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Abstract 

Subset Simulation is an adaptive simulation method that efficiently solves structural 

reliability problems with many random variables. The method requires sampling from 

conditional distributions, which is achieved through Markov Chain Monte Carlo 

(MCMC) algorithms. This paper discusses different MCMC algorithms proposed for 

Subset Simulation and introduces a novel approach for MCMC sampling in the standard 

normal space. Two variants of the algorithm are proposed: A basic variant, which is 

simpler than existing algorithms with equal accuracy and efficiency, and a more efficient 

variant with adaptive scaling. It is demonstrated that the proposed algorithm improves the 

accuracy of Subset Simulation, without the need for additional model evaluations. 
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1.  Introduction 

Structural reliability analysis is concerned with the evaluation of the probability of 

failure, defined by the following 𝑛-fold integral: 

𝑃𝑓 = ∫ 𝑓𝐗(𝐱) 𝑑𝐱
𝑔(𝐱)≤0

 (1) 

𝐗 is a random vector of dimension 𝑛 and models the system variables that are expected to 

present an uncertain behavior, 𝑓𝐗(𝐱) is the joint probability density function (PDF) of 𝐗 

and 𝑔(𝐱) ≤ 0  defines failure of the system. The function 𝑔(𝐱)  is termed limit-state 

function and can include one or several distinct failure modes (Ditlevsen & Madsen 

1996). 𝑔(𝐱)  can express any type of system failure, or indeed any event of interest 

described by a numerical or analytical model. 

It is common to transform the random variables 𝐗 to a probability space 𝐔 consisting of 

independent standard normal random variables, through a one-to-one mapping 𝐔 = 𝐓(𝐗). 

If the joint PDF 𝑓𝐗(𝐱) is known then the mapping can be defined by the Rosenblatt 

transformation (Hohenbichler & Rackwitz 1981). However, usually the probabilistic 

description of 𝐗 comes in terms of marginal distributions and correlations. In this case, 

the joint PDF is commonly modeled by the Nataf distribution (Gaussian copula) and the 

mapping to the standard normal space can be achieved through a marginal transformation 

(Der Kiureghian & Liu 1986). The probability of failure can be expressed in the 

transformed space as 

𝑃𝑓 = ∫ 𝜑𝑛(𝐮) 𝑑𝐮
𝐺(𝐮)≤0

 (2) 

where 𝜑𝑛(𝐮) = ∏ 𝜑(𝑢𝑖)𝑛
𝑖=1 , 𝜑(. ) is the standard normal PDF and 𝐺(𝐮) = 𝑔(𝐓−1(𝐮)) is 

the limit-state function in the 𝐔-space. 

The evaluation of the probability of failure is not a trivial task, especially when the 

performance of the system for a realization of the random variables is obtained through a 

computationally demanding model evaluation. Existing approaches include 
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approximation methods such as the first/second order reliability method (FORM/SORM), 

as well as simulation techniques based on the Monte Carlo method.  

FORM/SORM methods are based on first/second order Taylor series approximation of 

the limit-state surface at the so-called design point in the 𝐔-space, which is found through 

the solution of an optimization problem. These methods result in approximations of the 

probability of failure, which may involve considerable errors especially in problems 

where the dimension 𝑛 of the random variable space is large or in problems with highly 

nonlinear limit-state functions (Rackwitz 2001, Valdebenito et al. 2010). 

The Monte Carlo method is a simple and robust technique that is able to handle any 

model, independent of its complexity. The efficiency of the Monte Carlo method in its 

standard form does not depend on the dimension of the random variable space. The 

classical Monte Carlo method estimates 𝑃𝑓  in Eq. (2) by generating samples of the 

random vector 𝐔  and taking the sample mean of the indicator function 𝐼(𝐔) , where 

𝐼(𝐮) = 1 if 𝐺(𝐮) ≤ 0 and 𝐼(𝐮) = 0 otherwise. The drawback of the crude Monte Carlo 

method is that its computational demands for assessing small failure probabilities are 

high – the required number of samples and hence the required model evaluations is 

inversely proportional to the probability of failure.  

The efficiency of the Monte Carlo method can be enhanced by application of variance 

reduction methods such as importance sampling, typically applying a unimodal 

importance sampling density in the 𝐔-space (Schuëller & Stix 1987, Bucher 1988). 

However, in problems with a large number of random variables, unimodal importance 

sampling fails to describe the important region leading to a dramatic increase in the 

variance of the resulting estimate (Au & Beck 2003a, Katafygiotis & Zuev 2008). 

Moreover, importance sampling with multimodal sampling densities (Ang et al. 1992, Au 

& Beck 1999, Kurtz & Song 2013) encounters difficulties in estimating the sought 

optimal sampling density in nonlinear high-dimensional problems (Schuëller et al. 2004, 

Katafygiotis & Zuev 2008). 

In order to overcome the inefficiency of the Monte Carlo method in estimating small 

failure probabilities, while maintaining its independency on the number of random 
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variables, a number of advanced simulation methods have been developed, including 

Subset Simulation (Au & Beck 2001), Spherical Subset Simulation (Katafygiotis & 

Cheung 2007), Line Sampling (Hohenbichler & Rackwitz 1988, Koutsourelakis et al. 

2004) and Asymptotic Sampling (Bucher 2009). Here, we focus on Subset Simulation. 

This method expresses 𝑃𝑓 as a product of conditional probabilities that are significantly 

larger than 𝑃𝑓. These conditional probabilities are estimated by application of Markov 

Chain Monte Carlo (MCMC) sampling. It should be noted that Subset Simulation has 

been studied in the mathematical literature under the surrogate terms Sequential Monte 

Carlo (Del Moral et al. 2006, Cérou et al. 2012) and Generalized Splitting (Botev & 

Kroese 2012). These papers provide theoretical results on the asymptotic mean and 

variance as well as the asymptotic normality of the probability estimate. 

The efficiency and accuracy of Subset Simulation depends on the ability of the applied 

MCMC algorithm to estimate accurately the conditional probabilities with a minimum 

number of samples. The variances of the estimates of the conditional probabilities depend 

on the correlation of the Markov chains simulated by the MCMC algorithm. A low 

correlation of the MCMC samples implies a small variance of the respective probability 

estimate. Originally, Au & Beck (2001) proposed a modified version of the Metropolis-

Hastings (M-H) sampler that is based on a component-wise sample generation to avoid 

the small acceptance rate of the original M-H sampler in high dimensions. Recently, a 

number of MCMC algorithms that aim at a further improvement of the acceptance rate of 

the component-wise M-H have been proposed (Miao & Ghosn 2011, Santoso et al. 2011, 

Zuev & Katafygiotis 2011, Zuev et al. 2012). This paper reviews these algorithms and 

proposes a new approach for MCMC in the 𝐔-space. In addition, an adaptive variant of 

the new method is proposed, which enhances the performance of Subset Simulation 

without the need for additional model evaluations. 

The structure of this paper is as follows. In Section 2, Subset Simulation is described. 

Estimation of the conditional probabilities with MCMC sampling is discussed in Section 

3. Section 3.1 gives the principles of MCMC for Subset Simulation; Section 3.2 reviews 

existing MCMC algorithms proposed for Subset Simulation; Section 3.3 discusses the 

proposed algorithm and Section 3.4 presents its adaptive variant. Section 4 is devoted to 
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numerical evaluations of the performance of the methods. The paper closes with the 

conclusions in Section 5. 

2.  Subset Simulation 

Subset Simulation is an adaptive Monte Carlo method proposed by Au & Beck (2001) for 

the estimation of small failure probabilities in high dimensional problems. Let 𝐹 denote 

the failure event or any rare event of interest, defined as 𝐹 = {𝐮 ∈ ℝ𝑛: 𝐺(𝐮) ≤ 0} in the 

𝐔-space. The idea behind Subset Simulation is to express the event 𝐹 as the intersection 

of 𝑀 intermediate events: 

𝐹 = ⋂ 𝐹𝑗

𝑀

𝑗=1
 (3) 

The intermediate events are nested, i.e. 𝐹1 ⊃ 𝐹2 ⊃ ⋯ ⊃ 𝐹𝑀 , and 𝐹𝑀 = 𝐹  is the failure 

event. The probability of failure is estimated as a product of conditional probabilities: 

𝑃𝑓 = Pr(𝐹) = Pr (⋂ 𝐹𝑗

𝑀

𝑗=1
) = ∏ Pr(𝐹𝑗|𝐹𝑗−1)

𝑀

𝑗=1
 (4) 

where 𝐹0 is the certain event. The intermediate failure events are selected such that the 

conditional probabilities Pr(𝐹𝑗|𝐹𝑗−1)  are large. In this way, the original problem of 

evaluating a small failure probability reduces to a sequence of 𝑀 intermediate problems 

that correspond to the estimation of larger conditional probabilities.  

The probability Pr(𝐹1|𝐹0) = Pr(𝐹1) is computed by application of crude Monte Carlo 

through simulating independent and identically distributed (i.i.d.) samples from 𝜑𝑛(𝐮). 

For estimating the probabilities {Pr(𝐹𝑗|𝐹𝑗−1): 𝑗 = 2, … , 𝑀} , one needs to generate 

samples from the conditional PDFs {𝜑𝑛(𝐮|𝐹𝑗−1): 𝑗 = 2, … , 𝑀}, where: 

𝜑𝑛(𝐮|𝐹𝑗−1) =
𝜑𝑛(𝐮)𝐼𝐹𝑗−1

(𝐮)

Pr(𝐹𝑗−1)
 (5) 

wherein 𝐼𝐹𝑗−1
(𝐮) is the indicator function of 𝐹𝑗−1 . Generation of i.i.d. samples from 

𝜑𝑛(𝐮|𝐹𝑗−1) can be achieved by application of the acceptance-rejection method (Flury 

1990). However, this approach is inefficient, especially as the event 𝐹𝑗−1 approaches the 
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actual failure event, since the acceptance probability of the samples is proportional to 

Pr(𝐹𝑗−1). Alternatively, MCMC techniques can be applied for sampling 𝜑𝑛(𝐮|𝐹𝑗−1). 

MCMC methods produce samples of a target distribution, by constructing a Markov 

chain that has the target distribution as its stationary distribution (Tierney 1994). If the 

simulated Markov chain has reached its stationary state, the derived samples will be 

identically distributed according to 𝜑𝑛(𝐮|𝐹𝑗−1), but they will not be independent. In fact, 

as will be discussed in Section 2.1, the efficiency in estimating the conditional 

probabilities Pr(𝐹𝑗|𝐹𝑗−1) depends on the correlation of the MCMC samples.  

The intermediate failure events {𝐹𝑗: 𝑗 = 1, … , 𝑀 − 1} are defined as follows. Because the 

failure event is 𝐹 = {𝐮 ∈ ℝ𝑛: 𝐺(𝐮) ≤ 0} , the intermediate failure events 𝐹𝑗  can be 

defined as 𝐹𝑗 = {𝐮 ∈ ℝ𝑛: 𝐺(𝐮) ≤ 𝑐𝑗} , where 𝑐1 > 𝑐2 … > 𝑐𝑀 = 0 . The values of 

{𝑐𝑗: 𝑗 = 1, … , 𝑀 − 1} can be chosen adaptively, so that the estimates of the conditional 

probabilities {Pr(𝐹𝑗|𝐹𝑗−1): 𝑗 = 1, … , 𝑀 − 1}  correspond to a chosen value 𝑝0 . This is 

achieved by successively sampling each conditional PDF 𝜑𝑛(𝐮|𝐹𝑗−1) , producing 𝑁 

samples {𝐮𝑗−1
(𝑘)

: 𝑘 = 1, … , 𝑁} of 𝜑𝑛(𝐮|𝐹𝑗−1), and setting 𝑐𝑗  equal to the 𝑝0-percentile of 

the samples {𝐺(𝐮𝑗−1
(𝑘)

): 𝑘 = 1, … , 𝑁} . The samples of 𝜑𝑛(𝐮|𝐹𝑗−1)  are generated with 

MCMC, using as seeds the 𝑁𝑠 = 𝑝0𝑁  samples {𝐮𝑗−1
(𝑘)

: 𝑘 = 1, … , 𝑁𝑠}  that fell in 𝐹𝑗  at 

subset level 𝑗 − 1. This procedure is repeated until the 𝑝0-percentile becomes negative. 

