
Florian Kelbert

Data Usage Control for
Distributed Systems

Dissertation

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Data Usage Control for
Distributed Systems

Florian Manuel Kelbert

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Georg Carle

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Alexander Pretschner

2. Univ.-Prof. Dr. Stefan Katzenbeisser,

Technische Universität Darmstadt

Die Dissertation wurde am 24.09.2015 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 03.01.2016 angenommen.

Acknowledgements

My thanks go to

• Prof. Pretschner. For introducing me to the academic world with all its diverse

aspects: administrative matters, conferences, discussions, learning, reading, presenta-

tions, projects, reviewing, teaching, writing, pain and glory. For letting me work on an

interesting thesis topic. For guidance, feedback, liberty, criticism and plaudits.

• Prof. Katzenbeisser. For providing feedback on earlier partial results of this thesis.

• all co-authors and internal reviewers. Alexander, Dominik, Enrico, Fatemeh,

Hervais, Matthias, Mojdeh, Prachi, Saahil, Sebastian, Tobias. For teaching me how to

collaboratively write scientific documents and how to cope best with endless discussions,

reviews, corrections, rewriting, etc.

• all remaining current and former colleagues and collaborators from KIT, TUM,

Fraunhofer IOSB, and Fraunhofer IESE. Benjamin, Christoph, Cornelius, Denis, Dieter,

Hildegard, Florian, Franz, Johan, Kristian, Manuel, Mart́ın, Monika, Pascal, Severin,

Thomas, Traudl. For administrative support, interesting discussions, continuous feed-

back, cake and long nights out.

• all project partners from TU Darmstadt, Universität Freiburg, Universität Kas-

sel, Capurro Fiek Stiftung für Informationsethik, Fraunhofer SIT, Google Germany

GmbH, Deutsche Post AG, Nokia, IBM, AGT International, DFKI, Seeburger, Stadtwerke

Saarlouis. For innumerable interesting and diverse experiences.

• all developers and authors of free tools and Q&A websites. For developing and

maintaining software such as Eclipse, Firefox, Gimp, Gnome, Gnuplot, Inkscape, LaTeX,

LibreOffice, Linux, StackExchange, Thunderbird, and many more.

• all friends and family. Which are simply too many to enumerate. For constantly

reminding me, both consciously and unconsciously, in countless ways that there is

more to life than work and research.

5

Zusammenfassung

Das Forschungsgebiet der Datennutzungskontrolle erarbeitet Lösungen zur Kontrolle

der Nutzung sensibler Daten nachdem der Zugriff auf diese gewährt wurde. Ent-

sprechende Lösungen dienen dem Schutz sensibler Geschäfts-, Militär- und Regie-

rungsgeheimnisse, geistigen Eigentums, sowie den privaten Daten von Endanwendern.

Bestehende Lösungen betrachten vielmals ausschließlich die Kontrolle sensibler Daten

innerhalb einzelner Systeme. Verteilte Aspekte des Problems, d.h. die Kontrolle der

Nutzung von Daten die in mehreren voneinander unabhängigen Systemen vorliegen,

bleiben weitgehend unberücksichtigt.

Tatsächlich beziehen sich viele Datennutzungsanforderungen auf Daten sowie deren

Nutzung in mehreren voneinander unahängigen Systemen, z.B.
”
Zu jedem Zeitpunkt

dürfen höchstens zwei Sachbearbeiter eine lokale Kopie dieses Vertrages besitzen“

oder
”
Ein Vertragsvorschlag muss von mindestens zwei Sachbearbeitern genehmigt

werden“. Aus diesem Grund müssen derartige Anforderungen systemübergreifend

betrachtet und durchgesetzt werden. Obwohl solche Anforderungen mit Hilfe zentraler

Komponenten durchsetzbar sind, sind mit einem solchen Ansatz Probleme wie das Vor-

handensein eines Single Point of Failure, sowie zu erwartende übermäßige Wartezeiten

und Kommunikationskosten verbunden.

In Anbetracht dieser Herausforderungen entwickelt diese Dissertation (i) ein for-

males Modell für Datennutzungskontrolle in verteilten Systemen und (ii) die erste

dezentrale Infrastruktur zur Durchsetzung von Datennutzungsanforderungen. Das

entwickelte Modell ermöglicht die systeminterne und systemübergreifende Nachver-

folgung geschützter Daten, sowie die systemübergreifende Koordination der Anfor-

derungsdurchsetzung. Ferner entwickelt diese Dissertation formale und technische

Möglichkeiten zur (a) Verteilung von Datennutzungsanforderungen an alle relevanten

Komponenten, (b) Identifikation aller zur Durchsetzung einer Anforderung relevanten

Komponenten, sowie (c) Identifikation von Situationen in denen die Koordination der

Anforderungsdurchsetzung ohne negative Auswirkungen eingeschränkt werden kann.

Die Korrektheit der entwickelten formalen Ansätze wird bewiesen.

Die Evaluierung zeigt dass die durch die Datennachverfolgung entstehenden Kosten

minimal sind. Des Weiteren zeigt die Evaluierung in welchen Situationen der Einsatz

der entworfenen dezentralen Infrastruktur einer zentralen Infrastruktur überlegen

ist. Eine Sicherheitsanalyse identifiziert und diskutiert sicherheitsrelevante Annahmen

dieser Arbeit sowie die Schwächen und Grenzen der vorgeschlagenen Lösung.

7

Abstract

Data usage control provides mechanisms for data owners to remain in control over

how their data is used after it has been accessed. Corresponding technical solutions

are thus applicable in many distinct areas such as the protection of business, military

and government secrets, intellectual property, as well as private user data. However,

most existing solutions focus on the enforcement of data usage control within single

systems and disregard distributed aspects of data usage control, i.e. how the usage of

data can be controlled once data has been shared across systems and organizations.

In fact, many data usage policies can only be enforced on a global scale, as they

refer to data as well as data usage events happening within several distributed systems,

e.g. “at each point in time at most two clerks might have a local copy of this contract”,

or “a contract must be approved by at least two clerks before it is sent to the customer”.

While such policies can intuitively be enforced using a centralized infrastructure, major

drawbacks are that such solutions constitute a single point of failure and that they are

expected to cause heavy communication and performance overheads.

In order to address these open challenges, this dissertation contributes by providing

(i) a formal distributed data usage control system model, and (ii) the first fully decen-

tralized infrastructure for the preventive enforcement of data usage policies. More

precisely, the provided model allows to track the flow of usage controlled data both

within and across systems, as well as to coordinate the decision process of multiple

distributed and independent decision points. To this end, this dissertation introduces

formal and technical means to (a) propagate data usage policies to all relevant decision

points, (b) identify all decision points that are relevant to evaluate a given policy, and

(c) identify situations in which no coordination between decision points is necessary

without compromising policy enforcement. Proofs of correctness of the presented

formal methods are provided.

The evaluation shows that the additional overhead introduced for cross-system data

flow tracking and policy propagation is negligible. Further, it reveals in which scenarios

the developed decentralized enforcement infrastructure is superior to a centralized

approach. A security evaluation discusses security relevant assumptions as well as

shortcomings and limitations of the proposed solution.

9

Contents

1 Introduction 15
1.1 Gap Analysis and Research Question 16

1.2 Solution 20

1.3 Contributions 21

1.4 Threat Model 21

1.5 Running Example 22

1.6 Relevant Publications 24

2 Usage Control Models and Infrastructures 27
2.1 Formal Data Usage Control Model 27

2.2 Enforcement Infrastructure 35

2.3 Instantiation to Unix-like Systems 42

3 Distributed Data Usage Control 49
3.1 Distributed System Model 49

3.2 Cross-System Data Flow Tracking 53

3.3 Coordinating Policy Decisions Across Systems 60

4 Architecture and Implementation 69
4.1 High-level Architecture 70

4.2 Cross-System Data Flow Tracking and Policy Propagation 78

4.3 Taking Distributed Policy Decisions 84

5 Evaluation 95
5.1 Security Evaluation 95

5.2 Cross-System Data Flow Tracking and Policy Propagation 103

5.3 Distributed Policy Decisions 124

5.4 Threats to Validity 151

6 Related Work 155
6.1 Data Usage Control 155

6.2 Cross-System Data Flow Tracking and Policy Propagation 160

6.3 Distributed Policy Decisions 164

6.4 Orthogonal Approaches to Distributed Usage Control 169

6.5 Securing Data Usage Control Infrastructures 171

11

12 Contents

6.6 Digital Rights Management (DRM) 172

7 Conclusions, Discussion and Future Work 175
7.1 Conclusions 175

7.2 Critical Reflection 176

7.3 Limitations and Future Work 178

Bibliography 183

Indices 209
Index 211

List of Figures 215

List of Tables 217

List of Listings 219

Appendices 221
A Correctness of Function relevant 223

B Correctness of Predicate Sat 233

C Evaluation: Cross-System Data Flow Tracking and Policy Propagation 243

1
Introduction

Due to the ever increasing value of data, its continuous protection throughout its entire

lifetime becomes more and more important. Solutions aiming at such data protection

are applicable in many contexts, as the providers and the owners of sensitive data

would like to constrain the future usage of their data. For example, businesses, military

and governments aim at protecting their internal procedures, research reports and

financial reports; individuals want businesses to comply with their privacy policy and

constrain them from using or releasing their private data for advertisement or market

research; copyright owners want end users to respect their licenses and payment

models.

The research field of data usage control [166, 171, 173] addresses such advanced

data protection requirements by developing models and infrastructures that allow for

the specification and enforcement of data usage control policies [165, 172, 226, 227].

Such policies are capable of expressing complex propositional, temporal, cardinal and

spatial constraints on how some data might or might not be used after initial access

to it has been granted [79]. Additionally, policies might specify obligations that must

be fulfilled before, upon, or after usage of the data [165]. Technical infrastructures

then enforce these policies. Most importantly, the enforcement is performed even

after access to the data has been granted, making usage control more powerful than

traditional access control mechanisms, the responsibility of which usually ends once

access to data was granted. While Digital Rights Management (DRM) addresses similar

challenges, it can be considered a subset of data usage control that largely focuses on

the protection of payment-based content [165, 173].

In order to enforce such usage control requirements, the usage of the protected

data must continuously be monitored and usage control decisions must continuously

be taken. For this, reference monitors are injected into the data users’ computing

systems [74, 91, 115, 174]. These monitors intercept relevant system events and

evaluate them against the data’s usage policy with the help of a decision point. Once

the decision is taken, the result of which might be to allow, inhibit, delay or modify the

15

16 1. Introduction

intercepted event, the decision is enforced. Moreover, the decision point might oblige

the execution of additional events. The enforcement of policies may be preventive,

meaning that policy violations never occur, or detective, meaning that policy violations

can be detected in hindsight [13, 171].

When enforcing data usage control requirements, it is important to not only monitor

the usage of one particular representation of some data, such as a word document, a

database entry, or a Java object, but rather all of them [174]. The rationale is that the

data to be protected constitutes an abstract object which materializes in different forms,

formats, and versions within the computing system. For this reason, the differentiation

between abstract data and its concrete representations at runtime has been introduced

[74, 170]. In order to enforce data usage policies on all those representations of

some data, the enforcement infrastructure must be aware of all those representations.

For this, data flow tracking technologies are leveraged [174]. Essentially, they track

the flow of data both within and across different layers of the computing system by

monitoring data flow related system events, such as copying files or loading content

from a database into a process. Consequently, all representations of some data are

known to the usage control infrastructure and can be protected.

1.1 Gap Analysis and Research Question

While the problem of enforcing usage control requirements within single independent

systems has been and is being researched [55, 74, 147, 170, 174, 216], these solutions

fall short when it comes to today’s interconnected computing systems, in which data

is not only independently processed by single systems, but rather by distributed

cooperating systems and applications. Even in the presence of such distributed data

processing, data owners would like to enforce data usage control policies after the data

has been released for means of storage, processing, and further dissemination. Usage

control requirements must then be enforced on all systems that store and process the

sensitive data. These requirements may then also refer to the storage and processing

of data across different systems, such as “this data must not reside in more than three

systems”, “not more than five instances of this application may be run at the same

time”, or “access this data at most five times [within a certain amount of time]”.

Since the enforcement of such distributed usage control requirements has not been

adequately researched, many questions remain unsolved. Comprehensive solutions

that generically tackle the problem of usage control enforcement in distributed systems

have not been investigated, proposed and developed.

This thesis investigates distributed aspects of data usage control, essentially tackling

the problem of how to enforce data usage control policies if

(i) the protected data has representations within different distributed systems,

1.1. Gap Analysis and Research Question 17

(ii) the system events being constrained or obliged by data usage control policies

happen within different distributed systems.

To this end, this thesis investigates three related research questions. These are

identified and motivated in the following sections by providing concise analyses of

related works. A more thorough investigation of and comparison with related works is

presented in Chapter 6.

1.1.1 Generic Cross System Data Flow Tracking and Policy Propagation

Since data usage control policies ought to be enforced on all representations of some

data, usage control enforcement infrastructures must have precise knowledge about

where all these different representations reside. Since this thesis investigates data usage

control in distributed systems, it is essential to understand that these representations

do not necessarily remain on one single system: In the omnipresence of data networks,

data is regularly being exchanged between systems using a multitude of different

applications and protocols. Hence, in order for the infrastructure to be aware of all

representations of some protected data at each point in time, it is essential to track

the flow of data not only within but also across different connected systems. Similarly,

whenever data is exchanged between systems, the corresponding data usage policies

are expected to be available to those components of the infrastructure that are expected

to enforce compliance with them.

In terms of dedicated data flow tracking solutions in the usage control context, most

existing works focus on single systems [174, 214, 216] and “do not distinguish between

various network connections but treat the whole network as a single container” [74].

While there exist some usage control solutions that are capable of bundling usage

controlled data with the corresponding policies and tracking these bundles even across

systems [110, 115, 125], they rely on particular applications, application-protocols

and/or file types. However, such a limitation to particular technologies is inadequate

in today’s heterogeneous world of data processing, in which data is continuously

transformed and exchanged using a multitude of applications and protocols. This is

similar for DRM solutions [1, 9, 137] (cf. Section 6.6), in which content is usually

encrypted and exchanged using proprietary file formats and protocols, while usage of

this content is only possible using certain proprietary applications after a digital license

has been obtained.

As detailed in Section 6.2, further models and implementations for cross-system

data flow tracking and policy propagation exist [53, 89, 161, 162, 220, 222, 224].

However, none of these has been designed with usage control requirements in mind

nor integrated with corresponding infrastructures. For this reason, all of these solutions

come with one more limitations when considered in the context of distributed data

usage control enforcement, such as (i) being limited in the number of distinct data

and/or policies that can be tracked [162, 220, 224], (ii) being limited to the propaga-

18 1. Introduction

tion of simple labels rather than complex policies [53, 162, 220, 222, 223], (iii) relying

on particular hardware [162, 220], hypervisors [223], and/or application(-protocol)s

[89, 161], (iv) necessitating the adaptation of existing applications [161, 162, 222].

Ideally, and different to the above solutions, tracking of data flows across systems

should be generic in the sense that it is transparent to the application layer and its

protocols. As a consequence, no adaptation of existing applications would be required

when integrating such technology into existing systems. Further, if usage controlled

data is disseminated to different systems, then all of those systems are expected to

enforce the data’s policies. Consequently, complex data usage control policies must

be propagated to the corresponding decision points whenever data is transferred to

remote systems. Thus, the posed research question is

How can the flow of data across different systems be tracked
in a generic and transparent manner and how can data usage
policies be propagated to the corresponding decision points?

(RQ1)

This thesis addresses this research question by providing corresponding models

in Section 3.2, their implementation in Section 4.2, and an evaluation in Section 5.2.

Section 6.2 describes related works as well as their shortcomings in detail.

1.1.2 Distributed Policy Decisions

Once the usage control infrastructure is aware of the residence of usage controlled data

within different distributed systems (cf. RQ1), another requirement is to enforce usage

control policies that are of a global scale, i.e. policies that refer to data and events

thereon that happen across multiple distributed systems. In order to enforce such

policies in a consistent manner across all involved systems, information about all rele-

vant data usage events must be readily available to the corresponding decision points.

Trivially, such policies can be enforced using a centralized enforcement infrastructure.

This, however, comes with several drawbacks such as posing a single point of failure,

privacy concerns, and the necessity for the central component to be always available

[5, 30]. Intuitively, a centralized infrastructure also poses significant communication

and performance overheads [5, 6, 30, 88].

Due to these drawbacks of centralized enforcement infrastructures, “one funda-

mental question is how to soundly and effectively distribute the monitoring process for

a given global system property” [17]. Due to such distributed monitoring, however,

monitors would only observe local system behaviors which in turn necessitates the

communication between those monitors [17]. As detailed in Section 6.3, several mod-

els and implementations aiming at the decentralization of parts of the policy decision

process have been proposed [6, 12, 13, 18, 28, 31, 39, 63, 64, 115]. However, all of

these solutions come with at least one of the following limitations: (i) the decision

process is not entirely distributed since there still exist some central components [39,

63, 64, 115], (ii) the data, resources and/or other objects being protected are assumed

1.1. Gap Analysis and Research Question 19

to statically remain within one system [6, 28, 31, 64], (iii) the approach does not allow

for the preventive enforcement of policies [12, 13, 18], (iv) the approach can not be

deployed within commodity systems/networks [18].

Based on these considerations, this thesis tackles the research question

How can usage control policies be enforced in an effective,
preventive, and decentralized manner if data, system events, and

policies are distributed across different independent systems?
(RQ2)

This thesis addresses this research question by providing corresponding models

in Section 3.3, their implementation in Section 4.3, and an evaluation in Section 5.3.

Section 6.3 describes related works as well as their shortcomings in detail.

1.1.3 Security Analysis and Provided Guarantees

Because security technology can only be deployed in a beneficial manner if both its

capabilities and limitations are known to the entities aiming to protect their data,

a security analysis of the proposed data usage control infrastructure ought to be

performed. While such a security analysis helps to understand which guarantees are

in fact provided by the developed infrastructure, it also reveals in which scenarios

the sensitive data’s protection is at stake. As far as such weaknesses are identified,

corresponding countermeasures ought to be described and discussed.

In particular, different kinds of attackers with different a priori permissions, techni-

cal abilities, or criminal intent might try to circumvent or impair the functionality of

the proposed infrastructure. Thereby, the Achilles heel of distributed data usage control

infrastructures is that reference monitors must be deployed at the data consumer’s site.

Nevertheless, such remotely deployed components must “behave in a good manner and

this manner [must be verifiable] by the policy stakeholder” [227]. Circumventing or

tampering with the remotely deployed security infrastructure is thus a major concern.

In terms of providing such security guarantees, much work has been carried out in

the areas of DRM [1, 65, 124, 137, 196], trusted computing [167, 186], and remote

attestation [156, 183, 189].

Hence, the research question posed in this thesis is

Which guarantees for distributed usage control enforcement
are provided by the presented infrastructure and what are

critical attack vectors that necessitate further investigation?
(RQ3)

This research question is addressed by providing a security analysis in Section 5.1,

a critical discussion on the developed solution in Section 7.2, and by pointing to

security-related future works in Section 7.3. Further, Section 6.5 describes works that

provide technical means to secure data usage control infrastructures.

Throughout this thesis the above research questions will be referred to as RQ1, RQ2

and RQ3.

20 1. Introduction

1.2 Solution

The solution provided to the above research questions is a generic, comprehensive

and integrated model for cross-system data flow tracking, policy propagation, and

distributed policy enforcement. In addition, an implementation of the proposed models

is provided and thoroughly evaluated in terms of security as well as performance and

communication overheads.

(1) As a basis to address the above research questions, Section 3.1 provides a

comprehensive formal model for decentralized data usage control. It formalizes that

distributed usage controlled systems run in parallel and produce independent system

traces. The model describes how these distributed observations correlate and how they

can be combined to mimic the behavior of classical centralized models. Thus the model

allows to reason about the states of single individual systems as well as the state of the

global distributed system.

(2) In terms of RQ1, Section 3.2 provides a generic model for cross-system data

flow tracking that integrates with the comprehensive model from Section 3.1. The

model is exemplarily instantiated for the Transmission Control Protocol (TCP) in

Section 3.2.2 and a corresponding decentralized implementation is presented in Sec-

tion 4.2. Different to existing works, the presented solution allows to track data flows

between systems in a manner that is transparent and generic, i.e. independent of appli-

cations, application-protocols, and the operating system. The evaluation in Section 5.2

shows that the additional overhead imposed by cross-system data flow tracking and

policy propagation is negligible.

(3) In terms of RQ2, Section 3.3 provides original analyses on how global policies

can be efficiently and preventively enforced in a fully decentralized manner. For this,

Section 3.3.1 identifies all systems potentially relevant for evaluating a given policy,

while Section 3.3.2 formalizes in which situations communication between systems

can safely be omitted without compromising policy enforcement. The correctness

of these methods is proven in Appendices A and B. The implementation provided in

Section 4.3 is the first to achieve preventive enforcement of global data usage policies

in a fully decentralized manner: distributed decisions are decentrally, continuously,

and consistently taken, agreed upon, and enforced. The evaluation in Section 5.3

compares this thesis’ approach to traditional centralized infrastructures and reveals

that the adoption of a fully decentralized infrastructure as developed in this thesis is

beneficial in most cases.

(4) In terms of RQ3, Section 5.1.1 analyzes security relevant assumptions taken

throughout this thesis and discusses why these assumptions have been made. On

this basis, Section 5.1.2 analyzes how attackers might be able to use usage controlled

in an uncontrolled manner and how it might be possible to impair the functioning

of the usage control infrastructure such that no further (satisfactory) data usage by

legitimate users is possible. Whenever appropriate, corresponding countermeasures to

1.3. Contributions 21

the identified threats are proposed. Further existing works that address the technical

protection of distributed usage control infrastructures, and which could thus be applied

to this thesis’ solution, are presented and discussed in Section 6.5.

1.3 Contributions

This thesis contributes by providing

I a comprehensive and generic model that serves as a basis for the enforcement of

data usage control policies in distributed systems. In particular, this model allows

for the explicit description and distinction of different systems, their individual

behaviors, as well as their interplay. Being tailored to distributed data usage

control, the model is the first to allow to reason about both independent systems

as well as the distributed system they form.

I the first model and implementation to track data flows and data usage control

policies across systems in a manner that is independent of particular file types,

applications, application-protocols, hypervisors, or hardware. Further, the ap-

proach does not limit the amount of different data/policies that can be tracked

throughout the overall distributed system and it does not necessitate any changes

to the operating system and/or the applications being used.

I the first model and implementation that allow for the fully decentralized and

preventive enforcement of data usage control policies that refer to data or events

that are distributed across multiple systems. This is in contrast to previous works

which effectively rely on central components, do not allow for preventive policy

enforcement, require particular communication buses, or do not consider the fact

that the protected data keeps being propagated across different systems.

I a thorough security evaluation of the proposed concepts and implementations.

1.4 Threat Model

Contents of this section have been published in [93].

The purpose of the usage control infrastructure being built within this thesis is to

prevent users from using data in a way that does not comply with the corresponding

policies—be the attempt intentional or unintentional. As such, potential attackers

considered in this thesis are (i) end users without administrative privileges who might

act intentionally or unintentionally, (ii) a man-in-the-middle between different remote

entities/components of the distributed usage control infrastructure, (iii) the adminis-

trators of the involved systems, and (iv) malicious or benign data processing software

including all kinds of malware. In particular, scenarios in which non-privileged end

users are given ready-to-use computing systems are pervasive in business environments.

22 1. Introduction

This is also the case in this thesis’ running example (cf. Section 1.5), in which employees

of an insurance company are provided with corresponding systems. Man-in-the-middle

attacks might happen whenever data is exchanged between different components of

the usage control infrastructure. Such attacks are particularly threatening if valuable

data is exchanged via public networks, as is the case in our insurance scenario. The

consideration of administrators as attackers is particularly interesting because they are

usually able to access and control all or most aspects of the operating system, such as

running updates and starting or stopping any kind of process or service. Lastly, both

malicious and benign software might pose a threat. While malicious software might

deliberately perform attacks, also benign software might be misconfigured or corrupted

and thus lead to similar effects.

Goals of the aforementioned attackers might be to use usage controlled data without

complying to the corresponding data usage policies, or to render the usage control

infrastructure or the system being protected unusable.

1.5 Running Example

Contents of this section have been published in [93, 95].

The concepts, implementations and evaluations presented in this thesis are illustrated

along a running example in the domain of an insurance company. For the customer, the

insurance company provides the ability to access several services via a web interface,

such as requesting contract offers, changing, renewing or cancelling contracts, access-

ing bills, and issuing damage reports. Internally, the insurance company performs

market research, data analysis, calculations, and financial investments. Those internal

processes and analysis results constitute the insurance company’s business secrets

and its competitive advantage. Thus, besides the customers’ personal records, also

the insurance company’s internal data requires protection from both intended and

unintended misusage and leakage. One example use case, depicted in Figure 1.1,

follows.

In order to request a contract offer, the customer fills a web form on the insurance

provider’s website, providing her name, address, and date of birth, as well as some

more personal information depending on the type of contract being requested. By

submitting the form (1), a new ContractRequest (CR) object is created (2) and the

web server sends the CR to a set of clerks via the mail server (3,4). One of the clerks

will then review the attached CR (5) and start an analysis job on the internal data

analysis server (6), thereby creating a new AnalysisResult (AR) object (7). Once the

analysis is performed, the clerk retrieves the AR (8) and performs a manual review on

her workstation (9). The clerk then creates a Contract (C) object using a collaborative

word processor (10,11). Once created, C might be retrieved (12), reviewed (13) and

revised (14) by several clerks. After C has been approved by a predefined number

of clerks (15), one of the clerks retrieves its final version (16) and sends it to the

1.5. Running Example 23

Figure 1.1: Sequence of events in the running example.

Web Mail AnalysisClerk DocsCustomer

1. reqOffer()

3. sendReq(CR)
4. sendReq(CR)

5. review(CR)

10. create(AR)

9. review(AR)

12. retrieve(C)

13. review(C)

14. revise(C)
15. approve(C)

16. retrieve(C)
17. sendContract(C)

19a. decline(C)

19b. accept(C)

19c. delete(CR)

6. startAnalysis(CR)

8. retrieve (AR)

18. sendContract(C)

2. new CR

7. new AR

11. new C

2'. CR

loop

[for several clerks]

alt

customer via the mail server (17,18). Once the customer receives the offer, he might

decline (19a) or accept (19b) the Contract. Alternatively, he might delete his initial

ContractRequest altogether (19c).

Motivated from this small example, the customer’s personal data flows through

different systems in various formats and is viewed, stored, and processed by several

systems and users. Further, there exist several data that are, directly or indirectly,

derived from the data entered by the customer, such as the analysis results or the

contract offer. All these different data thus originate from the customer’s personal

data entered on the web form and must consequently be treated as containing the

customer’s personal data.

Internally, the insurance company produces and maintains different data that is

crucial for its success. Among others, those are results of market researches, spread-

sheets for contracts and liability cases, life tables, as well as probabilities of liability

cases, and predictions of the development of financial markets, society, demography,

and technology. Hence this data is of utmost importance for the insurance company’s

success and must be kept confidential and not be leaked to any competitors.

The above scenario with the appearance of different kinds of sensitive data in

multiple places and contexts would benefit from data usage control infrastructures in

several ways. Example policies are

Policy 1: ‘Exactly one contract offer must be sent to the customer not later than 30

days after a request for a contract offer has been received.’

24 1. Introduction

Policy 2: ‘If the customer declines a contract offer, then all associated and derived

data must not be used anymore.’

Policy 3: ‘Each contract must be reviewed and approved by at least two clerks.’

Policy 4: ‘At each point in time no two clerks might have a local copy of the same

customer record.’

Policy 5: ‘There may be at most one ongoing edit process for each contract offer at

each point in time and no editing of contracts is allowed after their final version

has been archived by a manager.’

