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Abstract 

In fatigue reliability assessments, the random load process is commonly represented by its 

marginal distribution (load spectrum) only. However, as shown in this paper, the correlation 

characteristics of the load process can have a strong influence on the fatigue reliability and 

should be accounted for. The paper reviews the modeling of random fatigue crack growth under 

variable amplitude loading for reliability analysis. Solutions for fatigue crack growth evaluation 

at different levels of detailing are described and a fatigue crack growth and failure evaluation 

algorithm, based on a discretization of the random stress process, is presented. As an alternative, 

a mean approximation is described. Finally, effective computational methods for assessing the 

fatigue reliability under variable amplitude loading are introduced and applied exemplarily to a 

case study. The solutions are based on the first-order reliability method FORM and the subset 

simulation. Using a Markov process model of the loads, the influence of different types of 

service histories is investigated, by varying the correlation length of the stress cycle process. The 

results show that the correlation length of the load process has significant influence on the 

resulting reliability; the resulting probability of failure can vary up to several orders of 

magnitude for the same marginal probability distribution of stress amplitudes. Based on the 

results of the case study, the influences of the stress process correlation and of the adopted 

failure criteria on the reliability are discussed. The mean approximation and the random variable 

model of the random load process are demonstrated to be applicable under specific conditions.  
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1 Introduction  

The reliability of mechanical and structural components subjected to high cycle fatigue can be 

ensured with a safe-life approach, a damage tolerant design or a fail-safe approach. The safe-life 

approach requires that the fatigue reliability is sufficiently high over the entire service life, which 

is typically achieved by ensuring that no or only small crack growth occurs [1]. Damage tolerant 

design ensures that the component does not fail between inspection intervals with a sufficiently 

high reliability [2]. The fail-safe approach ensures that damages are limited in case of fatigue 

failure. In many applications, the fail-safe approach is ruled out, and it is necessary to 

demonstrate sufficient reliability, with or without inspections. Thereby, the uncertainties in 

fatigue crack growth must be considered, which are associated with the presence and size of 

initial flaws or cracks, the mechanical properties of the material, the fatigue crack growth models 

and its parameters, and the stress sequence. Because of these uncertainties, a deterministic 

fatigue analysis requires large safety factors and leads to a conservative design. This motivates 

the use of reliability analysis for the assessment of fatigue reliability. 

The reliability of components subjected to high cycle fatigue can be evaluated based on a S–N 

damage accumulation approach or a fatigue crack growth evaluation approach. The former is 

based on empirically determined S–N curves and a damage accumulation rule, such as Palmgren-

Miner. Its advantages are its simplicity and the fact that material parameters are available in the 

literature for a range of materials and component designs. Its disadvantages are that the models – 

due to their empirical nature – cannot be extrapolated beyond the range of experiments, and that 

the simplified models lead to significant uncertainty in the predictions, thus necessitating large 

safety margins in the design. Various effects that are known to influence the fatigue life are not 

commonly included in the damage accumulation approach, including the influence of the 

sequence of stress ranges on the fatigue life: fatigue failures are more likely if higher stress 

ranges occur at the beginning of service life and lower stress ranges towards the end, than if they 

occur in reverse [3]. Such effects can be modeled by a fatigue crack growth evaluation approach, 

which is based on combining linear-elastic fracture mechanics with crack growth models. This 

approach, however, has the disadvantage of requiring more detailed model inputs and leads to 

more demanding computations. This holds in particular when a reliability assessment is 

performed, requiring stochastic model inputs and advanced computations. As a consequence, in 

most studies on fatigue reliability using a crack growth approach, the stress amplitudes are either 
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assumed constant or represented by deterministic block sequences. However, these sequences are 

not always representative of the random service load history to which structures are subjected.  

In this paper, effective computational methods for assessing the fatigue reliability under variable 

amplitude loading are presented. To provide the reader practical guidance for various types of 

models, we present solutions for different levels of detailing of the crack growth models, e.g. 

one- and two-dimensional crack growth models, and different failure criteria. The methods are 

applied to a case study considering a pressurized tube, which demonstrates that the assumptions 

on the temporal variability of the loading can lead to differences in the probability of failure of 

up to several orders of magnitude. The common assumptions of constant amplitude loading or 

block sequences are shown to be potentially non-conservative.   

The crack growth models considered in this paper do not explicitly include retardation and 

acceleration effects due to load interaction. These effects can be included, but some of the 

computationally efficient procedures presented in this paper are not applicable, resulting in 

increased computational efforts for problems where retardation and acceleration effects are 

relevant. 

The paper starts out with a detailed introduction to variable amplitude loading. This is followed 

by a step-by-step introduction to the assessment of fatigue crack growth under variable 

amplitude loading for various degrees of crack growth model complexity (Section 3). Section 4 

summarizes the probabilistic modeling of crack growth and section 5 presents the failure criteria 

and proposes efficient modeling strategies for these. Section 6 introduces reliability evaluation 

methods and introduces the algorithms for computing fatigue reliability under variable amplitude 

loading when fatigue loads are modeled as a Markov random process. Finally, section 7 presents 

the numerical investigations of the models, which also illustrates the appropriate selection of the 

presented proposed models and methods under different loading conditions.  

2 Variable amplitude loading  

2.1 Historical background 

Most mechanical and structural components are subjected to variable amplitude loading, also 

called spectrum loading [4], during their service life. In the 1930s, engineers working in 

aeronautics studied the variable amplitude characteristics of stress cycles in-service. 
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Measurements of service loads were carried out and the first load spectra were published by Kaul 

[5]. In 1939, Gassner introduced the first variable amplitude load sequence for testing 

aeronautical structures [6]. Laboratory experiments require simple load sequences, which 

however should be representative of the real service conditions. The Eight-Block-Program Test 

proposed by Gassner is a sequence of loading blocks, now known as “Gassner sequence”. Within 

each block, stress cycles are identical; between blocks, the stress amplitude changes while the 

mean value remains the same. The lengths of the blocks are defined such that stress amplitudes 

follow the Lognormal distribution. The Gassner sequence consists of 8 varying blocks, whose 

sequence is fixed and predetermined. After 8 blocks, the sequence is repeated. This procedure is 

the core of the “Operational fatigue strength” approach to the design of components under 

variable amplitude loading [7][8].  

With the availability of hydraulic testing machines, more realistic load sequences could be 

applied for testing. Such load sequences can be derived from experimental measurements. For 

example, the SAE Fatigue and Evaluation Committee selected test load sequences from existing 

strain measurements [9][10]. Exhaustive information on fatigue testing under variable amplitude 

loading can be found in [11], while a review of the standard load sequences used for fatigue 

testing and on the generation of testing load histories from experimental measurements can be 

found in [12]. 

Lardner [13][14][15] and Rau [16] proposed to model variable amplitude loading by random 

processes. In [13] and [14] an approach for reliability evaluation under random loading is 

described using the crack propagation law proposed in [17]. Rau [16] describes the fatigue crack 

growth as a random process, since it is the consequence of the application of random process 

loads. It is suggested that the propagation of the fatigue crack is independent of the order of 

application of the stress cycles, when the load is a stationary random process and when a high 

number of stress cycles is applied, so that variations due to the order of application of the stresses 

average out.  

At the beginning of the 1970s, Schijve investigated the influence of the load sequence on fatigue 

life [18]. In his study, the effect of the load sequence on crack propagation is investigated by 

performing experiments applying random loading sequence with short and long blocks of cycles. 

It was observed that the random load sequences could lead to fatigue lives that differ from those 

evaluated using laboratory tests with simplified load sequences, demonstrating the importance of 
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appropriately representing the randomness of fatigue loads. According to [18], “the predicted life 

does not depend so much on the sequence, provided that it is random in some way or 

programmed with a short period”, which confirms the findings of [16]. However, simplified 

loading sequences consisting of repeated large blocks may lead to unconservative fatigue life 

predictions due to sequence effects. Following these studies, the need to account for the 

stochasticity of fatigue crack growth under variable loading was recognized. 

2.2 Fatigue load as a random process  

When describing load sequences from experimental load measurements, procedures for 

identifying load cycles from the stress-time history are necessary [19]. Standardized procedures 

reported in [4] are: level-crossing counting, peak counting, simple-range counting and rainflow 

counting. These methods result in a sequence of stress cycles, which are characterized by their 

stress ranges    and stress ratios  , or alternatively by their minimum and maximum stresses 

     and     . Note that the definition of the ordering in which the sequences occur is not 

necessarily unique if the stress process is a broad band process [20]. Statistically, the load 

sequence can be described by the random processes {  ( )  { ( ) , i.e. for every stress cycle   

there is a random variable pair   ( ) and  ( ). Values of   ( ) and  ( ) at different cycles 

will generally be correlated. We limit the discussion to stationary load processes, since the 

assumption of stationarity is sufficient for most relevant applications. To ease notation, we drop 

the index   and denote the processes by {    and {  . 

