 5.1 discussed
the used matrix structures and the corresponding sparsity patterns.
In the following memory layout, we exploited especially the recur-
sively generated zero-blocks in the time derivatives. Next, Ch. 5.2
encoded the LTS information of every element in a compact bitmask.
Ch. 5.3 discussed our final memory layout. The layout features ar-
bitrary vector-alignment, supports hardware prefetching, and dupli-
cates elements in the copy layer for in-place communication. A dis-
cussion of our computational core’s memory requirements concluded
Ch. 5.3.

The next chapters of this part, Pt. ii, use our computational core’s
memory layout to address the different concurrency levels of our tar-
geted supercomputers. First, we introduce our hybrid, asynchronous
single- and multi-node parallelization in Ch. 6. This is followed by the
introduction of our low-level ADER-DG kernels in Ch. 7, targeting
vectorization within a single core. Finally, Pt. iii evaluates the small-
and large-scale performance of our complete computational core in
different setups.
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This chapter introduces the shared and distributed memory paral-
lelization of our computational core. The dominating programming
model for our targeted supercomputers (see Ch. 4) is MPI+OpenMP
and used for parallelization in this chapter.

Ch. 6.1 introduces the shared memory parallelization and Ch. 6.2
the asynchronous distributed memory parallelization. Afterwards, the
last remaining building block for our computational core is the single-
core optimization and covered in Ch. 7.

6.1 OPENMP

Due to the structure of our clustered local time stepping scheme, we
are able to use a simple but efficient approach for the shared memory
parallelization of our computational load. We recapitulate that our
work-items of Ch. 3.4 either perform local operations or neighbor-
ing operations on all elements covered by the work-item. Further our
memory layout of Ch. 5.3 ensures a linear ordering of all elements
belonging to a specific work-item.

In sum this translates to two simple computational for-loops, one
for the local operations and one for the neighboring operations, for
implementation of the functions calls localCopyOps(), neighCopyOps(),
locallntOps() and neighlntOps() in lines 6, 15, 20 and 24 of Alg. 3. Both
loops iterate from a first to a last element, which are simply the first
and last element of the respective work-item.

We use the OpenMP API" for our shared memory parallelization.
Here, the simple pragma #pragma omp parallel for schedule(static)
in front of our two computational loops is sufficient for paralleliza-
tion. Since the per-element load in a work-item is almost constant,
static scheduling is sufficient and efficient.

In addition to the allocation of our data in Ch. 5.3, we add an initial-
ization step of all element-local data directly after its allocation. The
allocations get mapped to memory in hardware when touched for
the first time. OpenMP follows a first-touch policy, meaning that a
memory page is allocated in the memory of the Non-Uniform Mem-
ory Access (NUMA) node on which the thread touching the page
for the first time resides on. We mirror the OpenMP parallelization
of our two computational loops to the initialization and simply set
all floating values to zero initially. By doing so we ensure that all
element-local data is mapped to memory close to the cores using it

1 http://openmp.org/
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the most and reduce the NUMA-effects for compute nodes sensitive
to NUMA.

6.2 MESSAGE PASSING INTERFACE

Ch. 3.5 introduced our asynchronous communication scheme from a
high-level perspective and simply assumed that communication hap-
pens in background, once high-level send and receive requests are is-
sued. Next, in Ch. 5.3, we discussed the final memory layout and how
the communication data is embedded via ghost and copy regions. In
the internal state each communication region has an associate mem-
ory chunk which contains the communication data. Thus for all of
our partitions we know exactly the memory addresses and size of the
data, which should be sent to neighboring partitions and should be
received from neighboring partitions.

In this chapter we discuss the usage of the Message Passing Inter-
face (MPI) to implement our asynchronous communication scheme.
For this purpose we use a dedicated communication thread, which
manages all communication internally. Our communication thread’s
usage of the MPI-standard is limited to the three functions MPI_Isend,
MPI_Irecv and MPI_test.

MPI_Isend begins a non-blocking send, MPI_Irecv begins a non-block-
ing receive and MPI_test tests for completion of a communication
request. The motivation for our dedicated communication thread is
the implementation of the non-blocking communication in most com-
monly used MPI-implementations. A call to MPI_Isend and MPI_Irecv
returns immediately after the start of the communication and we are
able to continue with our computations. However, most MPI-imple-
mentations do not progress the messages in background. In practice
our communication only continues when we call the MPI-implemen-
tation again, for example via MPI_test. Thus, aside from managing
the communication and issuing sends and receives, the main task
of our communication thread is to ensure background progression
by constantly calling MPI_test for pending communication requests.
This type of MPI-progression is computationally intensive and the
reason why we pin our communication thread to a dedicated core.
On many-core architectures this is a cheap price to pay for the bene-
fits of truly asynchronous communication. In future implementations
it might be beneficial to consider replacing our send-receive-model
by a Remote Memory Access (RMA) approach to benefit from a more
direct communication.

COMMUNICATION THREAD  Our communication thread has to pro-
vide several arguments to the MPI-functions MPI_Isend and MPI_Irecv.
The first three input arguments are the initial address of the message

buffer, the number of elements to send and the type of the elements.
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For all of our ghost and copy regions all three arguments are already
properly defined, since we included the requirements of MPI already
in our memory layout in Ch. 5.3. In terms of outgoing messages is-
sued via MPI_Isend the initial addresses correspond to the start of the
communication-related data in our copy regions’ time data. The size
is defined by the number of vector-aligned values in the time buffers
or time derivatives or both. The type is the respective MPI datatype
for single- or double precision. Analogue for incoming messages is-
sued with MPI_Irecv the initial addresses are the starts of the ghost
regions’ time data, the number of elements equivalent to the number
of values and the datatype equivalent to the respective MPI datatype
of single- or double-precision.

Since we use MPI_COMM_WORLD as communicator and pass it via the re-
spective input argument, the remaining two input arguments uniquely
define the receiving LTS cluster C, , for MPI_Isend and the sending
LTS cluster Cj, , for MPI Irecv. The first of the two remaining input
arguments is simply the destination p, or source ps of the data. We
further distinguish multiple messages between two partitions by their
MPI tag, which is the last open input argument. Thus, we uniquely
define our tag in MPI_Isend and MPI_Irecv as s - L 4 I; 4 Otime, Where
L is the total number of global LTS clusters in (65) and Ogme € IN a
constant offset for all communication of time data.

The only output argument of MPI_Isend and MPI_Irecv is the com-
munication request, which we use to query the status of the com-
munication. Our communication thread defines a send-queue and a
receive-queue for every LTS cluster in a partition. Whenever a new
communication request is returned by either MPI_Isend and MPI_Irecv,
we add the respective communication request to the corresponding
queue.

Our communication thread runs permanently in background, thus
we require a way to asynchronously interact with the thread. Relevant
are the four calls in lines 2, 5, 7 and 12 of our cluster operations in
Alg. 3. We require the communication thread to provide information
about the current status of the communication. Here, for every cluster,
we have to know if all sends are finished (line 2) and if all receives are
finished (line 12). Further we need a way to tell the communication
thread that a new set of non-blocking sends (line 7) or a new set of
non-blocking receives (line 5) should be issued for a specific cluster.
For this purpose we define two volatile signaling variables for every
cluster, one for the sends and one for the receives. Every signaling
variable has three possible states complete, initiate and ongoing.

Our communication thread now continuously iterates over the sig-
naling variables of all clusters. Whenever the state of a send-variable
is set to initiate, the communication threads calls MPI_Isend for the
cluster’s copy regions communicating in the time step, adds all send
requests to the cluster’s send-queue and changes the state to ongoing.

67



68

SHARED AND DISTRIBUTED MEMORY

Similar if the state of a receive-variable is set to initiate, our commu-
nication thread calls MPI_Irecv for the clusters ghost regions commu-
nicating in the time step, adds the request to the receive-queue and
switches the state to ongoing.

If our communication thread encounters a signaling variable with
the state ongoing, it iterates over the respective send- or receive-queue
and calls MPI_test for the queue’s requests. MPI_test tests for comple-
tion of the respective send or receive and returns true if the communi-
cation is finished. We remove all requests of finished communication
from the queue. A send-queue is empty if the cluster finished send-
ing all its copy layer data and a receive-queue empty if the cluster
finished receiving all its ghost region data. In these cases our com-
munication thread changes the state of the signaling variable from
ongoing to complete.

From the perspective of our cluster operations, our function sends-
Finished() in line 2 of Alg. 3 returns true only if the cluster’s signal-
ing variable for the sends is in state complete. Comparable, receives-
Finished() in line 12 returns true only if the signaling variable for the
receives is in state complete. To tell our communication thread that
the cluster’s ghost or copy layer is ready for new communication,
we switch the respective signaling variable from complete to initiate
when calling receiveGhostRegions() in line 5 or when calling sendCopy-
Regions() in line 7 of Alg. 3.
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This chapter discusses the layout of the computational kernels cover-
ing almost all of the computational load in our simulations. Our ker-
nels are completely element-local and access face-neighboring data in
a read-only fashion. Consequently all of the following considerations
refer to a single element only. The only level of parallelization consid-
ered at this low-level is the SIMD-paradigm of Intel Xeon CPUs and
the Intel Xeon Phi coprocessor.

First, Ch. 7.1 introduces the low-level implementation of our ADER-
DG kernels implementing the time, volume and surface integration.
Here, we additionally study memory accesses in hardware and dis-
cuss the usage of streaming stores for the permanent storage of deriva-
tives. Next, Ch. 7.2 discusses the parameters and generation of our
innermost sparse and dense matrix kernels. The matrix kernels domi-
nate the floating point performance of our computational core and are
the place where we perform the SIMD-parallelization. Ch. 7.3 studies
the arithmetic intensity of our computational core from a theoretical
standpoint. Last, Ch. 7.4 discusses an auto-tuning approach for the
choice between sparse or dense matrix multiplications for the matrix
kernels.

7.1 ADER-DG KERNELS

CODING CONVENTIONS This chapter uses C++ code-snippets to
discuss the low-level implementation of our ADER-DG kernels. All
of the following code-snippets follow a set of coding conventions. For
example, Lst. 1 utilizes many of the most important conventions.

Functions parameters are prepended by i_ if the parameter is ac-
cessed read-only by the function, prepended by o_ if the parameter
is accessed write-only and by io_ if the functions reads and writes
the parameter. For example the call-by-value parameter i_timeStep in
line 1 of Lst. 1 is accessed in a read-only way. Inside function bodies
we prepend L_ for local variables and m_ for member variables of the
surrounding C++ class.

We use the typedef-name real as alias for floating-point values in
our computational scheme. This allows us to switch between the na-
tive C++ types float and double at compile time. float translates to
single-precision (32 bytes per value), while double is double-precision
(64 bytes per value). All variables related to our time-management,
such as i timeStep in line 1 of Lst. 1, are not performance-relevant.
Therefore we fix these to double-precision for improved accuracy.
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Preprocessor variables are named in uppercase. Examples in Lst. 1
are CONVERGENCE_ORDER or NUMBER_OF_ALIGNED_DOFS. Before invoking the
compiler, we use the preprocessor to replace all occurrences of these
variables with values matching our requirements.

TIME KERNEL The time prediction scheme introduced in Ch. 2.7
is our first ADER-DG kernel. Lines 1-6 of Lst. 1 contain the function
parameters of our kernel.

i timeStep is the time step At used to compute the time integrated
DOFs via (29). computeAder in Lst. 1 computes time integrated DOFs
of the tetrahedron’s complete time step in any case, here f = t; holds
and the respective scalars cancel out.

i stiffnessMatrices are the three locations in the memory hierar-
chy, which contain the values of our matrices K¢, K% and K%. The
DOFs Qx(to) of the tetrahedron are passed via i_degrees0fFreedom and
the matrices Agl, Agz and A% via i_starMatrices. o_timeIntegrated is
the location to which our kernel writes the time integrated DOFs.

Analogue, o_timeDerivatives might point to the location where we
store the derivatives. Recapitulating the possible LTS relations dis-
cussed in Ch. 3.1, we only have to store derivatives permanently if a
tetrahedron k is required to provide time derivatives Dy for its face-
neighbors. Our computeAder function in Lst. 1 assumes that we pass
the null-pointer constant NULL if no derivatives have to be stored.

Considering the data-heavy structures in the kernel’s arguments,
the global matrices Ké most likely are in a low cache-level, since the
time kernel is called over and over for a large number of elements.
The DOFs in i_degreesOfFreedom and matrices A,“E” in i starMatrices

are usually touched for the first time. However our sorting step
of element-local data in Ch. 5.3 ensures linear ordering and thus
supports hardware prefetching. The computational load in the local
ADER-DG kernels is high for high-order simulations and, in this case,
the memory-accesses are most likely shadowed behind computations.
The pointer o_timeIntegrated points either to a temporary data struc-
ture, overwritten in every call of the time kernel, or points to memory
for global time stepping relations. The derivatives o_timeDerivatives
are accessed write-only.

In line 8 of Lst. 1 we initialize the scalar of the zeroth derivative
(d = 0) summand in (29). Lines 11-14 define two arrays, we use to
store intermediate results of our time kernel. Both arrays are aligned
to page size boundaries. In lines 17-21 of Lst. 1 we initialize the zeroth
derivative with the DOFs Qj and the intermediate time integrated
DOFs with At - Q. All higher derivatives are reset to zero in lines
23-26.

The function call streamstoreFirstDerivative in lines 30-31 wraps a
set of low-level intrinsic functions performing streaming stores for the
zeroth derivatives if requested (o_timeDerivatives != NULL). Since our
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Listing 1: Low-level time kernel computing time integrated DOFs and time
derivatives (if requested).

void computeAder( double i_timeStep,

realxx i_stiffnessMatrices,
realx 1i_degreesOfFreedom,
real i_starMatrices[3][STAR_NNZ],
real* o_timeIntegrated,
real* o_timeDerivatives ) {

// scalars in the taylor-series expansion

real l_scalar = i_timeStep;

// temporary result

real l_temporaryResult[NUMBER_OF_ALIGNED_DOFS]
__attribute__ ((aligned (PAGESIZE_STACK)));

real l_derivativesBuffer[NUMBER_OF_ALIGNED_DERS]
__attribute__ ((aligned(PAGESIZE_STACK)));

// initialize time integrated DOFs and derivatives
for( unsigned int 1_dof = 0;
1_dof < NUMBER_OF_ALIGNED_DOFS; l_dof++ ) {
1 _derivativesBuffer[l_dof] = i_degreesOfFreedom[1l _dof];
o_timeIntegrated[l_dof] = i_degreesOfFreedom[l_dof] * 1l_scalar;

}

for( unsigned int 1_dof = NUMBER_OF_ALIGNED_DOFS;
1_dof < NUMBER_OF_ALIGNED_DERS; 1_dof++ ) {
l_derivativesBuffer[l_dof] = 0.0;
}

// stream out first derivative (order 0)
if ( o_timeDerivatives != NULL ) {
streamstoreFirstDerivative( i_degreesOfFreedom,
o_timeDerivatives );

}

// compute derivatives and contributions to time integrated DOFs
for( unsigned l_derivative = 1;
l_derivative < CONVERGENCE_ORDER; 1l_derivative++ ) {
// iterate over dimensions
for( unsigned int 1l.c = 0; l.c < 3; l.c++ ) {
// compute $K {\xi_c}.Q k$ and $(K_{\xi_c}.Q k).Ax$
m_matrixKernels[ (l_derivative-1)*4 + 1.c ] (
i_stiffnessMatrices[l_c],
l_derivativesBuffer+m_derivativesOffsets[l_derivative-1],
1_temporaryResult,
NULL, NULL, NULL );

m_matrixKernels[ (l_derivative-1)x4 + 3 1 (
1_temporaryResult,
i starMatrices[l.c],
l_derivativesBuffer+m_derivativesOffsets[1l_derivative],
NULL, NULL, NULL );
}

// update scalar for this derivative
l_scalar x= i_timeStep / real(l_derivative+l);

// update time integrated DOFs
integrateInTime( l_derivativesBuffer,
l_scalar,
1 derivative,
o_timelIntegrated,
o_timeDerivatives );
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time kernel permanently stores the derivatives in a write-only fash-
ion, we bypass the cache and directly write to memory. This avoids
Read for Ownership (RFO), where the entire cache-line is read from
memory before we would overwrite it completely [36, 38].

The loop in lines 35-62 of Lst. 1 performs in an iteration a single
step of the recursive derivative computation (70). Additionally, fol-
lowing (29), we add the effect of the current iteration’s derivatives
directly to the time integrated DOFs o_timeIntegrated. The inner-loop
in lines 38-51 iterates over dimensions ¢y, ¢ and (3. In every of the
inner iterations we perform two matrix-matrix multiplications by call-
ing function-pointers of m_matrixKernels. The first call multiplies the
previous derivative with the matrices K% from the left and stores
the intermediate results to 1_temporaryResult. The jump in memory
for the derivatives on the stack via m_derivativesOffsets is equiva-
lent to our vector-aligned storage scheme for compressed derivatives
(see Ch. 5.3). The second call multiplies the intermediate results with
the matrices Aif from the right and adds the result to the respective
derivative in 1_derivativesBuffer.

