Alternative routes to methyl mercaptan from C\textsubscript{1}-compounds

Christoph Rudolf Erwin Kaufmann

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademisches Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. K.-O. Hinrichsen
Prüfer der Dissertation:
1. Univ.-Prof. Dr. J. A. Lercher
2. Univ.-Prof. Dr. K. Köhler

Die Dissertation wurde am 18.09.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 12.11.2015 angenommen.
Fortunato l’uom che prende
Ogni cosa pel buon verso
E tra i casi e le vicende
Da ragion guidar si fà.
Quel che suole altrui far piangere
Fia per lui cagion di riso
E del mondo in mezzo i turbini
Bella calma troverà.

(Glücklich preis ich, wer erfasset alles von der rechten Seite,
der bei Stürmen niemals erblaset, wählt Vernunft als Führerin.
Was im Leben andre weinen macht, ist für Ihn ein Grund zum Lachen,
drohn Gefahren noch so fürchterlich, wahrt er seinen heitren Sinn.)

Lorenzo da Ponte, Cosi fan tutte
Acknowledgements

First of all I would like to thank Johannes for giving me the opportunity to work on this interesting and challenging topic. Thank you for your trust in me, your guidance, patience and fruitful discussions. Thank you also for the opportunity to visit international conferences (Weimar, Milan).

Next I want to thank Oliver. Thank you for your help with the publications and for proofreading this thesis. I am very grateful for your continuous support, be it motivational or sharing your expertise.

Building the set up and dealing with operational problems would have been impossible without the help of Xaver, Andreas and Martin. Thank you, I learned a lot!

I want to thank Evonik for financial support and highly interesting discussions during project meetings. Special thanks to Jan-Olaf, who was always available to answer urgent questions in a very quick and helpful manner.

Heike, Steffi, Helen for helping me get things organized and thereby allowing me to fully concentrate on my scientific work.

Those four years at TC 2 would have been less cheerful and for sure less successful without my great colleagues:

Hendrik, Jürgen, Matteo, Florian, Andreas S., Andreas J., Roberta, Wolfgang, Phillip, Manuel, Ana, Aonsurang, Prado, Felix, Richard, Manuela, Rino, Krishna, Olga, Christian, Virginia, Elvira, Ben, Florencia, Lay-Hwa, Peter, Praveen, Carsten, Oliver, Stefan, Tobias, Frederik, Xuebing, Yongzhong, Chintan, Dechao.

Thank you for the great time we had, at laboratory and office as well as outside university.

I also would like to thank my diploma student Max and my internship students Linus, Astrid, Stephan, Bert and Ingrid for their great effort and the contribution to this work.
During my time at TC 2 my life changed in a very positive and fundamental way. Not only did I learn and develop a lot, but I also got to know Sandra. Thank you for sharing your time with me ever since, for you love, your support, your encouragement and your help to set things into the right perspective.

Last but not least I want to thank my parents for all the financial and non-financial support during my years at school and university. I am well aware that you offered me an ideal start into (working-) life and I am very grateful for that.

Table of Contents

Chapter 1 .. 1
General Introduction .. 1

1.1. Methyl mercaptan .. 2
1.1.1. Physical and Chemical Properties .. 2
1.1.2. Applications of methyl mercaptan ... 2
1.1.3. State of the art in the synthesis of methyl mercaptan .. 4
1.2. Alternative routes towards methyl mercaptan .. 5
1.2.1. Synthesis from carbon oxides and H₂S ... 5
1.2.2. Other routes towards methyl mercaptan .. 11
1.2.2.1. Methyl mercaptan from CS₂ ... 11
1.2.2.2. Methyl mercaptan from dimethyl sulfide and dimethyl disulfide .. 12
1.2.2.3. Diverse .. 13
1.3. Catalysts in the synthesis of methyl mercaptan from H₂S-containing synthesis gas .. 13
1.4. Scope of this thesis .. 20
1.5. References .. 22

Chapter 2 ... 25

Effect of H₂ in the synthesis of COS using liquid sulfur and CO or CO₂ as reactants ... 25

2.1. Introduction .. 26
2.2. Experimental .. 27
2.2.1. Synthesis of catalysts ... 27
2.2.2. Thermodynamic calculations ... 27
2.2.3. Activity tests .. 27
2.3. Results .. 29
2.3.1. Formation of COS from CO, effect of catalyst ... 29
2.3.2. Formation of COS from CO, effect of H₂ and total pressure .. 30
2.3.3. Formation of COS from CO₂, effect of residence time and H₂/CO ratio .. 32
2.3.4. Formation of COS from CO₂, H₂ and liquid sulfur .. 33
2.4. Discussion .. 34
2.4.1. Description of the reaction media ... 34
2.4.2. Reaction network ... 39
2.4.3. Role of pressure and liquid sulfur ... 42
2.5. Conclusions .. 44
Chapter 3

Synthesis of methyl mercaptan from carbonyl sulfide over sulfide K₂MoO₄/SiO₂

3.1. Introduction

Thermodynamic considerations

3.2. Experimental

3.2.1. Catalyst preparation and activation

3.2.2. Kinetic measurements

3.2.2.1. Activity tests at varying H₂/COS and H₂S ratios

3.2.2.2. Activity tests at varying residence time

3.2.2.3. Activity tests in the absence of H₂

3.2.2.4. Catalytic test of bulk MoS₂ and sulfided K₂MoO₄

3.2.3. Elemental composition and textural properties

3.2.4. Raman spectroscopy

3.2.5. X-ray diffraction

3.2.6. NO adsorption

3.3. Results

3.3.1. Catalyst characterization

3.3.1.1. Composition and textural characteristics

3.3.1.2. Raman spectroscopy

3.3.1.3. X-ray diffraction measurements

3.3.1.4. NO adsorption measurements

3.3.2. Conversion of COS with varying H₂/COS ratio

3.3.3. Conversion of COS with varying H₂/H₂S ratio

3.3.4. Conversion of COS with varying residence time

3.3.5. Catalytic tests in the absence of H₂

3.3.6. Catalytic test of bulk MoS₂ and sulfided K₂MoO₄

3.4. Discussion

3.4.1. Evaluation of the reaction pathway

3.4.2. On the optimum conditions for the synthesis of CH₃SH from COS

3.4.3. Active phases in the sulfide K₂MoO₄/SiO₂ catalyst

3.4.4. Active sites for the decomposition of COS

3.4.5. Active sites for the hydrogenation of CS₂

3.5. Conclusions
3.6. References

Chapter 4

Influence of Potassium on the Synthesis of Methanethiol from Carbonyl Sulfide on Sulfided Mo/Al₂O₃ Catalyst

4.1. Introduction

4.2. Experimental

4.2.1. Catalyst preparation and activation

4.2.2. Elemental composition and textural properties

4.2.3. X-ray diffraction

4.2.4. Temperature-programmed sulfidation

4.2.5. NO adsorption

4.2.6. Raman spectroscopy

4.2.7. Kinetic measurements

4.3. Results

4.3.1. Elemental composition and textural properties

4.3.2. X-ray diffraction measurements

4.3.3. Temperature-programmed sulfidation

4.3.4. NO adsorption

4.3.5. In situ Raman spectroscopy

4.3.6. Effect of potassium on the catalytic activity

4.3.7. Variation of the H₂/COS ratio

4.4. Discussion

4.4.1. Reaction pathway

4.4.2. Effect of potassium during sulfidation

4.4.3. Effect of potassium during the reaction

4.4.4. Mechanism of the disproportionation of COS on alumina

4.4.5. Active phases in the molybdenum catalysts

4.4.6. Reaction mechanism for the COS disproportionation on the MoS₂ phases

4.4.7. Other features of the potassium-decorated phase

4.5. Conclusions

4.6. References

Chapter 5

Synthesis of Methanethiol from Carbonyl Sulfide and Carbon Disulfide on (Co)K-Promoted Sulfide Mo/SiO₂ Catalysts

5.1. Introduction
Chapter 1

General Introduction

This chapter provides an introduction to the subject of this thesis. First the target compound methyl mercaptan is introduced and its industrial relevance described. A short overview of the findings of academic and industrial research concerning the synthesis of methyl mercaptan from synthesis gas and other C₁-compounds is given. After a brief discussion of the relevant catalysts the chapter is finished by presenting the scope of this thesis.
1.1. Methyl mercaptan

1.1.1. Physical and Chemical Properties

Methyl mercaptan or methanethiol is an aliphatic thiol of the formula CH$_3$SH. Thiols or mercaptans, as they were originally called due to their affinity for mercury (Latin: corpus mercurium aptans), can either be regarded as hydrogen sulfide derivatives or as thio analogues of alcohols. Since the S-H bond energy (339 kJ/mol) is substantially lower than that of the O-H bond (462 kJ/mol), mercaptans are significantly more acidic than their oxygen analogues. As hydrogen bonding to sulfur is consequently also weaker than to oxygen, mercaptans exhibit lower boiling points than their corresponding alcohols. Furthermore aliphatic thiols act as strong nucleophiles [1, 2]. Methyl mercaptan is a colorless, highly flammable gas at room temperature and atmospheric pressure and possesses a pungent odor resembling that of garlic or rotten cabbage. Some physical and chemical properties of methanethiol in comparison with its alcohol analogue methanol are compiled in Table 1.1.

<table>
<thead>
<tr>
<th>Property</th>
<th>CH$_3$SH</th>
<th>CH$_3$OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight (g/mol)</td>
<td>48.1</td>
<td>32.04</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>-123</td>
<td>-98</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>5.95</td>
<td>64.7</td>
</tr>
<tr>
<td>Solubility in H$_2$O (g/kg)</td>
<td>23.3</td>
<td>miscible</td>
</tr>
<tr>
<td>Density $d20/4$ (g/ccm)</td>
<td>0.87</td>
<td>0.79</td>
</tr>
<tr>
<td>Bond energy (kJ/mol)</td>
<td>339 (S-H)</td>
<td>462 (O-H)</td>
</tr>
<tr>
<td>pKa</td>
<td>10.33</td>
<td>15.30</td>
</tr>
</tbody>
</table>

1.1.2. Applications of methyl mercaptan

Methyl mercaptan is a chemical feedstock employed in the synthesis of numerous products in the agricultural, plastics, rubber and chemical industries [3]. More specifically it is a raw material in the synthesis of the organo-sulfur compounds methionine, dimethyl sulfoxide and dimethyl sulfone [4], as well as in the production of herbicides [5], fungicides and jet fuel additives [6]. Methyl mercaptan itself is added to natural gas as odorant or tracer [6].
Oxidation of methanethiol leads to dimethyldisulfide and, when strong oxidizing reagents are applied, to the formation of methylsulfonic acid [1].

In 2013 the global market for methionine, the synthesis of which is depicted in Fig. 1.1, amounted to about 850,000 tons and a sales volume of 2.85 billion US$.

Figure 1.1: Process for the production of methionine [10].
retardation, skeletal abnormalities and hearing defects. Moreover, a methionine-deficient diet is considered a cause of depression and Parkinson’s disease [8]. Synthetic methionine can be applied directly as racemic mixture in animal feed although D-methionine is not found in nature. This is due to the animals' organisms being capable of converting D-methionine into L-methionine enzymatically [9].

The global market for methionine gives an indication of the industrial relevance of methyl mercaptan and of its annual production volume although it is employed in other processes and applications as well, as outlined above.

1.1.3. State of the art in the synthesis of methyl mercaptan

On an industrial scale methyl mercaptan is predominantly produced by the gas phase reaction of methanol with hydrogen sulfide over alkali tungstate modified alumina catalysts. The reaction is usually carried out at temperatures between 300 and 500 °C and pressures of 1 to 25 bar [11].

The heterogeneously catalysed reaction between aliphatic alcohols and hydrogen sulfide to form the corresponding mercaptan was discovered in 1910 by Sabatier, who had been working on dehydration catalysts. When passing alcohols and H₂S over thoria at elevated temperatures he observed the formation of mercaptans in addition to the desired olefins. In 1921 Kramer and Reid supported thoria on pumice and used this catalyst to produce methyl mercaptan from methanol and H₂S [12].

Yields of methyl mercaptan of more than 90% and selectivities of about 95% are achieved by the reaction of methanol with hydrogen sulfide over the nowadays conventional alkali tungstate/alumina catalysts. Besides the desired thiolation to yield methyl mercaptan

\[
\text{CH}_3\text{OH} + \text{H}_2\text{S} \rightarrow \text{CH}_3\text{SH} + \text{H}_2\text{O} \quad (I)
\]
dimethyl sulfide is formed as a byproduct according to

\[
2 \text{CH}_3\text{OH} + \text{H}_2\text{S} \rightarrow (\text{CH}_3)_2\text{S} + 2 \text{H}_2\text{O} \quad (II)
\]
\[
2 \text{CH}_3\text{SH} = (\text{CH}_3)_2\text{S} + \text{H}_2\text{S} \quad (III)
\]
\[
\text{CH}_3\text{SH} + \text{CH}_3\text{OH} \rightarrow (\text{CH}_3)_2\text{S} + \text{H}_2\text{O} \quad (IV).
\]

Dehydation of methanol results in the formation of dimethyl ether
$2 \text{CH}_3\text{OH} \rightarrow (\text{CH}_3)_2\text{O} + \text{H}_2\text{O}$ \hspace{1cm} (V)

which can be further converted into the desired methyl mercaptan or into dimethyl sulfide by reaction with hydrogen sulfide

$$(\text{CH}_3)_2\text{O} + 2 \text{H}_2\text{S} \rightarrow 2 \text{CH}_3\text{SH} + \text{H}_2\text{O} \quad \text{(VI)}$$

$$(\text{CH}_3)_2\text{O} + \text{H}_2\text{S} \rightarrow (\text{CH}_3)_2\text{S} + \text{H}_2\text{O} \quad \text{(VII)}$$

The formation of both methanethiol and dimethyl sulfide is thermodynamically favorable over a wide temperature range. Although higher H_2S to methanol ratios allow for higher methyl mercaptan contents in the product mixture, dimethyl sulfide formation cannot be entirely suppressed. Thermodynamic calculations reveal that a large molar excess of H_2S would be required to shift the equilibrium of (III) towards methyl mercaptan. Thus catalysts that selectively increase the rate of methyl mercaptan formation without accelerating equilibrium reaction (III) are required in the thiolation of methanol [13].

1.2. **Alternative routes towards methyl mercaptan**

1.2.1. **Synthesis from carbon oxides and H_2S**

Pioneering work in the synthesis of methanethiol from carbon oxides and H_2S was done at Pennwalt Corporation. The idea to synthesize methyl mercaptan from synthesis gas was brought forward owing to the fact that methanol, which is up to nowadays the carbon source for the industrial production of methyl mercaptan, itself is produced from synthesis gas (Figure 1.2). That is, the cost- and energy intensive methanol production step could be omitted using a very basic, cheap and readily available reactant mixture comprising carbon oxides and hydrogen.

In 1962 Olin et al. proposed the synthesis of methyl mercaptan by reacting carbon oxides, i.e. carbon monoxide and carbon dioxide, with hydrogen sulfide in the presence of hydrogen over a sulfided catalyst. They described the process as reductive thiolation of the employed carbon oxides following the overall chemical equations

$$\text{CO} + \text{H}_2\text{S} + 2 \text{H}_2 \rightarrow \text{CH}_3\text{SH} + \text{H}_2\text{O} \quad \text{(VIII)}$$

and
CO$_2$ + H$_2$S + 3 H$_2$ \rightarrow CH$_3$SH + 2 H$_2$O (IX)

Sulfides of hydrogenating metals were suggested and employed as catalysts, since they are not poisoned in the presence of sulfur. A conversion of carbon monoxide to methyl mercaptan as high as 23.2% was reported for the reaction of CO with H$_2$S and H$_2$ (CO:H$_2$S:H$_2$=1:2:4) over an alumina supported NiS catalyst in presence of the organic base piperidine [14].

Figure 1.2: Routes to methanethiol starting from synthesis gas.

In 1983 Buchholz (Pennwalt Corporation) was granted a patent on an improved process for the manufacture of methyl mercaptan from carbon oxides. The main difference to the process patented in 1962 was the addition of an alkali metal sulfide, termed “promoter”, to the catalyst composition. In addition, elemental sulfur was considered as sulfur source alternative to hydrogen sulfide and no organic base was employed in the process. The inventor set up the following overall chemical equations for the synthesis of methyl mercaptan from carbon oxides and elemental sulfur in the presence of hydrogen:

$$\text{CO} + \text{S} + 3 \text{H}_2 \rightarrow \text{CH}_3\text{SH} + \text{H}_2\text{O} \quad \text{(X)}$$

and
The overall chemical reactions (VIII) and (X) for the synthesis of methyl mercaptan from carbon monoxide were broken down into the following reaction sequence:

When starting from elemental sulfur H_2S is formed by the reaction between elemental sulfur and hydrogen

\[S + H_2 \rightarrow H_2S \] (XII)

H_2S, whether formed in situ according to (XII) or supplied as reactant (VIII) reacts with carbon monoxide to produce carbonyl sulfide

\[CO + H_2S \rightarrow COS + H_2 \] (XIII)

which is then hydrogenated to form methyl mercaptan

\[COS + 3H_2 \rightarrow CH_3SH + H_2O \] (XIV)

The highest conversion of carbon monoxide to methyl mercaptan was reported to be 90.2% for a reactant ratio of $CO:H_2S:H_2$ of 1:8:4 over a cesium promoted nickel sulfide catalyst. The highest conversion of carbon dioxide to methyl mercaptan was achieved under the same conditions and amounted to 52% [15].

Barrault et al. were the first ones to study the formation of methanethiol from carbon oxides and H_2S in the presence of hydrogen with respect to the reaction mechanism and the role of the catalyst [3]. They did so by reacting $CO(CO_2)/H_2S/H_2$ mixtures over potassium promoted, presulfided tungsten-alumina catalysts. For both, the reaction of CO and the reaction of CO_2, with hydrogen and hydrogen sulfide, the formation of COS was observed and it was concluded to be the main intermediate in the formation of methyl mercaptan according to

\[CO + H_2S \rightarrow COS + H_2 \] (XIII)

or

\[CO_2 + H_2S \rightarrow COS + H_2O \] (XV)

and
COS + 3 H₂ \rightarrow CH₃SH + H₂O \quad \text{(XIV)}

which is in agreement with the results of Buchholz. Since COS and methyl mercaptan were observed in parallel, the hydrogenation of COS was identified as the rate determining step in the synthesis of methanethiol. In the reaction starting from CO as carbon source, CO₂ was found as a reaction product in amounts similar to that of the formed methyl mercaptan, whereas H₂O could not be detected among the reaction products. This was interpreted in terms of CO₂ being formed either by the water-gas shift reaction

\[CO + H₂O \rightarrow CO₂ + H₂ \quad \text{(XVI)} \]

or by hydrolysis of carbonyl sulfide

\[COS + H₂O \rightarrow CO₂ + H₂S \quad \text{(XVII)} \]

In the reaction starting from CO₂ substantial amounts of CO were formed, whereas the yields of COS and CH₃SH were much lower than in the reaction starting from carbon monoxide. CO was believed to be formed either by the inverse water-gas shift reaction

\[CO₂ + H₂ \rightarrow CO + H₂O \quad \text{(XVIII)} \]

or by the inverse reaction of carbonyl sulfide formation

\[COS + H₂ \rightarrow CO + H₂S \quad \text{(XIX)}. \]

A reaction network summarizing the findings of Barrault et al. is depicted in Figure 1.3.

In the mid 1980’s Exxon Research and Engineering filed several patents on the production of methyl mercaptan from H₂S and CO. In contrast to the processes claimed by Pennwalt, Exxon was not adding H₂ to the reactant mixture. Ratcliffe et al. reported the catalytic reduction of CO with H₂S, yielding methanethiol, over titania in its rutile phase [6] and over titania-supported vanadia catalysts [16].
Fig. 1.3: Reaction network for the synthesis of methyl mercaptan from carbon oxides and H$_2$S in presence of hydrogen over potassium promoted tungsten-alumina catalysts.

The reaction over vanadia based catalysts was studied more closely by Mul et al. [17]. A reaction network for the synthesis of methyl mercaptan from reactant mixtures of CO and H$_2$S was established by reacting a 1:1 feed of H$_2$S and CO at 1 bar (Fig. 1.4). Based on their experimental findings the overall chemical equation is

$$3 \text{CO} + 2 \text{H}_2\text{S} \rightarrow \text{CH}_3\text{SH} + \text{COS} + \text{CO}_2 \quad (XX)$$

which means theoretical carbon selectivities of 33.3% for methyl mercaptan, COS and CO$_2$. However, the contribution of carbonyl sulfide to the overall amount of products decreases on an increase in CO conversion. This led to the conclusion that COS is the primary reaction product from which all other products are formed by secondary reactions.

The hydrogenation of COS according to (XIV), forming the target compound methyl mercaptan, was identified as rate determining step. Water formed in the hydrogenation of carbonyl sulfide was not detected in the reaction mixture which was attributed to it being consumed in the water-gas shift reaction (XVI) and the hydrolysis of COS (XVII).

CS$_2$ and CH$_4$ were detected as byproducts and concluded to result from the disproportionation of COS

$$2 \text{COS} \rightarrow \text{CO}_2 + \text{CS}_2 \quad (XXI)$$

and the hydrogenation of methyl mercaptan
\[\text{CH}_3\text{SH} + \text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{S} \quad \text{(XXII)} \]

respectively.

![Reaction network for the synthesis of methyl mercaptan from CO and H\textsubscript{2}S over vanadia-based catalysts as proposed by Mul et al [17].](image)

Figure 1.4: Reaction network for the synthesis of methyl mercaptan from CO and H\textsubscript{2}S over vanadia-based catalysts as proposed by Mul et al [17].

In 2008 Chen et al. investigated the catalytic synthesis of methyl mercaptan from H\textsubscript{2}S-rich synthesis gas (H\textsubscript{2}S/H\textsubscript{2}/CO = 2/1/1, v/v) over sulfided, SiO\textsubscript{2}-supported Mo-based catalysts [18]. Their findings concerning the reaction network of the production of methanethiol from CO and H\textsubscript{2}S in the presence of hydrogen closely resembles that set up by Barrault et al. as carbonyl sulfide is considered as primary product, which is hydrogenated to form methyl mercaptan (Fig. 1.5). However, Chen et al. observed the formation of methane, CS\textsubscript{2} and thioethers, which had not been reported by Barrault. CS\textsubscript{2} formation was attributed to the disproportionation of COS as already reported by Mul et al.

Since only very small amounts of CS\textsubscript{2} were detected, the disproportionation of carbonyl sulfide was ruled out as being the source of the considerable amount of CO\textsubscript{2} that was found. According to Le Chatelier’s principle a high partial pressure of H\textsubscript{2}S, as applied in this study, should suppress the hydrolysis of COS according to (XVII) and therefore it was concluded that carbon dioxide mostly originated from the water-gas shift reaction (XVI).
The formation of methane and thioethers was attributed to secondary reactions of methyl mercaptan, since their appearance went along with a decrease in the selectivity to methanethiol.

\[\text{CO}_2 + \text{CS}_2 \quad \rightarrow \quad \text{CO}_2 \quad \text{CH}_4 \]

\[\text{H}_2 \quad \text{H}_2 \text{S} \quad \text{H}_2 \text{O} \quad \text{CH}_3 \text{SH} \quad \text{H}_2 \text{S} \quad \text{H}_2 \text{O} \quad \text{CH}_3 \text{SCH}_3 \]

Figure 1.5: Extended reaction network for the synthesis of methyl mercaptan from carbon oxides and H₂S in presence of hydrogen according to the findings of Chen et al.

1.2.2. Other routes towards methyl mercaptan

Few more routes towards methyl mercaptan synthesis alternative to the thiolation of methanol have been proposed in patent and/or academic literature besides the approach to employ carbon oxides as C1-starting compounds in the synthesis of methanethiol, which is the focus of this thesis.

1.2.2.1. Methyl mercaptan from \(\text{CS}_2 \)

The hydrogenation of carbon disulfide, which is predominantly produced by the reaction of methane with sulfur, which yields methyl mercaptan according to

\[\text{CS}_2 + 3\text{H}_2 \quad \rightarrow \quad \text{CH}_3\text{SH} + \text{H}_2\text{S} \quad (\text{XXIII}) \]
was first proposed by van Venrooy, who employed a commercial, NiMo-based sulfided hydrogenation catalyst. Substantial amounts of dimethyl sulfide were formed along with the desired methanethiol [19]. An increase in the selectivity to methyl mercaptan to about 65% at a CS₂ conversion of about 70% was achieved by employing alumina supported CoMo-based catalysts and adding H₂S to the reaction mixture [20]. Only recently, the quantitative conversion of carbon disulfide into methyl mercaptan has been reported over potassium promoted NiMo-based catalysts supported on alumina [21].

1.2.2.2. Methyl mercaptan from dimethyl sulfide and dimethyl disulfide

Dimethyl sulfide is the major byproduct in the thiolation of methanol. Dimethyl disulfide is also observed as a byproduct in the industrial synthesis of methyl mercaptan [22]. Processes for their conversion into methyl mercaptan have been developed to utilize these materials.

Dimethyl sulfide can be reacted with hydrogen sulfide to give methyl mercaptan according to

\[(CH₃)₂S + H₂S \rightarrow 2 \text{CH}_₃\text{SH} \quad \text{(XXIV)}\]

which corresponds to the reverse reaction of its formation.

Beach et al. were the first ones to patent a process for catalytically converting dimethyl sulfide to methyl mercaptan by reacting it with hydrogen sulfide over a cadmium sulfide/alumina catalyst. Molar conversions of dimethyl sulfide to methyl mercaptan of about 60% could be achieved [23]. Improvements of the efficiency of the process were achieved by employing various catalysts and optimizing process parameters. In 2008 Barth et al. reported almost 90% conversion of dimethyl sulfide to methyl mercaptan over cesium/alumina catalysts [22].

The synthesis of methyl mercaptan from dimethyl disulfide has been studied to a much lesser extent. The hydrogenolysis of dimethyl disulfide, which proceeds according to

\[(CH₃)₂S₂ + H₂ \rightarrow 2 \text{CH}_₃\text{SH} \quad \text{(XXV)}\]

has attracted interest, since dimethyl disulfide is produced industrially on a large scale and, being a liquid at room temperature, can be handled much easier and safer than methyl mercaptan. Studies have been carried out over alumina-supported, nickel or cobalt promoted molybdenum or tungsten sulfide catalysts. At complete conversion of dimethyl disulfide the
product mixture consists solely of about equal amounts of the desired methyl mercaptan and dimethyl sulfide, which is believed to be produced from CH$_3$SH in a secondary reaction [24].

1.1.2.3. Diverse

The list of routes towards methyl mercaptan mentioned above is not exhaustive. For instance preparation of methanethiol by the hydrogenation of carbonyl sulfide [25], by conversion of formaldehyde with hydrogen sulfide and hydrogen [26], and more recently by reaction of methane and hydrogen sulfide in a non-thermal pulsed plasma corona reactor [27] has been reported.

1.3. Catalysts in the synthesis of methyl mercaptan from H$_2$S-containing synthesis gas

The catalysts applied in the synthesis of methyl mercaptan from synthesis gas comprising H$_2$S resemble those applied in hydroprocessing of crude oil (MoS$_2$ and WS$_2$ based catalysts), i.e. hydrodesulfurization, hydrodenitrogenation, hydrodeoxygenation, hydrodemetalation, hydrogenation, and hydrocracking [28], and have been extensively characterized for those applications. Alkali-promoted MoS$_2$-based catalysts have been the subject of numerous mechanistic and kinetic studies during the past two decades, owing to their ability to catalyze the formation of higher alcohols from synthesis gas [29]. These materials have exhibited the best results in methanethiol production from H$_2$S-containing synthesis gas and were therefore applied within this thesis. The application of unpromoted MoS$_2$ catalysts in the conversion of synthesis gas leads to the formation of hydrocarbons when the H$_2$S-content in the synthesis gas is relatively low and when alcohol synthesis conditions are applied [29].

The MoS$_2$ phase in its most common hexagonal 2H type is composed of two S-Mo-S layers stacked upon each other in z-direction within a hexagonal lattice system. Van der Waals forces between those layers are weak, leading to relatively large distances between the layers. Each layer is terminated by Mo and by S edges. Active sites are located on these edges, while the basal plane is considered to be catalytically inactive [30]. The molybdenum edge under sulfiding conditions is believed to be saturated with sulfur dimers, whereas in the case of sulfo-reductive conditions the molybdenum edge is concluded to be half covered by sulfur. The sulfur edge observed under sulfo-reductive conditions arises on adsorption of
hydrogen, forming stabilizing S-H groups [31]. This SH groups are the functional groups that provide hydrogen for hydrogenation and hydrogenolysis reactions [32].