Under the assumption of a Gaussian copula model (also known as the Nataf distribution model 

[21]), a stationary random process is fully characterized by its marginal distribution and its 

autocovariance function [22]. These can be determined from observed load sequences. 

Alternatives are presented by Markov chain models as reported e.g. in [23][24][25][26]. In 

general, Markov process models – due to their flexibility – can model the real dependence 

structure among stress cycles with higher accuracy. For example, switching Markov models [24] 

can well represent different modes of operations of mechanical systems and structures. However, 

given the uncertainties associated with determining in-service stresses in real structures, the 

Gaussian copula model will be sufficiently accurate for many engineering applications. It is 

pointed out that the marginal distribution of the stress ranges    and stress ratios   is not 

affected by these modeling assumptions.  
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A Gaussian copula type model for fatigue load processes, which is simultaneously a Markov 

process, is described in the following. This model will be applied later for numerical 

investigations, because it has the advantage that the dependence structure is represented by a 

single parameter. For simplicity, only the stress range is modeled as a random process {   , the 

stress ratio   is assumed to be constant. The marginal distribution of   ( ) is defined through its 

cumulative distribution function CDF    .  

Let   ( ) be defined through a transformation  ′ from a standard Normal variate  ( ) as: 

  ( )    ( ( ))     
  ( ( ( )))  

 (1) ) 

where   is the standard Normal CDF and    
   is the inverse CDF of   ( ). If it is imposed that 

 (  ) and  (  ) have the joint Normal distribution, then the corresponding pair of stress ranges 

  (  )  and   (  ) , defined through the transformation in Eq. (1), are said to follow the 

Gaussian copula.  

The autocovariance function of the process {    is described through a corresponding 

autocovariance function     of the underlying standard Normal process {  , which is here 

assumed to be of the exponential type with correlation length  : 

   (  )     [ ( )  (    )]     ( 
  

 
)   (2) ) 

The process {    does not have the same autocorrelation function as the underlying Gaussian 

process {  , however, the difference between the two is generally small.      (  ) is obtained 

from    (  ) by means of the Rosenblatt transformation  [27] or the Nataf transformation [21].  

It can be shown that with the exponential autocovariance function (Eq. (2)), the process {   has 

the Markovian property [28]. Consequently, also the process {    is a Markov process:  

With this model, the dependence among individual stress ranges is characterized solely by the 

correlation length   of Eq. (2). To illustrate the effect of  , Fig. 1 shows three different 

realizations of stress range processes {    with identical marginal distribution but varying 

correlation length. It is pointed out that by varying the correlation length  , the load spectrum is 

   [  (  )|  (    )   (    )      (  )]     [  (  )|  (     )]   (3) ) 
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not changing, i.e. the marginal distribution shown on the left-hand side of Fig. 1 of    is 

unaltered. However, the correlation length can have an effect on the distribution of the observed 

realization. In Fig. 1, the underlying marginal distribution is clearly visible from one realization 

of the process with    , but this is not the case for      , where all stress ranges in the 

considered range   {         are highly correlated.  

 

 

Fig. 1 Three randomly generated sequences of stress ranges   , whose underlying 

random processes have identical marginal distribution but varying correlation 

length  . The marginal distribution of    is shown on the left-hand side.  

In engineering practice, the marginal distribution of   , i.e. the load spectrum, is often 

determined from measured load sequences. Thereby, a correct estimation of this distribution is 

only possible if the measured load sequence is significantly longer than the correlation length. 

This effect is clearly visible in Fig. 1. In the case of    , an empirically determined stress 

range distribution based on the observed load sequence would be very close to the true 

underlying marginal distribution shown on the left hand side of Fig. 1. In contrast, for      , 

the observed load sequence clearly is not representative of the true underlying distribution of   . 

In this case, either a much longer load sequence must be recorded, or several independent shorter 

load sequences must be recorded, e.g. load sequences arising from different missions, and 

combined using the total probability theorem. Alternatively, measurements can be combined 

with or replaced by fatigue load calculations based on statistical models of the load environment, 

such as for offshore and marine structures subject to wave loads.  
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2.2.1 Discretization of the fatigue load process into blocks 

For practical purposes, it is computationally advantageous to approximate the random load 

sequence by blocks of cycles with constant amplitude and stress ratio. Such blocks can be 

defined from the original fatigue load process {    {   by dividing the sequence of cycles into 

blocks of   cycles. To each block  , we assign a stress range     and a stress ratio    that are 

equal to the values of the stress cycle at the mid-point of the block       (    ⁄ ) . Unlike the 

blocks of the Gassner sequence, or similar deterministic load sequences, the loading blocks 

obtained with this method still represent a random process. The resulting stress range process has 

the same marginal distribution     as the original one. The average autocovariance function of 

the block approximation of    is: 

with 

The error in the covariance is small as long as the correlation length is much larger than the 

block size,    . 

Fig. 2 exemplarily illustrates the stress range block sequence corresponding to the realizations of 

the stress ranges shown in Fig. 1, with a block length of 25 cycles. It can be observed that the 

approximation becomes better with increasing correlation length  .   

 

   ̃  ̃(  )       (   )  
      

 
[     (   )       ((   )   ) ]   (4) )

          (
  

 
)  

 (5) ) 
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Fig. 2 Approximated load sequences built as blocks of length 25, superimposed on 

the load sequences shown in Fig. 1. The value of    at each block is equal to 

the mid-point value of the original random process at each block.  

3 Fatigue crack growth evaluation under constant and variable amplitude 

loading 

3.1 Models of fatigue crack growth  

Starting from an initial flaw or notch, cracks will form and grow under cyclic loading. Cracks 

that grow in two directions usually exhibit a near-elliptical or semi-elliptical shape [29] [30]. 

Thereby, the crack front advances in all directions, with coordinates          , as depicted in 

Fig. 3. 

  

Fig. 3 Crack with a near semi-elliptical shape and various cracks advance 

directions, where   is the origin. 

 

Crack growth in any direction    is described by a differential equation expressing the crack 

growth rate 
   

  
 as a function of the stress intensity factor range along the crack front in the    

direction,     
: 



Altamura & Straub (2014)  10/55 

   

  
    

(    
    )   (6) ) 

where   is the stress ratio and   is a set of parameters related to the material properties. For the 

case of the Paris law we have    
(    

  )        
  with parameters   [   ] . More 

advanced models for    
 include: 

 the bilinear crack growth model adopted in BS 7910 [31], [32] , in which the crack 

growth is described with a Paris model and two different slopes are used to describe the 

near-threshold region and the Paris region, respectively:    
        

   and    
    

    

   for     
     ; 

 the Forman-Mettu model [33], which is summarized in Annex A, and which is used in 

the numerical investigations presented later.  

When the stress sequence is characterized by overloads, the so-called retardation effect is 

observed. In the cycles following the overload, a lower crack propagation rate is observed, due to 

the plasticity induced closure caused by a larger plastic zone that is the result of the overload 

[34]. Due to this effect, the rate of fatigue crack growth is known to depend on the order in 

which tensile and compressive overloads are applied [34] and the type of stress sequence has an 

effect on the fatigue life [35], [36]. Following the observation of crack closure by Elber [37], 

[38], several models for crack closure were developed to describe the delaying effects of high 

loads, such as the Wheeler model [39], the Willenborg model [[40], the more realistic strip yield 

model developed by Newman [41] and the partial crack closure model valid in the near-threshold 

region [42].  

The evaluation of fatigue crack growth requires knowledge of the stress intensity factor     
 

along the entire crack front. A large body of research has focused on deriving analytical or 

numerical expressions for     
, including [29], [43], [44], [45], [46]. For certain geometries, 

exact analytical solutions or approximate analytical expressions are available, in other cases 

FEM analysis is necessary, e.g. [47], [48], [49], [50]. 