The array of function pointers m_matrixKernels allows us to use op-
timized matrix-multiplication kernels for the individual operations.
Since the array-index for the multiplication from the left with K de-
pends on both loop-indices, 1_derivative and 1_c, we are able to hard-
wire the current level of recursion and the current dimension in the
respective matrix kernel. For the second call, we only hardwire the
level of recursion in our matrix kernels, since we assume identically
shaped matrices Agc (see Ch. 5.1 and Fig. 6). We choose the individ-
ual matrix-multiplication kernels via auto-tuning based on the used
architecture, order of convergence and precision. Details are covered
in the next chapters following our current discussion of the ADER-
DG kernels.

The remaining lines 53-61 of Lst. 1 add the current derivative’s con-
tribution to the time integrated DOFs o_timeIntergrated and perma-
nently store the derivative, if requested. Again we reduce the pressure
on the memory subsystem by using streaming stores in the function
integrateInTime for storing the derivative.

VOLUME KERNEL The first sum in the local update step (71) com-
putes the contribution of the volume integration. Lst. 2 shows the vol-
ume kernel computeVolume performing this operation. computeVolume
’s first function parameter is the array i stiffnessMatrices contain-
ing the locations of the three matrices K¢ in the memory hierarchy.
The second parameter i_timeIntegrated points to the time integrated
DOFs of the element. Matrices AEE are passed via i_starMatrices and
the element’s DOFs Q) via io_dofs.

It is very likely that all input data already resides in a low cache-
level, since we call the volume kernel directly after our time ker-
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Listing 2: Low-level volume kernel computing the contribution of the vol-
ume integration to a time step.

void computeVolume( realxx i stiffnessMatrices,
realx 1 timelntegrated,
real i starMatrices[3][STAR_NNZ]J,
real* 1io_dofs ) {
// temporary result
real 1_temporaryResult[NUMBER_OF_ALIGNED_DOFS]
__attribute__ ((aligned (PAGESIZE_STACK)));

// iterate over dimensions
for( unsigned int 1.c = 0; 1.c < 3; l.c++ ) {
m_matrixKernels[1l_c]( i_stiffnessMatrices[l_c],
i timeIntegrated,
1_temporaryResult,
NULL, NULL, NULL );
m_matrixKernels[3]( 1_temporaryResult,
i_starMatrices[l_c],
io_dofs,
NULL, NULL, NULL );

nel shown in Lst. 1. The time kernel computes the time integrated
DOQOFs in i_timeIntegrated. In addition it uses the three matrices Agc
in i_starMatrices and the DOFs in io_dofs for the derivative compu-
tation. Further the matrices Ké are global and used repeatedly in the
element-local update (71) of every element. This is supported by our
execution-aware storage of the global matrices introduced in Ch. 5.3.
Here the matrices K¢ directly follow matrices K, thus hardware-
prefetching is encouraged.

The structure of the volume kernel is similar to the derivative com-
putation in the time kernel. Again, in lines 6-7, we define a page-size
aligned array for the temporary data. Next, lines 10-19 iterate over the
three dimensions ¢, in the reference coordinate system and compute
the corresponding volume contributions. Inside the loop we call a set
of optimized matrix-multiplication kernels stored as function point-
ers in m_matrixKernels. This array belongs exclusively to the volume
kernel and thus holds different pointers in comparison to the corre-
sponding array of the time kernel. The first call in lines 11-14 of Lst. 2
multiplies the time integrated DOFs from the left with matrices K¢
and stores the intermediate results. Next, in lines 15-18, we multiply
the results of the previous matrix-matrix multiplication with Agc from
the right and add the result to the DOFs.

By using our function pointers m_matrixKernels, we are again able to
hardwire individual matrix kernels for all four operations. We discuss
details, including the respective tuning step, in the next chapters after
the introduction of all ADER-DG kernels.
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Listing 3: Low-level local surface kernel computing the element’s contribu-
tion of the surface integration to a time step.

OO N U A~ W N K

Mo
oy

12
13
14
15
16
17
18
19
20
21

23

25
26

void computeLocalSurface( enum faceType i_faceTypes[4],

real *i_fluxMatrices[52],

real *1_timeIntegrated,

real i_fluxSolvers[4]
[NUMBER_OF_QUANTITIES*NUMBER_OF_QUANTITIES],

real xio_dofs ) {

// temporary product
real 1_temporaryResult[NUMBER_OF_ALIGNED_DOFS]
__attribute__ ((aligned(PAGESIZE_STACK)));

for( unsigned int 1_face = 0; l_face < 4; l_face++ ) {
// Riemann problem for dynamic rupture faces is solver separately
if( i_faceTypes[l_face] != dynamicRupture ) {
// compute neighboring elements contribution
m_matrixKernels[1_face]( i_fluxMatrices[l_face],
i_timelntegrated,
1_temporaryResult,
NULL, NULL, NULL );

m_matrixKernels[52] ( 1_temporaryResult,
i_fluxSolvers[l_face],
io_dofs,
NULL, NULL, NULL );

LOCAL SURFACE KERNEL Our local surface kernel in Lst. 3 up-
dates the DOFs with the second sum of (71). The first input parame-
ter is the enumeration i_faceType, which encodes the types of the four
faces. A pointer to the 52 global matrices F~# and F*//, of which we
only use the first four matrices F~7, is the second parameter. The re-
maining arguments pass the element-local data, which are the time
integrated DOFs, the four matrices A;; and the element’s DOFs.

Considering the data-heavy arguments once again, the matrices
F~/ most likely reside in low-level cache, because we repeatedly call
the local surface kernel for our elements. The time integrated DOFs
in i timeIntegrated and DOFs in io_dofs have been touched in the
previous calls of the time and volume kernel, thus most likely are
still in cache. Matrices A,;l. are untouched in general. However, for
high-order simulation we assume that the hardware prefetcher recog-
nizes our linear sorting of element-local data (see Ch. 5.3) and is able
to shadow the loads from memory.

In lines 8-9 we once again define storage for our two-way matrix
multiplications. The loop over the four faces of the tetrahedron is
realized in lines 11-25. We only continue with the computation of a
face’s contribution if the face is not a dynamic rupture face (line 13),
which is true for the vast majority of faces. Dynamic rupture faces
use a specialized surface integration [49]. Next, lines 15-18 multiply
the time integrated DOFs from the left with matrices F~ and store
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the result in our intermediate storage. The second call of our matrix
kernels in lines 20-23 multiplies the intermediate result from the right
with a matrix A ; and updates the DOFs with the contribution of the
current face.

Again the class member m_matrixKernels allows us to hardwire op-
timized matrix-multiplication kernels for the five calls. However, the
local surface kernel shares m_matrixKernels with the neighboring sur-
face kernel, discussed in the next paragraph.

NEIGHBORING SURFACE KERNEL The neighboring elements” con-
tribution to the surface integral (72), shown in Lst. 4, is our last ADER-
DG kernel. While the time kernel, volume kernel, and local surface
kernel are all part of our local work-items in Ch. 3.5, the neighbor-
ing surface kernel is the only ADER-DG kernel in the neighboring
work-items.

The function parameters of the kernel are given in lines 1-7. The
first parameter i_faceTypes contains, analogue to the local surface ker-
nel in Lst. 3, the types of the four faces. Argument i_neighboringIndices

contains, in dependency of the local face i, the id of the neighboring

face ji; and the orientation /;; with respect to the reference element
(see Ch. 2.1). i_fluxMatrices again contains the 52 matrices F~ and
Ft/! (see Ch. 5.3).

The function parameter i_timeIntegrated in Lst. 4 points to the time
integrated DOFs. If a face-neighbor provides derivatives, we have to
assemble the time integrated DOFs via (29) first, before passing them
to computeNeighSurface in Lst. 4. For this purpose, prior to the call
of computeNeighSurface, we follow the procedure shown in Ch. 5.2 by
computing the time integrated DOFs from the derivatives based on
the LTS bitmask and storing them in a temporary array. Therefore,
recently computed time integrated DOFs in i_timeIntegrated are most
probably in a low cache-level. The location of the time buffers, which
are used directly and not copied to the temporary array, depends on
the data-locality of the neighboring elements.

However, in total, the hardware prefetcher most likely fails to pre-
dict these accesses of derivatives and buffers initially due to our un-
structured tetrahedral meshes. For high-order simulations the neigh-
boring accesses put the highest pressure on the memory subsystem.
In future implementations software prefetches could be introduced
in computeNeighSurface to ensure prefetching of neighboring data. In
fact, the last three parameters of the functions in m_matrixKernels, cur-
rently addressed with NULL, prepare this step.

The last two parameters in lines 5-7 of Lst. 4 point to the matrices
A, ; and the DOFs. Here, our memory layout ensures linear accesses
and the matrices most likely reside in a low cache-level.

As in all other ADER-DG kernels, lines 10-11 define page-size aligned
memory for our two-step matrix-matrix multiplications. The loop
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Listing 4: Low-level neighboring surface kernel computing the neighboring
elements’ contribution of the surface integration to a time step.

1| void computeNeighSurface( enum faceType i_faceTypes[4],

2 int i_neighboringIndices[4][2],
3 real *i_fluxMatrices[52],

4 real *i_timeIntegrated[4],
5 real i_fluxSolvers[4]

6 [NUMBER_OF_QUANTITIES+*NUMBER_OF_QUANTITIES],
7 real xio_dofs ) {

8

9 // temporary product

10 real l_temporaryResult[NUMBER_OF_ALIGNED_DOFS]

11 __attribute__ ((aligned (PAGESIZE STACK)));

12

13| // iterate over faces

14 for( unsigned int 1_face = 0; l_face < 4; l_face++ ) {

15 // absorbing: no contribution, dynamic rupture: separate
16 if( i_faceTypes[l_face] !'= outflow &&

17 i_faceTypes[1l_face] != dynamicRupture ) {

18 // id of the flux matrix (0-3: local, 4-51: neighboring)
19 unsigned int 1_id;

20

21 // compute the neighboring elements flux matrix id.

22 if( i_faceTypes[l_face] != freeSurface ) {

23 // derive memory and kernel index

24 1_id = 4 // jump: F~{-, i}
25 + 1_facex12 // jump: i
26 + i_neighboringIndices[l_face][0]*3 // jump: j
27 + i_neighboringIndices[l_facel[1l]; // jump: h
28 }

29 else { // free surface: fall back to F*{-, i}

30 1_id = 1_face;

31 }

32

33 // compute neighboring elements contribution

34 m_matrixKernels[1_id]( i_fluxMatrices[l_id],

35 i_timeIntegrated[l_face],

36 1_temporaryResult,

37 NULL, NULL, NULL );

38

39 m_matrixKernels[53]( 1_temporaryResult,

40 i_fluxSolvers[l_face],

41 io_degreesOfFreedom,

42 NULL, NULL, NULL );

43 }

44| 1}

45| }
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over the faces in lines 14-44 only processes a face if it is not a dy-
namic rupture face and no outflow boundary conditions are set (see
lines 16-17). In the case of dynamic rupture faces the surface integral
is computed separately [49] and in the case of outflow boundary con-
ditions no neighboring surface-contribution is applied at all [23]. We
derive the face’s id in i_fluxMatrices in lines 21-31. In the case of free-
surface boundary conditions we use F~ [23]. In all other cases we
follow our ascending order of Ch. 5.3 to get the right matrix F//",

In lines 34-37 we multiply the time integrated DOFs from the left
with matrices F*/* or F~ in the case of free-surface boundary con-
ditions and store the intermediate result. Finally, in lines 39-42, we
multiply the intermediate result from the right with A,j,l. and update
the DOFs with the face’s contribution. After all faces are processed in
Lst. 4, the element is at the next time step.

The class member m_matrixKernels is identical to the local surface
kernel in Lst. 3. In addition to the four shared matrix-multiplication
kernels performing the multiplications with F~ from the left, we are
able to hardwire 49 additional kernels for the multiplications with
Ftih and Al

7.2 MATRIX KERNELS

The performance of our four ADER-DG kernels in Ch. 7.1 is dom-
inated by small-size matrix-matrix multiplications in their inner-
loops. For this purpose all three embedding classes define an array
m_matrixKernels to hardwire optimized routines for this task.

In this chapter we introduce the identifiers formalizing our matrix-
matrix operations and the usage of the libxsmm-library® for the gen-
eration of our low-level matrix kernels.

The next chapter discusses our auto-tuning approach in prepro-
cessing, which chooses an optimized set of matrix kernels for a given
configuration. These sets are then hardwired to the ADER-DG kernels
using the preprocessor.

IDENTIFIERS We use standard BLAS-DGEMM identifiers for our
matrix-matrix operations. Fig. 11 illustrates our identifiers for the op-
eration C = BC + AB with 8 € {0,1}. M is the number of rows of
matrices A and C, N is the number of columns of matrices B and C
and K is A’s number of columns and B’s number of rows. 1dA, 1dB
and 1dC are the leading dimensions of our matrices and thus encode
our zero-padding used for vector-alignment. As discussed in Ch. 5.3
we allow sparse storage of matrices K¢, K&, F~7, Ftiih and A%. In
this case no leading dimension is defined and we set ldA = —1 for a
sparse matrix in K&, Ké, F~4, FHiil or 1dB = —1 if matrices Aic are
sparse. Based on the order of convergence and vector-alignment we

1 https://github.com/hfp/libxsmm
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Figure 11: Illustration of the BLAS-DGEMM identifiers for the matrix-
matrix product C = 5C + AB.

1dA

K& 20 (Re200) AF
d|M|N| k|1da|1dB |1dc || M| N[k |1da | 1dB | 1dC
1135] 9|5 | 36| 56| 36|35 99| 36| 9| 36
2120 9| 35 36| 36| 20 20| 9| 9| =20 9| 20
3|110| 9|20 36 | 20 12|10 9| 9 12 9 12
4| 4| 9|10] 36| 12| 4| 4] 9|9 9| 4
50 11 9] 4] 36| 4| 4 919 9| 4

Table 2: BLAS-DGEMM identifiers of the time kernel for a sixth order
method. Shown are the identifiers for double-precision and 32-byte
vector-alignment in dependency of the d* derivative computation.

are now able to derive the identifiers for all matrix-matrix multiplica-
tions in our ADER-DG kernels of Ch. 7.1. This leaves the sparse-dense
decision as only open parameter for our auto-tuning in the next chap-
ter.

Tab. 2 shows our identifiers for a sixth order time kernel (see Lst. 1)
in double-precision with 32-byte vector-alignment. The identifiers are
given in dependency of the d derivative computation in lines 35-62
of Lst. 1. Identifiers M, N, K only operate on non-zero blocks and
therefore exploit the decreasing number of non-zeros discussed in
Ch. 5.1. The leading dimensions match our vector-aligned memory
layout of Ch. 5.3. The first multiplication in lines 40-44 overwrites the
intermediate array, therefore we additionally set 8 = 0. After multipli-
cation with K¢ from the left, the intermediate result already contains
the newly generated zero-block. Therefore in Tab. 2 the M of the mul-
tiplication with A,%C from the right (see lines 46-50 of Lst. 1) is identical
to the M of the first multiplication. Our second multiplication with
matrices Aic updates the current derivative with the contribution of
dimension (.. Thus we add the results by setting p = 1.

The identifiers for the volume kernel (see Lst. 2) are shown in Tab. 3.
In this case we show all dense identifiers for orders 2-7 and 32-byte
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KET, (K5 75) A
O|M|N| K|IdA |1dB |1dC || M | N | K | 1dA | 1dB | 1dC
2| 4] 9| 1 41 4| 4] 41 9|9 41 9| 4
3110 9| 4 12 12 12 ||10| 9| 9 12 9 12
4|20 | 9|10 20 20 20120 91| 9 20 9 20
5[35] 9|20 | 36| 36| 3635 9|/9| 3| 9| 36
6|56 9/35| 56| 56| 56|56 9| 9| 56| 9| 56
7184|956 | 84| 84| 848 | 9|9| 8| 9| &

Table 3: BLAS-DGEMM identifiers of the volume kernel for orders 2-7.
Shown are the identifiers for double-precision and 32-byte vector-
alignment in dependency of the order O.

FiT, v F+,i,j,hﬁ (Ff,iﬁ) ALV (1:+,i,j,h77() Alti
‘O M|N| k|1da|1dB|1dc | M| N |k [1da | 1dB | 1dC
2| 41 9] 4 41 4| 4] 419]9 41 9 4
3| 10| 9 | 10 12 12 12 |10| 9| 9 12 9 12
41 20| 9|20 20 20 2020] 9| 9 20 9 20
5/35] 9/35| 36| 36| 36|35 9] 9| 36 9| 36
6|56 9|56| 56| 56| 56| 56| 9]9| 56| 9| 56
7184 9184 ] 84| 84| 848 | 99| 8| 9| &

Table 4: BLAS-DGEMM identifiers of the local and neighboring surface ker-
nel for orders 2-7. Shown are the identifiers for double-precision
and 32-byte vector-alignment in dependency of the order O.

vector-alignment. Since the sparsity patterns of matrices Ké are the
transposed patterns of the time kernel’s matrices K (see Ch. 5.1), we
adjust the size of the multiplication with matrices Ké from the left
(see lines 11-14 of Lst. 2) via K. The leading dimensions of these mul-
tiplications match our vector-alignment of Ch. 5.3 and we set = 0.
The multiplication with matrices AEC from the right in the volume
kernel (see lines 15-18 of Lst. 2) is similar to those of the time kernel.
However, this time no zero-blocks are generated in the first multipli-
cation and identifiers M, 1dA and 1dC match the full number of basis
functions. Again we set B = 1 since this time we update the DOFs
with dimension ¢.’s contribution.