Policy 6: ‘Market research results must never leave the company unless approved by a

manager.’

As can be seen from these high-level policy examples, usage control is not only

capable of expressing and enforcing constraints on the usage of data, but it might

also oblige certain events in order to improve service (Policy 1). Note that Policy 6

is indefinite in terms of how the data leakage happens and as such it is capable of

prohibiting both intended data leakage by malicious insiders, as well as inadvertent

data leakages by loyal but careless employees. Further note that all of the above policies

are global policiesglobal policy , meaning that they refer to data and events that are distributed

across several systems.

1.6 Relevant Publications

The results presented in this thesis are based on various research papers that have been

published since starting the dissertation undertaking. This section gives an overview

over those research papers. Wherever appropriate, these research papers will be

referred to throughout this thesis.

The research questions presented and tackled in this dissertation have first been

described in a PhD Symposium paper [92]. This paper also describes an overarching

use case scenario, the considered threat model, expected contributions, as well as

initial ideas on how to tackle those research challenges and the evaluation of the

corresponding solutions.

Results on cross-system data flow tracking and policy propagation (RQ1) have

been published in [94, 96, 107]. The papers present a generic model for tracking

data flows across systems (Section 3.2), its instantiation for the Transmission Control

Protocol (TCP) (Section 3.2.2), as well as a technical infrastructure performing cross-

system data flow tracking and policy propagation (Section 4.2). Further, [94] presents

an evaluation of the presented model and infrastructure in terms of security (RQ3,

Section 5.1) and performance overhead (Section 5.2).

The problem of enforcing global data usage policies in a decentralized manner

(RQ2) has been addressed in [93, 95]. The work in [95] presents a formal distributed

data usage control model that caters to the fact that distributed systems run in parallel

(Section 3.1.1). Moreover, the paper presents formal methods for identifying all

1.6. Relevant Publications 25

systems relevant for evaluating a given data usage policy and for identifying situations

in which no coordination between systems is necessary without compromising policy

enforcement (Section 3.3). Based on these results, [93] shows how these formal

concepts can be implemented (Section 4.3) and presents an evaluation in terms of

communication and performance overhead (Section 5.3).

While not strictly related to the research questions posed in this thesis and the

corresponding solutions and contributions, further work in the are of data usage control

was published in [61, 127]. In [61], data usage control technology is integrated with

smart metering technology, while [127] proposes a method to reduce data flow tracking

overapproximations by leveraging additional knowledge about the data’s inherent

structure.

2
Usage Control Models and
Infrastructures

This chapter describes previous work upon which this thesis builds, namely a formal

data usage control model (Section 2.1), a corresponding enforcement infrastructure

(Section 2.2), and an instantiation of those concepts to Unix-like systems (Section 2.3).

As such, the presented concepts are not a contribution of this thesis and sources are

cited accordingly. Most of those concepts have also been described in papers published

within the context of this thesis (cf. Section 1.6), in particular [93, 94, 95]. Verbatim

quotes taken from those publications are not explicitly marked.

2.1 Formal Data Usage Control Model

This section describes a formal data usage control model from the literature [74,

79, 172, 174, 176] upon which this thesis builds. In a nutshell, data usage control

policies define constraints over the set of system traces and system states. To this end,

Section 2.1.1 formally defines the underlying concepts of system events and system

traces, while Section 2.1.2 introduces system states in terms of a generic data flow

model. On these grounds, Section 2.1.3 defines both the syntax and semantics of data

usage control policies.

2.1.1 System Events and System Traces

Events E
events

are defined by a name (set N) and a set of parameters, which are, in turn,

defined by a name (set N) and a value (set V):

E ⊆ N × P(N × V)

For an event e ∈ E , let e.name denote the event’s name and e.p its set of parameters.

An event e with n parameters p1, . . . , pn ∈ N and corresponding values v1, . . . , vn ∈ V
is also written as tuple (e.name, {(p1 , v1), . . . , (pn , vn)}).

27

28 2. Usage Control Models and Infrastructures

Each event carries two mandatory first-class parameters, obj , actual ∈ N , which

are referred to using notation e.obj and e.actual . Thereby, e.obj denotes the primary

object of event e, such as a file, a mail, or a database table. The value of parameter

e.actual is boolean, B = {true, false} ⊆ V: e.actual = true indicates that event e has

already happened, while e.actual = false indicates that event e is attempted to happen.

On these grounds, the set of events E is dividedactual and
intended

events

into two disjoint subsets, actual events
EA = {e ∈ E | e.actual = true}, and intended events EI = {e ∈ E | e.actual = false},
with EA ∩ EI = ∅.

Further, the set of events E is categorized into two, possibly overlapping, subsets:

data usage events and data flow events. Intuitively, data usage eventsdata usage
events

EU are events that

enable users and applications to view, modify, and process data. Data flow events

data flow
events

EF

cause data to migrate from one representation to another, e.g. by copying some data

(Section 2.1.2). Notably, an event e ∈ E might be a data usage event and a data flow

event at the same time, e ∈ EU ∩ EF .

For example, the event er = (review , {(obj , d), (actual , true), (role,manager)}) ∈ E
denotes that some user with role manager actually reviews data object d . Hence, er is

an actual event and intuitively reviewing data d is also considered using that object,

hence er ∈ EA ∩ EU . Whether er is also a data flow event (er
?
∈ EF) depends on

implementation-level details, i.e. whether performing event er leads to the creation of

a new representation of data d .

Event refinement.refinement When specifying policies (Section 2.1.3), it is not useful to define

all possible parameters of events whose usage ought to be constrained. Instead, one

would like to specify only relevant parameters, quantifying over all unmentioned ones.

Hence, refines ⊆ E × E defines a refinement relation on events: event e1 ∈ E refines

event e2 ∈ E iff they have the same event name and if the parameters of e1 are a

superset of the parameters of e2 :

∀e1 , e2 ∈ E : e1 refines e2 ⇐⇒ e1 .name = e2 .name ∧ e1 .p ⊇ e2 .p

In particlar refines considers first-class parameters obj , actual ∈ N .

System events Ssystem events are events that are observed in real systems at runtime. Different to

events E , system events S are always maximally refined, meaning that all parameters

are determined:

S = {e ∈ E | @e′ ∈ E : e′ 6= e ∧ e′ refines e}

In correspondence with E , system events S are categorized into actual system events

SA = EA ∩ S, intended system events SI = EI ∩ S, data usage system events SU =

EU ∩ S, and data flow system events SF = EF ∩ S. For convenience, also the set of

actual data flow system events, SA
F , is defined as SA

F = SA ∩ SF . Further, each system

event is required to carry parameter time ∈ N , indicating the point in time in which

the event was observed: ∀e ∈ S : ∃r ∈ R≥0 : (time, r) ∈ e.p. Notation e.time is used

to access parameter value r.

2.1. Formal Data Usage Control Model 29

Table 2.1: Example event trace spanning several timesteps.

Timestep [days] Event

.

12
(requestOffer , {(obj , d), (time, 11 .43), (customer , dave), . . .})
(createOffer , {(obj , d), (time, 11 .82), (clerk , john), . . .})

13 ∅

14
(review , {(obj , d), (time, 13 .21), (clerk ,mary), . . .})
(review , {(obj , d), (time, 13 .70), (clerk , chris), . . .})

15 (sendOffer , {(obj , d), (time, 14 .37), (clerk , john), . . .})
.

Getting back to the above example, event

er
′ = (review , {(obj , d), (actual , true), (time, 127 .3), (role,manager), (user , tom)}) ∈
E refines event er . Consequently, er 6∈ S. Assuming that no other event refines er

′,

er
′ ∈ S and therefore er

′ ∈ SA ∩ SU .

Traces T tracesare used to model actual system runs. For this, abstract points in time are

introduced. Each abstract point in time i ∈ N represents the continuous time interval

since the previous abstract point in time, i.e. the interval (i−1, i]. The interval between

two such abstract points in time is also called a timestep timesteps, the necessity of which is

further motivated in Section 2.2.3. Consequently, a system trace maps each abstract

point in time to the set of system events that happened since the previous abstract

point in time:

T : N→ P(S), such that

∀t ∈ T,∀i ∈ N, i > 0,∀e ∈ t (i) : i − 1 < e.time ≤ i

Notably, traces consist of both actual and intended events, as well as data usage events

and data flow events. For any trace t ∈ T it is assumed that no two events happen

at exactly the same point in time: ∀t ∈ T, i ∈ N : @e1 , e2 ∈ t (i) : e1 .time = e2 .time.

In other words, the monitors observing system events are assumed to impose a strict

sequential order on the observed events.

Table 2.1 shows one short event trace within the context of the running example:

After a contract has been requested by a customer, a clerk creates a corresponding offer.

After the offer was reviewed by two other clerks, the offer is sent to the customer. Note

how several events may be attributed to the same timestep on the basis of the events’

time parameter.

2.1.2 Generic Data Flow Model and System States

As motivated in Section 1.5, at runtime the data to be protected by usage control

policies may exist in multiple representations, and this set of representations is contin-

30 2. Usage Control Models and Infrastructures

uously evolving. Hence, the system’s data flow state captures which data takes which

representations at which point in time. This state is maintained using a generic data

flow model [74, 170, 174], which (over-)approximates the existence of data item

copies in a system by capturing the flow of data within this system. State transitions

are initiated by data flow events EF , which change the mapping between data and

their representations.

Data D, Containers C, Identifiers I. Within this model, the set of datadata to be protected

by usage control policies is denoted by D. The representations containing data are

called containerscontainers and the set of containers is denoted by C, and D ∩ C = ∅. D, C and

special value nil constitute possible values for an event’s obj parameter: events e ∈ E
usually refer to the usage of some data d ∈ D (cf. Section 2.1.3), while system events

e′ ∈ S refer to the container c ∈ C on which they are operating. Hence,D∪C∪{nil} ⊆ V
and ∀e ∈ E ,∃v ∈ D∪C∪{nil} : e.obj = v. Containers are identified using identifiersidentifiers I :

most system events carry parameters, the values of which refer to objects and resources

being accessed by those system events. Hence, I ⊆ V.

Data flow states Σ. Using those definitions, the set of all possible data flow states Σdata flow
states is defined as

Σ = (C → P(D))× (C → P(C))× (I → C)

where a state consists of three mappings:

1. A storage functionstorage
function

s : C → P(D) capturing which containers potentially store

which data.

2. An alias functionalias function a : C → P(C) capturing that some containers may implicitly

get updated whenever other containers do: If c2 ∈ a(c1) for c1 , c2 ∈ C, then any

data written into c1 is immediately propagated to c2 .

3. A naming functionnaming
function

n : I → C mapping identifiers to containers.

Given a state σ ∈ Σ, those mappings will be referred to as σ.s, σ.a, and σ.n. For a

system trace t ∈ T, the system’s initial stateinitial state is denoted σ0
t .

Principals P. The set of all principalsprincipals , i.e. entities capable of issuing system events S,

is denoted by P . Principals are considered a subset of C, P ⊆ C, since they might have

read sensitive data in the past and might further propagate that data in the future. As

opposed to other containers, principals may invoke events from set S. In particular,

execution of data flow system events SF might change the system’s data flow state, i.e.

the above mappings.

Transition relation Rtransition
relation

defines how the system’s state changes in correspondence

with the execution of actual data flow system events, R ⊆ Σ × SA
F × Σ. Notably,

intended system events SI do not cause data flows. Given a state σ ∈ Σ and a set

2.1. Formal Data Usage Control Model 31

of actual data flow system events S ∈ {S′ ⊆ SA
F | @e, e′ ∈ S′ : e.time = e′.time},

function R̃ : Σ×P(SA
F)→ Σ advances the data flow state by recursively applying state

transitions R while respecting the events’ times of observation:

∀σ ∈ Σ, S ∈ {S′ ⊆ SA
F | @e, e′ ∈ S′ : e.time = e′.time} :

R̃(σ, S) =

σ if S = ∅

R̃(R(σ, e),S \ {e}) otherwise,

for e ∈ S : @ e′ ∈ S : e′.time < e.time

Knowing that for each trace t ∈ T and for each timestep i ∈ N the set of system

events actually causing data flows is t (i)∩SA
F , the system’s state at the end of timestep

i ∈ N, i > 0, is computed as

σi
t = R̃(σi−1

t , t (i − 1) ∩ SA
F).

Instantiations of this generic data flow model, in particular the semantics of R,

have been described for various system layers [74, 119, 125, 170, 174, 188, 216]. An

example instantiation for Unix-like operating systems from the literature is provided in

Section 2.3.

Considering the running example of the insurance company, the data items D to be

protected are customer data, contracts, as well as the insurance’s business secrets.

Among others, containers C of these data are the clerk’s workstations, emails, files,

database records, and all data processing software. Identifiers I correspond to these

containers and include unique IDs for workstations and emails, URIs for files, database-

and table-relative IDs for database records, as well as host-relative process IDs for

processes. Principals P capable of issuing system events S are all kinds of data

processing software.

Event refinement in the presence of states. Extending the event refinement from

Section 2.1.1, refinesΣ ⊆ (S × Σ)× E describes the refinement between two events in

the presence of a given system state [174]. The rationale is that system events S always
operate on containers (∀e1 ∈ S,∃c ∈ C : e1 .obj = c), while policies (Section 2.1.3)

might either be specified in terms of data or in terms of containers. Consequently, the

system’s current state σ ∈ Σ must be evaluated in order to decide whether an event

refines another. Thus, (e1 , σ) refines e2 ∈ E if either both e1 and e2 operate on the

same container and if e1 refines e2 , or if e1 operates on some container c ∈ C and e2

operates on some data d ∈ D within that container, d ∈ σ.s(c), and e1 refines e2 when

32 2. Usage Control Models and Infrastructures

ignoring the obj parameter:

∀e1 ∈ S, e2 ∈ E , σ ∈ Σ :

(e1 , σ) refinesΣ e2

⇐⇒ ∃c ∈ C : e1 .obj = c ∧ e2 .obj = c ∧ e1 refines e2

∨ ∃c ∈ C, d ∈ D : e1 .name = e2 .name ∧ e1 .obj = c ∧ e2 .obj = d

∧ d ∈ σ.s(c) ∧ e1 .p \ {(obj , c)} ⊇ e2 .p \ {(obj , d)}

Leveraging those concepts of system traces and data flow states, the following section

describes both the syntax and semantics of data usage policies.

2.1.3 Specification of Data Usage Policies

While there exist several approaches to specify data usage policies, this thesis builds

upon the Obligation Specification Language (OSL) [79, 80, 172, 174], specifically

tailored to usage control requirements. Since previous work showed how high-level

OSL policies can be translated into technical Event-Condition-Action (ECA) rulesECA rule for

enforcement purposes [108, 109], this thesis focuses on such ECA rules. While the

formal semantics of ECA rules are provided in [106, 126], their intuitive semantics

are as follows: Once a system event e′ ∈ S refining the trigger Eventtrigger event ∈ E (cf. refines

and refinesΣ) is observed within the system and if the execution of this event would

make the Conditioncondition true, then additional Actions

action
might be performed. These actions

include (i) allowance of the triggering event, (ii) delaying of the triggering event, i.e.

postponing its execution to a later point time, (iii) inhibition of the triggering event,

i.e. disallowing its execution altogether, (iv) execution of additional system events, e.g.

notifying administrators or triggering other compensating actions [172]. Notably, the

trigger event might also be an artificial event, e.g. to indicate that a certain amount

of time has passed. According to [108, 109, 156, 172, 174], ECA conditions (Φ) are

specified in terms of past linear temporal logics [62, 118, 133]. Their syntax is specified

as:

Ψ = true | false | E

Ω = isNotIn(D,P(C)) | isCombined(D,D,P(C)) | isMaxIn(D,N,P(C))

Φ = (Φ) | Ψ | Ω | not(Φ) | Φ and Φ | Φ or Φ | Φ since Φ | Φ before N |

repmin(N,N, E) | repmax (N,N, E) | replim(N,N,N, E) | always(Φ)

The intuitive semantics are as follows. Ψ is trivial by referring to boolean constants

(true, false) and events E . Ω defines so-called state-based operatorsstate-based
operators

that constrain

the system’s data flow state: isNotIn(d,C) is true iff data d is not in any of the

containers C; isCombined(d1 , d2 ,C) is true iff there exists at least one container in C

that contains both data d1 and d2 ; isMaxIn(d,m,C) is true iff data d is contained in

2.1. Formal Data Usage Control Model 33

at most m containers in C. Φ defines propositional operators, temporal operators, and

cardinality operators. The semantics of propositional operators

propositional
operatorsnot , and and or are

intuitive. In terms of temporal operators

temporal
operators

, α since β is true iff β was true some time

earlier and α was true ever since, or if α was always true; α before j is true iff α was

true exactly j timesteps ago. Further, always is defined as always(α) ≡ α since false.

Cardinality operator

cardinality
operators

repmin(j ,m, e) is true iff event e happened at least m times in the

last j timesteps. Further definitions are repmax (j ,m, e) ≡ not(repmin(j ,m + 1 , e))

and replim(j ,m,n, e) ≡ repmin(j ,m, e) and repmax (j ,n, e).

For trace t ∈ T, timestep i ∈ N, and condition ϕ ∈ Φ, notation (t , i) |= ϕ expresses

that trace t satisfies formula ϕ at time i . With this, the formal semantics of Φ is:

∀t ∈ T, i ∈ N, σi
t ∈ Σ, ϕ ∈ Φ • (t , i) |= ϕ ⇐⇒ (ϕ 6= false)∧

(∃e ∈ E , e′ ∈ t (i) • (ϕ = e ∧ (e′, σi
t) refinesΣ e)

∨ ∃d ∈ D, C ⊆ C • (ϕ = isNotIn(d,C) ∧ ∀c ∈ C • d 6∈ σi
t .s(c))

∨ ∃d1 , d2 ∈ D, C ⊆ C • (ϕ = isCombined(d1 , d2 ,C)

∧ ∃c ∈ C • {d1 , d2} ⊆ σi
t .s(c))

∨ ∃d ∈ D,m ∈ N, C ⊆ C • (ϕ = isMaxIn(d,m,C)

∧ |{c ∈ C | d ∈ σi
t .s(c)}| ≤ m)

∨ ∃α, β ∈ Φ • ((ϕ = not(α) ∧ ¬((t , i) |= α))

∨ (ϕ = α and β ∧ (t , i) |= α ∧ (t , i) |= β)

∨ (ϕ = α or β ∧ ((t , i) |= α ∨ (t , i) |= β))

∨ (ϕ = α since β ∧ (∃j ∈ [0, i] • ((t , j) |= β ∧ ∀k ∈ (j, i] • (t , k) |= α)

∨ ∀k ∈ [0, i] • (t , k) |= α)))

∨ ∃α ∈ Φ, j ∈ N • (ϕ = α before j ∧ (t , i − j) |= α)

∨ ∃j,m ∈ N, e ∈ E • (ϕ = repmin(j ,m, e)

∧m ≤
min{i ,j}−1∑

k=0

|{e′ ∈ t (i − k) | (e′, σi−k
t) refinesΣ e}|))

Fixing one data item d, Table 2.2 shows how the example policies from the running

example (cf. Section 1.5) can be expressed as ECA rules. Rule 1a expresses that the

manager must be notified if no contract offer has been sent to the customer 30 days

after a corresponding contract request. Note that this event does have a wildcard

trigger event, implying that the rule is evaluated upon every event. Further, this

rule is detective only: satisfaction of the condition results in a compensating action;

actual violation of the policy is not prevented. Rule 1b expresses that a contract offer

must not be sent if there was no corresponding contract request, or if a contract offer

was already sent. Rule 2 expresses that any attempt to use data d is inhibited if the

corresponding contract offer was declined in the past. Note, that trigger event use

refers to a set of events. This set might include events such as editing, reviewing,

34 2. Usage Control Models and Infrastructures

Table 2.2: Specification of the example policies from Section 1.5 as ECA rules.

Policy 1 Event: < any >

(a) Condition: ((requestOffer , {(obj , d)}) before 30)
and repmax (30 , 0 , (sendOffer , {(obj , d)}))

Action: (notifyManager , {(obj , d)})
Event: (sendOffer , {(obj , d)})

(b) Condition: repmax (30 , 0 , (requestOffer , {(obj , d)}))
or repmin(30 , 1 , (sendOffer , {(obj , d)}))

Action: inhibit

Policy 2 Event: (use, {(obj , d)})
Condition: not(always(not((declineOffer , {(obj , d)}))))

Action: inhibit

Policy 3 Event: (sendOffer , {(obj , d)})
Condition: repmax (30 , 1 , (review , {(obj , d)}))

or repmax (30 , 1 , (approve, {(obj , d)}))
Action: inhibit

Policy 4 Event: < any > (d)

Condition: not(isMaxIn(1 , d ,CWorkstation))

Action: inhibit

Policy 5 Event: (edit , {(obj , d)})
Condition: not(isMaxIn(d , 0 ,CEditProcess))

or (archive, {(obj , d), (role,manager)}) since false

Action: inhibit

Policy 6 Event: (send , {(obj , d)})
Condition: not(isNotIn(d , C \ CInsurance))

and not((approvedSend , {(obj , d), (role,manager)}))
Action: inhibit

analyzing, and sending of corresponding contracts or contract offers. Rule 3 expresses

that sending of a contract is inhibited if this contract was not reviewed or approved

by at least two clerks in the last 30 days. Rule 4 expresses that any event must be

inhibited if its execution would lead to a state in which data d is in more than one of the

clerk’s workstations, whereby CWorkstation denotes the set of containers representing

the insurance’s workstations. With CEditProcess denoting the set of all processes with

the capability to edit documents, rule 5 expresses that a contract may only be edited

if there is not yet any ongoing edit process and if the contract was not archived by a

manager in the past. Finally, rule 6 expresses that sending of market research results

is only allowed if the data is not sent to containers outside of the insurance company

(CInsurance), or if sending of the data has been approved by a manager.

2.2. Enforcement Infrastructure 35

The following section sketches how such ECA rules can technically be enforced.

2.2 Enforcement Infrastructure

In order to implement the concepts introduced in Section 2.1 and to enforce the corre-

sponding ECA rules, technical data usage control infrastructures have been developed.

This thesis builds upon an existing technical infrastructure [110, 156, 174], the core

concepts of which are sketched in this section. Chapter 4 provides more technical

details about the infrastructure and its implementation. Once deployed within a

computing system, the infrastructure’s tasks are as follows:

I Monitor relevant data usage system events SU and data flow system events SF .

I Track the flow of data within the system, potentially across several system layers,

using data flow system events SF , transition relation R, and data flow states Σ.

I Decide whether any data usage system event SU ought to be allowed, modified,

inhibited, delayed and/or whether any compensating actions need to be taken.

I Enforce the decisions taken by blocking or delaying system events and/or by

executing additional actions.

While the concepts described in this section are not a contribution of this thesis,

parts of the described infrastructure have been (re-)developed and (re-)implemented

within this thesis. This includes the technical system architecture and the intercon-

nection of the individual components (Section 4.1), the implementation of the policy

evaluation engine (Section 2.2.3), and parts of the generic data flow model (Sec-

tion 2.2.4).

2.2.1 Architecture Overview

Data usage control infrastructures are commonly implemented in correspondence with

the XACML standard architecture [160] and the proposed COPS standard [49, 104]

as follows and depicted in Figure 2.1: Initially, the Policy Management Point (PMP,

Section 2.2.5) deploys the ECA rules to be enforced at the Policy Decision Point (PDP,

Section 2.2.3). It is the task of system-layer specific Policy Enforcement Points (PEPs,

Section 2.2.2) to observe the system layer’s events and to intercept both actual and

intended system events S. Those intercepted events are then temporarily blocked

from execution and signaled to the PDP [31, 115, 174]. The PDP first forwards these

events to the Policy Information Point (PIP, Section 2.2.4) which maintains the system’s

current data flow state σ ∈ Σ. In the presence of a data flow system event, the PIP

updates the system’s data flow state σ in accordance with the event’s semantics as

defined by transition relation R (cf. Section 2.3 for an example instantiation). The

PDP then evaluates each signaled system event against all deployed ECA rules, as

36 2. Usage Control Models and Infrastructures

Figure 2.1: Interactions of PEP, PDP, PIP and PMP upon observation of system event e.

PDPPEP PIP PMP

interceptEvent(e)

deployPolicy(p)

signal(e)
signal(e)

update(,e)

d = eval(p,e,)

state()?

d

loop

further detailed in Section 2.2.3, and sends its decision back to the corresponding PEP

for enforcement. For taking this decision, the PDP might ask the PIP for information

about the system’s current data flow state σ. Since the PIP maintains the system’s

data flow state, the terms the system’s data flow state and the PIP’s data flow state are

used interchangeably. Note that the usage control infrastructure keeps all management

information, such as policies and the data flow state, separate from the actual payload

data, i.e. the data being stored, processed and disseminated by the monitored system

layers. Several related works take a different approach by embedding such management

information within the actual payload, cf. Chapter 6.

Having given a high-level overview of the involved components and their interplay, the

following sections detail the tasks of the single components. Chapter 4 will provide

in-depth technical details.

2.2.2 Policy Enforcement Point

Policy Enforcement Points (PEPs) have been built for many different system layers

such as Android [55, 180], ChromiumOS [214], Java [61, 63], JavaScript [168],

Mozilla Firefox [110], Mozilla Thunderbird [125], MS Office [188], MS Windows

[216], MySQL [119], OpenBSD [74], OpenNebula [115], and X11 [170]. It is their

task to intercept intended and/or actual system events (i.e. SI ∪ SA) within the layer

they have been built into. Whether actual or intended events are intercepted depends

on the considered attacker model and the technicalities of the system layer. E.g., for

some system layers it might be technically impossible to intercept intended events.

Further, for certain scenarios and attacker models preventive policy enforcement, and

2.2. Enforcement Infrastructure 37

thus the interception of intended events, might not be needed or desired, e.g. because

data users are trusted to not misuse data intentionally.

Because PEPs are unaware of the currently deployed policies as well as of the data

flow semantics of the intercepted system events, every intercepted system event must be

signaled to the PDP. The further execution of an intercepted and signaled event is then

blocked until the PDP’s decision is available. Once available, the decision is enforced

by the PEP. Besides data usage system events, the PEP must also signal all potential

data flow system events to the PDP. The PDP will then take care of forwarding those

events to the PIP, which will update the system’s data flow state in correspondence

with those signaled events.

Regarding the running example, PEPs must be integrated into the different system

layers processing and storing the usage controlled data. These layers include email

clients and servers, web servers, data analysis and word processing software, databases,

etc. Additional PEPs at the operating system layer can assure that data is not used or

copied in an uncontrolled manner, e.g. by leveraging applications that are not equipped

with data usage control technology.

2.2.3 Policy Decision Point

The Policy Decision Point (PDP) is configured with ECA rules as described in

Section 2.1.3 and each ECA rule p consists of a trigger event ep ∈ E , a condition

ϕp ∈ Φ and an action ap . Moreover, each ECA rule is configured with a timestep

interval, a concept not only needed to model system runs in terms of traces (Sec-

tion 2.1.1), but also for practical reasons: Consider a part of the condition of ECA

rule 1a as defined in Table 2.2, ϕp = (requestOffer , {(obj , d)}) before 30 [days], with

(requestOffer , {(obj , d)}) ∈ E . Whenever ϕp is evaluated it is quite unlikely that an

event refining (requestOffer , {(obj , d)}) happened exactly 30 days (i.e. 2592000 sec-

onds) ago. What is more likely and practical, however, is that a refining event happened

‘approximately’ 30 days ago. E.g., if the timestep interval is configured to be 24 hours,

then the PDP evaluates whether a refining event happened before 29.5 days ± 12

hours. Similarly, consider the conjunction and disjunction of operators, and and or .

While it is unlikely that two events happen at exactly the same point in time, what is

more likely and practical is that two events happen within a specified time interval, i.e.

within the same timestep.