If the geometry of the crack is approximated by a perfect semi-elliptical or elliptical shape, then 

it is fully described by the semi-lengths of the two axes, called   and  , which correspond to the 

two main growth directions [29], as shown in Fig. 4. In the remainder, we will use this 

approximation. 
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The stress intensity factor ranges in the two directions   or  , denoted by     and    , are a 

function of the geometry of the component, the crack dimensions   and  , and the applied stress 

range      It is distinguished between the membrane stress range,     , and the bending stress 

range,    , which varies along the section. In absence of residual stresses, both components can 

be directly evaluated from a total stress range               [51]. For ease of 

presentation, we only consider   . Therefore, we can write the stress intensity factor range in 

terms of         (        ) and        (        ) and equation (6) can be rewritten 

as follows: 

  

  
   (   (        )    )   (7) ) 

  

  
   (   (        )    )   

 

 (8)  

where: 

- 
  

  
 and 

  

  
 are the crack growth rates in directions   and  ; 

-    and    are the functions describing the crack growth rate; 

-   is the stress ratio; 

-   is a set of parameters describing material properties; 

-   is a set of parameters describing the geometry of the component containing the crack. 

It is reminded that    and    can include threshold effects. If retardation is taken into account, a 

crack closure model with corresponding parameters has to be included in the crack growth rate 

equations. In these cases,    and    are additionally a function of the stresses in previous cycles.  

c

a

c

a

Fig. 4 Scheme of an elliptical and a semi-elliptical crack with semi-axes   and  , 

corresponding to the main growth directions. 
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3.2 Evaluation of fatigue crack growth 

In the following, the evaluation of one- and two-dimensional crack growth under constant and 

variable amplitude loading is presented. The parameters  ,   and   are assumed constant. 

Generally they may be modeled as deterministic or random variables.  

3.2.1 One-dimensional crack growth with constant amplitude loading 

For one-dimensional crack growth, the crack is fully characterized by its depth  , as shown in 

figure 3. Crack growth is thus fully described by Eq. (7). 

With constant amplitude, the crack growth can be evaluated from the boundary condition on the 

initial value of crack depth   . By reformulating Eq. (7) and integrating on both sides, one 

obtains: 

 

 

 

where   is the number of stress cycles to reach a crack depth  . 

Eq. (9) can be solved numerically. For special cases, analytical solutions exist, e.g. for the simple 

Paris law, [19]. If the interest is in finding the crack depth   as a function of the number of stress 

cycles  , a root finding algorithm can be employed; this algorithm requires evaluating the 

integral in Eq. (9) for different values of  . 

3.2.2 Two-dimensional crack growth with constant amplitude loading 

In case of two-dimensional crack growth, the crack is described by its depth   and its width  . 

Crack growth is described by the two coupled differential equations given in Eq. (7)  and (9). 

An approximate solution of these coupled differential equations is obtained through a step-wise 

solution. Let    denote the number of cycles in each step. In the     step, the crack advances 

from   ,   to     ,    . If the ratio of crack depth to width is fixed in each step to (
 

 
)
 
, then the 

two differential equations can be integrated separately, as shown in equations (10) and (11). 

 

  ∫   
  

 

 ∫
  

  (   (      )    )
 

 

  

   (9) ) 
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    ∫   
            

    

 ∫
  

  (   (  (
 
 
)
 
     )     ) 

    

   

     (10) ) 

    ∫   
            

   

  ∫
  

  (   (  (
 
 
)
 
     )     ) 

     

  

    (11) ) 

Note that in the above expressions for the stress intensity factor ranges, the variables   or   

respectively have been replaced by the fixed ratio (
 

 
)
 
. I.e., when computing    , the value of   

is approximated by  (
 

 
)
 

  
, and when computing    , the value of   is approximated by  (

 

 
)
 
. 

In equations (10) and (11), the integrals are evaluated for fixed values of      and     . In order 

to find the crack dimensions after    cycles, an iterative procedure is required. A root-finding 

algorithm is employed to find values of      and      that assure           . 

The above is an approximation due to the assumption of a constant ratio (
 

 
)
 
 within a block. An 

exact solution could only be obtained by cycle-by-cycle evaluation of the increment of   and  , 

which corresponds to setting      in equations (10) and (11), with associated large 

computational efforts. The error of the approximation increases with increasing   .  

The two-dimensional problem could be simplified and reduced to a one-dimensional problem if  
 

 
  were assumed constant throughout the entire process or if a parametric relation between   and 

c were defined as    ( ) [52]. 

3.2.3 One-dimensional crack growth with variable amplitude loading 

With random variable amplitude fatigue loading, the stress range    and the stress ratio   are a 

function of  . Therefore, Eq. (7) is rewritten to: 

 

 

In the following, we first present the evaluation of crack growth described through Eq. (12) for a 

deterministic realization of the stress process {    {  . Thereafter, we describe the solution for a 

random load process {    {   through a first-order approximation. 

 

  

  
   (   (    ( )  )  ( )  )   (12) ) 
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Crack growth evaluation for a deterministic realization of the stress process 

For a given realization of the stress process, 

{(  ̂( )  ̂( ))   (  ̂( )  ̂( ))    (  ̂( )  ̂( ))} , an exact solution can be obtained 

through a cycle-by-cycle calculation. Unfortunately, the cycle-by-cycle calculation is 

computationally expensive for high-cycle fatigue. This holds in particular when the randomness 

of the stress process must be taken into account. 

An approximate solution can be obtained by representing the load sequence with blocks of   

cycles with constant stress amplitude and constant stress ratio, as presented in section 0. The 

crack growth during the  th block     is now obtained from the solution for constant amplitude 

loading given in section 3.2.1, i.e.     is found from the following condition: 

 

 

  

  ̂  and  ̂  are the values of the stress process realization at the midpoint of the  th block.  

Eq. (13) can be used whenever the load is given as a deterministic sequence of stress ranges and 

stress ratio values, as for example in [6], [53], [36], [54], [55]. If the stress process is random, Eq. 

(13) can be used to evaluate the crack growth for realizations of the stress process in a simulation 

approach, as presented later in this paper. The approach of Eq. (13) is also implemented in the 

program AFGROW [56]. Note that Eq. (13) is not suitable when retardation effects are important.  

Mean approximation to the crack growth evaluation for a random stress process 

Crack growth is a cumulative process, in which the contributions of the individual stress cycles 

are added up. This motivates an approximation of the random crack growth process by the mean 

crack growth. This approach has been followed by a number of authors, e.g. [32], [57], [76], [77]. 

The crack growth rate 
  

  
 expressed in equation (12), is approximated by its expected value with 

respect to {    and {  , where the stress range    and the stress ratio R can have any positive 

value: 

  ∫
  

  (   (    ̂   )  ̂   )

      

  

   (13) ) 
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  {   {  [  (   (    ( )  )  ( )  )] 

 ∫ ∫   (   (      )    )     (    )      
 

 

 

 

  

 DisplayText cannot span more than one line!(14)

where       is the joint CDF of   ( ) and  ( ). 

The expected value of the fatigue crack growth rate  {   {  [  (   (    ( )  )  ( )  )], 

does not depend on   if the process is stationary. Therefore, for given distribution of   ( ) and 

 ( ), the crack growth becomes a function of     and   only: 

  

  
  {   {  [  (   (    ( )  )  ( )  )]    

 (     )   (15) ) 

With the mean approximation, crack growth can be evaluated through a direct integration of 

equation (9), where    is replaced by   
 .  

The validity of the mean approximation is based on the following conditions for the stress 

process, which are in agreement with the findings of [16]: 

- Stationarity: the probability distribution of the stress process does not depend on  .  

- Ergodicity: the statistics of the entire process can be deduced from a single realization of 

the process. 

- Sufficiently mixing: the total number of cycles considered   is much larger than the 

correlation length of the process.  

The requirement of a sufficiently mixing stress process will be further substantiated in the 

numerical investigations presented later in the paper. Note that the mean approximation cannot 

account for retardation effects.  

To illustrate the mean approximation, let us consider the original Paris law, which disregards the 

stress ratio  ( ) and has material parameters δ  [   ] and γ   : 

  

  
         ( ( )    ( )  √  )

 
   DisplayText cannot span more than one line!(16)

 

Separating the variables and integrating on both sides we obtain: 

∫ ( ( )  √  )
  

  
 

  

   ∫   ( )   
 

 

   DisplayText cannot span more than one line!(17)
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Under the condition that {    is stationary, ergodic, sufficiently mixing and that   is large, we 

can approximate the integral over   on the right hand side of Eq. (17) by an integral over   ( ): 

∫   ( )    
 

 

  ∫    (  )    ( )  
 

 

         [  ( ) ]   (18) ) 

Note that the approximation is exact in the limit as     [58]. 

Inserting this approximation into equation (17) leads to: 

∫ ( ( )  √  )
  

   
 

  

        [  ( ) ]   DisplayText cannot span more than one line!(19)

 

and solving for   gives 

  ∫
  

  ( ( )  √  )
 

    [  ( ) ]

 

  

   DisplayText cannot span more than one line!(20)  

 

This is equal to the solution of equation (9), where    is replaced by the mean approximation   
  

of the crack growth in Eq. (16).  