At this level, the actual failure event 𝐹𝑀 = 𝐹 is reached, for which 𝑐𝑀 = 0. One can then 

obtain an estimate of the failure probability as: 

𝑃𝑓 ≈ 𝑃̂𝑓 = 𝑝0
𝑀−1𝑃̂𝑀 (6) 

𝑃̂𝑀 is the estimate of the conditional probability Pr(𝐹𝑀|𝐹𝑀−1) and is given by: 

𝑃̂𝑀  =
1

𝑁
∑ 𝐼𝐹(𝐮𝑀−1

(𝑘)
)

𝑁

𝑘=1
 (7) 

where {𝐮𝑀−1
(𝑘)

: 𝑘 = 1, … , 𝑁}  are samples from 𝜑𝑛(𝐮|𝐹𝑀−1) . The value 𝑝0  of the 

intermediate probabilities and the number of samples 𝑁 per subset level are chosen by the 

analyst. Au & Beck (2001) suggested to use 𝑝0 = 0.1, while Zuev et al. (2012) showed 
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that a choice of 𝑝0 ∈ [0.1,0.3] leads to similar efficiency. 𝑁  should be selected large 

enough to give an accurate estimate of 𝑝0. Moreover, it is assumed that 𝑝0 and 𝑁 are 

chosen such that 𝑝0𝑁  and 1/𝑝0  are positive integer numbers. The Subset Simulation 

algorithm can be summarized as follows. 

 

Subset Simulation algorithm (Au & Beck 2001) 

Define: 𝑁 (number of samples in each intermediate step), 𝑝0 (probability of intermediate 

subsets). 

Initial run 

1. Generate 𝑁 i.i.d. samples {𝐮0
(𝑘)

: 𝑘 = 1, … , 𝑁} from 𝜑𝑛(𝐮) 

2. Order the samples {𝐮0
(𝑘)

: 𝑘 = 1, … , 𝑁} in increasing order of magnitude of their 

limit-state values {𝐺(𝐮0
(𝑘)

): 𝑘 = 1, … , 𝑁} . Find 𝑐1  as the 𝑝0 -percentile of the 

samples {𝐺(𝐮0
(𝑘)

): 𝑘 = 1, … , 𝑁}. Set 𝐹1 = {𝐮 ∈ ℝ𝑛: 𝐺(𝐮) ≤ 𝑐1} 

3. 𝑗 = 1 

Iterations 

4. Repeat while 𝑐𝑗 > 0 

a. Generate 𝑁 samples {𝐮𝑗
(𝑘)

: 𝑘 = 1, … , 𝑁} from 𝜑𝑛(𝐮|𝐹𝑗) starting from the 

𝑁𝑆 samples {𝐮𝑗−1
(𝑘)

: 𝑘 = 1, … , 𝑁𝑠} for which 𝐮𝑗−1
(𝑘)

∈ 𝐹𝑗, where 𝑁𝑠 = 𝑝0𝑁: 

Repeat for 𝑘 = 1, … , 𝑁𝑠 

Starting from 𝐮𝑗
((𝑘−1)/𝑝0+1) 

= 𝐮𝑗−1
(𝑘)

, generate 1/𝑝0 − 1  states  

{𝐮𝑗
((𝑘−1)/𝑝0+𝑡) 

: 𝑡 = 2, … ,1/𝑝0} of a Markov chain with stationary 

PDF 𝜑𝑛(𝐮|𝐹𝑗) applying MCMC sampling 

b. Set 𝐹𝑗+1 = {𝐮 ∈ ℝ𝑛: 𝐺(𝐮) ≤ 𝑐𝑗+1}, wherein 𝑐𝑗+1 is the 𝑝0-percentile of the 

samples {𝐺(𝐮𝑗
(𝑘)

): 𝑘 = 1, … , 𝑁} 

c. 𝑗 = 𝑗 + 1 

Estimation of the probability of failure  

5. Identify the number 𝑁𝑓 of samples {𝐮𝑗−1
(𝑘)

: 𝑘 = 1, … , 𝑁𝑓} for which 𝐮𝑗−1
(𝑘)

∈ 𝐹 

6. 𝑃̂𝑓 = 𝑝0
𝑗−1 𝑁𝑓

𝑁
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2.1 Statistics of the Subset Simulation estimator 

The estimator 𝑃̂𝑓 in Eq. (6) is biased for a finite 𝑁 with bias of order 𝑂(𝑁−1), due to the 

correlation between the estimates of the conditional probabilities (Au & Beck 2001). The 

correlation between the estimates is attributed to the fact that the samples conditional on 

𝐹𝑗−1 at subset 𝑗 − 1 are used as seeds for the MCMC sampling at subset 𝑗. Cérou et al. 

(2012) showed that a bias of 𝑂(𝑁−1) is present even in the case where the conditional 

probabilities are estimated with i.i.d. samples, due to the adaptive estimation of the 

intermediate failure events. However, the bias is negligible compared to the coefficient of 

variation of the probability estimate, in both cases. 

The coefficient of variation 𝛿1 of the Monte Carlo estimate 𝑃̂1 of the probability Pr(𝐹1) is 

given by the following well-known expression: 

𝛿1 = √
1 − 𝑃1

𝑁𝑃1
 (8) 

The coefficients of variation 𝛿𝑗  of the estimates 𝑃̂𝑗  of the conditional probabilities 

Pr(𝐹𝑗|𝐹𝑗−1), 𝑗 = 2, … , 𝑀, are obtained as follows (Au & Beck 2001): 

𝛿𝑗 = √
1 − 𝑃𝑗

𝑁𝑃𝑗
(1 + 𝛾𝑗) (9) 

where  

𝛾𝑗 = 2 ∑ (1 −
𝑘𝑁𝑠

𝑁
) 𝜌𝑗(𝑘)

𝑁/𝑁𝑠−1

𝑘=1
 (10) 

𝑁𝑠 = 𝑝0𝑁 is the number of seeds of the MCMC sampling at subset level 𝑗, 𝑁 𝑁𝑠⁄ = 1/𝑝0 

is the length of each chain and 𝜌𝑗(𝑘) is the average 𝑘-lag auto-correlation coefficient of 

the stationary sequences {𝐼𝐹𝑗
(𝐮𝑗−1

((𝑙−1)/𝑝0+𝑡)
) : 𝑡 = 1, … , 𝑁/𝑁𝑓 } , 𝑙 = 1, … , 𝑁𝑠 . 𝜌𝑗(𝑘)  can 

be estimated from the samples (Au & Beck 2001). The estimator of Eq. (9) assumes that 

the different chains are uncorrelated through the indicator function, i.e. possible 
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dependence between the different seeds is neglected. Comparing Eq. (8) with Eq. (9), one 

can observe that the coefficient of variation of the estimates of the conditional 

probabilities is larger than the one of the Monte Carlo estimate with i.i.d. samples. This is 

due to the correlation of the Markov chain samples, expressed by the factor 𝛾𝑗 > 0. The 

efficiency of Subset Simulation decreases as 𝛾𝑗 increases and hence the chain correlation 

increases.  

Applying the first-order Taylor series expansion of Eq. (6), one can derive the following 

first-order estimate of the square of the coefficient of variation of 𝑃̂𝑓: 

𝛿𝑃̂𝑓

2 ≈ ∑ ∑ 𝛿𝑖𝛿𝑗𝜌𝑖𝑗

𝑀

𝑗=1

𝑀

𝑖=1

 (11) 

where 𝜌𝑖𝑗  is the correlation between the estimates 𝑃̂𝑖  and 𝑃̂𝑗 . Further assuming 

independence of the estimates of the conditional probabilities, we obtain: 

𝛿𝑃̂𝑓

2 ≈ ∑ 𝛿𝑗
2

𝑀

𝑗=1

 (12) 

The above is reported to provide an adequate estimate of the coefficient of variation of 𝑃̂𝑓 

in several applications of Subset Simulation (Au & Beck 2001, Au & Beck 2003b). 

However, it should be noted that in most cases Eq. (12) tends to underestimate the true 

coefficient of variation of 𝑃̂𝑓.  

3.  MCMC for Subset Simulation 

3.1 Principles of MCMC 

As discussed in Section 2, Subset Simulation applies MCMC sampling to sample from 

each conditional PDF 𝜑𝑛(𝐮|𝐹𝑗). Here we summarize the basic principle of MCMC for 

sampling from 𝜑𝑛(𝐮|𝐹𝑗), starting with a brief introduction of the basic theory of Markov 

chains. For a more detailed discussion, the reader is referred to (Tierney 1994, Besag et 

al. 1995). 
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Let us define a stationary discrete-time vector random process {𝐔𝑡, 𝑡 ∈ ℕ} with marginal 

PDF 𝜑𝑛(𝐮|𝐹𝑗), which possesses the Markov property: 

Pr (𝐔𝑛+1 ∈ 𝐴| ⋂ 𝐔𝑡 = 𝐮𝑡
𝑡≤𝑛

) = Pr(𝐔𝑛+1 ∈ 𝐴|𝐔𝑛 = 𝐮𝑛) (13) 

where 𝐴 is any event in the outcome space of 𝐔𝑡. That is, the conditional distribution of 

𝐔𝑛+1  given 𝐔1, 𝐔2, … , 𝐔𝑛  depends only on 𝐔𝑛 . The process {𝐔𝑡 , 𝑡 ∈ ℕ}  is called a 

stationary Markov chain. The conditional density 𝑝(𝐯|𝐮)  that defines the transition 

between two subsequent states 𝐔𝑛 and 𝐔𝑛+1 is called transition PDF. Since the process is 

stationary, the transition PDF must also be stationary, i.e. it does not depend on 𝑡. The 

joint PDF of a stationary Markov chain can be completely defined by its marginal 

distribution and its stationary transition distribution. The transition PDF 𝑝(𝐯|𝐮) satisfies: 

𝜑𝑛(𝐯|𝐹𝑗) = ∫ 𝑝(𝐯|𝐮)𝜑𝑛(𝐮|𝐹𝑗) 𝑑𝐮
𝐮∈ℝ𝑛

 (14) 

Equation (14) ensures that 𝜑𝑛(𝐮|𝐹𝑗) is the stationary (or invariant) distribution of the 

Markov process 𝐔𝑡. It is easy to see that Eq. (14) will always be satisfied if the following 

so-called reversibility condition is fulfilled: 

𝑝(𝐯|𝐮)𝜑𝑛(𝐮|𝐹𝑗) = 𝑝(𝐮|𝐯)𝜑𝑛(𝐯|𝐹𝑗) (15) 

MCMC methods produce samples of a distribution by simulating states of a stationary 

Markov process whose marginal distribution is the desired distribution. This can be 

achieved by simulating every new state of the process from a transition PDF 𝑝(𝐯|𝐮) that 

satisfies the reversibility condition of Eq. (15). Starting from a state that may or may not 

be distributed according to the target distribution, the Markov chain will asymptotically 

converge to the target (stationary) distribution, provided that the chain is aperiodic and 

irreducible (e.g. see Tierney 1994, Rubinstein & Kroese 2007). It is relatively easy to 

ensure satisfaction of the latter conditions for most MCMC algorithms; one needs to 

choose a transition PDF which assigns non-zero probability of remaining at the same 

state (aperiodicity) and non-zero probability of entering any set in the state space in a 

finite number of steps (irreducibility). The transient period that is required until the 

Markov chain approximately reaches its stationary state is termed burn-in period. 
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Moreover, the generated samples will be correlated according to the correlation of the 

Markov process which will depend on the particular choice of 𝑝(𝐯|𝐮). 