Cobalt promotion drastically increases the activity of MoS$_2$ catalysts in hydrotreating reactions. The most accepted explanation for this promotional effect is given by the Co-Mo-S model in which molybdenum atoms at the edges of the MoS$_2$ slabs are substituted by cobalt atoms, as evidenced by numerous studies [33-37].

Table 1.2: Findings of Yang et al. concerning the synthesis of methyl mercaptan from a mixture of CO:H$_2$:H$_2$S = 5:14:1 at 0.2 MPa, 290 °C, GHSV = 3000 h$^{-1}$ over various potassium promoted supported MoS$_2$ catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Selectivity</th>
<th>Yield of CH3SH (gh$^{-1}$g${cat}$$^{-1}$)</th>
<th>Mo$^{6+}$/Mo$^{4+}$</th>
<th>S2/(S-S)2</th>
<th>I${Mo-S-K}$/I${MoS2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS$_2$</td>
<td>80.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K$_2$MoS$_4$/SiO$_2$ (0.15/1)</td>
<td>3.3</td>
<td>92.2</td>
<td>0.15</td>
<td>0.27</td>
<td>0.25</td>
</tr>
<tr>
<td>K$_2$MoS$_4$/Fe$_2$O$_3$/SiO$_2$ (0.15/0.03/1)</td>
<td>2.3</td>
<td>95.8</td>
<td>0.36</td>
<td>0.71</td>
<td>0.85</td>
</tr>
<tr>
<td>K$_2$MoS$_4$/CoO/SiO$_2$ (0.15/0.03/1)</td>
<td>1.7</td>
<td>95.8</td>
<td>0.37</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>K$_2$MoS$_4$/NiO/SiO$_2$ (0.15/0.03/1)</td>
<td>2.4</td>
<td>95.2</td>
<td>0.33</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>K$_2$MoS$_4$/MnO$_2$/SiO$_2$ (0.15/0.03/1)</td>
<td>5.7</td>
<td>90.6</td>
<td>0.26</td>
<td>0.43</td>
<td>0.15</td>
</tr>
<tr>
<td>K$_2$MoS$_4$/CeO$_2$/SiO$_2$ (0.15/0.03/1)</td>
<td>2.4</td>
<td>95.0</td>
<td>0.34</td>
<td>0.82</td>
<td>0.96</td>
</tr>
<tr>
<td>K$_2$MoS$_4$/La$_2$O$_3$/SiO$_2$ (0.15/0.03/1)</td>
<td>0.7</td>
<td>98.6</td>
<td>0.37</td>
<td>0.77</td>
<td>1.26</td>
</tr>
</tbody>
</table>

In a series of publications [38-41] Yang et al. investigated the catalytic properties of supported potassium promoted molybdenum sulfide catalysts with respect to the formation of methyl mercaptan from CO, H$_2$ and H$_2$S. Furthermore they explored the effect of the addition of transition metal oxides and rare-earth metal oxides to these catalysts on the catalytic conversion of H$_2$S-containing synthesis gas to methanethiol.
Their findings concerning the influence of the catalyst composition on the selectivities to methane and methanethiol are summarized in Table 1.2. The catalysts were characterized by means of X-ray diffraction and X-ray photoelectron spectroscopy after testing in the synthesis of methyl mercaptan. Reflections assignable to a Mo-S-K phase were observed in the XRD patterns of potassium promoted catalysts in addition to reflections characteristic for MoS$_2$. S(2p) XPS spectra revealed the presence of two species, i.e. S$^{2-}$(2p) and (S-S)$^{2-}$(2p). Mo(3d) XPS spectra exhibited peaks assignable to Mo$^{4+}$(3d$_{5/2}$) and Mo$^{6+}$(3d$_{5/2}$).

The authors suggested the Mo-S-K phase as active site for the formation of methyl mercaptan, whereas the MoS$_2$ phase was believed to be responsible for the formation of hydrocarbons. The S$^{2-}$ surface species were concluded to increase the amount of available active hydrogen and thereby accelerate the hydrogenation of CO, leading to the formation of surface –CH$_3$ species. These allowed for the formation of methane on the MoS$_2$ phase according to Fig 1.6 or for the formation of methyl mercaptan on the Mo-S-K phase as depicted in Fig. 1.7.

Addition of transition metals to the catalyst increased the Mo$^{6+}$/Mo$^{4+}$ ratio on the catalyst surface, indicating that the reduction of molybdenum species is hampered in the presence of transition metal oxides.

Figure 1.6: Formation of methane from H$_2$S-containing synthesis gas over the MoS$_2$-phase [33].
Further studies on the synthesis of methyl mercaptan from H₂S-containing synthesis gas over promoted and unpromoted MoS₂ were conducted by Chen et al. [18, 42-44]. CO conversions and carbon selectivities achieved over the employed catalysts are summarized in Table 1.3.

Potassium was found to have the most beneficial effect on CO conversion and methyl mercaptan formation among the alkali metals. The more basic and nucleophilic cesium favored the formation of COS while reducing the selectivity to methyl mercaptan, whereas the less basic and nucleophilic lithium had the opposite effect.

The potassium promoted catalysts were thoroughly characterized and compared to the unpromoted ones and the cobalt promoted catalysts by conducting X-ray diffraction, CO-TPD, electron spin resonance and XPS measurements.

Temperature programmed desorption experiments showed that potassium promotes the non-dissociative adsorption of CO, which was explained by the basic character of the alkali metal. By transferring electrons to the metallic phase, the affinity towards electron-acceptor molecules like carbon monoxide increased, which results in the weakening of the C-O bond upon adsorption. On addition of cobalt, peaks characteristic for the dissociative adsorption of carbon monoxide could be detected, which is in good agreement with the increased selectivity to methane when the catalysts are promoted with cobalt, since the dissociative adsorption allows for the formation of hydrocarbons.
Table 1.3: CO conversions and carbon selectivities in the synthesis of methyl mercaptan from a mixture of CO:H\textsubscript{2}:H\textsubscript{2}S = 1:1:2 at 0.2 MPa, 300 °C, GHSV = 3000 h-1 over various molybdenum based catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>CO conversion (%)</th>
<th>Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH\textsubscript{4}</td>
</tr>
<tr>
<td>SiO\textsubscript{2}</td>
<td>1.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Mo/SiO\textsubscript{2}</td>
<td>4.6</td>
<td>1.5</td>
</tr>
<tr>
<td>MoCo/SiO\textsubscript{2}</td>
<td>8.3</td>
<td>2.7</td>
</tr>
<tr>
<td>LiMo/SiO\textsubscript{2}</td>
<td>19.5</td>
<td>1.0</td>
</tr>
<tr>
<td>KMo/SiO\textsubscript{2}</td>
<td>42.7</td>
<td>0.3</td>
</tr>
<tr>
<td>CsMo/SiO\textsubscript{2}</td>
<td>38.9</td>
<td>0.3</td>
</tr>
<tr>
<td>KMoCo/SiO\textsubscript{2}</td>
<td>62.4</td>
<td>0.6</td>
</tr>
<tr>
<td>KMoTe/SiO\textsubscript{2}a</td>
<td>62.1</td>
<td>0.2</td>
</tr>
<tr>
<td>KMoNi/SiO\textsubscript{2}a</td>
<td>60.7</td>
<td>0.03</td>
</tr>
</tbody>
</table>

aGHSV = 2000 h-1

Two signals of Mo5+ species were found in the ESR spectra of the studied catalysts, one assignable to oxo-Mo5+ species, i.e. molybdenum coordinated only by oxygen atoms, the other assignable to oxysulfo-Mo5+ species, i.e. molybdenum coordinated by sulfur and oxygen. Potassium was shown to exert a stabilizing effect on oxysulfo-Mo5+ species. Double promotion with potassium and cobalt revealed that the cobalt improves the sulfidation of oxo-Mo5+ species to oxysulfo species.

XPS signals could be assigned to Mo6+, Mo5+ and Mo4+ when recording Mo(3d) spectra and to a “low oxidation state sulfur” regime, termed S\textsubscript{L}, as well as to a “high oxidation state sulfur” regime, termed S\textsubscript{H}, when recording S(2p) spectra. The compositions and ratios determined for the molybdenum and sulfur species of the investigated catalysts are given in Table 1.4.

When correlating the results summarized in Table 1.4 with those shown in Table 1.3 it is evident, that a high ratio of Mo5+/Mo4+ and an increase in the S\textsubscript{L}/S\textsubscript{H} ratio favor the formation of methyl mercaptan.
Table 1.4: Composition of promoted and unpromoted molybdenum catalysts in the synthesis of methyl mercaptan with respect to oxidation states of molybdenum and sulfur as determined by Chen et al.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Concentration (%)</th>
<th>Ratio</th>
<th>Concentration (%)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mo(^{4+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mo(^{5+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mo(^{6+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mo(^{5+})/Mo(^{4+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo/SiO(_2)</td>
<td>69.1</td>
<td>10.5</td>
<td>20.4</td>
<td>0.2</td>
</tr>
<tr>
<td>MoCo/SiO(_2)</td>
<td>61.1</td>
<td>12.1</td>
<td>26.8</td>
<td>0.2</td>
</tr>
<tr>
<td>KM(_4)/SiO(_2)</td>
<td>44.0</td>
<td>22.3</td>
<td>33.7</td>
<td>0.5</td>
</tr>
<tr>
<td>KM(_4)/SiO(_2)</td>
<td>41.6</td>
<td>21.8</td>
<td>36.6</td>
<td>0.5</td>
</tr>
<tr>
<td>KM(_4)/SiO(_2)</td>
<td>55.5</td>
<td>22.2</td>
<td>22.3</td>
<td>0.4</td>
</tr>
<tr>
<td>KM(_4)/SiO(_2)</td>
<td>55.5</td>
<td>22.2</td>
<td>22.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Potassium promotion led to an increase in Mo\(^{5+}\) and a decrease in Mo\(^{4+}\). This was attributed to a change in the coordination of molybdenum on the addition of potassium. Oxidic Mo(VI) which exists in octahedral as well as in tetrahedral coordination is more easily sulfided/reduced in its octahedral coordination state. Potassium promotion was therefore believed to transform some of the octahedrally coordinated Mo(VI) to tetrahedrally coordinated Mo(VI), which is less readily reduced. This explains the stabilization of Mo\(^{5+}\) species with respect to Mo\(^{4+}\) species. The abundance of “low oxidation state sulfur”, comprising elemental sulfur, S\(_2^-\), S\(_2\)\(_2^-\), oxysulfides and polysulfides increased while the amount of “high oxidation state sulfur” – SO\(_4\)\(_2^-\) decreased on addition of potassium and/or cobalt. The “low oxidation state sulfur” species S\(_2^-\) and S\(_2\)\(_2^-\) are known to activate hydrogen either by homolytic cleavage of H\(_2\) according to

\[
(S - S)\text{\(_2^-\)} + H_2 \rightleftharpoons (S - S)\text{\(_2^-\)}
\]

or by heterolytic cleavage according to

\[
\text{Mo}^{4+} - S\text{\(_2^-\)} + H_2 \rightleftharpoons \text{Mo}^{4+} - S\text{\(_2^-\)}
\]

The fact that cobalt significantly increased the S\(_I\)/S\(_H\) ratio in the case of the doubly promoted catalyst is in good agreement with the higher selectivity to methane exhibited by the doubly promoted catalysts, i.e. increased hydrogenation capability on cobalt promotion.
In a very recent publication Cordova et al. [45] studied the formation of methyl mercaptan from H$_2$S-containing synthesis gas over alkali promoted MoS$_2$ based catalysts, focusing on the influence of the promoter and on gaining insight into the structure of the active phase. When conducting Mo 3d XPS they discovered a shift in the binding energy of the MoS$_2$ phase which was attributed to the formation of a K$_x$MoS$_2$ phase. More specifically they suggested that potassium is intercalated in between the layers of MoS$_2$ in the form of K$^+$ cations. This was further supported by high resolution TEM images which showed an increase in slab length and stacking degree of MoS$_2$ slabs in presence of potassium.
1.4. Scope of this thesis

Methyl mercaptan is a chemical feedstock employed in the synthesis of numerous products in the agricultural, plastics, rubber and chemical industries. It is predominantly produced by the reaction of methanol with hydrogen sulfide on an industrial scale. The idea to synthesize methyl mercaptan from synthesis gas directly, thereby omitting the methanol production step (where methanol is produced from synthesis gas), is intriguing and has received considerable interest.

It is commonly accepted in literature, that formation of methyl mercaptan from H$_2$S-containing synthesis gas proceeds via the formation of COS as a first step. However, the hydrogenation of COS has not been subject to detailed investigations prior to this thesis. Thus a two-step approach is adopted in order to study methanethiol formation within this thesis, i.e. the selective production of COS as a first process step conducted within a separate reactor, followed by the downstream synthesis of CH$_3$SH in a second, subsequent reactor.

Chapter 2 deals with the first step, i.e. the formation of COS from CO, CO$_2$ and liquid sulfur in presence and absence of H$_2$. A reaction network for the formation of COS is elucidated based on the results obtained from various experiments at different reaction temperatures, pressures, residence times and reactant ratios.

The method for the formation of COS presented in Chapter 2, allows the investigation of the second step of the production of methyl mercaptan from H$_2$S-containing synthesis gas, i.e. the conversion of COS to methyl mercaptan.

Chapter 3 of this thesis deals with the synthesis of methyl mercaptan from COS and H$_2$ in the presence of H$_2$S on K$^+$-promoted MoS$_2$ supported on silica. The reaction between COS, H$_2$ and H$_2$S over the employed catalyst is studied in the temperature range of 453-673 K by varying H$_2$/COS and H$_2$/H$_2$S ratios as well as by varying residence times. In order to get a better understanding of the reactions in which carbonyl sulfide is involved, experiments under exclusion of H$_2$ are also performed. Evaluation of these kinetic studies allows for setting up a reaction network for the synthesis of methyl mercaptan from COS and H$_2$ in the presence of H$_2$S. The catalyst is characterized in its oxide as well as in its sulfide state by atomic absorption spectroscopy, Raman spectroscopy and X-ray diffraction. NO adsorption experiments are performed on the sulfided catalyst and after treating the sulfided catalyst with COS. Analysis of these characterization results gives an indication towards the mechanisms by which the competing reactions in the synthesis of methanethiol take place on the catalyst surface.
The influence of potassium on the synthesis of methyl mercaptan from COS is investigated in more detail in Chapter 4. Pure MoS$_2$ and MoS$_2$ catalysts promoted with different concentrations of potassium (all of them supported on alumina) are tested in the synthesis of CH$_3$SH from COS to understand the key role of the alkali metal in the formation of methanethiol. Together with potassium-doped alumina, the MoS$_2$ catalysts are thoroughly characterized, in their oxide as well as in their sulfide state, by means of atomic absorption spectroscopy, N$_2$ physisorption, NO adsorption, X-ray diffraction, temperature-programmed sulfidation and Raman spectroscopy.

As cobalt is known to increase the hydrogenation performance of MoS$_2$ catalysts, it is added as a second promoter to the potassium-promoted MoS$_2$ catalysts in the catalytic conversion of COS, H$_2$, and H$_2$S to methyl mercaptan. This doubly promoted catalyst is also tested in the synthesis of methanethiol from CS$_2$, along with the unpromoted and the potassium-promoted MoS$_2$ catalysts. Chapter 5 presents the results of these reactions focusing on the influence of the catalyst composition.

A concise summary of the most important results and conclusions obtained within the scope of this thesis is given in Chapter 6.
1.5. References

Effect of H₂ in the synthesis of COS using liquid sulfur and CO or CO₂ as reactants

The synthesis of COS from CO, CO₂ and liquid sulfur in the presence and absence of hydrogen was explored. The reaction of H₂ with liquid sulfur produced H₂S and polysulfanes, which increase the reactivity of liquid sulfur and provide alternative complementary reaction routes for the formation of COS. The reaction from CO₂ proceeds by forming CO as intermediate. Elevated pressure favors formation of COS from both carbon oxides due to the increasing residence time and the saturation of gases in the liquid. Above 350°C, the solubility of H₂S in sulfur and the hydrogenation of COS limit the conversion of CO. The approach provides a highly efficient method for the preparation of COS under mild reaction conditions, without using a catalyst or water adsorbents.
2.1. Introduction

COS is an important feedstock in chemical industry, mainly used for the synthesis of agricultural products such as pesticides and herbicides [1]. Applications also include the use as a catalyst or reactant in polymerization or in the synthesis of substituted ureas, urethanes and carbamates [2-5]. The detailed chemistry and physicochemical properties of COS are compiled in two reviews covering preparation, properties and chemical reactions related to COS as well as the industrial applications and environmental problems associated with COS [6,7].

In the laboratory, COS can be prepared using several methods starting with different carbon and sulfur sources [7]. CO or CO₂, however, are the most used carbon sources in large-scale processes. The method starting with CO can be dated back to Mittasch and Willfroth, who produced a gas mixture of COS, CO₂ and CS₂ by reacting CO with sulfur vapor at temperatures between 400 and 600°C [8]. A COS yield of about 60% was achieved at a CO conversion of 95%, when iron oxide supported on activated carbon or charcoal was used as catalysts. The COS yield could be further improved through reducing the reaction temperature (260-490°C) and using zeolite 5A and 13X as catalysts [6]. Using alkali metal sulfides as catalysts in the liquid sulfur phase and cobalt-, tungsten- and tin-sulfides as catalysts in the gas phase, Kanazawa et al. were able to obtain a COS yield as high as 97% [9]. In a noteworthy catalyst-free process, a COS yield of 94% was achieved by passing CO directly through liquid sulfur in a saturator at approximately 400°C [10]. All the aforementioned processes were conducted at atmospheric or slightly elevated pressures. A high pressure process (7-30 bar) was attempted in a patent using cobalt-, molybdenum- and cobalt-molybdenum-sulfides as catalysts. Unfortunately, the maximum yield to COS was only 30%. Such a low yield is probably due to the low reaction temperatures (120-200°C) they applied [7].

The processes based on CO₂ go back to Rühl and Otto who used Group II and Group IV oxides as catalysts to convert a 1:1 mixture of CO₂ and H₂S to COS [5]. Alkali salts of phosphoric and sulfuric acid were used as sorbents for water. The pressures applied were between 5 and 25 bar and temperatures were between 100 and 350°C. A yield to COS of 11% was obtained at 240°C and 10 bar. In another process, Ce-oxides were used as catalysts. The product stream was recirculated through the catalyst bed up to 15 times, while the water formed was externally removed [11]. A more recent process employed zeolites (NaX) as catalysts and sorbents [12]. In all processes using CO₂, water has to be separated from the reactant and product stream to avoid thermodynamic limitations.
Surprisingly, the production of COS in the presence of H\textsubscript{2} in the reaction system starting with CO or CO\textsubscript{2} as C source and liquid or gaseous elemental sulfur has not been explored. The aim of this work was to investigate this reaction route to COS. It has been of special interest how the presence of H\textsubscript{2}S and H\textsubscript{2}S\textsubscript{x} species formed in situ influence the reaction network.

2.2. Experimental

2.2.1. Synthesis of catalysts

Two sulfide-based catalysts derived from oxide precursors, i.e., CoO-K\textsubscript{2}MoO\textsubscript{4}/SiO\textsubscript{2} and NiO/Al\textsubscript{2}O\textsubscript{3}, were tested for the synthesis of COS. All of them were prepared by the incipient wetness impregnation method. Typically, the desired amount of salt was dissolved in distilled water and added dropwise to the alumina (Aeroxide Alu C; Degussa) or silica (Aerosil 200; Degussa) support. The precursor salts were cobalt nitrate hexahydrate (Co(NO\textsubscript{3})\textsubscript{2}\cdot6H\textsubscript{2}O; Fluka), nickel nitrate hexahydrate (Ni(NO\textsubscript{3})\textsubscript{2}\cdot6H\textsubscript{2}O; Fluka) and potassium molybdate (K\textsubscript{2}MoO\textsubscript{4}; Aldrich). After impregnation, the oxidic forms of the catalysts were dried at 80°C over night and afterwards calcined at 500°C in synthetic air for 12 h.

2.2.2. Thermodynamic calculations

Thermodynamic calculations were performed using the HSC Chemistry 5.1 software.

2.2.3. Activity tests

The reactions were carried out in a semi-batch tank reactor, depicted in Fig. 2.1. As elemental liquid sulfur and sulfur vapor are extremely corrosive, the cylindrical reaction chamber (b) (30 mm diameter, 100 mm height) was made from V4-stainless steel which permits a reasonably long life of the reactor at the temperatures and pressures applied to the system (140–500°C, 10-40 bar). The reactant gases were mixed prior to entering the reaction chamber through an immersion tube (c) made of Hastelloy C, which introduced the gaseous educts into the liquid sulfur phase. The flow rates were controlled by Bronkhorst F201C mass flow controllers, the pressure of the system was controlled by a Bronkhorst P612C backpressure regulator. Above the reaction chamber, a sulfur condenser was applied to cool
the gas leaving the condensed phase to 140°C. A thermocouple sealed in a Hastelloy C tube (d) was inserted into the liquid phase to monitor its temperature. In the experiments, the loaded reactor was first heated to the desired temperature under a flow of 5 ml/min N₂. After 30 min at this temperature, the feed gas mixture was bubbled through the liquid sulfur. The outlet gases were analyzed by gas chromatography, using a Shimadzu GC 2014 equipped with a packed Haysep Q and a packed molecular sieve (13X) column. All the gases were supplied by Air Liquide. The measurements were taken after steady state of the system was achieved.

![Diagram of the reactor](image.png)

Figure 2.1: Scheme of the reactor. a oven, b reaction chamber, c immersion tube for educts inlet, d thermocouple, e sulfur level at beginning of each experiment, f coolant inlets, g coolant outlets.

Several catalysts forming slurry with liquid sulfur were tested for the reaction between liquid sulfur and a mixture of CO and H₂. These reactions were carried out in the temperature
range of 150-350°C at 30 bar with reactant flow rates of 3 and 18 mL/min for CO and H₂ respectively. To evaluate the effect of hydrogen, two series of experiments were conducted at 30 bar, while the temperature of the liquid sulfur phase varied between 250°C and 450°C. In the first set of experiments, CO and H₂ were passed through the liquid sulfur phase at a ratio of 1/6 (the flow rates were 3 and 18 mL/min for CO and H₂, respectively), whereas in the second set of experiments, H₂ was replaced by N₂. To explore the effect of pressure, the reactant flow rates were 3 and 18 mL/min for CO and H₂, respectively. When the flow rate and H₂/CO ratio were varied, the reaction conditions were kept constant at 350°C and 30 bar. Several experiments were conducted to evaluate the formation of COS from CO₂ and H₂ in liquid sulfur. In those experiments, 20% CO₂ in H₂ was used as reactant. The overall flow rate was 9.45 mL/min and the pressure was varied from 10 to 40 bar. The residence time was defined as V/ν where V is the volume inside the reactor below the cooling zone (75 mL) and ν is the volumetric flow rate, calculated for every set of experimental parameters under the assumption of ideal gas law.

2.3. Results

The formation of COS by reacting CO and CO₂ with molten sulfur has been investigated at temperatures between 250 and 500°C and pressures between 10 and 40 bar as well as in the presence and absence of H₂. The formation of SOₓ type compounds or other species that are reported for the Claus process [13,14] was not observed. This is attributed to the fact that the present reaction conditions are significantly milder than those used in the Claus process (900-1200°C). In addition, in the more reducing environment in which the reactions take place, oxidation products of sulfur cannot form.

2.3.1. Formation of COS from CO, effect of catalyst

The activities of several catalysts in the synthesis of COS from CO and liquid sulfur in the presence of hydrogen were compared. The only products detected were H₂S, COS, CO₂ and CS₂. Conversion of CO and the yields to the products at 350°C are shown in Table 2.1. In all experiments, conversions of CO were nearly identical (88-92%) as well as the yields towards COS (84-86%). The yields to CO₂ and CS₂ were both approximately 2%. Obviously, no significant influence of the applied catalysts was observed. Therefore, all experiments discussed in the following, were conducted without using a catalyst.
Chapter 2

2.3.2. Formation of COS from CO, effect of H₂ and total pressure

The conversion of CO in the presence and absence of H₂ is compiled together with the conversion of hydrogen in Table 2.2, the respective yields to COS, CO₂ and CS₂ are depicted in Fig. 2.2. In the absence of hydrogen, below 250°C, the reaction proceeded very slowly leading to conversions of CO not exceeding 5%. Above 300°C, the conversion increased rapidly and COS yield reached the maximum of 88% at 400°C.

Table 2.2: Conversions of CO in liquid sulfur using N₂ + CO and H₂ + CO.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>N₂ + CO</th>
<th>H₂ + CO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conversion (%)</td>
<td>Conversion (%)</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>CO</td>
</tr>
<tr>
<td>250</td>
<td>4.1</td>
<td>50.6</td>
</tr>
<tr>
<td>300</td>
<td>11.7</td>
<td>82.7</td>
</tr>
<tr>
<td>350</td>
<td>68.6</td>
<td>88.2</td>
</tr>
<tr>
<td>400</td>
<td>96.9</td>
<td>89.7</td>
</tr>
<tr>
<td>450</td>
<td>98.8</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

a 30 bar, H₂/CO ratio: 6
b n.d. Not determined

Table 2.1: Product yields and conversion of CO for the reaction between CO, H₂ and liquid sulfur.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Amount (mg)</th>
<th>Yield (%)</th>
<th>Conversion of CO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COS</td>
<td>CO₂</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>86.5</td>
<td>2.6</td>
</tr>
<tr>
<td>c</td>
<td>1500</td>
<td>84.7</td>
<td>2.3</td>
</tr>
<tr>
<td>d</td>
<td>500</td>
<td>84.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

a 30 bar, H₂/CO ratio: 6, residence time: 50 min
b At different temperatures (°C)
c CoO(2.9 wt%)/K₂MoO₄(28 wt%)/SiO₂
d NiO(19 wt%)/Al₂O₃
In the presence of H$_2$, trace amounts of methyl mercaptan were also detected as additional byproduct. The conversion of CO below 350°C was drastically improved by the presence of H$_2$ (see Table 2.2), whereas the maximum yield to COS (about 85%) was obtained at 350°C. The yields to CS$_2$ and CO$_2$ were slightly lower than in the absence of H$_2$. Conversions of CO and product yields of the reaction between CO and liquid sulfur in the presence of hydrogen at several pressures (thus, residence times) are compiled in Table 2.3.

Increasing the pressure from 10 to 30 bar increased the residence time from 16.8 to 50.4 min and the conversion of CO from 51.4 to 92.2%. Further pressure increments led to higher residence times but only to minor changes in the conversion of CO and the yield to COS, which were already above 85 and 90%, respectively, at 30 bar.
Table 2.3: Conversion of CO and yields as function of pressurea.

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>Residence time (min)</th>
<th>Conversion (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>COS</td>
</tr>
<tr>
<td>10</td>
<td>16.8</td>
<td>51.4</td>
<td>50.4</td>
</tr>
<tr>
<td>20</td>
<td>33.6</td>
<td>84.5</td>
<td>80.8</td>
</tr>
<tr>
<td>30</td>
<td>50.4</td>
<td>92.2</td>
<td>86.5</td>
</tr>
</tbody>
</table>

a 350°C, H\textsubscript{2}/CO ratio: 6

2.3.3. Formation of COS from CO, effect of residence time and H\textsubscript{2}/CO ratio

The impact of residence time and H\textsubscript{2}/CO ratio was further tested with respect to the formation of COS; the results are presented in Table 2.4. It was observed that varying the residence time while keeping the H\textsubscript{2}/CO ratio constant or vice versa hardly changed the conversion of CO and the product distribution. However, a trend could be noticed: as the H\textsubscript{2}/CO ratio was lowered, the conversion of CO slightly increased. It varied from 84.6-86.5\% to 94.9\% by changing the H\textsubscript{2}/CO ratio from 6 to 0.7.

Table 2.4: Conversion of CO and product yields at different residence times and H\textsubscript{2}/CO ratiosa.