Tab. 4’s identifiers are our last set and show the settings for the
local surface kernel in Lst. 3 and the neighboring surface kernel in
Lst. 4. When multiplying our time integrated DOFs with matrices
F~ and F™/'" from the left (see lines 15-18 of Lst. 3 and lines 34-
37 of Lst. 4) we can not exploit any zero blocks and thus cover the
full number of basis functions in M, K and their aligned equivalents
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ldA, 1dB and 1dC. Again we set B = 0 for the first multiplication.
The identifiers for multiplication with matrices A; ; and A,:; from the
right are identical to those of the volume kernel in Tab. 3 and we
set B = 1. However, this is the only case where we are not allowed
to use sparse-multiplications, since matrices A;; and A,j’i are fully
populated in general. All other matrix operations allow for sparse-
settings and thus allow setting ldA = —1 for multiplications from the
left or 1dB = —1 for multiplications from the right.

KERNEL GENERATION We use the libxsmm-library for the actual
generation of our matrix kernels. libxsmm targets at small-size matrix-
matrix multiplications and supports the SSE3, AVX, AVX2, AVX-512
and Knights Corner vector instruction sets. Initially the used code-
generator was developed as part of SeisSol and later integrated into
libxsmm [8, 9, 31, 10].

libxsmm uses our DGEMM-identifiers and the desired vector in-
struction set as input. The result is a generated, optimized function
for the specified sparse or dense matrix-matrix multiplication. Our
DGEMM-identifiers are sufficient for dense matrix kernels. For the
generation of sparse matrix kernels, we also pass the sparsity pat-
terns to libxsmm using the Matrix Market format [7].

Three different approaches are used within libxsmm for the code-
generation of our three possible sparse-dense combinations.

In the first case we multiply a sparse matrix from the left to a dense
matrix and obtain a dense matrix as result (IdA = —1). Here libxsmm
summarizes continuous matrix-entries in the columns of A and gener-
ates vectorized code by using intrinsic functions. Similar to the more
general code-unrolling approach, the respective sparsity patterns are
hardwired into the generated source code [8].

The second case multiplies a sparse matrix from the right to a dense
matrix and results in a dense matrix (IdB = —1). Since we use a
column-major format, the vectorization of this operation is a simple
code unrolling. Here libxsmm generates C++-code, which is vector-
ized by the compiler’s auto-vectorizer [8].

The last case assumes an all-dense matrix kernel. In this case the
library generates optimized assembly code, which directly translates
into machine instructions. Compared to intrinsic functions, the assem-
bly code completely bypasses the compiler. This allows for custom,
optimized register management [10].

7.3 ARITHMETIC INTENSITY

The definition of our ADER-DG kernels leads to the question what
performance we can expect from our implementation in practice. For
this purpose we derive the arithmetic intensity of our computational
core. The arithmetic intensity summarizes how many floating point
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operations we perform in relation to memory transfers. With the arith-
metic intensity at hand we can estimate the performance of our com-
putational core for different architectures. Here one of the most im-
portant characteristics is the machine balance. The machine balance sets
the sustained memory bandwidth of a machine in relation to its peak
floating point performance (GiBS/GFLOPS). Combining arithmetic
intensity and machine balance, we can estimate if our computational
core’s workload is in the memory-bound or compute-bound regime.
Typical state-of-the-art architectures have a machine balance between
0.1 and 0.25 in double precision. Thus an arithmetic intensity of at
least 4-10 double-precision floating point operations per byte is re-
quired to fully utilize the computational capabilities of the respective
architecture.

We limit the complexity of our derivation by considering global
time stepping and dense-matrix kernels only. Additionally we ignore
our vector-alignment for the time-being and assume that neither the
data required for the local operations nor the data required for the
neighboring operations completely fits into last-level cache.

Our loop over the elements performing local operations succes-
sively computes the time kernel, volume kernel and local surface ker-
nel for every element (see Ch. 6.1). Thus we have to read the DOFs,
the three matrices Agc and the four matrices A, * for every element
from memory. Since we write time buffers in global time stepping, we
also have to load the element’s buffer to satisfy the read-before-write
requirement. The only data written back to memory are the updated
DOFs and the time buffer. Every of the constant matrices requires to
transfer 648 bytes in double-precision, while the size of the DOFs and
buffers follows Tab. 1.

As floating point operations we count the dominating matrix-matrix
multiplications of the ADER-DG kernels only. Here we have to con-
sider the multiplications with Ké and A,%C in the recursive derivative
computation of Lst. 1. Following the general scheme of the sixth order
example in Tab. 2, the number of floating point operations for every
multiplication is given by M - N - K - 2. Additionally, we use the matrix
identifiers in Tab. 3 and Tab. 4 for the derivation of floating point op-
erations in the volume kernel (see Lst. 2) and the local surface kernel
(see Lst. 3).

Our second loop in Ch. 6.1 computes the neighboring surface ker-
nel for every element. We require the time buffers of the element itself
and those of its four face neighbors. Depending on the mesh structure
this data might have been accessed within the same iteration and still
be in cache. Thus in addition to considering the sizes following Tab. 1,
we also model the cache hits. Here we assume fixed ratio of buffer-
data already in cache for every call of the neighboring surface kernel
in Lst. 4. In addition to the time buffers we have to read the element’s
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Figure 12: Arithmetic intensity of the computational core using global time
stepping and double-precision arithmetic. The intensities for the
two element-loops performing local and neighboring operations
are given separately. For the neighboring loop different cache-
hit ratios (0%, 25%, 50%, 75%, 100%) with respect to time buffer
accesses are assumed.

DOFs and the four matrices A,'f’i. After finishing all computations the
DOFs are the only data, which gets written back to memory.

In terms of floating point operations we have to account for the four
multiplications with F™//" and those with Ak+’i. For this purpose we
use the identifiers M, N and K given in Tab. 4.

Fig. 12 shows the resulting arithmetic intensities resulting from our
considerations. We distinguish between the arithmetic intensity of the
local loop and that of the neighboring loop, since these are different
in general. For example it might be possible to have a compute-bound
workload in the local loop, while the neighboring loop is bound by
memory bandwidth. The arithmetic intensities of the neighboring
loop are further split into different assumed cache-hit ratios when
reading the time buffer data.

In general we observe a clear trend of growing arithmetic intensi-
ties for higher orders. Assuming a machine balance of 0.2, we would
leave the memory-bound regime at order O = 4 for the local loop
and, depending on the cache-hit ratio, at order O = 4 or order O =5
for the neighboring loop.

7.4 AUTO-TUNING

To decide whether computing a specific matrix-matrix product as
sparse or as dense is advantageous, we perform an auto-tuning step
in preprocessing. Due to the design of our ADER-DG kernels in
Ch. 7.1, we are able to hardwire a specialized implementation to all
our function pointers. For every supported architecture, order of con-
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vergence and precision, we have to consider the (O — 1) - 4 matrix
kernels of the time derivative computation in Lst. 1, the 4 kernels of
the volume kernel in Lst. 2 and the 54 kernels of the surface integra-
tion in Lst. 3 and Lst. 4. The individual matrix kernels are combined
in our ADER-DG kernels, which are again combined via element-
loops over (71) and (72). Therefore, our auto-tuning has to model the
dependencies of the matrix kernels and their background accesses to
the memory hierarchy. For example tuning every possible matrix ker-
nel separately on a hot L2-cache is not sufficient, since data accesses
might dominate or cache trashing could happen when multiple ma-
trix kernels are executed in series.

TUNING SETUP We use a proxy application to mimic the perfor-
mance characteristics of our computational core on a single node. For
this purpose, we assume a given number of elements and imitate the
unstructured tetrahedral mesh by a random data structure. Thus all
all required initialization, such as reading the mesh, can be skipped
in our tuning runs. To every fake-element our data structure simply
assigns four random elements as “neighboring” elements, random
identifiers j and h for the matrices F*// and a global time stepping
LTS setup. The remaining layout is identical to our computational
core’s memory layout in Ch. 5.3 and our shared-memory paralleliza-
tion in Ch. 6.1.

The proxy’s error for single node-performance using global time
stepping is typically in the order of a few percent, thus we are able to
mimic our computational core’s performance for an arbitrary num-
ber of elements and time steps without a significant initialization
overhead. However, due to the large number of possible sparse-dense
combinations, we have to further reduce the complexity of our tuning
runs. Recapitulating that we compute the local and neighboring oper-
ations independently in Ch. 6.1 and for a large number of elements in
general, we are able to split our auto-tuning into two steps. The first
step tunes all matrix kernels in the time kernel, volume kernel and
local surface kernel, while the second steps tunes the matrix kernels
in the neighboring surface kernel only.

Further, inside an ADER-DG kernel, we assume that a global matrix
with less non-zero entries performs better in sparse than one with
more non-zero entries. Consider for example the four matrix kernels
of the global matrices F~* in the local surface kernel in Lst. 3. As
visualized for a sixth order scheme in the second sum of Fig. 7, the
matrices F~!, F~2, F3 and F~* have an increasing number of non-
zeros. Here we assume that if computing F~? as sparse is beneficial
then this is also the case for F~!. Thus our tuning runs test computing
only F~! as sparse, computing F~"! A F~? as sparse, F ! AF~2 AF~3
as sparse and also test computing F~"! AF~2 AF~3 AF~3 as sparse.
Configurations testing, for example, if computation of only F~+ or
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F~3 AF~? as sparse is advantageous are skipped. We follow the same
approach for the matrices F**/!, but sort them by the number of
non-zero entries first and only test computing the first 16 matrices as
sparse.

We reduce the complexity of our auto-tuning further by using the
same sparse decision for all matching recursive matrix kernels in the
time derivative computation of Lst. 1. For example, when the multi-
plication from the left with K is sparse on the first level (d = 1) in
Lst. 1, we use a sparse matrix kernel for K& on all following levels
(d > 1). Also we simultaneously switch matrices A% to sparse in the
time and volume kernel.

In summary our auto-tuning runs for the time, volume and local
surface kernel cover a total of 160 configurations:

¢ Compute matrices A,‘? as dense or sparse.

e Compute either all matrices K° as dense or test setting K or
K& AKE or K&t A K2 A KS2 sparse.

e Compute either all matrices K as dense or test setting K or
K& A K8 or Ké1 A K2 A KS2 sparse.

» Compute either all matrices F~+ as dense or test setting F~! or
FAAF2orF'AF2AF 2 orF 1 AF2AF 3 AF 4 sparse.

For our neighboring surface kernel we consider the 17 sparse-dense
configurations given by the non-zero sorting;:

e Compute either all matrices F*#/" as dense or test setting F/113,
11,1 11,2 222 21,1 12,1 43,1 41 24,2
Ftill ptllz g+222 pt2ll phl2l pt43l ptd4l ph242

F+A21 FA22 Fr231 F212 Fr213 F+122 and FH123 sparse

in ascending order (F1'13, or FH 113 A FHLLL etc)).

Every time step of our tuning runs computes both, the local and the
neighboring loop in Ch. 6.1. However we leave all matrix kernels of
the loop not involved in the current tuning as dense.

SNB-MUC AND HSW-MUC Next, we discuss the details of our auto-
tuning for the machines SuperMUC-1 and SuperMUC-2. To measure
reliable overall runtime improvements, we exclude caching effects
across elements from our auto-tuning runs. For this purpose, in con-
junction with our random neighboring accesses, we use a fixed num-
ber of fake-elements for every order, such that our element-local data
(see Ch. 5.3) occupies at least 5 GiB of memory in every run. Noise in
a single-node is accounted for by adjusting the number of time steps.
Here, we ensure at least one minute of computational time in every
tuning run, which results in 17 to 850 time steps, depending on the
order and architecture. Additionally, we repeat every configuration
50 times and use a different node in every repeat to account for the
machine’s overall noise in terms of node performance.
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For SuperMUC-1’s 16-core nodes we use 16 OpenMP threads in our
runs. Every thread is pinned to the first hyperthread of a core, which
is faster than oversubscribing the cores via the Intel Hyper-Threading-
Technology (HTT). All runs use the 2.7 GHz base frequency of the
SNB-MUC nodes with Intel Turbo Boost Technology disabled. This
matches the production configuration of SuperMUC-1.

In our tuning runs for HSW-MUC we use 56 threads on the 28-core
nodes of SuperMUC-2 and thus utilize HTT. This setting is slightly
different from our multi-node settings in the next chapters, where one
core is left for our communication thread (see Ch. 6.2). However, the
relative results of the auto-tuning are not influenced by this. All runs
on SuperMUC-2 use the 2.6 GHz base frequency of the HSW-MUC
nodes. The cluster-on-die feature is enabled and can be fully utilized
by our NUMA-aware memory layout of Ch. 5.3.

Fig. 13 and Fig. 14 show the results of our auto-tuning for conver-
gence rates O = 2 and O = 6. For every tuning we derive the mean
computational time of the 50 repeats using the all-dense configura-
tion. On this basis we compute the speedup of every repeated sparse
configuration. The speedup is illustrated with respect to the mean
time of the all-dense configuration using boxplots. Additionally, for
every configuration the mean speedup is visualized using a red cross.
Every plot in figures 13 and 14 contains the ten best performing con-
figurations with respect to their mean speedup.

The results of the local tuning runs are given in figures 13a, 13b, 14a
and 14b. The x-labels of the form a,b,c-d summarize the used sparse-
dense configuration for the local operations, while the neighboring
configuration stayed all-dense. Here, a is the number of (recursively)
used sparse configurations for matrices K¢, b the number of sparse
configurations for Ké and c that of F~. The last identifier d is 1 if
the matrix multiplications with Agf from the right are computed as
sparse in the time and volume kernel. For example the fastest config-
uration in Fig. 13a is 2,1,0-1. This translates to a configuration which
computed matrices K&t A I_<52, K% and matrices Agc as sparse.

Figures 13¢, 13d, 14c and 14d show the results of the neighboring
tuning runs. In this case the x-labels show the number of used sparse-
configuration for matrices F/". For example the label 3 of the best
performing configuration in Fig. 14c summarizes sparse computation
of matrices F113 A Frlll A Fril2,

For the low-order runs (O = 2) our best configuration for SNB-
MUC achieves a speedup of 13.2%, while the best configuration on
HSW-MUC reaches a speedup of 11.4%. Considering our discussion
of arithmetic intensities in Ch. 7.3, these results match the expecta-
tions of a memory-bound configuration. In a dense configuration the
local kernels access (r+w) a total of 5,112 bytes and the neighboring
surface kernel accesses a total of 4,320 bytes. Computing the element-
local matrices Aic as sparse, as in all top configurations of Fig. 13a
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13: Results of the auto-tuning runs for order O = 2. Shown are

boxplots for the speedups in relation to the mean value of the
all-dense configuration. Additionally red crosses mark the mean
speedups of the configurations.

Local runs: The first value of the x-labels is the number of sparse
configurations for K&, the second value is the number for K¢
and the third value is the number for F~. The last value is 1, if
the matrices A% are computed as sparse in the time and volume
kernel. Neighboring runs: The labels give the number of sparse
matrix kernels for F///t,
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and Fig. 13b, reduces the memory accesses of the local kernels to a
total of 3,744 bytes. This corresponds to a 14.5% reduction of memory
transfers. In comparison to setting all matrix kernels involving A,‘EC
to sparse, the remaining settings have a small influence on the per-
formance of the top-settings for SNB-MUC and no distinguishable
influence for HSW-MUC.

The results of the low-order neighboring tuning runs in Fig. 13c
and Fig. 13d suggest computing all matrix kernels as dense on SNB-
MUC and HSW-MUC. Due to the memory bottleneck this behavior
is expected.

Moving to the high-order (O = 6) runs in Fig. 14 we switch to the
compute-bound regime of our auto-tuning. In general we now expect
a positive or negative influence of all our sparse-dense decisions. The
best performing configurations of our tuning for the local kernels are
given in Fig. 14a for SNB-MUC and in Fig. 14b for HSW-MUC. For
both architectures 0,0,1-1 is the best performing setting. This means
that from a time-to-solution perspective matrix kernels involving F~
and A,i’;“ should be computed as sparse. For SNB-MUC an overall
speedup (including the all-dense neighboring surface kernel) of 5.2%
is achieved and for HSW-MUC a speedup of 1.9%. We can explain
the optimal configuration, when setting our tuning-results in relation
to the sparsity patterns shown in Fig. 6 and Fig. 7. Matrix F~ is
the global matrix in the local kernels with the fewest non-zero en-
tries. Thus for the remaining global matrices the additional overhead
of the sparse computations already dominates the potential perfor-
mance improvement stemming from fewer floating point operations.
In contrast, the matrices Ag” are multiplied to derivatives or time inte-
grated DOFs from the right. Together with our column-major storage
scheme in the basis functions the corresponding sparse kernels are
perfectly vectorizable with a comparable small overhead introduced
by the unrolling.

The results of the sparse-dense tuning for the neighboring surface
kernel are shown in Fig. 14¢ for SNB-MUC and in Fig. 14d for HSW-
MUC. Here, the best performing configuration for SNB-MUC com-
putes matrices F113 A FHLLL A FHAL2 a5 gparse with a speedup of
0.6%. For HSW-MUC the best configuration achieves 0.4% by com-
puting four matrices as sparse. In the case of the neighboring surface
kernel, we have to remember that every matrix is called with the prob-
ability of 1/12 due to our random initialization. Hence the possible
impact of each individual sparse-dense switch is smaller than in the
local tuning runs.