In the context of Subset Simulation, MCMC sampling is applied at subset 𝑗 + 1 to sample 

𝜑𝑛(∙ |𝐹𝑗) through simulating states of Markov chains using as starting points (or ‘seeds’) 

the samples {𝐮𝑗
(𝑘)

: 𝑘 = 1, … , 𝑁𝑠}  that fell in 𝐹𝑗  at subset 𝑗 . Since all seeds 𝐮𝑗
(𝑘)

 are 

distributed according to 𝜑𝑛(∙ |𝐹𝑗), the chains have already reached their stationary states 

at the beginning and no burn-in period is necessary. All states of the Markov chains will 

be distributed according to the target distribution 𝜑𝑛(∙ |𝐹𝑗). This property of MCMC 

sampling in the context of Subset Simulation is termed perfect sampling and has been 

discussed in (Au et al. 2011, Zuev et al. 2012). 

3.1.1 Metropolis-Hastings algorithm 

The Metropolis-Hastings (M-H) algorithm (Metropolis et al. 1953, Hastings 1970) is the 

most widely used MCMC method for sampling from distributions that are difficult to 

sample from directly. The M-H algorithm for sampling from 𝜑𝑛(𝐮|𝐹𝑗) uses a transition 

PDF 𝑝(𝐯|𝐮) defined as follows: 

 𝑝(𝐯|𝐮) = 𝑎(𝐮, 𝐯)𝑞(𝐯|𝐮) + (1 − 𝑟(𝐮))𝛿𝐮(𝐯) (16) 

where 𝑞(𝐮|𝐯) is called proposal PDF, 𝛿𝐮(𝐯) is the Dirac mass at 𝐮, 𝑎(𝐮, 𝐯) is defined as: 

𝑎(𝐮, 𝐯) = min {1,
𝜑𝑛(𝐯|𝐹𝑗) 𝑞(𝐮|𝐯)

𝜑𝑛(𝐮|𝐹𝑗) 𝑞(𝐯|𝐮)
} (17) 

and 

𝑟(𝐮) = ∫ 𝑎(𝐮, 𝐯)𝑞(𝐯|𝐮) 𝑑𝐯
𝐯∈ℝ𝑛

. (18) 

To generate a sample of the new state 𝐔𝑛+1 conditional on the current state 𝐔𝑛 = 𝐮, a 

candidate state 𝐯 is generated from the proposal PDF 𝑞(⋅ |𝐮). The candidate is accepted 

with probability 𝑎(𝐮, 𝐯) and the chain moves to 𝐔𝑛+1 = 𝐯. Otherwise, the candidate state 

is rejected and the chain remains at 𝐔𝑛+1 = 𝐮. According to Eq. (16), the probability that 

the Markov chain remains in its current state is 1 − 𝑟(𝐮).  
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It can be shown that the transition PDF of Eq. (16) satisfies the reversibility condition 

independent of the choice of the proposal PDF (Hastings 1970, Tierney 1994). If the 

proposal PDF has the symmetry property, i.e. 𝑞(𝐯|𝐮) = 𝑞(𝐮|𝐯), the algorithm reduces to 

the original Metropolis sampler (Metropolis et al. 1953). Inserting Eq. (5) into Eq. (17), 

and noting that 𝐼𝐹𝑗
(𝐮) = 1, since the current state of the chain already follows the target 

distribution, one obtains: 

𝑎(𝐮, 𝐯) = min {1,
𝜑𝑛(𝐯) 𝑞(𝐮|𝐯)

𝜑𝑛(𝐮) 𝑞(𝐯|𝐮)
𝐼𝐹𝑗

(𝐯)} 

= min {1,
𝜑𝑛(𝐯) 𝑞(𝐮|𝐯)

𝜑𝑛(𝐮) 𝑞(𝐯|𝐮)
} 𝐼𝐹𝑗

(𝐯) =  𝑎̃(𝐮, 𝐯)𝐼𝐹𝑗
(𝐯) 

(19) 

The above shows that the acceptance probability of the M-H algorithm for sampling from 

𝜑𝑛(𝐮|𝐹𝑗)  in the context of Subset Simulation can be expressed as a product of the 

acceptance probability for sampling from 𝜑𝑛(𝐮)  and the indicator function of 𝐹𝑗 . 

Therefore, the M-H algorithm can be applied in two steps; first, a sample of 𝜑𝑛(⋅) is 

generated by application of the M-H sampler with proposal PDF 𝑞(⋅ |𝐮) and acceptance 

probability 𝑎̃(𝐮, 𝐯); second, the sample is accepted if it lies in 𝐹𝑗 , otherwise the chain 

remains in its current state. Let the current state of the Markov chain be 𝐮0. The transition 

from the state 𝐮0 to the next state 𝐮1 of the M-H algorithm for sampling from 𝜑𝑛(𝐮|𝐹𝑗) 

is as follows: 

 

M-H algorithm for sampling from 𝜑𝑛(𝐮|𝐹𝑗) 

1. Generate candidate sample 𝐯 from 𝜑𝑛(⋅) 

a. Generate a pre-candidate 𝛏 by sampling from the PDF 𝑞(∙ |𝐮0) 

b. Accept or reject 𝛏 

𝐯 = {
𝛏, with prob. 𝑎̃(𝐮0, 𝛏)

𝐮0,         with prob. 1 − 𝑎̃(𝐮0, 𝛏)
  

where 

𝑎̃(𝐮0, 𝛏) = min {1,
𝜑𝑛(𝛏) 𝑞(𝐮0|𝛏)

𝜑𝑛(𝐮0) 𝑞(𝛏|𝐮0)
}  



 13 

2. Accept or reject 𝐯 

𝐮1 = {
𝐯,       𝐯 ∈ 𝐹𝑗

𝐮0,       𝐯 ∉ 𝐹𝑗
  

 

 

3.1.2 Acceptance rate of the M-H in high dimensions 

As discussed in (Au & Beck 2001, Schuëller et al. 2004, Katafygiotis & Zuev 2008), the 

M-H algorithm becomes inefficient for high dimensional problems. This is due to the fact 

that the probability that the pre-candidate is rejected in step 1 increases rapidly with 

increasing number of random variables 𝑛. This will lead to many repeated samples and 

hence to an increased correlation of the Markov chain. To illustrate this, consider the case 

where a pre-candidate state 𝛏  is generated by a random walk with proposal PDF 

𝑞(𝛏|𝐮0) = 𝜑𝑛(𝛏 − 𝐮0) = ∏ 𝜑(𝜉𝑖 − 𝑢0𝑖)𝑛
𝑖=1 . That is, the proposal PDF is chosen as the 𝑛-

dimensional independent standard normal PDF centered at the current state 𝐮0. We can 

then compute the mean acceptance rate of the pre-candidate as follows: 

𝑟̃(𝐮0) = E𝛏[𝑎̃(𝐮0, 𝛏)] = ∫ min {1,
𝜑𝑛(𝛏) 

𝜑𝑛(𝐮0) 
} 𝜑𝑛(𝛏 − 𝐮0)𝑑𝛏

ℝ𝑛

 

= ∫ 𝜑𝑛(𝛏 − 𝐮0)𝑑𝛏
|𝛏|≤|𝐮0|

+ ∫
𝜑𝑛(𝛏) 

𝜑𝑛(𝐮0) 
𝜑𝑛(𝛏 − 𝐮0)𝑑𝛏

|𝛏|>|𝐮0|

 

= ∫ 𝜑𝑛(𝛏 − 𝐮0)𝑑𝛏
|𝛏|≤|𝐮0|

+
1

2
𝑛
2

exp (
|𝐮0|2

4
) ∫ 𝜑𝑛 (𝛏 −

1

2
𝐮0;

1

2
𝐈) 𝑑𝛏

|𝛏|>|𝐮0|

 

= 𝑃(|𝐮0|2; 𝑛; |𝐮0|2) +
1

2
𝑛
2

exp (
|𝐮0|2

4
) [1 − 𝑃 (2|𝐮0|2; 𝑛;

|𝐮0|2

2
)] 

(20) 

where 𝑃(𝑥; 𝑛; 𝜆) is the CDF of the noncentral chi-squared distribution with 𝑛 degrees of 

freedom and noncentrality parameter 𝜆. 𝑃(𝑥; 𝑛; 𝜆) can be evaluated through the following 

expression: 

𝑃(𝑥; 𝑛; 𝜆) =
𝑒−(𝑥+𝜆)/2𝑥𝑛/2−1

2𝑛/2
∑

(𝜆𝑥)𝑗

22𝑗𝑗! Γ (𝑗 +
𝑛
2)

∞

𝑗=0
  (21) 
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In Figure 1, the mean acceptance rate of the pre-candidate state of the M-H algorithm is 

plotted against the dimension of the random variable space 𝑛 for different values of the 

distance of the current state from the origin |𝐮0|. The figure illustrates the fast decay of 

the acceptance rate with increase of 𝑛, implying a fast increase of the probability of 

repeated candidates. 

The performance of the M-H algorithm in sampling from high dimensional distributions 

can be improved through application of an adaptive proposal PDF that is continuously 

modified to match a target acceptance rate (Andrieu & Thoms 2008). However, for most 

M-H variants the optimal acceptance rate in high dimensions is remarkably low. For 

example, in the random walk M-H with proposal PDF 𝑞(𝛏|𝐮0) = 𝜑𝑛(𝛏 − 𝐮0; 𝜎2𝐈), the 

optimal parameter 𝜎 for sampling from a multivariate distribution with i.i.d. components 

is found for a mean acceptance rate of 0.234 in the limit case where 𝑛 → ∞  (Roberts et 

al. 1997). This result is approximately valid for dimensions as low as 6 (Gelman et al. 

1996). For dimension 𝑛 = 1, the optimal acceptance rate of the random walk M-H is 

0.44. This result will become relevant later. 

 

 

 

Figure 1: Mean acceptance rate of the original M-H algorithm applied to sampling from the 

independent standard normal distribution, as a function of the number of random variables 𝑛. 
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3.1.3 Measures of efficiency of the M-H 

To further understand the performance of the M-H algorithm in high dimensions, it is 

useful to discuss criteria by which optimality can be measured. Optimality is usually 

defined in terms of some diffusion velocity measure that expresses how fast the Markov 

chain converges to ergodic moment estimates (Roberts et al. 1997). Consider for example 

the sample mean 𝑈̅ of a one-dimensional Markov chain 𝑈𝑡 . In (Gelman et al. 1996), 

efficiency is measured by the factor with which the asymptotic variance of 𝑈̅ needs to be 

multiplied to obtain the same variance as with independent sampling. This measure is an 

increasing function of the reciprocal of the integral of the autocorrelation function of 𝑈𝑡, 

implying that maximizing the efficiency is equivalent to minimizing the correlation of the 

chain. When sampling from a distribution with 𝑛 i.i.d. components, the same measure can 

be applied to an arbitrary component of the Markov chain. This efficiency measure has its 

asymptotic optimal value at 0.331/𝑛 in the independent random walk M-H (Gelman et 

al. 1996), indicating that the efficiency of the algorithm decreases fast with increasing 𝑛.  