<table>
<thead>
<tr>
<th>Residence time (min)</th>
<th>H\textsubscript{2}/CO ratio</th>
<th>Reactant composition (mL/min)</th>
<th>Yield (%)</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N\textsubscript{2}</td>
<td>H\textsubscript{2}</td>
<td>CO</td>
</tr>
<tr>
<td>72.0</td>
<td>6.0</td>
<td>0</td>
<td>12.6</td>
<td>2.1</td>
</tr>
<tr>
<td>50.0</td>
<td>6.0</td>
<td>0</td>
<td>18.0</td>
<td>3.0</td>
</tr>
<tr>
<td>42.1</td>
<td>4.0</td>
<td>10.1</td>
<td>12.0</td>
<td>3.0</td>
</tr>
<tr>
<td>42.1</td>
<td>1.0</td>
<td>19.1</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>42.1</td>
<td>0.7</td>
<td>20.0</td>
<td>2.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>
2.3.4. Formation of COS from CO₂, H₂ and liquid sulfur

The only carbon-containing products formed in the reaction originating from CO₂ were COS and CO. The corresponding concentrations of water were also detected. As shown in Fig. 2.3, the conversion of CO₂ increased with increasing temperature and pressure. The increase in the conversion of CO₂ with pressure was significant up to 30 bar and only of minor influence above. The selectivity to COS and CO is shown in Fig. 2.4. Interestingly, the selectivity to CO and COS were exact counterparts at all conditions applied, the higher the selectivity to CO, the lower the selectivity to COS and vice versa. The selectivity graphs are symmetric along an imaginary horizontal axis at 50%.

![Figure 2.3](image)

Figure 2.3: Conversion of CO₂ at different temperatures and pressures. Overall flow 9.45 mL/min and H₂/CO₂ ratio of 4.
Figure 2.4: Selectivity to COS (dashed lines) and CO (continuous lines) as a function of temperature at pressures of 10, 20, 30 and 40 bar. Overall flow rate of 9.45 mL/min and H\textsubscript{2}/CO\textsubscript{2} ratio of 4.

2.4. Discussion

2.4.1. Description of the reaction media

In order to explain the chemistry observed, the complex composition of gaseous and liquid sulfur [15,16] needs to be discussed briefly first. Figure 2.5 shows the composition of liquid and gaseous sulfur equilibrated at 1.13 bar. The data corresponding to the liquid phase were obtained by HPLC of quenched sulfur samples by Steudel et al. [17]. The sulfur gas composition was measured by Berkowitz and Marquart using mass spectrometry [18]. These experimental findings showed that in the gas phase the dominant species are sulfur rings with five to eight atoms; these species were concluded to be cyclic [19]. Below 320°C, gaseous sulfur is mainly composed of S\textsubscript{8} rings, whereas above that temperature, S\textsubscript{5}, S\textsubscript{6} and S\textsubscript{7} rings become the most abundant species. The amount of small molecules (S\textsubscript{2}, S\textsubscript{3} and S\textsubscript{4}), which are sulfur chains, remains below 2 mol% in the whole temperature range shown in Fig. 2.5. Liquid sulfur is composed of homocyclic rings consisting of 6–35 atoms as well as diradical chains with a widely varying number of sulfur atoms. The properties of liquid sulfur are quite
different from those described for the gas phase, S₈ rings are the most abundant sulfur species, whereas the concentration of other rings is rather low, i.e., less than 7 mol% for S₆ and S₇ species together and about 2 mol% for bigger cycles (S₉–S₂₃).

The second main constituent of liquid sulfur is polymeric sulfur (denoted in Fig. 2.5 as Sµ) composed mainly of diradical chains with a number of S atoms ranging from 3 (thiozone, S₃) to thousands.

![Figure 2.5: Mole composition (%) of equilibrated liquid (continuous lines) and gaseous (dashed lines) sulfur at 1.13 bar.](image)

As observed in Fig. 2.5, the proportion of sulfur species in the gas phase changes steadily with temperature; however, sulfur rings are, by far, the most abundant species in the temperature range shown in the figure. In contrast, in liquid sulfur, the proportion of different sulfur species can significantly vary in a narrow temperature range [16]. Below ~159°C, the so-called “transition temperature”, more than 90 mol% of liquid sulfur is composed of rings containing eight sulfur atoms [20,21]. Above the transition temperature, the concentration of polymeric sulfur chains increases at the expense of the rings with increasing temperature reaching a maximum at 250°C [22]. Furthermore, the average length of polymeric sulfur also changes to a great extent. Figure 2.6 shows a comparison between the Sµ proportion experimentally found by Steudel et al. [17] and that theoretically determined by Touro and
Wiewiorowski [23]; both results are well in line. Touro and Wiewiorowski also determined the variation in the average sulfur chain length with temperature (denoted in Fig. 2.6 as number of sulfur atoms, \(n\)). The inset in Fig. 2.6 shows that the average sulfur chain length increases by four orders in magnitude around the transition temperature. Such variations in composition cause major changes in the physicochemical properties [16]. The most pronounced effect is that the viscosity increases rapidly by two orders of magnitude [15]. On the other hand, at temperatures above 250°C, liquid sulfur becomes highly reactive due to a significant presence of \(S_3\), thiozone and other small agglomerates [24,25].

![Figure 2.6: Weight % of polymeric sulfur experimentally reported in reference [17] for pure liquid sulfur (o) and calculated in reference [23] for pure liquid sulfur (dashed line) and polysulfanes in sulfur (continuous line). The inset shows the average number of sulfur atoms (n) in the sulfur chains of pure sulfur (*) and polysulfanes in sulfur (+).](image)

The description of liquid sulfur becomes more complex in the presence of compounds like \(H_2S\) which can chemically interact with liquid sulfur, and thus change its physicochemical properties [16,26]. Figure 2.7 shows the solubility of \(H_2S\) in liquid sulfur as reported by Fanelli [15], starting from the melting point of sulfur (125°C at 1 bar). The solubility of \(H_2S\) in liquid sulfur increases with increasing temperature and passes through a broad maximum.
between 200 and 385°C. Above 385°C, H\(_2\)S solubility declines to its lowest level near the boiling point of sulfur (445°C at 1 bar). The reason for this unusual behavior (solubility of gases in liquids decreases with temperature) is that H\(_2\)S reacts with sulfur - forming polysulfanes H\(_2\)S\(_x\) according to reaction (I) [27]. Hydrogen can also induce the formation of H\(_2\)S and polysulfanes via reaction (II).

\[
\begin{align*}
H_2S + S_x & = H_2S_{x+1} \quad (I) \\
H_2 + S_x & = H_2S_x \quad (II)
\end{align*}
\]

Polysulfanes are chain-like H\(_2\)S\(_x\) molecules with x varying from 2 up to at least 35 [28]. The shorter the chain length, the more stable is the polysulfane molecule [29]. Touro and Wiewiorowski [23] determined the solubility of H\(_2\)S present in the form of monosulfide and found the behavior shown in Fig. 2.7 by the continuous line.

![Figure 2.7: H\(_2\)S solubility (weight %) in liquid sulfur reported at 1 bar in reference [15] and at 3.05 and 4.43 bar reported in reference [30]. The continuous line corresponds to the amount of H\(_2\)S solubilized in liquid sulfur without forming polysulfanes [23].](image-url)
Evidently, the concentration of H$_2$S present in the form of H$_2$S$_x$ is higher than that of the monosulfide. Rubero [30] reported the H$_2$S solubility in liquid sulfur at pressures higher than atmospheric. These data are compared with Fanelli’s results in Fig. 2.7. The weight percent of H$_2$S in sulfur increases about 72 and 117% by increasing the pressure from 1 to 3.05 and 4.43 bar, respectively. Unfortunately, solubility of H$_2$S at higher pressures cannot be found in the literature, but it can be assumed that the behavior at ambient pressures represents the lower boundary of the solubility and that the pressure used in this report (10-40 bar) should greatly increase the concentration of polysulfanes in liquid sulfur.

H$_2$S reduces the proportion and average length of sulfur chains as shown in Fig. 2.6 for which the data were taken from reference [27]. The difference between the polymeric sulfur proportion in the presence and absence of H$_2$S is low and decreases with temperature; however, the effect on the average length of the sulfur chains is very strong. In the inset of Fig. 2.6, it is obvious that in the sulfur-polysulfane system the average number of atoms in the sulfur chains hardly changes even around the transition temperature. Consequently, at a given temperature, the proportion of sulfur chains in the sulfur-polysulfane system is similar to that in liquid sulfur; however, in the polysulfane system, such chains are much shorter than in liquid sulfur.

Given that polysulfanes are unstable and tend to decompose quickly into sulfur and H$_2$S, there are no studies concerning the equilibrium characteristics of the sulfur-polysulfane system. The knowledge of polysulfane properties is limited to the shortest polysulfane compounds with 2–5 sulfur atoms [28].

Féher and Hitzemann determined the vapor pressure of polysulfanes from H$_2$S$_2$ to H$_2$S$_5$ at 20°C as well as the corresponding enthalpies of evaporation [31]. Using these data, the vapor pressure at several temperatures was determined using the Clausius-Clapeyron equation and compared with the values of equilibrium pressures of the analogous pure sulfur chains taken from the review of Meyer [24]. Both series of values are depicted in Fig. 2.8. Evidently, the vapor pressure of polysulfanes is several orders of magnitude higher than that of the corresponding sulfur chains. Additionally, the vapor pressure of polysulfanes is inversely proportional to the number of sulfur atoms in the chain. Information about the composition of gas equilibrated with the sulfur-polysulfane system is not available in the literature. Data concerning the concentration of sulfur species at high pressures in both systems, pure sulfur and sulfur-polysulfane, were not found. However, qualitatively, it can be stated that increasing pressure should lead to an enrichment of the gas phase with small chain sulfur molecules, whereas the proportion of large sulfur molecules (rings and chains) in the liquid
phase should increase as well. In the sulfur-polysulfane system, the liquid phase containing sulfur chains with a smaller average length and exhibiting a higher vapor pressure than the pure sulfur counterpart should increase the proportion of small chain sulfur molecules in the gas phase.

![Figure 2.8: Vapor pressure of polysulfanes (continuous lines) and pure sulfur chains (dashed lines) containing from 2–5 sulfur atoms (the number of atoms is depicted in the figure).](image)

2.4.2. Reaction network

In the absence of hydrogen, the reaction pathway is well known [2]. CO is directly oxidized by elemental sulfur leading to the formation of COS, as show in Eq. III. COS formed in Eq. III may undergo reverse thermal decomposition to form CO and elemental sulfur or disproportionate to produce secondary products as shown in reaction (IV). The products of reaction (IV), CS₂ and CO₂, were the only two carbon-containing byproducts observed in the experiments originating from CO. The yields of CS₂ and CO₂ are identical in absence of H₂, indicating that both are indeed produced via disproportionation of COS.
CO + S \rightleftharpoons COS \hspace{1cm} (III)

2 COS \rightleftharpoons CO$_2$ + CS$_2$ \hspace{1cm} (IV)

In the presence of hydrogen, apart from the route in Eq. (III), two alternative routes for the formation of COS exist. First, hydrogen is oxidized by elemental sulfur to form H$_2$S according to Eq. V. Then, H$_2$S reacts directly with CO to produce COS and H$_2$ as shown in Eq. VI. The second alternative is that polysulfanes formed via reaction (I) or (II) react with CO to form COS according to reaction (VII).

\[
\begin{align*}
H_2 + S_x &\rightleftharpoons H_2S + S_{x-1} \hspace{1cm} (V) \\
CO + H_2S &\rightleftharpoons COS + H_2 \hspace{1cm} (VI) \\
CO + H_2S_x &\rightleftharpoons COS + H_2S_{x-1} \hspace{1cm} (VII)
\end{align*}
\]

In Table 2.2, it was shown that hydrogen conversion increased with temperature reaching values higher than 70% at temperatures above 300°C. However, further increasing the H$_2$/CO ratio resulted in a decrease in the yield to COS and in the conversion of CO as shown in Table 2.4. From both observations, it can be deduced that sulfane synthesis (reactions II and V), which should be enhanced by H$_2$, is rather fast. Furthermore, data in Table 2.4 suggested that the rate of COS formation can be lower than that of the corresponding reverse reaction (VI) at H$_2$-rich conditions given that decreasing the H$_2$/CO ratio improved the yield to COS and the apparent CO conversion.

In the case of the experiments starting from CO$_2$, the direct reaction of CO$_2$ with H$_2$S is shown in Eq. VIII. The formation of CO from the reverse water gas shift reaction shown in Eq. IX is also possible. The following steps correspond to reactions (III) or (VI)-(VII), in which CO reacts with elemental sulfur, H$_2$S or polysulfanes to form COS. The data presented in Fig. 2.4 show that the amount of CO transformed by increasing pressure and temperature corresponds to the amount of COS produced. Thus, the rate of reaction (VIII) is concluded to be negligible compared to that of the reaction pathway induced by the reverse water gas shift.

\[
\begin{align*}
CO_2 + H_2S &\rightleftharpoons COS + H_2O \hspace{1cm} (VIII) \\
CO_2 + H_2 &\rightleftharpoons CO + H_2O \hspace{1cm} (IX)
\end{align*}
\]

Figure 2.9 shows the conversion of CO$_2$ with increasing temperature at several pressures predicted by thermodynamics, when the reactant gas mixture has a H$_2$/CO$_2$ ratio of 4. For
comparative purposes, the experimental data are also shown. The predicted conversion of CO\textsubscript{2} decreases by increasing the total pressure, which is the opposite trend to what was experimentally observed. In fact, at high pressures, the conversion of CO\textsubscript{2} was higher than that thermodynamically expected for the isolated reactions. This apparent discrepancy can be explained by the formation of COS from CO, which shifts the equilibrium of (IX) to the product side. From the detection of CO, it can be concluded that the rate of (IX) is higher than the rate of COS formation from CO. By increasing temperature and pressure, the selectivity to CO went towards zero which indicates that the rate of COS formation increases faster than the rate of the reverse water gas shift reaction.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2_9.png}
\caption{CO\textsubscript{2} conversions for (VIII) (continuous lines) and (IX) (dashed lines) thermodynamically allowed at several pressures. The experimental values are represented by the lines marked with symbols.}
\end{figure}

The reaction network for the formation of COS from CO and CO\textsubscript{2} in presence of hydrogen in liquid sulfur based on the present results is depicted in Fig. 2.10. CO reacts to COS directly with sulfur (III) or by reacting with sulfanes, including H\textsubscript{2}S (VI)-(VII). Under certain conditions, COS production could be limited by the reverse reaction (VI), which forms CO and H\textsubscript{2}S from COS and H\textsubscript{2}. H\textsubscript{2}S and polysulfanes are formed in the independent reaction
between H₂ and sulfur (I), (II) and (V). CO₂ either reacts with H₂S directly to form COS and water (VIII) or is converted to CO and water by means of the reverse water gas shift reaction (IX). COS can further form CS₂ and CO₂ via disproportionation (IV).

\[
\begin{align*}
H₂ + S_x & \rightarrow H₂S_x \\
H₂S & \rightarrow H₂S_x \\
+ H₂S_x - H₂S_{x-1} & \rightarrow \text{COS} \\
\end{align*}
\]

Figure 2.10: Reaction network of CO/CO₂ and sulfur in presence of H₂. Numbers in parentheses correspond to the reactions shown in the text. The dashed lines correspond to the pathways created by the introduction of H₂ into the reaction system.

2.4.3. Role of pressure and liquid sulfur

The beneficial pressure effect on the conversions of CO and CO₂ can be easily explained by the increase in residence time. In Table 2.3, it is shown that increasing pressure from 10 to 40 bar increases the residence time from 16.8 to 83.9 min. Pressure can also affect the properties of the liquid and the gas phase. The higher the pressure, the higher the concentrations of gases in the liquid phase sulfur. This is true especially for H₂S as shown in Fig. 2.7. On the other hand, it is likely that high pressures could also increase the concentration of the more reactive small chain sulfur molecules in the gas phase. Unfortunately, it is not possible to estimate the extent of both effects and, thus, to assert that the reaction system of Fig. 2.10 is taking place preferentially in a single phase.
However, qualitative evidence of a more important role of liquid sulfur than of the gas phase can be given. As described in 2.1., the reported processes for the COS production use CO or CO$_2$ as carbon sources together with vaporized sulfur. In the present experiments, the temperature of liquid sulfur was varied between 150 and 500°C, while the product gases were quenched to 140°C after leaving the liquid phase. Consequently, the possibility of reactions occurring in the gas phase above liquid sulfur is reduced.

The activity behavior presented in Fig. 2.2 can be better correlated with the changes in liquid sulfur than in the equilibrated gas phase. It was shown in Fig. 2.5 that the proportion of sulfur species with five to eight atoms in the gas phase scarcely changes by increasing temperature. The concentration of these kind of sulfur rings remains always around 98%, whereas the lowering of S$_8$ ring concentration favoring that of S$_6$ and S$_7$ rings occurs steadily. In contrast, the characteristics of liquid sulfur change markedly with temperature. Note in Table 2.2 that in absence of H$_2$, the conversion of CO suddenly increases above 300°C which corresponds to the temperature at which the presence of more reactive small chains in molten sulfur increases [16].

In the presence of H$_2$, the sulfur chains in liquid sulfur are shorter on average and are stabilized as shown in Fig. 2.6. Consequently, the CO conversion curve increases steadily. Table 2.2 shows that the conversion of CO increases appreciably in the range 250-300°C, from 50.6 to 82.7%, whereas at temperatures between 300 and 400°C, it increases only by 7%. This behavior is in line with the trend of H$_2$S solubility in molten sulfur (Fig. 2.7) which hardly increases from 250 to 350°C and then starts to decline. Hence, the conversion of CO by means of reactions (VI)-(VII) is concluded to be limited by the concentration of H$_2$S in the liquid phase. Another limiting factor for the CO conversion at hydrogen rich conditions or high temperatures could be the thermodynamic equilibrium of the reaction (VI) which consumes COS and H$_2$ to produce CO.

Two possibilities can be considered to explain the lack of catalytic effect, i.e., the reaction is thermodynamically and not kinetically controlled or the reactants do not interact with the catalyst. In order to differentiate between those two possibilities, a thermodynamic analysis was performed considering a sulfur-rich environment (S$_8$/CO molar ratios higher than 1). The result showed that CO conversion of 99% can be achieved in presence of H$_2$. Hence, the absence of catalytic effects cannot be attributed to thermodynamic control. At present, we speculate that the reactants do not interact with the catalyst suspended in liquid sulfur, because the active sites are blocked by strongly adsorbed sulfur species.
2.5. Conclusions

High yields to COS from CO or CO$_2$ and liquid sulfur can be achieved at 350-400°C in the presence of H$_2$ without addition of catalysts and water adsorbents. The experimental findings point to the fact that the reactions occur mainly in liquid sulfur. The introduction of hydrogen leads to the formation of polysulfanes, which increase the reactivity of liquid sulfur by shortening the length of linear sulfur species. Furthermore, the formation of COS in the presence of H$_2$ seems to be limited by the solubility of H$_2$S in liquid sulfur and at high temperatures, the reaction between COS and H$_2$ that produces CO. H$_2$, H$_2$S and polysulfanes formed in molten sulfur provide alternative reaction routes for the formation of COS from CO and CO$_2$. The rate of the reverse water gas shift reaction is faster than that of the formation of COS. The rate of the latter, however, increases faster with temperature and pressure. Higher pressures increase residence times and the concentration of the reactant gases in liquid sulfur. Starting from CO, stable and high yields to COS (>90%) are obtained at various reaction conditions. By using CO$_2$ as carbon source, the reaction proceeds via the reverse water gas shift reaction, with CO being a reaction intermediate.
2.6. References

[13] P. Clark, N. Dowling, M. Huang, W. Svrcek, W. Monnery,
[26] H. Uchtmann, S. Kazitsyna, F. Hensel, V. Zdimal, B. Triska, J. Smolík,
Synthesis of methyl mercaptan from carbonyl sulfide over sulfide K$_2$MoO$_4$/SiO$_2$

The synthesis of methyl mercaptan from COS and H$_2$ on K$^+$ promoted MoS$_2$ supported on silica is explored. The reaction proceeds via the disproportionation of COS to CO$_2$ and CS$_2$ and the consecutive hydrogenation of CS$_2$ to CH$_3$SH. In parallel to the disproportionation, COS also decomposes to CO and H$_2$S. The characterization of the catalyst by means of XRD, Raman spectroscopy, and adsorption of NO suggests that two active phases, i.e., relatively pure MoS$_2$ and K$^+$-decorated MoS$_2$, are present in the sulfide catalyst. The disproportionation of COS and the hydrogenation of CS$_2$ are favored on K$^+$-decorated MoS$_2$; the decomposition of COS to CO is the favored route on pure MoS$_2$. The reaction mechanisms for the decomposition of COS and the hydrogenation of CS$_2$ are discussed.
3.1. Introduction

Methyl mercaptan is an important chemical commodity widely used in the production of pesticides, pharmaceuticals, petrochemicals, and for material synthesis [1]. The main application of CH$_3$SH lies in the production of methionine, an amino acid used as an animal feed supplement [2]. With the rapid increase in the demand for methionine over the past 20 years, the demand for CH$_3$SH has been growing significantly [3]. Therefore, the synthesis of methyl mercaptan has been the subject of several studies and alternative routes for its production have been explored [4-6]. Industrially, methyl mercaptan is produced by thiolation of methanol. In this process, methanol and H$_2$S are reacted over alkali-promoted transition metal sulfides [1]. Considering that methanol is generated from synthesis gas, Olin et al. [7] proposed first to form CH$_3$SH directly from carbon oxides, hydrogen, and hydrogen sulfide. The catalysts for those reactions were based on alkali-promoted tungsten or molybdenum sulfides with transition metal oxides as additives [8]. The approach attracted significant interest, because it allowed avoiding the methanol synthesis step [9-14]. It is commonly accepted that the generation of CH$_3$SH from H$_2$S-containing syngas proceeds via the formation of carbonyl sulfide (COS) as the primary product and its subsequent hydrogenation to CH$_3$SH [15-17]. Preliminary experiments with COS as starting agent have indicated, however, that the direct hydrogenation of COS may not be a significant route. The objective of this study was, therefore, to explore the synthesis of methyl mercaptan using COS, H$_2$, and H$_2$S as reactants. A two-step approach was adopted to achieve this goal, i.e., the selective production of COS followed by the synthesis of CH$_3$SH in a separate reactor. The formation of COS by reacting CO and H$_2$ with elemental liquid sulfur was reported elsewhere [18]. In this first step, CO conversion of 100% with high yield of COS at various reaction conditions was achieved. In the present work, we analyzed the catalytic synthesis of CH$_3$SH in the presence of H$_2$S over sulfide K$_2$MoO$_4$/SiO$_2$ by combining physicochemical characterization of the catalyst with detailed kinetic measurements. The thermodynamic equilibria of reactants and products were calculated to explore potential operating conditions.

Thermodynamic considerations

Calculations addressing the formation of CH$_3$SH from CO, H$_2$S, and H$_2$ have been reported by Barrault et al. [15]. Conversion of CO to methyl mercaptan is assumed to proceed via reactions (I) and (II).
CO + H₂S ⇌ COS + H₂ \hspace{1cm} (I)

COS + 3H₂ ⇌ CH₃SH + H₂O \hspace{1cm} (II)

The overall formation of methyl mercaptan from CO is thermodynamically allowed between 448 and 698 K and it is favored at high pressures and excess of H₂S and H₂.

Figure 3.1: Thermodynamically allowed conversion of COS for reaction

(COS+3H₂ ⇌ CH₃SH+H₂O) at 3 MPa and different H₂/COS ratios (values shown in the figure) (a) and different pressures (H₂/COS = 3) (b) over temperature.
Here, only the thermodynamic calculations focusing on step (II) are reported. The conversion of COS as a function of temperature at various H₂/COS ratios and different total pressures is calculated using the HSC Chemistry 5.1 software. The results are compiled in Fig. 3.1.

The lowest COS conversion is calculated for the stoichiometric ratio of H₂/COS = 3 (Fig. 3.1(a)). Higher H₂/COS ratios increase the thermodynamically possible COS conversion. For ratios higher than 4.5, a conversion of nearly 100% is possible up to 673 K. At higher temperatures, the maximum conversion of COS decreases, which is in line with the strongly exothermic nature of reaction (II), (ΔH° = -124 kJ/mol). Fig. 3.1(b) shows the dependence of the COS conversion on the temperature at pressures ranging from 1 to 5 MPa. As reaction (II) proceeds, the number of total molecules decreases, and thus high pressures are favorable to maximize conversion. Considering the results of Barrault et al. [15] and the thermodynamic calculations described here, the synthesis of CH₃SH is studied at 3 MPa in the temperature range of 453-673 K with H₂/COS ratios from 2 to 7.

3.2. Experimental

3.2.1. Catalyst preparation and activation

A SiO₂ (AEROSIL® 90, Degussa) supported molybdenum sulfide catalyst, promoted with a twofold molar potassium excess over molybdenum, was used. The oxide precursor was synthesized by the incipient-wetness impregnation method using an aqueous solution of K₂MoO₄ (Sigma Aldrich, 98%). After impregnation, the catalyst precursor was dried at 353 K overnight and treated at 773 K in synthetic air for 12 h. The loading of K₂MoO₄ on SiO₂ was 28 wt.%. Prior to each activity test, 0.5 g of the catalyst was activated by sulfidation in 10 vol.% H₂S in H₂ at 3 MPa and 673 K for 12 h.

3.2.2. Kinetic measurements

Kinetic measurements were carried out by using two reactors in a serial configuration with a GC connected to the outlet of each reactor to monitor both steps as shown in Fig. 3.2. The first reactor was a semi-batch tank reactor (pre-reactor) used to obtain mixtures of COS and H₂S from the reaction of CO and H₂ (continuous reactants) with liquid sulfur (batch reactant). The configuration of the pre-reactor and the reactions taking place in it were described in
In this first step, the feed composition and reaction conditions were adjusted in order to achieve complete CO conversion and the H$_2$S/COS ratio required to perform the experiments in a subsequent plug-flow reactor with fixed catalyst bed (main reactor). The products from the pre-reactor were mixed with required concentrations of H$_2$ and N$_2$ prior to the second reaction step in the main reactor. Feed compositions reported in this work refer to the gas mixture introduced to the main reactor. The gas products were analyzed by gas chromatography using a Shimadzu GC 2014 equipped with a packed Haysep Q and a packed molecular sieve (13X) column.

Figure 3.2: Simplified scheme of the reactor system; pre-reactor (P-R) loaded with elemental sulfur; main reactor (M-R); scrubber (E); heating box (dashed line); gas chromatograph (GC).

3.2.2.1. Activity tests at varying H$_2$/COS and H$_2$S ratios

In the experiments at varying reactant ratios, the content of COS in the gas mixture was 8.6 vol.%, with N$_2$ being added to keep an overall reactant flow rate of 37 cm3/min (residence time of 0.68 s). The H$_2$/H$_2$S ratio was held constant at 4.5 to study the effect of the H$_2$/COS ratio, whereas a fixed H$_2$/COS ratio of 2.3 was chosen to study the effect of the H$_2$/H$_2$S ratio. GC measurements were taken in steps of 15 K from 453 to 673 K after steady state was achieved.
3.2.2.2. Activity tests at varying residence time

The effect of residence time on the reaction was studied at 523 and 598 K using constant ratios of $H_2/COS = 2.3$ and $H_2/H_2S = 2.8$. The mass of the catalyst was held constant (0.5 g), whereas the flow rates were varied in the range 6-60.5 cm3/min at 598 K and 12-40 cm3/min at 523 K. Residence time was defined as $\nu/V_{catalyst}$, where ν is the volumetric flow rate and $V_{catalyst}$ is the total volume of the catalyst bed.

3.2.2.3. Activity tests in the absence of H_2

Experiments in the absence of H_2 were conducted to obtain a better understanding of the reactions in which COS is involved. At the end of a typical activity test in the presence of H_2, the reactor was flushed thoroughly with N_2 at 673 K to remove all reactants and products. After decreasing the temperature to 437 K, a total flow of 40 cm3/min of a gas mixture of 8.5 vol.% COS in N_2 was passed through the catalyst bed at 3 MPa. In the first experiment, the temperature was increased from 437 to 673 K in steps of 50 K, and the product was analyzed 5 min after reaching the desired temperature. In the second experiment, the temperature was increased from 437 to 523 K and kept constant for 5 h, and the products were analyzed every 50 min.