  
     [  ( ( )    ( )  √  )

 
] 

   ( ( )  √  )
 

    [  ( ) ]   

 DisplayText cannot span more than one line!(21)  

The quantity {   [  ( ) ] 
 

  can be interpreted as an equivalent stress range [59][60].  

As shown above, the mean approximation is asymptotically correct as     for the case of the 

Paris law. This is due to the fact that Paris law allows separating the variables   and    and, 

therefore, the integration can be performed as in Eq. (17). For the general case of a crack growth 

law   (   (    ( )  )  ( )  ), this separation is not possible. However, for common crack 

growth laws, the mean approximation is still reasonably close under the stated conditions. This is 

also demonstrated by the numerical investigations presented later. 

3.2.4 Two-dimensional crack growth with variable amplitude loading 

With random variable amplitude fatigue loading, Eqs. (7) and (9), are rewritten to: 

  

  
   (   (  (

 

 
)    ( )  )   ( )  )   (22) ) 
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   (   (  (

 

 
)    ( )  )   ( )  )   (23) ) 

When the load history is given as a realization of a random process, an exact solution can be 

obtained performing a cycle-by-cycle crack growth evaluation. However, in general this is not 

practically feasible for reliability analysis. Alternatively, an approximated crack growth 

evaluation is possible by representing the load sequence with blocks of   cycles with constant 

stress amplitude and constant stress ratio, in analogy to the solution in equation (13) for the one-

dimensional case: 

 

  ∫
  

  (   (  (
 
 
)
 
   ̂   )   ̂   ) 

      

  

   DisplayText cannot span more than one line!(24)

 

  ∫
  

  (   (  (
 
 
)
 
   ̂   )   ̂   ) 

      

  

    DisplayText cannot span more than one line!(25)

 

Eqs. (24) and (25) must be solved iteratively for     and    , respectively, using a root finding 

algorithm as described earlier. 

The approach of Eqs. (24) and (25) is implemented in commercial software such as NASGRO   

[61] and AFGROW [56], which have been broadly applied, for example in [54], [62], [63], [64]. 

In analogy to the one-dimensional crack growth model, a mean approximation can be used to 

compute the crack growth under a random process fatigue load. The fatigue crack growth rate in 

both directions   and   are approximated by their expected value with respect to the loading 

process. 
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Using the mean approximation, the crack growth evaluation is reduced to the problem described 

in section 3.2.2, where    and    are replaced by   
  and   

 , respectively. The resulting coupled 

differential equations cannot be solved in one integration step but must be computed for blocks 

of cycles following equations (10) and (11).  
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4 Probabilistic fatigue crack growth  

So far, we have considered the random nature of fatigue loads, which are ideally modeled as 

random processes. However, fatigue crack growth involves additional intrinsically random 

factors and the model parameters are subject to uncertainty. When evaluating the reliability 

under fatigue crack growth, these random factors and uncertainties must be addressed.  

The scatter in fatigue data under deterministic load sequences was discussed as early as 1927  

[65], but it was only after the large replicate experiments at constant amplitude loading 

performed by Virkler  [66] that the intrinsic stochasticity of fatigue crack growth was 

investigated in more details. This intrinsic stochasticity of fatigue crack growth is due to 

variability of material properties and material inhomogeneities. As observable from the data 

obtained by Virkler, Fig. 5, two random effects can be distinguished [67]: (a) each curve has an 

irregular shape (high frequency stochasticity); (b) the mean crack growth curve of each 

experiment is different (low frequency stochasticity).   

 

 
 

Fig. 5 Virkler’s experiments [66]: crack length versus number of cycles 

for 68 specimens. 

 

High frequency stochasticity (a) can be modeled with a random process approach, such as the 

one proposed by [68]. Low frequency stochasticity (b) can be modeled with a random variable 

approach, i.e. by randomizing the coefficients of the fatigue crack growth law. 
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In addition to the inherent stochasticity, which can be observed in experiments, the evaluation of 

fatigue crack growth under service conditions is subject to variability of the loading, as has been 

addressed earlier, and model uncertainties. The latter can also be tackled by a random variable 

approach [19].  

4.1 Random process approach 

Approaches based on random processes have been developed in the 1980s to describe the 

intrinsic stochasticity of the crack growth observed during large replicate tests with constant 

amplitude loading, such as those shown in Fig. 5. The aim is to describe the stochasticity of 

fatigue crack growth under constant or variable loading due to the heterogeneous material 

structure.  The random process model adopted by many authors, e.g. [67] [68] [69] [70] [71] [72] 

[73] [74] [75], is: 

   

  
  ( )   

(    
    )   (28) ) 

where { ( )  is a random process and    is either crack depth   or half-width  . Most authors do 

not provide a physical interpretation of { ( )  but its correlation length can be fitted to 

experimental data [77]. The resulting crack size has the smallest statistical dispersion if { ( )  is 

uncorrelated as in [75], and the highest statistical dispersion if  ( ) is fully correlated, in which 

case the random process reduces to a random variable. 

To evaluate the statistics of the crack growth described by Eq. (28), different approaches were 

proposed in the literature. A Markov process model of the crack growth was proposed in [79], 

[80] and applied later in [81] [82] [83]. This model was found to provide accurate results for 

small correlation lengths of the random process { ( ) . However, in [84] it is observed that the 

best fitting of experimental data is obtained with an intermediate correlation length of { ( ) , 

provided that the random process model is not combined with a random variable model. Another 

approach has been proposed by Yang and Manning [68] who demonstrated that if { ( )  is a 

lognormal random process and the load is constant, the distribution of crack size can be obtained 

with a second order approximation. This second order approach has also been used by Wu and 

Ni [85] to fit experimental data. In [25], a dynamic Bayesian network was applied to assess crack 

growth described by Eq. (28) conditional on measurement information. Zheng and Ellingwood 

[86] propose solutions for evaluating the statistics of fatigue crack growth under the random 
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crack growth described by Eq. (28) as well as under random process loading. For determining 

the statistics under a random process (variable amplitude) loading, they combine an Euler 

scheme with Monte Carlo simulation. 

It is pointed out that the methods for reliability analysis under variable amplitude loading 

proposed in this paper are also suitable for crack growth described by Eq. (28). The process 

{ ( )  can be included in the function    
 and the procedures presented in Section 3 apply. For 

the mean approximation to be applicable, the same conditions as stated for the stress range 

process must also hold for { ( ) . It is noted that the common approach of determining the 

material parameters from experiments by neglecting the high frequency stochasticity corresponds 

to an implicit mean approximation.   

4.2 Random variable approach 

The parameters of the fatigue crack growth models can be represented as random variables [81] 

[87], [88] [89], [90], [91], [92], [67]. The assumption is that these parameters are random or 

uncertain but do not vary during the crack growth process. They can represent specimen-to-

specimen variability, randomness in the initial condition as well as model uncertainties.  

Proper attention has to be paid to the modeling of the correlation among the random variables. 

As an example, the parameters   and   of Paris’ law are highly correlated, and the same holds 

for most empirically determined material parameters [92], [93]. 

To obtain the distribution of the crack size for a given number of fatigue cycles, one has to solve 

functions of random variables. For special, simplified cases, analytical solutions are available 

[19]. In the general case, numerical solutions are required, such as Monte Carlo simulation or 

other numerical integration methods. 

A complete description of the fatigue crack growth requires a combination of the random 

variable approach with the random process model. To reproduce the randomness of the crack 

growth curves shown in Fig. 5, random processes are necessary to represent the variability within 

each curve and random variables are required to reproduce the observed specimen-to-specimen 

variability. In principle, the random process model can include the latter as well, by using 

correlation functions that do approach a non-zero, positive value for values of    . However, 

such correlation functions cannot be modeled by Markovian processes and a combined modeling 

approach is thus preferable. A number of authors have combined the random variable model with 
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the random process model e.g. [94], [95], [67]. To evaluate the combined model, the statistics of 

the fatigue crack growth process for given values of the random variables are computed. These 

conditional statistics must then be integrated over the outcome space of the random variables, 

using the total probability theorem. Methods for the computation of the reliability for the 

combined model are introduced in section 6 of this paper.  

5 Failure evaluation  

When fatigue crack growth evaluation is carried out for reliability assessment, failure criteria 

have to be defined. In the context of reliability analysis, these criteria are expressed by limit state 

functions. 