Once policies have been deployed, the PDP’s decisions ought to ensure the system’s

compliance with those policies. To this end, the PDP continuously evaluates the

deployed policies, considering conditions ϕp ∈ Φ as expression trees expression
tree

as depicted in

Figure 2.2 and explained in the following: Leaves represent the constants true and false,

events E (e.g., (requestOffer , {(obj , d)}) and (sendOffer , {(obj , d)}) in Figure 2.2), and

state-based operators Ω . Internal nodes represent all further propositional, temporal,

and cardinal operators such as not , and , before, since, and repmin. Both the expression

trees’ leaves and internal nodes are stateful by storing if and how the represented

38 2. Usage Control Models and Infrastructures

Figure 2.2: Expression tree of the condition of ECA rule 1a.

and

(sendOffer,{(obj,d)})(requestOffer,{(obj,d)})

before
j = 30

repmax
j = 30, m = 0

Table 2.3: Evaluation of operators Ψ by the PDP; Java-like syntax.

ϕ ∈ Ψ eval(ϕ, eot , i), eot ∈ B, i ∈ N State variables

true return true;

false return false;

e′ ∈ E int oldcount = count;

if (eot)

count = 0;

return oldcount > 0;

int count = 0;

// how many events refining

// e′ happened in the

// current timestep

operator’s state changed during the current, and, for temporal operators, previous

timesteps.

Now, consider the case that some PEP signals a system event e ∈ S, cf. Figure 2.3.

The PDP first forwards e to the PIP, which updates its internal data flow state in

correspondence with e’s data flow semantics as defined by transition relation R (Sec-

tion 2.2.4). This ensures that the subsequent evaluation of the deployed policies is

grounded on an up-to-date data flow state. If the signaled event is a data usage event,

e ∈ SU , then the PDP updates the internal states of all leaf nodes of the conditions

of all deployed policies. For leaf nodes o representing state-based operators, o ∈ Ω ,

this update process is delegated to the PIP. The PDP takes care of updating leaf

nodes representing operators true, false, and events E . Trivially, the states of operators

true and false are invariant. For a leaf representing event e′ ∈ E , the leaf’s state is a

counter indicating how many events refining e′ happened within the current timestep.

This counter is incremented if (e, σ) refinesΣ e′ = true, whereby σ ∈ Σ refers to the

system’s current data flow state as maintained by the PIP (Section 2.2.4). In sum,

the expression trees’ leaves thus track how often events have happened and which

state-based operators have changed their state during the ongoing timestep. Note again

that this update of leaf nodes is performed for all deployed policies independent of

whether the policy’s trigger event was refined by the signaled event e. This procedure

ensures that the states of all leaf nodes of all expression trees are consistent with the

events that have actually happened within the system.

For any policy p, the actual evaluation of the entire condition ϕp may be triggered

for two reasons: (1) In case the signaled event e refines the policy’s trigger event

ep , i.e. (e, σ) refinesΣ ep = true, then it must be evaluated whether e complies with

2.2. Enforcement Infrastructure 39

Figure 2.3: Policy evaluation by the PDP in the presence of event e at timestep i .

PDPPEP PIP

interceptEvent(e)
signal(e)

signal(e)

update(,e)

alt

loop [for all policies p]
loop [for all leaf operators o]

alt
update(o,e)

update(o,e)

update(o,e)

loop [for all policies p]

state()?

alt

eval()d =

d

the policy; (2) In case a timestep has passed, then it must be evaluated whether

temporal constraints such as before and since are still satisfied. In both cases, the entire

expression tree of ϕp is evaluated recursively, starting from the root node. The result

of this evaluation is denoted eval(ϕp), which essentially reflects the formal notation

(t , i) |= ϕp with t ∈ T denoting the currently executing trace und i ∈ N the current

point in time. If eval(ϕp) = true (i.e. (t , i) |= ϕp), then p ’s actions ap are triggered,

which may include execution of additional system events, or, if evaluating in the

presence of a signaled event, its allowance, inhibition or delaying. If eval(ϕp) = false

(i.e. (t , i) 6|= ϕp), then the default is to allow the event. However, the implementation

is more flexible by allowing to specify arbitrary default actions on a per-policy basis.

Tables 2.3 and 2.4 sketch the recursive evaluation process for operators Ψ and Φ

after updating the expression trees’ leaf nodes as described above. Thereby, arguments

of the implementation-level evaluation function eval(ϕ, eot , i) are as follows: ϕ is the

40 2. Usage Control Models and Infrastructures

Table 2.4: Evaluation of operators Φ by the PDP; Java-like syntax.

ϕ ∈ Φ eval(ϕ, eot , i), eot ∈ B, i ∈ N State variables

not(α) return !eval(α, eot , i);

α and β return eval(α, eot , i)

&& eval(β, eot , i);

α or β return eval(α, eot , i)

|| eval(β, eot , i);

α since β bool stateA = eval(α, eot , i);

bool stateB = eval(β, eot , i);

alwaysA &= stateA;

if (alwaysA)

return true;

if (stateB)

alwaysASinceB = true;

else

alwaysASinceB &= stateA;

return alwaysASinceB;

bool alwaysA = true;

// whether α was

// true at all

// previous timesteps

bool alwaysASinceB = true;

// whether α was true

// at all timesteps since

// the last time β was

// true

α before j bool res = prev[i % j];

if (eot)

prev[i % j] = eval(α, eot , i);

return res;

bool[] prev = new bool[j];

// evaluation results

// of α of the last j

// timesteps

repmin(j ,m, e′) eval(e′, eot , i);

total -= prev[i % j];

prev[i % j] = e′.count;

total += prev[i % j];

return total >= m;

int[] prev = new int[j];

// refinements of e′

// for each of the

// last j timesteps

int total = 0;

// total refinements

// of e′ in the

// last j timesteps

always(α) if (!always)

return false;

always &= eval(α, eot , i);

return always;

bool always = true;

// whether α was

// always true

2.2. Enforcement Infrastructure 41

condition to be evaluated, eot ∈ B indicates whether evaluation is taking place at the

end of a timestep (eot = true) or in the presence of an event (eot = false), and i ∈ N
is the timestep in which the evaluation is taking place. Evaluation of operators true

and false (Table 2.3) as well as not , and and or (Table 2.4) is trivial. Evaluation of the

more complex operators is explained in the following.

For ϕ = e′ ∈ E (Table 2.3), eval() returns true if at least one event refining e′

happened within the current timestep; the corresponding counter (count) is reset if

evaluation takes place at the end of a timestep (i.e. if eot = true).

For α since β (Table 2.4), state variable alwaysA indicates whether α was true at

all times, while alwaysASinceB indicates whether α was true at all timesteps since

the last time β was true; both state variables are initialized to true (Table 2.4, third

column). After recursive evaluation of α and β, alwaysA is updated with this most

recent evaluation of α, thus indicating whether α was (still) true at all times. If this

is the case, eval() returns true. Otherwise, if the evaluation of β at this timestep

yielded true, then α was always true since the last time β was true (since β is true in

this timestep), which is why alwaysASinceB is set to true. If, however, β is not true at

this timestep, then alwaysASinceB only remains a value of true if its previous value

was true and if the evaluation of α yielded true, thus indicating that α was in fact true

ever since the last time β was true.

For α before j (Table 2.4) a boolean array stores the evaluation results of α of the

last j timesteps. The result of eval() thus corresponds to the value that was stored in

the array j timesteps ago. If evaluation is taking place at the end of a timestep, then

the oldest entry within that array is overwritten with the evaluation result of α at this

timestep.

For repmin(j ,m, e′) (Table 2.4), an integer array of size j stores the number of

refinements of e′ for each of the last j timesteps. The initial evaluation of e′ updates

e′’s state variable count (cf. Table 2.3), which is then used to update the array’s latest

value. The state variable total keeps the sum of the amount of refinements within

the last j timesteps for performance reasons and is updated accordingly upon each

evaluation. eval() returns true if the value of total is greater than or equal to m.

For always(α) (Table 2.4), state variable always, which is initialized to true, stores

whether α was always true. Upon evaluation, false can immediately be returned if the

value of variable always is false. Otherwise, always is updated in correspondence with

the evaluation result of α at this timestep. Note that once always was assigned false,

no further evaluation of α is ever needed and eval() always returns false immediately.

Note the following: If the event originally signaled by the PEP was an intended event,

then the changes made to ϕp ’s expression tree’s nodes’ states, as well as all changes

made to the PIP’s data flow state are rolled back after the above evaluation of ϕp has

been performed. This is because both the PDP and PIP simulate how the allowance of

the signaled intended event would change both the PDP’s and the PIP’s state, which

have major influence on the evaluation of ϕp . However, since the signaled event was

42 2. Usage Control Models and Infrastructures

not actual, any such changes have not happened in the real system and modeling them

would thus be incorrect. Consequently, the mentioned changes are undone.

2.2.4 Policy Information Point

The Policy Information Point’s (PIP) tasks are to maintain the system’s data flow

state and to evaluate state-based operators. Whenever the PDP signals a system event

e ∈ S, the PIP first evaluates whether e is a data flow event for which there exists a

corresponding state transition, i.e. whether ∃σ, σ ′ ∈ Σ : (σ, e, σ ′) ∈ R. If this is the

case, then the data flow state is updated according to the semantics of e as defined by

R ⊆ Σ × SA
F × Σ. If the PDP signaled an event e 6∈ SA

F , then the PIP’s state remains

unchanged.

In order to allow the PDP to evaluate event refinement refinesΣ , the PIP provides

an appropriate interface. Recapping parts of the definition of (e1 , σ) refinesΣ e2 for

e1 ∈ S, e2 ∈ E , σ ∈ Σ, the PDP needs to examine whether d ∈ σ.s(c) for c ∈ C, d ∈ D
and e1 .obj = c , e2 .obj = d (Section 2.1.2). For this, the PIP provides an interface

using which the PDP is able to query all data contained in a specific container c ,

effectively returning set σ.s(c). Using this result set, the PDP is able to evaluate

whether d ∈ σ.s(c) and consequently whether (e1 , σ) refinesΣ e2 . Note that this has

been simplified in Figures 2.1 and 2.3.

Since state-based operators Ω are all about the system’s data flow state, the PDP

delegates their evaluation to the PIP. Thus, the PIP evaluates operators Ω in corre-

spondence with their semantics described in Section 2.1.3 on the basis of its current

data flow state σ ∈ Σ using simple set operations as sketched in Table 2.5. The result

returned by the PIP, true or false, is used by the PDP to update the state of the cor-

responding state-based operator within the expression tree of the condition ϕp being

evaluated.

2.2.5 Policy Management Point

As the name suggests, the Policy Management Point’s (PMP) main tasks are related

to the management of data usage policies. Those tasks include deployment and

revocation of policies at the PDP, as well as conversion and translation of policies

between different formal description languages, system layers, and technical formats

[106]. As the PMP is of no further relevance at this point, its detailed description is

deferred to Chapter 4.

2.3 Instantiation to Unix-like Systems

As mentioned in Section 2.2.2, the aforementioned concepts have been instantiated

for many different system layers. While PDP, PIP and PMP are generic and operate

independently of concrete system layers and their events, PEPs must be tailored to and

built into those layers. This section demonstrates the instantiation for an operating

2.3. Instantiation to Unix-like Systems 43

Table 2.5: Evaluation of operators Ω by the PIP; Java-like syntax.

ϕ ∈ Ω eval(ϕ, eot , i), eot ∈ B, i ∈ N;σ ∈ Σ

isCombined(d1 , d2 ,C) for (Container c : C) {

Set D = σ.s(c);

if (D.contains(d1) && D.contains(d2)) {

return true;

}

}

return false;

isNotIn(d,C) for (Container c : C) {

Set D = σ.s(c);

if (D.contains(d)) {

return false;

}

}

return true;

isMaxIn(d,m,C) int j = 0;

for (Container c : C) {

Set D = σ.s(c);

if (D.contains(d)) {

j++;

}

}

return j <= m;

system layer, namely OpenBSD, as originally described in [74]. This thesis will further

build on this instantiation in Section 3.2.2. Instantiations for other operating system

layers have been shown to be similar [55, 214, 216]. In particular, the concepts

described in the following can be directly applied to any other Unix-like system such

as Linux. The reason is that the considered system events, i.e. system calls, and their

corresponding event semantics are, besides minor exceptions, identical.

Notation. Before describing R, further notation must be introduced. For specifying

state changes R, the following notation is used. For mappings m,m′ : S → T and an

element x ∈ X ⊆ S, define m[x← expr]x∈X = m′ such that

m′(y) =

expr if y ∈ X

m(y) otherwise

Multiple updates of disjoint sets are combined by function composition ◦. The replace-

ments are done simultaneously and atomically; the semicolon is syntactic sugar:

m[x1 ← exprx1 ; . . . ;xn ← exprxn]x1∈X1,...,xn∈Xn

=m[xn ← exprxn]xn∈Xn ◦ . . . ◦m[x1 ← exprx1]x1∈X1

44 2. Usage Control Models and Infrastructures

Further, ∀σ ∈ Σ, c ∈ C, σ.a∗(c) denotes the reflexive transitive closure of σ.a(c), i.e.

the smallest set satisfying σ.a∗(c) = {c} ∪ {c ′ ∈ C | c ′ ∈ σ.a(c)∨ (∃c ′′ ∈ σ.a(c)∧ c ′ ∈
σ.a∗(c ′′)}.

Instantiation. At the OpenBSD operating system layer, events are system calls, such

as open, read , write, close, pipe, and fork . Corresponding monitors (e.g. on the basis

of ptrace [120] or systrace [178]) are able to intercept system calls both before and

after their execution by the kernel, resulting in intended system calls and actual system

calls, SI and SA. Principals executing system calls are processes PProc ⊆ P and

containers are their memory, CProc ⊆ C, files CFile ⊆ C, pipes CPipe ⊆ C, and sockets

CSock ⊆ C. Corresponding identifiers for those containers are process ids IPid ⊆ I,
filenames IFname ⊆ I, and process-relative file descriptors (IPid × IFdsc) ⊆ I. Data

flow semantics, i.e. state transitions R, for selected system calls are detailed in the

following. By applying those state transitions to the system’s data flow state σ ∈ Σ

in correspondence with the observed actual data flow system events SA
F , σ evolves

accordingly. In the following, state transitions for some of the most important system

calls, i.e. open, read , write, close, pipe, fork , are described.

If a process with process id pid ∈ IPid (parameter proc) issues system call open with

filename fn ∈ IFname (parameter fname), a new file descriptor fd ∈ IFdsc is created

and returned (parameter ret). File descriptor fd can then be used by process pid to

access the corresponding file. The following state transition models this behavior by

creating a new identifier (pid , fd) for the container that was already identified by fn:

∀σ, σ ′ ∈ Σ, ∀fn ∈ IFname ,∀pid ∈ IPid , ∀fd ∈ IFdsc :

(σ, (open, {(obj , σ.n(fn)), (proc, pid), (fname, fn), (ret , fd)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s

∧σ ′.a =σ.a

∧σ ′.n=σ.n [(pid , fd)← σ.n(fn)]

System call read allows a process with process id pid ∈ IPid (parameter proc) to

read data from any resource for which this process owns a file descriptor fd ∈ IFdsc

(parameter fdscr). This is modeled by propagating all data from the corresponding

resource to the process’ memory. Further, the data read is immediately propagated

to all containers that are transitively aliased by σ.n(pid), i.e. all containers in set

σ.a∗(σ.n(pid)):

∀σ, σ ′ ∈ Σ, ∀pid ∈ IPid ,∀fd ∈ IFdsc :

(σ, (read , {(obj , σ.n((pid , fd))), (proc, pid), (fdscr , fd)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s [t ← σ.s(t) ∪ σ.s(σ.n((pid , fd)))]t ∈ σ.a∗(σ.n(pid))

∧σ ′.a =σ.a

∧σ ′.n=σ.n

Similarly, process pid ∈ IPid (parameter proc) might use system call write to write

some data from its process memory to a file descriptor fd ∈ IFdsc (parameter fdscr).

2.3. Instantiation to Unix-like Systems 45

This is modeled by propagating all data from the process’ memory to the corresponding

container identified by file descriptor fd . Again, the data is immediately propagated to

all containers that are transitively aliased from container σ.n((pid , fd)):

∀σ, σ ′ ∈ Σ,∀pid ∈ IPid , ∀fd ∈ IFdsc :

(σ, (write, {(obj , σ.n((pid , fd))), (proc, pid), (fdscr , fd)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s [t ← σ.s(t) ∪ σ.s(σ.n(pid))]t ∈ σ.a∗(σ.n((pid ,fd)))

∧σ ′.a =σ.a

∧σ ′.n=σ.n

A file descriptor fd ∈ IFdsc (parameter fdscr) may be closed by the owning process

pid ∈ IPid (parameter proc) using system call close. Subsequently, fd can no longer be

used for accessing the corresponding resource. The reserved value nil ∈ C is used to

refer to non-existing containers.

∀σ, σ ′ ∈ Σ,∀pid ∈ IPid , ∀fd ∈ IFdsc :

(σ, (close, {(obj , σ.n((pid , fd))), (proc, pid), (fdscr , fd)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s

∧σ ′.a =σ.a

∧σ ′.n=σ.n [(pid , fd)← nil]

Process pid ∈ IPid (parameter proc) can create a pipe for communication purposes

using system call pipe. Besides creating the new pipe cp ∈ CPipe , pipe returns two new

file descriptors, fd1 , fd2 ∈ IFdsc (parameter ret), which can be used to read from and

write to cp:

∀σ, σ ′ ∈ Σ,∀pid ∈ IPid , ∀cp ∈ CPipe ,∀fd1 , fd2 ∈ IFdsc :

(σ, (pipe, {(obj , cp), (proc, pid), (ret , (fd1 , fd2))}), σ ′) ∈ R
=⇒ σ ′.s = σ.s

∧σ ′.a =σ.a

∧σ ′.n=σ.n [(pid , fd1)← cp ; (pid , fd2)← cp]

System call fork allows process pid ∈ IPid (parameter proc) to create a new child

process. The process id of the created child, cpid ∈ IPid , is the return value of fork

(parameter ret). Notably, the child process is an exact copy of the parent process.

Consequently, all process-internal identifiers (e.g. the file descriptor table) and the

process memory are cloned. However, from now on these structures, in particular

the data stored within the two process memories as well as the file descriptor tables,

evolve differently. Consequently, a new process container ccpid ∈ CProc is created and

46 2. Usage Control Models and Infrastructures

all mappings from the calling process pid are cloned for the new process ccpid :

∀σ, σ ′ ∈ Σ, ∀pid , cpid ∈ IPid ,∀ccpid ∈ CProc :

(σ, (fork , {(obj , ccpid), (proc, pid), (ret , cpid)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s [ccpid ← σ.s(σ.n(pid))]

∧σ ′.a =σ.a [ccpid ← σ.a(σ.n(pid));

t ← σ.a(t) ∪ {ccpid}]t ∈ {t ′|σ.n(pid)∈σ.a(t ′)}

∧σ ′.n=σ.n [cpid ← ccpid ; (cpid , fd)← σ.n((pid , fd))]fd ∈ IFdsc

Having given an overview over an instantiation of the model described in Sec-

tion 2.1 for Unix-like systems, [74] details the semantics of additional system calls

such as execve, dup, rename, mmap, exit , and kill . Since this thesis extends the above

instantiation (Section 3.1), most of the above event semantics have been selected for

presentation because they will be of further relevance within this thesis.

3
Distributed Data Usage Control

This chapter describes major contributions of this dissertation, namely usage control

models and formal methods that allow to enforce data usage control policies in

distributed system environments. The need for such extended concepts arises because

in real-world scenarios the data to be protected by usage control policies is disseminated

throughout different systems, cf. the example policies in Section 1.5. Generally, those

systems are designed to be independent and to operate individually, without the need

for central components. Hence, the motive of this work was to improve the model from

Section 2.1 in such a way that it accommodates both the independence of individual

systems as well as the possibility to enforce distributed data usage control requirements.

Notably, the concepts introduced in Section 2.1 do not cater to any form of distribution.

This chapter describes how usage control policies can be enforced within such

distributed environments. Section 3.1 introduces a distributed system model by incor-

porating distributed aspects into the model described in Section 2.1. Based on this

model, Section 3.2 describes how data flows can be tracked across systems such that

the usage control infrastructure is aware of all copies of some data even across system

boundaries (RQ1, Section 1.1.1). Further, Section 3.3 describes how policies can be

enforced in an efficient and decentralized manner if data and events are distributed

(RQ2, Section 1.1.2).

As a part of this dissertation, most of the work described in the subsequent sections

has been published in [93, 94, 95]. Citations and verbatim quotes from these sources

are not explicitly cited. However, each section initially clarifies from which papers such

citations and quotes have been taken.

3.1 Distributed System Model

Contents of this section have been published in [95].

The model described in Section 2.1 suggests a monolithic view on policy enforcement,

meaning that at runtime there exists one single trace and one single system state at

49

50 3. Distributed Data Usage Control

any point in time. Technically, one single PDP observes and regulates the execution of

all system events, while one single PIP maintains the global data flow state. As also

pointed out in [17, 88], such a centralized approach is expected to be impractical if data

is shared between systems and if usage policies do impose global requirements, e.g. by

referring to data flow states or data usage events of remote systems. In particular, this

is the case for the example scenario of the insurance company introduced in Section 1.5

and the corresponding policies.

This section introduces an extended model that allows for the explicit distinction of

different systems, their individual behaviors, as well as their interplay. Aforementioned

usage control models do not incorporate any such concepts, implicitly operating on

one single large monolithic system. In the following, this monolithic system will be

referred to as the distributed system, in which multiple PDPs and PIPs observe and

regulate different/disjoint parts. Further, this section formalizes how these individual

observations can be combined such that the observations of a single monolithic PDP

and PIP are reassembled.

3.1.1 Individual Systems

Systems Y constitute autonomous parts of the entire distributed system. A systemsystems
is defined as a non-empty set of system layers whose PEPs share the same PDP and

PIP for policy decision and data flow tracking purposes. Hence, a system consists of

exactly one PDP/PIP and at least one PEP (cf. Figure 3.1). Note that those system

layers sharing the same PDP/PIP must not necessarily remain on the same physical

or virtual host. A system may thus be an operating system instance, a physical or

virtual machine, a set of applications, or even a set of physical or virtual machines.

Section 3.2.1 defines the set of systems Y in a more technical manner.

The entire distributed system is then composed of the set of all systems Y. While

those systems Y are generally independent from another, they are capable of interacting

among each other using communication infrastructures such as network sockets. In

the running example, such systems are the insurance company’s webserver, the email

server, the database, as well as the clerks’ workstations.

For each system y ∈ Y, Sy ⊆ S denotes the system’s unique set of system events,

Cy ⊆ C its unique set of containers, and Iy ⊆ I its unique set of identifiers. To be able

to differentiate system events originating from different systems, each system event

e ∈ Sy is required to carry parameter sys ∈ N with value y ∈ Y, hence Y ⊆ V:

∀y1 , y2 ∈ Y, e ∈ Sy1 :

(sys, y1) ∈ e.p

∧y1 6= y2 =⇒ Sy1 ∩ Sy2 = ∅ ∧ Cy1 ∩ Cy2 = ∅ ∧ Iy1 ∩ Iy2 = ∅

3.1. Distributed System Model 51

Figure 3.1: Two independent systems, each featuring three PEPs.

PEP1
A

PEP2
A

PEP3
A

PDPA

PIPA

System A

PEP1
B

PEP2
B

PEP3
B

PDPB

PIPB

System B

Distributed System

On this basis, Ty ⊆ T and Σy ⊆ Σ constitute the set of all possible system runs and the

set of all of its possible data flow states of system y ∈ Y, respectively:

∀y ∈ Y : Ty ⊆ T : N→ P(Sy)

and Σy ⊆ Σ : (Cy → P(D))× (Cy → P(Cy))× (Iy → Cy)

This concept of individual systems and their individual event traces and data flow

states are the fundamentals to build models and infrastructures that allow for the

enforcement of distributed data usage policies. In addition, a corresponding system

specification, formalized as state transitions R (cf. Section 2.3 for an example), must

be defined.

The following section describes how the union of the above individual systems

re-assembles the entire distributed system.

3.1.2 Reassembling the Distributed System

In practice, aforementioned systems run in parallel and produce independent system

traces and data flow states. E.g., the PDP of system y ∈ Y , PDPy , observes trace ty ∈ Ty ,

while the corresponding PIP, PIPy , observes data flow states σty
∈ Σy . Assuming

sufficiently synchronized system clocks as further discussed in Section 4.3.1, it is the

union of these local observations that one single global PDP, PDPY , and PIP, PIPY , as

presumed in Section 2.1, would observe. This correlation between decentrally observed

traces and data flow states and the observations of a central PDP/PIP is formalized in

the following.

First, for a set of systems Y ⊆ Y, the set of system events SY ⊆ S, the set of traces

TY ⊆ T, the set of containers CY ⊆ C, and the set of identifiers IY ⊆ I are defined as

the union of the corresponding sets of systems y ∈ Y :

∀Y ⊆ Y : SY =
⋃

y∈Y
Sy ∧ TY =

⋃
y∈Y
Ty ∧ CY =

⋃
y∈Y
Cy ∧ IY =

⋃
y∈Y
Iy

Combining Concurrently Executing System Traces. Let
∏

denote the Cartesian

product. Then τ ∈
∏

y∈Y Ty is a tuple of traces of all systems and tτy ∈ Ty refers to the

52 3. Distributed Data Usage Control

Figure 3.2: Three systems running in parallel and the overlay of their traces.

PIPA

PDPA
PIPB

PDPB
PIPC

PDPC
PIPY

PDPY
Time

System A System B System C Overlay of traces

with Y = {A,B,C} ⊆ Y, and {e1 , e2 , e3 , e4} ⊆ SA,
τ ∈ TA × TB × TC , {e5 , e6} ⊆ SB ,
∀y ∈ Y : tτy ∈ Ty , {e7 , e8 , e9} ⊆ SC .

tτY ∈ TY ;

tuple’s trace of system y ∈ Y. In order to reason about the concurrent execution of

traces of multiple systems, the overlayoverlay of
traces

of a set of traces of systems Y ⊆ Y, tτY ∈ TY , is

defined. The intuition is that for each timestep i ∈ N the set of system events observed

in the set of systems Y corresponds to the union of the system events observed in the

single systems. This is depicted in Figure 3.2 and formalized as follows:

∀Y ⊆ Y, i ∈ N, τ ∈
∏
y∈Y
Ty , t

τ
Y ∈ TY : tτY (i) =

⋃
y∈Y

tτy (i)

Hence, tτY resembles the trace that one single central PDP would have observed

and it can be deduced by combining the observations of the independent distributed

PDPs.

Combining Distributed Data Flow States. Similar to the overlay of event traces, the

systems’ individual data flow states must be combined to a single global data flow
stateglobal data

flow state
in order to reason about the behavior of the distributed system as a whole in

correspondence with the monolithic model described in Section 2.1.

Consequently, the set of all possible states of the set of systems Y ⊆ Y is

∀Y ⊆ Y : ΣY = (CY → P(D))× (CY → P(CY))× (IY → CY)

3.2. Cross-System Data Flow Tracking 53

and the combined global data flow state of systems Y ⊆ Y at time i ∈ N is

∀Y ⊆ Y, i ∈ N, τ ∈
∏
y∈Y
Ty , y ∈ Y, tτY ∈ TY , t

τ
y ∈ Ty ,

σi
tτY
∈ ΣY , σ

i
tτy
∈ Σy , c ∈ Cy , j ∈ Iy :

σi
tτY
.s(c) = σi

tτy
.s(c)

∧ σi
tτY
.a(c) = σi

tτy
.a(c)

∧ σi
tτY
.n(j) = σi

tτy
.n(j)

The above definitions allow to investigate and to reason about the independent be-

havior of individual systems as well as their interactions and interrelations. Hence,

in the following it is possible to argue about the distributed system both from the

perspective of single individual systems as well as from a global perspective. The

subsequent sections leverage these definitions to achieve data flow tracking across

systems (Section 3.2) and the efficient enforcement of data usage policies if data and

events are distributed (Section 3.3).