3.2.2.4. Catalytic test of bulk MoS_2 and sulfided K_2MoO_4

The sulfided form of bulk MoO_3 and K_2MoO_4 was tested in the reaction of COS with H_2. The reactor was loaded with 0.5 g of the oxide to perform the sulfidation in 10 vol.% H_2S in H_2 at 3 MPa and 673 K for 12 h. The overall reactant flow was 40 cm3/min with a COS content of 8.6 vol.% and the ratios $H_2/COS = 3$ and $H_2/H_2S = 5.3$. The reaction temperature was increased from 448 to 598 K.

3.2.3. Elemental composition and textural properties

The elemental compositions of the oxide precursor and the used sulfide catalyst were determined by atomic absorption spectroscopy (AAS) using a UNICAM 939 spectrometer. The surface area and pore volume of the catalyst in the oxide and used sulfide forms were determined by nitrogen adsorption-desorption. The measurements were performed on a Porous Materials Incorporated automated BET sorptometer. Before adsorption, the samples were degassed in vacuum at 673 K for 2 h.
3.2.4. Raman spectroscopy

Raman spectra of the samples during the sulfidation-oxidation process were measured by placing a sample of the catalyst in a suitable quartz tube reactor. The spectra of the oxide precursor were measured under N\textsubscript{2} at 290 K and under flow of 10 vol.% H\textsubscript{2}S in H\textsubscript{2} at 290, 473, and 673 K. After sulfidation, the sample was cooled down to 290 K in N\textsubscript{2}. New spectra were measured at 290 and 673 K after replacing N\textsubscript{2} by air. The Raman spectra were recorded on a Renishaw Raman Spectrometer Series 1000 Microscope with an Ar laser of 514 nm wavelength.

3.2.5. X-ray diffraction

The oxide precursor, the sulfide catalyst, and the catalyst used in the reaction were characterized by X-ray diffraction (XRD). Measurement of the sulfide catalyst was performed ex situ, after catalyst sulfidation for 12 h at 673 K and 3 MPa in 10 vol.% H\textsubscript{2}S in H\textsubscript{2}. A sample of the used catalyst was analyzed by XRD after cooling down the reactor to room temperature keeping the reactant mixture flow. The freshly sulfided catalyst and the sample of used catalyst were placed on a silicon single crystal with a (1 1 1) surface avoiding contact with air. Blank tests did not show any signals originating from the single crystal. A Philips X’Pert Pro System (Cu K\textsubscript{a1}-radiation, 0.154056 nm) operating at 45 kV and 40 mA was used for recording XRD. Measurements were carried out using a step size of 0.017\(^\circ\)(2\(\theta\)) and 115 s as count time per step.

3.2.6. NO adsorption

Adsorption of NO on the catalyst was measured at room temperature by a pulse technique using a flow apparatus equipped with a mass spectrometer (QME 200, Pfeiffer Vacuum) as detector. For each experiment, a sample of 0.15 g was loaded in a quartz reactor and sulfided in situ (3 h at 673 K in 10 vol.% H\textsubscript{2}S in H\textsubscript{2}). In the first experiment, the sample was cooled down to room temperature in the H\textsubscript{2}S/H\textsubscript{2} flow after sulfidation. NO pulses were periodically introduced after flushing the reactor with He. In the second experiment, the sample was cooled down to 523 K in the H\textsubscript{2}S/H\textsubscript{2} flow after sulfidation and at constant temperature, the H\textsubscript{2}S/H\textsubscript{2} flow was replaced by a COS/He mixture. After one hour, the sample was cooled down to room temperature in flowing COS/He. Subsequently, the sample was flushed with He and
the NO pulses were applied at regular intervals. In both experiments, the total amount of adsorbed NO was calculated as the sum of the NO uptakes per pulse.

3.3. Results

3.3.1. Catalyst characterization

3.3.1.1. Composition and textural characteristics

The elemental composition in the oxide precursor determined by AAS analysis were 11.4 and 8.8 wt.% for molybdenum and potassium (corresponding to 5.85 and 11.08 mol%). The concentrations in the precursor mixture during the synthesis step were 11.3 and 9.2 wt.% for molybdenum and potassium, respectively. The oxide precursor has a specific surface area of 50 m2/g and pore volume of 0.06 cm3/g.

The elemental composition of the used sulfide catalyst was 8.2, 6.2, and 9.5 wt.% for Mo, K, and S, respectively. Only traces of carbon were detected. The calculated S/Mo mol ratio was therefore 3.5, i.e., higher than the ratio expected for MoS$_2$ (S/Mo = 2), indicating that some sulfur was also associated with K$^+$ cations. The surface area and pore volume of the catalyst after reaction were 37 m2/g and 0.05 cm3/g, respectively.

3.3.1.2. Raman spectroscopy

Fig. 3.3 shows the Raman spectra of the K$_2$MoO$_4$/SiO$_2$ catalyst recorded at different temperatures during the sulfidation-oxidation process. Spectrum (a) corresponds to the oxide K$_2$MoO$_4$/SiO$_2$ precursor in N$_2$ at 290 K with all bands being characteristic for K$_2$MoO$_4$ [19]. The widths of the bands at 849 and 711 cm$^{-1}$, however, suggest the presence of K$_2$Mo$_2$O$_7$ [20] and this conclusion is in agreement with findings by XRD (see below). New bands at 463 and 485 cm$^{-1}$ after exposure to H$_2$S/H$_2$ at 290 K (Spectrum (b)) indicate the formation of K$_2$MoOS$_3$ [21]. Maintaining the H$_2$S/H$_2$ flow, the temperature was increased to 473 K for Spectrum (c). Bands appeared at 913 and 457 cm$^{-1}$, which are attributed to K$_2$MoS$_4$ [22]. After keeping the H$_2$/H$_2$S atmosphere for 4 h at 673 K, MoS$_2$ is detected as the main phase (450, 408, 382 cm$^{-1}$) as shown in Fig. 3.3(d). After cooling the sample in N$_2$ flow to 290 K and applying synthetic air for 10 min, evidence of oxidation is not observed. Bands at 994, 816, 374, 336, 283, 237, and 219 cm$^{-1}$ indicate the formation of MoO$_3$ after increasing the temperature to 673 K in synthetic air (Spectrum (e)) [23]. The bands at 964, 849 cm$^{-1}$ and those in between correspond to the octamolybdate K$_4$Mo$_8$O$_{26}$ [19].
Figure 3.3: Raman spectra of oxide K$_2$MoO$_4$/SiO$_2$ precursor in N$_2$ at room temperature (a); and after exposure to H$_2$S/H$_2$ at room temperature (b); to H$_2$S/H$_2$ at 473 K (c); to H$_2$S/H$_2$ at 673 K (d); and to synthetic air at 673 K (e).

Detailed spectra of the sulfide catalyst are shown in Fig. 3.4. An example of the Raman spectra observed with the largest fraction of the sample is displayed in Spectrum (a). All bands are attributed to MoS$_2$ with those at 382, 408, and 450 cm$^{-1}$ being the most intense [24]. The band at 382 cm$^{-1}$ is assigned to the Mo-S stretching mode along the basal plane, while the one at 408 cm$^{-1}$ corresponds to the S-Mo-S stretching mode along the C-axis. The band at 450 cm$^{-1}$ is attributed to a second-order scattering [23]. At few spots of the sample (see Spectrum (b)), the bands at 1825, 1364, 911, 459, and ~200 cm$^{-1}$ indicate the presence of a Resonance Raman Effect (RRE) typical for the MoS$_4^{2-}$ ion [22,25]. Thus, we attribute these bands to K$_2$MoS$_4$ unevenly distributed in the solid.

The sequence of Raman spectra with the sulfidation in H$_2$S/H$_2$ atmosphere indicates that K$_2$MoS$_4$ is the first fully sulfided species formed, which is converted to MoS$_2$ in the next step. The Raman spectra do not allow deducing the location of all potassium cations. Some potassium cations remain in K$_2$MoS$_4$ that is not transformed to MoS$_2$ as indicated by the Raman spectra of the sulfide catalyst in Fig. 3.4(b). The observation of MoO$_3$ and
octamolybdates (K/Mo molar ratio of 0.5) after oxidation of the sulfide catalyst, however, suggests partial segregation of potassium from Mo-containing phases.

![Raman spectra](image)

Figure 3.4: Raman spectra of sulfide K$_2$MoO$_4$/SiO$_2$ catalyst observed typically (a) and in few spots of the sample (b).

3.3.1.3. X-ray diffraction measurements

The X-ray diffractograms of the catalyst in the oxide and the sulfide form are shown in Fig. 3.5. The oxide precursor consists of a mixture of K$_2$MoO$_4$ (PDF number: 00-024-0880) and K$_2$Mo$_2$O$_7$ (PDF number: 00-036-0347), the latter phase is formed during thermal treatment in synthetic air. After sulfidation, most of the signals are characteristic of MoS$_2$ (PDF number: 00-024-0513). The peak at 10.3°(2θ) cannot be assigned to a defined crystalline structure. We speculate that it corresponds to a K-intercalated MoS$_2$ (K$_x$MoS$_2$, x < 1). The position of that peak and the relative intensity of weak signals at 32.5 and 57.5°(2θ) are in accordance with the powder diffraction data reported for intercalated
MoS$_2$ [26]. The formation of K$_x$MoS$_2$ (cationic potassium) takes place by the consecutive reactions (III) and (IV) [27].

$$
\text{K}_2\text{MoO}_4 + 4\text{H}_2\text{S} \rightarrow \text{K}_2\text{MoS}_4 + 4\text{H}_2\text{O} \quad \text{(III)}
$$
$$
2\text{K}_2\text{MoS}_4 + 3\text{H}_2 \rightarrow 2\text{K}_x\text{MoS}_2 + (2 - 2x)\text{K}^0 + \text{K}_2\text{S} + 3\text{H}_2\text{S} \quad \text{(IV)}
$$

Figure 3.5: XRD diffractograms of the oxide precursor (a), the sulfide K$_2$MoO$_4$/SiO$_2$ catalyst (b) and the catalyst after the reaction of COS and H$_2$ to CH$_3$SH. K$_2$MoO$_4$ (o), K$_2$Mo$_2$O$_7$ (x), MoS$_2$ (*), K$_x$MoS$_2$ (V) and K$_2$SO$_4$ (●).

The diffractogram of the used catalyst in Fig. 3.5 (c) shows that the initial structure of the catalyst was not preserved under reaction conditions. The diffraction peaks attributed to K$_x$MoS$_2$ disappear, and new diffraction peaks corresponding to K$_2$SO$_4$ (PDF number: 00-003-0608) appear at 21.8, 23.9, 29.9, 31.1, and 43.6°(2θ). The formation of K$_2$SO$_4$ is consistent with the excess of sulfur found by elemental analysis in the used catalyst (S/Mo molar ratio of 3.5). The crystalline K$_2$SO$_4$ increases the density of the catalyst and blocks some pores leading to the decrease in surface area and pore volume per gram of material detected in the catalyst after activity tests.
According to reactions (III) and (IV), K_2MoS_4 was an intermediate in the sulfidation process, which was also indicated by the Raman spectra described above. A separate K_2S phase was not detected by XRD or Raman spectroscopy implying that it had to be highly dispersed and well-distributed in the catalyst. Under reaction conditions, however, it reacted readily and irreversibly with water leading finally to the agglomerated K_2SO_4 phase.

3.3.1.4. NO adsorption measurements

The concentration of NO adsorbed on coordinatively unsaturated metal cations at room temperature for the sulfided catalyst and the sulfided sample exposed to COS/He flow at 523 K are shown in Fig. 3.6. The corresponding peaks of the NO pulses are presented in Fig. 3.7. In both cases, the NO uptake is initially high, but decreases to zero as the maximum uptake capacity of the sample is reached. The NO uptake of the sample exposed to COS reaches steady state faster than the sample after sulfidation, i.e., the concentration of the accessible coordinatively unsaturated metal cations is much lower in the latter sample. The total NO concentration taken up for the as-sulfided sample is 229 μmol per gram of catalyst (molar ratio NO/Mo = 0.195), while the concentration of NO adsorbed on the COS pretreated sample is 113 μmol per gram of catalyst (molar ratio NO/Mo = 0.09).

![Figure 3.6: NO uptake at room temperature over the freshly sulfided catalyst (●) and the sulfide catalyst exposed to COS/He flow at 523 K for 1 h (○).](image-url)
Figure 3.7: NO peaks obtained in the pulse flow experiments on K₂MoO₄/SiO₂ sulfided at 673 K for 3 h. As-sulfided sample (a); sample sulfided and exposed to COS/He at 523 K for 1 h (b).

3.3.2. Conversion of COS with varying H₂/COS ratio

Three different conditions were studied to evaluate the influence of the H₂/COS ratio, i.e., excess of hydrogen (H₂/COS = 7), near the stoichiometric ratio (H₂/COS = 4), and hydrogen deficient (H₂/COS = 2). The conversion of COS is presented in Table 3.1. The H₂/COS ratio had a strong effect on the conversion of COS. At 558 K, for example, the conversion of COS was 63% with H₂/COS = 2; it increased to 91% for H₂/COS = 4 and to 95% for H₂/COS = 7.
The main products detected were CO$_2$, CO, and CH$_3$SH. CS$_2$ was also observed at low temperatures under H$_2$ deficient conditions. H$_2$O and traces of CH$_4$ were detected in the product stream above 560 K. Unfortunately, it was not possible to quantitatively determine the concentration of water. The yield of carbon oxides, CH$_3$SH, and CS$_2$ are shown in Fig. 3.8.

Figure 3.8: Product yield on sulfide K$_2$MoO$_4$/SiO$_2$ at different H$_2$/COS ratios (white symbols 7, gray symbols 4, black symbols 2). CO (circles) and CO$_2$ (squares) (a); CH$_3$SH (circles) and CS$_2$ (squares) (b). 3 MPa, 37 cm3/min overall flow rate (residence time 0.68 s) and constant H$_2$/H$_2$S ratio of 4.5.
CO was the main product at all temperatures with H₂/COS ratios of 7 and 4 and temperatures above 560 K at H₂/COS = 2. Fig. 3.8(a) shows that at a given temperature, the yield of CO₂ decreased with increasing H₂/COS ratio. At 560 K, for example, the yield of CO₂ decreased from 22% to 13% and 9.6%, when the H₂/COS ratio varied from 2 to 4 and 7, respectively. In contrast, the yield of CO increased with increasing H₂/COS ratio, for instance at 560 K, from 22 to 64 and 75% by increasing the H₂/COS ratio from 2 to 4 and finally to 7. Fig. 3.8(b) shows that CS₂ was observed only below 570 K at H₂/COS = 2 and below 510 K at H₂/COS = 4. CS₂ was not detected at higher H₂/COS ratios. The yield of CH₃SH reached its maximum at a H₂/COS ratio of 4 below 550 K. At higher temperatures, the yield of CH₃SH is favored by low H₂/COS ratio.

Table 3.1: Conversion of COS on sulfide K₂MoO₄/SiO₂ at different H₂/COS ratios (constant H₂/H₂S ratio of 4.5) at 3 MPa and 37 cm³/min overall flow rate (residence time 0.68 s).

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>H₂/COS ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>453</td>
<td>11</td>
</tr>
<tr>
<td>468</td>
<td>15</td>
</tr>
<tr>
<td>483</td>
<td>22</td>
</tr>
<tr>
<td>498</td>
<td>35</td>
</tr>
<tr>
<td>513</td>
<td>52</td>
</tr>
<tr>
<td>528</td>
<td>72</td>
</tr>
<tr>
<td>543</td>
<td>86</td>
</tr>
<tr>
<td>558</td>
<td>95</td>
</tr>
<tr>
<td>573</td>
<td>97</td>
</tr>
<tr>
<td>588</td>
<td>98</td>
</tr>
<tr>
<td>603</td>
<td>98</td>
</tr>
<tr>
<td>618</td>
<td>98</td>
</tr>
<tr>
<td>633</td>
<td>98</td>
</tr>
<tr>
<td>648</td>
<td>98</td>
</tr>
<tr>
<td>663</td>
<td>98</td>
</tr>
<tr>
<td>673</td>
<td>98</td>
</tr>
</tbody>
</table>
3.3.3. Conversion of COS with varying H$_2$/H$_2$S ratio

Three series of experiments were carried out at H$_2$/H$_2$S ratios of 3.1, 1.4, and 0.6, at a fixed H$_2$/COS ratio of 2.3. The conversion of COS was almost complete above 573 K and was not influenced by the H$_2$/H$_2$S ratio (see Table 3.2).

Table 3.2: Conversion of COS on sulfide K$_2$MoO$_4$/SiO$_2$ at different H$_2$/H$_2$S ratios (constant H$_2$/COS ratio of 2.3) at 3 MPa and 37 cm3/min overall flow rate (residence time 0.68 s).

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>H$_2$/H$_2$S ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>453</td>
<td>18</td>
</tr>
<tr>
<td>468</td>
<td>26</td>
</tr>
<tr>
<td>483</td>
<td>33</td>
</tr>
<tr>
<td>498</td>
<td>38</td>
</tr>
<tr>
<td>513</td>
<td>43</td>
</tr>
<tr>
<td>528</td>
<td>54</td>
</tr>
<tr>
<td>543</td>
<td>69</td>
</tr>
<tr>
<td>558</td>
<td>88</td>
</tr>
<tr>
<td>573</td>
<td>96</td>
</tr>
<tr>
<td>588</td>
<td>98</td>
</tr>
<tr>
<td>603</td>
<td>98</td>
</tr>
<tr>
<td>618</td>
<td>98</td>
</tr>
<tr>
<td>633</td>
<td>98</td>
</tr>
<tr>
<td>648</td>
<td>98</td>
</tr>
<tr>
<td>663</td>
<td>98</td>
</tr>
<tr>
<td>673</td>
<td>98</td>
</tr>
</tbody>
</table>

The product yield is compiled in Fig. 3.9. The variation of the H$_2$/H$_2$S ratio did not affect the yield of carbon oxides significantly from 450 to 560 K. At higher temperatures, the increasing H$_2$/H$_2$S ratio led to a decrease in the yield of CO$_2$ and an increase in the yield of CO. Decreasing H$_2$/H$_2$S ratio decreased the yield of CS$_2$, but favored the yield of CH$_3$SH in the studied temperature range.
Chapter 3

Figure 3.9: Product yield on sulfide K_2MoO_4/SiO_2 at different H_2/H_2S ratios (white symbols 3.1, gray symbols 1.4, black symbols 0.6). CO (circles) and CO$_2$ (squares) (a); CH$_3$SH (circles) and CS$_2$ (squares) (b). 3 MPa, 37 cm3/min overall flow rate (residence time 0.68 s) and constant H_2/H_2S ratio of 2.3.

3.3.4. Conversion of COS with varying residence time

The effect of residence time was studied at 523 K and 598 K as shown in Fig. 3.10 in terms of selectivity (the corresponding yield at 523 K is shown in Fig. 3.13). At 523 K, the conversion of COS increased from 41% to 60% with increasing residence time, CS$_2$, CO, CO$_2$, and CH$_3$SH being the main products. The selectivity to carbon oxides was not affected
to a significant extent by increasing the residence time; selectivity to CS$_2$, however, clearly decreased, whereas the selectivity to CH$_3$SH increased.

![Diagram](image_url)

Figure 3.10: Product selectivity as a function of residence time for the hydrogenation of COS over sulfide K$_2$MoO$_4$/SiO$_2$ at 3 MPa, 523 K (a) and 598 K (b). CO (○), CO$_2$ (□), CH$_3$SH (Δ), CS$_2$ (●) and CH$_4$ (○).
At 598 K, the conversion of COS was above 96.5% in all experiments. Carbon oxides, methyl mercaptan, and a negligible amount of CH₄ were formed; CS₂ was not detected. At low residence time, CO was the main product; however, the selectivity to CO declined sharply at residence times higher than 0.72 s, while the selectivity to methyl mercaptan increased.

Figure 3.11: Yield of CO (○), CO₂ (□) and CS₂ (Δ) obtained by passing a gas mixture of 8.5 vol. % COS in N₂ through the catalyst bed at 3 MPa and residence time 0.68 s. Yields as a function of increasing temperature (a) and time (isothermally at 523 K) (b). The first measurement in (b) was taken at 437 K.
3.3.5. Catalytic tests in the absence of H_2

The product yields observed in the experiments performed in the absence of H_2 are shown in Fig. 3.11. In the first experiment (437-673 K), the conversion of COS increased from 23% to 29% (not shown here). At 437 K, CO_2 and CS_2 were the only products. CO was formed at 523 K, but declined afterward and only CO_2 and CS_2 were observed again. In the second experiment, the temperature was raised from 437 K to 523 K and then kept constant. At 437 K, only CO_2 and CS_2 were produced. At 523 K, CO was also observed, but declined afterward. This indicates that the formation of CO did not occur below 523 K and was residence time dependent at higher temperatures. In both experiments, H_2S was not detected, whereas CO_2 and CS_2 were observed in equimolar amounts pointing to disproportionation of COS.

3.3.6. Catalytic test of bulk MoS_2 and sulfided K_2MoO_4

The selectivity obtained on bulk MoS_2 and sulfided K_2MoO_4 along with the conversion of COS is presented in Fig. 3.12. The corresponding yields are compiled in Tables 3.3 and 3.4.

With MoS_2, the preferred product was CO, whereas the selectivity to CO_2 and CH_3SH was very low. Only traces of CH_4 were observed. With sulfide K_2MoO_4, CO was the main product in most of the conversion range. Significant concentrations of the other products, however, were detected. The selectivity to CO_2 and CH_3SH was initially higher than that to CO, but decreased with COS conversion. CS_2 was detected at COS conversions below 20%.

Table 3.3: Conversion of COS and product yield on MoS_2 at different temperatures ($H_2/H_2S=5.3$, $H_2/COS=3$) at 3 MPa and 40 cm3/min overall flow rate.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Conversion (%)</th>
<th>Yield (%)</th>
<th>CO</th>
<th>CO_2</th>
<th>CH_3SH</th>
<th>CH_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>448</td>
<td>8.3</td>
<td>7.3</td>
<td>0.50</td>
<td>0.46</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>62.9</td>
<td>61.7</td>
<td>0.54</td>
<td>0.59</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>548</td>
<td>91.9</td>
<td>90.7</td>
<td>0.61</td>
<td>0.39</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>598</td>
<td>93.6</td>
<td>92.1</td>
<td>0.76</td>
<td>0.08</td>
<td>0.68</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.12: Product selectivity as a function of COS conversion in the reaction of COS with H₂ on bulk MoS₂ and sulfided K₂MoO₄.
Table 3.4: Conversion of COS and product yield on sulfided K$_2$MoO$_4$ at different temperatures (H$_2$/H$_2$S=5.3, H$_2$/COS=3) at 3 MPa and 40 cm3/min overall flow rate.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Conversion (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>448</td>
<td>1.0</td>
<td>0.17</td>
</tr>
<tr>
<td>498</td>
<td>4.4</td>
<td>2.67</td>
</tr>
<tr>
<td>548</td>
<td>17.8</td>
<td>13.80</td>
</tr>
<tr>
<td>598</td>
<td>56.8</td>
<td>51.21</td>
</tr>
</tbody>
</table>

3.4. Discussion

3.4.1. Evaluation of the reaction pathway

The conversion of COS as well as the CO yield increased rapidly at the temperatures from 498 to 538 K (see e.g., Table 3.1 and Fig. 3.8) pointing to the direct hydrodecomposition of COS (V) in line with the thermodynamic equilibrium favoring CO in the reversible reaction \(\text{CO} + \text{H}_2\text{S} \rightarrow \text{COS} + \text{H}_2 \) [28]. Thus, COS is concluded to rapidly decompose to CO and H$_2$S in accordance with the fact that the formation of COS by (I) is much faster than the subsequent reactions in the synthesis of CH$_3$SH from H$_2$S-containing syngas [15-17].

\[
\text{COS} + \text{H}_2 \rightarrow \text{CO} + \text{H}_2\text{S} \quad (V)
\]

CO$_2$ and CS$_2$ are formed by disproportionation of COS according to reaction (VI), as it was demonstrated by the experiments in the absence of H$_2$ (Fig. 3.11) in agreement with Ref. [16]. However, in the presence of H$_2$, the yield of CO$_2$ is always higher than the observed yield of CS$_2$ (see Fig. 3.9). This low CS$_2$/CO$_2$ ratio observed in the product stream is related to the reaction of CS$_2$ with hydrogen to form CH$_3$SH according to Eq. (VII). This is deduced from the fact that CS$_2$ is only detected at low temperatures and under H$_2$ deficient conditions and that the increase in the yield of CH$_3$SH occurs in parallel to the decrease in the CS$_2$ formation rate (see Figs. 3.5 and 3.6).

\[
2 \text{COS} \rightarrow \text{CO}_2 + \text{CS}_2 \quad (VI)
\]

\[
\text{CS}_2 + 3 \text{H}_2 \rightarrow \text{CH}_3\text{SH} + \text{H}_2\text{S} \quad (VII)
\]
Let us now discuss in depth the role of CS₂ in the reaction sequence. Fig. 3.13a shows the yield of CO₂, CS₂, and CH₃SH as well as the sum of the CS₂ and CH₃SH yield (dashed line).
as a function of the conversion of COS \((\text{H}_2/\text{H}_2\text{S} = 0.6)\). \(\text{CO}_2\) and \(\text{CS}_2\) are primary products. In contrast to \(\text{CO}_2\), \(\text{CS}_2\) is converted to \(\text{CH}_3\text{SH}\) at increasing COS conversion. The nearly equal concentration of \(\text{CO}_2\) and of the sum of the concentrations of \(\text{CS}_2\) and \(\text{CH}_3\text{SH}\) indicates that \(\text{CS}_2\) is quantitatively converted to \(\text{CH}_3\text{SH}\). While it should be noted that the points in Fig. 3.13a are constructed of data measured at different temperatures, the identical behavior is also observed, when the residence time is varied at 523 K (see Fig. 3.13b). This allows us to conclude that \(\text{CH}_3\text{SH}\) is solely produced by the hydrogenation of \(\text{CS}_2\).

Methyl mercaptan is not formed by the direct hydrogenation of COS according to reaction (II), because it would imply that a parallel reaction would have to exist that forms \(\text{CO}_2\) with a rate identical to the sum of the rates to \(\text{CS}_2\) and \(\text{CH}_3\text{SH}\) and that all these reactions would have the same apparent energy of activation. These potential reactions to form \(\text{CO}_2\) would be the hydrolysis of COS \((\text{COS} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2\text{S})\) and the water gas shift reaction \((\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2)\).

Fig. 3.13a also indicates that below conversion of 40\% (500 K), the reaction (VII) is the rate determining step, because the \(\text{CS}_2\) yield is higher than the yield of \(\text{CH}_3\text{SH}\). At increasing temperature, the \(\text{CH}_3\text{SH}\) yield is higher than the \(\text{CS}_2\) yield and at conversion of 60\% (540 K) or above \(\text{CS}_2\) is not detected. This implies that the rate of \(\text{CS}_2\) hydrogenation exceeds that of the disproportionation of COS under these conditions, i.e., reaction (VI) becomes the rate determining step.

As it is shown that the disproportionation of COS to \(\text{CO}_2\) and \(\text{CS}_2\) is the first step of the overall reaction, \(\text{CO}_2\) has to be formed at the same rate as \(\text{CS}_2\) and \(\text{CH}_3\text{SH}\) together. This is the case below 573 K. Above 573 K, however, the rate of \(\text{CO}_2\) formation is lower than the sum of the other two. Thus, \(\text{CO}_2\) must be transformed at these temperatures. The possibilities for the decrease in the \(\text{CO}_2\) yield are reactions (VIII) and (IX).

\[
\begin{align*}
\text{CO}_2 + \text{H}_2 &= \text{CO} + \text{H}_2\text{O} \quad \text{(VIII)} \\
\text{CO}_2 + \text{H}_2\text{S} &= \text{COS} + \text{H}_2\text{O} \quad \text{(IX)}
\end{align*}
\]

To evaluate the relative rate of reactions (VIII) and (IX), the difference of the \(\text{CH}_3\text{SH}\) and the \(\text{CO}_2\) yield in dependence of the \(\text{H}_2/\text{H}_2\text{S}\) ratio and the reaction temperature is presented in Fig. 3.14. It is noticed that the difference (\(\text{CH}_3\text{SH}\) yield and \(\text{CO}_2\) yield) increased as the \(\text{H}_2/\text{H}_2\text{S}\) ratio decreased, i.e., the higher the concentration of \(\text{H}_2\text{S}\) the more \(\text{CO}_2\) was consumed. Therefore, it is inferred that reaction (IX), in which \(\text{CO}_2\) reacts with \(\text{H}_2\text{S}\), dominates under the
experimental conditions. Finally, the presence of traces of CH₄ at complete COS conversion (Fig. 3.10b) indicates the hydrogenation of methyl mercaptan to methane (reaction (X)).

\[\text{CH}_3\text{SH} + \text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{S} \quad (X) \]

Figure 3.14: Difference of the yield of CH₃SH and CO₂ (the CO₂ yield was subtracted from the CH₃SH yield) at H₂/COS = 2.3 and different H₂/H₂S ratios: 0.6 (○), 1.4 (△), and 3.1 (□).