In the context of Subset Simulation, the M-H algorithm is applied to estimate each 

conditional probability Pr(𝐹𝑗|𝐹𝑗−1) , 𝑗 = 2, … , 𝑀 . With this in mind, a measure of 

efficiency of the M-H can be defined as the factor by which the variance of the estimate 

𝑃̂𝑗 of Pr(𝐹𝑗|𝐹𝑗−1) needs to be multiplied to obtain the same variance under independent 

sampling. Using the asymptotic estimate of the variance of 𝑃̂𝑗 discussed in Section 2.1, 

we define the following efficiency measure: 

𝑒𝑓𝑓𝛾 = (1 + 𝛾𝑗)
−1

 (22) 

where 𝛾𝑗 is given in Eq. (10). The factors 𝛾𝑗 were also used in (Zuev et al. 2012) to obtain 

optimal acceptance rates of the component-wise M-H, as will be discussed in Section 3.4.  

3.2 Existing approaches based on the M-H sampler 

This section discusses approaches proposed for MCMC sampling for estimation of the 

conditional probabilities for Subset Simulation based on the M-H algorithm. The methods 

discussed here aim at maintaining the acceptance rate of the pre-candidate state of the 
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chain generated during the M-H transition at acceptable levels even for high dimensional 

problems.  

3.2.1 Component-wise M-H 

The component-wise or modified M-H algorithm was proposed by Au & Beck (2001) for 

sampling from high dimensional conditional distributions in the context of Subset 

Simulation. The method differs from the original M-H algorithm in the generation of the 

candidate state. That is, instead of using a 𝑛-dimensional proposal PDF, each coordinate 

𝜉𝑖  of the pre-candidate 𝛏 is generated from a one-dimensional proposal PDF 𝑞𝑖(∙ |𝑢0𝑖) 

that depends on the 𝑖-th coordinate 𝑢0𝑖 of the current state. This step is equivalent to the 

single component M-H algorithm or M-H within Gibbs algorithm (Haario et al. 2005) for 

sampling from independent multivariate distributions. The method as described in (Au & 

Beck 2001) requires that the random variable space be independent, however 

independence is achieved by the transformation of the original random variable space to 

the 𝐔-space. It is noted however that the principle of the method can also be applied to 

multivariate conditional distributions for which a full probabilistic description is available 

without the need for a transformation to an independent space (Haario et al. 2005). The 

algorithm is summarized as follows: 

 

Component-wise M-H algorithm for sampling from 𝜑𝑛(𝐮|𝐹𝑗) (Au & Beck 2001) 

1. Generate candidate sample 𝐯 = (𝑣1, ⋯ , 𝑣𝑛) from 𝜑𝑛(⋅). For each 𝑖 = 1, … , 𝑛 

a. Generate a pre-candidate 𝜉𝑖 by sampling from the PDF 𝑞𝑖(∙ |𝑢0𝑖) 

b. Accept or reject 𝜉𝑖 

𝑣𝑖 = {
𝜉𝑖, with prob. 𝑎̃𝑖(𝑢0𝑖, 𝜉𝑖)

𝑢0𝑖 ,         with prob. 1 − 𝑎̃𝑖(𝑢0𝑖 , 𝜉𝑖)
  

where 

𝑎̃𝑖(𝑢0𝑖, 𝜉𝑖) = min {1,
𝜑(𝜉𝑖) 𝑞𝑖(𝑢0𝑖|𝜉𝑖)

𝜑(𝑢0𝑖) 𝑞𝑖(𝜉𝑖|𝑢0𝑖)
}  

2. Accept or reject 𝐯 
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𝐮1 = {
𝐯,       𝐯 ∈ 𝐹𝑗

𝐮0,       𝐯 ∉ 𝐹𝑗
  

 

Due to the independence of the random vector 𝐔, the component-wise M-H algorithm 

satisfies the reversibility condition independent of the choice of the one-dimensional 

proposal PDF – see (Au & Beck 2001, Zuev et al. 2012) for the corresponding proof. Au 

& Beck (2001) report that the performance of the algorithm is insensitive to the choice of 

the proposal distribution and suggest to choose 𝑞𝑖(∙ |𝑢0𝑖) as the uniform PDF centered at 

𝑢0𝑖 with width of 2. Alternative choices of the spread of the proposal PDF based on the 

statistics of the samples conditional on 𝐹𝑗 are discussed in (Au et al. 2010, Miao & Ghosn 

2011). Au et al. (2010) suggested accounting for the relative influence of each parameter 

by choosing the variance of the proposal PDF as the sample variances of the components 

of the seeds at each subset level. Miao & Ghosn (2011) proposed to further scale these 

sample variances taking as scaling factor 2.382, which results in the optimal variance of 

the proposal PDF of the M-H algorithm for target distributions with i.i.d. components 

(Gelman et al. 1996). However, as discussed in (Zuev et al. 2012) and in Section 3.4 of 

this paper, the optimal scaling factor for sampling the conditional normal distribution 

differs considerably from the scaling factor that optimizes the efficiency for sampling 

high dimensional target distributions.  

It is noted that the probability of repeated candidates in each dimension of the 

component-wise M-H algorithm is non-zero and depends on the one-dimensional 

proposal PDF. However, since each component moves independently, the probability of 

having repeated candidates simultaneously in all components decreases geometrically 

with increasing number of random variables 𝑛 . Hence, the method is suitable for 

application to high-dimensional problems.  

3.2.2 M-H with repeated generation of pre-candidate states 

A different approach for overcoming the low acceptance rate of the original M-H 

algorithm was proposed by Santoso et al. (2011). In this method, the candidate state is 

generated through a repeated generation of pre-candidate samples until acceptance of the 
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pre-candidate is achieved. Hence, the algorithm avoids the generation of repeated 

candidates by ensuring that the pre-candidate is always accepted, independent of the 

dimension of the random variable space. The resulting update of the Markov chain is as 

follows: 

 

M-H algorithm with repeated generation for sampling from 𝜑𝑛(𝐮|𝐹𝑗) (Santoso et al. 

2011) 

1. Generate candidate sample 𝐯 from 𝜑𝑛(⋅) 

a. Generate a pre-candidate 𝛏 by sampling from the PDF 𝑞(∙ |𝐮0) 

b. Accept or reject 𝛏 

𝐯 = {
𝛏, with prob. 𝑎̃(𝐮0, 𝛏)

𝐮0,         with prob. 1 − 𝑎̃(𝐮0, 𝛏)
  

where 

𝑎̃(𝐮0, 𝛏) = min {1,
𝜑𝑛(𝛏) 𝑞(𝐮0|𝛏)

𝜑𝑛(𝐮0) 𝑞(𝛏|𝐮0)
}  

c. If 𝛏 is rejected go to a. 

2. Accept or reject 𝐯 

𝐮1 = {
𝐯,       𝐯 ∈ 𝐹𝑗

𝐮0,       𝐯 ∉ 𝐹𝑗
  

 

This approach is inspired by the M-H with delayed rejection (Tierney & Mira 1999), 

however in the latter method the acceptance probability of the pre-candidate sample is 

updated in each re-generation in order to guarantee the satisfaction of the reversibility 

condition. The method of Santoso et al. (2011) does not allow for an analytical 

expression of the transition PDF, hence satisfaction of the reversibility condition cannot 

be verified analytically. Santoso et al. (2011) evaluated the transition PDF numerically 

for a one-dimensional truncated normal distribution using a uniform proposal PDF and 

showed that the reversibility condition is approximately satisfied. However, because of 

the approximate nature, the stationary distribution generated with this algorithm will 

differ from the target distribution. This is illustrated in Figure 2, where the CDF of the 
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one-dimensional truncated normal distribution with different normalizing constants is 

compared to the empirical CDF from 104 samples using a uniform proposal PDF with 

width of 2. 

 

(a) 

 

(b) 

 

 

Figure 2: Empirical CDF of the M-H with repeated generation of pre-candidate states against 

target CDF of the Markov chain for the one-dimensional truncated normal distribution with 

probability normalizing constant (a) 10−1 and (b) 10−3.  

 

3.2.3 Component-wise M-H with delayed rejection of the candidate state 

As discussed earlier, a repeated generation of pre-candidate states requires that the 

acceptance probability is adapted to account for the fact that earlier samples were 

rejected. This procedure is called delayed rejection and was developed by Tierney & 

Mira (1999) for application to Bayesian statistics. Miao & Ghosn (2011) applied this 

approach in combination with the component-wise M-H algorithm, leading to the 

following updating procedure with the two proposal PDFs 𝑞1𝑖 and 𝑞2𝑖:  

 

M-H algorithm with delayed rejection of the candidate for sampling from 𝜑𝑛(𝐮|𝐹𝑗) 

(Miao & Ghosn 2011) 

1. Generate candidate sample 𝐯 from 𝜑𝑛(⋅). For each 𝑖 = 1, … , 𝑛 

a. Generate a pre-candidate 𝜉1𝑖 by sampling from the PDF 𝑞1𝑖(∙ |𝑢0𝑖) 
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b. Accept or reject 𝜉1𝑖 

𝑣𝑖 = {
𝜉1𝑖, with prob. 𝑎̃1𝑖(𝑢0𝑖 , 𝜉1𝑖)
𝑢0𝑖 ,         with prob. 1 − 𝑎̃1𝑖(𝑢0𝑖, 𝜉1𝑖)

  

where 

𝑎̃1𝑖(𝑢0𝑖 , 𝜉1𝑖) = min {1,
𝜑(𝜉1𝑖) 𝑞1𝑖(𝑢0𝑖|𝜉1𝑖)

𝜑(𝑢0𝑖) 𝑞1𝑖(𝜉1𝑖|𝑢0𝑖)
}  

c. If 𝜉1𝑖 was rejected, generate 𝜉2𝑖 by sampling from the PDF 𝑞2𝑖(∙ |𝑢0𝑖, 𝜉1𝑖 ) 

d. Accept or reject 𝜉2𝑖 

𝑣𝑖 = {
𝜉2𝑖, with prob. 𝑎̃2𝑖(𝑢0𝑖 , 𝜉1𝑖, 𝜉2𝑖)
𝑢0𝑖 ,         with prob. 1 − 𝑎̃2𝑖(𝑢0𝑖 , 𝜉1𝑖, 𝜉2𝑖)

  

where 

𝑎̃2𝑖(𝑢0𝑖 , 𝜉1𝑖, 𝜉2𝑖)

= min {1,
𝜑(𝜉2𝑖)𝑞1𝑖(𝜉1𝑖|𝜉2𝑖)𝑞2𝑖(𝑢0𝑖|𝜉2𝑖, 𝜉1𝑖 )[1 − 𝑎̃1𝑖(𝜉2𝑖, 𝜉1𝑖)]

𝜑(𝑢0𝑖)𝑞1𝑖(𝜉1𝑖|𝑢0𝑖)𝑞2𝑖(𝜉2𝑖|𝑢0𝑖, 𝜉1𝑖 )[1 − 𝑎̃1𝑖(𝑢0𝑖, 𝜉1𝑖)]
} 

 

2. Accept or reject 𝐯 

𝐮1 = {
𝐯,       𝐯 ∈ 𝐹𝑗

𝐮0,       𝐯 ∉ 𝐹𝑗
  

 

 

The algorithm allows for the second proposal PDF to depend not only on the current state 

of the chain but also on the rejected pre-candidate. It can be shown that the method 

satisfies the reversibility condition independent of the choice of the two proposal PDFs 

(Tierney & Mira 1999). The method will reduce the chain correlation, since fewer 

repeated pre-candidates will occur, however its benefit over the component-wise M-H 

algorithm is limited to low-dimensional problems. For high-dimensional problems, the 

acceptance rate of the component-wise M-H algorithm is high already for the first pre-

candidate.  
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In addition to the delayed rejection, the algorithm proposed in (Miao & Ghosn 2011) 

incorporates adaptive regeneration steps in conjunction with the component-wise M-H 

for the generation of the candidate state. Regeneration techniques (Mykland et al. 1996, 

Gilks et al. 1998) are based on restarting the Markov chain at random stopping times and 

have been developed to overcome the burn-in problem of M-H samplers as well as to 

provide means for applying independent variance estimates of quantities of interest. 