In summary, our results show that HSW-MUC has a worse sparse
performance than SNB-MUC when executing high-order configura-
tions. This is in agreement with the general trend of state-of-the-
art computing architectures favoring floating point intensive, regular,
vectorizable workloads.
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Figure 14: Results of the auto-tuning runs for order O = 6. Shown are

boxplots for the speedups in relation to the mean value of the
all-dense configuration. Additionally red crosses mark the mean
speedups of the configurations.

Local runs: The first value of the x-labels is the number of sparse
configurations for K%, the second value is the number for Ké
and the third value is the number for F~. The last value is 1, if
the matrices AEC are computed as sparse in the time and volume
kernel. Neighboring runs: The labels give the number of sparse
matrix kernels for F///t,
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FLOPS Our auto-tuning trades the irregular structures of most pos-
sible sparse matrix operators for the regular structures of the corre-
sponding dense operators. However, using dense matrix kernels for
sparse matrices comes with a non-optimal number of floating point
operations. Thus, when considering the sustained performance, it is
important to distinguish our floating point operations by their value.
For this purpose we use the term non-zero floating point operations
when referring only to operations contributing to the solution.

Fig. 15 shows our ADER-DG and matrix kernels in terms of float-
ing point operations required for a single element-update using a
sixth order method. All performed operations for an element-update
in global time stepping are also computed in a local time stepping up-
date. Ignoring the small overhead introduced by the computation of
time integrated DOFs from derivatives, all following considerations
directly translate to local time stepping on an element-update basis.
Figures 15a and 15¢c show the non-zero floating point operations of an
element-update, while figures 15b and 15d show operations in hard-
ware and thus consider the computation of dense matrix kernels. We
assume for all kernels that the matrices F*//* are used equally often
and thus weight their contributions equally with 1/12. In the case
of hardware operations we assume computing the matrix kernels for
A%, F~ and for F+ 113 A FHALL A FHL12 a5 gparse.

With respect to non-zero operations in Fig. 15a, the local and neigh-
boring loop perform almost the same number of floating point oper-
ations. The neighboring surface kernel performs most non-zero oper-
ations (47.6%), followed by the local surface kernel (26.7%), the time
kernel (15.9%) and the volume kernel (9.8%). Considering the opera-
tions performed in hardware (see Fig. 15b) the loading of the kernels
gets more homogeneous. Now the neighboring loop contains only
33.5% of the operations, while remaining operations are distributed
among the local surface kernel with 28%, the time kernel with 23.2%
and the volume kernel with 15.3%. Most importantly, by moving from
non-zero operations in Fig. 15a to hardware floating point operations
in Fig. 15b, we increase the absolute number of operations by a factor
of 1.89. This can be interpreted as the price our ADER-DG scheme
has to pay for minimal time-to-solution on state-of-the-art hardware.

Fig. 15c and Fig. 15d go one step further and split the ADER-DG
kernels in their individual matrix kernels. In this case, the illustration
follows the ordering of our function pointers in listings 1, 2, 3 and 4.
We keep the weighting of 1/12 for matrix kernels using matrices Fi//".
However, we sum all the three calls of the matrix kernels computing
the multiplications with matrices AEE from the right in the time and
volume kernel. Additionally, all four calls of matrix kernels comput-
ing multiplications with A * and A,j’i from the right are combined
in the surface kernels. The splitting of the time kernel, shown for
non-zero operations in Fig. 15c and hardware operations in Fig. 15d,
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Figure 15: Relative and absolute number of floating point operations in the
ADER-DG and matrix kernels for a sixth order configuration. A
sparse-dense tuning of 0,0,1-1 is used for the local operations and
of 3 for the neighboring operations. The left y-axis shows the
relative number of performed floating operations with respect
to an entire element update. The right y-axis gives the absolute
number of floating point operations in a single element update.
The matrix kernels of matrices F//"' are weighted with a factor of
1/12.
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nicely shows the benefit of our zero-block exploit. While the kernels
for matrices K¢ in computation of the first derivative contribute each
approximately 5% to the overall load in hardware, this already re-
duces below 2% for the second derivative and to ~0.5% for the third
derivative.

We are now able to analytically derive the sustained GFLOPS for
all our runs. For example the two local tuning runs in Fig. 14a and
in Fig. 14b with the configuration 0,0,1-1 sustained in average 222
GFLOPS on SNB-MUC and 648 GFLOPS on HSW-MUC. This trans-
fers to 115 non-zero GFLOPS on SNB-MUC and 337 non-zero GFLOPS
on HSW-MUC. Note that the hardware to non-zero operations ratio
is slightly higher than in the final setting because of the all-dense
configuration for the neighboring surface kernel.

SUMMARY

Ch. 7.1 introduced our low-level ADER-DG kernels. The next chap-
ter, Ch. 7.2, formalized the involved matrix-matrix multiplication via
BLAS-DGEMM identifiers and described our usage of the libxsmm-
library. Before moving to the auto-tuning, Ch. 7.3 discussed the arith-
metic intensities of our ADER-DG kernels in dense settings and in de-
pendency of the convergence rate and assumed cache-hit ratios in the
neighboring surface kernel. Afterwards, Ch. 7.4 introduced our auto-
tuning approach for the sparse-dense decision and presented tuning
results for SuperMUC-1 and SuperMUC-2. A distinction of hardware
and non-zero operations finalized our discussions of Ch. 7.4.

This chapter completed the derivation of our computational core.
After the description of the clustered LTS scheme in Ch. 3, we intro-
duced step-by-step a high performance implementation of the scheme
addressing all levels of parallelism. From a technical standpoint our
core now features a streamlined memory layout. The memory lay-
out supports hardware prefetching by respecting the order of execu-
tion imposed by our clustered LTS scheme, features arbitrary vector-
alignment, and features in-place communication. Our parallelization
uses OMP for shared memory parallelization and MPI’s send-receive-
model for distributed systems. Additional, a dedicated communica-
tion thread ensures message progression and thus asynchronous com-
munication. At the lowest level we use the libxsmm-library to ensure
vectorization of our ADER-DG kernels.

In the next part, Pt. iii, we systematically evaluate the performance
of our computational core. This evaluation covers single-node and
small-scale setups, weak and strong scaling scenarios of our com-
putational core on all targeted supercomputers, and multiple, full-
machine landmark simulations.
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Part III

SIMULATIONS

This part systematically evaluates the algorithmic design
decisions made in Pt. i and the engineering decisions made
in Pt. ii.

We start by evaluating the single-node and small-scale per-
formance of our computational core in Ch. 8.

Next, the presented weak scaling of Ch. 9 shows that our
computational core is ready for more than 10'? degrees of
freedom.

Finally, the last two chapters present sustained petascale
performance of our computational core for production char-
acter simulations. Ch. 10 applies our computational core
to large-scale, GTS dynamic rupture earthquake simula-
tions. These simulations are followed by large-scale clus-
tered LTS, seismic wave propagation runs in Ch. 11.






SINGLE NODE AND SMALL-SCALE

Our first scenario aims at evaluation of our computational core’s sin-
gle node and small-scale performance. For this purpose we simu-
late the SCEC wave propagation test model Layer Over Half-space
(LOH.1) [20]. The authors of [23] and [24] use the LOH.1 benchmark
to compare the quality of SeisSol’s GTS and LTS solution to those of
different Finite Difference packages and a Finite Element package. In
typical setups the discretization of the LOH.1 benchmarks fits on a
small number of nodes. Therefore it was used extensively in [8, 9, 10]
to study the performance of our computational core in different ver-
sions.

8.1 LOH.1

Our LOH.1 setup uses the spatial domain ) = [-15km, 15km] X
[-15km, 15km]| x [0,17km]. Fig. 16 shows our mesh consisting of
386,518 tetrahedrons. The mesh adaptively refines the 1 km thick layer
of the LOH.1 benchmark and thus increases the spatio-temporal res-
olution at the seismic receivers located at the free-surface.

For the layer we use the homogeneous parameters p = 2600 kg/m?,
A = 20.8GPa and y = 10.4 GPa. The half-space has parameters p =
2700kg/m3, A = 32.4GPa and p = 32.4GPa. We use free-surface
boundary conditions for the top of the layer (z = 0) and absorbing
boundary conditions for the remaining three surfaces of our domain
Q). The seismic source is a point dislocation located at (0,0,2km) [20].

8.2 GLOBAL TIME STEPPING

Following the considerations in Ch. 5.3, our computational cores re-
quires a total ~6.4 GiB memory for the LOH.1 setup using a seventh
order global time stepping scheme in double-precision. Therefore, the
LOH.1 setup is ideal to test the single-node performance of our com-
putational core.

The global time stepping component of our computational core is
extensively studied in [10]. Here the performance for orders O =
2 — 7 on four different architectures is discussed. In addition to the
convergence rate, the authors also investigate the influence of the
clock rate. Fig. 17 shows the measured performance of [10] for a
dual-socket Intel Xeon X5690 server (WSM-ISC), a dual-socket In-
tel Xeon E5-2670 v3 server (SNB-ISC), a dual socket Intel Xeon Es-
2699 v3 server with enabled cluster-on-die (HSW-ISC) and an In-
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Figure 16: Illustration of the Layer Over Half-space (LOH.1) setup. Shown is
the domain Q) = [—15km, 15km] x [-15km, 15km]| x [0,17 km].
The upper part of the domain is covered by the 1km thick layer
(dark gray) and the remainder by the half-space (gray). The
structure of the mesh is illustrated by removing the elements in
[0,15km] x [0,15km] x [0, 10 km].
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Figure 17: Single-node performance of the LOH.1 setup on four different
architectures. Shown are the non-zero (dark colors) and hard-
ware (light colors) MFLOPS/W and GFLOPS in dependency of
the clock frequency and convergence rate. Source: [10].

tel Xeon Phi 5110P coprocessor (KNC-ISC). Analogue to our auto-
tuning in Ch. 7.4, [10] interprets the results in terms of non-zero and
hardware GFLOPS. Furthermore, [10] shows the power efficiency in
terms of MFLOPS/W. The darker colors of the bars in Fig. 17 refer
to non-zero operations, while the complete bars show hardware oper-
ations. Power measurements in [10] were performed on the AC-side
using standard, air-cooled 2U rack-servers for WSM-ISC, SNB-ISC,
and HSW-ISC. For KNC-ISC the Intel MIC System Management and
Configuration application (micsmc) was used to isolate the power
consumption of the coprocessor from the idling host.

The observed floating point performance in [10] underlines the gen-
eral trend of decreasing machine balances. WSM-ISC is the oldest ar-
chitecture in the mix with Q1’11 as launch date. Compared to the
other systems WSM-ISC shows a flat performance profile across the
orders of convergence. The profile is almost constant at 1.6 GHz and
requires order O = 3 — 4 for a high floating point throughput at
2.26 GHz and 3.46 GHz. 102 GFLOPS for fifth-order convergence at
3.46 GHz is the maximum sustained floating point performance for
WSM-ISC. This corresponds to a peak efficiency of 61.4 % and a hard-
ware to non-zero ratio of 1.67 in our setup. Additionally the high or-
der simulations at 3.46 GHz have the highest energy efficiency. Thus
the system benefits from the near-optimal frequency scaling, which
reduces the relative energy consumption of non-CPU components.
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SNB-ISC was launched in Q3’14 and doubles the theoretical peak
performance of WSM-ISC with 333 GFLOPS. However in [10] the
measured bandwidth of the STREAM triad benchmark [47] only in-
creased by a factor of 1.8 to 75 GiB/s. Following Ch. 7.3, this lowers
the machine balance by 9.7 % from o.25 bytes/flop to 0.23 bytes/flop
and thus requires a higher arithmetic intensity of our ADER-DG
scheme to fully utilize the computational throughput of the machine.
The measured floating point performance in Fig. 17 supports this the-
oretical result. In comparison to WSM-ISC, we observe a steepening
performance profile. With 217 GFLOPs the highest hardware floating
performance was measured for sixth order convergence at 2.6 GHz.
This is equivalent to peak efficiency of 65 % and a hardware to non-
zero ratio of 1.99. Energy-wise 2.0 GHz is the most efficient frequency
for SNB-ISC.

The Intel Xeon Phi coprocessor KNC-ISC was launched in Q4’12
and has a theoretical peak performance of 1 TFLOPS. In [10] a band-
width of 150 GiB/s was measured using the STREAM triad. Thus the
floating point performance increased by 3.1 x compared to SNB-ISC,
but only by 2 x in terms of memory bandwidth. This is equivalent
to a machine balance of 0.14 bytes/flop and, as a result, the perfor-
mance profile in Fig. 17 of KNC-ISC is steeper than the profile of
SNB-ISC. Here, we require order O = 6 to achieve maximum perfor-
mance. Results for O = 7 on KNC-ISC are not included in Fig. 17
due to memory limitations of the architecture. The maximum perfor-
mance of 399 GFLOPS corresponds to a peak efficiency of 40 % and
a hardware to non-zero ratio of 2.2. Power-wise KNC-ISC substan-
tially more efficient than SNB-ISC and obtains the highest hardware
power efficiency for all orders of convergence. Compared to the last
architecture HSW-ISC this only holds in terms of non-zero operations
for sixth order simulations. This is a result of the 512-bit vector in-
struction set, which requires higher hardware to non-zero ratios on
KNC-ISC.

HSW-ISC is the last architecture in Fig. 17 and was launched in
Q3’14. With 1.1 TFLOPS the theoretical peak performance of HSW-
ISC is slightly higher at 1.9 GHz than the peak performance of KNC-
ISC. However, the measured benchmark of the STREAM triad bench-
mark in [10] is only 105 GiB/s and thus 1.4 x less than that of KNC-
ISC. As a result, HSW-ISC has the lowest machine balance with o.1
bytes/flop. Note that HSW-ISC has a processor base frequency of 2.3
GHz, but guarantees full AVX2-performance only at 1.9 GHz to stay
in TDP limits [37]. HSW-ISC has the lowest machine balance of all
considered architectures and thus the steepest performance profile in
Fig. 17. The maximum hardware performance is 773 GFLOPs at sev-
enth order using 2.3 GHz with a hardware to non-zero ratio of 2.2.
A peak efficiency of 60 % is reached considering the 651 GFLOPS at
1.9 GHz. Power-wise HSW-ISC is, together with KNC-ISC, the most
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efficient system. However, a clear descent is visible for all orders of
convergence when going from 1.9 GHz to 2.3 GHz. Thus, from the
perspective of energy consumption high-order simulations should
run at the guaranteed frequency of 1.9 GHz. The low-order, memory
bound simulations should run at the 1.2 GHz iso-frequency.

83 LOCAL TIME STEPPING

In Ch. 8.2 we discussed the cross-architecture global time stepping
performance of our computational core on a single node or card. Now,
we study the performance of our clustered LTS scheme for the LOH.1
setup. First, we discuss theoretical possible performance gains of LTS.
The second step uses SuperMUC-2 to evaluate our scheme in practice.
In addition to single node performance, we also study the strong scal-
ing performance and thus the efficiency of our embedded distributed
memory algorithm.

THEORETICAL PERFORMANCE To investigate the theoretical per-
formance of LTS we first consider the per-element time steps im-
posed by the CFL-condition and second the resulting time steps of
our clustering. Per-element time stepping builds the theoretical up-
per limit for the speedup of every LTS algorithm compared to global
time stepping. In this case every element exactly updates with its
CFL time step, but we assume GTS floating point performance for
every update. Our clustered LTS scheme trades some of the theoret-
ical, element-wise LTS speedup for homogeneity. Thus, our second
performance characteristic is the theoretical speedup of our clustered
LTS scheme assuming GTS floating point performance.

The ratio of the largest to the smallest CFL time step is 17.8 in
our LOH.1 setup. Fig. 18 shows the non-uniform density of the time
steps for the LOH.1 setup in [Af,9At[. Only very few elements have
a time step in [At,2At[. At 2At the density rapidly increases with
two peaks at approximately 3At and 4At. Afterwards, the density
decreases again and is almost zero at 9At. This indicates that very
few elements have a time step larger than 9At. The 25 % quartile (Q1)
is at 3.2At, the 50 % quartile (Qz2) at 3.9At and the 75 % quartile (Q3)
at 4.5At. Taking all elements together, the upper limit for the LTS
speedup is 4.0 x.

Using a fixed rate of 2 in (65), we obtain a total of L = 5 clusters.
The density of the first four clusters is shown as gray boxes in Fig. 18.
The two clusters C; = [2At,4At[ and C3 = [4At, 8At[ have by far the
highest density.

Fig. 19 depicts the spatial distribution of the clusters” elements with
respect to the mesh shown in Fig. 16. Considering the spatial distribu-
tion of Cy’s elements in Fig. 19a, we observe a scattered distribution
in the vicinity of the material interface. This is the most critical cluster
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Figure 18: Density of time steps in the LOH.1 setup. The solid line shows
the density in dependency of the elements’ time steps. Red dotted
lines show the location of the 25 % quartile (Q1), the 50 % quartile
(Q2) and the 75 % quartile (QQ3). Gray boxes represent a time step
clustering with rate 2. The shown density is limited to elements
with time steps in [At, 9A¢].

with the smallest time step and thus highest per-element load. Since
we do not require connectivity of a cluster’s elements, the flexibility
of our clustered LTS scheme is a major advantage and minimizes the
total number of elements in C;. Taking the degenerated shape of the
tetrahedrons into account, we mainly cover artefacts of the meshing
process in C;. Recapitulating our memory layout of Ch. 5.3, it is inter-
esting to note that the element-local data of all scattered elements in
Fig. 19a is stored linearly in memory.