3.2 Cross-System Data Flow Tracking

Contents of this section have been published in [94].

As shown in Section 2.3 and [119, 168, 170, 174, 188, 216], the generic data flow

model presented in Section 2.1.2 has been instantiated to track data flows within

single systems for the sake of enforcing data-centric usage control policies, i.e. policies

that protect all existing representations of some data rather than only particular ones

(cf. Section 2.1.2). Along these lines, cross-system data flow tracking addresses the

challenge to be aware of all representations of some data even if those represenations

are distributed across multiple systems: Whenever usage controlled data is exchanged

between systems, this flow of data must be recorded in order to assure the data’s future

protection.

Hence, this section provides mechanisms for tracking data flows across systems in

line with RQ1 (cf. Section 1.1.1). On the basis of this approach, the distributed PIPs

are aware which protected data remains in which containers throughout the entire

distributed system at each point in time. The mechanisms are generic in that they

allow to track data flows independent of the application and application-protocol being

used; they are transparent since neither the applications nor the operating system

are aware that data flow tracking is taking place. Such genericity and transparency

are essential because in the real world data might be shared using a multitude of

applications and protocols. E.g., in the example of the insurance company, data is

propagated in-between systems using applications and protocols such as email, web

browsing, file transfer, and possibly proprietary protocols.

54 3. Distributed Data Usage Control

3.2.1 A Generic Model for Cross-System Data Flow Tracking

State-of-the-art cross-system communication methods, such as the Internet Protocol

(IP) in version 4 (IPv4) and version 6 (IPv6) and the Media Access Control Protocol

(MAC), make use of addresses to identify participants of a communication network.

Since a system may feature multiple network communication interfaces, multiple such

addresses may be assigned to each system. This also reflects the fact that a system as

defined in Section 3.1 may be distributed in itself. Within this thesis, addresses Aaddresses are

assumed to be globally unique: no address may be assigned to more than one system

over time. While not tamper-proof, such uniqueness of addresses is designed into MAC

addresses and IPv6. Further, systems can refer to themselves using reserved addresses

such as ‘127.0.0.1’ (IPv4) and ‘::1’ (IPv6). Those special addresses are referred to as

localhost (lo ∈ A). Using these terms, the set of systems Y ⊆ P(A \ {lo}) as introduced

in Section 3.1 can be formally characterized as follows:

∀y1 , y2 ∈ Y ⊆ P(A \ {lo}) : y1 6= ∅ ∧ y2 6= ∅ ∧ (y1 ∩ y2 6= ∅ =⇒ y1 = y2)

Hence, each system y is defined by its set of unique addresses and ∀y ∈ Y : lo 6∈ y.

Each principal p ∈ P is associated with exactly one system y ∈ Y in which it may

invoke system events from set Sy . At the same time, system y might host multiple

principals P ⊆ P. For a principal p ∈ P, its corresponding system is denoted yp ∈ Y . In

order to model the technical difference between address lo ∈ A and addresses A\{lo},
i.e. the fact that lo can only be used to communicate with principals hosted on the

same system, function reach : Y ×A → P(Y) is defined. Given a system y ∈ Y and an

address a ∈ A, reach returns all systems with which communication via the specified

address is possible:

∀y ∈ Y, a ∈ A : reach(y, a) =

{y} if a = lo

Y otherwise

When considering more complex techniques such as NAT (Network Address Translation)

[8] or DHCP (Dynamic Host Configuration Protocol) [48], i.e. if the initial assumption

about the uniqueness of addresses does not hold, function reach must be adjusted

accordingly—possibly incorporating a temporal dimension.

The following section shows an instantiation of this generic model, allowing to track

cross-system data flows for TCP/IP networking at the operating system layer. As such,

the presented solution integrates seamlessly into the intra-system data flow tracking

technology described in Section 2.3.

3.2.2 Data Flow Tracking for TCP/IP

Since all major application-level protocols, such as HTTP (web browsing), FTP (file

transfer), SMTP, IMAP (both email), and SSH (general purpose secure remote shell),

3.2. Cross-System Data Flow Tracking 55

Figure 3.3: Sequence of TCP-related system calls.

read()/write()read()/write()

Client

socket()

bind()

connect()

shutdown()

Server

socket()

bind()

listen()

shutdown()

accept()

Data Transmission

Connection Establishment

Connection Teardown

build upon TCP/IP (Transmission Control Protocol / Internet Protocol), this thesis

instantiates cross-system data flow tracking for the latter protocol. Building on the

instantiation of the generic data flow model for Unix-like systems described in Sec-

tion 2.3, this instantiation allows for generic, transparent, and application-protocol

independent cross-system data flow tracking—as long as TCP/IP is used as the under-

lying communication protocol. Hence, in the following, transition relation R is defined

for TCP/IP-related system calls.

Identifiers and Containers. As in Section 2.3, principals invoking system events

are processes PProc, which, in a distributed environment, are identified by a tuple

consisting of an identifier for their system Y = ISys ⊆ I and their system-relative

process id IPid , hence (ISys × IPid) ⊆ I. Since processes communicate by writing

to and reading from communication endpoints called sockets, network sockets CSock

are considered containers, CSock ⊆ C, which can be identified via process-relative file

descriptors IFdsc, (ISys × IPid × IFdsc) ⊆ I. Further, processes also refer to network

sockets using addresses A = IAddr ⊆ I and ports IPort ⊆ I: a socket is uniquely

identified by the address and port of the sender, and the address and port of the

receiver, called local socket name local and
remote socket
name

and remote socket name, respectively. Since a socket

using address lo ∈ A is only reachable from within the same system, the set of network

socket identifiers is system-relative: (ISys × ((IAddr × IPort)× (IAddr × IPort))) ⊆ I.
Besides the system calls described in Section 2.3, additional events to consider are

all system calls related to networking such as socket , bind , listen, accept , connect ,

and shutdown. Transition relations R for these events in the context of TCP/IP are

explained in the following; Figure 3.3 depicts the sequence of system calls for TCP/IP

connection establishment, data transmission and connection teardown.

TCP Connection Establishment. First, each communication partner (i.e. the client

and the server process) creates a new unconnected socket for connection-based com-

56 3. Distributed Data Usage Control

munication (i.e. TCP/IP) by issuing system call socket with parameter SOCK STREAM

(parameter type). This call creates and returns a new file descriptor fd ∈ IFdsc (param-

eter ret) identifying the newly created socket container cs ∈ CSock , which is accessible

by the calling process pid ∈ IPid (parameter proc) within system y ∈ Y (parameter

sys):

∀σ, σ ′ ∈ Σ, ∀y ∈ ISys ,∀pid ∈ IPid , ∀fd ∈ IFdsc ,∀cs ∈ CSock :

(σ, (socket , {(obj , cs), (sys, y), (proc, pid),

(type,SOCK STREAM), (ret , fd)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s

∧σ ′.a =σ.a

∧σ ′.n=σ.n [(y, pid , fd)← cs]

After the socket has been created, each communication partner binds a local

socket name, i.e. an IP address and a port, to it using system call bind . This step is

particularly important for the server process, because it will be waiting for incoming

connections and its socket name must therefore be fixed and known by potential

clients. After that, the server marks its socket as passive using system call listen.

Note, that a listening socket may neither initiate connections nor be part of an actual

communication channel. Despite their importance for connection establishment, bind

and listen are not formalized in terms of state transitions as they do not change the

system’s data flow state. In particular, the result of the execution of bind (i.e. the

assignment of an IP address and port to a socket) can be easily retrieved in the presence

of the subsequent system calls accept and connect .

The server process then issues system call accept on its passive socket, effectively

making the socket listen for incoming connections. accept does not return until an

actual connection establishment request to that socket has been made. The client

process then initializes the actual connection establishment using system call connect .

Notably, upon each of those two system calls some information necessary for modeling

the connection establishment is not available. In addition, the fact that the return order

of accept and connect is nondeterministic complicates modeling of the connection

establishment, since there exists a cyclic dependency between those two system calls.

Consequently, connection establishment can only be modeled once the second of these

two system calls returns. When modeling the two system calls accept and connect

in the following, for each of them it is assumed that it returns second. Section 4.2.1

describes how the implementation copes with this assumption.

Upon successful return of accept , a new socket cs has been created by the un-

derlying operating system and this newly created socket constitutes the connection

to the client’s socket that initiated connection establishment. The server’s passive

and listening socket remains passive and listening. The newly created socket cs is

identified using the returned file descriptor fd ∈ IFdsc (parameter ret). Further return

parameters of accept are the remote socket name (ac , oc) ∈ (IAddr × IPort) (param-

3.2. Cross-System Data Flow Tracking 57

eter remotesock) (i.e. the name of the client’s connected socket), and the server’s

local socket name (as , os) ∈ (IAddr × IPort) (parameter localsock). The connection

establishment is modeled by creating an alias from the server’s socket container to

the client’s socket container. Note, however, that the latter can only be retrieved via

σ.n((y, ((ac , oc), (as , os)))) if connect did happen before accept .

∀σ, σ ′ ∈ Σ,∀y ∈ ISys , ∀pid ∈ IPid ,∀fd ∈ IFdsc , ∀cs ∈ CSock ,

∀as , ac ∈ IAddr ,∀os , oc ∈ IPort :

(σ, (accept , {(obj , cs), (sys, y), (proc, pid), (ret , fd),

(localsock , (as , os)), (remotesock , (ac , oc))}), σ ′) ∈ R
=⇒ σ ′.s = σ.s

∧σ ′.a =σ.a [cs ← σ.n((y, ((ac , oc), (as , os))))]

∧σ ′.n=σ.n [(y, pid , fd)← cs ; (z , ((as , os), (ac , oc)))← cs]z∈reach(y,as)

For system call connect , parameters are the file descriptor fd ∈ IFdsc (parameter

fdscr) of the client’s socket, as well as IP address as ∈ IAddr and port os ∈ IPort of the

server’s listening socket (parameter remotesock). If the client’s socket has not been

bound explicitly before, connect does an implicit call to bind . Once the connection to

(as , os) has been successfully established, connect returns. At this point, the client’s

local socket name (ac , oc) ∈ (IAddr × IPort) (parameter localsock) has been provided

by the operating system. connect is modeled by creating an alias from the client’s

connected socket to the corresponding server’s remote connected socket. Effectively,

this last step aliases the two sockets bidirectionally. Note, however, that the server’s

remote connected socket only exists if accept did happen before connect; it can then

be retrieved via σ.n((y, ((as , os), (ac , oc)))).

∀σ, σ ′ ∈ Σ,∀y ∈ ISys , ∀pid ∈ IPid ,∀fd ∈ IFdsc ,

∀as , ac ∈ IAddr ,∀os , oc ∈ IPort :

(σ, (connect , {(obj , σ.n((y, pid , fd))), (sys, y), (proc, pid), (fdscr , fd),

(localsock , (ac , oc)), (remotesock , (as , os))}), σ ′) ∈ R
=⇒ σ ′.s = σ.s

∧σ ′.a =σ.a [σ.n((y, pid , fd))← σ.n((y, ((as , os), (ac , oc))))]

∧σ ′.n=σ.n [(z , ((ac , oc), (as , os)))← σ.n((y, pid , fd))]z∈reach(y,ac)

TCP Data Transmission. Once the connection has been established, the processes

may exchange any kind of information by writing to and reading from the network

sockets using a variety of system calls such as write and read . Modelling sending and

receiving of data corresponds to writing to and reading from any other file descriptor as

described in Section 2.3. Other system calls for sending are sendmsg , pwritev , pwrite,

writev , send , and sendto; system calls for reading are recvmsg , preadv , pread , readv ,

recv , and recvfrom. Their state transitions are analogous to write and read as described

in Section 2.3.

58 3. Distributed Data Usage Control

Different from the above system calls, system call sendfile copies data directly from

one file descriptor to another. Hence, fdi ∈ IFdsc (parameter fdscr i) is a file descriptor

opened for reading, while fdo ∈ IFdsc (parameter fdscro) is a file descriptor opened for

writing. Analogous to read and write, the data is propagated to all aliased containers.

∀σ, σ ′ ∈ Σ, ∀y ∈ ISys ,∀pid ∈ IPid , ∀fdi , fdo ∈ IFdsc :

(σ, (sendfile, {(obj , σ.s((y, pid , fdo))), (sys, y), (proc, pid),

(fdscr i , fdi), (fdscro , fdo)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s [t ← σ.s(t) ∪ σ.s(σ.n((y, pid , fdi)))]t∈σ.a∗(σ.n((y,pid ,fdo)))

∧σ ′.a =σ.a

∧σ ′.n=σ.n

TCP Connection Teardown. Finally, the communication channel is shut down. System

calls shutdown, close, and exit cause a, potentially partial, connection teardown.

Using system call shutdown, a process may shut down all or part of the connection

constituted by the socket identified by file descriptor fd ∈ IFdsc (parameter fdscr).

Parameter how describes how the socket is shutdown: SHUT RD disallows further

receptions, SHUT WR disallows further transmission, and SHUT RDWR forbids further

receptions and transmissions. This is modeled as follows.

In case of SHUT RD, the socket container is emptied and all aliases to it are deleted,

effectively making any further read on that socket not propagate any data to the

reading process:

∀σ, σ ′ ∈ Σ, ∀y ∈ ISys ,∀pid ∈ IPid , ∀fd ∈ IFdsc :

(σ, (shutdown, {(obj , σ.s((y, pid , fd))), (sys, y), (proc, pid),

(fdscr , fd), (how ,SHUT RD)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s [σ.n((y, pid , fd))← ∅]
∧σ ′.a =σ.a [c ← σ.a(c) \ {σ.n((y, pid , fd))}]c∈C
∧σ ′.n=σ.n

In case of SHUT WR, all aliases from the socket container are deleted, effectively

making any further write on that socket not propagate any data to the socket to which

the connection was originally established.

∀σ, σ ′ ∈ Σ, ∀y ∈ ISys ,∀pid ∈ IPid , ∀fd ∈ IFdsc :

(σ, (shutdown, {(obj , σ.s((y, pid , fd))), (sys, y), (proc, pid),

(fdscr , fd), (how ,SHUT WR)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s

∧σ ′.a =σ.a [σ.n((y, pid , fd))← ∅]
∧σ ′.n=σ.n

In case of SHUT RDWR, the socket container is emptied and all aliases to and from

it are deleted; additionally, all its identifiers of type (ISys × ((IAddr ×IPort)× (IAddr ×

3.2. Cross-System Data Flow Tracking 59

IPort))) are deleted:

∀σ, σ ′ ∈ Σ, ∀y ∈ ISys ,∀pid ∈ IPid , ∀fd ∈ IFdsc :

(σ, (shutdown, {(obj , σ.s((y, pid , fd))), (sys, y), (proc, pid),

(fdscr , fd), (how ,SHUT RDWR)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s [σ.n((y, pid , fd))← ∅]
∧σ ′.a =σ.a [σ.n((y, pid , fd))← ∅; c ← σ.a(c) \ {σ.n((y, pid , fd))}]c∈C
∧σ ′.n=σ.n [x ← nil]x∈{z∈(ISys×((IAddr×IPort)×(IAddr×IPort)))|σ.n(z)=σ.n((y,pid ,fd))}

A process pid ∈ IPid on system y ∈ Y may close a file descriptor fd ∈ IFdsc using

system call close as described in Section 2.3. Additionally, if (y, pid , fd) is the last re-

maining file descriptor for socket cs = σ.n((y, pid , fd)) (i.e. if @ pid ′ ∈ IPid , fd
′ ∈ IFdsc :

(y, pid , fd) 6= (y, pid ′, fd ′) ∧ σ.n((y, pid ′, fd ′)) = σ.n((y, pid , fd)) = cs), then the con-

nection constituted by cs is implicitly shut down. This is modeled by an implicit

shutdown with parameter SHUT RDWR. If a process exits using system call exit , all of

its file descriptors are closed alike.

Other system calls. Note that the presence of event parameter sys necessitates the

redefinition of event semantics for certain system calls introduced in Section 2.3. As

one example, the redefined event semantics for system call write follows. Redefinition

of the event semantics for other system calls is analogous.

∀σ, σ ′ ∈ Σ,∀y ∈ ISys , ∀pid ∈ IPid ,∀fd ∈ IFdsc :

(σ, (write, {(obj , σ.n((y, pid , fd))), (sys, y), (proc, pid), (fdscr , fd)}), σ ′) ∈ R
=⇒ σ ′.s = σ.s [t ← σ.s(t) ∪ σ.s(σ.n((y, pid)))]t ∈ σ.a∗(σ.n((y,pid ,fd)))

∧σ ′.a =σ.a

∧σ ′.n=σ.n

The above definitions of state transition R for networking-related system calls enable

the tracking of data flows both within and across systems. The applications themselves

are not aware that such data flow tracking is being performed. Note that all of the

above state transitions can be applied locally and individually by the server’s and the

client’s PIP. In particular, this is the case for system calls accept and connect , which

bidirectionally alias the network socket containers of the two remote systems. Details

on how this is technically achieved are provided in Section 4.2.1.

At the model level, system calls read , write, sendfile, and equivalent, propagate all data

written to socket containers to the corresponding remote connected socket. However,

to technically track data flows in the presence of those system calls, information about

the data flow state must be exchanged between the two remote PIPs. How such

cross-system data flow tracking is technically achieved is explained in Section 4.2.2.

Further, it will be shown how data usage policies are transferred to and deployed at

the remote system.

60 3. Distributed Data Usage Control

3.3 Coordinating Policy Decisions Across Systems

Contents of this section have been published in [95].

Once data and their corresponding policies have been disseminated to several systems,

the PDPs within those systems are expected to consistently enforce those policies at

all times (RQ2, Section 1.1.2). This is of no further challenge for policies that can be

individually decided by each single PDP, such as ‘delete this data after 30 days’ and

‘do not edit this document [using editor X]’. However, if policies refer to data, events,

or system states of multiple systems, then each PDP’s decisions might depend on past

decisions and observations of other PDPs and PIPs. Hence, the PDPs and PIPs must

coordinate their decisions and exchange corresponding information. Naively, in such

situations all PDPs/PIPs could disclose all of their knowledge to all other PDPs/PIPs of

the entire distributed system (i.e. to all systems Y). Note that all global policies of the

running example (cf. Section 1.5 and Table 2.2 on page 34) are of such a kind.

To decrease the number of systems with which such coordination is actually per-

formed, Section 3.3.1 provides methods to approximate the set of systems relevant for

evaluating a given policy. While naively each PDP/PIP could then disclose all of its

knowledge to all other ‘relevant’ PDPs/PIPs, Section 3.3.2 formally analyzes in which

cases such exchange of information between relevant PDPs/PIPs can be safely omitted

without compromising consistent policy enforcement.

3.3.1 Identifying Relevant Systems

Towards distributed enforcement of data usage policies, this section identifies the set of

systems relevant for evaluating a policy p given as ECA rule. By and large, p ’s condition

ϕp ∈ Φ is the most important and complex part of p that must be evaluated, which

is why this section focuses on finding all systems that potentially contribute to the

evaluation of ϕp at a given point in time i ∈ N. Hence, given a set of concurrently

executing traces τ ∈
∏

y∈Y Ty , functionrelevant relevant : Φ × N×
∏
T → P(Y) is defined to

return all systems that are potentially relevant for evaluating ϕp at time i . In particular,

if |relevant(ϕp , i , τ)| ≤ 1, then no coordination is needed in order to evaluate ϕp .

Before defining relevant , three auxiliary functions are defined:

(1) knowC : P(C)→ P(Y) returns for a given set of containers the set of all systems

that ‘know’ at least one of the specified containers, meaning that a system’s PIP is

responsible for the management of this container. Formally:

∀C ⊆ C : knowC (C) = {y ∈ Y | Cy ∩ C 6= ∅}

Note that this definition does not impose any constraints on the input set C ⊆ C.
Hence, C might contain containers that are attributed to different systems: ∀y1 , y2 ∈
Y, C ⊆ C, c1 ∈ Cy1 , c2 ∈ Cy2 : y1 6= y2 ∧ {c1 , c2} ⊆ C =⇒ {y1 , y2} ⊆ knowC (C).

Further: Because Cy (for all y ∈ Y) denotes the set of all containers that might ever
exist within system y, knowC is not parameterized in a temporal dimension.

3.3. Coordinating Policy Decisions Across Systems 61

(2) knowD : P(D)× N×
∏
T → P(Y) returns for a given set of data items, a point

in time i ∈ N, and a tuple of concurrently executing traces τ ∈
∏
T the set of systems

in which there exists a container that contains at least one of the specified data items:

∀D ⊆ D, i ∈ N, τ ∈
∏
y∈Y
Ty :

knowD(D , i , τ) = {y ∈ Y | ∃c ∈ Cy , t
τ
y ∈ Ty , σ

i
tτy
∈ Σy : D ∩ σi

tτy
.s(c) 6= ∅}

Different to knowC , function knowD is parameterized in time. This is because the

addressed data D does not statically remain within a fixed set of systems but keeps

being propagated and deleted across/within different systems. Consequently, at all

times the result of knowD depends on the systems’ current data flow states.

(3) happens : E × N ×
∏
T → P(Y) returns for an event e ∈ E , a point in time

i ∈ N, and a tuple of concurrently executing traces τ ∈
∏
T the set of systems in which

an event refining e happens:

∀e ∈ E , i ∈ N, τ ∈
∏
y∈Y
Ty :

happens(e, i , τ) = {y ∈ Y | ∃tτy ∈ Ty , e
′ ∈ tτy (i), σ

i
tτy
∈ Σy :

(e′, σi
tτy
) refinesΣ e}

The reason for parameterizing happens in time is similar to the one provided for

function knowD: Due to the definition of refinesΣ (cf. Section 2.1.2), the system’s

current data flow state must be considered in order to determine whether an event

refines another.

Using these auxiliary functions, relevant : Φ×N×
∏
T → P(Y) is defined to return

the set of all potentially relevant systems for evaluating ϕ ∈ Φ at time i ∈ N given a

tuple of concurrently executing traces τ ∈
∏
T. The central observation behind the

definition of relevant is that it depends on the condition ϕ, the time i , and the traces

τ which systems are relevant to evaluate ϕ. Considering ϕ as an expression tree (cf.

Section 2.2.3), it is essentially the tree’s leaves (i.e. operators E , isCombined , isNotIn,

isMaxIn, and repmin) that determine which systems are of interest. The intuition

62 3. Distributed Data Usage Control

behind the definition of relevant is explained after providing the formal definition.

∀ϕ ∈ Φ, i ∈ N, τ ∈
∏
y∈Y
Ty : relevant(ϕ, i , τ) = {y ∈ Y |

((ϕ = true ∨ ϕ = false) ∧ Y = ∅)

∨∃e ∈ E • (ϕ = e ∧ Y = happens(e, i , τ))

∨∃d ∈ D,m ∈ N, C ⊆ C • ((ϕ = isNotIn(d ,C) ∨ ϕ = isMaxIn(d,m,C))

∧ Y = knowD({d}, i , τ) ∩ knowC (C))

∨∃d1 , d2 ∈ D, C ⊆ C • (ϕ = isCombined(d1 , d2 ,C)

∧ Y = knowD({d1}, i , τ) ∩ knowD({d2}, i , τ) ∩ knowC (C))

∨∃α ∈ Φ • (ϕ = not(α) ∧ Y = relevant(α, i , τ))

∨∃α, β ∈ Φ • ((ϕ = α and β ∨ ϕ = α or β)

∧ Y = relevant(α, i , τ) ∪ relevant(β, i , τ))

∨∃α, β ∈ Φ • (ϕ = α since β

∧ Y =
i⋃

j=0

(relevant(α, j , τ) ∪ relevant(β, j , τ)))

∨∃α ∈ Φ, j ∈ N • (ϕ = α before j ∧ Y = relevant(α, i − j , τ))

∨∃j,m ∈ N, e ∈ E • (ϕ = repmin(j ,m, e)

∧ Y =

min{i,j}−1⋃
k=0

happens(e, i − k , τ))

}

The rationale behind this definition of relevant is as follows: If ϕ = true or

ϕ = false, then this trivial formula can always be evaluated locally to true or false,

respectively. For ϕ = e, relevant systems are exactly those systems in which an event

refining e happens at the current timestep as defined by happens. For state-based

operators isNotIn(d,C) and isMaxIn(d,m,C), the set of relevant systems is defined

by all systems that know data d and at least one of the containers in C. This is similar

for isCombined(d1 , d2 ,C), in which case, however, relevant systems are only those

systems that know both data d1 and data d2 . For repmin(j ,m, e), the set of relevant

systems are those in which an event refining e has happened in the last j timesteps as

defined by happens. For operators not , and , or , since and before, the set of relevant

systems is determined by applying relevant recursively and unifying the corresponding

result sets. Notably, for operator since all previous timesteps must be considered. For α

before j , the set of relevant systems is evaluated by applying relevant j timesteps ago.

Note, however, that the set of systems relevant(ϕ, i , τ) is not minimal: Generally,

relevant(ϕ, i , τ) contains more systems than actually required for the conclusive evalu-

ation of condition ϕ. For example, consider an event e ∈ E , a condition ϕ = e, a set of

concurrently executing traces τ ∈
∏

y∈Y Ty , two systems y1 , y2 ∈ Y , two concrete traces

3.3. Coordinating Policy Decisions Across Systems 63

tτy1 ∈ Ty1 , tτy2 ∈ Ty2 , a point in time i ∈ N, and system states σi
tτy1
∈ Σy1 , σi

tτy2
∈ Σy2 . Fur-

ther assume that events refining e happen within traces tτy1 and tτy2 at time i (i.e. ∃e1 ∈
tτy1 (i), e2 ∈ tτy2 (i) : (e1 , σ

i
tτy1

) refinesΣ e∧(e2 , σ
i
tτy2

) refinesΣ e). Then, relevant(ϕ, i , τ) =

{y1 , y2} (since relevant(ϕ, i , τ) = relevant(e, i , τ) = happens(e, i , τ) = {y1 , y2} due to

the definition of happens). However, in order to conclusively evaluate condition ϕ = e,

the consideration of either of the singleton sets {y1} or {y2} would have sufficed.

Consequently, relevant(ϕ, i , τ) overapproximates the set of systems that are relevant

for evaluating ϕ.

As proven in Appendix A, the set of systems relevant(ϕ, i , τ) is sufficient to evaluate

ϕ at time i given the set of concurrently executing traces τ . Systems Y\relevant(ϕ, i , τ)

do not influence the evaluation of ϕ and adding any such system to the evaluation

process does not change the evaluation result. Formally:

∀ϕ ∈ Φ, i ∈ N,∀τ ∈
∏
y∈Y
Ty , Y = relevant(ϕ, i , τ), X ⊆ Y \ Y :

(tτY , i) |= ϕ ⇐⇒ (tτY∪X , i) |= ϕ.

Due to these observations and for brevity, trace tτrelevant(ϕ,i ,τ) is also referred to as

tτY , tτrelevant(ϕ,i ,τ) = tτY . In particular, if |relevant(ϕ, i , τ)| ≤ 1 then no coordination is

needed for the evaluation of ϕ.

Using function relevant(ϕ, i , τ), it is possible to retrieve all systems potentially relevant

for evaluating condition ϕ at time i . Naively, an implementation could then reveal all

necessary information, such as which events are happening and which state changes

occur, to all corresponding systems relevant(ϕ, i , τ). While this already constitutes an

improvement over revealing all information to all systems Y as discussed in the begin-

ning of Section 3.3, the following section identifies situations in which communication

with less or even no systems is needed.