However, as pointed out in (Au et al. 2011) in response to the approach proposed in 

(Miao & Ghosn 2011), MCMC sampling in the context of Subset Simulation does not 

suffer a burn-in problem, since the seeds of each Markov chain follow the target 

distribution by construction. Therefore, the regeneration steps proposed in (Miao & 

Ghosn 2011) are not further discussed here. 

In the algorithm described above, the concept of delayed rejection is applied to the 

generation of the candidate state, i.e. before the limit-state function is evaluated to check 

whether the sample lies in 𝐹𝑗. The same concept can also be applied at the second step of 

M-H algorithms. For example, assuming that a repeated sample is obtained through the 

original M-H algorithm, delayed rejection would yield a new candidate sample whose 

acceptance probability would be evaluated by appropriately adjusting Eq. (17) to keep the 

target distribution unchanged. Zuev & Katafygiotis (2011) combined this concept with 

the component-wise generation and proposed an algorithm for delayed rejection of the 

sample obtained after acceptance/rejection of the candidate state that is suitable for 

application to high-dimensional problems. In their approach, if the candidate state is 

rejected, the accepted components of the pre-candidate state are re-sampled from a 

different one-dimensional proposal PDF and accepted or rejected with a suitable 

acceptance probability. The method reduces the chain correlation and hence decreases the 

variance of probability estimate, however it requires additional limit-state function 

evaluations as compared to the approaches discussed in this paper and is not further 

examined here. 
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3.3 Conditional sampling in U-space 

In the previous section, existing algorithms were discussed that attempt to obtain high 

acceptance rates of the pre-candidate state of the M-H sampler. In this section, we 

introduce a new MCMC algorithm for sampling from 𝜑𝑛(∙ |𝐹𝑗), which yields candidates 

𝐯 that always differ from their current state.  

In the first step of the M-H sampler for Subset Simulation, a candidate 𝐯 is sampled from 

the independent joint Gaussian PDF 𝜑𝑛(∙), conditional on the previous sample 𝐮0. We 

impose that 𝐯  and 𝐮0  are jointly Gaussian with component-wise cross-correlation 

coefficient 𝜌𝑖 . That is, 𝐯 and 𝐮0 are Gaussian with zero mean vectors, their covariance 

matrices are equal to the unit diagonal matrix 𝐈 and their cross-covariance matrix 𝐑 is a 

diagonal matrix with 𝑖th diagonal term equal to 𝜌𝑖. Hence, the conditional PDF of 𝐯 given 

𝐮0  will be the multivariate normal distribution with mean vector 𝐑𝐮0  and covariance 

matrix 𝐈 − 𝐑𝐑T, which is the 𝑛-dimensional independent normal distribution whose 𝑖th 

component has mean value 𝜌𝑖𝑢0𝑖  and standard deviation (1 − 𝜌𝑖
2)1/2. It is possible to 

directly sample from this distribution, thus avoiding the generation of repeated candidates 

through rejection of pre-candidate states. This leads to the following updating scheme: 

 

Conditional sampling for sampling from 𝜑𝑛(𝐮|𝐹𝑗) 

1. Generate candidate sample 𝐯 = (𝑣1, ⋯ , 𝑣𝑛) from 𝜑𝑛(⋅).  

For each 𝑖 = 1, … , 𝑛, generate 𝑣𝑖 from the normal distribution with mean 

𝜌𝑖𝑢0𝑖 and standard deviation √1 − 𝜌𝑖
2 

2. Accept or reject 𝐯 

𝐮1 = {
𝐯,       𝐯 ∈ 𝐹𝑗

𝐮0,       𝐯 ∉ 𝐹𝑗
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It is noted that the above algorithm assumes that each component 𝑣𝑖 of the candidate state 

is independent of the components 𝑢0𝑗 of the actual state for all 𝑖 ≠ 𝑗. The algorithm can 

be generalized for arbitrary cross-correlation matrices 𝐑 that model possible dependence 

between any of the components of the actual and candidate states. In this case, the 

algorithm needs to be modified such that the candidate state 𝐯 is generated from the 𝑛-

dimensional distribution 𝜑𝑛(𝐯 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T), which denotes the multivariate standard 

Gaussian distribution with argument 𝐯 − 𝐑𝐮0  and correlation matrix 𝐈 − 𝐑𝐑T . The 

transition PDF defining the transition from the state 𝐮0 to 𝐮1 by means of this algorithm 

satisfies the reversibility condition of Eq. (15). Therefore, the stationary distribution of 

the transition will be the conditional normal 𝜑𝑛(∙ |𝐹𝑗). A detailed proof of the above is 

given in Appendix A. 

Since we eventually sample from the conditional normal distribution 𝜑𝑛(∙ |𝐹𝑗), a small 

correlation between the components of the actual and the candidate state does not imply a 

small correlation of the final samples. This is due to the fact that a small 𝜌𝑖 will lead to 

many rejected samples in the second step, which will lead to a large correlation among 

the resulting samples. On the other hand, a 𝜌𝑖 close to one will increase the acceptance 

rate but will lead to a larger correlation of the newly generated samples. Section 3.4 

comments on the optimal choice of the parameters 𝜌𝑖.  

Besides its simplicity, the advantage of this approach lies with the fact that the candidate 

state is always accepted, without compromising the stationary distribution of the chain. In 

fact, the algorithm can be understood as a special case of the M-H sampler with proposal 

distribution obtained by conditioning the joint normal distribution consisting of two 

independent standard normal random vectors with component-wise cross correlation 

coefficients 𝜌𝑖. Evaluating the acceptance probability 𝑎̃(𝐮0, 𝐯) in Eq. (19), one sees that 

both the numerator and denominator in the fraction equal the joint PDF of 𝐮0 and 𝐯, and 

consequently 𝑎̃(𝐮0, 𝐯) equals unity. Therefore, the algorithm can be perceived as an M-H 

sampler for sampling from 𝜑𝑛(∙ |𝐹𝑗) with acceptance probability of the pre-candidate 

equal to 1. It is noted that this proposal distribution has been used for sampling Gaussian 

process prior models (e.g. Neal 1998). 
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3.4 Adaptive MCMC with optimal scaling 

The performance of the conditional sampling algorithm presented in Section 3.3 depends 

on the choice of the correlation parameters 𝜌𝑖 between each component of the actual and 

the candidate state. Similarly, the performances of the M-H algorithms discussed in 

Section 3.2 depend on the choice of the variance of the proposal PDF. A large variance 

(resp. small 𝜌𝑖) will lead to many rejected candidates and a small variance (resp. large 𝜌𝑖) 

to a high correlation between states. The performance of the MCMC algorithms can be 

enhanced by adaptively adjusting the respective parameter during the simulation, 

employing intermediate results. One approach is to design an adaptive scheme that 

minimizes a measure of efficiency such as the one introduced in Eq. (22) (e.g. Pasarica & 

Gelman 2010). This approach has the disadvantage that the efficiency measure cannot 

always be computed reliably using only a subset of the MCMC samples. Alternatively, 

one can attempt suboptimal adaptation through a proxy that is computationally tractable. 

A proxy that is most often used in practice is the expected acceptance probability of the 

MCMC algorithm, see (Andrieu & Thoms 2008) and references therein. An advantage of 

this approach is that theoretical results on optimal acceptance probabilities exist for some 

classes of target distributions (Roberts et al. 1997, Roberts & Rosenthal 1998).  

The acceptance rate of MCMC algorithms for sampling from 𝜑𝑛(𝐮|𝐹𝑗) with acceptance 

rate of the pre-candidate equal to 1 depends only on whether or not the candidate state 

lies on the failure domain. The latter depends on the limit-state function value of the 

candidate state. That is, MCMC sampling from 𝜑𝑛(𝐮|𝐹𝑗) with acceptance of the pre-

candidate equal to 1  is equivalent to sampling a target one-dimensional conditional 

distribution, i.e. the limit-state function conditional on the domain 𝐹𝑗. It has been shown 

that the optimal acceptance probability of the M-H algorithm for sampling one-

dimensional distributions is in some situations (e.g. normal target distributions) 

approximately 0.44 (Roberts et al. 1997, Roberts & Rosenthal 2001). 

We investigate the effect of the parameter 𝜌𝑖 of the conditional sampling method on the 

efficiency of the generated Markov chain. 𝜌𝑖  is selected identically for all dimensions. 
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The performance of the method is assessed in terms of the efficiency measure 𝑒𝑓𝑓𝛾 , 

defined in Eq. (22). Figure 3 plots 𝑒𝑓𝑓𝛾 against the mean acceptance rate 𝑎̂, computed as 

the average number of accepted samples divided by the length of each chain, for the 

limit-states of Example 1 (linear limit-state) and Example 2 (convex and concave limit-

states) introduced later in Section 4. The number of random variables in all examples is 

chosen equal to 100. The curves are plotted for different subset levels 𝑗. The value of the 

intermediate conditional probability 𝑝0 is set to 0.1 for both examples and the number of 

samples per level 𝑁 is set to 1000. Based on the results from this numerical experiment, 

we conjecture that the result of (Roberts et al. 1997) is approximately optimal for the 

conditional sampling method for Subset Simulation, i.e. the optimal acceptance rate of 

the algorithm is close to 0.44. Moreover, this optimal acceptance rate agrees with the 

results presented in (Zuev et al. 2012), who varied the variance of the proposal PDF of 

the component-wise M-H algorithm and evaluated the resulting 𝛾𝑗  and the acceptance 

rate of the algorithm. As discussed earlier, minimizing the factors 𝛾𝑗  corresponds to 

maximizing the efficiency measure given in Eq. (22). Zuev et al. (2012) report that the 

factors 𝛾𝑗 are rather flat at the optimal acceptance rate, which lies between 0.3 and 0.5. 

Based on the above results, we propose to adjust the parameters 𝜌𝑖  of the conditional 

sampling method on the fly such that the acceptance probability remains close to the 

optimal value of 0.44. At subset 𝑗 + 1 of Subset Simulation, one needs to obtain samples 

of 𝜑𝑛(∙ |𝐹𝑗) through simulating 𝑁𝑠 Markov chains using as seeds the samples {𝐮𝑗
(𝑘)

: 𝑘 =

1, … , 𝑁𝑠} that fell in 𝐹𝑗 at subset 𝑗. The idea of the adaptive procedure is to perform the 

simulation in steps. At each step, a fraction 𝑁𝑎 of the 𝑁𝑠 chains are simulated applying 

the conditional sampling algorithm with the same parameters 𝜌𝑖 for all chains. For the 

simulation of the next 𝑁𝑎 chains, the parameters 𝜌𝑖 are adjusted based on the estimated 

acceptance probability of the previous 𝑁𝑎  chains. Importantly, the seeds for the 

simulation of each 𝑁𝑎 chains are chosen at random (without replacement) from the total 

𝑁𝑠 seeds, in order to impose a uniform velocity on average over the chain distribution. 