Thus, we conclude that the reaction pathway follows the routes depicted in Fig. 3.15. COS rapidly decomposes to CO and H₂S and in parallel disproportionates to CO₂ and CS₂. CS₂ is the species being hydrogenated to CH₃SH. At higher temperatures, CO₂ reacts with H₂S to form COS and H₂O, whereas the reaction to CO by the water gas shift reaction appears to be less significant. Methane is formed by hydrogenation of CH₃SH.
3.4.2. On the optimum conditions for the synthesis of CH$_3$SH from COS

The synthesis of methyl mercaptan proceeds through the COS disproportionation followed by the hydrogenation of CS$_2$. Clearly, the strategy to optimize the formation of methyl mercaptan either from H$_2$S-containing syngas or COS is to promote the COS disproportionation, CS$_2$ hydrogenation sequence, and to suppress the decomposition of COS. Increasing temperature and partial pressure of H$_2$ accelerate the production of CH$_3$SH. The rate of COS decomposition, however, increases faster than the rate of other reactions. Thus, the yield of methyl mercaptan is improved by increasing the H$_2$/COS ratio only from 2 to 4 below 550 K, and the CH$_3$SH yield reaches its maximum values at 540-580 K decreasing at higher temperatures. The concentration of H$_2$S is beneficial for the CH$_3$SH yield by increasing the concentration of COS available for disproportionation via reaction (IX).

Thus, to optimize the yield of methyl mercaptan, it is necessary to apply concentrations of H$_2$ not higher than the stoichiometric concentration needed in the presence of H$_2$S and to limit the reaction temperature in a narrow range. For the system studied in this work, for instance, the optimum conditions are 580 K, H$_2$/COS = 2 and H$_2$/H$_2$S = 0.6. At this temperature, CS$_2$ is fully hydrogenated, whereas the yield of CO and CH$_3$SH is 36% and 31%, respectively.

The selectivity to CH$_3$SH can be further improved by modifying the catalyst formulation, e.g., using high surface area supports or adding a second promoter to the catalyst as shown in Ref. [29].
3.4.3. Active phases in the sulfide K_2MoO_4/SiO_2 catalyst

The catalytic activity observed is attributed to MoS_2, which is the main phase in the catalyst after sulfidation (XRD and Raman characterization) and is known to catalyze reactions involving heteroatoms [30-32]. The initial mixture of K_2MoO_4 and $K_2Mo_2O_7$ in the oxide precursor is transformed to MoS_2 by sulfiding as deduced from the in situ Raman spectra. In this process, the K^+ cations tend to segregate from Mo-containing species and only a minor fraction remains as K_2MoS_4 or is incorporated in the K_xMoS_2 phase (XRD of the sulfide catalyst). Because the K_xMoS_2 phase is not preserved during the reaction, we conclude that K^+ cations are not structurally associated with Mo-containing crystalline solids in the active material. However, K^+ cations decorate the MoS_2 surface as concluded from X-ray photoelectron spectroscopy (XPS) analysis of sulfide K_2MoO_4/SiO_2 catalyst (metal salt loadings close to 28 wt.%) [17]. For the studied catalyst, a fraction of K^+ adsorbs on MoS_2, while potassium species not associated with MoS$_2$ are speculated to form K_2SO_4 by reacting with oxidizing compounds (H_2O, CO_2) and H_2S under reaction conditions.

The segregation of the phases observed in the sulfidation-oxidation cycle (Fig. 3.3) suggests that not all the MoS$_2$ phase is decorated by K^+ probably due to the random distribution of K^+ on the surface. The MoO$_3$ observed in the reoxidized catalyst is speculated to be formed from K^+-free MoS$_2$, whereas $K_4Mo_8O_{26}$ forms from MoS$_2$ interacting with K^+ cations.

Thus, we conclude that two active phases, MoS$_2$ and K^+-decorated MoS$_2$, coexist in the sulfide K_2MoO_4/SiO_2 catalyst [33,34]. It is worth clarifying the difference between the K_xMoS_2 detected after sulfidation and the K^+-decorated MoS$_2$ phase. In the former structure, K^+ cations occupy defined positions, i.e., they intercalate between the MoS$_2$ slabs leading to additional reflections in the XRD pattern. In the K^+-decorated phase, the cations are distributed randomly on the MoS$_2$ surface, thus they do not modify the crystalline structure of the MoS$_2$ cluster. It is not possible to differentiate the pure MoS$_2$ phase and that decorated by K^+ by means of XRD.

The MoS$_2$ phase has coordinatively unsaturated sites (CUS) at the perimeter of the (1 0 1 0) plane, which act as active sites in hydrogenolysis and hydrogenation reactions [30-32]. The structure of the K^+-decorated MoS$_2$, i.e., the specific position of the K^+ cations with respect to the CUS remains unspecified. It has been proposed, however, that the presence of K^+ stabilizes oxygenated intermediates preventing C-O bond cleavage in the synthesis of alcohols and affects the electronic properties of the MoS$_2$ phase [35-37]. In the synthesis of CH$_3$SH from H$_2$S-containing syngas, the promoter effect of potassium on the
selectivity has been related to the increasing concentration and the chemical environment of the Mo$^{5+}$ that can be expected at the not completely coordinated Mo-edges interacting with oxidizing agents [17]. Thus, we conclude that the active sites in K$^+$-decorated MoS$_2$ are CUS. The presence of K$^+$ in the active phase, however, modifies the chemical and electronic environment of the active sites, i.e., the relative rate of hydrogenation and C-S bond cleavage.

Bulk MoS$_2$ and sulfide K$_2$MoO$_4$ were used in the reaction of COS with H$_2$ to clarify the role of MoS$_2$ and K$^+$-decorated MoS$_2$, which obviously has to form from the sulfided K$_2$MoO$_4$. Fig. 3.12 shows that the presence of K$^+$ increases drastically the selectivity to CO$_2$, CS$_2$, and CH$_3$SH and reduces the selectivity to CO. This is in line with the low conversion and poor CH$_3$SH yield obtained in the synthesis of methyl mercaptan from H$_2$S-containing syngas using unpromoted MoS$_2$ [14]. Thus, we conclude that the hydrodecomposition of COS takes place preferentially at MoS$_2$, whereas the disproportionation of COS and the consecutive hydrogenation of CS$_2$ is catalyzed faster on the K$^+$-decorated MoS$_2$ phase.

Note that the bulk sulfide K$_2$MoO$_4$ catalyst leads to very low conversion compared with the SiO$_2$-supported counterpart. This low activity is related to the low dispersion of the sulfides in that case. Also note in Fig. 3.12 that the difference in product selectivity between both bulk catalysts diminishes with increasing COS conversion. This is related to the fact that the points for high conversions have been measured above 540 K. At this high temperature, the decomposition to CO is favored over the other reactions and in consequence the promoter effect of potassium becomes less evident.

3.4.4. Active sites for the decomposition of COS

From the experiments performed in the absence of H$_2$, we deduce that the decomposition of COS to CO takes place at the CUS in MoS$_2$ as depicted in Fig. 3.16. COS first coordinates to the CUS in the MoS$_2$ structure. Then, the C-S cleavage results in CO desorption leaving the sulfur anion at the CUS. This is supported by the fact that the formation of CO stops in the absence of hydrogen (see Fig. 3.11) after some time on stream, implying that the reaction only occurs as long as accessible cations are available. Under the used reaction conditions, the CUS are regenerated by the reaction of hydrogen with the sulfur bridged Mo-edge of the active MoS$_2$ phase [38]. In contrast to the dissociation of COS, the disproportionation does not cease in the absence of H$_2$ indicating that it depends less or not at all on the presence of CUS in the MoS$_2$ phase.
Further evidence of the role of CUS in MoS$_2$ and K-promoted MoS$_2$ is obtained by NO adsorption. NO adsorbs on the CUS of promoted or unpromoted MoS$_2$, thus the concentration of NO adsorbed is correlated with the concentration of CUS in the catalyst [39,40]. In the pulse experiments, the NO uptake of the sample exposed to COS at 523 K was nearly 60% lower than the uptake of the fresh sulfided sample. This is in line with the mechanism in Fig. 3.16, because the concentration of CUS in the catalyst is drastically diminished after flowing COS in the absence of hydrogen. Furthermore, the disproportionation of COS occurs faster than the decomposition in the K$^+$-decorated MoS$_2$. Thus, the CUS in this phase are less susceptible to deactivation and remain able to adsorb NO.

3.4.5. Active sites for the hydrogenation of CS$_2$

Two surface intermediates have been proposed for the direct hydrogenation of COS to methyl mercaptan, i.e., adsorbed thioformic acid (HSCHO) and adsorbed methanethiol (CH$_3$S) [16]. The former species has been postulated, but not observed, whereas the methanethiol fragment has been observed by vibrational spectroscopy on TiO$_2$, Al$_2$O$_3$, and MoS$_2$ [41-43]. Because the experiments reported here indicate that CS$_2$ is the species being hydrogenated, the intermediate formed cannot be related to thioformic acid, but rather to a dithioformic acid-based molecule. The postulated overall surface process that leads to the formation of methyl mercaptan is illustrated in Fig. 3.17. CS$_2$ coordinates to a CUS in the first step. Then, a nearby hydrogen atom reacts with the adsorbed CS$_2$ to form a HSCS species. It has been confirmed by spectroscopic techniques and ab initio calculations that the reaction between hydrogen atoms and CS$_2$ to form the HSCS species is spontaneous and has low activation energy [44]. The rearrangement and interaction of the HSCS fragment with
hydrogen leads to the release of a H₂S molecule and one adsorbed methanethiol. Then, the combination of the adsorbed methanethiol with hydrogen in the surface releases the methanethiol, whereas the hydrogen atoms adjacent to the CUS are generated by dissociative adsorption of H₂.

![Catalytic cycle for the hydrogenation of CS₂ to CH₃SH at the coordinatively unsaturated sites.](image)

Figure 3.17: Catalytic cycle for the hydrogenation of CS₂ to CH₃SH at the coordinatively unsaturated sites.

At present, the exact mechanism of the rearrangement of the HSCS species to adsorbed methanethiol can only be derived from ab initio DFT calculations. The combination of a second hydrogen atom with the HSCS species leads to the formation of a dithioformic acid fragment (HCSSH) [45,46]. The decomposition of dithioformic acid can take place by dehydrogensulfidation yielding H₂S and C=S or by dehydrogenation to CS₂ and H₂ [46,45]. The former mechanism is favored over the dehydrogenation which is well in line with the necessary H₂S release from the adsorbed dithioformic acid to form the methanethiol fragment (see Fig. 3.17). Interestingly, the two pathways for the HCSSH decomposition can be assisted by H₂ or H₂S and can comprise the formation of a dithiohydroxy carbene (HSCSH). This species, adsorbed at a CUS, could form the methanethiol fragment after H₂S release and hydrogenation.

Although the adsorbed species could interact directly with molecular hydrogen from the gas phase, the hydrogen provided by the surface SH groups seems to play a key role in the hydrogen addition steps in the mechanism of Fig. 3.17. Chen et al. [17,29] have reported the XPS characterization of sulfided K₂MoO₄/SiO₂ catalysts and the synthesis of methyl mercaptan from syngas. In that report the yield of CH₃SH was related to the concentration of low valence Mo and S species, i.e., (S–S)²⁻ and Mo⁴⁺–S²⁻. These species form SH groups by heterolytic or homolytic dissociation of hydrogen [47,48]. Furthermore, the SH groups
formed by the interaction of the sulfide surface with \(\text{H}_2 \) or \(\text{H}_2\text{S} \) under reaction conditions are claimed to provide the hydrogen in hydrotreatment applications [49-51]. As the active sites in \(\text{MoS}_2 \) and \(\text{K}^+\text{-MoS}_2 \) are fundamentally the same (CUS), the hydrogenation of \(\text{CS}_2 \) can take place on both phases. The presence of \(\text{K}^+ \), however, could promote the hydrogenation of \(\text{CS}_2 \), because it could increase the concentration of SH groups in the surface via adsorption of \(\text{H}_2\text{S} \) (\(\text{K}^+ + \text{H}_2\text{S} + \text{S}^{2-} \rightleftharpoons \text{K}^-\text{SH} + \text{SH} \)).

3.5. Conclusions

The synthesis of \(\text{CH}_3\text{SH} \) over sulfide \(\text{K}_2\text{MoO}_4/\text{SiO}_2 \) is explored using \(\text{COS},\text{H}_2, \) and \(\text{H}_2\text{S} \) as educts. \(\text{COS} \) decomposes rapidly to \(\text{CO} \) and \(\text{H}_2\text{S} \). In parallel, \(\text{COS} \) disproportionates to \(\text{CO}_2 \) and \(\text{CS}_2 \). \(\text{CS}_2 \) is the reaction intermediate that is hydrogenated to \(\text{CH}_3\text{SH} \). \(\text{CO}_2 \) and \(\text{CH}_3\text{SH} \) are consumed at high temperatures. \(\text{CO}_2 \) reacts with \(\text{H}_2\text{S} \) to \(\text{COS} \) and \(\text{H}_2\text{O} \), while the reverse water gas shift reaction can take place to a lower extent. \(\text{CH}_3\text{SH} \) is further hydrogenated to \(\text{CH}_4 \).

During the sulfidation reaction, the main phases present in the catalyst are \(\text{MoS}_2 \), \(\text{K}^+\text{-promoted MoS}_2 \), and \(\text{K}_2\text{SO}_4 \). The \(\text{MoS}_2 \) phase catalyzes the decomposition of \(\text{COS} \) to \(\text{CO} \), whereas the disproportionation of \(\text{COS} \) and subsequent hydrogenation of \(\text{CS}_2 \) is faster on the \(\text{K}^+\text{-decorated MoS}_2 \) phase. The active sites in both phases for the decomposition of \(\text{COS} \) and hydrogenation of \(\text{CS}_2 \) are CUS. The role of the \(\text{K}^+ \) cations in the \(\text{K}^+\text{-decorated MoS}_2 \) phase is to accelerate the rates of the disproportionation of \(\text{COS} \) and of the hydrogenation of \(\text{CS}_2 \).
3.6. References

[27] F. Wypych, C. Solenthaler, R. Prins, Th. Weber,
[28] F. Farhad, I. Safarik, O. Strausz, M. Torres, E. Yildirim,
[34] J. Lee, S. Kim, K. Lee, I. Nam, J. Chung, Y. Kim, H. Woo,
[38] F. Dumeignil, J. Paul, E. Veilly, E. Qian, A. Ishihara, E. Payen, T. Kabe,
[42] O. Saur, T. Chevreau, J. Lamotte, J. Travert, J. Lavalley,
Influence of Potassium on the Synthesis of Methanethiol from Carbonyl Sulfide on Sulfided Mo/Al$_2$O$_3$ Catalyst

Potassium-doped MoS$_2$ catalysts supported on Al$_2$O$_3$ were synthesized, characterized by using atomic absorption spectroscopy, N$_2$ physisorption, NO adsorption, X-ray diffraction, temperature-programmed sulfidation, and Raman spectroscopy, and tested in the synthesis of methanethiol from carbonyl sulfide (COS) and H$_2$. The results revealed that two phases, pure MoS$_2$ and potassium-decorated MoS$_2$ (formed at high potassium loadings), were present in the active catalysts. The main effect of potassium during sulfidation and during the catalytic reaction was to increase the mobility of surface oxygen or sulfur atoms. Thus, potassium promoted the disproportionation of COS to CO$_2$ and CS$_2$ and the production of CO from CO$_2$. Additionally, potassium cations hindered the reductive decomposition of COS to CO and H$_2$S and the hydrogenolysis of methanethiol to methane. Mars-van Krevelen-type mechanisms were proposed to explain the disproportionation of COS on alumina and on the MoS$_2$ phases. The catalytic site in the potassium-decorated MoS$_2$ phase was proposed to include a potassium cation as adsorption site.
Chapter 4

4.1. Introduction

Methyl mercaptan, or methanethiol, \((\text{CH}_3\text{SH}) \) is a raw material of large industrial relevance and is used in the synthesis of valuable organosulfur compounds, such as pesticides, pharmaceuticals, and solvents. The main application of methanethiol is in the production of methionine, which is used as a feed supplement \([1]\). A state-of-the-art reaction route for the formation of methanethiol is the thiolation of methanol on sulfide tungsten catalysts \([2, 3]\). However, as early as 1962, Olin et al.\([4]\) demonstrated that methanethiol can be obtained from \(\text{H}_2\text{S} \) containing synthesis gas. Such a direct route from syngas to methanethiol would have a significant economic advantage over the currently practiced routes \([5–17]\).

Alkali-doped \(\text{MoS}_2 \) catalysts are among the most studied systems for the synthesis of methanethiol from \(\text{H}_2\text{S} \) containing syngas because of their high selectivity to methanethiol. For example, Chen et al.\([17]\) report that sulfided molybdenum catalysts show low CO conversions and carbonyl sulfide (COS) as the most abundant product. The conversion of CO increases from less than 10% to 20, 43, and 39% after incorporating Li, K, or Cs, respectively, into the catalyst. The selectivity to \(\text{CH}_3\text{SH} \) was higher than 40% after the addition of alkali metals. The most common alkali metal used to increase the selectivity to methanethiol is potassium; the promoter effect of potassium on sulfided catalysts was observed in molybdenum- and tungsten- based catalysts using any carbon oxide as starting material \([8,12,13]\). Thus, the presence of potassium in sulfided catalysts plays a fundamental role in the \(\text{H}_2\text{S} \) syngas route by improving the main reaction steps to \(\text{CH}_3\text{SH} \) or suppressing undesired side reactions.

COS is the first intermediate observed in the synthesis of methanethiol starting from \(\text{H}_2\text{S} \) containing syngas \([8,9,15]\). However, the synthesis of \(\text{CH}_3\text{SH} \) using COS as a starting material has received only limited attention. We explored this approach, performing the synthesis of \(\text{CH}_3\text{SH} \) from a syngas mixture in two consecutive reactors. In the first reactor, the synthesis of COS and \(\text{H}_2\text{S} \) was achieved by reacting mixtures of carbon oxides and hydrogen with liquid sulfur \([18]\). In the second stage, the synthesis of methanethiol from COS and \(\text{H}_2 \) in the presence of \(\text{H}_2\text{S} \) was completed by using a flow reactor loaded with a catalyst bed \([19]\). The synthesis of methanethiol from COS does not proceed in a single hydrogenation step, but through disproportionation of COS to \(\text{CO}_2 \) and \(\text{CS}_2 \) followed by consecutive hydrogenation of \(\text{CS}_2 \) to methanethiol.

Considering the key role of alkali metals in the synthesis of methanethiol, the aim of this work is to explore the effect of potassium on the main steps of the reaction pathway for the synthesis of \(\text{CH}_3\text{SH} \) from COS. A detailed description of this effect can be provided by
performing kinetic experiments on alumina, potassium-doped alumina, and sulfided Mo/Al₂O₃ catalysts doped with increasing amounts of potassium. The effect of potassium in several reactions, that is, the sulfidation of the catalysts and disproportionation and decomposition of COS, is elucidated by combining detailed kinetic measurements and physicochemical characterization of the materials.

4.2. Experimental

4.2.1. Catalyst preparation and activation

The catalysts were prepared by using the incipient wetness impregnation technique using Al₂O₃ (Aeroxide Alu C, Degussa) as support and K₂MoO₄ (Sigma Aldrich, 98%) or (NH₄)₆Mo₇O₂₄·4H₂O (Sigma Aldrich, 99.98%) as molybdenum precursor. Two potassium-containing catalysts were prepared by applying a second impregnation step to the MoO₃/Al₂O₃ oxide precursor using aqueous solutions of KOH (Sigma Aldrich, 99.99 %). Potassium-doped Al₂O₃ (K-Al₂O₃) was obtained by impregnation of pure alumina with an aqueous solution of KOH (2 mmol KOH per gram of alumina). The materials were dried at 353 K for 12 h and treated in dry air at 773 K for 12 h after each impregnation. The molybdenum loading was kept constant at 1.17 mmol/g in all the molybdenum-containing precursors, whereas in the doped materials the loading of potassium was varied to achieve cationic ratios K/Mo of 0.16, 0.6 and 2. The catalysts were denoted as MoKₓ/Al₂O₃, in which x is the K/Mo molar ratio (Mo/Al₂O₃ was the undoped catalyst). Prior to activity measurements, the catalysts (0.5 g) were sulfided in situ in a gas stream with 10 vol % H₂S in H₂ at 3 MPa and 673 K for 12 h.

4.2.2. Elemental composition and textural properties

Atomic absorption spectroscopy (AAS) was used to determine the molybdenum and potassium contents of the oxide precursors by using a UNICAM 939 spectrometer. The nitrogen adsorption-desorption technique was used to determine the surface area and pore volume of the oxide precursors by using a PMI automated BET sorptometer. The samples were degassed in vacuum at 673 K for 2 h before N₂ adsorption.
4.2.3. X-ray diffraction

The oxide precursors and the sulfide catalysts used in the reactions were characterized by using X-ray diffraction (XRD). The samples of the used catalysts were analyzed using XRD after cooling down the reactor to room temperature while maintaining a reactant mixture stream. A Philips X’Pert Pro System (Cu Kα1-radiation, λ = 0.154056 nm) operating at 45 kV and 40 mA was used for recording the diffractograms. Measurements were performed by using a step size of 2θ = 0.0178 and 115 s as counting time per step.

4.2.4. Temperature-programmed sulfidation

The materials were characterized by performing temperature-programmed sulfidation (TPS) in a flow apparatus equipped with a mass spectrometer (QME 200, Pfeiffer Vacuum) as detector. A sample of the oxide precursor (0.1 g) was loaded in a quartz reactor and dried in situ (2 h at 673 K in a helium gas stream) before each TPS experiment. After drying and cooling down to room temperature, the materials were heated to 673 K in a mixture of H₂S/H₂ (10 vol % H₂S/H₂), at a flow rate of 2 cm³/min, and diluted with helium at a flow rate of 8 cm³/min. Finally, the sample was kept at 673 K under the same H₂S/H₂/He mixture for 2 h.

4.2.5. NO adsorption

The volume of adsorbed NO was measured in a flow apparatus equipped with a mass spectrometer (QME 200, Pfeiffer Vacuum) by means of a pulse technique. A sample of each catalyst (0.1 g) was loaded in a quartz reactor and sulfided in 10 vol % H₂S/H₂ at 673 K for 3 h. After flushing the reactor with helium at 300 K for 5 h, pulses of 10 vol % of NO in helium were introduced periodically. The total concentration of adsorbed NO was determined from the sum of the NO adsorption per pulse.

4.2.6. Raman spectroscopy

Raman characterization of the catalysts was applied to determine the effect of COS on the catalytic surface. A sample of each catalyst was sulfided in situ under a flow of 10 vol % H₂S in H₂ at 673 K and atmospheric pressure for 2 h. The samples were cooled down to 290 K in N₂ to record the corresponding spectra. Then, the as-sulfided sample was exposed to a stream of pure COS (Aldrich, >97.5%) at 673 K for 30 min. New spectra were acquired after cooling.
down to 290 K in N₂. Raman spectra were recorded on a Renishaw Raman Spectrometer Series 1000 Microscope equipped with an argon laser with a wavelength of \(\lambda = 514 \) nm.

4.2.7. Kinetic measurements

The H₂S and COS mixtures were synthesized in a semi-batch reactor (pre-reactor) by reacting flowing CO and H₂ with liquid sulfur. The reaction conditions in this step were adapted to achieve complete conversions of CO to COS and the desired concentration of H₂S. The product of the pre-reactor was mixed with H₂ and N₂ to adjust the desired H₂/COS ratio and the total gas flow rate before entering the second reactor (main reactor), in which the catalyst bed was located. All starting reactant compositions given in this work refer to the gas mixture entering the main reactor. Details of the experimental setup can be found in previous reports [18,19].

The catalytic properties of Al₂O₃, K-Al₂O₃ and molybdenum-containing catalysts were determined at 3 MPa using a feed of 10 vol % COS, 20 vol % H₂S, and 70 vol % H₂ with a total flow rate of 21 cm³/min, which corresponds to a gas hourly space velocity (GHSV) of 3024 h⁻¹. GHSV was defined as \(\nu/V_{\text{catalyst}} \) (\(\nu \) is the volumetric flow rate and \(V_{\text{catalyst}} \) is the total volume of the catalyst bed). The effect of the H₂/COS ratio was investigated at 3 MPa and an overall flow rate of 37 cm³/min (GHSV=5328 h⁻¹) using a fixed concentration of COS (8 vol %) and a H₂/H₂S ratio of 5.3. The products were analyzed by performing gas chromatography using a Shimadzu GC 2014 equipped with a packed Haysep Q and a packed molecular sieve (13X) column.

4.3. Results

4.3.1. Elemental composition and textural properties

The concentrations of potassium and molybdenum in the precursor mixture and the elemental contents of the catalysts, as determined by using atomic absorption spectroscopy (AAS) analysis, are compiled in Table 4.1. Good agreement was found between the concentrations used in the preparation step and those found in the final oxide materials. The catalysts are denoted as MoKᵡ/Al₂O₃, where \(\chi \) is the K/Mo molar ratio (Mo/Al₂O₃ is the undoped catalyst). An overview of the textural characteristics of the oxide catalysts is also given in Table 4.1. The Brunauer-Emmett-Teller (BET) surface area, as well as the pore
volume of the oxide materials, increased as potassium was added to the Mo/Al₂O₃ catalyst. For example, the BET surface area increased from 55 m²/g for the Mo/Al₂O₃ catalyst to 74, 68, and 65 m²/g as the K/Mo ratio increased to 0.16, 0.6, and 2, respectively.

Table 4.1: Potassium and molybdenum concentrations determined by using AAS. BET surface area and pore volume determined by performing N₂ physisorption. Concentration of NO adsorbed on the sulfide catalysts.

<table>
<thead>
<tr>
<th>Material</th>
<th>K (wt. %)</th>
<th>Mo (wt. %)</th>
<th>BET surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
<th>Adsorbed NO (µmol g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo/Al₂O₃</td>
<td>-</td>
<td>(13.3) 13.0</td>
<td>55</td>
<td>0.09</td>
<td>55</td>
</tr>
<tr>
<td>MoK₀.₁₆/Al₂O₃</td>
<td>(0.65) 0.6</td>
<td>(13.3) 12.8</td>
<td>74</td>
<td>0.16</td>
<td>75</td>
</tr>
<tr>
<td>MoK₀.₆/Al₂O₃</td>
<td>(1.3) 1.1</td>
<td>(13.3) 12.5</td>
<td>68</td>
<td>0.13</td>
<td>90</td>
</tr>
<tr>
<td>MoK₂/Al₂O₃</td>
<td>(10.8) 9.0</td>
<td>(13.3) 12.6</td>
<td>65</td>
<td>0.12</td>
<td>270</td>
</tr>
</tbody>
</table>

* As determined in the precursor mixture (in parentheses) and in the oxide materials

4.3.2. X-ray diffraction measurements

The X-ray diffraction (XRD) patterns of the catalysts in their oxide form are shown in Figure 4.1. Signals corresponding to the supporting Al₂O₃ are neither marked nor discussed here. The species formed in the oxide precursors after thermal treatment depended to a large extent on the potassium-loading and the precursor. Regarding Mo/Al₂O₃, two molybdenum-containing crystalline phases were detected, MoO₃ (PDF number 00-005-0508) and Al₂(MoO₄)₃ (PDF number 01-085-2286). On doping the molybdenum catalysts with an increasing amount of potassium, the concentration of these phases decreased rapidly, and KAl(MoO₄)₂ (PDF number 01-074-2008) became the most abundant phase. In the MoK₂/Al₂O₃ catalyst, the only observed molybdenum-containing crystalline phase was the precursor, K₂MoO₄ (PDF number 00-024-0880). The XRD patterns suggested the presence of relatively large crystals of molybdenum-containing species. Comparing the potassium-free catalyst to the MoK₀.₁₆/Al₂O₃ sample, the amount of the crystalline species increased after loading with potassium. Thus, we speculated that the space between the crystals of the molybdenum species, formed on addition of potassium, contributed to the textural properties
and resulted in an increase of the BET surface area and the pore volume observed by performing physisorption of N\(_2\) (Table 4.1). Increasing the loading of potassium did not further increase the textural properties, probably because of an increase in the density of the material.