3.3.2 Omitting Unnecessary Communication

In general, coordination between systems is required if an ECA mechanism’s triggering

event is observed and if |relevant(ϕ, i , τ)| > 1 for the ECA’s condition ϕ ∈ Φ, a point in

time i ∈ N, and a tuple of executing traces τ ∈
∏
T. When considering a set of systems

Y ⊆ Y , it is generally not possible to conclusively evaluate a given formula ϕ ∈ Φ at a

certain point in time i ∈ N, since evaluation of ϕ might depend on information unavail-

able within the set of systems Y . However, given τ ∈
∏

y∈Y Ty there are situations in

which a formula ϕ′ ∈ Φ can be deduced from ϕ ∈ Φ such that the set of systems Y ⊆ Y
satisfies ϕ′ at time i , (tτY , i) |= ϕ′, and this satisfaction of ϕ′ by systems Y implies the

global satisfaction of ϕ, (tτY , i) |= ϕ. Formally: (tτY , i) |= ϕ′ =⇒ (tτY , i) |= ϕ. The same

argument holds for the violation of formulas ϕ′ and ϕ: (tτY , i) 6|= ϕ′ =⇒ (tτY , i) 6|= ϕ.

Intuitively, this boils down to the implication seen above by negating formulas ϕ and ϕ′:

(tτY , i) |= not(ϕ′) =⇒ (tτY , i) |= not(ϕ). While those implications are not generally

true, it depends on the characteristics of ϕ and ϕ′ whether such an implication holds.

64 3. Distributed Data Usage Control

Formula Projections. The above implications can in fact be satisfied for so called

formula projectionsformula
projections

. In a nutshell, the projection of some formula ϕ ∈ Φ for a set of

systems Y ⊆ Y ‘hides’ parts of ϕ that are unknown within the set of systems Y , i.e.

parts that can only be evaluated by systems Y \ Y . Hence, the projection ϕY ∈ Φ of

formula ϕ for systems Y is defined as follows:

∀ϕ ∈ Φ, Y ⊆ Y, ∃ϕY :

((ϕ = true ∨ ϕ = false) =⇒ ϕY = ϕ)

∨∃e ∈ E • (ϕ = e =⇒ ϕY = e)

∨∃d ∈ D, C ⊆ C • (ϕ = isNotIn(d,C) =⇒ ϕY = isNotIn(d,C ∩ CY))

∨∃d1 , d2 ∈ D, C ⊆ C • (ϕ = isCombined(d1 , d2 ,C)

=⇒ ϕY = isCombined(d1 , d2 ,C ∩ CY))

∨∃d ∈ D,m ∈ N, C ⊆ C • (ϕ = isMaxIn(d,m,C)

=⇒ ϕY = isMaxIn(d,m,C ∩ CY))

∨∃α ∈ Φ • (ϕ = not(α) =⇒ ϕY = not(αY))

∨∃α, β ∈ Φ • (ϕ = α and β =⇒ ϕY = αY and βY)

∨ (ϕ = α or β =⇒ ϕY = αY or βY)

∨ (ϕ = α since β =⇒ ϕY = αY since βY)

∨∃α ∈ Φ, j ∈ N • (ϕ = α before j =⇒ ϕY = αY before j)

∨∃j,m ∈ N, e ∈ E • (ϕ = repmin(j ,m, e) =⇒ ϕY = repmin(j ,m, e))

Using these policy projections, it is possible to define those situations in which

no coordination between the PDPs and PIPs of different systems is needed. Those

situations are formalized by predicateSat Sat ⊆
∏
T × P(Y)× N× Φ. In correspondence

with the intuitive motivation provided above, Sat(τ,Y , i , ϕ) will be defined to hold

true iff for the tuple of executing traces τ ∈
∏

y∈Y Ty and the set of systems Y ⊆ Y,

trace tτY ∈ TY satisfies ϕY at time i ∈ N ((tτY , i) |= ϕY) and if this implies global

satisfaction of formula ϕ ∈ Φ at the same point in time ((tτY , i) |= ϕ). Again, the same

arguments hold for the violation of formula ϕ, which is expressed by negating ϕ:

∀τ ∈
∏
y∈Y
Ty , Y ⊆ Y, i ∈ N, ϕ ∈ Φ :

((tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ) =⇒ (tτY , i) |= ϕ)

∧ ((tτY , i) 6|= ϕY ∧ Sat(τ,Y , i ,not(ϕ)) =⇒ (tτY , i) 6|= ϕ)

In the following, ϕ ∈ Φ is demanded to be given in disjunctive normal form (DNF).

The reason is that for operators o ∈ {E , isCombined , isNotIn, isMaxIn, repmin} it turns

out that the results of Sat should be different depending on whether o is ‘encapsulated’

in an even or an odd number of negations. When demanding ϕ to be in DNF, then

3.3. Coordinating Policy Decisions Across Systems 65

negations only occur next to operators o. This renders counting of the negations

within ϕ unnecessary. However, the cases ϕ = o and ϕ = not(o) must be considered

individually. Finally, Sat ⊆
∏
T × P(Y)× N× Φ is defined as follows. Note that this

definition only ‘enumerates’ cases for which Sat = true. Cases not mentioned yield

Sat = false. Proofs of correctness, i.e. that the above implications hold, are provided

in Appendix B.

∀τ ∈
∏
y∈Y
Ty , Y ⊆ Y, i ∈ N, ϕ ∈ Φ : Sat(τ,Y , i , ϕ)

⇐⇒ ϕ = true ∨ ϕ = false

∨relevant(ϕ, i , τ) ⊆ Y

∨∃e ∈ E • (ϕ = e)

∨∃d ∈ D, C ⊆ C • (ϕ = not(isNotIn(d,C)))

∨∃d1 , d2 ∈ D, C ⊆ C • (ϕ = isCombined(d1 , d2 ,C))

∨∃d ∈ D,m ∈ N, C ⊆ C • (ϕ = not(isMaxIn(d,m,C)))

∨∃α, β ∈ Φ • ((ϕ = α and β ∧ Sat(τ,Y , i , α) ∧ Sat(τ,Y , i , β))

∨ (ϕ = α or β ∧ ((tτY , i) |= αY ∧ Sat(τ,Y , i , α)

∨ (tτY , i) |= βM ∧ Sat(τ,Y , i , β)))

∨ (ϕ = α since β

∧ ((∃j ∈ [0, i] : (tτY , j) |= βY ∧ Sat(τ,Y , j , β)

∧ ∀k ∈ (j, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α))

∨ (∀k ∈ [0, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α)))))

∨ (ϕ = not(α since β)

∧ ((∀j ∈ [0, i] : (tτY , j) 6|= βY ∧ Sat(τ,Y , j ,not(β))

∧ ∃k ∈ (j, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α)))

∨ (∃k ∈ [0, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α))))))

∨∃α ∈ Φ, j ∈ N • (ϕ = α before j ∧ Sat(τ,Y , i − j , α)

∨ ϕ = not(α before j) ∧ Sat(τ,Y , i − j ,not(α)))

∨∃e ∈ E , j,m ∈ N • (ϕ = repmin(j ,m, e))

In summary, predicate Sat identifies situations in which no coordination between

systems for policy enforcement is necessary despite the fact that |relevant(ϕ, i , τ)| > 1.

This fact will be leveraged in Chapter 4 in order to reduce the communication overhead

between systems when enforcing global policies.

Summary. Section 3.1 introduced an extended data usage control model that allows

for the explicit distinction of multiple systems, their individual behaviors, as well as

their interplay. By further allowing to combine the system traces and system states

of multiple concurrently executing systems, the model provides a tool to analyze and

66 3. Distributed Data Usage Control

compare the behavior of single systems, as well as the behavior of an interrelated

distributed system.

On the basis of this model, Section 3.2 addressed RQ1 by describing a generic

mechanism for cross-system data flow tracking. This mechanism allows the usage

control infrastructure to be aware of all representations of all usage controlled data

items throughout the entire distributed system. Only the availability of such knowledge

enables the enforcement of global data usage policies on all representations of the

protected data. By instantiating these mechanisms for TCP/IP, it becomes possible

to perform cross-system data flow tracking for a multitude of applications (e.g. web

browsing, file transfer, email) and application protocols (e.g. HTTP, FTP, SMTP) in a

transparent manner, i.e. without the need for any modifications to applications and/or

the operating system.

Based on the above model and mechanisms, Section 3.3 addressed RQ2 by provid-

ing methods to coordinate decisions about global policies across multiple distributed

PDPs. To this end, the first step is to identify which systems are potentially relevant

for evaluating a given policy at a given point in time, thus limiting the amount of

systems between which coordination of policy decisions is required. Knowing this set of

potentially relevant systems, it becomes possible to identify situations in which still no

coordination between those systems is required without compromising policy enforce-

ment. In the best case it is thus possible for local PDPs to conclusively evaluate global

policies, thus reducing communication and performance overheads (cf. Section 5.3).

4
Architecture and Implementation

In order to show the feasibility of the concepts described and developed in Chapters 2

and 3, this chapter presents a technical architecture and its implementation, fulfilling

the following functional system requirements:

R1: The infrastructure must allow for the deployment of data usage control policies in

the form of ECA rules (cf. Sections 2.1.3 and 2.2.5).

R2: The infrastructure must be able to receive system events from PEPs, take policy

decisions in correspondence with the deployed data usage control policies, and

signal the decision back to the PEP (cf. Sections 2.2.2 and 2.2.3).

R3: The system’s internal data flow state must be recorded and kept in a state that is

consistent with the events happening (cf. Sections 2.1.2 and 2.2.4).

R4: The system must be able to track data flows across systems and to propagate the

corresponding data usage control policies to the corresponding decision points.

This requirement is in line with research question RQ1 posed in Section 1.1.1

and the conceptual work presented in Section 3.2.

R5: The system must be able to consistently enforce data usage control policies if

the events or the data addressed therein are distributed across systems. This

requirement is in line with research question RQ2 posed in Section 1.1.2 and the

conceptual work presented in Section 3.3.

Note that requirements R1, R2 and R3 are not at the core of this thesis and hence

the corresponding conceptual ideas are also not a contribution of this thesis. Even

though components implementing these requirements have already been described at a

high-level in Section 2.2, this chapter also details these local aspects of the architecture

for two reasons: First, the distributed aspects and requirements (i.e. requirements R4

and R5) build upon these local components. Second, large parts of these local aspects

69

70 4. Architecture and Implementation

Figure 4.1: High-level component diagram and its most important interfaces.

PMP PIP

PEP

IAny2Pdp IAny2Pip

PDP

RequestHandler

IPep2Pdp IPdp2Pip

IPmp2Pip

Communication
Manager

PDP
Server

PIP
Server

Distributed
Database

IDmp2DB

IPmp2Pdp IDmp2Dmp

DMP
Server

DMP

IPmp2Pdp

IPmp2Dmp

Controller

IAny2Pip

IDmp2Dmp

IDmp2DmpIAny2Pdp

IPdp2Pip

IPdp2Dmp

IPmp2Pip IPip2Dmp

IDmp2Pip

IDmp2Pmp

of the enforcement infrastructure have been (re-)designed and (re-)implemented

within this thesis.

In the following, Section 4.1 first provides a high-level view of the infrastructure,

also catering to requirements R1, R2 and R3. Then, Section 4.2 describes how cross-

system data flow tracking and policy propagation is achieved in practice (requirement

R4), while Section 4.3 describes how global policies are coordinated across distributed

PDPs (requirement R5).

4.1 High-level Architecture

By definition (Section 3.1), a system consists of exactly one PDP/PIP and multiple

PEPs which use this PDP/PIP for taking usage control decisions and tracking local data

flows. On the grounds of this definition, Figure 4.1 depicts the infrastructure’s main

components and interfaces, essentially depicting one system as defined in Section 3.1.

Note that the architecture described in the following is simplified. Components and

interfaces that are not relevant to the main contribution of this thesis are not shown

and discussed. The subsequent sections describe the architecture’s most important

components as well as their interplay.

4.1. High-level Architecture 71

4.1.1 Component Overview

At a very coarse level, the architecture is composed of three independent but inter-

connected components: PEPs, a Controller and a distributed database. As further

detailed in Section 4.1.4, PEPs are integrated into technical system layers (cp. Sec-

tion 2.2.2) and it is their task to signal system events to the PDP and to enforce the

PDP’s decisions. The Controller features the PDP, PIP, and PMP, which have already

been described in Section 2.2. Thereby, the Controller coordinates both the internal

and external communication of those components. Further, the Controller features

a Distribution Management Point (DMP) which is responsible for managing all tasks

related to the distributed aspects discussed in this thesis such as cross-system data flow

tracking and policy propagation (requirement R4, Section 4.2) as well as coordinating

distributed policy decisions (requirement R5, Section 4.3). For this latter task the DMP

interfaces with a distributed database which will be further detailed in Section 4.3.

Further crucial components are the CommunicationManager and the RequestHandler.

CommunicationManager. The CommunicationManager manages all external com-

munication of the Controller, for which it runs three RPC (remote procedure call)

servers. It is the task of those servers, namely PdpServer, PipServer and DmpServer,

to exhibit the functionality of the corresponding components to the outside. Most im-

portantly, the PdpServer provides the interface needed for PEPs to request data usage

control decisions in the presence of intercepted system events. By providing further

interfaces to the outside, it is possible to deploy PDP, PIP, and PMP remotely from one

another, thus catering to complex deployment requirements, e.g. if several PDPs ought

to share the same PIP or PMP. This is further detailed in Section 4.1.3. The DmpServer

provides interfaces that allow for the communication with remote DMPs, thus enabling

cross-system data flow tracking and policy propagation (requirement R4). Note that

all communication from/to the Controller, in particular when communicating with

other remote Controllers as well as the distributed database, is secured using the

Transport Layer Security (TLS) protocol [46]. In addition, the integrity and mutual

authentication of remote Controllers is assumed at this point; these assumptions are

discussed in Section 5.1.1.

RequestHandler. The task of the RequestHandler is to preprocess the requests that

have arrived at the RPC servers and to queue them. Requests are queued for three

reasons: (1) If many requests arrive at the CommunicationManager within short time

intervals, the requests are buffered for later processing instead of being rejected due

to busy components, i.e. PDP, PIP, PMP, and DMP; (2) It is ensured that requests are

processed in the same order in which they arrive at the CommunicationManager; (3) It

is ensured that only one request to PDP, PIP, PMP, or DMP is processed at each point in

time, thus avoiding race conditions and other potential conflicts. Once a request from

the RequestHandler’s queue has been processed, the RequestHandler immediately

triggers processing of the subsequent request.

72 4. Architecture and Implementation

Separation of the architecture into the above components is intentional as it organizes

different functionalities into different components. Thereby the fundamental policy

management and decision logics are provided by the PDP, PIP and PMP which follow

the standard security architecture described in [49, 104, 160]. As detailed in Sec-

tion 2.2.1, the PMP is in charge of policy management tasks (requirement R1), while

the PDP takes policy decisions (requirement R2) and the PIP maintains and provides

additional information about the data flow state (requirement R3) that is required for

the PDP’s decision process. In order to keep changes to existing local enforcement

infrastructures as small as possible, tasks related to the distributed aspects of data

usage control are outsourced to the new DMP component. Thereby, cross-system data

flow tracking and usage control policy propagation (requirement R4) is organized

in a peer-to-peer manner between each pair of remote DMPs whenever appropriate

(cf. Section 4.2). For the coordination of distributed policy decisions (requirement

R5), the DMPs leverage a distributed database (cf. Section 4.3). The purpose of the

CommunicationManager is to separate the infrastructure’s external communication

from the Controller’s internal decision logics. This separation allows to easily change

the communication technology without affecting any internal components.

Technically, the above infrastructure has been implemented in Java, which allows

to deploy the infrastructure on a multitude of different operating systems. The infras-

tructure’s internal components, i.e. PDP, PIP, PMP and DMP, are able to communicate

both via function calls as well as via RPC. The latter has been implemented on the basis

of Apache Thrift [192, 198]—a cross-language RPC framework originally developed

at Facebook and now maintained by the Apache Software Foundation. The benefit of

Thrift is that it abstracts from any underlying technologies, such as the operating system

and the programming language being used. It allows for the convenient generation of

client and server stubs for many different languages (including Java, C++, Python,

OCaml, Delphi and others) from specifications written in the Thrift interface definition

language. Consequently, Thrift allows communicating components to be written in

different languages and to be run on different platforms. This is particularly useful

because PEPs are integrated into many different layers of the system and thus written

in a diverse set of languages. In addition, Thrift provides TLS support including the

possibility to perform client-side authentication.

By enabling the internal components to communicate both via function calls and

Thrift, the infrastructure can be flexibly deployed: If all components are deployed

locally, fast function calls can be leveraged for inter-component communication. How-

ever, if necessary or beneficial in a given scenario, components can also be deployed

remotely and communicate via Thrift. For RPC communication, corresponding Thrift

services run on well-known ports. Possible deployment scenarios are further detailed

in Section 4.1.3.

4.1. High-level Architecture 73

Listing 4.1: Interfaces provided by the PDP.

interface IPmp2Pdp {

// Deploys policy p at the PDP and starts to enforce it.

void deployPolicy(Policy p);

// Revokes policy p from the PDP and stops enforcing it.

void revokePolicy(Policy p);

// Returns all policies which are currently deployed at the PDP.

Set<Policy> listPolicies();

}

interface IPep2Pdp {

// Signals system event e to the PDP. The PDP will evaluate the

// event against all deployed policies and return a decision.

Decision signal(SysEvent e);

}

interface IAny2Pdp extends IPmp2Pdp, IPep2Pdp;

4.1.2 The Interfaces provided by PDP, PIP, PMP, and DMP

As can be seen in Figure 4.1, several interfaces are used to coordinate the communica-

tion between the infrastructure’s components. In the following, an overview over those

interfaces and their most important methods are given. How these interfaces are used

is described throughout the remainder of Chapter 4.

Interfaces provided by the PDP. The PDP provides two original interfaces, IPmp2Pdp

and IPep2Pdp, detailed in Listing 4.1, which provide essential services to the PMP

and PEPs, respectively. The most important methods provided by those interfaces

are deployment, retrieval, and revocation of policies (requirement R1), as well as

the possibility to signal system events and await a corresponding policy decision

(requirement R2). Besides, IAny2Pdp is a convenience interface which unifies the

methods provided by IPmp2Pdp and IPep2Pdp.

Interfaces provided by the PIP. The PIP provides two original interfaces, IPdp2Pip

and IPmp2Pip, which are detailed in Listing 4.2. Using interface IPdp2Pip, the PDP

is able to leverage the PIP for policy evaluation purposes (requirement R2). For this,

IPdp2Pip provides methods to evaluate state-based operators and to retrieve all data

within a given container. Further, the interface allows the PDP to signal data flow

system events to the PIP, upon which it will update its data flow state (requirement R3).

Interface IPmp2Pip allows the PMP to inform the PIP about the initial representations

of some data as further detailed in Section 4.2.2. This is important when the PMP is

about to deploy a new policy (requirement R1).

The additional interface IDmp2Pip is semantically equivalent to IPmp2Pip and is

supposed to be used by the DMP in case cross-system data flows occur (requirement

74 4. Architecture and Implementation

Listing 4.2: Interfaces provided by the PIP.

interface IPdp2Pip {

// Evaluates the specified state-based operator s

// and returns the resulting truth value.

boolean evaluate(StateBasedOperator s);

// Retrieves all data items within the

// container which is identified by i.

Set<Data> getDataInContainer(Identifier i);

// Signals the specified event e, upon which the PIP will update the

// data flow state in correspondence with e’s event semantics.

void signal(SysEvent e);

}

interface IPmp2Pip {

// Informs the PIP about a new representation for the

// specified data item d. The initial representation

// is the container which is identified by i.

void initialRepresentation(Identifier i, Data d);

}

interface IDmp2Pip extends IPmp2Pip;

interface IAny2Pip extends IPdp2Pip, IPmp2Pip;

Listing 4.3: Interfaces provided by the PMP.

interface IDmp2Pmp extends IPmp2Pdp;

R4). Note that convenience interface IAny2Pip only unifies interfaces IPdp2Pip and

IPmp2Pip, since the local PIP is not supposed to be queried by remote DMPs.

Interfaces provided by the PMP. The PMP provides only one interface, IDmp2Pmp (cf.

Listing 4.3), which is used by the local DMP. The provided methods allow to deploy and

revoke policies (requirement R1), as well as to retrieve the set of currently deployed

policies. Interface IDmp2Pmp is equivalent to interface IPmp2Pdp which is provided

by the PDP. The reason for this redundancy is that the PMP performs additional

administrative tasks before forwarding the corresponding requests to the PDP.

Interfaces provided by the DMP. The DMP provides four interfaces which are de-

tailed in Listing 4.4: (1) Interface IPip2Dmp allows the PIP to inform the DMP about

data flows to containers residing on remote systems (requirement R4). (2) Interface

IPdp2Dmp provides functionalities for the PDP that are necessary for coordinating

policy decisions with other PDPs (requirement R5). This includes a method to notify

to the DMP that the state of some local operator has changed (cf. Section 4.3), as

well as several methods to query whether the state of some operator has changed at

remote PDPs within or since a given timestep. Further, the interface provides methods

to synchronize the points in time in which policy evaluation needs to take place. All

4.1. High-level Architecture 75

Listing 4.4: Interfaces provided by the DMP.

interface IPip2Dmp {

// Instructs the DMP to perform remote data

// flow tracking of the set of data d to the

// remote container which is identified by i.

void doRemoteTransfer(Identifier i, Set<Data> d);

}

interface IPdp2Dmp {

// Notifies the DMP that the state of operator o has

// changed within the PDP. The DMP will make this state

// change available to other interested remote PDPs.

void notify(Operator o);

// Returns true if the specified operator o was true

// at remote locations at the specified timestep.

boolean wasTrueAt(Operator o, long timestep);

// Returns how often the specified operator was true

// at remote locations at the specified timestep.

int howOftenTrueAt(Operator o, long timestep);

// Returns how often the specified operator was true

// at remote locations since the specified timestep.

int howOftenTrueSince(Operator o, long timestep);

// Notifies to the DMP the very first point in time in

// which policy p was evaluated by the very first PDP.

void setFirstEvaluation(Policy p, long timestamp);

// Retrieves from the DMP the very first point in time in

// which policy p was evaluated by the very first PDP.

long getFirstEvaluation(Policy p);

}

interface IPmp2Dmp {

// Registers the specified policy p at the DMP for

// further distributed administration of the policy.

void register(Policy p);

// Unregisters the specified policy p.

void unregister(Policy p);

}

interface IDmp2Dmp {

// Informs a remote DMP that the set of data items d is about

// to be transferred to a container under its administration.

// The corresponding container is identified by i. Policies p

// must from now on be enforced by the remote infrastructure.

// Address a is a contact point at the invoking system.

void remoteTransfer(Identifier i, Set<Data> d,

Set<Policy> p, Address a);

}

76 4. Architecture and Implementation

information necessary for coordinated decison taking is exchanged between different

remote DMPs via a distributed database. This is further detailed in Section 4.3. (3) In-

terface IPmp2Dmp allows the PMP to register and unregister policies at/from the DMP

(requirement R1). (4) Interface IDmp2Dmp provides functionalities for cross-system

data flow tracking and policy propagation between remote DMPs (requirement R4).

This is further detailed in Section 4.2. Note that out of those four interfaces only

interface IDmp2Dmp is exhibited to the outside. The other interfaces may only be used

by the corresponding local components.

For all of the above interfaces it is assumed that they can only be utilized after a mutual

authentication between the two communicating components has been performed, e.g.

on the basis of a certificate infrastructure. In addition, the integrity of any remote Con-

troller ought to be ensured before communication. These assumptions are discussed

in Section 5.1.1. Further, deployment of new policies as well as policy revocation must

only be performed by authorized parties that have the explicit permission to do so

for the data addressed by the corresponding policy. Usually the legal owner of some

data is such an authorized party. While this problem is out of the scope of this work,

corresponding related work is discussed in Section 7.2.

Finally, it remains to clarify how the above interfaces and the datatypes being used

therein relate to the models described in Chapters 2 and 3: Data type Policy represents

ECA rules (cf. Section 2.1.3), data type SysEvent represents system events S, data type

StateBasedOperator represents state-based operators Ω , data type Data represents

the data items to be protected D, data type Identifier represents identifiers I, data

type Address represents addresses A, and, finally, data type Operator represents

the set of all policy operators such as true, false, and , not , since, before, repmin,

isCombined , and isNotIn.

4.1.3 Deployment Strategies

While the Controller provides all functionalities for both intra-system and cross-

system usage control enforcement, its components and interfaces have been designed

with many different requirements and scenarios in mind. As such, the entire infrastruc-

ture can be flexibly deployed. This section gives an overview of possible deployment

strategies.

First of all, the above architecture allows to switch off single components of a

Controller and to query corresponding remote components instead. This is the

reason for exhibiting interfaces such as IPmp2Pdp and IPdp2Pip to the outside. For

example, consider a scenario in which the PDPs of two Controllers ought to share

the same PIP. In such a case, it is possible to switch off the PIP and PipServer

within one of the Controllers and to have the corresponding PDP query the other

remote PIP via interface IPdp2Pip instead. Similarly, it would be possible to deploy

three Controllers, one of which only runs a PIP and the corresponding PipServer,

4.1. High-level Architecture 77

which would then be queried by the PDPs of the two other Controllers. While such

deployment scenarios might be beneficial in certain application scenarios, they might

also be used for load balancing.

The most straightforward deployment strategy is to deploy one single fully func-

tional Controller for all global distributed PEPs. This way, it is possible to mimic

the behavior of a purely centralized enforcement infrastructure, operating one central

PDP/PIP instance. In this case, all PEPs must be configured to signal all system events

to this central component.

However, the rationale behind developing the above infrastructure was to deploy

PDPs and PIPs locally in order to improve on communication and performance over-

heads. Hence, another possibility is to deploy one fully functional Controller per

organizational unit, department, or physical or virtual machine. In this case, the PEPs

will always query the local PDP for decision making purposes, which, in turn, will

query the local PIP for the local data flow state. Similarly, the local PMP manages all

policies being enforced by the local PDP. As such, all components of each Controller

keep a local state in correspondence with the events that have been signaled by the

local PEPs. It is the responsibility of the DMP to perform tasks related to distributed

usage control enforcement as further detailed in Sections 4.2 and 4.3.

4.1.4 Policy Enforcement Points

While the architecture described above is generic, PEPs must be integrated into different

layers of the computing system for which they are expected to intercept relevant events

and to signal them to the PDP/PIP for the purpose of decision making and data flow

tracking. While PEPs have been built for many different system layers and applications

(e.g. Android [55, 180], ChromiumOS [214], Java [61, 63], JavaScript [168], Mozilla

Firefox [110], Mozilla Thunderbird [125], MS Office [188], MS Windows [216],

MySQL [119], OpenBSD [74], OpenNebula [115], X11 [170]), this thesis leverages a

PEP at the operating system layer for Unix-like systems. This PEP, a brief overview of

which is given in the following, is a contribution of this thesis.

Based on the conceptual ideas proposed in [74], the developed PEP is based on the

strace tool [102], the original purpose of which is to print out the “trace of system calls

made by another process/program” [102]. Strace itself builds upon the ptrace system

call [120], which allows to intercept, observe, modify, and prohibit system calls both

before and after their execution by the kernel. Hence, no modifications to the operating

system itself nor the monitored programs are needed. By building upon strace, most of

the existing system call interpositioning framework can be reused and the actual PEP

mainly consists of preprocessing the system calls for the PDP and PIP. For the most

part, this preprocessing consists of collecting information required by the PDP and/or

PIP, such as additional system call parameters not provided by strace. Eventually, the

preprocessed system calls are signalled to the PDP via method signal(SysEvent e)

(interface IPep2Pdp) and the corresponding policy decision is received. By building

78 4. Architecture and Implementation

upon strace, the PEP can be run on all systems supported by strace, which include

Linux 32/64bit, BSD, and Android [151].