This is necessary to maintain the asymptotic unbiasedness of the Subset Simulation 

estimator.  



 26 

 

 

Figure 3: Chain efficiency 𝑒𝑓𝑓𝛾 in terms of average acceptance rate 𝑎̂ of the conditional sampling 

method, evaluated for the limit states of Example 1(linear), 2a (convex) and 2b (concave) with 

100 random variables for subset levels 𝑗 = 2, … ,7 
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The adaptation is performed by selecting an appropriate standard deviation of the 

proposal distribution 𝜎𝑖, which is related to the 𝜌𝑖 parameter of the conditional sampling 

algorithm by 𝜎𝑖 = √1 − 𝜌𝑖
2 . It proceeds as follows: A set of starting values of the 

standard deviations of the proposal distribution 𝜎0𝑖, 𝑖 = 1, … , 𝑛, are chosen.  Moreover, an 

initial scaling parameter 𝜆1 ∈ (0,1) is selected. The number of chains 𝑁𝑎 after which the 

proposal distribution will be adapted is selected such that 𝑁𝑠/𝑁𝑎  is a positive integer 

number.  Adaptation is performed for 𝑖𝑡𝑒𝑟 = 1, … , 𝑁𝑠/𝑁𝑎. At each adaptation step 𝑖𝑡𝑒𝑟, 

the standard deviation of the proposal distribution of each component 𝜎𝑖  is computed 

through scaling the starting value 𝜎0𝑖 by 𝜆𝑖𝑡𝑒𝑟. However, each 𝜎𝑖 cannot be larger than the 

standard deviation of the corresponding random variable, which equals 1.0. Hence, 𝜎𝑖 is 

adapted at each step 𝑖𝑡𝑒𝑟 through: 

𝜎𝑖 = min(𝜆𝑖𝑡𝑒𝑟𝜎0𝑖, 1.0) (23) 

Then 𝑁𝑎  seeds are chosen at random from {𝐮𝑗
(𝑘)

: 𝑘 = 1, … , 𝑁𝑠}  and the conditional 

sampling algorithm is applied to simulate each corresponding Markov chain with 

parameters 𝜌𝑖 chosen as: 

𝜌𝑖 = √1 − 𝜎𝑖
2 (24) 

The average acceptance rate of the chains is then evaluated by: 

𝑎̂𝑖𝑡𝑒𝑟 =
1

𝑁𝑎
∑ Ê𝛏 [𝑎(𝐮𝑗

(𝑘)
)]

𝑁𝑎

𝑘=1

 (25) 

where Ê [𝑎(𝐮𝑗
(𝑘)

)] is the average accepted samples of the chain with seed 𝐮𝑗
(𝑘)

. The 

scaling parameter 𝜆𝑖𝑡𝑒𝑟 is then updated using the following recursive relation (Haario et 

al. 2001): 

log 𝜆𝑖𝑡𝑒𝑟+1 = log 𝜆𝑖𝑡𝑒𝑟 + 𝜁𝑖𝑡𝑒𝑟[𝑎̂𝑖𝑡𝑒𝑟 − 𝑎∗] (26) 

where 𝑎∗ is the optimal acceptance rate chosen as 0.44. 𝜁𝑖𝑡𝑒𝑟  is a positive real number 

which ensures that the variation of 𝜆𝑖𝑡𝑒𝑟 vanishes. A possible choice is 𝜁𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟−1/2. 

Alternatively, 𝜁𝑖𝑡𝑒𝑟  can also be chosen adaptively (Andrieu & Thoms 2008). Eq. (26) 
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ensures that if the acceptance rate of the chain is smaller than 0.44 then the variance of 

each one-dimensional conditional normal distribution is decreased (resp. the correlation 

parameter 𝜌𝑖 is increased) and if it is larger than 0.44 the variance is increased (resp. 𝜌𝑖 is 

decreased). 

 

We now discuss the choice of the starting values 𝜎0𝑖 of the standard deviations of the 

conditional sampling algorithm. One possible choice is a constant 𝜎0𝑖 for all dimensions, 

e.g. 𝜎0𝑖 = 1.0 , 𝑖 = 1, … , 𝑛 , which results in the same correlation parameter 𝜌𝑖  for all 

random variables. This choice is appropriate for problems with a large number of random 

variables with approximately identical influence on the limit-state function. Alternatively, 

the values 𝜎0𝑖 can be chosen as the sample variances of the components of the seeds at 

each subset level (Au et al. 2010). It is reminded that, at subset level 𝑗 + 1, the Markov 

chains are simulated using as seeds the samples {𝐮𝑗
(𝑘)

: 𝑘 = 1, … , 𝑁𝑠} that fell in 𝐹𝑗+1 at 

subset 𝑗. The sample mean 𝜇̂𝑖 and sample standard deviation 𝜎̂𝑖 of each component 𝑖 of 

the seeds are computed through: 

𝜇̂𝑖 =
1

𝑁𝑠
∑ 𝑢𝑗𝑖

(𝑘)

𝑁𝑠

𝑘=1

 (27) 

and 

𝜎̂𝑖
2 =

1

𝑁𝑠 − 1
∑(𝑢𝑗𝑖

(𝑘)
− 𝜇̂𝑖)

2
𝑁𝑠

𝑘=1

 (28) 

Random variables with small 𝜎̂𝑖 have large influence on the limit-state function at the 

current threshold level; conversely the influence of random variables with large 𝜎̂𝑖  is 

negligible. Choosing the starting values of the adaptive conditional sampling algorithm as 

𝜎0𝑖 = 𝜎̂𝑖, 𝑖 = 1, … , 𝑛, we ensure that variables with large influence will move locally with 

a high correlation parameter 𝜌𝑖, while variables with negligible influence will move with 

𝜌𝑖 ≈ 0. This allows accounting for the relative influence of the random variables; at the 

same time, the adaptive scaling of Eq. (23) makes sure that the acceptance rate is kept 

close to the optimal value of 0.44. However, in cases where it is known that all random 
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variables have similar influence on the limit-state function, using the sample standard 

deviations as starting values of the adaptive algorithm might introduce noise that can 

undermine the performance of the algorithm. In such cases, a constant choice of the 

parameters in each dimension is preferable. 

The adaptive conditional sampling algorithm is summarized as follows: 

 

Adaptive conditional sampling for generating 𝑁  samples from 𝜑𝑛(𝐮|𝐹𝑗)  at subset 

step 𝑗 + 1 of the Subset Simulation 

Define: 𝑁𝑎  (number of chains to consider for adaptation) and 𝜆1  (initial scaling 

parameter). 

Initialize 

1. Choose the starting values of the standard deviations 𝜎0𝑖. Proceed with either step 

1a. or 1b. 

a. Set 𝜎0𝑖 = 1, 𝑖 = 1, … , 𝑛 

b. Compute the sample means 𝜇̂𝑖 and sample standard deviations 𝜎̂𝑖 of each 

component 𝑖 of the samples {𝐮𝑗−1
(𝑘)

: 𝑘 = 1, … , 𝑁𝑠} that fell in 𝐹𝑗 at subset 𝑗, 

applying Eqs. (26) and (27). Set 𝜎0𝑖 = 𝜎̂𝑖, 𝑖 = 1, … , 𝑛 

2. Permute randomly the seeds {𝐮𝑗−1
(𝑘)

: 𝑘 = 1, … , 𝑁𝑠}. 

Iterations 

3. Repeat for 𝑖𝑡𝑒𝑟 = 1, … , 𝑁𝑠/𝑁𝑎 

a. Compute the correlation parameters 𝜌𝑖 of the conditional sampling method 

through Eqs. (22) and (23). 

b. Repeat for 𝑘 = (𝑖𝑡𝑒𝑟 − 1)𝑁𝑎 + 1, … , 𝑖𝑡𝑒𝑟 ⋅ 𝑁𝑎 

Starting from 𝐮𝑗
((𝑘−1)/𝑝0+1) 

= 𝐮𝑗−1
(𝑘)

, generate 1/𝑝0 − 1  states  

{𝐮𝑗
((𝑘−1)/𝑝0+𝑡) 

: 𝑡 = 2, … ,1/𝑝0} of a Markov chain with stationary 

PDF 𝜑𝑛(𝐮|𝐹𝑗) applying the conditional sampling algorithm with 

𝜌𝑖 as computed in a.  

c. Evaluate the average acceptance rate 𝑎̂𝑖𝑡𝑒𝑟  of the last 𝑁𝑎  chains through 

Eq. (25). 
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d. Compute the new scaling parameter 𝜆𝑖𝑡𝑒𝑟+1 through Eq. (26). 

 

 

The parameter 𝑁𝑎  defines the frequency of the updating of the scaling parameter. 

Experience has shown that a choice of 𝑁𝑎 = 𝑝𝑎𝑁𝑠  where 𝑝𝑎 ∈ [0.1,0.2] , gives good 

results. The initial value of the scaling parameter 𝜆1 = 0.6 is a good choice for the first 

subset level. For each of the subsequent levels, the initial value of the scaling parameter 

should be chosen as the final value that was obtained in the previous level. It is noted that 

the random choice of the seeds (step 2 above) is an essential part of the algorithm, since it 

ensures that the obtained probability estimate remains asymptotically unbiased.  

The adaptive conditional sampling algorithm can be further extended to account for the 

correlation of the samples at each intermediate failure domain. To this end, step 1b can be 

modified such that the covariance matrix 𝚺0 is set equal to the sample covariance matrix 

𝚺̂ of the samples that fell in 𝐹𝑗 at subset 𝑗. Then, in step 3a the covariance of the proposal 

distribution is evaluated as 𝚺 = 𝜆𝑖𝑡𝑒𝑟𝚺0, with 𝜆𝑖𝑡𝑒𝑟  updated through Eq. (26). Samples 

from 𝜑𝑛(𝐮|𝐹𝑗) can then be generated in step 3b through application of the conditional 

sampling algorithm with candidate state generated from 𝜑𝑛(𝐯 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T) . The 

cross-correlation matrix 𝐑 needs to be evaluated such that the covariance matrix of the 

proposal density is equal to 𝚺. It is shown in Appendix B that this requirement leads to: 

𝐑 = ∑ √𝜃𝑖

𝑛

𝑖=1

𝐜𝑖𝐜𝑖
T (29) 

where {𝜃𝑖 , 𝐜𝑖} are the eigenvalues and corresponding eigenvectors of the matrix 𝐈 − 𝚺. It 

is only possible to apply Eq. (29) if the matrix 𝐈 − 𝚺 is positive-semi definite. If this 

requirement does not hold, this matrix can be replaced with its “nearest” positive-semi 

definite matrix (e.g. Hayes & Hill 1981).  

It is noted that this modification of the adaptive conditional sampling algorithm is mostly 

applicable to low- or moderate-dimensional problems, for which covariance information 

with a number of samples in the order of 𝑝0𝑁 can be extracted. 
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4.  Numerical evaluation 

This section demonstrates the performance of the MCMC algorithms for Subset 

Simulation presented with four examples involving many random variables. In the first 

two examples, we investigate the performance with linear and nonlinear limit-states. The 

third example is a quadratic limit-state function wherein two random variables have a 

larger influence on the failure probability. The last example is a numerical limit-state 

function that depends on the solution of a diffusion equation in a one-dimensional spatial 

domain by application of the finite element method. The parameters of Subset Simulation 

are chosen as 𝑁 = 1000 and 𝑝0 = 0.1 for all examples. 