Fig. 19b shows the second cluster C; = [2At,4At[. Following the
location of the 50 % quartile in Fig. 18 almost half of all elements
are part of Co. Most elements of C, are located densely below the
interface at z = 1km. This is a result of our parameters in the half-
space (see Ch. 8.1), which lead to 1.5 x faster P-wave velocities than
in the layer. The remaining elements are loosely scattered in close
proximity of the densely populated block. Similar to the elements of
Cy, these elements are a result of coarsening in the meshing process.

The second large cluster C3 = [4At, 8At[ is shown in Fig. 19c. This
cluster covers large parts of the layer and the remaining elements of
the half-space up to a depth of approximately 10 km.

Cluster C4 = [8At, 16At] in Fig. 19d covers a major part of the com-
putational domain. However, due to the adaptive mesh refinement
and our clustered LTS scheme, the elements in C4 are responsible
for only a small fraction of the overall computational load. The last
cluster Cs = [16At,32At] in Fig. 19e contains only very few elements.

Fig. 20 shows the summed computational load of elements up to
a certain time step in a theoretical, perfectly performing, per-element
LTS algorithm. Here we assume that the cost of an element is recip-
rocal to its time step. Thus all possible, additional LTS overheads are
neglected. We see that the first 25 % smallest time step elements (Q1)
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Figure 19: Spatial distribution of the clusters’ elements for the LOH.1 setup
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and a rate-2 clustering. The location of the layer and the half-
space is indicated by almost transparent gray boxes. The individ-
ual elements of the clusters are colored by their CFL time step.
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Figure 20: Distribution of the computational load in the LOH.1 setup as-
suming a theoretical, perfectly performing, per-element LTS algo-
rithm. The solid line shows the summed load up in dependency
of the time step. Red dotted lines show the location of the 25 %
quartile (Q1), the 50 % quartile (Q2) and the 75 % quartile. The
shown density is limited to time steps in [At, 9At].

are responsible for 33.7 % of the overall load. The first 50 % (Q2)
cover a load of 60.8 % and the first 75 % (Q3) a computational load of
84.1 %.

With respect to our clustered LTS scheme the maximum possible
speedup for rate-2 clustering is 2.8 X and 2.3 x using fixed rates of
3. This is equivalent to 69.9 % of the maximum per-element speedup
for rate-2 and 58.9 % of the maximum per-element speedup for rate-3
clustering.

STRONG SCALING Our study of the theoretical aspects shows the
potential of local time stepping. Now, we discuss the observed perfor-
mance of our clustered LTS scheme on SuperMUC-2 using sixth order
of convergence. Our strong scaling covers 1-128 nodes and, similar to
our auto-tuning on SuperMUC-2 in Ch. 7.4, uses the system with en-
abled cluster-on-die feature. Again we use HTT and explicitly pin two
threads to each computational core. In contrast to the runs in Ch. 7.4,
we leave the last core of every 28-core HSW-MUC node empty for
our communication thread. For consistency this is also done in single-
node runs, leaving 3.6 % of the node in busy waiting. Additionally,
every run was performed at the guaranteed frequency of 2.2 GHz and
the base frequency of 2.6 GHz.

Fig. 21 shows the strong scaling peak efficiencies of global time
stepping (GTS), rate-2 (R2) and rate-3 (R3) clustered LTS for the LOH.1
setup. All runs were performed using sixth order convergence and
double-precision arithmetic. For the calculation of the peak efficien-
cies we consider all 28 cores of HSW-MUC for the theoretical peak,
including the communication core. Furthermore we assume that the
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Figure 21: Strong scaling peak efficiencies of the computational core for the
LOH.1 setup. Shown are the peak efficiencies of global time step-
ping (GTS), rate-2 clustered LTS (R2), and rate-3 clustered LTS
(R3). All results are presented using HSW-MUC’s guaranteed
frequency of 2.2 GHz in blue and using the base frequency of
2.6 GHz in orange.

base frequency of 2.6 GHz is stable when fully utilizing the cores’
floating point capabilities.

At the level of a single node our computational core achieves 57.5 %
peak efficiency (567 GFLOPS) for GTS at 2.2 GHz and 54.7 % peak
efficiency (637 GFLOPS) at 2.6 GHz. These results for HSW-MUC are
in agreement with the results of Ch. 8.2 considering the higher core
count (27 vs. 36) but lower frequencies of HSW-ISC.

The rate-2 clustering achieves 54.0 % peak efficiency at 2.2 GHz and
50.9 % peak efficiency at 2.6 GHz. Similar peak efficiencies of 53.7 %
at 2.2 GHz and 51.0 % at 2.6 GHz are reached for rate-3 clustering on
a single node in Fig. 21. In summary the single node results show that
we are able to maintain the high GTS peak efficiencies of our compu-
tational core when using the LTS functionality. More importantly, we
reduce the time-to-solution by a factor of 2.6 when using rate-2 clus-
tering and by a factor of 2.2 for rate-3 clustering. Thus, in terms of
Ch. 7.4, a hardware floating point operation of the LTS variants is
more valuable than a non-zero operation of GTS.

Fig. 22 additionally shows the parallel efficiencies of the LOH.1
strong scaling setup. The strong scaling behavior of all time step-
ping variants in Fig. 22 is almost perfect up to eight nodes. Here
GTS achieves a parallel efficiency of 96.7 % at 2.2 GHz and 2.6 GHz,
while the LTS variants sustain between 90.9 % and 93.3 %.

Starting at 32 nodes the parallel efficiency drops for global time
stepping due to the lowering amount of parallelism. 32 nodes using
GTS are equivalent to approximately 447 elements per computational
core and 159 MiB element-local data per node for our computational
core.

The performance of local time stepping decreases noticeably start-
ing at 16 nodes and thus earlier than GTS. This behavior is expected
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Figure 22: Strong scaling parallel efficiencies of the computational core for
the LOH.1 setup. Shown are the parallel efficiencies of global time
stepping (GTS), rate-2 clustered LTS (R2), and rate-3 clustered
LTS (R3). All results are presented using HSW-MUC’s guaranteed
frequency of 2.2 GHz in blue and using the base frequency of
2.6 GHz in orange.

since our clustering reduces the amount of parallelism. Within a node
the distribution of elements to clusters reduces the amount of el-
ements available for our shared memory parallelization in Ch. 6.1.
Further, in multi-node settings our load balancing leads to a higher
variety in the element counts per node.

The maximum number of nodes in Fig. 21 and Fig. 22 is 128 and
correlates to ~112 elements per core and a memory consumption of
40 MiB in GTS. Here, we still achieve a parallel efficiency of 64.3% for
GTS at 2.2 GHz and 76.3 % at 2.6 GHz. R2 has a parallel efficiency of
42.8 % at 2.2 GHz and of 43.6 % at 2.6 GHz, while R3 reaches 49.3 %
at 2.2 GHz and 56.0 % at 2.6 GHz. In this extreme case the speedups
of the LTS variants reduce to 1.5 X - 1.7 X.

SUMMARY

This chapter studied the single-node and small-scale performance of
our computational core. For this purpose, we described the setup of
the LOH.1 benchmark and studied the single-node, GTS performance
of multiple Intel Xeon CPUs and the Intel Xeon Phi coprocessor. We
observed high hardware peak efficiencies, above 60 % for the CPUs
and around 40 % for the coprocessor, when increasing the order of
convergence. Thus, the use of high orders is not only attractive from
a perspective of mathematical convergence, but also efficient from a
hardware viewpoint.

Following our single-node GTS performance-study, we investigated
the theoretical possibilities of our clustered LTS scheme. We discussed
the distribution of our elements to the possible time steps and the re-
sulting load. Then we studied two different clustering strategies and
derived theoretical peak speedups in comparison to GTS simulations.
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Here, we identified an upper limit of 4.0 x for all possible LTS strate-
gies and of 2.3 x-2.8 x for our clustering strategies.

Our following GTS and LTS simulations on SuperMUC-2 under-
lined the efficiency of our algorithmic and engineering design deci-
sions of Pt. i and Pt. ii. On a single node we were able to maintain the
high GTS hardware peak efficiencies when using LTS and obtained
efficiencies above 50 % for all configurations. These efficiencies trans-
late to speedups between 2.2 x and 2.6 x. Afterwards, we discussed
GTS and LTS strong scaling results on up to 128 nodes of SuperMUC-
2. Using eight nodes, we achieved an almost perfect strong scalability
with parallel efficiencies above 9o % for all LTS and GTS configura-
tions. Higher node counts resulted in decreasing parallel efficiencies
due to the loss of concurrency.

The small scale results of this chapter build the baseline for the fol-
lowing large-scale setups in Ch. 9, Ch. 10 and Ch. 11. First, we drive
the number of elements to the limits by performing a GTS weak scal-
ing in Ch. 9. Next, Ch. 10 uses our computational core for a large-
scale, multiphysics strong scaling and a full-machine production sim-
ulation of the 1992 Landers earthquake. Finally, Ch. 11 fully utilizes
all of our computational core’s functionality in a large-scale strong
scaling. The final run of Ch. 11 performed a full-machine LTS simu-
lation on SuperMUC-2 with sustained petascale performance under
production conditions.
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1+ TRILLION DEGREES OF FREEDOM

Before moving to production character simulations in the next chap-
ters, we study the weak scaling behavior of our computational core
in an artificial, cubic setup. This setup imitates the numerical conver-
gence tests originally performed in [24]. The weak scaling setup was
used extensively in [9, 31] to study the large-scale, GTS performance
of our computational core in intermediate versions.

Additionally [10] studies the time- and energy-to-solution of the
computational core on a single node or card by using the setup of
[24] directly. Fig. 23 shows the numerical convergence of the cubic
setup for uniform meshes. Here, we see the high order convergence
of our computational core using single and double precision. In this
setup our computational core hits machine precision between an error
of 107* and 10~ for single precision runs and at 107! for runs in
double precision.

The use of high orders becomes especially appealing, when we con-
sider the computational time required to reach a certain numerical
error. Fig. 24 shows the L®-error for variable ¢, and orders 2-7 in
dependency of the runtime on HSW-ISC (see Ch. 8.2). In contrast to
Fig. 23, these results include the effect of the time steps and the ob-
tained hardware efficiencies. We see that every order of convergence
lowers the error of the simulation by a magnitude in this benchmark.
Thus, the high order simulations outperformed the low order runs in
terms of hardware utilization and time-to-solution.

In the remainder of this chapter we start our weak scaling study by
defining the cubic setup in Ch. 9.1. Next, Ch. 9.2 discusses the weak
scaling performance obtained in [31] for an intermediate version of
our computational core. Then we extend the combined studies of [9,
31, 10] with results on SuperMUC-2.

9.1 CUBE

We use sixth order of convergence and GTS in a cubic domain of
extend [—50m,50m]3 for our weak scaling setup. The domain is dis-
cretized regularly by hexahedrons, each of which is subdivided into
five tetrahedrons. Analogue to [24] we set up a sinusoidal P- and S-
wave as initial condition and use homogeneous material parameters
of p =1, A =1and y = 1. In contrast to [24] we use free-surface
instead of periodic boundary conditions to ease the mesh generation
process. In sum this allows us to fix the number of elements per node
to 400,000 and perform a perfect load balancing for all studied node-
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Figure 23: Convergence of the cubic setup for orders 2-7 using periodic
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dependency of the cubic mesh width. Single-precision runs are
colored in orange and double-precision runs in blue. The gray tri-
angles illustrate the mathematical convergence rate. Source: [10].
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the mesh at z = 0 and obtain the two partitions illustrated as shades
of gray in Fig. 25c.

The last mesh illustrated in Fig. 25d has a spacing of hy = 2, h, =
1.25 and h, = 1.25 and leads to 1,600,000 elements. Together with
partitioning along y = 0 and z = 0 we reach our target number of
elements for four nodes.

9.2 WEAK SCALING

INTERMEDIATE VERSION The authors of [31] used an intermedi-
ate version of our computational core for a weak scaling study with
the setup of Ch. 9.1. This version was missing some features our final
computational core heavily relies on. First of all the version in [31] fea-
tured global time stepping only, while the final version simply uses
our clustered LTS scheme in a global time stepping fashion for GTS
setups.

Furthermore, the homogeneous SuperMUC-1 simulations in [31]
utilized separate MPI copy buffers to which the data was copied be-
fore a blocking synchronization phase. Here, our final version com-
municates in-place and thus does not require to collect data before
issuing communication. Also, the final version heavily utilizes asyn-
chronous communication with a dedicated communication thread for
MPI progression. The asynchronous layout is especially important for
LTS simulations.

However, for the Intel Xeon Phi accelerated systems Stampede and
Tianhe-2 the version of [31] featured a heterogeneous offload scheme.
This scheme handles communication between the Host CPUs and
Intel Xeon Phi coprocessors with the Intel Language Extensions for
Offload (LEO). Additionally MPI communication between the Host
CPUs is overlapped with computations on the Intel Xeon Phi copro-
cessors. From this viewpoint, the overlapping communication and
computation of [31] is similar to our communication thread, however
requires the transfers of MPI data from and to the coprocessors.

Fig. 26 shows the measured peak efficiencies and Fig. 27 the mea-
sured parallel efficiencies of [31]. Both figures show results for “Su-
perMUC, classic”, the initial version of SeisSol running on SuperMUC-
1. The time marching scheme of this version was completely replaced
by our new computational core. The other curves show the perfor-
mance of our computational core in the intermediate version of [31]
running on SuperMUC-1 (“SuperMUC, gr. buft”), Stampede and Ti-
anhe-2.

The hardware and non-zero peak efficiencies of the initial version
“SuperMUC, classic” stagnates at 5 % in Fig. 26. The efficiencies of
the new computational core in Fig. 26 are high in general but slightly
lower than the more recent results for the LOH.1 benchmark, dis-
cussed in Ch. 8.2. Note that the results in Fig. 26 include the perfor-



Figure 26:

Figure 27:

9.2 WEAK SCALING

SuperMUC, gr. buff. —6— Tianhe-2 ——
Stampede —H— SuperMUC, classic —#—
o
@
2
°
[
ey
X
[]
[
Q.
=2
o
Q
N
IS
o
c
hy
[]
s g
Q.
< 5 R R S W W W W W V" W W
0 1 1 1 1 1 1 1 1 1 1 1 1 1
- N < [ee] o oN < [ee] © N < [ee] O < ©
~— [32] © N Yol -~ N < o < —
~— N o} o o O v~ N
-~ N <t © O
# nodes
Weak scaling peak efficiencies using different versions of Seis-

Sol for the cubic setup. Shown are the peak efficiencies for the
initial version of SeisSol on SuperMUC-1 (“SuperMUC, classic”)
and an intermediate version of our new computational core on
SuperMUC-1 (“SuperMUC, gr. buff”), Stampede and Tianhe-2.
Source: [31].

SuperMUC, classic =—#— Tianhe-2, 1 card = ===
Stampede —&— Tianhe-2, 2 cards ========-
SuperMUC, gr. buff. —&— Tianhe-2, 3 cards —¢—

100 .
> 4
e
5 975 -
S ]
E %5 s
S 925 >
© A
g 9
Toers o : : S
S S N N TR N S S SN N S S N B
- N < © © N < «© © N < © © g ©
-~ [s2} © N 'el ~— N < D < -
~ N w o o O «— N
- N <t © ®
# nodes
Weak scaling parallel efficiencies using different versions of Seis-

Sol for the cubic setup. Shown are the parallel efficiencies for
the initial version of SeisSol on SuperMUC-1 (“SuperMUC, clas-
sic”) and an intermediate version of our new computational core
on SuperMUC-1 (“SuperMUC, gr. buff”), Stampede and Tianhe-2.
Source: [31].

111



112

1+ TRILLION DEGREES OF FREEDOM

59 m GTS, 22
s— \ B GTS, 26
58 |

o ——9 —— o

57 \ o>< \o\

6 —9

peak efficiency (%)

6 —9
L) 0o —9%—_ _ o
56 \ \o/ ~— ° \
o ? o
o
\ ]
55 — e —a I\
\
54 -~
T T T T T T T T T T T T T 1
- N < oo} © N < @ © N < © 0 oOoWN
- (3] © N n I N M < O~
- N n o n O wo
— - N NM

nodes

Figure 28: Weak scaling peak efficiencies of the final computational core for
the cubic setup. Shown are the peak efficiencies of global time
stepping using HSW-MUC's guaranteed frequency of 2.2 GHz in
blue and using the base frequency of 2.6 GHz in orange.

mance of the host processors in the calculation of the peak efficiencies
for Stampede and Tianhe-2. Since the heterogeneous offload scheme
of [31] schedules the computationally heavy seismic wave propaga-
tion completely to the coprocessors, the host processors perform com-
munication only.