Since strace intercepts system calls both before and after their execution by the

kernel, the PEP is capable of signaling corresponding intended and actual system

events to the PDP. However, as detailed in Section 2.2.3, the PDP’s and PIP’s state only

evolve in a persistent manner in the presence of actual system events. This behavior,

however, may lead to race conditions: Consider a process that writes to a pipe or socket

using system call write. Then, the PEP intercepts the processes’ invocation of system

call write (i.e. the invocation of the corresponding kernel space functionality) at time

t1 and the return of the same write system call after its execution by the kernel at

time t2, t1 < t2. In correspondence with the above explanations, PDP and PIP would

only evolve their internal states in a persistent manner at time t2. If, however, the

PEP observes another processes’ actual read system call on the same pipe/socket at

time t3, t1 < t3 < t2, then this might result in data flows that are not reflected within

the PIP’s data flow state. The current implementation mitigates such race conditions

by conservative modeling: Whenever the PDP is about to allow an intended write

system call (or any equivalent), both the PDP’s and PIP’s internal states are evolved

instantaneously, i.e. without waiting for the PEP’s signaling of the corresponding actual
system call. Due to this instantaneous modeling of actual write system calls, the PEP is

absolved from the need to signal actual write system calls (or any equivalents) to the

PDP. Note that this behavior is of further importance in Section 5.2.

Since a high-level overview over the interactions between local PDPs, PIPs, and PMPs

has been given in Section 2.2 and because these functionalities do not constitute a

contribution of this thesis, they will not be further detailed in the following. Interested

readers are pointed to [106, 126]. The following sections describe how cross-system

data flow tracking and policy propagation (Section 4.2), as well as taking distributed

policy decisions (Section 4.3) is achieved in practice. Hence, in the following it is

assumed that one fully functional Controller is deployed per system. These Con-

trollers are responsible for local data flow tracking and policy evaluation as well as

intra-system data flow tracking. It is assumed that all Controllers are up and running

and have not been tampered with. These and other assumptions are discussed in

Section 5.1.

4.2 Cross-System Data Flow Tracking and Policy Propagation

A preliminary version of the content of this section has been published in [94].

Addressing RQ1, Section 3.2.1 introduced a generic model capable of capturing which

data takes which representations within the entire distributed system. This model

was instantiated for TCP/IP in Section 3.2.2, thus allowing to track data flows across

systems independent of the applications and application-protocols being used. Building

4.2. Cross-System Data Flow Tracking and Policy Propagation 79

upon these concepts, this section describes how TCP/IP-based cross-system data flow

tracking is achieved in practice. In addition, the fact that usage controlled data

is disseminated to different systems necessitates that the corresponding data usage

policies are available to the PDPs which are in charge of enforcing those policies. Hence,

also the latter aspect of shipping policies between systems is considered.

Note that by its very nature TCP/IP communication is limited to two communication

partners. Thus, all considerations in the following sections are limited to a client and

a server process. For scenarios with a larger number of systems and processes the

presented features apply transitively.

4.2.1 Connection Establishment

As described in Section 3.2.2, the data flow model bidirectionally aliases the server’s

and the client’s communicating socket as soon as a TCP connection is established

between two processes. However, it is nondeterministic whether the server’s accept

system call or the client’s connect system call returns first. Further, there exists a

cyclic dependency between the two system calls since all necessary information for

modeling the connection establishment is only available once the second system call

returns. For this reason, Section 3.2.2 assumed for each of those two system calls that

it returns second. In the following, it is explained how this nondeterminism as well as

the bidirectional alias is catered to by the implementation in case the TCP connection

is established between two processes that run (i) on two remote systems, (ii) on the

same system in the sense that the same PIP is responsible for tracking the processes’

data flows.

(i) If the two processes establishing a connection are remote, then the implemen-

tation creates two additional proxy containers (CProxySock ⊆ CSock)—one at the server

side, cp
c ∈ CProxySock , and one at the client side, cp

s ∈ CProxySock . These proxy containers

constitute local replacements for the corresponding actual remote socket containers

and they are identified using the same identifier. The purpose of using these proxy

containers is to avoid remote communication by the infrastructure upon connection

establishment. At the server side cp
c represents the remote container cc, while at the

client side cp
s represents the remote container cs . Consequently, the server’s PIP, PIPS,

bidirectionally aliases cs with cp
c , while the client’s PIP, PIPC, bidirectionally aliases

cc with cp
s . These two independent procedures on the server and the client side are

depicted in Figure 4.2.

(ii) If the two processes establishing a connection are local, i.e. if their data flows

are tracked by the same PIP, then the implementation needs to differentiate whether

accept or connect returns first. The case in which connect returns before accept was

1Signaling of the event to the PIP is actually mediated through the PDP: The PEP invokes method sig-

nal(SysEvent e) on the PDP (interface IPep2Pdp), which, in turn, invokes method signal(SysEvent

e) on the PIP (interface IPdp2Pip). This is simplified in Figures 4.2 to 4.4. Further, the parameter values
of events accept , connect , and write correspond to the ones used in Section 3.2.2.

80 4. Architecture and Implementation

Figure 4.2: Modeling the establishment of a remote TCP channel.1

PEPC PIPC

intercept()

signal()

PIPS

intercept()
signal()

PEPS

with y ∈ Y, pid ∈ IPid , fd ∈ IFdsc , as , ac ∈ IAddr , os , oc ∈ IPort .

easier to implement as explained in the following. A corresponding sequence diagram is

depicted in Figure 4.3: (a) If connect returns before accept , then the PIP performs most

necessary tasks upon observing the returning connect . These tasks consists of creating

and naming the new socket container cs , which represents the, yet inexistent, socket

which will be created upon return of the corresponding accept , and bidirectionally

aliasing cs with cc . Upon return of accept , it then only remains to assign a new identifier

to cs , namely the file descriptor returned by accept . (b) If accept returns before connect ,

creation of the bidirectional alias between cs and cc necessitates several steps. First,

upon return of accept the server’s connected socket container cs and its corresponding

identifiers are created. Further, an additional temporary socket container ct ∈ CSock is

created, which temporarily represents the client’s socket cc which attempted connection

establishment. Then, cs and ct are bidirectionally aliased. The reason for aliasing

cs with ct rather than the original client’s socket cc is that upon accept there is no

performant way of determining the remote socket cc which attempted connection

establishment. Further, the server process might write to the established connection

before the client’s returning connect is observed, in which case the data written to the

4.2. Cross-System Data Flow Tracking and Policy Propagation 81

Figure 4.3: Modeling the establishment of a local TCP channel.1

PEP PIP

intercept()

signal()

intercept()

signal()

alt [(a) connect() returns before accept()]

intercept()

signal()

[(b) accept() returns before connect()]

intercept()

signal()

with y ∈ Y, pid ∈ IPid , fd ∈ IFdsc , as , ac ∈ IAddr , os , oc ∈ IPort .

82 4. Architecture and Implementation

communication channel is not ‘lost’, but propagated to ct . To be able to identify ct later

on, cc ’s socket name (i.e. the local socket name and the remote socket name) is used as

an identifier for ct . Upon observing the returning connect , also the client’s connected

socket cc can be trivially identified via its file descriptor. Hence, the PIP bidirectionally

aliases cc with cs and copies all data from ct to cc . In addition, cc ’s socket name is now

used to identify cc rather than ct . Finally, all storage, alias, and naming information

related to ct is deleted.

4.2.2 Data Transmission and Policy Propagation

After connection establishment, the client and the server process may exchange any

kind of data by executing system call write (or any equivalent, cf. Section 3.2.2) on a file

descriptor referring to the established TCP communication channel. In case the client

and the server process are local, tracking of the corresponding data flows is trivially

accomplished by the local PIP. If, however, the client and the server process reside on

two different systems and are thus within the responsibility of two different PIPs, the

usage control infrastructure must explicitly track the corresponding cross-system data

flows. In addition, the infrastructure must ensure that also the corresponding policies

are transferred together with usage controlled data and that they are deployed at the

receiving side’s PDP. These functionalities are achieved by the DMP as explained in the

following and depicted in Figure 4.4. Note that a prerequisite is that the PDP decided

to allow the write system call on the TCP channel; otherwise no cross-system data flow

(tracking) would happen in the first place. The remainder of this section describes

how the implementation reflects a data transfer from a client process on system C to a

server process on system S. Data transfer from the server process to the client process

is analogous.

Once the client process’ intended write(y, pid , fd) system call to a TCP channel

is intercepted and temporarily blocked by PEPC, it is signaled to PDPC and PIPC

for decision making and data flow tracking purposes. Naturally, PIPC is capable of

detecting the process’ attempted cross-system data flow: A cross-system data flow

occurs if PIPC propagates data to a container of type CProxySock , i.e. a proxy container

representing a remote socket container. Formally, this is the case if for PIPC’s current

state σ ∈ Σ it holds that σ.a∗(σ.n((y, pid , fd)))∩CProxySock 6= ∅. Upon detection of such

an attempted remote data flow, PIPC informs DMPC about this fact, leveraging method

doRemoteTransfer(Identifier i, Set<Data> d) (interface IPip2Dmp, Listing 4.4).

Thereby i ∈ (ISys × ((IAddr × IPort)× (IAddr × IPort))) ⊆ I refers to the destination

container’s socket identifier and d to the set of data that is being transferred to this

container.

DMPC then retrieves all currently enforced policies from PMPC using method list-

Policies() (interface IDmp2Pmp, Listing 4.3), and filters the list of policies for those

that constrain the usage of any data items within set d. Subsequently, DMPC estab-

lishes a RPC connection to the remote DMPS and performs remote data flow tracking

4.2. Cross-System Data Flow Tracking and Policy Propagation 83

Figure 4.4: Cross-system data flow tracking and policy propagation.1

PEPC PIPC

intercept()

PMPC DMPC DMPS

signal()

loop

doRemoteTransfer(,)

ref cf. below

DMPC DMPS

listPolicies()

filter(,)
remoteTransfer(, , ,)

System C

System C

System S

System S

initialRepresentation(,)

deployPolicy()

PIPSPMPS PDPS

deployPolicy()

and policy propagation via method remoteTransfer(Identifier i, Set<Data> d,

Set<Policy> p, Address a) (interface IDmp2Dmp, Listing 4.4). Essentially, DMPC

informs DMPS that the set of data items d is about to flow into the container identified

by identifier i and that the set of policies p must consequently be enforced. The purpose

of address parameter a is explained in Section 4.3.5.

Upon receiving the incoming RPC call, DMPS informs PIPS about the incoming

data flow by invoking method initialRepresentation(Identifier i, Set<Data>

d) (interface IDmp2Pip, Listing 4.2). PIPS then updates its data flow state accordingly,

essentially updating the storage function of the container identified by i with the

provided data items d. Further, DMPS informs PMPS about the new policies to enforce

by invoking method deployPolicy(Policy p) (interface IDmp2Pmp, Listing 4.3) for

each transferred policy. In turn, PMPS deploys those policies at PDPS, provided they

84 4. Architecture and Implementation

have not been deployed before, e.g. due to some previous data flow between those

systems.

Once this RPC call to DMPS has succeeded, DMPC returns and PIPC continues

with its execution. Eventually, the intended write system call which attempted the

cross-system data flow is unblocked and the actual payload data flows to the receiving

socket via the established communication channel. Once the receiving process reads

from this socket, the corresponding data usage control infrastructure, in particular

PDPS and PIPS, are already aware of the cross-system data flow and the corresponding

policies, therefore extending usage control enforcement of the transferred data items

to the receiving system.

Note that the data flow state of a process writing to a TCP channel might change in

between two write system calls, e.g. if the process reads additional data. In this case

the remote communication (i.e. remoteTransfer()) must be repeated upon the next

write system call.

4.2.3 Connection Teardown

If a TCP connection between two processes on two remote systems is torn down, the

corresponding local PIPs perform some cleanup by deleting the socket containers, the

associated proxy containers, as well as their aliases and identifiers which were assigned

during connection establishment.

Having described how data is tracked across systems and how policies are propagated

accordingly (RQ1), the following section describes how global data usage policies, i.e.

policies referring to data and events that are distributed across several systems, are

enforced in practice.

4.3 Taking Distributed Policy Decisions

Contents of this section have been published in [93].

As stated by RQ2, global policies that have been disseminated to multiple systems

are expected to be consistently enforced across all those systems at all times. To this

end, Section 3.3 provided methods to coordinate decisions about global policies across

multiple distributed PDPs. Building upon these results, this section focuses on the

practical evaluation of conditions ϕp ∈ Φ, which constitute the most complex and

interesting part of ECA rules.

To explain how consistent enforcement of policies across systems is achieved in

practice, the following considerations take the view of the PDP within a system A, PDPA,

which enforces ECA rule p with trigger event ep ∈ E , condition ϕp ∈ Φ, and action

ap . As described in Section 2.2.3, any event signaled to PDPA potentially changes

the state of leaves within the expression tree of ϕp . Since such state changes are

of potential importance for other PDPs enforcing p, PDPA must make any such state

4.3. Taking Distributed Policy Decisions 85

changes available to all corresponding other PDPs. As described in Section 3.3.2, this

set of PDPs is overapproximated by function relevant(ϕp , i , τ) for each point in time i

and the set of currently executing traces τ . The functionality to make state changes

available to other PDPs is provided by the DMP. Hence, whenever state changes occur

at PDPA, it informs its DMP, i.e. DMPA, about this fact via method notify(Operator

o) (interface IPdp2Dmp, Listing 4.4). DMPA is then responsible for exchanging this

information with other DMPs, which in turn make this information available to their

PDPs via interface IPdp2Dmp.

Section 4.3.1 describes at a high level how policy decisions are coordinated between

PDPs, leveraging the interface IPdp2Dmp provided by the DMPs. Thereby, Section 4.3.1

intentionally abstracts from the technical synchronization between DMPs and assumes

that all relevant remote DMPs are consistently, reliably, and timely informed about any

state changes that are notified by the PDP. Sections 4.3.2 to 4.3.5 will then describe

how remote DMPs synchronize in practice.

4.3.1 Coordinating Distributed Policies

As described in Section 2.2.3, ECA rule p must be evaluated whenever a timestep has

passed or whenever a signaled event matches p ’s trigger event ep . In any of those cases

each PDP enforcing p first evaluates ϕp locally, eval(ϕp), according to Section 2.2.3.

Recap that Sat(τ,Y , i , ϕp), as defined in Section 3.3.2, states for each formula ϕp ,

given the tuple of executing traces τ , set of systems Y , and point in time i , whether ϕp ’s

local satisfaction implies its global satisfaction (Sat(τ,Y , i , ϕp) = true) or whether its

local violation implies its global violation (Sat(τ,Y , i ,not(ϕp)) = true). Further recap

that eval(ϕp) reflects whether ϕp is satisfied given the currently executing trace tτY at

the current point in time i (i.e. (tτY , i) |= ϕp).

Hence, if local evaluation of ϕp yields eval(ϕp) = true and if Sat(τ,Y , i , ϕp) = true,

i.e. if local satisfaction of ϕp implies its global satisfaction, then no further coordination

with other PDPs is necessary: action ap will be executed. Similarly, if eval(ϕp) = false

and if Sat(τ,Y , i , ϕp) = false, then local violation of ϕp implies the global violation of

ϕp and no coordination is required; action ap will not be executed. In summary, no

further coordination with other PDPs is required if eval(ϕp) = Sat(τ,Y , i , ϕp).

If, however, eval(ϕp) 6= Sat(τ,Y , i , ϕp), then it might be the case that the evalua-

tion result of ϕp changes when considering other PDPs’ state changes. Consequently,

PDPA re-evaluates ϕp , which is demanded to be given in DNF (cf. Section 3.3.2),

with the help of DMPA. For each leaf operator o ∈ {E , isCombined , repmin} of ϕp ,

PDPA queries DMPA if o is not negated and if eval(o) = false, or if it is negated

(not(o)) and if eval(not(o)) = true. For each leaf operator o′ ∈ {isNotIn, isMaxIn}
of ϕp , PDPA queries DMPA if o′ is not negated and if eval(o ′) = true, or if it is
negated (not(o′)) and if eval(not(o ′)) = false. This query strategy reflects the defini-

tion of predicate Sat in Section 3.3.2. Technically, PDPA queries DMPA using meth-

ods wasTrueAt(Operator o, long timestep) (for state-based operators isCombined ,

86 4. Architecture and Implementation

isNotIn, isMaxIn), howOftenTrueAt(Operator o, long timestep) (for events E),

and howOftenTrueSince(Operator o, long timestep) (for operator repmin) of in-

terface IPdp2Dmp, cf. Listing 4.4. If any of those queries yields a result different from

the earlier local evaluation result, then the entire expression tree of ϕp is recursively

re-evaluated starting from the root node. This re-evaluation then considers this newly

available information.

As an example consider condition

ϕp = ((requestOffer , {(obj , d)}) before 30) and repmax (30 , 0 , (sendOffer , {(obj , d)}))

of ECA rule 1a as described in Section 2.1.3, and a situation in which at system

A event (sendOffer , {(obj , d)}) happened at the previous timestep, i − 1, while at

system B the event (requestOffer , {(obj , d)}) did happen exactly 30 timesteps ago.

Besides, no further events happen or have happened. PDPA and PDPB exchange

the fact that these two events happened via DMPA and DMPB, using method void

notify(Operator o) of interface IPdp2Dmp. For ease of writing ϕp is also writ-

ten as ϕp = ϕp1 and ϕp2 with ϕp1 = ((requestOffer , {(obj , d)}) before 30) and

ϕp2 = repmax (30 , 0 , (sendOffer , {(obj , d)})). Note that according to the defini-

tion of Sat , it holds that Sat(τ,Y , i , ϕp1) = true and Sat(τ,Y , i , ϕp2) = false for

τ = (tA, tB) and Y = {A,B}. Consequently, Sat(τ,Y , i , ϕp) = Sat(τ,Y , i , ϕp1) ∧
Sat(τ,Y , i , ϕp2) = false. First, PDPA and PDPB evaluate ϕp locally: PDPA’s local

evaluation yields false, evalA(ϕp) = false, since from PDPA’s local point of view the

event (requestOffer , {(obj , d)}) has not happened 30 timesteps ago. However, local

evaluation of ϕp by PDPB yields true, evalB (ϕp) = true, since from PDPB’s local point

of view the event (requestOffer , {(obj , d)}) did happen 30 timesteps ago, while the

event (sendOffer , {(obj , d)}) did not happen within the last 30 timesteps. At this point

PDPA is aware that the locally observed violation of ϕp implies the global violation

of ϕp since evalA(ϕp) = Sat(τ,Y , i , ϕp) = false. Consequently, PDPA can conclude

evalg
A(ϕp) = false. At the same time, however, PDPB can not conclude locally, since

evalB (ϕp) = true 6= false = Sat(τ,Y , i , ϕp). Looking more closely at PDPB’s evalua-

tion of ϕp , it turns out that evalB (ϕp1) = Sat(τ,Y , i , ϕp1) = true, hence evalg
B (ϕp1) =

Sat(τ,Y , i , ϕp1) = true, and evalB (ϕp2) = true 6= false = Sat(τ,Y , i , ϕp2). Hence,

PDPB queries DMPB for ϕp2 . Since PDPA leveraged DMPA to publish the fact that event

(sendOffer , {(obj , d)}) did happen in the previous timestep, distributed evaluation

of ϕp2 by PDPB results in evalg
B (ϕp2) = false. Since evalg

B (ϕp1) = true, PDPB can

conclude evalg
B (ϕp) = evalg

B (ϕp1) ∧ evalg
B (ϕp2) = false = evalg

A(ϕp).

It is important to note that time-based policy evaluations must consistently happen

at the same time across all PDPs. Otherwise, the PDPs might come to different

conclusions when evaluating the same policy. Consider once again the above condition

ϕp , a point in time i , a timestep interval of two days, and a situation in which event

(requestOffer , {(obj , d)}) happens at time i , while event (sendOffer , {(obj , d)}) never

happens. Further assume that PDPA evaluates ϕp at times i , i + 2, i + 4, i + 6, . . .,

4.3. Taking Distributed Policy Decisions 87

Figure 4.5: Four systems connected via the Cassandra database.

Cluster

PEP1
A

PEP2
A

PEP3
A

PDPA

System A

PEP1
B

PEP2
B

PEP3
B

System B

PMPA DMPA

Cassandra
node

PIPA

Cassandra
node

PDPA

PMPA DMPA

PIPA

PEP1
C

PEP2
C

PEP3
C

PDPC

System C
PMPC DMPC

Cassandra
node

PIPC

PEP1
D

PEP2
D

PEP3
D

System D

Cassandra
node

PDPD

PMPD DMPD

PIPD

while PDPB evaluates ϕp at times i + 1, i + 3, i + 5, Then, PDPB’s evaluation at

times i + 29 and i + 31 yields false, while PDPA’s evaluation at time i + 30 yields

true. In order to avoid such inconsistent evaluation results, the decentral PDPs always

evaluate at the same time. The corresponding evaluation times are coordinated

via the DMPs using methods setFirstEvaluation(Policy p, long timestamp) and

getFirstEvaluation() (interface IPdp2Dmp, Listing 4.4), as further explained in

Section 4.3.3.

Synchronizing the times of policy evaluations across systems as explained above is

subject to scheduling and clock synchronization issues. Even more, as [131] states, “it

is very difficult to obtain a global, consistent view of all components in a distributed

system”. The presented implementation (as further detailed in the following sections)

made use of the Network Time Protocol (NTP) [142] to synchronize system clocks.

4.3.2 Using Cassandra as a Distributed Database

As indicated in Figure 4.5, the current implementation leverages a distributed database,

namely Cassandra, to synchronize all information provided by the PDPs to their corre-

sponding DMPs. Cassandra is a distributed database originally developed at Facebook

[112] and now maintained and supported by The Apache Software Foundation [199]

and DataStax, Inc. [41]. Its purpose is to provide a “highly available service with no

single point of failure” being run “on top of [. . .] hundreds of nodes” [112]. As such,

Cassandra has been designed to achieve high scalability, availability, and performance.

Data Replication. In Cassandra, the entire set of nodes forming the distributed

database is called a cluster cluster. Within such a cluster all nodes are equal, resulting in a

distributed database without any master nodes. The cluster’s data is organized via

88 4. Architecture and Implementation

keyspaceskeyspace , and each table
table

is associated with, or contained in, exactly one keyspace.

Keyspaces take a central role, since each keyspace’s replication strategy
replication

strategy

defines among

which nodes of the cluster its associated tables are replicated. Essentially a keyspace’s

replication strategy thus defines a set of nodes that participate in the cluster. For this

reason data with the same replication requirements should be organized within the

same keyspace. Within the context of enforcing global data usage policies, each PDP

might need to enforce several policies at the same time and for each the set of remote

PDPs with which coordination is required might differ. Hence, the implementation

represents each policy by exactly one keyspace. E.g., consider policy p constraining the

usage of data d which has representations in systems A and B. Then, in the implemen-

tation there exists keyspace kp with replication strategy krep
p = {A,B}. Thus, if PDPA

notifies a state change of p to DMPA, then DMPA will make this information available

within keyspace kp . Cassandra will then take care of replicating this information to

exactly those DMPs for the PDPs of which it is of interest, i.e. DMPB.

Data Consistency. With the CAP theorem [21, 68] stating that consistency, availability,

and partition-tolerance can not all be achieved at the same time, many eventually

consistent databases have emerged in recent years [11, 212]. In this respect, Cassandra

is flexible by allowing to trade consistency with performance. For the time being, strong

data consistency is assumed, i.e. that reads by the DMPs on the database always return

the most recently written value [42]. Section 4.3.4 describes how this is efficiently

achieved in practice. In case strong consistency is not sufficient, Cassandra provides

lightweight transactions which implement linearizable consistency, i.e. the possibility

to perform operations in a sequence that must not be interrupted by others. While

such transactions in a distributed (database) system reflect the well-known consensus

problem [56, 210], Cassandra provides a corresponding solution on the basis of the

Paxos consensus protocol [42, 113, 114].

Deployment. As indicated in Figure 4.5, the idea is to bundle each PDP with one

DMP and consequently with one Cassandra instance. Once the Cassandra instance is

executed, it operates as a node within the cluster. Effectively this results in each DMP

forming a node within that cluster. While the implemented infrastructure also allows

to run the DMP, and consquently the Cassandra node, on any system remote from the

PDP, running them on the same host is beneficial in terms of runtime performance.

For the time being it is assumed that all Cassandra nodes participate in the cluster

as soon as they are started. How this is actually achieved in practice is explained in

Section 4.3.5.

Clock Synchronization. While system clocks where synchronized using NTP, the

implementation also leveraged Cassandra’s capability of using server-side timestamps

which are guaranteed to be unique among the entire Cassandra cluster [43]. As such,

the performed coordinated policy evaluations did not reveal evaluation inconsistencies.

If, however, the accuracy of NTP, which is up to one millisecond, would turn out to

4.3. Taking Distributed Policy Decisions 89

be insufficient, then more accurate clock synchronization techniques could be used.

Examples are the Precision Time Protocol (PTP) [72], which provides accuracy up

the microsecond-level, or the Global Positioning System (GPS) [117], which provides

accuracy up the nanosecond-level.

4.3.3 Bootstrapping and Reflecting Cross-System Data Flows

Consider a set of systems with their corresponding usage control infrastructure as

depicted in Figures 4.1 and 4.5. Further assume that no data usage policy has yet

been deployed. Then, at some point in time the first policy p, protecting data d, is

deployed at system A via PMPA as described in [106], e.g. if an end user deploys a

policy via a dedicated policy editor tool. First, PMPA parses the policy p and identifies

the data protected by the policy, d ∈ D, as well as d’s initial representations, say some

container c ∈ CA which is identified by identifier i ∈ IA within system A. Using method

initialRepresentation(Identifier i, Data d) (interface IPmp2Pip, Listing 4.2),

PMPA informs PIPA about this initial representation of data d. Further, PMPA registers

policy p at the DMPA using method register(Policy p) (interface IPmp2Dmp, List-

ing 4.4), which prepares keyspace kp with replication strategy krep
p = {A} for potential

later coordination of policy p with other DMPs/PDPs. Finally, PMPA deploys policy p

at PDPA, which then starts to enforce it (method deployPolicy(Policy p), interface

IPmp2Pdp, Listing 4.1). Once PDPA performs the first time-based evaluation of p, the

corresponding point in time is communicated to DMPA using method setFirstEvalu-

ation(Policy p, long timestamp) (interface IPdp2Dmp, Listing 4.4). DMPA stores

this information within keyspace kp as it will be required for the future consistent

enforcement of p across multiple PDPs. However, as of now p and d are only known

to PDPA/PIPA, which is why PDPA can independently take all decisions about p as

described in Section 2.2.3.

Now, consider that system A shares data d with system B via the network. From

then on, also system B might influence the evaluation of p. How the implementation

handles such cross-system data flows has been described in Section 4.2.2. Recall that

method remoteTransfer(Identifier i, Set<Data> d, Set<Policy> p, Address

a) of interface IDmp2Dmp was used for that purpose. Once this method is called, DMPB

triggers the adaptation of the existing keyspace kp , effectively adapting the keyspace’s

replication strategy to incorporate system B’s Cassandra node, krep
p ← krep

p ∪ {B} =
{A,B}. Subsequently, all data written to kp is immediately replicated to Cassandra

nodes A and B and is thus immediately available to both DMPA and DMPB, and thus

to PDPA and PDPB. As motivated earlier, once policy p has been deployed at both

PDPA and PDPB, time-based policy evaluations at those two PDPs are expected to

happen at the same times. Hence, upon deployment of policy p, PDPB queries DMPB

for the very first point in time at which p was ever evaluated using method long

getFirstEvaluation(Policy p) (interface IPdp2Dmp, Listing 4.4). This information

is available to DMPB within keyspace kp . PDPB then synchronizes its local time-based

90 4. Architecture and Implementation

evaluations with the returned value. Note that in the current implementation a

keyspace’s replication strategy reflects the set of systems being returned by function

knowD as defined in Section 3.3.1. Thus, a keyspace’s replication strategy already

provides a good approximation of the systems being relevant for evaluating a given

policy. In other words, for policy p keyspace kp is a good approximation for function

relevant(ϕp , i , τ) as defined in Section 3.3.1.