4.1 Example 1 

The first example consists of a limit-state function expressed as a linear function of 

independent standard normal random variables (Engelund & Rackwitz 1993): 

𝑔1(𝐔) = −
1

√𝑛
∑ 𝑈𝑖

𝑛

𝑖=1

+ 𝛽 (30) 

where 𝐔 is a 𝑛-dimensional standard normal random vector. The probability of failure for 

this limit-state function is Φ(−𝛽) independent of the dimension 𝑛 , where Φ(∙) is the 

standard normal CDF.  

We use this example to examine the influence of the number of random variables on the 

performance of the MCMC algorithms. Figures 4 and 5 show the relative bias and 

coefficient of variation of the probability estimate as a function of the number of random 

variables obtained by Subset Simulation employing the MCMC algorithms reviewed in 

Section 3.2 as well as the conditional sampling algorithm presented in Section 3.3. The 

results are plotted for two different target failure probabilities, namely 10−2 and 10−4. 

For the conditional sampling algorithm (CS), the correlation parameter was chosen as 0.8 

for all components. For the component-wise M-H (CWM-H) the proposal distribution is 

chosen as the normal distribution centered at the current state with unit standard 

deviation. The same distribution is chosen for both proposal distributions for the 
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component-wise M-H with delayed rejection (CWM-HwDR). In both the CWM-H and 

CWM-HwDR, the same proposal distributions were chosen for all components. For the 

M-H with repeated generation (M-HwRG), the proposal distribution was chosen as the 𝑛-

dimensional independent standard normal distribution centered at the current state. The 

statistics are computed from 500 independent simulation runs. 

In Figure 4, it is shown that M-HwRG produces biased probability estimates and the bias 

tends to increase with increasing number of random variables and decreasing probability 

of failure. This is because the M-HwRG satisfies the reversibility condition only 

approximately and therefore the samples will not follow the target distribution, as was 

also demonstrated in Figure 2. On the other hand, the rest of the examined MCMC 

algorithms give essentially unbiased estimates, since they all satisfy the reversibility 

condition and hence the samples produced follow the target distribution of the Markov 

chains. 

Figure 5 shows that all methods give similar coefficient of variation for dimension larger 

than 5 , while CS and M-HwRG give smaller coefficient of variation than the other 

methods in low dimensions. It should be noted that the algorithms with acceptance rate of 

the pre-candidate less than one (CWM-H and CWM-HwDR) require fewer limit-state 

function evaluations, since for rejected pre-candidates the limit-state function does not 

need to be computed to check whether the sample lies on the failure domain. Overall, the 

number of model evaluations for achieving the same target coefficient of variation is 

similar for all methods and at any dimension 𝑛. 
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(a) 𝑃𝑓 = 10−2  

 

(b) 𝑃𝑓 = 10−4 

 

 

Figure 4: Relative bias of estimator 𝑃̂𝑓  from 500 independent simulation runs for Example 1; 

influence of the number of random variables. (a) 𝑃𝑓 = 10−2 and (b) 𝑃𝑓 = 10−4. 

 

 

(a) 𝑃𝑓 = 10−2 

 

(b) 𝑃𝑓 = 10−4 

 

 

Figure 5: Coefficient of variation 𝛿 of the probability estimates evaluated from 500 independent 

simulation runs for Example 1; influence of the number of random varialbes. (a) 𝑃𝑓 = 10−2 and 

(b) 𝑃𝑓 = 10−4. 

 

Comparing CWM-HwDR with CWM-H, one observes that delayed rejection of the pre-

candidate is relevant only for low dimensional problems. For dimensions higher than 5, 

the two algorithms have similar performance. Since the focus of the paper is high 
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dimensional problems, CWM-HwDR and M-HwRG (which additionally has a strong 

bias) are not further examined. 

In the following, we fix the number of random variables at 𝑛 = 100 and compare the 

performance of the CS and CWM-H with the one of the adaptive CS (aCS) algorithm 

presented in Section 3.4. Figure 6 shows the coefficient of variation of the probability 

estimate against decreasing target failure probabilities. For aCS we apply a constant 

𝜎0𝑖 = 1.0 , for all 𝑖 = 1, … , 𝑛 , and the number of chains after which adaptation is 

performed is chosen as 𝑁𝑎 = 10. It is shown that the adaptive algorithm performs better 

than both CS and CWM-H for all values of the target failure probability. The difference 

is more significant for small failure probabilities; at large probabilities the chosen 

parameters of CS and CWM-H are close to the optimal ones.  

 

 

 

 

Figure 6: Coefficient of variation 𝛿 of the probability estimates evaluated from 500 independent 

simulation runs plotted against varying target failure probabilities for Example 1 with 𝑛 = 100. 
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4.2 Example 2 

The limit-state function of the second example is a linear function of a vector 𝐗  of 

independent exponentially distributed random variables with parameter 𝜆 = 1 (Fujita & 

Rackwitz 1988). We consider two different linear functions of 𝐗: 

𝑔2𝑎(𝐗) = 𝐶𝑎 − ∑ 𝑋𝑖

𝑛

𝑖=1

 (31) 

and 

𝑔2𝑏(𝐗) = −𝐶𝑏 + ∑ 𝑋𝑖

𝑛

𝑖=1

 (32) 

The functions are highly nonlinear in 𝐔-space, due to the marginal transformation of each 

component of 𝐗. The function 𝑔2𝑎  has convex safe domain while the function 𝑔2𝑏 has 

concave safe domain in the 𝐔-space (Engelund & Rackwitz 1993). The probability of 

failure for 𝑔2𝑎 is 1 − 𝐹𝑦(𝐶𝑎), where 𝑌 = ∑ 𝑋𝑖
𝑛
𝑖=1  is a Gamma distributed random variable 

with shape parameter 𝑛 and scale parameter 𝜆 = 1. The probability of failure of 𝑔2𝑏 is 

𝐹𝑦(𝐶𝑏). We choose 𝑛 = 100 for both limit-state functions and vary the thresholds 𝐶𝑎 and 

𝐶𝑏.  

Figure 7 shows the coefficient of variation of the Subset Simulation estimator obtained 

with CS, aCS and CWM-H for the two nonlinear limit-states of Eqs. (29) and (30) and for 

varying target failure probabilities. The selected parameters of the methods are the same 

as in Example 1. It is shown that the adaptive algorithm performs better than the other 

two for both limit-states and all target failure probabilities. The difference is larger for the 

concave limit-state, which requires larger scaling of the parameter of the conditional 

sampling algorithm to achieve the optimal acceptance rate as compared to the convex 

limit-state. Also, it is noted that the adaptive algorithm has the same performance for both 

limit-states indicating that the method is not sensitive to the shape of the failure domain.  
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(a) Convex limit-state 

 

(b) Concave limit-state 

 

 

Figure 7: Coefficient of variation 𝛿 of the probability estimates evaluated from 500 independent 

simulation runs plotted against varying target failure probabilities for Example 2 with 𝑛 = 100. 

(a) convex limit-state function 𝑔2𝑎 and (b) concave limit-state function 𝑔2𝑏.  

 

4.3 Example 3 

The third example is constructed by adding a quadratic term to the limit-state of Example 

1: 

𝑔3(𝐔) = −
1

√𝑛
∑ 𝑈𝑖

𝑛

𝑖=1

+ 𝛽 +
𝜅

4
(𝑈1 − 𝑈2)2 (33) 

Here 𝜅 is the principle curvature at the design point, i.e. the failure point with largest 

probability density (Ditlevsen & Madsen 1996). A larger curvature will lead to a smaller 

failure probability. For a fixed curvature, the probability of failure is the same, 

independent of 𝑛. The exact probability of failure can be expressed as the following 

function of 𝛽 and 𝜅: 

𝑃𝑓 = ∫ ∫ 𝜑 (−𝑥 +
1

2
𝜅𝑣2) 𝜑(𝑣)𝑑𝑣

∞

𝑣=−∞

𝑑𝑥
−𝛽

𝑥=−∞

 (34) 

For this example, we again fix the number of random variables at 𝑛 = 100 and vary the 

target failure probability through varying 𝛽 for three different choices of the principle 

curvature, namely 𝜅 = 1 , 𝜅 = 5  and 𝜅 = 10 . For a small curvature the limit-state 
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function of Eq. (33) becomes almost linear in 𝑈1 and 𝑈2 and therefore these two random 

variables have similar influence on the probability of failure than the remaining random 

variables. Conversely, for a large curvature, 𝑈1 and 𝑈2 dominate the limit-state function 

and the influence of the remaining random variables becomes negligible. 

 

We study the performance of the following versions of the CS and CWM-H algorithms: 

The version of CS with a constant correlation parameter chosen as 𝜌𝑖 = 0.8, 𝑖 = 1, … , 𝑛; 

the adaptive CS with constant starting values (aCSa) chosen as 𝜎0𝑖 = 1.0, 𝑖 = 1, … , 𝑛; the 

adaptive CS with starting values taken as the sample standard deviations of the seeds of 

each subset level (aCSb); the CWM-H with proposal distribution chosen as the normal 

PDF centered at the current state with unit standard deviation; the CWM-H with the same 

proposal distribution but with standard deviation of each component taken as the sample 

standard deviation of the components of the seeds at each subset level (CWM-Hsig), as 

suggested in (Au et al. 2010). The coefficient of variation obtained for varying failure 

probabilities and the three selected values of the principle curvature 𝜅  are plotted in 

Figure 8. 

 

Comparing CS with its adaptive variants, we see that both variants aCSa and aCSb give 

smaller coefficients of variation at all target failure probabilities and all values of the 

curvature 𝜅. The adaptive algorithms have similar performance for the case where 𝜅 = 1 

for which all random variables have similar influence on the limit-state function. As 𝜅 

increases, and consequently the relative influence of the first two variables on the limit-

state increases, the performance of the adaptive algorithm aCSb that accounts for the 

relative influence of the random variables becomes better than the one of aCSa that 

adopts the same starting values for all random variables. The same can be observed when 

comparing CWM-H with CWM-Hsig: the latter algorithm, which adapts the variance of 

each component based on the sample variance of the seeds at each subset level, performs 

better than the former that uses a constant variance. Moreover, the gain in performance of 

CWM-Hsig as compared to CWM-H is more pronounced in larger curvatures. However, 
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the adaptive algorithm aCSb performs better than CWM-Hsig, because the former 

additionally ensures that the acceptance rate is close to the optimal value of 0.44. 

 

 

 

(a) 𝜅 = 1 

 

(b) 𝜅 = 5 

 

(c) 𝜅 = 10 

 

 

 

Figure 8: Coefficient of variation 𝛿 of the probability estimates evaluated from 500 independent 

simulation runs plotted against varying target failure probabilities for Example 3 with 𝑛 = 100. 