5.1 Limit state function 

Let   denote the set of random variables of the model. A failure event is defined through a limit 

state function  ( ) in such a way that failure occurs when  ( )   . The probability of failure 

is thus evaluated as       { ( )    . 

In the case of fatigue crack growth,   includes the initial crack dimensions    and   , the 

material properties and fatigue crack growth parameters  , the set of the geometric parameters   

and the applied stress range and stress ratio {    {  . Furthermore, to make explicit the 

dependence of the limit state function on the total number of fatigues stress cycles  , the limit 

state function is written as  (   )   (      {    {        ) , where   ,   , δ , γ  are 

random variables and {Δσ  and {   are discrete random processes. 

In structural reliability, it is convenient to define a failure domain    in the outcome space of the 

random variables as 

  ( )  { (   )      
 (29) ) 

The probability of failure can then be expressed as a multidimensional integral of the joint 

probability density function of   over the failure domain [19], [96], [97]: 

  ( )    { (   )     ∫   ( )   

  ( )

   (30) ) 
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where              . In general, the solution of this  -dimensional integral cannot be 

obtained analytically. Structural reliability methods have been especially developed to solve 

integrals of this form. These methods are adapted for our purposes in section 6. 

5.2 Failure criteria 

The failure criteria can be of two types: 

1. Failure occurs when a critical crack depth, typically the wall thickness, is reached. 

2. Failure occurs by plastic collapse or unstable crack growth. 

The implementation of the first failure criterion is straightforward, as failure occurs when 

 ( )     , where     is the critical crack depth. The corresponding limit state function for this 

failure criterion can be written as: 

  (   )       (   )  
 (31) ) 

 (   ) is the crack depth as evaluated following Section 3. 

The second failure criterion includes the two separate failure modes plastic collapse and unstable 

crack growth. A well-known approach to represent these two modes is the Failure Assessment 

Diagram (FAD), also called R6 routine [99], [100]. This approach defines failure in a two-

dimensional diagram with a normalized load on the first axis and a normalized stress intensity 

factor on the second axis. Here, we adopt the crack driving force failure criterion from [51], 

developed as part of the SINTAP/FITNET procedure [98]. It is based on a separate evaluation of 

the applied driving force and of the material resistance, leading to a more straightforward 

evaluation of the factors related to material properties and to applied loads.  

The crack driving force failure criterion involves a limit value for the ligament yielding factor 

(       ) related to plastic collapse and a limit value for the applied  -integral (     ) related to 

unstable crack growth. In the numerical example presented later, the crack driving force failure 

criterion is applied to longitudinal and radial crack growing directions, which correspond to 

crack dimensions   and  . The criterion is implemented following [51], using a standard 

approach for materials not displaying a yield-plateau and applying a plastic correction for the 

evaluation of         . Failure occurs when either          (   )       or   (   )         

during any cycle  . These two failure modes thus lead to the following two limit state functions: 
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  (   )               (   ) 

  (   )           (   )  

 (32)  

 (33)

With random variable amplitude loading, both         (   )  and   (   )  become random 

processes. To assess the crack driving force failure criterion therefore implies the solution of a 

first passage problem [19]. An exact solution can be obtained only by evaluating the limit state 

functions at every cycle.  

Failure occurs if any of the limit state functions becomes negative. Therefore, combining all 

failure criteria into a single limit state function gives 

 (   )     [  (   )    
     

  (   )     
     

  (   )]  
 (34) ) 

Alternatively, the limit state function can be expressed in terms of the number of cycles to failure 

     , which can be evaluated with a crack growth algorithm considering the three failure modes 

defined above. The numbers of cycles to failure for each failure mode are        ,         and 

        and are defined as 

       ( )       

s.t.      (   ),  (35) ) 

 

       ( )       

s.t.              (   )   (36) ) 

 

       ( )       

s.t.          (   ),  (37) ) 

The actual number of cycles to failure       is the minimum of the three. The corresponding limit 

state function becomes  

 (   )     [       ( )        ( )        ( )]     
 (38) ) 

The limit state functions (34) and (38) are equivalent. However, Eq. (38) has the advantage that 

the three failure criteria are all expressed in the same unit, the number of cycles. This is 
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beneficial for most structural reliability methods, as it ensures that the limit state function is not 

ill-conditioned.   

 

5.3 Numerical evaluation of the limit state function for variable amplitude loading 

As pointed out in Section 5.2, under variable amplitude loading, an exact solution requires an 

evaluation of the failure criteria 2 and 3 at each stress cycle. For most practical problems, an 

approximate solution is required. In the following, we develop an approximate solution that is 

based on the block approximation of the random fatigue load process introduced in Section 0. A 

similar approach is described in [57]. 

In the block approximation to the fatigue crack growth, (Section 3), the stress range    and the 

load ratio   in each block are taken as the midpoint value. This is a reasonable approximation 

because of the cumulative nature of fatigue crack growth. However, for assessing the failure 

criteria 2 and 3, it is the maximum stress      in each block that is of relevance, which can 

occur at any cycle within the block. Therefore, the proposed block approximation proceeds by 

assessing the failure criteria in each block where the applied ligament yielding factor    and the 

applied  -integral are computed with     . In each block  ,        is a random variable, which is 

correlated with the midpoint values     and   . Unfortunately, an analytical solution for this 

distribution is not available in the general case. For the special case of no correlation among 

stress cycles, one can neglect the correlation with the maximum on the midpoint values; the CDF 

of the maximum stress is then obtained as: 

       
( )  [  ( )]

    (39) ) 

where   is the number of cycles in each block. 

If the stress cycles are correlated, the distribution of the maximum stress        conditional on 

the midpoint value    (which is a function of     and   ) can be evaluated numerically. However, 

this is a cumbersome procedure.  

In many instances, the crack driving force failure criteria are not leading to significantly different 

results than the critical crack depth criterion. Therefore, a practical solution is to assess the 

relevance of the crack driving force failure criteria under the assumption of no correlation and 

under the assumption of constant amplitude loading (full correlation). If the influence of the 
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crack driving force failure criteria under these two limit cases is found to be small, this indicates 

that these criteria may be neglected for practical purposes. Otherwise, the evaluation of        
 

conditional on    is required. This is investigated in the numerical example. 

5.4 Proposed algorithm for the evaluation of the limit state function 

In practice, direct evaluation of the limit state function (38) can lead to numerical problems. In 

particular, the number of cycles to failure      ( ) can become very large or even infinite if the 

fatigue threshold      is never exceeded. To remediate these numerical problems, it is 

convenient to modify the formulation in Eq. (38) to: 

 (   )  {   [       ( )        ( )        ( )      ]   }   

{      [  (           )]   
 (40) ) 

Here,       is the maximum number of cycles up to which the fatigue crack growth is evaluated. 

Obviously, it must be        .       is the maximum stress intensity factor in       cycles 

and      is the fatigue threshold. When using the mean approximation,       and      are 

replaced by their expected values  [  ] and  [    ]. The term {      [  (           )]  

accounts for the possibility that the fatigue threshold      is never exceeded and the crack does 

not propagate. The term has value 1 if crack propagation occurs, and a value larger than 1 when 

no crack propagation occurs. The term (           ) ensures that the limit state function is 

not constant in the non-propagation case and therefore avoids numerical difficulties in structural 

reliability methods.  

In the flow chart of figure Fig. 6, an algorithm for evaluating 

        [       ( )        ( )        ( )      ] is summarized. This algorithm applies the 

block approximation of section 3.2.4 for two-dimensional crack growth evaluation under 

variable amplitude loading.  
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Fig. 6 Flow chart of the algorithm used to evaluate the limit state function 

defined in equation (40). 
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6 Reliability evaluation methods 

6.1 Generation of a Markov process load sequence for reliability analysis 

To solve the structural reliability problem formulated in Eq. (30), the multidimensional integral 

in the space of   is rewritten to an integral in standard normal space: 

 

   ∫   ( )   

  ( )

 ∫   ( )  

 (   )  

 ∫  (  ) (  )  (  )           

 (   )  

  
 (41) ) 

 

where   [       ] are uncorrelated standard normal random variables,    is the  -variate 

uncorrelated standard normal PDF, and  (   ) is the limit state function in the space of  -

variables. Underlying Eq. (41) is the equality    { (   )        { (   )    . In order to 

determine  (   )  from  (   ) , a probability-conserving transformation   from   to   is 

required [101], [19], [97]]: 

 (   )   ( ( )  )  
 (42) ) 

Due to the large number of random variables used to represent the discrete load process 

         , an efficient procedure is required for this transformation.  