After the activity tests, the catalysts were collected and the corresponding XRD patterns were also measured. Regardless of the crystalline species present in the oxide precursor, only crystalline signals corresponding to the support and MoS\(_2\) (PDF number 00-024-0513) were observed in the sulfide and used catalyst. As an example, the XRD patterns of the sulfided and used MoK\(_2\)/Al\(_2\)O\(_3\) catalyst are shown in Figure 4.1.

![Figure 4.1](image)

Figure 4.1: XRD patterns of the oxide precursors (a) Mo/Al\(_2\)O\(_3\); (b) MoK\(_{0.16}\)/Al\(_2\)O\(_3\); (c) MoK\(_{0.6}\)/Al\(_2\)O\(_3\); (d) MoK\(_2\)/Al\(_2\)O\(_3\); and (e) the sulfided MoK\(_2\)/Al\(_2\)O\(_3\) catalyst after the reaction of COS and H\(_2\) to CH\(_3\)SH. * MoO\(_3\), o Al\(_2\)(MoO\(_4\))\(_3\), ● KAl(MoO\(_4\))\(_2\), ■ K\(_2\)MoO\(_4\), and ▼ MoS\(_2\).
4.3.3. Temperature-programmed sulfidation

H$_2$S consumption profiles recorded during temperature-programmed sulfidation (TPS) experiments of selected materials are shown in Figure 4.2. The potassium-doped Al$_2$O$_3$ sample exhibits continuous H$_2$S consumption from 400 to 673 K. In contrast, pure alumina does not consume H$_2$S during the experiment (not shown). The H$_2$S consumption profiles of the molybdenum-containing materials having a K/Mo ratio of 0.6 or lower can be divided into three main regions. The first one is characterized by a small and continuous H$_2$S consumption in the temperature range from 350 to 540 K. The second stage is best represented by a “shoulder” and a rapid H$_2$S adsorption at approximately 550 K. Finally, as the temperature is kept constant at 673 K, a quasi-constant H$_2$S adsorption is observed before the profile returns to the baseline.

![Figure 4.2](image)

Figure 4.2: H$_2$S-consumption profiles of the TPS experiments performed on the oxide precursors of the molybdenum catalysts and K-Al$_2$O$_3$.

The H$_2$S adsorption profile of the MoK$_2$/Al$_2$O$_3$ sample differs from the profiles of the other catalysts. This is attributable to the different oxide precursor (see the XRD patterns in Figure 4.1). For this sample, the H$_2$S adsorption between 300 and 500 K is followed by a small H$_2$S release peak. Then, H$_2$S is consumed rapidly, reaching a minimum in the consumption profile at 560 K. Finally, the H$_2$S consumption line returns to zero, displaying a small, almost constant region at 590 K. Notably, it takes less time for the H$_2$S signal in this
experiment to return to the baseline than for the other materials. The relative H$_2$S consumption is determined as the area of the corresponding H$_2$S adsorption curve from Figure 4.2. If the H$_2$S consumption of the Mo/Al$_2$O$_3$ catalyst is set as 100%, the H$_2$S adsorption of the other molybdenum catalysts is 87, 98, and 137% for MoK$_{0.16}$/Al$_2$O$_3$, MoK$_{0.6}$/Al$_2$O$_3$, and MoK$_2$/Al$_2$O$_3$, respectively.

4.3.4. NO adsorption

The adsorption of NO per pulse on the samples sulfided in situ is presented in Table 4.1. NO adsorption on the Mo/Al$_2$O$_3$ sample is 55 mmol/g and increases to 75, 90, and 270 mmol/g on the MoK$_{0.16}$/Al$_2$O$_3$, MoK$_{0.6}$/Al$_2$O$_3$, and MoK$_2$/Al$_2$O$_3$ samples, respectively. Therefore, we conclude that the adsorption of NO increases linearly with the concentration of potassium.

4.3.5. In situ Raman spectroscopy

The Raman spectra of the sulfide catalysts before and after COS exposure are compiled in Figure 4.3. In all the spectra of the as-sulfided catalysts the following bands corresponding to MoS$_2$ are observed: $\tilde{\nu}$=380 (Mo-S stretching mode along the basal plane), 405 (S-Mo-S stretching mode along the c-axis), and 450 cm$^{-1}$ (second-order scattering) as well as the discernible signals between $\tilde{\nu}$=500 and 900 cm$^{-1}$ [20]. Bands corresponding to oxide species or potassium-containing species are not present after in situ sulfidation.

In the spectra recorded after exposure to COS at 673 K, no significant changes are observed for the catalysts with low potassium content, Mo/Al$_2$O$_3$ and MoK$_{0.16}$/Al$_2$O$_3$. At high potassium concentrations, that is, the MoK$_{0.6}$/Al$_2$O$_3$ and MoK$_2$/Al$_2$O$_3$ catalysts, the spectra recorded after COS treatment exhibit two additional bands at approximately $\tilde{\nu}$=440 and 490 cm$^{-1}$. According to Schrader and Cheng [20], both bands are assigned to metal-sulfur vibrations for the oxysulfide species.
4.3.6. Effect of potassium on the catalytic activity

The molybdenum catalysts, alumina (Al₂O₃), and potassium-doped alumina (K-Al₂O₃) are tested in the synthesis of CH₃SH from H₂ and COS. The conversion and product yield obtained on Al₂O₃ and K-Al₂O₃ are shown in Figure 4.4. On pure alumina, the conversion of COS increases linearly from 6% at 423 K to 50% at 573 K and then rapidly rises to approximately 90% above 573 K. At temperatures below 573 K, CO₂ and CS₂ are the main products and are produced at identical concentrations. CO is the most abundant product above 573 K, whereas the yield of CS₂ decreases faster than that of CO₂. This decrease in the CS₂
yield is accompanied by an increase in the yield of CH₃SH. On potassium-doped alumina, the conversion of COS is lower than on pure alumina in the evaluated temperature range. Interestingly, the yields of CO₂, CS₂, and CH₃SH are very similar on Al₂O₃ and K-Al₂O₃. The yield of CO, however, is significantly lower on potassium-doped alumina; hence, the lower conversion of COS on K-Al₂O₃ is attributed to the inhibition of the conversion of COS to CO.

Figure 4.4: COS conversion (●) and product yields (○ CO, □ CO₂, △ CH₃SH, and x CS₂) on pure Al₂O₃ and K-Al₂O₃. 30 MPa, 10 vol% COS, 20 vol% H₂S, 70 vol% H₂, 21 cm³/min overall flow rate or GHSV=3024 h⁻¹.

Using an H₂/COS ratio of 7 on MoS₂-containing catalysts, the conversion of COS is higher than 94% in the temperature range of 523-673 K, regardless of the concentration of potassium. The product yield is illustrated in Figures 4.5 and 4.6 (CS₂ was not detected in this series of experiments). For clarity, the results for the MoK₀.₁₀/Al₂O₃ catalyst are not shown,
because the low potassium content (1 wt %) does not influence the catalytic performance significantly.

The dependence of the yield of carbon oxides on temperature and potassium loading is presented in Figure 4.5. The yield of CO\(_2\) increases as potassium is added to the catalyst up to 598 K. Above that temperature, increasing the potassium loading results in a lower yield of CO\(_2\). The yield of CO displays an opposite trend: below 598 K, the yield of CO decreases, but it increases at higher temperatures and with increasing potassium concentration.

![Figure 4.5: Yield of CO and CO\(_2\) on Mo/Al\(_2\)O\(_3\) (●), MoK\(_{0.6}\)/Al\(_2\)O\(_3\) (▲) and MoK\(_2\)/Al\(_2\)O\(_3\) (■). 30 MPa, 10 vol% COS, 20 vol% H\(_2\)S, 70 vol% H\(_2\), 21 cm\(^3\)/min overall flow rate or GHSV=3024 h\(^{-1}\).](image)

The increase in the potassium concentration results in an increase in the yield of CH\(_3\)SH (Figure 4.6). The maximum yield of CH\(_3\)SH is 6.8\% at 523 K on the potassium-free catalyst and decreased with higher temperatures, whereas the MoK\(_{0.6}\)/Al\(_2\)O\(_3\) catalyst has a maximum
of 18.3% at 598 K. The yield of CH₃SH is stable between 17 and 23% over the MoK₂/Al₂O₃ catalyst in the evaluated temperature range. The formation of methane (CH₄) is favored on increasing the temperature, but is suppressed by increasing the potassium content (Figure 4.6). On MoK₂/Al₂O₃, for instance, the CH₄ yield remains below 10% even at 673 K.

It is evident from these results that the main differences were observed between the Mo/Al₂O₃ and MoK₂/Al₂O₃ catalysts. Consequently, the influence of the reaction conditions on the synthesis of methanethiol was studied by focusing on these two catalysts.

Figure 4.6: Yield of CH₃SH and CH₄ on Mo/Al₂O₃ (●), MoK₀.₆/Al₂O₃ (▲), and MoK₂/Al₂O₃ (■). 30 MPa, 10 vol% COS, 20 vol% H₂S, 70 vol% H₂, 21 cm³/min overall flow rate or GHSV=3024 h⁻¹.
4.3.7. Variation of the H$_2$/COS ratio

The conversion of COS obtained by varying the H$_2$/COS ratio are presented in Figure 4.7. The common trend is that an increasing H$_2$/COS ratio results in higher conversions. Furthermore, at given conditions, the Mo/Al$_2$O$_3$ catalyst exhibits a higher conversion of COS than the MoK$_2$/Al$_2$O$_3$ sample. For instance, at 543 K, the COS conversion is above 90% on Mo/Al$_2$O$_3$, but below 60% on MoK$_2$/Al$_2$O$_3$. The conversion of COS reaches values higher than 90% on both catalysts above 600 K for all tested H$_2$/COS ratios.

![Figure 4.7: a) COS conversion and b) yield of CO at H$_2$/COS ratios of 2.3 (squares), 3 (triangles), and 4.5 (circles) on sulfided Mo/Al$_2$O$_3$ (black symbols) or MoK$_2$/Al$_2$O$_3$ (white symbols) at 30 MPa and 37 cm3/min overall flow rate, corresponding to GHSV=5328 h$^{-1}$.](image)

The product yields obtained over the Mo/Al$_2$O$_3$ and MoK$_2$/Al$_2$O$_3$ catalysts at different H$_2$/COS ratios and temperatures are shown in Figures 4.7-4.9. In the absence of potassium,
CO was the main product in all experiments. Maximum values for the yield of CO (79–88%) were observed at 528 K. Using the potassium containing catalyst, CO was the main product above 500 K for the ratios \(\text{H}_2/\text{COS}=4.5 \) and 3 and above 543 K for \(\text{H}_2/\text{COS}=2.3 \). The yield of CO on the MoK\(_2\)/Al\(_2\)O\(_3\) catalyst, as shown in Figure 4.7, increased to 57-76% at 620 K and declined afterwards. The yield of CO\(_2\) decreased with increasing \(\text{H}_2/\text{COS} \) ratio over pure Mo/Al\(_2\)O\(_3\), as shown in Figure 4.8. Using the potassium-containing catalyst, the effect of the \(\text{H}_2/\text{COS} \) ratio on the yield of CO\(_2\) greatly depended on the temperature. Below 573 K, the \(\text{H}_2/\text{COS} \) ratio did not affect the yield of CO\(_2\), whereas above that temperature increasing the \(\text{H}_2/\text{COS} \) ratio reduced the yield of CO\(_2\).

Figure 4.8: Yield of a) CO\(_2\) and b) CS\(_2\) at \(\text{H}_2/\text{COS} \) ratios of 2.3 (squares), 3 (triangles), and 4.5 (circles) on sulfided Mo/Al\(_2\)O\(_3\) (black symbols) or MoK\(_2\)/Al\(_2\)O\(_3\) (white symbols) at 30 MPa and 37 cm\(^3\)/min overall flow rate, corresponding to GHSV=5328 h\(^{-1}\).
The yield of CS$_2$ is shown in Figure 4.8. Significantly larger amounts of CS$_2$ were formed using the potassium-containing catalyst than using Mo/Al$_2$O$_3$. Furthermore, the yield of CS$_2$ had a maximum at 503-513 K using MoK$_2$/Al$_2$O$_3$, whereas CS$_2$ was not detected on MoO$_3$/Al$_2$O$_3$ at 493 K or above. For both systems, the concentration of CS$_2$ decreased with increasing temperature or increasing H$_2$/COS ratio.

The yield of methanethiol increased until reaching a maximum on increasing the temperature (Figure 4.9). Below 553 K, the yield of CH$_3$SH was higher on the potassium-free catalyst than on MoK$_2$/Al$_2$O$_3$.

![Figure 4.9](image-url): Yield of a) CH$_3$SH and b) CH$_4$ at H$_2$/COS ratios of 2.3 (squares), 3 (triangles), and 4.5 (circles) on sulfided Mo/Al$_2$O$_3$ (black symbols) or MoK$_2$/Al$_2$O$_3$ (white symbols) at 30 MPa and 37 cm3/min overall flow rate, corresponding to GHSV=5328 h$^{-1}$.
The trend was reversed at higher temperatures, that is, on the potassium-free catalyst the yield of CH$_3$SH decreased with temperature, whereas on the potassium-containing catalyst the yield of CH$_3$SH was approximately 17% at 553 K and stable at higher temperatures. Significant influence of the H$_2$ partial pressure on the yield of CH$_4$ was not observed in both systems, as shown in Figure 4.9. The presence of potassium, however, suppressed the formation of CH$_4$ significantly. The yield of CH$_4$ was below 5% over potassium-containing catalysts even at 673 K, whereas on Mo/Al$_2$O$_3$ the yield of CH$_4$ was more than 25% at the same temperature.

4.4. Discussion

4.4.1. Reaction pathway

The yields of CO$_2$ and CS$_2$ are almost identical on Al$_2$O$_3$ and K-Al$_2$O$_3$ up to 520 K (Figure 4.2), indicating that both compounds are formed by disproportionation of COS [Eq. (1)]. The decrease of the yield of CO$_2$ after reaching the maximum at 540 K is accompanied by an increase in the yield of CO. This is attributed to the reverse water-gas shift reaction [Eq. (2)] and the consecutive reactions [Eqs. (3) and (4)]. The decrease in the yield of CS$_2$ in parallel with the formation of CH$_3$SH suggests that methanethiol is the product of CS$_2$ hydrogenation [Eq. (5)].

$$
2 \text{COS} \rightarrow \text{CO}_2 + \text{CS}_2 \quad (1) \\
\text{CO}_2 + \text{H}_2 \rightleftharpoons \text{CO} + \text{H}_2\text{O} \quad (2) \\
\text{CO}_2 + \text{H}_2\text{S} \rightleftharpoons \text{COS} + \text{H}_2\text{O} \quad (3) \\
\text{COS} + \text{H}_2 \rightleftharpoons \text{CO} + \text{H}_2\text{S} \quad (4) \\
\text{CS}_2 + 3 \text{H}_2 \rightarrow \text{CH}_3\text{SH} + \text{H}_2\text{S} \quad (5)
$$

The main product was CO on MoO$_3$/Al$_2$O$_3$ even at low reaction temperatures (Figure 4.5), suggesting that COS preferentially decomposed to CO and H$_2$S according to Equation (4). At high temperatures, the decrease of the yield of methanethiol and the formation of CH$_4$ (Figure 4.6) imply that CH$_4$ is a product of the hydrogenolysis of methanethiol [Eq. (6)]. CS$_2$ was only found at low temperatures and low H$_2$ partial pressures (Figure 4.8), because it was rapidly hydrogenated to methanethiol at 30 MPa [19].
\[
\text{CH}_3\text{SH} + \text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{S} \quad (6)
\]

Methanethiol is formed and consumed in hydrogen-consuming reactions, consequently, varying the \(\text{H}_2/\text{COS}\) ratio has two opposite effects. Higher \(\text{H}_2/\text{COS}\) ratios improve the yield of \(\text{CH}_3\text{SH}\) below 500 K on \(\text{Mo/Al}_2\text{O}_3\) or 570 K on \(\text{MoK}_2/\text{Al}_2\text{O}_3\) (Figure 4.9), but at higher temperatures the yield of \(\text{CH}_3\text{SH}\) decreases with increasing concentrations of \(\text{H}_2\). This is in line with our previous study, in which the synthesis of \(\text{CH}_3\text{SH}\) from \(\text{COS}\) is postulated to occur on sulfided \(\text{K}_2\text{MoO}_4/\text{SiO}_2\), as shown in Scheme 4.1 [19].

![Scheme 4.1: Reaction pathway for the synthesis of \(\text{CH}_3\text{SH}\) from \(\text{COS}, \text{H}_2, \text{and H}_2\text{S}\).](image)

COS decomposes to \(\text{CO}\) and \(\text{H}_2\text{S}\) and disproportionates to \(\text{CO}_2\) and \(\text{CS}_2\), which is the precursor for methanethiol. At high temperatures, \(\text{CO}_2\) is transformed to \(\text{COS}\) or to \(\text{CO}\), whereas methanethiol is further hydrogenated to \(\text{CH}_4\).

4.4.2. Effect of potassium during sulfidation

The effect of potassium is evident, when it is added to alumina. \(\text{H}_2\text{S}\) is not adsorbed on pure alumina, whereas on potassium-doped alumina a large amount of \(\text{H}_2\text{S}\) is consumed, releasing water as presented in Figure 4.10.

This can be explained on the basis of the work of Amenomiya et al.[21, 22]. The authors demonstrated that potassium weakens the bonds of oxygen atoms on the surface, that is, the concentration of reactive, mobile oxygen atoms increases. This implies that under a \(\text{H}_2\text{S}\) atmosphere, oxygen atoms on the surface of alumina are replaced by sulfur atoms, which results in \(\text{H}_2\text{S}\) adsorption without apparent \(\text{H}_2\) consumption (Figure 4.10). The proposed mechanism for the O-S exchange on the surface of alumina is presented in Scheme 4.2.
Figure 4.10: H$_2$, H$_2$S, and H$_2$O-evolution-consumption profiles of the TPS experiments of selected materials.

Scheme 4.2: Mechanism for the O-S exchange on the alumina surface.

The donation of electrons from H$_2$S to the potassium cations on the surface results in the creation of SH and OH groups. Then, the recombination of protons produces an adsorbed water molecule that desorbs, leaving a sulfur atom on the surface.

The temperature-programmed sulfidation (TPS) on alumina-supported molybdenum catalysts, as accepted in the literature, is described before discussing the TPS results of the
molybdenum-containing materials [23]. Sulfidation below 520 K occurs through oxygen-sulfur substitution according to Equation (7). In the same temperature interval, Mo$^{6+}$ is reduced to Mo$^{4+}$ through rupture of Mo-S bonds and formation of elemental sulfur. The sulfur adsorbs on the support and is reduced to H$_2$S in the presence of H$_2$ at 510–560 K, resulting in a H$_2$S production signal coupled with a strong H$_2$ adsorption in the TPS pattern. The H$_2$ consumption above 560 K is attributable to the reduction of Mo$^{6+}$ to Mo$^{4+}$. It is believed that at 560 K, most of the molybdenum ions are already in the Mo$^{4+}$ state because of reductive Mo-S bond breaking. Thus, the H$_2$S consumption at temperatures above 560 K is ascribed mainly to O-S exchange on Mo$^{4+}$.

\[\text{Mo}^{6+}\cdot\text{O}^{2-} + \text{H}_2\text{S} \rightarrow \text{Mo}^{6+}\cdot\text{S}^{2-} + \text{H}_2\text{O} \quad (7) \]

The value for a monolayer of molybdenum-loading on Al$_2$O$_3$ is 5.7 atoms of molybdenum per nm2 [24], whereas the catalysts used in this work have a molybdenum loading of more than 10 atoms of molybdenum per nm2. Thus, crystalline phases are formed after the synthesis of the catalysts, as demonstrated by using XRD. As a consequence of the presence of agglomerated oxide and sulfide clusters, the steps of the TPS process are not well defined but overlapping. The TPS profile of the MoK$_2$/Al$_2$O$_3$ catalyst is the only one that exhibits a small H$_2$S release peak. For the other molybdenum-containing materials, there is a continuous and large H$_2$S adsorption (Figure 4.2). Instead of H$_2$S release, which appears in most of the H$_2$S profiles, is a local maximum or “shoulder” at approximately 550 K. We conclude, however, that this shoulder corresponds to the reduction of elemental sulfur, because a clear H$_2$-consumption peak appears at the same temperature in the TPS profiles as shown in Figure 4.10 for the Mo/Al$_2$O$_3$ and MoK$_2$/Al$_2$O$_3$ catalysts. Thus, the H$_2$S consumption region before the “shoulder” corresponds mainly to the O-S exchange of atoms bound to Mo$^{6+}$, whereas in the high temperature region it corresponds to the exchange of sulfur atoms for oxygen atoms on Mo$^{4+}$ species.

The profiles of the Mo/Al$_2$O$_3$ and MoK$_{0.16}$/Al$_2$O$_3$ catalysts in Figure 4.2 are very similar, because the low potassium loading did not modify the sulfidation process significantly. The consumption of H$_2$S, however, decreases after the incorporation of potassium (K/Mo=0.16). This is attributed to the formation of molybdenum with a tetrahedral coordination, which negatively influences the reducibility of the materials [25]. At higher potassium loadings in the molybdenum-catalysts, it is obvious that by increasing the concentration of potassium the consumption of H$_2$S increases. Furthermore, for the catalyst with two-fold molar excess of
potassium, the H₂S-consumption line returns to the baseline faster than for other materials, suggesting that the available oxygen atoms are substituted by sulfur atoms earlier than on materials with lower potassium concentrations. Thus, according to the TPS process described before, potassium accelerates the O-S exchange on both Mo⁴⁺ and Mo⁶⁺, as shown in general in Equation (8).

\[
\text{Mo}^{n+}\text{O}^{2-} + \text{K}^+ + \text{H}_2\text{S} \rightarrow \text{Mo}^{n+}\text{-OH} + \text{K}^+\text{-SH} \rightarrow \text{Mo}^{n+}\text{-S}^2\text{-} + \text{K}^+ + \text{H}_2\text{O}
\] (8)

4.4.3. Effect of potassium during the reaction

Several indications are found in the kinetic results that potassium hinders the COS decomposition to CO and H₂S and enhances the disproportionation of COS. Clear evidence of the first effect is the series of experiments performed over Al₂O₃ and K-Al₂O₃. In those experiments, the addition of potassium results in a decrease in the COS conversion, which is associated with the blocking of its decomposition to CO. Concerning the molybdenum-containing catalysts, the yield of CO decreases, whereas the yield of CO₂ increases between 520 and 600 K with increasing potassium-loading (Figure 4.5). In the same temperature range, Figure 4.7 clearly reveals a considerably lower yield of CO on MoK₂/Al₂O₃ than on Mo/Al₂O₃. In Figure 4.8, the yields of CO₂ and CS₂, products of the COS disproportionation, are much higher on the potassium-containing catalyst than on Mo/Al₂O₃.

Potassium has the opposite effect above 600 K: it increases the yield of CO, but decreases the yield of CO₂ (Figure 4.5). This is attributed to the transformation of CO₂ to CO through the reverse water gas shift reaction [Eq. (2)] or through the consecutive reactions [Eqs. (3) and (4)]. An increase in the reaction rate for Equation (2), as confirmed by CO₂ and H₂ consumption, can be observed in Figure 4.8, in which the yield of CO₂ decreases at temperatures higher than 570 K on raising H₂/COS ratio, because more H₂ is available for the CO₂ consumption.

Another important effect of potassium can be seen in Figure 4.9. On the potassium-free catalyst, the yield of methanethiol reaches a maximum value (ca. 6%) below 520 K and then decreases steadily. On the potassium-containing catalyst, the maximum yield of CH₃SH (ca. 16%) shifts to temperatures higher than 550 K and remains constant afterwards. This indicates a strong reduction of the hydrogenation of CH₃SH to CH₄ in the presence of
potassium. This statement is confirmed by the results presented in Figures 4.6 and 4.9 that exhibit a reduced CH$_4$ formation in the presence of potassium.

4.4.4. Mechanism of the disproportionation of COS on alumina

For the disproportionation of COS on alumina, the Mars-van Krevelen mechanism, illustrated in Scheme 4.3, is proposed. COS (O=C=S) may bind to the adsorption site, depicted as squares, through the sulfur or the oxygen atoms (Scheme 4.3, A and B, respectively). In the former case, the CO fragment reacts with a nearby oxygen atom and desorbs as CO$_2$. In the second case, the CS fragment reacts with a sulfur atom and a CS$_2$ molecule desorbs.

![Scheme 4.3: Mechanism for the COS disproportionation to CS$_2$ and CO$_2$ over alumina or a partially oxidized MoS$_2$ phase.](image)

From Scheme 4.3 it is clear that COS adsorption and the subsequent release of CO$_2$ or CS$_2$ requires two adsorbed intermediaries: dithiocarbonate (COS$_2$)$^{2-}$ and thiocarbonate (CO$_2$S)$^{2-}$. Both surface species have been observed on several oxides by means of infrared spectroscopy [26,27]. The effect of potassium on the disproportionation of COS is very limited on alumina (Figure 4.4), which means that the enhancement of the O-S exchange observed in TPS after potassium addition is not significant under reaction conditions. The reduction in the COS decomposition, evident on K-Al$_2$O$_3$, is attributed to the stabilization of COS molecules adsorbed on potassium cations, as detailed below.
4.4.5. Active phases in the molybdenum catalysts

It is likely that the formation of molybdenum species on alumina covers most of the active sites on the support, because of the high concentration of molybdenum precursors and the low area of the catalysts (Table 4.1). Accordingly, the performance of Al₂O₃ and Mo/Al₂O₃ are very different. For example, below 600 K, the rate of COS decomposition is much higher on Mo/Al₂O₃ than on alumina (compare Figures 4.4 and 4.5). The high rate of COS decomposition on Mo/Al₂O₃ coincides with our previous conclusion that the COS hydro-decomposition is catalyzed by the MoS₂ phase [19]. In the present work, small amounts of potassium in the catalysts do not influence the catalytic performance. However, at high concentrations or excess of potassium, the rate of COS disproportionation increases.

The increase of the COS disproportionation rate with increasing potassium-loading on the Mo/Al₂O₃ catalyst is a consequence of the creation of new disproportionation sites on the MoS₂ phase rather than improving the remaining sites on alumina. It is shown that potassium added to Al₂O₃ does not influence the disproportionation rate of COS. New disproportionation sites are located in a second active phase, potassium-decorated MoS₂, which is shown to promote the disproportionation of COS [19]. This assignment of catalytic properties to MoS₂ and K-MoS₂ is equivalent to what is known for the synthesis of mixed alcohols from synthesis gas over sulfided molybdenum catalysts, in that the potassium-promoted MoS₂ phase catalyzes the alcohol formation, whereas the unmodified MoS₂ phase is active for the formation of hydrocarbons [28,29]. This means that the C-O (or C-S) bond is preferably broken on pure MoS₂, but preserved in the presence of potassium.

As suggested by using Raman and X-ray photoelectron spectroscopy (XPS) characterization of the potassium-doped catalysts, potassium cations tend to disperse on the entire surface, that is, K⁺ segregates from the MoS₂ phase either by migrating to the support or by forming crystalline, molybdenum-free species [17,19]. Therefore, the potassium-decorated MoS₂ can only be formed at high concentrations of potassium. In line with this statement, the addition of potassium facilitates the sulfidation of the molybdenum catalyst through Equation (8) only at high alkali loadings.

It is known that NO adsorbs on coordinatively unsaturated sites (CUS) at the edge of MoS₂. Thus, the concentration of NO adsorbed on sulfides is correlated with the concentration of CUS and the activity of the catalyst [30,31]. Accordingly, the adsorption of NO was correlated with the concentration of CUS available to complete the decomposition of COS [19]. In this work, the opposite trend is observed, that is, the amount of adsorbed NO increases with the loading of potassium, whereas the conversion of COS decreases.
accordingly because of the hampering of the COS decomposition. This apparent contradiction is resolved by considering that NO does not absorb solely on exposed molybdenum atoms in MoS$_2$, but also on potassium cations, as indicated by several studies concerning the chemisorption of oxygen-containing compounds on alkali-doped MoS$_2$ [29,32,33]. This explains that NO adsorbs on potassium-doped MoS$_2$ even after flowing COS in the absence of H$_2$, which would block the Mo-CUS, as described elsewhere [19]. Furthermore, the assignment of potassium cations as adsorption centers implies that they can be part of the active sites responsible for the COS disproportionation, which is enhanced in the potassium-decorated MoS$_2$ phase.