(a) 𝜅 = 1 (b) 𝜅 = 5 (c) 𝜅 = 10.  
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4.4 Example 4 

We examine an example whose limit-state function depends on the numerical solution of 

a partial differential equation. Consider the linear elliptic equation –
𝑑

𝑑𝑧
(𝑎

𝑑𝑣

𝑑𝑧
) = 1 , 

𝑧 ∈ [0,1], with boundary conditions 𝑣(0) = 0 and 
𝑑𝑣

𝑑𝑧
|

𝑧=1
= 0. Linear elliptic equations 

are applied to describe several physical phenomena, such as heat conduction or linear 

elasticity. Here 𝑎 is a homogeneous random field with lognormal marginal distribution, 

mean value 𝜇𝑎 = 1 and standard deviation 𝜎𝑎 = 0.1. The autocorrelation function of ln 𝑎 

is 𝜌ln 𝑎(𝑧1, 𝑧2) = exp (−
|𝑧1−𝑧2|

𝑙
)  with a correlation length 𝑙 = 0.01 . The spatial 

discretization of the boundary value problem is done by 100  piecewise linear finite 

elements. The natural logarithm of the random field ln 𝑎 is represented by its truncated 

Karhunen-Loève (K-L) expansion (Ghanem & Spanos 1991), which takes the following 

form: 

ln 𝑎 = 𝜇ln 𝑎 + 𝜎ln 𝑎 ∑ √𝜃𝑖𝜒𝑖(𝑧)𝑈𝑖

𝑛

𝑖=1

 (35) 

where {𝜃𝑖 , 𝜒𝑖} are the eigenpairs of 𝜌ln 𝑎, which are known analytically for the applied 

exponential correlation model (Ghanem & Spanos 1991), and 𝑈𝑖, 𝑖 = 1, … , 𝑛,  are 

independent standard normal random variables. Here we use 𝑛 = 200, which captures 

90% of the variability of ln 𝑎. The failure event is defined as 𝑣(1) exceeding a threshold 

𝑣𝑚𝑎𝑥 , with corresponding limit-state function 𝑔4 = 𝑣𝑚𝑎𝑥 − 𝑣(1). The constant 𝑣𝑚𝑎𝑥 is 

chosen to achieve a fixed probability of failure 𝑃𝑓. 
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Figure 9: Coefficient of variation 𝛿 of the probability estimates evaluated from 500 independent 

simulation runs plotted against varying target failure probabilities for Example 4. 

 

 

Figure 9 compares the coefficient of variation of the probability estimate obtained by CS, 

aCS and CWM-H for varying 𝑣𝑚𝑎𝑥  and corresponding target failure probabilities. The 

correlation parameter for CS and proposal PDF for CWM-H are chosen as in Examples 1 

and 2. Due to the small correlation length of the random field, the eigenvalues of 𝜌ln 𝑎 

decay slowly and hence a large part of the random variables in the K-L expansion will 

have considerable influence on the limit-state function. We therefore choose a constant 

𝜎0𝑖 = 1.0 , for all 𝑖 = 1, … , 𝑛 , for the aCS method. The figure shows that the aCS 

performs better than CS and CWM-H. In this example, the particular choice of the 

proposal distribution of the CWM-H algorithm (normal PDF centered on current state 

with unit variance) leads to poor performance for small failure probabilities. On the other 

hand, the chosen correlation parameter of the CS algorithm (𝜌𝑖 = 0.8) seems to be a good 

choice for all examples considered. 
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5.  Conclusion 

This paper reviewed existing MCMC methods for Subset Simulation and proposed a new 

method that is based on sampling from a conditional normal distribution. The basic 

version of the new approach is simpler and performs better than the other methods in low 

dimensional problems, since it accepts all candidate states of the Markov chain without 

compromising the target distribution of the chain. In high-dimensional problems, the new 

method, together with all other algorithms that increase the first level acceptance rate, has 

a similar performance as the component-wise M-H algorithm, which was originally 

proposed for Subset Simulation. In addition, an adaptive variant of the conditional 

sampling method is proposed, which adjusts the correlation parameter of the method on 

the fly, based on the chain acceptance rate. This adaptive approach also allows 

accounting for the relative influence of each random variable, based on the statistics of 

the seeds of the Markov chains at each failure level. Numerical examples demonstrated 

that the proposed adaptive conditional sampling method significantly improves the 

performance of the standard conditional sampling and appears to outperform all reviewed 

existing MCMC methods for Subset Simulation, without increasing the computational 

cost. 
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Appendix A 

In this Appendix, we show that the algorithm proposed in Section 3.3 results in a Markov 

chain with stationary distribution 𝜑𝑛(∙ |𝐹𝑗). Let 𝐮0, 𝐮1 be subsequent states of the chain 

generated with this algorithm. Following Eq. (16), the transition PDF 𝑝(𝐮1|𝐮0) defining 

the transition between 𝐮0 and 𝐮1 is given by: 
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𝑝(𝐮1|𝐮0) = 𝜑𝑛(𝐮1 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T)𝐼𝐹𝑗
(𝐮1) + (1 − 𝑟(𝐮0))𝛿𝐮0

(𝐮1) (36) 

where 𝐑 is the cross-correlation matrix between the actual and the candidate state, 𝛿𝐮0
(∙) 

is the Dirac mass at 𝐮0  and 𝑟(𝐮0)  is the acceptance probability of the candidate, 

evaluated by: 

𝑟(𝐮0) = ∫ 𝜑𝑛(𝐯 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T)𝐼𝐹𝑗
(𝐯)𝑑𝐯

𝐯∈ℝ𝑛

 (37) 

As discussed in Section 3.3, a possible choice of the matrix 𝐑 is the diagonal matrix, with 

𝑖th diagonal entry equal to 𝜌𝑖. To show that 𝜑𝑛(∙ |𝐹𝑗) is the stationary distribution of the 

chain, it suffices to show that the transition PDF 𝑝(𝐮1|𝐮0)  satisfies the reversibility 

condition of Eq. (15), repeated here for convenience: 

𝑝(𝐮1|𝐮0)𝜑𝑛(𝐮0|𝐹𝑗) = 𝑝(𝐮0|𝐮1)𝜑𝑛(𝐮1|𝐹𝑗) (38) 

If the above equation is satisfied and the actual state 𝐮0 follows 𝜑𝑛(∙ |𝐹𝑗), then the PDF 

𝜋(∙) of 𝐮1 is also equal to 𝜑𝑛(∙ |𝐹𝑗):  

𝜋( 𝐮1) = ∫ 𝑝(𝐮1|𝐮0)𝜑𝑛(𝐮0|𝐹𝑗) 𝑑𝐮0
𝐮0∈ℝ𝑛

 

= ∫ 𝑝(𝐮0|𝐮1)𝜑𝑛(𝐮1|𝐹𝑗) 𝑑𝐮0
𝐮0∈ℝ𝑛

 

= 𝜑𝑛(𝐮1|𝐹𝑗) ∫ 𝑝(𝐮0|𝐮1) 𝑑𝐮0
𝐮0∈ℝ𝑛

 

= 𝜑𝑛(𝐮1|𝐹𝑗) 

(39) 

We now need to show that the transition defined by Eq. (36) satisfies the reversibility 

condition of Eq. (15). Since all Markov chain samples lie in 𝐹𝑗, it is sufficient to consider 

transition between states in 𝐹𝑗 . If the candidate state is rejected and hence the chain 

remains in its current state, i.e. 𝐮1 = 𝐮0, then compliance with Eq. (38) is trivial. Hence, 

one only needs to consider the case where the candidate state is accepted. In this case, 

transition between 𝐮0  and 𝐮1  is defined by the transition between the current and the 
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candidate state, given by the density 𝜑𝑛(𝐮1 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T). Therefore, it suffices to 

show that: 

𝜑𝑛(𝐮1 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T)𝜑𝑛(𝐮0|𝐹𝑗) = 𝜑𝑛(𝐮0 − 𝐑𝐮1; 𝐈 − 𝐑𝐑T)𝜑𝑛(𝐮1|𝐹𝑗) (40) 

Substituting Eq. (5) in the above and using the fact that 𝐮0, 𝐮1 ∈ 𝐹𝑗 , Eq. (40) can be 

written as: 

𝜑𝑛(𝐮1 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T)𝜑𝑛(𝐮0) = 𝜑𝑛(𝐮0 − 𝐑𝐮1; 𝐈 − 𝐑𝐑T)𝜑𝑛(𝐮1) (41) 

To demonstrate the validity of Eq. (41), we introduce the 2𝑛 -dimensional Gaussian 

random vector 𝐔  with joint PDF 𝜑2𝑛(𝐮 ; 𝚺). 𝐔  has zero mean vector and covariance 

matrix 𝚺 given by: 

𝚺 = [
𝐈 𝐑

𝐑T 𝐈
] (42) 

Let 𝐔0, 𝐔1  be 𝑛-dimensional random vectors such that 𝐔 = [𝐔0 𝐔1]T . Then both 𝐔0 

and 𝐔1 will have marginal PDF 𝜑𝑛(∙), while the conditional PDF of 𝐔0 given 𝐔1 will be 

𝜑𝑛(𝐮0 − 𝐑𝐮1; 𝐈 − 𝐑𝐑T) and the conditional distribution of 𝐔1 given 𝐔0 will be 𝜑𝑛(𝐮1 −

𝐑𝐮0; 𝐈 − 𝐑𝐑T). Therefore, the joint PDF of 𝐔 can be expressed as: 

𝜑2𝑛(𝐮 ; 𝚺) = 𝜑𝑛(𝐮1 − 𝐑𝐮0; 𝐈 − 𝐑𝐑T)𝜑𝑛(𝐮0) 

= 𝜑𝑛(𝐮0 − 𝐑𝐮1; 𝐈 − 𝐑𝐑T)𝜑𝑛(𝐮1) 
(43) 

The above shows that Eq. (41) is satisfied, which proves that 𝜑𝑛(∙ |𝐹𝑗) is the stationary 

distribution of the Markov chain generated by Eq. (36). 

 

Appendix B 

In this Appendix, we show that if the covariance of the proposal density of the 

conditional sampling algorithm is given as 𝚺, then the cross-correlation matrix between 

the actual and the candidate state 𝐑 can be evaluated through Eq. (29), provided that the 

matrix 𝐈 − 𝚺  is positive-semi definite. Given the covariance matrix of the proposal 

density, the cross-correlation matrix 𝐑 can be evaluated by requiring that 

𝐑𝐑T = 𝐈 − 𝚺  (44) 
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The matrix 𝐑 is positive-semi definite, being a covariance matrix, and hence adheres the 

spectral decomposition 

𝐑 = ∑ 𝜃𝑖
𝐑

𝑛

𝑖=1

𝐜𝑖
𝐑(𝐜𝑖

𝐑)
T

 (45) 

where {𝜃𝑖
𝐑, 𝐜𝑖

𝐑}  are 𝑛 pairs of non-negative eigenvalues and orthonormal eigenvectors. 

Noting that the matrix 𝐑 is symmetric and hence 𝐑T = 𝐑: 

𝐑𝐑T = ∑ ∑ 𝜃𝑖
𝐑

𝑛

𝑗=1

𝜃𝑗
𝐑𝐜𝑖

𝐑(𝐜𝑖
𝐑)

T
𝑛

𝑖=1

𝐜𝑗
𝐑(𝐜𝑗

𝐑)
T

 (46) 

From the orthonormality of the eigenvectors it follows that (𝐜𝑖
𝐑)

T
𝐜𝑗

𝐑 = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 

denotes the Kronecker delta. Substituting into Eq. (46), one gets 

𝐑𝐑T = ∑(𝜃𝑖
𝐑)

2
𝐜𝑖

𝐑(𝐜𝑖
𝐑)

T
𝑛

𝑖=1

 (47) 

From Eqs. (44) and (47) it is seen that if the matrix 𝐈 − 𝚺 is positive-semi definite, then 

its eigenpairs {𝜃𝑖 , 𝐜𝑖} can be expressed in terms of the eigenpairs of 𝐑 as 𝜃𝑖 = (𝜃𝑖
𝐑)

2
 and 

𝐜𝑖 = 𝐜𝑖
𝐑. Therefore, applying Eq. (45), we can express 𝐑 as: 

𝐑 = ∑ √𝜃𝑖

𝑛

𝑖=1

𝐜𝑖𝐜𝑖
T (48) 
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