The Markovian property of the process           (see Eq. (3)), facilitates the application of the 

Rosenblatt transformation for this purpose [27]. Thereby, the random variables         are 

transformed into the correlated standard normal random variables          sequentially: 

      

  ( (  ))       (43) ) 

      

  ( (  )|  )  
      |  

   |  

   (44)  
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  ( (  )|     )     

  ( (  )|  )  
      |  

   |  

   (45)  

   
      |    

   |    

   (46) ) 

The conditional mean and standard deviation of    given      are: 

   |    
        

 (47) ) 

   |    
 √    ,  (48) ) 

where the correlation coefficient   is equal to the covariance between      and   , defined 

following Eq. (2). Due to the stationarity of the load process,   is equal for all  . Finally, 

          are obtained from         through the marginal transformation defined in Eq. (1).    

6.2 Monte Carlo Simulation Method 

The Monte Carlo Simulation (MCS) method [101] is generally used for solving 

multidimensional integrals or integrals for which no analytical solution is available. When 

solving Eq. (41), MCS consists in generating    samples,   ,            , of  , and 

evaluating the limit state function  (  ) for each sample. An estimate of the probability of 

failure is computed from   , the number of samples for which  (  )   , as: 

   
   

   
    (49) ) 

The MCS method is straightforward to apply, but often requires a significant computational 

effort, especially when the probability of failure is low. This is due to the fact that the MCS 

estimate has a coefficient of variation of approximately 
 

√    
 

 

√  
. As an example, in order to 

estimate a probability of failure of      with a c.o.v. of 20%, a total of         samples are 

required for each of the random variables.  
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6.3 First Order Reliability Method 

The First Order Reliability Method (FORM) [103] , [101] is an efficient alternative to the MCS 

method for reliability problems with a limited number of random variables. It utilizes a linear 

approximation to the limit state function in the space of standard normal random variables  . 

The limit state function is linearized at the so-called design point,    [  
    

      
 ], which is 

point in the failure domain with the highest probability. Sometimes,    is referred to as the most 

likely failure point, and is obtained by solving the following constrained optimization problem 

[96]: 

         ‖ ‖ 

       ( )     
 (50)  

 

‖ ‖ is the Euclidian norm of  .  

The limit state function is linearized at   : 

  ( )   (  )  
  ( )

   
|
    

(     
 )    

  ( )

   
|
    

(     
 )   

 (51) ) 

The probability of failure associated with this linearized limit state function is the FORM 

approximation, and it is defined entirely by ‖  ‖, as 

     (  ( )   )    ( ‖  ‖),  
 (52) ) 

   is the standard normal CDF. The FORM reliability index is defined as       ‖  ‖. 

FORM facilitates a sensitivity analysis of the random variables   or  . Sensitivity factors    are 

obtained as the normalized gradient vector at the design point: 

    
  

 

‖  ‖
    (53) ) 

The sensitivity factors    take values between    and  . The larger their absolute value, the 

higher the influence on the reliability. Positive values of    indicate that an increase in    or    

leads to an increase of the probability of failure, while negative values of     are related to a 

decrease of the probability of failure for an increasing    or   . 
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FORM is computationally efficient in low dimensions, but can become cumbersome and 

inefficient with increasing number of random variables, due to the optimization problem in Eq. 

(50). For this reason, FORM is not practical when modeling the fatigue load as a random process, 

which involves a large number of random variables. It is however applicable in combination with 

the mean approximation approach.  

6.4 Subset simulation 

The subset simulation method [104] is a technique based on MCS, which can be used to 

efficiently evaluate small probabilities of failure in problems involving a large number of 

random variables. 

In subset simulation, intermediate failure events    { ( )                , are defined. By 

requiring              , it holds             , i.e.    is a subset of     , 

which in turn is a subset of      and so on. The probability of failure can be expressed as: 

     (⋂  

 

   

) 

   (  |    )   (⋂  

   

   

)  

   (  )∏  (  |    )

 

   

  

 (54) ) 

where   (  |    )  is the conditional probability of    given     . The samples required to 

estimate the conditional probabilities  (  |    )  are obtained by means of a Markov Chain 

Monte Carlo (MCMC) sampling approach using the modified Metropolis-Hastings (M-H) 

algorithm from [104]. This algorithm allows to generate samples from the conditional 

distribution of   given     ,  ( |    ) . The conditional probability  (  |    )  is then 

evaluated from these samples using a Monte Carlo approach. 

The constants    are selected so that the probabilities   (  |    ) are large, typically around 0.1. 

Therefore, the number of samples required for computing each conditional probability is 

relatively small, typically around 500. Furthermore, the required number of samples increases 

only linearly with a decrease in the order of magnitude of the probability of failure.  
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7 Numerical investigation 

7.1 Case study 

Bi-dimensional fatigue crack growth of a semi-elliptical surface crack in a cold-drawn steel tube 

subjected to variable amplitude internal pressure is studied. Fig. 7 shows the transversal and 

longitudinal sections of the tube. The initial flaws are oriented in the longitudinal direction on the 

external surface of the tube. The tube is of grade E355SR according to the standard EN10305-1 [107] 

and is produced according to EN10297-1 [108], presenting a ferritic pearlitic microstructure. This case 

study was subject to a previous numerical and experimental investigation reported in [55]. 

 

 

Fig. 7 Transversal and longitudinal sections of the tube subjected to internal 

pressure  . On the external surface an initial flaw characterized by the depth   

and the semi-length   is present. The geometry of the tube is described by the 

outer diameter   , the wall thickness   , and the inner diameter   . 

 

7.2 Structural integrity model, fatigue crack growth equation and failure criteria 

For the evaluation of the stress intensity factor and the failure criteria, the model of a semi-

elliptical surface crack in a flat plate subjected to pure tension stress is adopted, following [55].  

This model is valid for thin-walled thickness tubes and accounts only for the membrane 

component of the stress   , ignoring the bending component. When applied to thick-walled 

pipes it provides conservative but reasonable results, in good agreement with experimental 

observations [55]. The stress intensity factor for this model is evaluated according to [29][105]. 

The bi-dimensional crack growth is evaluated applying equations (24) and (25), with block cycle 

length       for the discretization of the random stress process. The fatigue crack growth rate 



Altamura & Straub (2014)  32/55 

   and    are expressed through the Forman-Mettu crack growth model, which is summarized in 

Annex A. This model does not include retardation effects. The failure criteria are implemented 

following section 5.2 according to the solution given in [51].  

Initial flaws with a depth of more than 0.2 mm can propagate under the applied stress sequences. 

Such surface flaws behave like long cracks, therefore the initiation stage and the small and short 

cracks behavior can be neglected. This can be seen from the Kitagawa diagram of the material 

analyzed in this work, as reported in [106].The mechanical and fatigue properties of the 

considered tube are summarized in Table 1. 

 

Table 1. Mechanical and fatigue properties. 

Parameter Value 

Monotonic yield stress    590 MPa 

Cyclic yield stress         350 MPa 

Ultimate tensile strength      705 Mpa 

Young’s modulus   210.000 MPa 

Poisson’s ratio    0.3 

 

 

Coefficients of the  

Forman-Mettu model  

    0.48 

  
1.33 10

-11 
MPa√m given 

da/dN in mm/cycle 

  2.85 

  0.3 

Fatigue threshold at           
See Table 2 

Fracture toughness      

 

7.3 Probabilistic model 

The case study includes a number of stochastic variables. Material properties        and      as 

well as the initial crack size are modeled as random variables; the stress ranges are modeled as a 

random process. With the applied Forman-Mettu model, the crack growth rate is influenced by 

the threshold       , and it was found in  [55] that the randomness in the fatigue crack growth 

rate is therefore fully described by the randomness of       . This explains the deterministic 

values for   and   in the model. 
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The considered tubes are subjected to non-destructive tests prior to installation. Only tubes 

without identified flaws are put in service. Therefore, when modeling the size of the initial flaw, 

the probability of detection     of the non-destructive test is taken into account. According to 

Bayes’ rule, the posterior PDF of    after the test    (  )  can be evaluated from the prior PDF 

  (  ) and from the probability of detection    (  ) as [55]: 

   (  )  
  (  )[     (  )]

∫   (  )[     (  )]   
 

 

 
 (55) ) 

The POD is defined through a lognormal CDF,    (  )   (
  (  )  

 
) , with parameters 

       and        

The effect of the non-destructive test on the probability distribution of    is shown in Fig. 8. The 

model considers only a single surface flaw, which is the one from which the critical crack will 

grow.  

The probabilistic models of the input random variables are summarized in Table 2. The models 

are based on experimental data reported in [55].  

 

Table 2. Input random variables: distribution and parameters. 