Now, system B might further share data d with system C. DMPC will further

adapt the existing keyspace to also incorporate system C’s Cassandra node, krep
p ←

krep
p ∪ {C} = {A,B,C}. Notably, the keyspace’s adaption is immediately perceived

by nodes A and B, such that from now on all data written to kp will be replicated

to nodes A, B and C. In order to prevent conflicts and lost updates, these adaptions

of a keyspace’s replication strategy must be atomic. Hence, a corresponding locking

mechanisms was implemented on top of the keyspace being updated. For atomic

acquiring of the lock, Cassandra’s lightweight transactions are used.

4.3.4 Cassandra Consistency

Up to now, strong data consistency was assumed. In Cassandra, each single read

and write operation to a keyspace can be configured with a consistency levelconsistency
level

(CL).

Consistency levels define how many nodes of the keyspace must acknowledge to have

received and obeyed an operation. Among others, Cassandra provides the consistency

levels One, Two, Three and All, respectively defining that one, two, three and all

nodes of the keyspace must acknowledge the corresponding operation. While using

CL=All for all read and write operations guarantees strong data consistency, it comes

at the cost of performance and the requirement that all of the keyspace’s nodes must

be always online and reachable by all other nodes. By providing consistency level

Quorum, Cassandra allows to achieve strong consistency without such drawbacks: If

CL=Quorum, then operations must be acknowledged by at least half of the nodes.

Consequently, strong consistency can be achieved by using CL=Quorum for all reads

and writes. Note that strong consistency could also be achieved by using CL=All for all

writes and CL=One for all reads, or vice versa. This, however, imposes the drawbacks

for consistency level All mentioned above.

Whenever a consistency level different from One is used, reads and writes to a

keyspace might fail. If CL=All, then it is sufficient that only one of the keyspace’s

nodes is not available in order to make queries to the keyspace fail. Since failing of a

node or some network link is not unlikely in practice, a consistency level of All can be

considered impractical. If CL=Quorum, read and write operations might fail if half of

the nodes of a keyspace are not available. While such situations are not impossible, e.g.

if network partitions occur, they are much more unlikely in practice. Considering the

Cassandra cluster from the point of view of a single node, any query to a keyspace with

CL6=One fails in case the considered node is offline. While configurable, by default the

implementation uses CL=Quorum for all reads and writes.

4.3. Taking Distributed Policy Decisions 91

The implementation tackles the aforementioned problems by two means: First, it

is configurable how often and in which intervals failed queries are retried. Second, if

queries still fail after the predefined amount of tries, the PDP takes a fallback decision.

Clearly, such a fallback decision depends on the policy being enforced, the scenario,

and the attacker model. Hence, the policies can be configured accordingly.

4.3.5 Connecting Cassandra Nodes

In Cassandra nodes might join and leave the cluster at all times. To join, a new node

needs some way to discover the cluster it ought to participate in. For this, it is sufficient

for the new node to know any other node that is already part of the cluster. Once

contacted, the new node learns about the cluster using a peer-to-peer gossip protocol

[98]. For this startup phase Cassandra defines seed nodes, a set of fixed nodes which

are highly available. Since one original goal of this thesis was to develop a fully

decentral infrastructure, this section provides solutions to the problem of integrating

new nodes into an existing cluster without any well-known seed nodes. Unfortunately,

Cassandra does not provide an API to explicitly trigger the above gossip protocol on

one specific node with the task to explore the cluster for yet unknown nodes. Having

in mind that such a functionality would simplify the following solutions, the following

workarounds are provided.

Recap the scenario described in Section 4.3.3, in which the very first policy p,

protecting data d, is deployed at PDPA, while PDPB is not yet enforcing any policies.

At some point in time, d, and subsequently policy p, is transferred to system B as

described in Section 4.2. In Section 4.3.3 it was assumed that system B’s Cassandra

node did already participate in the cluster before the transfer of d from system A to

system B. If this is not the case, however, then there must be a way of making the

Cassandra node on system B join the cluster without any well-known seed nodes. The

solution to this problem is to not start the Cassandra node together with the corre-

sponding Controller, but only once the first global policy ought to be enforced: Once

DMPB receives policy p via remote procedure call remoteTransfer(Identifier i,

Set<Data> d, Set<Policy> p, Address a) from DMPA (cf. Section 4.2.2), DMPB

also gets to know the address a of system A’s Cassandra node. Knowing this address,

system B’s Controller starts its Cassandra node, using the given address a as a seed

node. Further, DMPB adds address a to its private list of known Cassandra nodes,

which is used to reconnect to the cluster in case a network or power outage occurred.

Now, consider an extended scenario in which systems A and B, i.e. PDPA and PDPB,

enforce policy p, protecting data d, while PDPC enforces policy p ’ which protects data

d’. Since the sets of systems enforcing p and p ’ are disjoint, the overall cluster can be

considered to be partitioned, while the single partitions are not aware of any other

partitions. Once data d is transferred from system A to system C, these two partitions

must be merged because in the following systems A, B and C must coordinate their

decisions w.r.t. policy p. Since an explicit command to trigger the gossip protocol as

92 4. Architecture and Implementation

described above is missing, one way of technically resolving that problem is as follows:

Once d is transferred from system A to system C, a temporary Cassandra node, which

uses both A’s Cassandra node as well as C’s Cassandra node as seed nodes, is started.

Gossiping through this temporary node, the previously autonomous parts of the cluster

will get to know about each other. Once this has happened, the temporary node can

be taken down again. While this functionality has not been implemented within the

described usage control enforcement infrastructure, preliminary experiments showed

that the described approach does work in practice.

Discussion. While most state-of-the-art distributed databases support the features that

were required for synchronizing policy decisions (e.g. data replication and synchro-

nization, fault and network partition tolerance, data consistency), the implementation

leverages Cassandra for several reasons: (i) Keyspaces allow to flexibly define which

database nodes replicate which data; (ii) the absence of any master nodes leads to a sys-

tem without any single point of failure; (iii) consistency can be traded for performance

and vice versa, allowing to ‘tune’ the performance in case (minor) inconsistencies in the

policy decisions are acceptable, (iv) TLS including client authentication (i.e. authentica-

tion of the Controller) is readily available; (v) it is based on Java technology and can

thus be run on any system on which the Controller can be run; (vi) convenient Java

drivers are available. However, as the evaluation will show (Section 5.3), Cassandra

introduces some non-negligible performance and communication overheads. It stands

to reason that a solution tailored to the particular requirements of taking distributed

data usage control decisions would improve upon these overheads.

5
Evaluation

This chapter provides a comprehensive evaluation of the concepts and the infrastructure

developed within this thesis. The main purpose is to understand (i) which security

guarantees are provided by the developed infrastructure (Section 5.1), and (ii) which

communication and performance overheads are introduced (Sections 5.2 and 5.3).

Finally, Section 5.4 analyzes the performed experiments w.r.t. certain threats to validity.

5.1 Security Evaluation

This section addresses RQ3 posed in Section 1.1.3 by performing a security analysis of

the infrastructure developed within this thesis. To this end, Section 5.1.1 starts with a

discussion of security-relevant assumptions taken throughout this thesis. Section 5.1.2

then performs the actual security analysis. Finally, Section 5.1.3 summarizes by detail-

ing in which situations, i.e. in the presence of which attacker models and within which

kind of environment, which guarantees are provided when deploying the infrastructure

developed within this thesis.

5.1.1 Security-relevant Assumptions

No Vulnerabilities. Since the usage control infrastructure developed in this thesis

runs as a process within the operating system, both the usage control infrastructure

and the operating system are assumed to be free of vulnerabilities. Otherwise, an

attacker, both from the inside or the outside, might be able to gain administrative

privileges and switch off or tamper with the usage control infrastructure. The same

assumptions are expected to hold for state-of-the-art cryptographic methods and access

control mechanisms, since the developed usage control infrastructure depends on such

techniques as discussed in the following paragraphs.

Access Control. The usage control infrastructure leverages state-of-the-art access con-

trol mechanisms built into the operating system and applications. These mechanisms

are expected to enforce standard access control policies such as constraining users in

95

96 5. Evaluation

accessing certain parts of the file system, e.g. other users’ home directories or system

files and directories. In particular, access control mechanisms must prevent regular

users from gaining administrative privileges and from escalating their privileges in any

other way.

Confidentiality and Integrity of Data. The usage control infrastructure assumes that

Data at Rest and Data in Motion is handled confidentially and that its integrity is

assured. In terms of Data in Motion, the implemented infrastructures builds upon

TLS (Transport Layer Security) [46] to assure the confidentiality and integrity of all

information exchanged between remote components of the infrastructure. Further,

all information exchanged between the different nodes of the distributed database is

secured using TLS. In terms of Data at Rest, the presented infrastructure does currently

not implement any corresponding technologies. However, disk-encryption technologies

such as EncFS [70], Microsoft BitLocker [139], and CipherShed [36], a fork of the

discontinued TrueCrypt project [207], are fully transparent for application software

and can thus be trivially integrated. Consequently, corresponding technologies are

assumed to be in place. Note that the proper operation of such technologies requires

access control mechanisms, as described above, to be in place.

Certificate Infrastructure. Due to the usage of TLS, the usage control infrastructures

must be equipped with corresponding certificates, and, implicitly, public/private key

pairs. For the evaluation in Sections 5.2 and 5.3, key pairs where decentrally created

and the corresponding certificates where signed by a trusted Certificate Authority.

Different instantiations of the infrastructure exchange and verify those certificates

in a peer-to-peer manner whenever required. For this, the built-in TLS capabilities

of Thrift and Cassandra were used. Using central Certificate Authorities might be

discouraged when deploying an otherwise fully distributed infrastructure. In such a

case, it is possible to organize the certificates in the manner of a Web of Trust, in which

the concept of trust between parties is organized in a decentral rather than a central

manner. Such considerations are orthogonal to the solution provided in this thesis.

Along similar lines, it must be assumed that there do not exist ways for any entity to

obtain invalid or faked certificates. If private keys are lost or stolen, the infrastructure

should provide means to handle such situations, e.g. by maintaining and complying

with corresponding revocation lists.

Correctness of Models and Implementation. The usage control infrastructure can

only operate as expected if all of its aspects, such as data flow tracking and taking

distributed policy decisions, have been modeled and implemented correctly. If in

doubt about how to ‘correctly’ model a specific system behavior, the most conserva-

tive approach should be taken. Since the correctness of models, instantiations and

implementations can not in all cases be formally proven, it is essential to review cor-

responding artifacts, e.g. instantiations of the generic data flow model described in

Sections 2.3 and 3.2.2 (including state transitions R) or the implementation described

5.1. Security Evaluation 97

in Chapter 4. In addition, it is advisable to digitally sign the infrastructure’s code/ex-

ecutables before shipment and consequently to be able to verify its integrity upon

deployment.

Robustness of Implementation. There are many reasons for which the usage control

infrastructure or any of the underlying components, such as the operating system or

the hardware, might fail. E.g., if the machine runs out of memory, if the system is

under attack, or if power outages occur. Despite such situations usage controlled data

must not be used without respecting the corresponding data usage policy. Hence, it

is assumed that usage controlled data is exclusively stored on encrypted file systems

that can only be decrypted and accessed by the usage control infrastructure. This

way, users are not able to circumvent policy enforcement, even if components such as

the operating system and/or its access control mechanisms fail. Along similar lines,

the internal states of the infrastructure’s central components, i.e. PDP, PIP, PMP,

and DMP, must be kept in persistent memory. The reason is that this enables the

recovery of those components’ internal states, e.g. after a system crash. Without such

persistency previous data flows, deployed policies, as well as policy decisions would be

lost, potentially resulting in the uncontrolled usage of usage controlled data.

Integrity of the Usage Control Infrastructure. This thesis assumes the integrity of all

deployed data usage control infrastructures, as well as the underlying operating systems

and any other security-relevant mechanisms upon which the implementation builds.

The extent to which this assumption is valid, however, depends on the considered

scenario and attacker model. For example, such an assumption might be adequate

in a business scenario such as the insurance company introduced in Section 1.5. In

such scenarios, users are usually provided with hardware by the employer and do

not have administrative privileges on the corresponding systems. If the usage control

infrastructure is embedded within the operating system, run with administrative

privileges, and if it is not possible for the user to tamper with that infrastructure, then

the above assumption may be adequate. Similar scenarios are omnipresent when

considering most of today’s smartphones and tablet PCs, where users rarely have full

administrative privileges. While it is technically possible to jailbreak those systems or to

install alternative operating systems, such procedures are not an option for non-experts.

If it comes to more open environments with many different heterogeneous distributed

systems and end users having administrative privileges, however, the integrity of all

deployed usage control infrastructures can surely no longer be assumed. While trusted

computing technologies such as Trusted Platform Module (TPM) [208] and Next-

Generation Secure Computing Base (NGSCB) [51, 140] provide technical solutions to

such problems, there was no breakthrough of such technologies in over ten years of

their development. Due to many disputes around such technology, a further discussion

on this topic is provided in Chapter 7.

98 5. Evaluation

Omnipresence of the Usage Control Infrastructure. This thesis assumed a usage

control infrastructure to be deployed on each system that maintains copies of usage

controlled data. In this scenario a strict usage control implementation would by no

means allow usage controlled data to be sent to systems that can not reliably state

that a corresponding infrastructure is in place. This, however, might be unrealistic

in practice. While solutions to this problem are likely to be highly dependent on

concrete scenarios, one possible solution is to allow usage controlled data to be sent

to non-usage controlled systems in a controlled manner, e.g. after critical parts of the

protected data have been anonymized [60].

5.1.2 Security Analysis

A preliminary version of the content of this section has been published in [94].

While a security analysis can hardly be exhausting, the purpose of this section is to

understand the attack surface and vulnerabilities present in the developed infrastruc-

ture. Consequently, this section implicitly describes potential future work by pointing

to vulnerabilities and potential countermeasures. In the following, two main attacker

models are considered: non-privileged end users as omnipresent in many business

scenarios such as in the example introduced in Section 1.5, as well as a man-in-the-

middle between different components of the distributed usage control infrastructure.

Since the central goal of the data usage control infrastructure is to enforce compliance

with data usage policies, the most interesting goal for attackers is to circumvent this

enforcement, i.e. to be able to use data without respecting the corresponding policy.

Other attacks considered in the following address the availability of usage controlled

systems.

Creation of Unmonitored Data Copies. One possibility to achieve the goal of un-

monitored data usage is to create copies of the protected data that are no longer

monitored by the infrastructure. Such attacks are described in the following. If

possible, corresponding countermeasures are described.

Since the cross-system data flow tracking instantiation (Section 3.2) and its im-

plementation (Section 4.2) are limited to TCP/IP, it is possible to circumvent the

tracking of cross-system data flows by using other protocols at the transport layer. User

Datagram Protocol (UDP) is the second most prominent transport layer protocol. It is

mainly used by time-critical applications such as voice, video and media streaming, and

online games, as well as lightweight protocols that exchange only small amounts of

data such as Network Time Protocol (NTP), Domain Name System (DNS), and Simple

Network Management Protocol (SNMP). Consequently, any transfer of usage controlled

data via any of those applications or protocols results in undetected and untracked

cross-system data flows. The data could thus be used in an uncontrolled manner at

the receiving system. The above arguments also hold for any other transport layer

protocol different from TCP. There exist several possibilities to mitigate such attacks.

5.1. Security Evaluation 99

First of all, it is possible to disallow any cross-system data flows that do not build upon

TCP/IP. This could either be achieved by having the system’s firewall block all non-TCP

traffic, or by having the usage control infrastructure inhibit the creation of any non-

TCP sockets. In practice, however, such a solution would disallow essential network

services such as DNS and NTP and is thus not acceptable in real-world production

systems. Alternatively, the generic cross-system data flow model (Section 3.2) and

its implementation (Section 4.2) could be extended to also incorporate non-TCP data

flows, e.g. by monitoring cross-system data flows at the underlying IP layer. Note that

equivalent attacks and solutions also apply to other data exchange technology such as

Bluetooth or Wireless USB.

Neither the model nor the implementation described in this thesis catered to

the possibility that the actual TCP communication channel over which the payload

data is transferred between systems might be insecure. E.g., when using network

protocols such as HTTP or FTP, data is usually transferred in plain text. This implies

that any attacker that is able to observe the network and/or the input/output of the

corresponding network interfaces can read the payload data. Consequently, a copy of

the transferred data can be created and used without complying to the corresponding

policy. One countermeasure is to only allow the transmission of usage controlled data

via secure network channels, e.g. via HTTPS, FTPS (i.e. HTTP/FTP with TLS support),

or SSH. Alternatively, insecure protocols without support for TLS could be tunneled

over protocols ensuring confidentiality and integrity of data, such as Virtual Private

Networks, SSH, IPSec [99], or tcpcrypt [20].

End users might save usage controlled data to portable media (e.g. USB drives, CD-

ROM), physically removable hard disks, or the like. By unmounting these data media

and using them at non-usage controlled systems, unmonitored copies of the usage

controlled data can be created. Solutions to this attack are to disallow all attempts

to save usage controlled data to portable media or to only allow usage controlled

data to be saved to encrypted media that can only be decrypted by the usage control

infrastructure. Alternatively, the usage control infrastructure could take the effort to

transparently encrypt all usage controlled data that is stored to persistent memory, e.g.

by mediating all corresponding events and their payload data through encryption tools

such as GNU Privacy Guard (GnuPG) [201]. For either solution, the question remains

how attackers can be kept from reengineering the encryption/decryption algorithms

and, most importantly, how the corresponding keys can be kept secret.

Another possibility for attackers is to create unmonitored copies of the protected

data at system layers not monitored by the usage control infrastructure. While generally

the possibility of such attacks can be considered a limitation of the usage control

infrastructure and its implementation, there exist system layers at which the monitoring

of data usage and data copies is hard if not impossible. E.g., although encrypted in

persistent memory and in-flight, usage controlled data must ultimately be decrypted

in order to perform operations on it. As such, unencrypted copies of the data or the

100 5. Evaluation

corresponding decryption key remain in registers at the CPU level and within the main

memory, giving rise to different attacks, e.g. [71, 184]. While possible countermeasures

have been described in the literature, e.g. [77, 150, 169], to date such solutions are

not implemented in commodity systems.

One further possibility to circumvent data usage control infrastructures is to make

use of media breaks, e.g. by taking pictures or videos of the screen or by sending

sensitive documents to physical printers. Once usage controlled data has left the

technical infrastructure in such a way, there hardly exist any means to still control the

data’s usage. However, once this data is re-digitized, e.g. by scanning a printout, it may

become possible to detect the equivalence of certain data/documents and to reapply

the corresponding policies. Yet, such procedures are far from being implemented and

integrated with data usage control infrastructures and they would only be useful once

the corresponding data re-enters a usage controlled system. Further, also legal and

ethical concerns remain: it might very well be the case that some data classified as

‘equivalent’ to some usage controlled data was created by some other party that did

not intend to usage control the data.

Render Usage Control Infrastructure Unusable. Another incentive for an attacker

might be to render the usage control infrastructure or the usage controlled systems

unusable, meaning that no further (satisfactory) usage of those systems is possible.

To achieve this goal, a first possibility is to deliberately ‘leverage’ the usage control

infrastructure’s overapproximations when performing data flow tracking. This way, it

would be possible to taint large parts of the system, such that usage control policies

apply to most data containers within the system. If the corresponding usage control

policies are of such a kind that they entirely inhibit usage of the corresponding data,

no further usage of the tainted data containers are possible. Notably, such an attack

is usually limited to the resources for which the attacking user has write permissions,

since only in this case he is actually able to propagate usage controlled data to those

containers. Hence, proper access control can counteract this problem in most situations.

However, when using shared file systems or if a non-privileged process communicates

with a privileged process, the corresponding taints could indirectly be propagated to

system resources to which the attacking user does actually not have access. E.g., if the

attacking user’s non-privileged process, such as a web browser, communicates with a

privileged system service, such as a web server, which might later write to system files.

From this examples it gets clear that corresponding system files, such as libraries or

the operating system kernel, should be secured with particular care, e.g. by making

those files read only for all processes.

Another possibility is to mount a (distributed) denial of service attack, which might

be caused by both local and remote users. Either way, such an attack would issue

massive amounts of system events and have them evaluated by the usage control

infrastructure. Alternatively, it is possible to flood the infrastructure’s publicly running

RPC services with requests. Such attacks may lead to high system response times

5.1. Security Evaluation 101

and render the system unusable. In the worst case, too many events and/or requests

might overflow the usage control infrastructure’s internal request processing queue

(cf. Section 4.1) or make the system run out of memory, essentially resulting in major

system/infrastructure failures. Since in such a case no data usage is possible at all,

soundness of the infrastructure (i.e., no uncontrolled usage of data) is not compromised

by such attacks. However, availability of the data can then no longer be guaranteed. To

counteract such attacks, it is useful to mutually authenticate all of the infrastructure’s

(remote) components whenever remote communication is happening. While such

mechanisms might not entirely prevent such attacks, they introduce non-repudiation

and consequently liabilities. Another possibility is to block corresponding entities

entirely, e.g. by blocking their access at the operating system layer or by having the

system’s firewall block all requests from certain remote endpoints. However, certain

problems remain. E.g., massive amounts of requests might in fact be legitimate in

certain situations; sophisticated denial of service attacks are hard to counteract to date.

Lastly, it remains to note that further attacks not specifically targeted to data usage

control infrastructures may be possible. Mostly, such attacks target assumptions

(cf. Section 5.1.1) or technologies upon which this thesis builds. E.g., misbehaving

Certificate Authorities (CAs), insecure operating systems, improper (physical) access

control to usage controlled systems, and social engineering might pose significant

threats.

5.1.3 Summary: Provided Guarantees

Under consideration of the assumptions presented in Section 5.1.1 as well as the

security evaluation performed in Section 5.1.2, this section summarizes in which

situations which guarantees are provided by the presented infrastructure. For this, in

the following it is assumed that the assumptions from Section 5.1.1 hold and that the

countermeasures proposed in Section 5.1.2 have in fact been implemented. Since the

protection of usage controlled data is at the core of the developed infrastructure, the

following considerations focus on this aspect.

Unintentional Attacks within Closed Environments. Considering a closed environ-

ment, e.g. regular end users without administrative privileges as in the insurance

company use case presented in Section 1.5, and an unintentional attacker model, i.e.

end users that do not actively try to circumvent the usage control infrastructure, it

can be summarized that the presented solution detects and/or prevents (depending

on the deployed policies) any policy violations in a reliable manner. For example,

the presented infrastructure can prevent end users from accidentally sharing sensitive

documents with unauthorized colleagues or business partners. While it is possible that

some critical assumptions or possible attacks were missed in Sections 5.1.1 and 5.1.2,

in this scenario users are not expected to intentionally try to circumvent the enforce-

ment infrastructure. By considering regular users without administrative privileges it is

102 5. Evaluation

also very unlikely that these users unintentionally misconfigure system aspects which

would open up further attacker vectors. If audits would reveal that some unintentional

circumvention of the usage control infrastructure did indeed happen, then fixing the

corresponding flaws and rolling out a new release of the infrastructure should not

face any major organizational or technical issues. In sum, the presented infrastructure

is able to reliably enforce usage control policies in the presence of an unintentional

attacker model within closed environments. Lastly, it should be noted that such sce-

narios are omnipresent in business contexts in which employees are equipped with

ready-to-use computing devices by the employer’s IT department.

Unintentional Attacks within Open Environments. Considering an unintentional

attacker model within open environments, e.g. if the usage control infrastructure is

rolled out to open systems on which end users do have administrative privileges, the

usage control infrastructure is still able to reliably detect and/or prevent illegitimate

data usages. While in this scenario users are also not expected to intentionally circum-

vent the infrastructure, the fact that the environment is open and that the user has

administrative privileges poses additional threats. E.g., the user might unintentionally

misconfigure the system by messing with access control settings, by trusting invalid

certificates, or by installing vulnerable versions of the usage control infrastructure, the

operating system, or other essential software. In such a case it might be possible for

external attackers to gain access to the system and to protected data. Further, negligent

users or administrators might use insecure channels to exchange usage controlled data

or use insecure on-disk encryption mechanisms, thus opening up further attack vectors

for external attackers. Nevertheless, even within open environments the usage control

infrastructure as presented in this thesis is able to reliably enforce data usage control

policies as long as end users and system administrators do not act negligently, e.g. by

misconfiguring the system or by not keeping their systems updated.

Intentional Attacks within Closed Environments. Intentional attackers are attackers

that deliberately try to circumvent the usage control infrastructure with the goal

to use usage controlled data in an uncontrolled manner. A scenario featuring an

intentional attacker within a closed environment might be the insurance company

scenario from Section 1.5 in which a disgruntled employee tries to leak sensitive data

from its workstation to the public. Further, such scenarios are omnipresent when

considering today’s computing devices, such as tablets, mobile phones and integrated

systems, on which regular end users seldom have administrative privileges. In such

a case it must be assumed that the attacker actively tries to circumvent the usage

control infrastructure. Consequently, any shortcomings, limitations, or bugs within the

infrastructure might be actively looked for and, if present, be intentionally exploited.

Since software is likely never to be free of flaws, motivated attackers will likely always

be able achieve their goal one way or another. Thereby, in particular media breaks as

described in Section 5.1.2 constitute a significant threat, as it remains open whether

5.2. Cross-System Data Flow Tracking and Policy Propagation 103

there will ever exist reliable technical solutions to counteract this attack vector. In sum,

the deployment of a distributed data usage control solution within closed environments

can pose significant barriers for intentional attackers. While these barriers might

never be able to provide absolute guarantees that usage controlled data is only used in

compliance with its policies, they might at least make their circumvention uneconomical

for attackers.

Intentional Attacks within Open Environments. Considering completely open envi-

ronments and intentional attackers, it is questionable whether usage control solutions

as the one presented in this thesis will ever be able to provide any guarantees. In such

a scenario intentional attackers are in full control of their system and may thus switch

off the usage control infrastructure, tamper with it, or reengineer it with the goal to use

sensitive data without respecting the corresponding policies. While technical solutions

such as TPM, NGSCB and SmartCards are capable of measuring the integrity of the

operating systems as well as usage control infrastructures, it can be doubted that such

technologies will be in place on systems on which attackers do have administrative

privileges and intentionally try to circumvent data usage control technologies.

5.2 Cross-System Data Flow Tracking and Policy Propagation

A preliminary version of the content of this section has been published in [94].

The goal of this section is to understand which performance overheads are introduced

when tracking data flows across systems and propagating the corresponding data

usage policies (RQ1) as conceptualized in Section 3.2 and implemented in Section 4.2

(requirement R4).

For this, recap that whenever networking-related system calls (e.g. socket , accept ,

connect , write, read) are observed, the PIP determines whether usage controlled data

is transferred to a remote system. If this is the case, then the DMPs of the two involved

systems (i.e. the sending and the receiving system) communicate in order to coordinate

this fact of data exchange. In addition, the data usage control policies of the exchanged

data is sent to the receiving system for further enforcement.

In order to measure the performance overhead introduced by this procedure, several

case studies along the running example from Section 1.5 have been performed: several

usage controlled files of different sizes were transferred between two systems using

different protocols, applications and bandwidths. The motivation was to simulate

multiple real-world data transfer scenarios (e.g., transfer 128MB via HTTP on a fast

network of 300Mbps, transfer 1KB via FTP on a slow network of 10Mbps) and to

understand which parameter influences the imposed performance overhead to which

extent. In order to measure performance overheads, a client and a server application

transferred those files and the execution times of those file transfers were measured.