At this point the largest homogeneous simulation reached 1.6 hard-
ware PFLOPS using 9,216 SuperMUC-1 nodes. The largest hetero-
geneous simulation on Stampede sustained 2.3 PFLOPS using 6,144
nodes and 8.6 PFLOPS on Tianhe-2 using 8,192 nodes.

The parallel efficiencies for all machines in Fig. 27 are almost per-
fect. While the accelerated supercomputers Stampede and Tianhe-2
have efficiencies above 9o % for all core-counts, our computational
core in the version of [31] drops below 87.5 % on 9216 nodes. This
is a result of the blocking communication and in agreement with the
higher parallel efficiency of “SuperMUC, classic” due to the lower
peak efficiency of the initial SeisSol version.

FINAL VERSION Considering our computational core in its final
version for GTS, we expect to mainly benefit from the overlapping
communication and computation, and the high node level perfor-
mance on HSW-MUC. In this context Fig. 28 shows the hardware
peak efficiencies and Fig. 29 the parallel efficiencies on SuperMUC-2
for our weak scaling setup.

Again both figures show results for HSW-MUC’s guaranteed fre-
quency of 2.2 GHz and the base frequency of 2.6 GHz, but assume
perfect frequency scaling for the calculation of the theoretical peak
at 2.6 GHz. The peak efficiencies of all runs are high and above
54 % for all node counts, including the full-machine runs using 3,072
nodes. Comparing these results to those of the intermediate version in
Fig. 26, we see that our peak efficiencies on SuperMUC-2 are similar
to the previously observed SuperMUC-1 efficiencies. This behavior
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Figure 29: Weak scaling parallel efficiencies of the final computational
core for the cubic setup. Shown are the parallel efficiencies of
global time stepping using HSW-MUC’s guaranteed frequency
of 2.2 GHz in blue and using the base frequency of 2.6 GHz in
orange.

is expected since the authors of [10] reported similar efficiencies on
both architectures (see Fig. 17).

The full-machine size run at 2.2 GHz sustained 1.69 PFLOPS in
hardware, while the run at 2.6 GHz sustained 1.95 PFLOPS. This is
equivalent to a peak efficiency of 55.7 % at 2.2 GHz and of 54.4 % at
2.6 GHz. The high hardware utilization becomes even more imminent
when considering SuperMUC-2’s reported HPL performance of 2.81
PFLOPS. Here, our computational core reaches 69 % of the reported
performance.

With respect to the parallel efficiencies in Fig. 29, we observe ef-
ficiencies above 95 % for all runs. A slight decrease of the parallel
efficiency, despite our fully overlapping communication, is expected
at high node counts. The reason are the performance variations of
the nodes, where the worst performing node dominates our final per-
formance. We already observed a similar behavior when running our
auto-tuning in Ch. 7.4 on 50 different nodes.

We can now compare the homogeneous simulations of the inter-
mediate computational core on SuperMUC-1 with our final version
on SuperMUC-2. Here, we are able to increase the parallel efficiency
by ~2.5 % on a 4,096 node basis and by 7.5 % on a 9,216 node basis
of SuperMUC-1 compared to all 3,072 nodes of SuperMUC-2. A com-
parison of 3,072 SuperMUC-2 nodes with 9,216 nodes of SuperMUC-1
seems to be the fairest though, since both systems report an almost
identical HPL-performance.

SUMMARY

This chapter presented a weak scaling study of our computational
core on the supercomputers SuperMUC-1, SuperMUC-2, Stampede
and Tianhe-2. We used 400,000 elements per node or card and ob-
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served almost perfect scaling behavior from a single node to half- or
full-machine size runs. The sustained parallel efficiencies exceeded
90 % in heterogeneous and homogeneous configurations and corre-
sponds to multi-PFLOP simulations on the Intel Xeon Phi accelerated
machines. We obtained a maximum performance of 8.6 PFLOPS on
Tianhe-2 using 8,192 nodes, which is equivalent to the use of 24,576
coprocessors or 1.4 Mio. cores. In this configuration 5.0 x 10'2 de-
grees of freedom discretized our solution.

The runs on SuperMUC-2 showed the efficiency of our asynchro-
nous, hybrid parallelization with parallel efficiencies above 95 % us-
ing the entire machine. Here, the highest node count of 3,072 nodes
reached 1.95 PFLOPS in hardware or equivalently 69 % of SuperMUC-
2’s reported HPL-performance.

While this chapter showed the large-scale performance of our com-
putational core using an artificial setup, a large-scale performance
evaluation of simulations with production character is still outstand-
ing. For this purpose we study the strong scaling behavior of a simu-
lation of the 1992 Landers earthquake in Ch. 10 and of seismic wave
propagation in Mount Merapi in Ch. 11.



PETASCALE MULTIPHYSICS

This chapter discusses a large-scale multiphysics setup of the 1992
Landers earthquake. The magnitude 7.3 earthquake occurred on June
28, 1992 near the town of Landers in California.

A rupture of multiple faults with a total rupture length of 85 km
was reported. The average slip was between 3-4 m with a maximum
slip of 6 m." The 1992 Landers earthquake has a maximum Modified
Merecalli Intensity of IX and resulted in 3 fatalities and more than 400
injured people.?

The large displacements caused by the 1992 Landers earthquake are
still visible. Fig. 30 was taken more than 23 years after the earthquake
and shows right-lateral offset of Linn Road in Landers.

In Ch. 10.1 we discuss the setup of our 1992 Landers scenario.
Ch. 10.2 studies strong scaling of the setup on SuperMUC-1, Super-
MUC-2, Stampede and Tianhe-2. As in the previous chapters, we dis-
cuss results of our computational core in an intermediate version be-
fore moving to the final version on SuperMUC-2. Finally, Ch. 10.3
studies two production runs of our setup on SuperMUC-1 and Super-
MUC-2 respectively.

10.1 1992 LANDERS

The 1992 Landers setup discretizes the spatial domain with a total
of 191,098,540 tetrahedrons. Adaptive mesh refinement is used to
increase the resolution of the surface topography and of the fault
system. 220,982 of the tetrahedral faces are aligned to the fault sys-
tem inside the computational domain. For these faces dynamic rup-
ture physics are solved. Effectively we replace our Riemann solver
of Ch. 2.9 with a formulation introducing an artificial Godunov state
satisfying a certain friction law [49].

An illustration of the tetrahedral mesh in conjunction with the fault
system is given in Fig. 31. The Johnson Valley fault is shown in the
foreground. We can see the increased resolution of the tetrahedral
mesh in proximity of the fault system and the surface. Boundary con-
ditions are free-surface at the surface and outflow everywhere else.

Material parameters in the domain are discretized using a one-
dimensional, layered velocity profile. This velocity profile leads to

http://web.archive.org/web/20150830122227/http://scedc.caltech.edu/
significant/landers1992.html
http://web.archive.org/web/20150830121958/http://earthquake.usgs.gov/
earthquakes/states/events/1992_06_28.php
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Figure 30: Right-lateral offset of Linn Road, Landers CA 92284, USA caused
by the 1992 Landers earthquake. 23 years after the earthquake the
offset is still visible. The picture was taken on July 5, 2015 looking
eastward at 34.2954°, -116.4554°.
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Figure 31: Illustration of the 1992 Landers setup. Shown is a part of the
computational domain including the fault system and tetrahedral
mesh. The mesh is cut along x = 0km, y = —2km and y = 25 km.
On the faults depths of o km, -5 km and -10 km are given as
contour lines.



10.2 STRONG SCALING

gradually increasing wave speeds with increasing depth. For exam-
ple our setup uses parameters p = 2,300kg/m?, A ~ 5.0GPa and
u ~ 1.8GPa up to a depth of 0.1 km. In the layer between 3-6 km
depth the parameters are p = 2,700kg/m?, A ~ 27.9GPa and u ~
21.2 GPa. Following (17) this corresponds to an increase of 3.2 x in
S-wave velocity and 2.64 x in P-Wave velocity.

The setups uses global time stepping and sixth order for the seis-
mic wave propagation component. For the dynamic rupture compu-
tations a single quadrature point in time is used and multiple quadra-
ture points in space are used [31]. Note that our computational core
supports dynamic rupture physics only in GTS execution. While our
considerations for the LTS wave propagation component (see Ch. 3)
directly translate to dynamic rupture elements, extensive benchmark-
ing is required to verify local time stepping in dynamic rupture work-
loads. Here, one can either decide to follow the LTS approach of our
scheme and perform a minimal impact normalization only. Other op-
tions could enforce only neighboring dynamic rupture elements to
have the same time step or enforce the same time step for all elements
with dynamic rupture faces.

Analogue to Ch. 8.2, we are able to derive a total memory consump-
tion of 2.4 TiB for our computational core using the given setup.

10.2 STRONG SCALING

INTERMEDIATE VERSION The authors of [31] use the 1992 Lan-
ders setup to study the strong scaling behavior of our computational
core in an intermediate version. Analogue to the results discussed
in Ch. 9, this study was carried out on the homogeneous supercom-
puter SuperMUC-1 and the two Intel Xeon Phi accelerated systems
Stampede and Tianhe-2.

Fig. 32 shows the obtained peak efficiencies and Fig. 33 the ob-
tained parallel efficiencies in dependency of the number of nodes.
With respect to the weak scaling peak efficiencies (see Fig. 28), the
authors of [31] are able to maintain the high efficiencies for all super-
computers on a 512 node basis. A slight decrease is expected due to
the non-optimal load balancing in favor of minimized edge-cuts. At
this point, our core consumes ~4.8 GiB per node for 512 nodes of Su-
perMUC and per card for 512 nodes of Stampede. The three cards per
node in the Tianhe-2 system correspond to a consumption of ~1.6 GiB
per card on a 512 node basis.

For higher node counts [31] observes decreasing parallel efficien-
cies as shown in Fig. 33. In contrast to the weak scaling results (see
Fig. 27), the decrease is now highly dependent on the machine.

The parallel efficiencies of the homogeneous runs on SuperMUC-1
now drop faster than those in the weak scaling, but stay above 75 %
for all node-counts. Here the relative amount of time spent in the
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Figure 32: Strong scaling peak efficiencies using different versions of SeisSol
for the 1992 Landers setup. Shown are the peak efficiencies for
the initial version of SeisSol on SuperMUC-1 (“SuperMUC, clas-
sic”) and an intermediate version of our new computational core
on SuperMUC-1 (“SuperMUC, gr. buff”), Stampede and Tianhe-2.
Source: [31].
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Figure 33: Strong scaling parallel efficiencies using different versions of Seis-
Sol for the 1992 Landers setup. Shown are the parallel efficien-
cies for the initial version of SeisSol on SuperMUC-1 (“Super-
MUC, classic”) and an intermediate version of our new compu-
tational core on SuperMUC-1 (“SuperMUC, gr. buff”), Stampede
and Tianhe-2. Source: [31].
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blocking communication increases due to the lowering load per node.
Further, the more expensive dynamic rupture computations are ne-
glected in the partitioning of [31]. While the overall ratio of dynamic
rupture evaluations to computations spend in the seismic wave prop-
agation stays constant, the spatially local partitioning increases this
ratio in the worst-case. As in the weak scaling case (see Fig. 27), the
initial version of SeisSol sustains in [31] a higher parallel efficiency
on 4,096 nodes of SuperMUC-1 than our computational core. This is
again a result of the initial version’s low peak performance.

Stampede scales nearly perfectly with a parallel efficiency of 84.5 %
on 6,144 nodes. Compared to the homogeneous runs on SuperMUC-
1, we have to consider the superior overlapping communication and
computation of the heterogeneous offload scheme. Additionally, the
authors of [31] overlap the seismic wave propagation component on
the Intel Xeon Phi cards with dynamic rupture computations on the
Host CPUs.

We observe the steepest decrease in Fig. 33 for Tianhe-2 using three
Intel Xeon Phi cards per node. As discussed in [31], this is a result
of the exposed MPI communication. Here, the high floating point
performance of the nodes in combination with the halved bandwidth
of Tianhe-2's network at the time of the runs are the reason [31]. This
behavior changes when using less cards per node and thus increasing
the bandwidth to floating point performance ratio. In fact, the single
card runs on Tianhe-2 maintain above 85 % of parallel efficiency on
7,000 nodes.

Tianhe-2 achieved the highest performance of our computational
core for the 1992 Landers strong scaling in [31]. With a parallel effi-
ciency of 42.9 % the authors of [31] sustained 3.3 PFLOPS on 7,000
Tianhe-2 nodes. Stampede reaches 2.0 PFLOPS on 6,144 nodes. 1.3
PFLOPS with a parallel efficiency of 77.9 % are reached on the homo-
geneous SuperMUC-1 in the version of [31].

FINAL VERSION Equivalent to the weak scaling setup discussed
in Ch. 9, we expect that the final version of our computational core
outperforms the intermediate version of [31] in homogeneous runs.
Again, we expect to mainly benefit from our asynchronous communi-
cation and the high peak efficiencies obtained for HSW-MUC.

Fig. 34 shows the peak efficiencies and Fig. 35 the parallel efficien-
cies of the final version on SuperMUC-2. Again, all results include
SuperMUC-2’s guaranteed frequency of 2.2 GHz and the base fre-
quency of 2.6 GHz. The measured peak efficiencies for 128 nodes
nearly maintain the weak scaling performance (see Fig. 28). Also in
agreement with the weak scaling, the runs at 2.2 GHz reached a
higher ratio of the theoretical peak performance. Since we use the
full frequency of 2.6 GHz for the calculation of the peak performance,
this behavior is expected.
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Figure 34: Strong scaling peak efficiencies of the final computational core
for the 1992 Landers setup. Shown are the peak efficiencies of
global time stepping using HSW-MUC’s guaranteed frequency
of 2.2 GHz in blue and using the base frequency of 2.6 GHz in
orange.
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Figure 35: Strong scaling parallel efficiencies of the final computational core
for the 1992 Landers setup. Shown are the parallel efficiencies
of global time stepping using HSW-MUC’s guaranteed frequency
of 2.2 GHz in blue and using the base frequency of 2.6 GHz in
orange.



10.3 PRODUCTION

Our computational core’s final version is able to maintain a parallel
efficiency of more than 85 %, even when scaling out to all 3,072 nodes
of SuperMUC-2. SuperMUC-2 sustained 1.3 hardware PFLOPS with
a parallel efficiency of 87.9 % using 3,072 nodes at 2.2 GHz. The run
at 2.6 GHz reached 1.5 PFLOPS in hardware with a parallel efficiency
of 85.9 %.

The peak efficiency of 3,072 nodes at 2.6 GHz is 42.1 %. This is
equivalent to 53.3 % of SuperMUC-2’s reported HPL-performance
for our computational core in its final version. However, these results
include strong scaling from 128 nodes to 3,072 nodes. This is an in-
crease by 24 x in computational power with a memory requirement
of ~821 MiB per node for our computational core’s data in the largest
configuration.

10.3 PRODUCTION

INTERMEDIATE VERSION The authors of [31] present results of a
production run using the 1992 Landers setup (see Ch. 10.1). This run
was carried out on all 9,216 nodes of SuperMUC-1 and reached a to-
tal simulated time of 42 seconds corresponding to 234,567 time steps.
Analogue to the strong scaling in Ch. 10.2, the authors used our com-
putational core in the intermediate version of [31]. For a total runtime
of 7 hours and 15 minutes the authors sustained a performance of
1.25 PFLOPS in hardware. Fig. 36 shows the complex rupture behav-
ior presented in [31]. Important features such as rupture branching
or rupture jumps were observed and prove the value of multiphysics
dynamic rupture earthquake simulations.

FINAL VERSION Since the output of the production run in [31]
was limited to the fault system and seismic receivers, we discuss a re-
peated simulation on SuperMUC-2. In this simulation all 3,072 nodes
of SuperMUC-2 were used at 2.6 GHz to run the final version of
our computational core. This run additionally wrote the wave field
containing the nine elastic variables to SuperMUC-2’s GPFS Storage
Servers (GSS). The overall amount of output was reduced by writing
the values for the first, constant basis only. The run wrote the wave
field output every o.25 s of simulated time, resulting in a total of
amount of 2.0 TiB. Additionally every 1.5 s the simulation wrote all
data of our computational core to the GSS for the case of a hardware
failure.

Since the simulation was carried out in an early access phase of
SuperMUC-2, it had to be continued from checkpoints multiple times.
The duration of the longest non-stop computation was 1 hour and 52
minutes. During this time our computational core advanced 11.75 s in
simulated time and sustained 1.4 PFLOPS in hardware including out-
put and checkpointing. Here, our computational core achieved 94.3 %
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Figure 36: Dynamic rupture propagation on the fault system of the 1992
Landers setup. Shown is the slip rate throughout the simulation.
Complex rupture propagation, including multiple rupture fronts,
is visible. Source: [31].
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of the strong scaling performance, discussed in Ch. 10.2. In summary,
this repeated production on SuperMUC-2 not only enhanced but also
outperformed the SuperMUC-1 run reported in [31].

Fig. 37 and Fig. 38 illustrate the obtained wave field output of the
repeated production run. Fig. 37a shows the wave field after 9.25 s,
Fig. 37b after 12 s, Fig. 38a after 19.5 s and Fig. 38b after 25 s. All
tigures show contours of the velocity magnitude for 0.2 m/s in gray,
2m/s in red, 4 m/s in yellow and 6 m/s in light yellow. In addition
the contours have a decreasing transparency with increasing velocity
magnitude. The contour of 6 m/s is completely opaque.