Parameters Distribution Distribution parameters 

     

3-parameter Weibull                                                                                                                                       

 (    )       { [
(         )

(        )
]

 

} 

           √ ,                

                                  

             √ , 

Kth,0 Gaussian 
            √ ,                        

                

initial flaw depth, a0 Gumbel type I distribution see Fig. 8 

initial ratio 
  

  
  deterministic      
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Fig. 8 Initial flaw depth distribution and updating following non-destructive 

tests.    is expressed as percentage of the wall thickness for the specific 

cases of OD=22 mm (left) and OD=14 mm (right), corresponding to case 

studies C1 and C2 respectively (adapted from [55]). 

 

7.3.1 Variable stress range processes 

The stress ranges are modeled as a Markov process. It is of the Gaussian copula type as 

described in section 2.2 and is characterized by its CDF    (  )  and the autocovariance 

function (Eq. (2)) with correlation length  . The load ratio is held constant with value       

Three    (  ) are considered: two empirical (C1 and C2) and one analytical CDF (CW), which 

are depicted in Fig. 9 and summarized in Table 3. C1 and C2 are obtained from service stress 

measurements on hydraulic cylinders of earth moving machines  [55]. CW is a 3-parameters 

Weibull with the same mean and standard deviation as C1 and is included for comparison. The 

upper limits of C1 and C2 are justified by safety valves that prevent higher pressures. The 

uncertainty on these maximum pressures is here neglected. 
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Table 3. Properties of the three applied load models. 

 C1 C2 CW 

Upper limit of the stress range      [MPa] 84 110 ∞ 

Number of stress cycles during service   1.8 10
7
 2 10

7
 1.8 10

7
 

Stress amplitude mean     [MPa] 42 34 42 

Stress amplitude standard deviation    
 [MPa] 28 23  

 

7.4 Reliability evaluation 

Three approaches to the reliability evaluation are implemented, which correspond to different 

models of the stress range process: 

Random process approach (RP): The load is modeled as a Markov process (see section 2.2 and 

6.1) with various correlation lengths (                    cycles) and the reliability is 

evaluated with a subset simulation algorithm SuS (section 6.4). In the implemented algorithm, 

the constants    defining the intermediate failure events are chosen such that  (  |    )      , 

 

Fig. 9 CDF of the stress range    : two empirical CDFs for the two measured loading 

processes (empirical C1 and C2), analytical 3-parameters Weibull CDF with the 

same mean and standard deviation as the empirical C1 (analytical CW). 
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and 500 samples are generated at each intermediate simulation step. The load sequences are 

generated applying the method proposed in section 6.1.  

Random variable approach (RV): The load is modeled as a random variable and the first order 

reliability method (FORM, see section 6.3) as well as MCS (section 6.2) are applied. Modeling 

the load as a random variable is equivalent to a Markov process with infinite correlation length 

   , i.e. the stress ranges are constant during the service life of the component.  

Mean approximation approach (MA):  The mean approximation is applied (section 3.2.3 and 

3.2.4) and the reliability is evaluated with FORM. Since the mean approximation does not 

consider interdependency among stress cycles, it is equivalent to a random process with 

correlation length zero,    . 

7.5 Results for the critical crack size failure criterion 

In this section, the results obtained for the critical crack size failure criterion are reported. The 

results obtained when considering also the crack driving force failure criteria are presented in 

Section 7.6. 

Fig. 10 shows the plots of the probability of failure    versus the correlation length   of the 

stress range process {    for the cases C1, C2, CW and for the different reliability evaluation 

approaches RP, RV and MA. 
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Fig. 10 Probability of failure    versus correlation length   of the stress range 

process for the three cases: (a) C1, (b) C2, (c) CW. Results for 

                    are obtained describing the load as Markov random 

process and applying a subset simulation algorithm (SuS RP). Results for   ∞ 

refer to the case of the load described as a random variable and solved with 

Monte Carlo simulation or with first order reliability method (MCS RV and 

FORM RV). Results for     are obtained applying the mean approximation 

with respect to the stress process and solving with FORM (FORM MA). 
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It can be observed from Fig. 10 that the correlation length   of the stress range process has a 

strong effect on the resulting reliability. In case C2, which is the one with the highest reliability, 

the probability of failure varies by four orders of magnitude, from      to     .  The highest 

probability of failure    occurs for values of   close to the service life time, which is around 

     . For      ,    decreases again until it reaches the value corresponding to the random 

variable case (  ∞). Values of   in the range         correspond to cases with a few 

distinct service conditions during the service life, that is to situations where the stress ranges are 

similar for longer periods. These are the most unfavorable conditions, since they imply a high 

probability of enduring a high load level during an extended time period. Shorter correlation 

lengths correspond to a single service condition with randomly varying stress ranges. In these 

cases, lower failure probabilities are observed because the mixing of the stress ranges decreases 

the actual uncertainty in the loading (law of large numbers), that is on average the crack growth 

rate is lower because of the mixes sequence of high and low stress ranges. Finally, for      , 

the probability of having a high load level during lifetime decreases, and therefore the 

probability of failure slightly decreases. 

There is good agreement between the results obtained for a random process model of the stress 

ranges with a high correlation length (     ) and those obtained by applying the random 

variable approach.  The probability of failure calculated with the mean approximation is close to 

the one obtained with the load modeled as a random process with a short correlation length 

(   ). It should be noted that the correlation length     refers to the specification of the 

stress process; however, due to the block approximation in the fatigue crack growth evaluation, 

the correlation length of the simulated stress process is larger than the specified     (see the 

comments in section 0). This effect is relevant only for the small correlation lengths, i.e.     

and      . It can also explain the slight difference in Fig. 10c between the    calculated with 

the mean approximation and with a random process with correlation length    .  

The probability of failure of case CW is higher than that of C1, even though the two correspond 

to stress range processes with the same mean and standard deviation. The difference between the 

results can be explained by the fact that in the case of CW the distribution of the stress ranges is 

analytically defined and has no upper limit, which implies a heavier tail of the distribution.  

The effect of the two different distribution forms can also be observed in Fig. 11, which 

compares the mean approximation for cases C1 and CW. Fig. 11a shows the expected value of 
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the fatigue crack growth rate  [
  

  
]    

 (  
 

 
    ), Eq. (26), as a function of the crack length, 

  (see section 3.2.4). The expected value of the fatigue crack growth rate evaluated with CW is 

slightly higher than that evaluated with C1. Fig. 11b shows the crack depth,  , versus the number 

of fatigue cycles   when applying the mean approximations shown in Fig. 11a at the design point 

   of the FORM solution of case C1. It is observed that the analytical Weibull distribution CW 

leads to a lower number of cycles to failure, which is in agreement with the differences in the 

probabilities of failure observed between Fig. 10a and Fig. 10c. 

 

 

Fig. 11 Mean approximation for cases C1 and CW: (a) expected value of the fatigue 

crack growth rate  [
  

  
]    

 (  
 

 
    )  as a function of the crack depth  ; 

(b) crack depth,  , versus the number of fatigue cylcles,  , calculated with the 

mean approximation at the design point    of load case C1. 

 

Fig. 10 shows that the correlation of the load sequence has a significant influence on the fatigue 

reliability. To better understand the reasons for this effect, it is helpful to look at some 

realizations of the crack growth process for different values of the correlation length  . In Fig. 

12a, random realizations of the crack growth with a stress range correlation length     are 

shown for two different values of the initial crack size   . In Fig. 12b, random realizations of the 
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crack growth are shown for the case where the stress range is a random variable (   ). 

Comparing the results for     and     shows the effect of a small correlation length: the 

randomness of the stress range process essentially disappears due to the law of large numbers. 

The differences among the crack growth curves are mainly due to random differences in the 

initial crack size. Therefore, the resulting randomness is much smaller in this case, and the 

reliability is significantly higher. This is also confirmed by FORM sensitivity results shown later.  

 

 

Fig. 12 Crack depth versus number of cycles for the stress case C1. The crack 

growth is evaluated: (a) modeling the stress ranges as a random process with 

correlation length     and for two different values of the initial crack depth 

       and         ; (b) for random constant stress ranges (   ) with 

initial crack depth        . 

 

In Fig. 13, random realizations of the crack growth are shown for correlation length      , 

together with the underlying load sequences. This value of   is of the same order of magnitude as 

the service life, and it is the value with the highest failure probability (Fig. 10). It can be clearly 

observed how the stress range processes correspond to a few distinct service conditions during 

the service life. This implies a high probability of enduring a high stress range level during an 

extended time period, which leads to fast crack growth.  
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Fig. 13 Crack depth (dashed) and stress ranges versus number of cycles for three 

random realizations of stress range processes with correlation length       

based on case CW. 