4.4.6. Reaction mechanism for the COS disproportionation on the MoS$_2$ phases

The potassium-promoted molybdenum species have a much higher affinity for oxygen-containing compounds, as suggested by the TPS results and the adsorption of NO. In the TPS experiments, the presence of K$^+$ increases significantly the O-S exchange on Mo$^{4+}$ and Mo$^{6+}$, whereas in the volumetric experiments the adsorption of NO correlates with the concentration of potassium. Unequivocal evidence of the O-S exchange is provided by Raman spectroscopy, which reveals formation of oxysulfide species after flowing pure COS over the sulfide catalyst doped with high concentrations of potassium. It is important to clarify that the formation of oxysulfide species occurs only on the surface and does not lead to bulk oxidation of the catalyst under reaction conditions (as illustrated by the XRD characterization of the used catalysts). We propose that the disproportionation of COS over the potassium-decorated MoS$_2$ phase proceeds according to Scheme 4.4.

Considering that potassium acts as adsorption center, a COS molecule binds to a potassium cation deposited on MoS$_2$, then a Mars-van Krevelen-type mechanism replaces the initial sulfur atom in the active site by an oxygen atom, thus releasing CS$_2$. As a result, the oxysulfide species found in the in situ Raman study are formed. Scheme 4.5a illustrates two different adsorption possibilities of a COS molecule on an active site. CS$_2$ is the product, if the oxygen-side of the molecule adsorbs on a sulfur-containing center, whereas CO$_2$ is produced, if the sulfur atom in the molecule adsorbs on an oxygen-containing site. Other possible combinations lead to desorption of COS. Note that the mechanism in Scheme 4.4 does not include CUS, which is in good agreement with the previous conclusion that CUS do not play an important role in the disproportionation reaction [19].
Scheme 4.4: Mechanism for the COS conversion to CS$_2$ over the potassium-decorated MoS$_2$ phase.

In the pure MoS$_2$ phase, the disproportionation would occur on the partially oxidized surface according to Scheme 4.3 with CUS as adsorption sites. However, the concentration of oxygen atoms on the surface in the MoS$_2$ phase must be very low, because oxysulfide species were not observed for catalysts with low potassium-loading in the Raman experiments.

Scheme 4.5: (a) Possibilities for the adsorption of COS on the potassium promoted site that lead to the disproportionation to CS$_2$ and CO$_2$. (b) Stabilizing effect of potassium on the adsorbed COS.
4.4.7. Other features of the potassium-decorated phase

It is proposed that K\(^+\) can stabilize a COS molecule adsorbed on a CUS or the CO fragment on the surface for recombination with sulfur, thus hindering the decomposition as shown in Scheme 4.5b. The same stabilizing effect through CO-K bonding was attributed to potassium in the production of alcohols from syngas on molybdenum sulfide catalysts [34]. Potassium cations on the catalytic surface would also stabilize adsorbed CH\(_3\)SH. The CH\(_3\)S-fragments formed on K\(^+\) centers would desorb again as methanethiol. Thus, the adsorption on CUS, which is more likely to result in further hydrogenolysis to CH\(_4\), is hampered. The detailed analysis of the yield of CS\(_2\) and CH\(_3\)SH on Mo/Al\(_2\)O\(_3\) and K\(_2\)Mo/Al\(_2\)O\(_3\) at low temperatures (Figures 4.8 and 4.9) suggests that the same stabilizing effect of K\(^+\) occurs on the CS\(_2\) molecules. The yield of CS\(_2\) on Mo/Al\(_2\)O\(_3\) is negligible at any H\(_2\)/COS ratio; the yield of CH\(_3\)SH, however, is higher on the same catalyst than on K\(_2\)Mo/Al\(_2\)O\(_3\) below 525 K. This suggests that potassium slows down the hydrogenation of CS\(_2\) as well as the other hydrogenation steps. Further evidence for the direct hydrogenation of CS\(_2\) to CH\(_3\)SH will be provided in future communications. The mobility of surface oxygen atoms is improved by the addition of alkali salts to alumina, increasing the activity for the reverse water gas shift reaction at high temperatures [21]. Our results reveal that at high temperatures (above 590 K) the difference between the increasing yield of CO and the decreasing CO\(_2\) yield widens with the potassium content, suggesting the same effect on the potassium-doped molybdenum catalysts. Thus, the oxygen-mobility present in the potassium-decorated MoS\(_2\) phase also accelerates the formation of CO from CO\(_2\).

4.5. Conclusions

A series of molybdenum catalysts supported on alumina and doped with potassium were synthesized and characterized in the oxide and sulfide form. Crystalline phases were formed in the oxide catalyst because of the high concentration of molybdenum. The nature of those crystalline phases depended on the concentration of potassium and the used precursors. In the sulfide form, however, only the MoS\(_2\) phase was detected in all the catalysts. The synthesis of methanethiol from carbonyl sulfide (COS) and H\(_2\) was explored on Al\(_2\)O\(_3\) and the sulfided molybdenum catalysts doped with increasing amounts of potassium. The kinetic and characterization results allowed postulating the presence of two active phases, that is, pure MoS\(_2\) and potassium-decorated MoS\(_2\). The latter was formed only at high potassium concentrations because of the dispersion of potassium on the support. The main effect of
potassium was an increase in the mobility of the oxygen and sulfur atoms on the surface and the stabilization of adsorbed species. The improved O-S exchange increased the consumption of H₂S during sulfidation. In the sulfide catalysts, the oxygen and sulfur reactivity of the potassium-decorated MoS₂ phase increased the rate of COS disproportionation to CO₂ and CS₂ at low temperatures and the production of CO from CO₂ above 573 K. The stabilization of the surface species on exposed potassium cations, that is, adsorbed COS or CO fragments or adsorbed methanethiol, explained the hampering of COS decomposition and of the methanethiol hydrogenolysis to methane. A Mars-van Krevelen-type mechanism would allow for the disproportionation of COS on alumina or MoS₂. A reaction mechanism comprising the formation of oxysulfide species was proposed for the COS disproportionation on the potassium-decorated MoS₂ phase. The active center in this phase includes potassium cations instead of exposed molybdenum cations.
4.6. References

Synthesis of Methanethiol from Carbonyl Sulfide and Carbon Disulfide on (Co)K-Promoted Sulfide Mo/SiO$_2$ Catalysts

The catalytic properties of a series of (Co)K-promoted Mo sulfide catalysts supported on SiO$_2$ were explored in the synthesis of methanethiol from carbonyl sulfide (COS) and CS$_2$. MoS$_2$ was very active for the conversion of COS, but allowed only low yields of CH$_3$SH because of the parallel decomposition of COS to CO and H$_2$S and the reduction of CH$_3$SH to CH$_4$. CS$_2$, on the other hand, was completely converted to CH$_3$SH with high yield below 570 K on MoS$_2$. The formation of CH$_4$, however, dramatically decreased the yield of CH$_3$SH above 570 K. The addition of K$^+$ cations decreased the conversion of both reactants, but also reduced the rate of decomposition/reduction reactions. The doubly promoted CoK-Mo catalyst led to the highest conversions with moderate to high yields of methanethiol. We conclude that the addition of K$^+$ cations generates very weak adsorption sites, suppressing so the C-S bond cleavage. These sites catalyze, however, COS disproportionation. Accessible Co and Mo sites are part of the active sites for all reactions observed. All catalytically active sites are concluded to be situated on the edges of MoS$_2$ slabs.
5.1. Introduction

Methanethiol (methyl mercaptan, CH$_3$SH) is a key intermediate in the production of several important specialty chemicals such as methionine [1]. Thus, improving and developing new synthesis routes for methanethiol is of significant industrial interest. Large scale production of methanethiol is based on the thiolation of methanol [1,2]. However, it would be economically attractive to produce CH$_3$SH from less expensive reactants, such as carbon oxides, hydrogen sulfide, and hydrogen.

The synthesis of methanethiol from CO and CO$_2$ on transition metal sulfides supported on alumina was reported in the early work of Olin et al. [3], whereas Mn- and W-based sulfide catalysts promoted with alkali metals were applied later [4]. The formation of methanethiol from mixtures of CO and H$_2$S was subsequently investigated over group Vb metal oxides supported on TiO$_2$ and Al$_2$O$_3$ [5-7].

In recent years, the synthesis of methanethiol from H$_2$S-containing synthesis gas (H$_2$S-syngas) on a variety of sulfide materials has received significant attention again [8,9]. The outstanding CO conversion and CH$_3$SH selectivity set the K-promoted Mo-catalyst apart from other evaluated catalysts.

A two-stage process for the synthesis of methanethiol was devised as reported in refs 10,11. The first stage consists of the liquid-phase reaction of elemental sulfur with CO-H$_2$ mixtures to form carbonyl sulfide (COS) and H$_2$S. In the second stage, a plug-flow reactor is used to synthesize methanethiol from mixtures of COS, H$_2$S, and H$_2$. The reactions in the second stage were catalyzed by Mo-sulfide catalysts containing substantial concentrations of potassium and being supported on SiO$_2$ and Al$_2$O$_3$ [11,12].

The two-stage approach allows also to better understand how the H$_2$S-syngas mixture reacts to form CH$_3$SH. From the mechanistic investigations it is concluded that COS undergoes disproportionation to CO$_2$ and CS$_2$ and that the latter is hydrogenated to methanethiol. The addition of high concentrations of potassium leads to the formation of a “K-decorated” MoS$_2$ phase that enhances the COS disproportionation, but inhibits undesired reactions. However, the metal sulfide catalyzed synthesis of methanethiol from H$_2$S-containing synthesis gas is far from being optimized and completely understood. Stimulated by reports in the literature [13] we compare here the impact of double promotion, that is, K-Co, on the methanethiol synthesis using COS and CS$_2$ as reactants aiming to provide a knowledge basis to improve catalysts for the synthesis of methanethiol from H$_2$S-containing synthesis gas.
Cobalt was used as a second promoter because it is known to increase the reactivity of MoS\(_2\) for hydrogenation [14]. Thus, a series of K- and CoK-promoted Mo catalysts supported on SiO\(_2\) were synthesized, characterized, and explored with respect to the catalytic conversion of mixtures of COS or CS\(_2\) with H\(_2\)S and H\(_2\) to methanethiol.

5.2. Experimental

5.2.1. Catalyst Preparation

The oxide catalyst precursors were prepared by the incipient wetness impregnation of SiO\(_2\) (AEROSIL 90, Degussa). Mo and K-Mo catalysts were prepared in a single impregnation step from aqueous solutions of ammonium heptamolybdate hexahydrate \(((\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot6\text{H}_2\text{O},\text{Aldrich, 99.9\%})\) and potassium molybdate \((\text{K}_2\text{MoO}_4,\text{Sigma Aldrich, 98\%})\), respectively. The resulting materials were dried at 353 K for 10 h and treated at 773 K in synthetic air for 12 h.

The Co-containing catalysts were prepared by the impregnation of the K-Mo oxide material with an aqueous solution of cobalt nitrate hexahydrate \((\text{Co(NO}_3)_2\cdot6\text{H}_2\text{O},\text{Fluka, 98\%})\) followed by the same thermal treatment as described above. The molybdenum loading was 1.17 mmol per gram of material, whereas in the promoted catalysts the molar K/Mo and Co/Mo ratios were 2 and 0.33 respectively. The equivalent nominal compositions were 11.3, 9.2, and 2.3 wt \% in Mo, K, and Co respectively. The oxide catalyst precursors are denoted as Mo/SiO\(_2\), KMo/SiO\(_2\), and CoKMo/SiO\(_2\).

5.2.2. Characterization of the Catalysts

5.2.2.1. Elemental Composition

The molybdenum, potassium, and cobalt content of the oxide precursors were determined by atomic absorption spectroscopy (AAS) using a UNICAM 939 spectrometer.

5.2.2.2. Textural Properties

The textural properties of the oxide precursors were determined by nitrogen adsorption-desorption using a PMI automated BET sorptometer. The samples were degassed in vacuum at 673 K for 2 h before adsorption.

5.2.2.3. X-ray Diffraction

The oxide precursors and the sulfide catalysts after activity tests were characterized by X-ray diffraction (XRD). Samples of the used catalysts were measured after cooling down the
reactor to room temperature in nitrogen flow. A Philips X’Pert Pro System (Cu Kα1-radiation, \(\lambda = 0.154056 \) nm) operating at 45 kV and 40 mA was used for recording XRD. Measurements were carried out using a step size of 0.017° (2\(\theta \)) and 115 s as count time per step.

5.2.2.4. NO and CO\(_2\) Adsorption

NO and CO\(_2\) adsorption were determined by a pulse technique using a flow apparatus equipped with a mass spectrometer (QME 200, Pfeiffer Vacuum). A sample of 0.1 g of catalyst was loaded in a quartz reactor and activated in situ under 10 vol % \(\text{H}_2\text{S}/\text{H}_2 \) at 673 K for 3 h. After cooling to the adsorption temperature, that is, 300 K for NO and 358 K for CO\(_2\), the reactor was flushed with high purity He for 5 h. Pulses of 10 vol % of NO or CO\(_2\) in He were introduced every 30 min. The total concentration of gas adsorbed was calculated as the sum of the uptakes per pulse.

5.2.3. Kinetic Measurements

The synthesis of CH\(_3\)SH from COS or CS\(_2\) was investigated with the sulfide form of Mo, K-Mo, and Co-K-Mo catalysts. In the following the sulfide catalysts are denoted simply as MoS\(_2\)/SiO\(_2\), KMoS/SiO\(_2\), and CoKMoS/SiO\(_2\). Prior to the activity tests, samples of 0.5 g of the catalysts (particle size 250-500 μm) were sulfided in 10 vol % \(\text{H}_2\text{S}/\text{H}_2 \) at 3 MPa and 673 K for 12 h. Kinetic measurements were carried out in an experimental setup comprising a semibatch reactor and a plug-flow reactor in serial arrangement. Pure H\(_2\) or CO-H\(_2\) mixtures were bubbled through liquid sulfur in the semibatch reactor to generate either COS-H\(_2\)S or H\(_2\)-H\(_2\)S mixtures as previously reported [9,10]. These mixtures were diluted with the necessary concentrations of H\(_2\), N\(_2\), and/or CS\(_2\) and introduced to the plug-flow reactor, where the synthesis of methanethiol was performed. CS\(_2\) was introduced to the setup using a Shimadzu LC-20AT pump and vaporized at 423 K before mixing with the gas flow.

Using COS as starting reactant, the typical composition of the feed was 7.33 vol % COS, 3.08 vol % \(\text{H}_2\text{S} \), and 17 vol % \(\text{H}_2 \) in \(\text{N}_2 \) (H\(_2\)/COS ratio of 2.4). The effect of the H\(_2\)/COS ratio (2.4, 3.2, and 5.2) was explored with a fixed COS concentration of 8 vol % and a H\(_2\)/H\(_2\)S ratio of 4.3. In the synthesis of CH\(_3\)SH from CS\(_2\), the composition of the feed was 8.5 vol % CS\(_2\), 18 vol % \(\text{H}_2\text{S} \), 50 vol % \(\text{H}_2 \), and 23 vol % \(\text{N}_2 \) (H\(_2\)/CS\(_2\) ratio of 5.9). These compositions referred to the gas mixture used in the plug-flow reactor. All reactions were performed at a constant pressure of 3 MPa and temperatures ranging from 420 to 673 K. The gas hourly space velocity (GHSV), defined as (volumetric flow rate)•(volume of the catalyst bed)\(^{-1}\) was
kept constant at 89 min\(^{-1}\) in all experiments by diluting the reactant mixture in N\(_2\). Absence of transport artifacts was confirmed in preliminary experiments with varying catalyst particle size and flow rates. Samples were taken after reaching steady state in steps of 15 K and analyzed by gas chromatography using a Shimadzu GC 2014 equipped with a packed Haysep Q and a packed molecular sieve (13X) column.

5.3. Results

5.3.1. Elemental Composition and Textural Properties

The metal concentration, surface area, and pore volume of the oxide catalysts are compiled in Table 5.1. The composition of metals in the oxide catalyst precursors is very similar to the metal concentration used in the precursor mixture during preparation. Table 5.1 shows that the surface area and pore volume of the materials decrease with the loading of metal oxides along with the increase in the density of the material. The Brunauer-Emmett Teller (BET) surface area and the pore volume of CoKMo/SiO\(_2\) was lower than what was expected after incorporating 1.8 wt % of Co, which may suggest that some pores were blocked in the parent material during the preparation procedure.

Table 5.1: Nominal and experimental metal concentrations in the oxide materials\(^a\).

<table>
<thead>
<tr>
<th>Material</th>
<th>Co (wt. %)</th>
<th>K (wt. %)</th>
<th>Mo (wt. %)</th>
<th>BET surface area (m(^2)/g)</th>
<th>Pore volume (cm(^3)/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO(_2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>88</td>
<td>0.15</td>
</tr>
<tr>
<td>Mo/SiO(_2)</td>
<td>-</td>
<td>-</td>
<td>(11.3) 13.3</td>
<td>78</td>
<td>0.12</td>
</tr>
<tr>
<td>KMo/SiO(_2)</td>
<td>-</td>
<td>(9.2) 8.8</td>
<td>(11.3) 11.4</td>
<td>50</td>
<td>0.06</td>
</tr>
<tr>
<td>CoKMo/SiO(_2)</td>
<td>(2.3) 1.8</td>
<td>(9.2) 8.0</td>
<td>(11.3) 11.5</td>
<td>25</td>
<td>0.03</td>
</tr>
</tbody>
</table>

\(^a\) BET surface area and pore volume determined by N\(_2\) physisorption.

5.3.2. X-ray Diffraction Measurements

The X-ray diffractograms of the oxide precursors and the corresponding sulfide catalysts after the activity tests are shown in Figures 5.1a and 5.1b, respectively. The broad signal
between 15 and 35° (2θ) evidences the amorphous nature of the silica support. A crystalline structure of silica would produce the main reflection at around 26° (2θ) instead of a broad signal (see for instance quartz, PDF no. 01-074-0764). All other reflections in the diffractogram of Mo/SiO₂ are attributed to orthorhombic MoO₃ (PDF no. 00-001-0706). The oxidic KMo/SiO₂ catalyst shows a mixture of K₂MoO₄ (PDF no. 00-024-0880) and K₂Mo₂O₇ (PDF no. 00-036-0347). For the CoKMo/SiO₂ catalyst, the addition of Co modifies the proportion of K- and Mo-oxides. The fraction of K₂Mo₂O₇ increases while that of K₂MoO₄ decreases. However, slight shifts of the peak positions compared with the reference PDF data could indicate a mixture of potassium molybdenum oxides with different stoichiometries [15]. Evidence of crystalline Co-containing phases is not found in the diffraction patterns, probably because the concentration of cobalt is too low.

![Figure 5.1: XRD diffractograms of the oxide precursors (a) and sulfide, used catalysts (b).](image)

The XRD of the sulfide catalysts collected after the activity tests are shown in Figure 5.1b. Regardless of the oxide species present in the oxide precursor, all sulfided catalysts showed the presence of MoS₂ (PDF no. 00-024-0513) as the main crystalline phase. The diffractogram of the MoS₂/SiO₂ used catalyst showed some reflections corresponding to MoO₂ (PDF no. 00-033-0929) indicating incomplete sulfidation. In the sulfide and used KMoS/SiO₂ and
CoKMoS/SiO₂ catalysts, the K₂SO₄ phase (PDF no. 00-003-0608) was also detected. This Mo-free phase formed during the reaction as discussed in ref 11.

5.3.3. NO and CO₂ Adsorption Measurements

The active sites in the sulfide catalysts were characterized by means of NO and CO₂ adsorption because NO adsorbs on exposed cations of MoS₂, whereas CO₂ selectively adsorbs on basic sites [16,17]. The uptake of NO and CO₂ per pulse on sulfide MoS₂/SiO₂, KMoS/SiO₂, and CoKMoS/SiO₂ is presented in Figure 5.2.

Figure 5.2: NO (a) and CO₂ (b) uptake at 300 and 358 K respectively on sulfided MoS₂/SiO₂ (□), KMoS/SiO₂ (△), and CoKMoS/SiO₂ (○).
Although there are marked differences in the starting uptakes of the samples, the uptake decreases to zero as the maximum adsorption capacity of the sample is reached. The NO uptake on the MoS$_2$/SiO$_2$ sample was rather low (69 µmol/g); however, the concentration of adsorbed NO increased significantly for the K-promoted catalyst (229 µmol/g) and was the highest for CoKMoS/SiO$_2$ (304 µmol/g). Only negligible concentrations of CO$_2$ were adsorbed on MoS$_2$/SiO$_2$, while 23 and 21 µmol/g of CO$_2$ were adsorbed on the KMoS/SiO$_2$ and CoKMoS/SiO$_2$ sulfide materials, respectively. Control experiments were also performed on pure SiO$_2$ after applying the same thermal treatment in H$_2$S/H$_2$ flow that was applied to the catalysts; adsorption of NO or CO$_2$ was not observed for pure SiO$_2$ carrier.

5.3.4. Comparison of Catalysts for the Synthesis of CH$_3$SH from COS

Previous studies of the synthesis of CH$_3$SH from COS implied that the reaction proceeds along the network presented in Figure 5.3 [11,12]. COS is transformed to CO and H$_2$S via decomposition and in parallel, to CO$_2$ and CS$_2$ via disproportionation. CS$_2$ is hydrogenated to CH$_3$SH, whereas the reverse water gas shift reaction transforms CO$_2$ into CO. The secondary reactions involving CH$_3$SH lead to CH$_4$ and CH$_3$SCH$_3$ as suggested by the results of this work discussed below.

![Reaction pathway](image)

Figure 5.3: Reaction pathway for the production of CH$_3$SH from COS or CS$_2$. The main reaction steps are referred in the text as decomposition (1), disproportionation (2), and hydrogenation (3).

The synthesis of CH$_3$SH from COS was investigated over SiO$_2$-supported Mo, KMo, and CoKMo sulfide catalysts (see Figure 5.4a). With MoS$_2$/SiO$_2$ the conversion of COS increased rapidly from 12 to 80% between 473 and 508 K. With KMoS/SiO$_2$, the conversion of COS increased more slowly and did not reach the maximum value (>95%) until 623 K. The
addition of cobalt increased the conversion of COS leading to the most active catalyst between 423 and 498 K. At temperatures higher than 498 K the conversions achieved with MoS$_2$/SiO$_2$ and CoKMoS/SiO$_2$ were both above 95%. The highest yield of CO was obtained on MoS$_2$/SiO$_2$ as shown in Figure 5.4b.

![Graph](image)

Figure 5.4: Conversion of COS (a) and yield of CO (b) on sulfided MoS$_2$/SiO$_2$ (□), KMoS/SiO$_2$ (△), and CoKMoS/SiO$_2$ (○). The feed contains 7.3 vol % COS and H$_2$/COS = 2.4 (3 MPa, GSHV = 89.2 min$^{-1}$).

Below 598 K, the yield of CO was higher on CoKMoS/SiO$_2$ than on KMoS/SiO$_2$ while the reverse was observed at higher temperature. On the three catalysts, the yield of CO
increased with temperature to a maximum value before declining. The temperature for the maximum yield of CO varied from 543 K with MoS$_2$/SiO$_2$, to 633 K with KMoS/SiO$_2$ and 528 K on CoKMoS/SiO$_2$.

![Graphs showing CO$_2$ and CS$_2$ yields](image)

Figure 5.5: Yield of CO$_2$ (a) and CS$_2$ (b) on sulfided MoS$_2$/SiO$_2$ (□), KMoS/SiO$_2$ (Δ), and CoKMoS/SiO$_2$ (O). The feed contains 7.3 vol % COS and H$_2$/COS = 2.4 (3 MPa, GSHV = 89.2 min$^{-1}$).

The yield of CO$_2$ is shown in Figure 5.5a. The highest yield was observed with CoKMoS/SiO$_2$ in the whole temperature range. With KMoS/SiO$_2$ the CO$_2$ yield was the
second highest, whereas the lowest yield of CO$_2$ was observed with the unpromoted Mo sulfide catalyst. Three regions of the catalytic behavior can be distinguished in Figure 5.5a, that is, steady CO$_2$ yield increase (423-513 K), constant CO$_2$ yield (to 550 K), and finally CO$_2$ yield increase (>530 K).

Figure 5.6: Yield of CH$_3$SH (a) and CH$_4$ (b) on sulfided MoS$_2$/SiO$_2$ (□), KMoS/SiO$_2$ (∆), and CoKMoS/SiO$_2$ (O). The feed contains 7.3 vol % COS and H$_2$/COS = 2.4 (3 MPa, GSHV = 89.2 min$^{-1}$).
Very low yields of CS$_2$ were observed as shown in Figure 5.5b. The highest CS$_2$ yield (10%) was obtained with KMoS/SiO$_2$ at 523 K. Over the other systems, the maximum CS$_2$ yield was seen at 473 K, that is, 8% on CoKMoS/SiO$_2$ and just 1% on MoS$_2$/SiO$_2$.

A strong effect of the catalytic formulation was found on the yield of methanethiol (see Figure 5.6a). With MoS$_2$/SiO$_2$ the yield of methanethiol increased only to 7% at 518 K and then decreased again. With KMoS/SiO$_2$, the yield of methanethiol reached 18% at 603 K and did not significantly change with further increasing temperature. With CoKMoS/SiO$_2$, the yield of CH$_3$SH increased steeply from 423 to 513 K, then remained constant and increased again above 558 K reaching a maximum of 35% at 628 K. Figure 5.6b shows the yield of methane. The formation of CH$_4$ starts at 528 K on the unpromoted molybdenum catalyst, 633 K on KMoS/SiO$_2$, and 588 K on CoKMoS/SiO$_2$. In all cases, the yield of methane increased with reaction temperature.

5.3.5. Synthesis of CH$_3$SH from COS: Varying H$_2$/COS Ratio

Clearly, the CoKMoS/SiO$_2$ system showed the best performance with respect to the rate of COS conversion and the yield of methanethiol. Therefore, the effect of H$_2$/COS ratio was further studied on CoKMoS/SiO$_2$. Figure 5.7a shows that below 523 K, increasing the H$_2$/COS ratio leads to an increase in the conversion of COS. Above that temperature, the conversion of COS was higher than 90%, regardless of the H$_2$/COS ratio applied. Similarly, the yield of CO increased by increasing the H$_2$/COS ratio as shown in Figure 5.7b.

The yield of CO$_2$ (Figure 5.8a) was independent of the H$_2$/COS ratio up to 483 K. Above that temperature, raising the H$_2$/COS ratio lowered the yield of CO$_2$. Formation of CS$_2$ was detected only at temperatures between 423 and 525 K and clearly decreased with increasing H$_2$/COS ratio as shown in Figure 5.8b.

The yield of CH$_3$SH increased by raising the H$_2$/COS ratio in the range 423-500 K (Figure 5.9a). Above this temperature, however, a higher H$_2$/COS ratio led to lower yields of methanethiol. The yield of methane (Figure 5.9b) increased quickly above 598 K and was favored by increasing the H$_2$/COS ratio.
Figure 5.7: Conversion of COS (a) and yield of CO (b) on sulfided CoKMoS/SiO$_2$ at H$_2$/COS ratio of 5.2 (O), 3.2 (Δ), and 2.4 (□). The feed contains 8 vol % COS and H$_2$/H$_2$S = 4.3 (3 MPa, GSHV = 89.2 min$^{-1}$).
Figure 5.8: Yield of CO$_2$ (a) and CS$_2$ (b) on sulfided CoKMoS/SiO$_2$ at a H$_2$/COS ratio of 5.2 (O), 3.2 (Δ), and 2.4 (□). The feed contains 8 vol % COS and H$_2$/H$_2$S = 4.3 (3 MPa, GSHV = 89.2 min$^{-1}$).
Figure 5.9: Yield of CH$_3$SH and CH$_4$ on sulfided CoKMoS/SiO$_2$ at a H$_2$/COS ratio of 5.2 (O), 3.2 (Δ), and 2.4 (□). The feed contains 8 vol % COS and H$_2$/H$_2$S = 4.3 (3 MPa, GSHV = 89.2 min$^{-1}$).
5.3.6. Synthesis of CH$_3$SH from CS$_2$

Full conversion of CS$_2$ was achieved at 573 K as presented in Figure 5.10a.