For orientation three contours of the fault system (see Fig. 36) are
shown at o km depth, 5 km depth and 10 km depth. Additionally a
box of extend [—80 km, 35 km] x [—50 km, 80 km] x [—15 km, 3 km]
is drawn with grid lines in y-direction every 25 km and in z-direction
every 5 km.

In the beginning of the simulation, shown in Fig. 37, the seismic
waves originate from the propagating rupture and strong, local ground
motion is visible at the surface. The snapshots at 19.5 s and 25 s in
Fig. 38 show a highly heterogeneous structure of the wave field. The
high velocity magnitudes of 2-6 m/s are mainly scattered in vicinity
of the surface.

SUMMARY

This chapter evaluated our computational core’s performance when
running GTS dynamic rupture earthquake simulations of the 1992
Landers setup. The setup uses sixth order of convergence in the wave
propagation component and a total of 191,098,540 for spatial dis-
cretization. Our evaluation included, in Ch. 10.2, strong scaling re-
sults of our targeted supercomputers, SuperMUC-1, SuperMUC-2,
Stampede and Tianhe-2. Again, we sustained petascale performance
on all machines with multi-PFLOPS performance on the Intel Xeon
Phi accelerated systems Stampede and Tianhe-2.

In comparison to the homogeneous results, presented in [31], our
asynchronous communication scheme increased the parallel efficien-
cies in the strong scaling study on SuperMUC-2. Here, we reached
parallel efficiencies above 85 % for all configurations when scaling
from 128 to 3,072 nodes. Using all of SuperMUC-2"s 3,072 nodes,
we achieved 1.5 PFLOPS in hardware, which translates to a paral-
lel efficiency of 85.9 % with 128 nodes as baseline. With respect to
SuperMUC-2’s reported HPL-performance, we reached 53.3 % with
this run.

Finally, Ch. 10.3 presented results of a repeated production simula-
tion of the 1992 Landers earthquake. However, in comparison to the
earlier run on SuperMUC-1, presented in [31], we wrote wave-field
output and checkpoints. Including the output, our production simu-
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Velocity Magnitude (m/s) Time (s) =9.25

Time () =12

(b) Wave field after 12 s of simulated time.

Figure 37: Wave field of the machine-size 1992 Landers production run on
SuperMUC-2 after 9.25 s and 12 s of simulated time. Shown are
contour plots for different velocity magnitudes. For orientation
three contours of the fault system at a depth of o km, 5 km and
10 km are shown.
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Time (=195

(b) Wave field after 25 s of simulated time.

Figure 38: Wave field of the machine-size 1992 Landers production run on
SuperMUC-2 after 19.5 s and 25 s of simulated time. Shown are
contour plots for different velocity magnitudes. For orientation
three contours of the fault system at a depth of o km, 5 km and
10 km are shown.
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lation sustained 1.4 PFLOPS on all 3,072 nodes of SuperMUC-2. This
corresponds to 94.3 % of the observed strong scaling performance and
verifies the value of the scaling studies. Considering SuperMUC-2"s
HPL-performance again, we reached 53.3 % in this production simu-
lation. Ch. 10.3 closed with plots of the obtained wave-field showing
the complexity of the interaction between seismic wave propagation
and the rupture process.



PETASCALE LOCAL TIME STEPPING

Our last setup studies the strong scaling behavior of our computa-
tional core utilizing the full clustered local time stepping functional-
ity. For this purpose we simulate seismic wave propagation in Mount
Merapi. Mount Merapi is a volcano on the island of Java, Indonesia.
The volcano is highly active and has caused multiple fatalities in re-
cent years.

Ch. 11.1 discusses the numerical configuration of the Mount Mer-
api setup. Next, we study the theoretical aspects of local time step-
ping in Ch. 11.2. Strong scaling of our computational core on Su-
perMUC-1 and SuperMUC-2 is discussed in Ch. 11.3, followed by a
simulation with production character in Ch. 11.4.

11.1 MOUNT MERAPI

The Mount Merapi setup uses sixth order of convergence and a total
of 99,831,401 elements for spatial discretization. The setup uses pa-
rameters p = 2400kg/m>, A ~ 3.3GPa and u ~ 4.7GPa inside the
volcano. All coordinates are relative to (0,0,0) located below Mount
Merapi’s peak at mean sea level. Here, we assume that every element
inside the sphere with center at (0,0,4km) and a radius of 5.1 km is
inside the volcano. The remaining computational domain has param-
eters p = 2000 kg/m?, A ~ 2.3GPa, u ~ 2.4 GPa.

Boundary conditions are set to free-surface at the surface and out-
flow everywhere else. The seismic source is a double-couple point
source approximation at (0,0,0).

Adaptive mesh refinement is employed to resolve the surface to-
pography, the material contrast of the two-region model and the out-
flow boundaries. Fig. 39 illustrates the tetrahedral mesh. For illustra-
tive purposes the mesh is extracted in a cylinder with a radius of
5 km. The overall memory consumption of our computational core
is approximately 1.3 TiB when running the setup with global time

stepping.
11.2 LTS IN THEORY

Analogue to the LOH.1 discussion in Ch. 8, we first analyze local time
stepping for the Mount Merapi setup from a theoretical perspective.

Fig. 40 shows the density of the time steps. As in Ch. 8, the solid
line refers to per-element time steps, while the gray boxes illustrate
rate-2 clustering. The density of the per-element time steps in Fig. 40
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Figure 39: Illustration of the tetrahedral mesh in the Mount Merapi setup.
The mesh is shown only for a cylinder with 5 km radius.
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Figure 40: Density of time steps in the Mount Merapi setup. The solid line
shows the density in dependency of the elements’ time steps. Red
dotted lines show the location of the 25 % quartile (Q1), the 50 %
quartile (Q2) and the 75 % quartile (Q3). Gray boxes represent a
time step clustering with a rate of 2. The shown density is limited
to elements with time steps in [At, 32A¢t[ and cut off for densities
exceeding 0.75.
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is highly heterogeneous with large peaks in the interval [4At, 6At]
and smaller peaks in the interval [21At,26At]. The sharpness of the
peaks is a result of the used regular mesh once the target resolution
is reached and geometric features are absent. This regular mesh struc-
ture is for example visible on the boundaries of the extracted cylinder
in Fig. 39. Considering the illustrated rate-2 clustering in Fig. 40, clus-
ter C3 = [4At, 8At[ contains almost all elements.

The cluster’s elements for rate-2 clustering are shown in Fig. 41. To
support the visualization two regions are cut out of the volcano. The
left regions in Fig. 41 are bound by planes with normals (1, —0.2,0)
and (1,—1.3,0). Planes with normals (1, —0.25,0) and (1,0.5,0) were
used to cut the right regions out of the mesh. As in the LOH.1 vi-
sualization, shown in Fig. 19, the color of the tetrahedrons refers to
the per-element time step required by the CFL-condition. The two
material regions are shown as almost transparent shades of gray.

The first cluster C; = [At,2At] in Fig. 41a contains only very few
sliver elements loosely scattered along the topography of the volcano
and in proximity of the material interface. Cluster C, = [2At,4At] in
Fig. 41b has a higher number elements scattered in the same region.
The few elements of these two clusters lower the time step in global
time stepping by factor of 4. Analogue to the LOH.1 example, almost
no connectivity exists between the scattered elements. This proves the
necessity of our clustered LTS scheme’s flexibility with respect to the
clustering. Requiring connectivity of the LTS clusters would either
result in a high number of clusters with equal time steps or require
us to impose connectivity by lowering the time steps of all elements
in vicinity of the surface and the material interface.

The third cluster C; = [4At, 8At] in Fig. 41c covers almost all in-
terior elements of the Mount Merapi setup. In addition a few sliver
elements are part of C3 and scattered along the outer boundary. The
dense block of elements in the interior corresponds to the regular
structures already observed in the density plot (see Fig. 40).

Cluster C4 = [8At, 16At] contains elements at the boundary of our
computational domain and the material interface. The outer counter-
part of Cs is given by Cs = [16At,32At]. C5 densely covers the volume
of the outer material region. Again the dense block corresponds to
the regular mesh structures, visible in the illustration of the mesh
(see Fig. 39) and the time step density (see Fig. 40). The last clus-
ter Co = [32At, 64At] consist of elements scattered loosely along the
boundary of our computational domain.

Fig. 42 shows the load of all elements up to a certain time step. We
see a stair case pattern with jumps at the location of the peak densities.
This behavior is significantly different from the smooth increase of the
LOH.1 setup in Fig. 20 and is a result of the regular structures.

While the largest time step is more than 45 times bigger than the
smallest time step, most elements are within [4At, 6At] as the loca-
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(@) C; = [At,2At]. (b) C, = [2At, 4At].

| | |
dt 2dt  4dt  8dt 16dt 32dt

(c) C = [4At, 8At].

(d) Cs = [8AL, 16A¢]. (e) Cs = [16At, 32At. () Co = [32At, 64At|.

Figure 41: Spatial distribution of the clusters’ elements for the Mount Mer-
api setup and a rate-2 clustering. The two material regions are
visualized by two almost transparent shades of gray. The individ-
ual elements of the clusters a colored by their CFL time step.
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Figure 42: Distribution of the computational load in the Mount Merapi
setup assuming a theoretical, perfectly performing, per-element
LTS algorithm. The solid line shows the summed load in depen-
dency of the time step. Red dotted lines show the location of the
25 % quartile (Q1), the 50 % quartile (Q2) and the 75 % quartile
(Q3). The shown density is limited to time steps in [At, 32At(.

tions of the quartiles show. Assuming that per-element time stepping
is possible at GTS performance, the maximum possible LTS speedup
is 6.4 X.

With respect to a suitable clustering, we see that rate-2 clustering is
nearly optimal. In this case cluster C3 = [4At, 8At| carries 76.2 % of all
elements and by far most of the overall load. Cluster C5 = [16At, 32A¢]
still contains 22.2 % of all elements with a comparable small load. As
a result the maximum possible speedup for rate-2 clustering is 4.8 X
with respect to GTS. This is more than 75 % of the theoretical per-
element LTS speedup.

For rate-3 clustering cluster C; = [3At, 9A¢t[ contains 76.8 % of the
elements. However in comparison to rate-2 clustering, we underesti-
mate the time step by an additional At for the majority of elements
in C;. The maximum possible speedup for rate-3 clustering is 3.6 x
corresponding to 56.7 % of the theoretical per-element LTS speedup.

For the memory requirements of local time stepping, we have to
consider the non-constant, per-element time data and the load bal-
ancing. While the influence of the time data is distributed among the
partitions, the load balancing proves to be crucial. Fig. 43 shows the
derivation from the mean number of elements per partition (#elements
/mean — 1). Here METIS generated 3,072 partitions (see Ch. 3.3). The
derivations for global time stepping in Fig. 43a reflect the load imbal-
ances of the partitioning. We see that the obtained quality is high in
general with load imbalances within +2%.

Fig. 43b shows the derivations for rate-2 clustering and Fig. 43c for
rate-3 clustering. Now the majority of partitions contains less than the
average number of elements. This is a result of the two large clusters
containing almost all elements in both clusterings.
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(a) Global time stepping.
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(c) Rate-3 clustered LTS

Relative number of elements per partition in the Mount Merapi
setup. Shown is the relative derivation from the mean number of
elements per partition (#elements/mean — 1) for GTS and clus-
tered LTS. On the left boxplots are shown, while the right plots
show the derivation in dependency of the partition.
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Figure 44: Strong scaling peak efficiencies using an intermediate version of
SeisSol for the Mount Merapi setup. Source: [9]

The partition dependent derivations of rate-2 clustering in Fig. 43b
show that METIS schedules Cs, the cluster covering the dense, outer
block in rate-2 clustering, mainly to partitions between 2560 and 3072.
The result is an increased memory consumption of ~2.5 x compared
to GTS for nodes computing these partitions.

For rate-3 clustering in Fig. 43¢ Cs, the cluster covering the dense,
outer block, is scheduled between partitions 1024 and 1536. This re-
sults in an increased memory consumption of ~1.5 x.

The next chapter shows, that an increase of 1.5 — 2.5 x is easily
amortized by our computational core’s strong scaling performance.
However, these factors might increase for larger meshes and become
problematic for larger node counts, e.g. the announced 50,000+ nodes
of Aurora’. In this case future versions of our core could account for
memory usage in the partitioning or use low-bandwidth memory on
future Intel Xeon Phi generations for partitions with many elements.

11.3 STRONG SCALING

INTERMEDIATE VERSION The authors of [9] use the Mount Mer-
api setup to study the strong scaling behavior of our computational
core. The homogeneous functionality of the core in the version of [9]
is very similar to the version of [31] discussed as part of the weak
scaling in Ch. 9.2.

Fig. 44 shows the obtained peak efficiencies of the Mount Merapi
setup on SuperMUC-1. We see similar peak efficiencies to those of
the 1992 Landers strong scaling in Fig. 34. The efficiencies lower after
1000 nodes (16,000 cores). The descent is more severe than in the 1992
Landers runs of [31] due to the lower number of total elements.

The runs of [9] sustained 35.6 % of SuperMUC-1"s theoretical peak
performance when running on all 9,216 nodes (147,456 cores). This
corresponds to 1.13 PFLOPS in hardware with a parallel efficiency of
73.0 % using 64 nodes (1,024 cores) as baseline. The per-node memory

1 https://web.archive.org/web/20150907104816/http://aurora.alcf.anl.gov/
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Figure 45: Strong scaling peak efficiencies of the final computational core for
the Mount Merapi setup. Shown are the peak efficiencies of GTS,
rate-2 (R2) and rate-3 (R3) clustered LTS using HSW-MUC’s guar-
anteed frequency of 2.2 GHz in blue and using the base frequency
of 2.6 GHz in orange.

consumption is 142.8 MiB for our computational core using all 9,216
nodes.

FINAL VERSION With the global time stepping results of [9] as
reference, we now study the strong scaling performance of our fi-
nal computational core on SuperMUC-2. Again we expect to bene-
fit from the high single-node performance on SuperMUC-2 and our
asynchronous communication scheme. However, in contrast to the
1992 Landers setting of Ch. 10.2, we are now able to exploit the full
local time stepping functionality of our core. As discussed in Ch. 11.2,
the maximum possible speedup is 4.8 x for rate-2 and 3.6 x for rate-3
clustering. Considering the observed GTS speedups at scale in com-
parison to [9, 31], these maximum possible speedups are outstanding.
Thus, in terms of time-to-solution, we expect to benefit mostly from
clustered LTS.

Fig. 45 shows the peak efficiencies for the Merapi strong scaling on
SuperMUC-1. All runs were performed at 2.2 GHz and 2.6 GHz, used
HTT and left the last core for our communication thread (see Ch. 8.3).
The strong scaling for global time stepping starts at 64 nodes and that
for local time stepping at 128 nodes. As discussed in Ch. 11.2, we have
to respect the higher memory requirements of partitions holding ele-
ments with large time steps in LTS, while the memory requirements
of GTS are almost constant.

At 128 nodes the GTS runs are able maintain the high peak efficien-
cies of the weak scaling study in Ch. 9. In comparison to the strong
scaling presented in [9] this is an increase of ~5 % in terms of the
peak efficiency. The rate-2 and rate-3 clustered local time stepping
show slightly lower peak efficiencies, but still reach more than 50 %
of hardware peak efficiency. Taking the higher value of the local time
stepping operations into account, this corresponds to a speedup of
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Figure 46: Strong scaling parallel efficiencies of the final computational core
for the Mount Merapi setup. Shown are the parallel efficiencies of
GTS, rate-2 (R2) and rate-3 (R3) clustered LTS using HSW-MUC’s
guaranteed frequency of 2.2 GHz in blue and using the base fre-
quency of 2.6 GHz in orange.

4.5 x for rate-2 clustering at 2.2 GHz and 2.6 GHz. Rate-3 clustering
sustains a speedup of 3.3 x at both frequencies.

Fig. 46 shows the obtained parallel efficiencies of the strong scaling
study. We see that global time stepping maintains more than 87 % in
all runs, while rate-2 clustering stays above 81 % and rate-3 clustering
above 86 %. For rate-2 clustering we observe a drop when going from
128 to 256 nodes. This is an indicator that our simple partitioning
approach should be improved as discussed in Ch. 3.3.

All configurations sustained petascale performance when utiliz-
ing all 3,072 nodes of SuperMUC-2. Global time stepping reached
1.5 PFLOPS in hardware at 2.2 GHz and 1.8 PFLOPS at 2.6 GHz. This
is equivalent to 50.7 % of theoretical peak performance together with
a parallel efficiency of 89.3 % at 2.2 GHz. At 2.6 GHz the GTS runs
reached 49.1 % peak efficiency and 87.0 % parallel efficiency at 3,072
nodes.

Rate-2 clustered local time stepping sustained 1.3 PFLOPS with a
peak efficiency of 43.0 % and a parallel efficiency of 83.0 % at 2.2 GHz.
At 2.6 GHz 1.5 PFLOPS with a peak efficiency of 41.7 % and a par-
allel efficiency of 81.0 % were reached. In terms of time-to-solution,
rate-2 clustered LTS outperformed the GTS runs by 4.1 x using all
3,072 nodes of SuperMUC-2. This is 84.9 % of the theoretical rate-2
speedup and 64.3 % of the theoretical peak speedup for per-element
time stepping.