 

7.5.1 FORM sensitivity analysis 

The FORM algorithm provides sensitivity factors    that describe the influences of the random 

variables on the failure probability (Section 6.3). Table 4 and Table 5 show the FORM 

sensitivity factors    for the random variable approach (corresponding to    ) and the mean 

approximation approach (corresponding to    ). With the random variable approach, the most 

influential random variables are the stress range    and the initial crack depth   ; the fatigue 

threshold        has little influence on the reliability due to its small coefficient of variation (see 

Table 2). The negative sign of      
 indicates that a decrease in the value of      leads to a 

decrease in reliability. With the mean approximation approach, the only two random variables 

are        and the initial crack depth   . As can be seen in Table 5, the reliability is determined 

by the latter. 

Table 4. FORM sensitivity analysis for the random variable approach 

  C1 C2 CW 

    0.83 0.89 0.72 

       
 -0.04 0.00 -0.04 

   
 0.56 0.44 0.68 
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Table 5. FORM sensitivity analysis for the mean approximation approach 

  C1 C2 CW 

       
 -0.18 -0.03 -0.04 

   
 0.98 0.99 0.99 

 

7.6 Results - Critical crack size failure criteria and crack driving force failure 

criteria 

Following Section 5.3, the crack driving force failure criteria are evaluated for the two limit 

cases: 

RV: The stress range is a random variable (   , assumption of full correlation); 

RP: The stress range is a random process with correlation length     (assumption of no 

correlation). 

The reliability computations are performed with a block size of      . For the RP case, the 

CDF of       , the maximum stress during   cycles, is evaluated following Eq. (39), and shown 

in Fig. 14 together with the CDF for case RV. In the latter case, the maximum stress is constant 

throughout the entire service life and the CDF of       , is independent of  . For load models C1 

and C2, the maximum stress in RP case is essentially equal to the upper limit of the stress 

distribution    , as reported in Table 3. For load model CW, where stress ranges follow the 

Weibull distribution, the stress distribution has no upper limit and high values of        are 

expected.  
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Fig. 14  CDF of the maximum stress in       cycles for the three different 

load cases: (a) C1, (b) C2 and (c) CW.  

 

Fig. 15 shows the probability of failure    versus the correlation length   calculated by applying 

either the critical crack size failure criterion alone or in combination with the crack driving force 

failure criteria. The results show that among the investigated cases, the crack driving force 

failure criteria have a significant influence on the reliability only for load model CW and no 

correlation (   ). In this case, the probability of failure is close to one, which is not surprising 

when looking at the CDF of        in Fig. 14c. Since a total of over     load blocks occur 

during the service life, these maximum stresses would lead to failure with high probability even 

without the presence of a crack. In all other cases shown in Fig. 15, the reliability is only slightly 

influenced by the crack driving force failure criteria. For     there is no effect (the differences 

are due to the randomness of the MCS results). 
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To understand the effect of the crack driving force failure criteria in the case of a random process 

model with a correlation length     , some additional considerations are necessary.  

Fig. 16 shows the empirical CDF of the maximum stress in a block, for the RV case and for the 

RP case with     and       (load model C1). The resulting CDF of case       is 

between the CDFs of the other two cases, which is to be expected given that those are the limit 

cases.  

Fig. 17 depicts the empirical distribution of the crack depth   that causes failure according to the 

crack driving force failure criteria. These distributions correspond to the three CDFs of the 

maximum stresses given in Fig. 16. The critical crack depth applied in the critical crack size 

failure criterion is 21 mm. The mean crack depth at which the crack driving force failure occurs 

is close to the critical crack size criterion in all cases: it is 19 mm for the random variable load 

model and 18 mm and 15 mm for the random process models with       and     

respectively. Therefore, the crack driving force failure criteria are reached just slightly before the 

critical crack size criterion, in particular since the crack growth rate increases strongly with crack 

size (see Fig. 12 and Fig. 13).  

 

 

Fig. 15 Probability of failure    versus correlation length   when applying either the critical 

crack size failure criterion alone or in combination with the crack driving force failure 

criteria. For    , results are computed with SuS; for    , the MCS is applied . 
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Fig. 16  CDF of the maximum load for the random variable case (RV) and for the 

random process case with     (      ) and       (        ), 

evaluated for C1 with blocks of       cycles. 

 

Fig. 17 CDF of crack size at which unstable crack growth occurs for the random 

variable case (RV) and for the random process case with     (      ) 

and       (        ), evaluated for C1 with blocks of       cycles. 

From the above observations it follows that if the effect of the crack driving force failure criteria 

is small already for    , it is reasonable to assume that it will be low also for values of    . 

This is the case for load models C1 and C2. If the effect of the crack driving force failure criteria 

is significant for    , additional computations, such as a cycle-by-cycle evaluation, may 

become necessary.   
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8 Discussion 

The results of the numerical investigation point to the importance of accurately modeling the 

characteristics of the stress range process, in particular its correlation structure. In reliability 

analysis of structural components subject to fatigue, it has generally been assumed that the 

fatigue stress cycles are either fully correlated or uncorrelated. The results shown in Fig. 10 

demonstrate that both these assumptions can overestimate the reliability. They indicate that the 

highest probability of failure occurs when the correlation length of the stress range process is of 

the same order of magnitude as the service life. This corresponds to structures that are subjected 

to a few distinct service conditions or mission types over their life-time. In these situations, the 

assumption of uncorrelated fatigue stress cycles leads to predictions of the probability of failure 

that may be several orders of magnitude too low. As shown in this paper, effective methods for 

considering the correlation structure of the stress range process in reliability analysis exist when 

using fracture mechanics based fatigue models.  

It is pointed out that these results do not include retardation effects. When the retardation effect 

is relevant, the randomness of the load process has additional consequences, which are expected 

to be largest for small correlation lengths. Neither the mean approximation nor the block 

approximation can capture these effects. An exact reliability analysis appears to be possible only 

by combining the presented subset simulation based approach with the cycle-by-cycle evaluation, 

which however leads to large computational demands when evaluating high-cycle fatigue.   

For the specific case study investigated in this paper, unstable crack growth (modeled by the 

crack driving force failure criteria) has only a limited effect on the reliability. Based on the 

authors’ experiences, similar behavior is expected in many structures subject to high-cycle 

fatigue. The effect can be appraised by determining the probability distribution of the crack size 

at which unstable crack growth occurs (Fig. 17). If it can be ruled out that unstable crack growth 

plays a significant role, the reliability assessment is greatly simplified, as it becomes sufficient to 

evaluate the critical crack size failure criterion only. However, even if unstable crack growth has 

a limited effect on the reliability, it may still be necessary to consider it in case that not only the 

probability of failure but also the failure mode is of relevance. This can be the case for example 

in pipelines and pressure vessels where one needs to distinguish between failure by leakage and 

failure by burst.   
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The models presented in this work assume the presence of initial defects that behave like cracks. 

However, inclusion of crack nucleation and small crack growth into the reliability analysis would 

be straightforward, by combining the crack growth model with a crack nucleation model and a 

small crack growth model. For simplicity, the stress ratio was assumed constant throughout this 

paper.  In analogy to the stress ranges, the stress ratios can be modeled through a random process, 

which would be correlated to the stress range process, and can be included in the reliability 

analysis following the presented approach.  

9 Conclusion 

Methods are presented for evaluating high cycle fatigue reliability under variable amplitude 

loading using fracture mechanics based crack growth models. The methods allow to explicitly 

account for the correlation structure of the load process: for stress range processes that are 

ergodic and have limited correlation, the mean approximation is suitable; for constant stress 

ranges, the random variable model is applicable; in all other cases, the proposed approach 

combining a load block model with the subset simulation provides a practical tool for assessing 

the reliability. The results of the numerical investigation show that the correlation structure of the 

stress range process has a significant influence on the estimated reliability. The probability of 

fatigue failure can varies by several orders of magnitude with varying correlation lengths.  
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Annex A - Forman-Mettu model 

The Forman-Mettu model provides a prediction of the fatigue threshold      and the crack 

growth rate 
  

  
 , where   is alternatively the   or the   direction in the bi-dimensional crack 

growth model [33], [56]:  
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In this work, the stress    is considered equal to the cyclic yield stress         . The ratio 
    

    
 

is substituted with the ratio 
    

  
 

     

  
, wherein    is the stress intensity factor for a through 

crack in a panel. This approach has been demonstrated to successfully correlate the crack 

opening stresses for various specimen geometries [110][111]. 
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