![Graph](image)

Figure 5.10: Conversion of CS$_2$ (a) and yield of CH$_3$SH (b) on sulfided MoS$_2$/SiO$_2$ (□), KMoS/SiO$_2$ (Δ), and CoKMoS/SiO$_2$ (O). The feed contains 8.5 vol % CS$_2$ and H$_2$/CS$_2$ = 5.9 (3 MPa, GSHV = 89.2 min$^{-1}$).

At lower temperatures, the highest CS$_2$ conversion was observed on CoKMoS/SiO$_2$ followed by the unpromoted catalyst, and the KMoS/SiO$_2$ system led to the lowest CS$_2$ conversion. Figure 5.10b shows that the yield of methanethiol rapidly increased at
temperatures above 573 K to a maximum value. On the unpromoted catalyst, the maximum yield of methanethiol was 84% at 548 K and then it decreased quickly to 0 at 623 K. On the K-containing catalyst the maximum CH$_3$SH yield of 98% was reached at 573 K followed by a steady decrease to 76% at 673 K. Using the CoKMo/SiO$_2$ catalyst, the maximum yield of CH$_3$SH (98%) was reached at 548 K, and it decreased to 58% at 673 K.

Figure 5.11: Yield of CH$_4$ (a) and CH$_3$SCH$_3$ (b) on sulfided MoS$_2$/SiO$_2$ (□), KMoS/SiO$_2$ (△), and CoKMoS/SiO$_2$ (O). The feed contains 8.5 vol % CS$_2$ and H$_2$/CS$_2$ = 5.9 (3 MPa, GSHV = 89.2 min$^{-1}$).
With all three catalysts, sulfided MoS$_2$/SiO$_2$, KMoS/SiO$_2$, and CoKMoS/SiO$_2$, only methane and dimethyl sulfide (CH$_3$SCH$_3$) were formed as byproducts in the synthesis of CH$_3$SH from CS$_2$. Figure 5.11a shows that for each catalyst the yield of CH$_4$ started increasing at the temperature corresponding to the decline in the yield of CH$_3$SH. Thus, the decrease in CH$_3$SH yield at temperatures higher than 548 K was due to CH$_3$SH reduction to methane. With MoS$_2$/SiO$_2$, the yield of methane increased rapidly above 548 K and reached almost 100% at 623 K. The formation of methane was significantly decreased by the presence of potassium in the KMoS/SiO$_2$ catalysts. The addition of Co to the KMoS/SiO$_2$ catalyst, however, slightly increased the formation of CH$_4$ again. This methane formation on both promoted catalysts started at 598 K and increased up to 673 K to a yield of 22 and 40% on KMoS/SiO$_2$ and CoKMoS/SiO$_2$, respectively. It is shown in Figure 5.11b that significant amounts of CH$_3$SCH$_3$ were observed only over MoS$_2$/SiO$_2$ where the CH$_3$SCH$_3$ yield increased up to 16.5% at 573 K and decreased at higher temperatures. Over the other systems the yield of CH$_3$SCH$_3$ was lower than 2% over the evaluated temperature range.

5.4. Discussion

5.4.1. Effect of the Catalytic Formulation on the Synthesis of CH$_3$SH from COS

Let us first analyze the activity observed with MoS$_2$/SiO$_2$ and then describe the effects of the K- or Co- and K-promotion. The conversion of COS which increases between 423 and 523 K is closely related to the yield of CO showing a parallel tendency. The yield of the other products, in contrast, remains rather low. This indicates that the decomposition of COS to CO has the highest reaction rate between 423 and 523 K on MoS$_2$/SiO$_2$. Relatively stable yields of CO and CO$_2$ were observed between 523 and 548 K suggesting that in this narrow temperature range, the relative rates of COS disproportionation and decomposition are constant. At higher temperatures the linearly increasing yield of CO$_2$ coupled with a decreasing CO yield indicates that the COS disproportionation becomes faster than the decomposition. Hence, we conclude that the disproportionation of COS has a higher activation energy than its decomposition. The yield of CS$_2$ is zero above 500 K, that is, it was consumed faster than formed. Thus, we conclude that CS$_2$ hydrogenation to CH$_3$SH is faster than COS disproportionation.

The addition of potassium to the catalyst decreases the conversion of COS, but it does not slow down all reaction steps equally. The much lower yield of CO observed with KMoS/SiO$_2$ than with MoS$_2$/SiO$_2$ below 623 K suggests that the decomposition of COS is drastically
reduced by potassium. The yield of CO$_2$, however, is much higher on the K-containing catalyst than on the unpromoted counterpart pointing to an increase in the rate of the COS disproportionation. In line with this statement, the yield of CS$_2$ is significantly higher with KMoS/SiO$_2$ than with MoS$_2$/SiO$_2$. The subsequent reactions are retarded by potassium to different extent. Note that the yield of CS$_2$ is negligible on MoS$_2$/SiO$_2$, whereas the yield of CH$_3$SH increases up to 5% at 500 K. This indicates that the hydrogenation of CS$_2$ to CH$_3$SH is fast. Interestingly, for the K-promoted catalysts the relatively high yield of CS$_2$ at 523 K is not accompanied by a high CH$_3$SH yield relative to the unpromoted system. Also, the formation of CH$_4$ ceased. Hence, the presence of potassium blocks or strongly retards the hydrogenation steps. The production of CH$_3$SH is less affected than its reduction to CH$_4$.

It is known that the reaction of syngas on MoS$_2$ yields hydrocarbons, whereas alcohols are selectively obtained on adding potassium to the catalytic formulation [18,19]. This observation seems to be analogous to the enhanced selectivity of H$_2$S-syngas to methanethiol on K-containing sulfides [9] as the carbon-heteroatom bonds are not cleaved in the presence of potassium. From another point of view, note that the hydrogenation of CS$_2$ to CH$_3$SH and the further reduction to CH$_4$ require the cleavage of C-S bonds. From this perspective, the decelerating effect of potassium on the C-S bond cleavage observed in this work is consistent with investigations addressing hydrodesulfurization (HDS). The results of those investigations indicate that potassium reduces the HDS activity of Mo-sulfide catalyst for model molecules and real oil feeds [20,21].

The formation of the CoKMoS/SiO$_2$ catalyst by adding cobalt increases the conversion of COS. Comparing the product yields observed with KMoS/SiO$_2$ and CoKMoS/SiO$_2$, the variation of the yields of CO, CS$_2$, and CO$_2$ shows that the increased rates are due to the acceleration of two parallel reactions, that is, the decomposition and the disproportionation of COS. Interestingly, the yield of CO, remains lower on CoKMoS/SiO$_2$ than on MoS$_2$/SiO$_2$ (the yield of CO is even the lowest and the CO$_2$ yield the highest on CoKMoS/SiO$_2$ of all catalysts above 600 K) indicating that potassium blocks the decomposition pathway without cobalt reversing this blockage. The subsequent hydrogenation steps to CH$_3$SH and CH$_4$ are also accelerated by the cobalt promotion. In line with this accelerated disproportionation and subsequent hydrogenation, the yield of CS$_2$ reached a maximum value at lower temperatures than with other catalysts. In consequence, the yield of and the selectivity to CH$_3$SH is the highest with the double promoted MoS$_2$ catalyst. They decline slowly only above 650 K because of the enhanced reduction of CH$_3$SH to methane.
5.4.2. Effect of the Catalytic Formulation on the Synthesis of CH$_3$SH from CS$_2$

The reactions of CS$_2$ and H$_2$ on the unpromoted and the (Co)K-promoted catalysts confirm that the addition of potassium decreases the rate of CS$_2$ hydrogenation, whereas the presence of cobalt increases it, yielding only CH$_3$SH below 550 K. Above 550 K the CH$_3$SH yield drops with MoS$_2$/SiO$_2$ because of CH$_4$ formation. CH$_3$SH hydrogenation is nearly blocked with KMoS/SiO$_2$ indicating that the presence of K$^+$ cations blocks hydrogenation, while Co does hardly enhance CH$_3$SH hydrogenation, that is, it seems to remain less strongly adsorbed at the site of hydrogenation than on MoS$_2$/SiO$_2$. The significant formation of CH$_3$SCH$_3$ between 500 and 600 K with the latter catalyst and its disappearance in parallel to methane formation suggests that CH$_4$ is formed in a consecutive reaction from CH$_3$SCH$_3$ or as a parallel pathway (see Figure 5.3) on identical catalytic sites. The disappearance of these sites by addition of promoting atoms allows us to conclude that these sites are related to accessible Mo-cations.

5.4.3. Effect of the H$_2$/COS Ratio on the Synthesis of CH$_3$SH on CoKMo/SiO$_2$

Increasing the H$_2$/COS ratio led to the enhancement of the COS hydrodecomposition as seen from the increasing yield of CO, that is, [COS + H$_2$ \(\rightarrow \) CO + H$_2$S]. The increased rate of CO formation diminished the concentration of COS for the disproportionation reaction [2 COS \(\rightarrow \) CS$_2$ + CO$_2$]. The positive influence of the hydrogen concentration suggests that all reactants are absorbed and that the two pathways follow the probability of finding a reaction partner on the sulfide surface.

Below 500 K higher partial pressures of H$_2$ enhanced the rate to CH$_3$SH [CS$_2$ + 3H$_2$ \(\rightarrow \) CH$_3$SH + H$_2$S], while above 500 K accelerated rates of COS hydrodecomposition reduce the availability of CS$_2$, thereby reducing the rates to CH$_3$SH. It indicates that the energies of activation of the COS hydrodecomposition must be higher than that of CS$_2$ hydrogenation.

5.4.4. Role of the MoS$_2$ Phase and the Promoters

The X-ray diffractograms of the crystalline phases are reported for catalysts that were used in steady state operation after sulfidation of the oxide precursor. The catalytic experiments were also stopped to analyze the catalyst after different periods of reaction time, and the same XRD patterns for each catalyst were observed indicating the high stability of the investigated
catalytic materials. In the active sulfide state all catalysts showed the MoS$_2$ phase. In addition MoO$_2$ was also detected with MoS$_2$/SiO$_2$, and the formation of K$_2$SO$_4$ was observed on the K-containing catalysts.

The X-ray diffractograms of the oxide precursor suggest that relatively large crystals (average diameter of 93 nm) are formed upon supporting MoO$_3$ on SiO$_2$. After the sulfidation procedure, the molybdenum is effectively reduced to Mo$^{4+}$. The large crystals, however, are not completely sulfided, which resulted in a mixture of MoS$_2$ and MoO$_2$, the latter species having an average diameter slightly above 80 nm. Therefore, it is reasonable to assume that the MoS$_2$ formation starts from the surface and that the reduction of molybdenum is not correlated with the sulfide formation. While the presence of K$_2$SO$_4$ is startling at first it is highly unlikely that it catalyzes any of the reactions discussed here, because it is highly stable and difficult to reduce [22]. Indeed, it has been observed that the formation of surface sulfate species decreased the conversion of CS$_2$ in reactions carried out on Al$_2$O$_3$ or TiO$_2$ supports [23].

As the promoters, K or Co-K modify the behavior of the catalyst without changing the dominating MoS$_2$ phase, we conclude in agreement with the literature that K$^+$ cations do not occupy specific sites in the catalyst, but are randomly distributed on the surface of the support and the active sulfide phase [8,10]. Thus, some K$^+$ cations are associated with the sulfide and others are deposited on the support. It is also possible that not all supported MoS$_2$ is promoted by potassium. This random distribution of alkali promoter leads in consequence to the formation of two MoS$_2$ phases, that is, K-free and K-decorated MoS$_2$. K$^+$ cations not associated with MoS$_2$ agglomerate to form Mo-free crystalline species on silica, for example, K$_2$SO$_4$ as observed in this work. Interestingly, on Al$_2$O$_3$, K$_2$SO$_4$ does not form probably because of the stronger interaction of K$^+$ cations with alumina [12].

Different catalytic behaviors have been proposed for the two different phases [11,12]. The K-free MoS$_2$ catalyzes mainly the COS decomposition and the hydrogenation of CH$_3$SH, whereas the K-promoted phase hinders these two reactions and promotes the disproportionation of COS. These assignments are consistent with what is observed in this work. The origin of this effect has been explained by assigning the role of adsorption center to K$^+$ cations. Accordingly, the NO adsorption increases from 69 to 230 μmol/g by adding 8.8 wt % of potassium in the studied catalysts. This increase of adsorption sites concentration is neither reflected in the COS decomposition nor in the CS$_2$ hydrogenation. The only reaction enhanced with the K-promotion is the disproportionation of COS. This strongly suggests that the adsorption sites created by potassium differ from the Mo-coordinatively unsaturated sites
(Mo-CUS). The K-containing sites are active for disproportionation, but reduce the concentration of Mo-CUS and thereby limit reactions catalyzed by accessible Mo cations. For a detailed discussion of the nature of the K-containing active sites see ref 12.

On the other hand, Co is a very specific promoter of Mo sulfide. It is well-known that Co interacts with MoS₂ forming the CoMoS phase, in which a fraction of Mo sites at the edges of the MoS₂ slab is replaced by Co [24]. This Co-Mo-S association is favored at Co/Mo molar ratios of around 0.5, whereas Co-sulfides form at higher contents of promoter. In this work an amount of Co below the maximum Co/Mo ratio for the formation of the Co-Mo-S phase was added to the Mo catalyst. Thus, we can assume that in the CoKMoS/SiO₂ catalyst the Co-Mo-S phase is formed in agreement with the literature [25]. We cannot deduce from the present results whether or not Co incorporation occurs with preference on either MoS₂ or the K-decorated MoS₂. It is likely that cobalt decorates both MoS₂-like phases because all reaction steps are accelerated by Co promotion.

Considering that all reactions rates are accelerated and assuming that accessible Co is located at least in the nominal concentration at the edges of MoS₂ slabs, we deduce that all the reaction steps occur at the edges of MoS₂. To influence the catalytic performance of the MoS₂ phase, at least part of the K⁺ cations must be located near the MoS₂ slab edges. Considering that K⁺ enhances the O-S exchange [12], it is highly likely that the K⁺ cations enhance the exchange on the edge of MoS₂ slabs because these sulfur atoms are much more labile than sulfur in the basal planes [26].

The influence of cobalt on MoS₂-based catalysts has been extensively studied for hydrotreating catalysts. Two main effects are attributed to Co-promotion, that is, increasing the concentration of CUS and facilitating the activation of H₂ [27]. For the catalysts studied in this work, NO adsorption shows that the addition of Co increases the adsorption of NO from 230 to 304 μmol/g. Thus, the enhanced activity of the CoKMo/SiO₂ catalyst can be related to the increase of CUS in the MoS₂ edges [16] as it has been done for the synthesis of alcohols from syngas on K-doped Mo sulfides [28].

A schematic view of the K⁺- and Co-promoted MoS₂ slabs is presented in Figure 5.12. While we assume that the K⁺ cations are distributed over the material surface, only those deposited near the slab edges are relevant for the catalytic performance. The K-containing adsorption sites without Mo-CUS (a) would catalyze the disproportionation of COS. The sites containing both Co and K⁺ (b) in principle catalyze COS disproportionation and decomposition as well as hydrogenation steps. However, the K⁺ cations would act as weak adsorption sites decreasing the rate of hydrogenation by adsorbing the reaction intermediates
more weakly. Finally, the MoS$_2$-CUS in the MoS$_2$ edge promoted only by Co would catalyze hydrogenation and C-S bond cleavage.

![Figure 5.12: Schematic representation of a K- and Co-promoted MoS$_2$ slab. K$^+$ cations, Co, S, and Mo atoms are presented in light blue, red, yellow and green spheres, respectively. K$^+$-decorated site for COS disproportionation without Mo CUS (a); potential active sites for all reactions promoted with Co and K$^+$ (b); Co-promoted hydrogenation and hydrogenolysis sites (c).](image)

The enhancing effect of cobalt in the hydrogenation and hydrogenolysis steps is not surprising because the same effect has been observed in hydrotreating applications. The promotion of the disproportionation step can be attributed to the increase of oxygen and sulfur mobility in line with the known Co effect of decreasing the binding energy between Mo and the heteroatom [29]. On the other hand, the formation of CH$_3$SCH$_3$ on MoS$_2$/SiO$_2$ implies that two CH$_3$S- fragments adsorbed on adjacent Mo-CUS combine before desorption. However, the hydrogenolysis to methane is faster than the recombination to CH$_3$SCH$_3$ above 573 K. On the K-containing catalysts, the occurrence of two Mo-CUS would be less probable because of the blocking of such sites by K$^+$. Readesorption of CH$_3$SH, however, cannot be ruled out as one of the critical steps leading to the formation of CH$_3$SCH$_3$. K$^+$ cations would in that case reduce the probability that CH$_3$SH reacts further.

Final evidence of the different adsorption abilities of Mo-CUS and K$^+$ cations is given by CO$_2$ adsorption. On MoS$_2$/SiO$_2$, the uptake of CO$_2$ is negligible in accordance with reports that CO$_2$ does not adsorb on MoS$_2$ [17]. In contrast, the sulfide KMo/Al$_2$O$_3$ catalyst adsorbs 23 μmol/g, which points to CO$_2$ adsorption involving the alkali atoms in agreement with ref 30. We speculate at present that such adsorption complexes have an sp2 hybridized carbon atom. The adsorption of the same concentration of CO$_2$ on the sulfide CoKMoS/Al$_2$O$_3$ catalyst strongly suggests that the CO$_2$ interacts exclusively with K$^+$ cations, and not with CUS created by the incorporation of Co. The increased concentration of CUS on transition metals after Co-promotion is evidenced by the increase in the NO uptake by around 30%.
This value is consistent with the increase of CUS concentration of 25-33% found in Al₂O₃-supported MoS₂ after promotion with Ni reported in refs 31,32.

5.5. Conclusions

The CH₃SH synthesis was carried out starting from COS/H₂ and CS₂/H₂ mixtures catalyzed by Mo, K-Mo, and Co-K-Mo sulfide catalysts supported on SiO₂. On unpromoted MoS₂, the (undesired) COS decomposition leading to CO and the hydrogenation of CH₃SH to CH₄ are favored and are associated with the presence of the highly reactive accessible Mo cations. The promotion with K⁺, decorating supported MoS₂ and CoMoS particles, accelerates the COS disproportionation by providing sites for a facile exchange of oxygen and sulfur (presumably via surface mixed carbonates containing also sulfur atoms) and thereby indirectly reduces the formation of CO by COS decomposition. Note that also the addition of the more Lewis acidic Co cation increases the rate of C-S bond cleavage, therefore, it does not seem to stabilize carbonate structures.

The promotion with potassium also retards all steps requiring hydrogen, thereby decreasing the formation of methane. However, the formation of CH₃SH is less affected leading to the optimum yield. Adding Co accelerates all individual steps in the reaction network. The CH₄ formation rate is only enhanced at higher temperatures hardly limiting the temperature window in which high yields of methanethiol are achievable. Minimizing the H₂ partial pressure allows further optimization of the CH₃SH selectivity.
5.6. References

Chapter 6

Summary
6.1. Summary

Methyl mercaptan is a chemical feedstock employed in the synthesis of numerous products in the agricultural, plastics, rubber and chemical industries. Methyl mercaptan is predominantly produced by the reaction of methanol with hydrogen sulfide on an industrial scale. Owing to the fact that methanol is produced from synthesis gas, the idea to synthesize methyl mercaptan from synthesis gas directly, thereby omitting the methanol production step, is intriguing and has received considerable interest.

This thesis aimed at gaining insight into the formation of methyl mercaptan from H₂S-containing synthesis gas by devising a two-step approach consisting of the selective production of carbonyl sulfide as a first process step followed by the downstream synthesis of CH₃SH over promoted and unpromoted MoS₂ based catalysts in a subsequent reactor. This approach was chosen since it is commonly accepted in literature, that formation of methyl mercaptan from H₂S-containing synthesis gas proceeds via the formation of COS as a first step. However, the hydrogenation of COS over the described catalytic systems had not been investigated in detail prior to this thesis.

In Chapter 2 the formation of COS from CO, CO₂ and liquid sulfur in the presence and absence of H₂ was investigated. A reaction network for the formation of COS was elucidated based on the results obtained from various experiments at different reaction temperatures, pressures, residence times and reactant ratios. The presence of H₂ provides an alternative and complementary reaction route for the formation of COS from CO.

The formation of COS proceeds via the reverse water gas shift reaction when CO₂ is used as carbon source. CO is an intermediate that is further converted to COS by reacting with liquid sulfur or sulfanes - including H₂S. CO conversions of up to 95% leading to COS yields of 95% were achieved, which means quantitative conversion of CO to COS. All experimental results indicate, that the individual reactions depicted in the reaction network in Figure 6.1 mainly take place in the liquid sulfur phase.
Figure 6.1: Reaction network of CO/CO₂ and sulfur in presence of H₂. The dashed lines correspond to the pathways created by the introduction of H₂ into the reaction system.

The highly efficient method for the formation of COS developed within the scope of Chapter 2 allowed the investigation of the second step, i.e. the formation of methyl mercaptan starting from COS as educt.

Chapter 3 of this thesis deals with the synthesis of methyl mercaptan from COS and H₂ in the presence of H₂S on K⁺-promoted MoS₂ supported on silica. Combination of physicochemical characterization of the catalyst with detailed kinetic studies led to the conclusion that methyl mercaptan is solely formed by the hydrogenation of CS₂, as depicted in Figure 6.2, which is a disproportionation product of COS. This means that CS₂ is an additional intermediate in the hydrogenation of COS to methyl mercaptan. In addition, CO₂ found in the reaction mixture is produced by the disproportionation of carbonyl sulfide and not – as believed prior to this work – by the water-gas shift reaction between CO and H₂O.

Two catalytically active phases are present on the catalyst under the reaction conditions applied, MoS₂ and a K⁺-decorated MoS₂ phase. Disproportionation of COS, as well as hydrodecomposition of COS were concluded to take place at coordinatively unsaturated sites. While hydrodecomposition of COS is favoured on the pure MoS₂ phase, disproportionation of COS to CO₂ and CS₂, which is hydrogenated to methyl mercaptan, is favored on the K⁺-decorated MoS₂ phase.
The influence of potassium on the synthesis of methyl mercaptan from COS was investigated in more detail in Chapter 4. In order to understand the key role of the alkali metal in the formation of methanethiol, potassium-doped MoS$_2$ catalysts supported on alumina were tested in the synthesis of CH$_3$SH from COS and thoroughly characterized by means of atomic absorption spectroscopy, N$_2$ physisorption, NO adsorption, X-ray diffraction, temperature-programmed sulfidation and Raman spectroscopy. The results confirmed that two phases, pure MoS$_2$ and potassium-decorated MoS$_2$ were present in the active catalysts. The main effect of potassium during sulfidation and during the catalytic reaction was attributed to an increase in the mobility of surface oxygen and sulfur atoms, which promotes the disproportionation of COS to CO$_2$ and CS$_2$ and the production of CO from CO$_2$.

Figure 6.2: Reaction pathway for the hydrogenation of COS over sulfide K$_2$MoO$_4$/SiO$_2$.

Figure 6.3: (a) Possibilities for the adsorption of COS on the potassium promoted site that lead to the disproportionation to CS$_2$ and CO$_2$. (b) Stabilizing effect of potassium on adsorbed COS.
Potassium cations were found to hinder the reductive decomposition of COS to CO and H₂S and the hydrogenolysis of methanethiol to methane. Mars-van Krevelen-type mechanisms are proposed to explain the disproportionation of COS on alumina and on K⁺ decorated MoS₂ (Figure 6.3). The catalytically active site in the potassium-decorated MoS₂ phase is proposed to include a potassium cation as adsorption site.

Based on the finding that methyl mercaptan formation proceeds via the hydrogenation of CS₂, this route was explored within Chapter 5. Quantitative conversion of CS₂ to methanethiol in the presence of H₂ was achieved over potassium-promoted and cobalt-potassium double promoted MoS₂ catalysts. The doubly promoted catalyst was found to be superior to the potassium-promoted and pure MoS₂ catalysts with respect to methyl mercaptan formation from COS, which was also explored within the scope of Chapter 5. Adding Co accelerates all individual steps in the reaction network. The CH₄ formation rate is only enhanced at higher temperatures hardly limiting the temperature window in which high yields of methanethiol are achievable. Three different types of catalytically active sites are proposed, all of them located on the edges of MoS₂ slabs (promoted with K and/or Co) as depicted in Figure 6.4. K⁺-decorated sites for COS disproportionation without Mo CUS (a); potential active sites for all reactions promoted with Co and K⁺ (b) and Co-promoted hydrogenation and hydrogenolysis sites (c).

Figure 6.4: Schematic representation of a K- and Co-promoted MoS₂ slab. K⁺ cations, Co, S, and Mo atoms are presented in light blue, red, yellow and green spheres, respectively.

The results of this thesis show that the synthesis of methyl mercaptan from COS/CS₂, and hence from H₂S-containing synthesis gas, can be tuned towards high yields and selectivities by choosing suitable promoters to influence the catalytic properties of supported molybdenum sulfide catalysts. Furthermore this thesis contributed to gain a more detailed understanding of
the reactions and their underlying mechanisms, which take place on MoS$_2$ catalysts. These results highlight the potential of these catalysts for their industrial application in the production and conversion of C1-compounds in presence of sulfur.
6.2. Zusammenfassung

In Kapitel 2 wurde die Bildung von COS aus CO, CO$_2$ und flüssigem Schwefel in An- und Abwesenheit von Wasserstoff untersucht. Ergebnisse, die durch Experimente bei unterschiedlichen Reaktionstemperaturen und -drücken, sowie Verweilzeiten und Eduktzusammensetzungen gewonnen wurden, erlaubten die Ableitung eines Reaktionsnetzwerks. Durch die Anwesenheit von Wasserstoff eröffnet sich ein zusätzlicher und ergänzender Reaktionsweg für die Bildung von COS aus CO.

Die Bildung von COS erfolgt durch die Reaktion von CO mit flüssigem Schwefel oder Sulfanen – einschließlich H$_2$S. Wird CO$_2$ als Kohlenstoffquelle verwendet, so erfolgt in einem ersten Schritt die Bildung von CO über die umgekehrte Wassergas-Shift-Reaktion, welches dann weiter zu COS umgesetzt wird. CO-Umsätze von bis zu 95% bei COS-Ausbeuten von 95% konnten erzielt werden, was einer quantitativen Umsetzung von CO zu COS entspricht.
gleichkommt. Sämtliche Ergebnisse legen nahe, dass die in Abbildung 6.1. dargestellten Reaktionsschritte hauptsächlich in der Phase des flüssigen Schwefels stattfinden.

Die in Kapitel 2 entwickelte, hocheffiziente Methode der Darstellung von COS erlaubte die gezielte Untersuchung der zweiten Stufe der Methylmercaptansynthese aus H$_2$S-enthaltendem Synthesegas, d.h. die isolierte Betrachtung der Bildung von Methylmercaptan aus COS.

Unter Reaktionsbedingungen existieren zwei katalytisch aktive Phasen, MoS$_2$ und eine K$^+$-dekorierte MoS$_2$-Phase. Sowohl die Disproportionierung von COS, als auch die Reduktion

Abbildung 6.2: Reaktionsschritte der Hydrierung von COS über sulfidiertem K₂MoO₄/SiO₂.

Abbildung 6.3: a) Möglichkeiten für die Adsorption von COS am Kalium-promotierten aktiven Zentrum, die zur Bildung von CS$_2$ und CO$_2$ durch Disproportionierung von COS führen. (b) Stabilisierender Effekt des Kaliums auf adsorbiertes COS.

7. Curriculum vitae

Christoph Rudolf Erwin Kaufmann was born on February 18th in 1976 in Munich, Germany. He attended the Aventinus-Gymnasium in Burghausen from 1986 to 1995 from which he graduated with the general qualification for university entrance (Abitur). After his military service he started studies at the Technical University of Munich. After four semesters of computer science he changed his field of study to chemistry. In 2005 he received his degree as “Diplom-Chemiker” after completing his studies and finishing his diploma thesis “Activation of Carbon-Carbon Single Bonds by Transition Metals of Group VI” at the chair of Prof. W.A. Hermann. He joined the group of Prof. Johannes A. Lercher as a PhD student, where he focused on alternative routes to methyl mercaptan from C1-compounds.

Since the beginning of 2009 he has been employed at Borealis Polymere GmbH, where he started as a process development engineer and is now working in the field of Advanced Process Control.
8. List of publications