Rate-3 clustering reached 1.4 PFLOPS at 2.2 GHz. This corresponds
to a peak efficiency of 45.5 % and a parallel efficiency of 88.1 %.
At 2.6 GHz a performance of 1.6 PFLOPS was reached in hardware.
Here we observe a peak efficiency of 44.1 % and a parallel efficiency
of 86.8 %. The obtained speedup for rate-3 clustering is 3.2 x com-
pared to GTS. In this case the runs reached 89.8 % of the theoretical
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peak speedup of rate-3 clustering and 50.9 % of the theoretical peak
speedup for per-element time stepping.

Concerning SuperMUC-2’s reported 2.8 PFLOPS in the Linpack
benchmark, we are able to reach 62.5 % of the HPL performance us-
ing GTS, 53.0 % with rate-2 and 56.1 % with rate-3 clustering.

11.4 PRODUCTION CHARACTER

The authors of [9] present a run under production conditions, which
simulated the first 5 s of the Mount Merapi setup using GTS. This
computation took 3 hours and 7.5 minutes including the initialization
and sustained a performance of 1.1 PFLOPS in hardware on all 9,216
nodes of the SuperMUC-1 system.

To show the applicability of all of our computational core’s features
under production conditions, we now discuss a similar simulation on
all 3,072 nodes of SuperMUC-2. The repeated simulation used rate-2
clustering and reached a simulation time of 10 s. Additional to the
seismic receivers of [9], the simulation wrote the wave-field every
0.2 s to SuperMUC-2’s GSS. The total size of the output was reduced
to 349 GiB by writing the data for the constant basis only. Note that re-
ceiver output is element-local and performed independently in every
time stepping cluster. However wave-field output requires synchro-
nization of all clusters in time.

The simulation took a total of 1 hour, 6 minutes and 38 seconds
on all 3,072 nodes of SuperMUC-2. This duration includes all over-
head, such as the MPI startup or I/O. In average the run sustained
1.3 PFLOPS in hardware with a hardware to non-zero ratio of 1.9.
This is equivalent to speedup of 5.6 x with respect to [9] and equiva-
lent to 46.2 % of SuperMUC-2"s HPL performance under production
conditions using local time stepping and including I/0O.

Fig. 47 shows the time series and frequency spectrum of GTS and
rate-2 clustered LTS for o, with respect to a randomly picked receiver
inside the volcano. The same output is presented for the 5 simulated
seconds of the production charactrer run in [9]. We see that the rate-2
results are almost identical to the global time stepping results and
that frequencies beyond 20 Hz are resolved.

Additionally Fig. 48 and Fig. 49 show the obtained wave field of
the petascale, rate-2 clustered LTS simulation. Shown is a grid with
extends [—2.5 km, 2.5 km] x [—2.5 km, 2.5 km] x [0,2.5 km] for orien-
tation and contours of different velocity magnitudes.

The seismic waves propagate regularly from the seismic source in
the first snapshot after 1.0 s in Fig. 48a. After 1.8 s the seismic waves
hit the surface in Fig. 48b. The result is highly scattered wave propa-
gation visible in figures 49a and 49b.
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Figure 47: Time series and frequency spectrum of a random receiver using
GTS and LTS for the Mount merapi setup. Shown is o3, for 10
simulated seconds and rate-2 clustering.

SUMMARY

This final chapter studied all of our computational core’s functional-
ity in a setup simulating seismic wave propagation in Mount Merapi.
The setup uses sixth order of convergence in the wave propagation
component and a total of 99,831,401 elements for spatial discretiza-
tion.

We started our evaluation in Ch. 11.2 by studying possible LTS
speedups for the given setup. We quantified the theoretical peak
speedup for all LTS schemes over GTS as 6.4 x and between 3.6 x-
4.8 x for our two clustering strategies. Additionally, we studied the
time step density and load. Here, we identified two large homoge-
neous time stepping regions, but also many loosely scattered sliver
elements in vicinity of geometric features.

The next chapter, Ch. 11.3, presented a strong scaling study of the
Mount Merapi setup on SuperMUC-2. Here, we outperformed the
SuperMUC-1 results of our computational core in the version of [9].
The GTS speedups are a result of further improvements of our per-
formance engineering, especially the asynchronous communication
scheme. The LTS speedups stem from algorithmic improvements.

All GTS and LTS configurations on SuperMUC-2 reached petascale
performance on all 3,072 nodes. Further, with 128 nodes as baseline,
all runs sustained parallel efficiencies above 8o %. At 2.6 GHz we
sustained 1.8 PFLOPS for GTS and 1.3-1.4 PFLOPS for LTS, in other
words 53.0 %-62.5 % of SuperMUC-2"s HPL performance.

137



138 PETASCALE LOCAL TIME STEPPING

Time (s) = 1

(a) Wave field after 1.0 s of simulated time.

Time (s)=1.8

(b) Wave field after 1.8 s of simulated time.

Figure 48: Wave field of the full-machine, production character Merapi run
on SuperMUC-2 after 1.0 s and 1.8 s of simulated time. Shown
are contour plots for different velocity magnitudes.
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Time (s) = 2.6

(a) Wave field after 2.6 s of simulated time.

(b) Wave field after 3.6 s of simulated time.

Figure 49: Wave field of the full-machine, production character Merapi run
on SuperMUC-2 after 2.6 s and 3.6 s of simulated time. Shown
are contour plots for different velocity magnitudes.
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Most importantly the use of local time stepping greatly increased
the value of the floating point operations. Here, we obtained a 3.2 x-
4.1 x speedup with respect to GTS on all 3,072 nodes of SuperMUC-2.

We finalized this chapter by a repetition of the production character
run presented in [9]. However, in comparison to [9], we used all of
SuperMUC-2 instead of SuperMUC-1, wrote wave-field output and
used our clustered LTS scheme. This run sustained 1.3 PFLOPS in
hardware and sustained a speedup of 5.6 x over the SuperMUC-1
run of [9].

Summarizing the small-scale runs of Ch. 8, the weak scaling of
Ch. 9, the multiphysics scaling and production runs in Ch. 10, and
the large-scale LTS wave propagation runs in this chapter, we sys-
tematically evaluated a broad range of performance characteristics.
Our computational core sustains high efficiencies in the two impor-
tant metrics of sustained peak efficiency and sustained parallel effi-
ciency. Especially the results of the final run under production condi-
tions, simulating seismic wave propagation in Mount Merapi, is out-
standing. The authors of [9] already used an intermediate version of
our computational core and reported speedups exceeding 5 x over
the initial GTS version of SeisSol. Considering our LTS results on
SuperMUC-2, this speedup sums to over 25 x and summarizes the
scientific outcome of this thesis.



CONCLUSIONS AND OUTLOOK

CONCLUSIONS

This thesis presented a new computational core for the earthquake
simulation package SeisSol. The core replaced SeisSol’s entire time
marching procedure with a novel, clustered LTS scheme and features
a streamlined layout of data structures and asynchronous, hybrid par-
allelization. Within this thesis we systematically addressed all made
design decisions from an algorithmic perspective in Pt. i and an en-
gineering perspective in Pt. ii. Finally Pt. iii evaluated our core in
different setups up to full machine utilization. Note that most of the
discussed developments were released’* as open-source software un-
der the BSD 3-Clause license.

Our algorithmic considerations in Pt. i covered constraints on LTS
relations of neighboring elements in Ch. 3.1 and multi-partition clus-
tering, including a normalization step for homogeneity, in Ch. 3.3.
The following chapters 3.4 and 3.5 of Pt. i discussed the time man-
agement and scheduling. This led to a asynchronous, clustered LTS
scheme with prioritization of critical work.

After the derivation of our clustered LTS scheme, Pt. ii switched
to an engineering perspective for the high performance implemen-
tation of the scheme. First, Ch. 4 introduced our targeted, homoge-
neous and heterogeneous supercomputers SuperMUC-1, SuperMUC-
2, Stampede and Tianhe-2. Next, Ch. 5 derived the layout for the data
structures of our computational core. Our considerations included
alignment for different vector-instruction sets, hardware prefetching
and in-place communication. With the data structures and the algo-
rithm at hand, Ch. 6 presented a hybrid, asynchronous parallelization.
This parallelization uses the send-receive-model of MPI and features
a dedicated communication thread for MPI-progression. Pt. ii’s final
chapter, Ch. 7, introduced our low-level ADER-DG kernels for the
time, volume and surface integrators. Inside the ADER-DG kernels
we use custom matrix kernels and an auto-tuning approach for the
corresponding sparse-dense decisions.

The final part of this thesis, Pt. iii, evaluated the performance of
our computational core using different setups. In Pt. iii’s first chap-
ter, Ch. 8, we discussed the single-node GTS performance obtained
in [10] and extended these results with small-scale GTS and LTS re-
sults on SuperMUC-2. The discussion covered three generations of

1 https://github.com/SeisSol/SeisSol
2 https://github.com/TUM-I5/seissol_kernels
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Intel Xeon CPUs and the first-generation Intel Xeon Phi coprocessor.
While the use of high-order simulations is compelling from a math-
ematical convergence standpoint, our results also show that we en-
ter the compute-bound regime with high orders of convergence. We
saw that our computational core is able to handle lowering machine
balances, increased data locality requirements, and that our core is
able to exploit mature vector instructions, such as 256-bit and 512-bit
fused multiply-add instructions, when using high orders of conver-
gence. The obtained hardware peak efficiencies of ~60 % on the CPUs
and ~40 % on the Intel Xeon Phi coprocessor prove that our compu-
tational core fully unleashes the computational power of state-of-art
architectures.

Before studying the obtained LTS performance, we discussed theo-
retical speedups of possible LTS strategies compared to GTS. For the
given setup, we identified a theoretical maximum of 4.0 x for every
LTS implementation. Our simulations showed that our core is able to
maintain GTS peak efficiencies when running LTS. Additionally, the
results showed a speedup of 2.6 x using a single node with LTS and
excellent strong scalability up to eight nodes with a parallel efficiency
of more than 9o %.

Ch. 9’s setup studied our computational core’s weak scaling per-
formance. Here, we discussed the results obtained in [31] for Super-
MUC-1, Stampede and Tianhe-2 and extended them with a scaling
on SuperMUC-2. The largest configuration on Tianhe-2 used a total
of 24,576 Intel Xeon Phi coprocessors, which is equivalent to 1.4 Mio.
cores, and obtained 8.6 PFLOPS in hardware. The used ~5.0 - 1012 de-
grees of freedom show that our computational core is ready to push
the resolution of earthquake simulations to the limits.

Pt. iii’s third chapter, Ch. 10, applied our computational core to a
simulation of the 1992 Landers earthquake. Outstanding is the dis-
cussed production run performed on SuperMUC-2, which outper-
formed the results of [31]. Here we sustained 1.4 PFLOPS in hardware
for a non-stop computation lasting 1 hour and 52 minutes. This per-
formance is equivalent to 50.5 % of SuperMUC-2"s HPL-performance
and includes the writing of wave-field output and checkpoints.

The final chapter, Ch. 11, of Pt. iii evaluated our computational
core’s performance using high-order GTS and LTS configurations in
machine-size SuperMUC-2 configurations. Here, we studied the per-
formance of seismic wave propagation in the volcano Mount Merapi.
All GTS and LTS configurations sustained petascale performance on
the 3,072 nodes of SuperMUC-2 and reached strong-scaling parallel
efficiencies above 80 % with 64 nodes (GTS) and 128 nodes (LTS) as
baseline.

Ch. 11 closed with the presentation of a high-order LTS run under
productions conditions on SuperMUC-2. This run took over 1 hour
and 6 minutes, wrote wave-field output, and sustained 1.3 PFLOPS
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in hardware. Compared to the equivalent GTS run on SuperMUC-
1, presented in [9], this translates to a 5.6 X speedup in time-to-
solution. However, the authors of [9] already used the computational
core, presented in this thesis, in an intermediate version and observed
speedups above 5 x with respect to the initial GTS version of SeisSol.
The combined speedup is above 25 x and summarizes the scientific
outcome of this thesis.

SCIENTIFIC IMPACT The computational core, presented in this the-
sis, significantly contributed to the work shown in [10, 31, 9, 8]. The
collaborative paper [9] received the PRACE-ISC Award 2014 for high-
order, petascale simulations of seismic wave propagation with Seis-
Sol. The work presented in [31] was nominated as finalist for the 2014
ACM Gordon Bell Prize and used SeisSol for the simulation of dynamic
rupture earthquake simulations on homogeneous and heterogeneous
supercomputers. Additionally, my doctoral research project was hon-
ored with an ACM-IEEE CS George Michael Memorial HPC Fellowship in
2014 and selected for the 2015 Doctoral Showcase Program of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis.

OUTLOOK

As discussed in Ch. 1, the modeling, algorithmic and engineering
demands of dynamic rupture earthquake simulations are immense.
Future extensions of the presented work have to include latest model
extensions, tackle algorithms featuring the requested geometric com-
plexities and material heterogeneities, and concurrently use million of
cores. All of these challenges are typically tightly coupled and design
decisions taken anywhere in the simulation pipeline might influence
all remaining steps. In the following we discuss SeisSol’s most impor-
tant, future algorithmic and engineering challenges.

ALGORITHM  With respect to numerics our current approach uses
planar faces for the representation of the tetrahedral elements. This
approach could be improved by the use of high-order elements to
maintain the order of convergence along dynamic rupture interfaces
and for accurate representation of the surface topography. Addition-
ally, an increased spatial resolution of the fault system and surface to-
pography together with p-adaptivity [24] could be used alternatively
to or in conjunction with high-order elements.

Similar, our constant material parameters inside the elements might
conflict with the high-order convergence. A possible solution is the
use of high-order material representations inside the elements [14].

In terms of our parallel algorithm, we introduced in Ch. 3.3 a very
simple approach with weighted vertices in the dual-graph for LTS
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partitioning. This approached successfully achieved high efficiencies
up to full-machine utilization. Anyhow, future extension could fur-
ther increase scalability with weights for the edges summarizing non-
constant communication frequencies and volumes, or feature an auto-
tuning for the LTS partitioning in the offline-phase.

While the presented computational core supports coupling to dy-
namic rupture propagation in GTS configurations, support for LTS
configurations is pending. Tackling this support in near-future has
the potential of enabling new dynamic rupture physics. Aside from
homogeneous time step variations, the meshing of complex fault sys-
tems, such as dipping faults with shallow angles, tends to generate ex-
treme sliver elements. These elements effectively prevent simulations
using global time stepping. Ch. 10.1 discussed different approaches
for the usage of dynamic rupture in LTS configurations. Any of the
approaches could be integrated with moderate effort into our com-
putational core. However, thorough testing and verification of the re-
sulting scheme is imperative. Aside from comparison against differ-
ent time stepping approaches in SeisSol itself, the benchmarks of the
SCEC/ USGS Spontaneous Rupture Code Verification Project [29] qualify
for this task.

Hrc From an engineering perspective SeisSol’s new computational
core, presented in this thesis, is prepared for next-generation Intel
Xeon CPUs and socketed, next-generation Intel Xeon Phis. Here, the
final tuning has to be accomplished, once the respective architectures
are available. This includes, for example, explicit usage of near and far
memory on next-generation Intel Xeon Phis for optimal performance.

The presented static shared memory parallelization of the compu-
tational loops in Ch. 6 and the static partitioning of the computa-
tional domain for distributed memory parallelization in Ch. 3.3 re-
flects the uniform load of our computational core. However, the per-
formance of a single core might be the weakest link of our static
partitioning. In other words, a single faulty core has the potential to
slow down SeisSol entirely. In fact, we observed first performance
variations stemming from non-constant node performance in Ch. 7.4
and Pt. iii. Here, dynamic scheduling and dynamic repartitioning
could help to mitigate the problem. Another promising solution of
the issue could involve backup-nodes, which would serve as replace-
ment for low-performing nodes or in the case of hard faults. Such an
approach could be combined with systematic oversubscription and
shared backup-nodes for multiple jobs running in parallel.

HAZARD ASSESSMENT  The ever increasing power of supercomput-
ers, with several, announced 100+ PFLOPS machines for the next few
years (e.g. [61]), allows to think big in terms of seismic hazard as-
sessment. While current approaches use simplified models for the
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forward simulations (e.g. [19, 27]), at some point it might become
feasible to use dynamic earthquake rupture simulations for all or a
selected number of forward simulations.

This would result in a broadened focus of the topics discussed in
this thesis and bring our co-design of algorithms and performance en-
gineering to the next level. From an algorithmic viewpoint, we would
embed single runs of our computational core in a larger simulation
environment covering the high-dimensional space of uncertainties.

Here, we could exploit similarities of the uncertainty configura-
tions and solve multiple forward simulations concurrently. For ex-
ample, different locations of the nucleation patch or different pre-
scribed stress fields result in almost identical hardware operations
performed on the respective machine. Thus, single-node or single-
core parallelization could be interpreted in terms of concurrent for-
ward runs. This means that we could use the same mesh and con-
stant data for multiple, concurrent forward runs and, for example,
perform vector instructions across problem boundaries. This would
significantly increase the ratio of solution-related data, allow for per-
fect vectorization without zero-padding, and pave the ground for
high performance implementations of advanced numerics, such as
high-order elements or heterogeneous materials within the elements.
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