Further, the same experiments were performed with different stripped-down ver-

sions of the infrastructure as well as for native file transfers. The motivation for this

104 5. Evaluation

was twofold: First, measuring the performance when cross-system data flow tracking

and policy propagation is disabled serves as a baseline for comparing the performance

overheads in the presence of remote data flows. Second, the PEP for Unix-like systems

(cf. Section 4.1.4) as well as major parts of the local usage control infrastructure

(i.e. PDP, PIP, PMP, cf. Section 4.1), upon which this evaluation is based, have been

developed within this thesis.

After detailing the system setup, identifying relevant parameters, and describing

how the experiments were executed, the actual evaluation results are presented.

System Setup. For this set of experiments, two machines, also called client and server,

were set up. Each machine featured a 2x2.6GHz CPU and 4GB RAM. The machines

run Linux Mint 17.1 64 bit, Kernel 3.13.0; Cassandra was used in version 2.1.2. Both

the client and the server machine run one fully functional Controller as described

in Section 4.1.3. The PEP described in Section 4.1.4 monitored the applications

performing the file transfer and consequently all observed system calls were signaled

to the corresponding local Controller. For the communication between the PEP and

the Controller Thrift was used in version 0.9.2. All cross-system communication was

encrypted using TLS. Cassandra used a consistency level of Quorum.

Parameters. When running and evaluating the experiments, the following parameters

turned out to influence the performance overheads:

(i) The kind of monitoring and/or data flow tracking being performed (k). k = cross

indicates that data was tracked across systems and that the corresponding policies

were propagated accordingly. To understand which parts of the infrastructure are

to which extent responsible for the measured overheads, further measurements

with a stripped-down version of the infrastructure were performed: k = local

indicates that data was only tracked locally and no data and no policies where

ever tracked/propagated across systems. Hence, all functionality related to

cross-system data flow tracking and policy propagation was disabled. k = signal

indicates that all system calls were intercepted, preprocessed and signaled from

the PEP to the Controller; no further processing of the system calls by the PDP

and/or PIP was performed. In other words, essentially all of the Controller’s

functionality was disabled. Finally, k = native denotes the native execution of

the remote file transfer without any monitoring. In summary:

k Description

native Native Execution

signal Monitor and signal to Controller

local Monitor and signal to Controller,

track local data flows

cross Monitor and signal to Controller,

track local and remote data flows

5.2. Cross-System Data Flow Tracking and Policy Propagation 105

(ii) The size of the files being transferred across systems. File sizes of 1KB, 1MB,

128MB and 512MB were used.

(iii) The bit rate of the underlying network (r). Bit rates of 10Mbps, 50Mbps, 100Mbps

and 300Mbps were used.

(iv) The policy being attached to the tracked data and consequently being enforced

and evaluated. Since policy evaluation is further evaluated in Section 5.3, the

policy being used for this set of experiments had a trivial condition of ϕ = false

and did thus immediately allow all events.

(v) The protocols and applications being used for the file transfer. The files were

transferred using protocols HTTPS, FTPS and SSH. The following client and

server applications were used:

Protocol Server application(s) Client applications(s)

HTTPS Apache2 HTTP Server 2.4.7 [200]

nginx 1.4.6 [157]

wget 1.15 [59]

cURL 7.35.0 [38]

aria2c 1.18.1 [209]

FTPS ProFTPD 1.3.5 [145]

vsftpd 3.0.2 [52]

cURL 7.35.0

LFTP 4.4.13 [129]

SSH OpenSSH 6.6.1 [202] SCP 6.6.1 [121]

As described in Section 4.1.4, the PEP intercepts all system calls within those

applications and signals them to the Controller. For this reason the amount

of system calls being issued by those applications is of particular importance.

In particular, each write system call observed within the server application

might trigger the transfer of usage controlled data to the client application, thus

resulting in additional remote communication between the server’s and client’s

DMP. Hence, Table 5.1 shows for each of those applications and for all file sizes

how many system calls are signaled by the PEP to the Controller (cΣ
s), as well as

the amount of system calls that are processed by the PDP/PIP (cp)1. Because the

policy deployed for these experiments allows all signaled events, the total amount

of events being processed by the PDP/PIP (cp) corresponds to the amount of

system calls being signaled by the PEP (cΣ
s) plus the amount of signaled write

system calls (cws), cp = cΣ
s + cws .

Experiment Execution. For each measurement all of the above parameters were fixed.

For k ∈ {signal , local , cross}, one fully functional Controller was started on both

the client and the server machine. After startup of the usage control infrastructure,

the server process was started on the server machine, offering four different files of

sizes 1KB, 1MB, 128MB, and 512MB for download. Once the server process finished

initialization, a compatible client process was started on the client machine with the
1Note that cΣ

s ≤ cp because for system call write only intended system calls are signaled by the PEP
(cf. Section 4.1.4). However, as described in Section 4.1.4, the PDP/PIP also process the corresponding
actual system call as soon as the intended system call is allowed.

106 5. Evaluation

Table 5.1: Amount of intercepted and signaled system calls.

Events signaled to PDP/PIP Events processed

File size Program read (crs) write (cws) others (cos) total (cΣ
s) by PDP/PIP (cp)

Apache2 8 4 19 31 35

nginx 14 4 7 25 29

vsftpd 414 191 235 840 1031

1KB ProFTPD 203 131 324 658 789

OpenSSH 402 118 2865 3385 3503

wget 38 4 57 99 103

cURL 34 5 71 110 115

aria2c 53 11 77 141 152

LFTP 130 30 120 280 310

SCP 177 20 204 401 421

Apache2 8 67 19 94 161

nginx 76 68 7 151 219

vsftpd 564 314 234 1112 1426

1MB ProFTPD 267 263 324 854 1117

OpenSSH 598 298 2860 3756 4054

wget 230 259 57 546 805

cURL 291 132 71 494 626

aria2c 245 74 77 396 470

LFTP 384 93 120 597 690

SCP 441 203 208 852 1055

Apache2 7 8195 139 8341 16536

nginx 8204 8196 7 16407 24603

vsftpd 20884 16570 234 37688 54258

128MB ProFTPD 8396 9240 330 17966 27206

OpenSSH 27315 24293 2867 54475 78768

wget 24614 32771 57 57442 90213

cURL 32803 16388 71 49262 65650

aria2c 24629 8202 77 32908 41110

LFTP 32890 8221 120 41231 49452

SCP 39435 20562 208 60205 80767

Apache2 7 32771 523 33301 66072

nginx 32780 32794 7 65581 98375

vsftpd 82324 65722 235 148281 214003

512MB ProFTPD 32977 36273 360 69610 105883

OpenSSH 108025 96541 2852 207418 303959

wget 98342 131075 57 229474 360549

cURL 131107 65540 71 196718 262258

aria2c 98357 32781 103 131241 164022

LFTP 131193 32797 120 164110 196907

SCP 157170 81396 208 238774 320170

5.2. Cross-System Data Flow Tracking and Policy Propagation 107

task to download one of the provided files. The total time needed for downloading

the file was measured by invoking the client process with the Linux command line

tool time [123]. Note that for each measurement the same value for k was used

on the client and the server side. Further note that all data transfers made use

of secure communication channels by using protocols HTTPS, FTPS and SSH. For

r = 300Mbps each measurement was repeated 40 times; for r ∈ {50Mbps, 100Mbps}
each measurement was repeated 30 times; for r = 10Mbps each measurement was

repeated 5 times.

Results in a Nutshell. The evaluation results reveal that the imposed relative per-

formance overheads span an enormous range between 0.4% and 1000%, depending

on concrete parameter values being considered. That said, most of this overhead is

attributed to local aspects of the infrastructure, i.e. signaling of system events to the

Controller and evaluation of these events by the PDP/PIP. The overheads imposed by

cross-system data flow tracking and policy propagation were in most cases negligible.

Whether any such overheads are acceptable in practice clearly depends on the concrete

scenario being considered. This is further discussed in Section 5.2.6.

The subsequent sections present the evaluation results in more detail. The results

of cross-system data flow tracking and policy propagation are compared to different

stripped-down versions of the infrastructure as explained above, as well as to native

execution. This way, it is possible to analyze which parts of the infrastructure cause

which parts of the overall performance overhead. More detailed evaluation results are

provided in Appendix C.

5.2.1 Transferring Files of Size 1KB

In the first set of experiments, files of size 1KB were transferred between two systems

and the corresponding file transfer times were measured. Table 5.2 provides the

median file transfer times and the corresponding standard deviation in milliseconds

(ms) for different client/server combinations as well as for native file transfers and

different versions of the usage control infrastructure. Figure 5.1 visualizes the median

values of Table 5.2 as bar charts. In addition, Figure C.2 (Appendix C.1) provides some

more details by plotting all measurement results as boxplots.

When transferring 1KB files, the first observation is that the network bit rate

does not have any influence on any file transfer times: Given a client and a server

application the time needed to transfer a 1KB file is the same for network bit rates of

r = {10Mbps, 50Mbps, 100Mbps, 300Mbps}. For this reason Table 5.2 and Figure 5.1

do not further differentiate between different bit rates. This fact has the additional

consequence that each presented number is based on 105 individual measurements: 5

for r = 10Mbps, 30 for r ∈ {50Mbps, 100Mbps}, and 40 for r = 300Mbps.

108 5. Evaluation

Figure 5.1: Transfer times for a 1KB file.

 0

 0.5

1.0

 1.5

2.0

 2.5

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

with

A/W: Apache2/wget N/W: nginx/wget V/C: vsftpd/cURL P/C: ProFTPD/cURL
A/C: Apache2/cURL N/C: nginx/cURL V/L: vsftpd/LFTP P/L: ProFTPD/LFTP
A/A: Apache2/aria2c N/A: nginx/aria2c S/S: OpenSSH/SCP

native signal local cross

Table 5.2: Time and standard deviation [ms] to transfer a 1KB file.

Bit rate Protocol Server Client native () signal () local () cross ()

any HTTPS Apache2 wget 17± 2 152± 18 171± 19 182± 22

cURL 25± 2 166± 22 190± 20 193± 20

aria2c 140± 22 296± 41 318± 38 324± 38

nginx wget 17± 1 143± 18 166± 18 171± 20

cURL 24± 2 164± 20 179± 23 188± 22

aria2c 90± 16 244± 32 264± 37 273± 34

FTPS vsftpd cURL 259± 2 431± 33 566± 35 576± 31

LFTP 232± 14 415± 34 450± 32 464± 32

ProFTPD cURL 432± 3 594± 30 692± 28 708± 33

LFTP 444± 25 630± 47 664± 47 681± 47

SSH OpenSSH SCP 368± 11 1786± 112 2398± 63 2478± 67

In terms of native file transfer times (), i.e. when no monitoring by the usage con-

trol infrastructure is involved, it turns out that HTTPS transfers small files much faster

than FTPS and SSH. There are two—related—explanations for this: First, FTPS and SSH

are more complex than HTTPS. For FTPS the reason is that two TCP communication

channels are established—one for payload data and one for management/command

data. For SSH the reason is that it constitutes a complex general purpose protocol that

also performs client-side user authentication. This additional complexity of FTPS/SSH

w.r.t. HTTPS is also emphasized by the amount of system calls being issued by the

corresponding client and server applications: as Table 5.1 shows, vsftpd, ProFTPD

(FTPS) and OpenSSH (SSH) issue much more system calls for transferring a 1KB file

5.2. Cross-System Data Flow Tracking and Policy Propagation 109

than Apache2 and nginx (HTTPS); e.g. while Apache2 issues 35 system calls, OpenSSH

issues 3503 system calls to transfer a 1KB file. Further, the measurements reveal that

aria2c performs badly when compared to wget and cURL, indicating that initiation

of a file transfer is expensive for this application. Along the same lines, Table 5.2

and Figure 5.1 reveal that initiation of a file transfer is more expensive when using the

ProFTPD rather than the vsftpd FTP server.

While SSH and the FTPS client/server applications perform approximately similar

when executed natively, Table 5.2 and Figure 5.1 show that monitoring of those file

transfers by the usage control infrastructure () imposes much more overhead for

SSH than for FTPS. Again, one reason is the significant difference in the amount of

system calls that are signaled to the Controller and consequently processed by the

PDP and the PIP. Interestingly, the absolute overhead for signaling system calls to the

Controller () is similar for all client/server combinations despite SSH and averages

at 156ms ± 30ms. In contrast, for SSH the absolute overhead to signal events is

∼1418ms. In terms of performing local data flow tracking (), the additional absolute

overhead for most client/server combinations is around 25ms ± 10ms. Exceptions

to this can be observed when cURL is used as a client application (116ms ± 19ms),

as well as for SSH (∼612ms). Finally, additional overhead imposed by cross-system

data flow tracking () as described in Section 4.2 is present but hardly observable.

This additional overhead averages at ∼10ms, which is, however, within the standard

deviation.

In conclusion, transferring a very small file of size 1KB imposes significant initial

management overhead which can not be amortized during the very short file transfer

time. As an overall result, transferring a file of size 1KB results in an overall absolute

overhead () ranging from 154ms (nginx/wget) to 2110ms (OpenSSH/SCP), and an

overall relative overhead ranging from 53% (ProFTPD/LFTP) to 971% (Apache2/wget).

Those numbers are subject to further discussion in Section 5.2.6. All overall absolute

and relative overheads for all client/server combinations are provided in Table C.1

(Appendix C).

5.2.2 Transferring Files of Size 1MB

At a first glance the performance measurement results for transferring files of size 1MB

(Table 5.3 and Figure 5.2, as well as Appendix C.2 for additional details) look similar

to the results of transferring 1KB files as discussed above. However, some remarkable

differences can be observed.

First of all, for files of 1MB the influence of different network bit rates is observable:

when comparing the native file transfer times () for different bit rates (Table 5.3

and Figures 5.2a to 5.2c), it turns out that the performance increases for higher network

bit rates. However, it depends on the protocol and the client/server applications to

which extent the native file transfer time is accelerated: For FTPS and SSH the impact

of the increased bit rate is not as significant as for HTTPS. The reason is that the

110 5. Evaluation

Figure 5.2: Transfer times for a 1MB file.

(a) Bit rate of 50Mbps.

 0

 0.5

1.0

 1.5

2.0

 2.5

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(b) Bit rate of 100Mbps.

 0

 0.5

1.0

 1.5

2.0

 2.5

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(c) Bit rate of 300Mbps.

 0

 0.5

1.0

 1.5

2.0

 2.5

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

with

A/W: Apache2/wget N/W: nginx/wget V/C: vsftpd/cURL P/C: ProFTPD/cURL
A/C: Apache2/cURL N/C: nginx/cURL V/L: vsftpd/LFTP P/L: ProFTPD/LFTP
A/A: Apache2/aria2c N/A: nginx/aria2c S/S: OpenSSH/SCP

native signal local cross

5.2. Cross-System Data Flow Tracking and Policy Propagation 111

expensive startup phase of those protocols can still not be amortized when transferring

files of size 1MB. This argument is emphasized by the amount of issued system calls:

As Table 5.1 shows, for a file size of 1MB the absolute difference in the amount of

system calls between applications is still significant, however, in comparison with the

1KB case, their relative difference is decreasing.

Despite this speedup of the native file transfer times, file transfer times do not
improve with higher bit rates if the applications are monitored by the usage control

infrastructure (). For example, independent of the network’s bit rate vsftpd/

cURL takes approximately 0.8 seconds to transfer a file of size 1MB, while OpenSSH/

SCP takes approximately 2.8 seconds. This surprising observation leads to the fact

that both absolute and relative performance overheads imposed by the usage control

infrastructure () increase with higher network bit rates. Considering all client/server

combinations but the exceptionally expensive OpenSSH/SCP case, it seems that the

overall time needed to signal events from the PEP to the Controller () increases

by approximately 40ms if the bit rate is increased from 50Mbps to 100Mbps, and by

another 40ms if the bit rate is increased from 100Mbps to 300Mbps. At the same time,

the overhead imposed by local data flow tracking () remains constant despite the

change in the network bit rate.

Considering these observations, the question remains why signaling events from

the PEP to the Controller is slower in case the network bit rate increases. The answer

is that it is not. However, for slower bit rates the client’s and server’s system calls to

the TCP communication channel block more often and longer due to the channel’s bad

I/O performance. Since the PEP intercepts those intended system calls right before

their execution by the kernel, the signaling of the system calls to the Controller, as

well as their processing by the PDP/PIP, happens at the time when the process would

be waiting for the TCP channel to become ready to read/write. This way, the usage

control infrastructure is able to utilize those periods in which the actual processes idle.

In terms of tracking data flows and policies across systems (), Table 5.3 shows

that the additional imposed overhead is hardly measurable.

In sum, for transferring files of size 1MB the overall absolute overhead imposed by

the usage control infrastructure () ranges from 212ms (nginx/aria2c/50Mbps) to

2317ms (OpenSSH/SCP/300Mbps), whereas the relative overhead ranges from 45%

(ProFTPD/LFTP/50Mbps) to 816% (Apache2/wget/300Mbps). All overall absolute

and relative for all client/server/bit rate combinations are provided in Table C.2.

112 5. Evaluation

Table 5.3: Time and standard deviation [ms] to transfer a 1MB file.

Bit rate Server Client native () signal () local () cross ()

50Mbps Apache2 wget 194± 2 347± 30 450± 42 450± 47

cURL 202± 2 355± 29 416± 41 422± 38

aria2c 319± 21 504± 51 532± 31 536± 36

nginx wget 194± 2 344± 33 449± 37 456± 41

cURL 201± 2 344± 27 423± 41 427± 37

aria2c 270± 16 443± 33 486± 40 482± 27

vsftpd cURL 397± 2 589± 35 769± 45 804± 39

LFTP 369± 10 555± 32 609± 40 617± 42

ProFTPD cURL 610± 2 767± 39 908± 56 915± 48

LFTP 602± 18 792± 33 838± 54 872± 50

OpenSSH SCP 550± 13 1988± 118 2667± 83 2807± 65

100Mbps Apache2 wget 107± 1 333± 48 428± 43 442± 48

cURL 115± 2 337± 47 430± 38 426± 33

aria2c 234± 24 417± 32 478± 55 477± 53

nginx wget 107± 2 355± 55 428± 45 448± 40

cURL 114± 2 316± 35 434± 41 421± 41

aria2c 183± 17 361± 44 411± 31 409± 39

vsftpd cURL 312± 2 614± 44 778± 44 787± 40

LFTP 286± 17 514± 55 595± 44 596± 40

ProFTPD cURL 520± 2 728± 46 907± 48 925± 46

LFTP 524± 21 746± 57 844± 47 854± 52

OpenSSH SCP 458± 12 2042± 110 2678± 82 2764± 52

300Mbps Apache2 wget 49± 9 337± 49 451± 52 449± 59

cURL 58± 8 342± 45 427± 46 402± 48

aria2c 163± 27 433± 49 467± 51 467± 50

nginx wget 47± 9 330± 48 458± 45 420± 54

cURL 57± 8 317± 43 425± 52 437± 51

aria2c 114± 23 355± 49 428± 58 431± 58

vsftpd cURL 301± 10 612± 53 786± 50 804± 51

LFTP 258± 27 526± 72 592± 41 614± 65

ProFTPD cURL 472± 7 771± 67 914± 50 928± 57

LFTP 500± 31 749± 60 829± 52 854± 73

OpenSSH SCP 399± 11 2040± 121 2730± 93 2716± 76

5.2. Cross-System Data Flow Tracking and Policy Propagation 113

5.2.3 Transferring Files of Size 128MB

When transferring files of size 128MB (Figure 5.3 and Table 5.4 as well as Appendix C.3

for additional details), the first observation is that the network bit rate has a significant

impact onto the native () file transfer times. In fact, in most of the considered

scenarios the bit rate r is the limiting factor for native file transfer times, resulting

in repeated measurement results of ∼22 .7s for r = 50Mbps (Figure 5.3a), ∼11 .5s

for r = 100Mbps (Figure 5.3b) and ∼3 .7s for r = 300Mbps (Figure 5.3c). The most

prominent exception is the combination of vsftpd/cURL, which seems not to be able

to utilize the entire bit rate of 300Mbps, resulting in comparatively slow native file

transfer times of 7 .7s . Interestingly, aria2c, which performed badly for files of size 1KB

and 1MB, performs slightly faster than wget and cURL for a file size of 128MB and for

a bit rate of 300Mbps.

Similar to the above case of 1MB, Figure 5.3 and Table 5.4 show that for each

client/server combination the file transfer time is constant for different network bit

rates if the usage control infrastructure () is enabled. There are two exceptions

to this observation: For Apache2/aria2c and nginx/aria2c the usage controlled file

transfer () for r = 50Mbps takes ∼23s, while the transfer times for r = 100Mbps

and r = 300Mbps are ∼18 .2s . These exceptions are due to to the bandwidth’s physical

limitation in the 50Mbps case, in which the file transfer can under no circumstances be

faster than 20.48s (= 128MB/50Mbps).

Again, and similar to the 1MB case, it can be observed that the overhead for

signaling system calls to the Controller increases with higher bit rates (Table 5.4

and Figure 5.3,). At the same time, and as discussed above, for each usage controlled

client/server combination the total file transfer time () is independent of the

network’s bit rate. Again, the explanation for this phenomenon is that the signaling to

the Controller is performed while the corresponding system calls block and wait for

the communication channel to become ready to read/write.

Transferring larger files of 128MB allows to further investigate the overhead im-

posed by the usage control infrastructure, since exceptional operations performed at

file transfer startup, which where predominant for the 1KB/1MB case, are negligible.

This allows to calculate the additional overhead per system call for different scenarios.

For these calculations the measured file transfer times (Table 5.4) and the amount of

system calls signaled from the client application (Table 5.1) are taken as a basis. The

reason for considering the client application’s system calls rather than the server’s or a

combination thereof, is that additional experiments showed that for large files the client

application is the bottleneck for the file transfer times. This argument is underpinned

by two further facts: First, the used HTTPS/FTPS/SSH server applications are usually

deployed on a large scale and serve many clients simultaneously. Therefore, these

applications are much more tweaked for performance than the corresponding client ap-

plications. Second, looking at the signaling overheads (in Figures 5.3b and 5.3c) and

114 5. Evaluation

Figure 5.3: Transfer times for a 128MB file.

(a) Bit rate of 50Mbps.

 0

 5

 10

 15

 20

 25

 30

 35

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(b) Bit rate of 100Mbps.

 0

 5

 10

 15

 20

 25

 30

 35

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(c) Bit rate of 300Mbps.

 0

 5

 10

 15

 20

 25

 30

 35

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

with

A/W: Apache2/wget N/W: nginx/wget V/C: vsftpd/cURL P/C: ProFTPD/cURL
A/C: Apache2/cURL N/C: nginx/cURL V/L: vsftpd/LFTP P/L: ProFTPD/LFTP
A/A: Apache2/aria2c N/A: nginx/aria2c S/S: OpenSSH/SCP

native signal local cross

5.2. Cross-System Data Flow Tracking and Policy Propagation 115

comparing them with the amount of system calls of the correspoding client applications

(Table 5.1), it seems that there is a correlation between these numbers.

In the following, the additional overhead for signaling system calls to the Con-

troller () is analyzed: Ranging over all client/server combinations, for a bit rate of

50Mbps the additional overhead per system call is 0 .016ms ± 0 .012ms; for a bit rate

of 100Mbps it is 0 .156ms ± 0 .10ms; for a bit rate of 300Mbps it is 0 .314ms ± 0 .02ms .

First, these numbers reveal that for a low bit rate of 50Mbps the signal time per system

call is relatively low (0 .016ms) and relatively fluctuant (±0 .012ms). The reason is

that for some client applications (e.g., aria2c, LFTP) a relatively small amount of

system calls (32908 and 41231, respectively) is signaled to the Controller, having

the effect that they can for the most part be signaled while the client process is wait-

ing for the busy communication channel (resulting in an overhead per system call

of 0 .016ms − 0 .012ms = 0 .004ms). For other client applications (e.g., wget, SCP),

however, more system calls must be signaled (57442 and 60205, respectively) and not

all signaling can be performed while the communication channel is busy (resulting

in an overhead per system call of 0 .016ms + 0 .012ms = 0 .028ms). Further, these

numbers reveal that for a high bit rate of 300Mbps the signal time per system call is

comparatively high (0 .314ms) and relatively constant (±0 .02ms) for all considered

client/server combinations. The reason for the high signaling time is that system

calls on the communication channel only block for very short amounts of time due to

the high network bit rate. The constancy of these calculation results across different

client/server combinations confirms that calculating the signaling time per system call

on the basis of the client applications’ amount of system calls was a reasonable choice.

In the same manner the additional overhead per system call for local data flow

tracking () can be computed. The obtained results follow a similar pattern as above:

for a bit rate of 50Mbps the overhead is 0 .060ms ± 0 .059ms; for a bit rate of 100Mbps

it is 0 .120ms ± 0 .024ms; for a bit rate of 300Mbps it is 0 .136ms ± 0 .031ms. The

explanation of these results follows the same arguments as above: E.g., for a bit rate of

50Mbps some applications (e.g. aria2c) are able to leverage the waiting times for the

communication channel to perform not only signaling of signals to the Controller,

but also to have the corresponding system calls processed by the PDP and PIP, resulting

in an overhead as small as 0 .060ms − 0 .059ms = 0 .001ms per system call.

The additional absolute overhead imposed by cross-system data flow tracking ()

averages at 1s to 2s. However, this overhead is within the measurements’ standard

deviation and could thus not be reliably measured in all cases.

Concluding this discussion, the overall absolute overhead imposed by the usage

control infrastructure to transfer a file of size 128MB ranges from 0.38s (Apache2/

aria2c/50Mbps) to 30.8s (OpenSSH/SCP/300Mbps), whereas the overall relative over-

heads range from 2% (Apache2/aria2c/50Mbps) to 931% (OpenSSH/SCP/300Mbps).

Again, these results are subject to discussion in Section 5.2.6. All overall absolute and

relative for all client/server/bit rate combinations are provided in Table C.3.

116 5. Evaluation

Table 5.4: Time and standard deviation [s] to transfer a 128MB file.

Bit rate Server Client native () signal () local () cross ()

50Mbps Apache2 wget 22.51± 0.00 23.30± 1.29 31.53± 1.23 33.20± 1.17

cURL 22.52± 0.00 22.72± 0.25 26.46± 0.94 26.98± 1.01

aria2c 22.68± 0.02 22.89± 0.04 22.96± 0.06 23.06± 0.05

nginx wget 22.51± 0.00 23.11± 1.12 32.00± 1.01 33.01± 0.94

cURL 22.52± 0.00 22.74± 0.31 26.30± 0.87 27.05± 1.04

aria2c 22.63± 0.02 22.84± 0.05 22.91± 0.06 23.01± 0.05

vsftpd cURL 22.73± 0.00 24.13± 1.14 31.30± 0.81 32.66± 1.20

LFTP 22.72± 0.01 22.93± 0.04 23.13± 0.56 23.42± 0.61

ProFTPD cURL 22.93± 0.00 23.14± 0.27 26.82± 1.12 27.77± 1.14

LFTP 22.96± 0.02 23.16± 0.05 23.33± 0.59 23.73± 0.78

OpenSSH SCP 22.86± 0.01 24.44± 1.38 34.04± 1.15 35.95± 1.33

100Mbps Apache2 wget 11.30± 0.02 22.20± 0.89 32.49± 1.19 33.45± 1.59

cURL 11.30± 0.01 18.50± 0.70 26.79± 1.19 27.80± 1.21

aria2c 11.45± 0.03 13.27± 0.67 17.79± 0.73 18.37± 0.96

nginx wget 11.29± 0.02 22.39± 1.43 32.11± 1.72 33.61± 1.58

cURL 11.30± 0.01 19.19± 1.32 26.48± 0.95 27.75± 1.52

aria2c 11.40± 0.02 13.54± 1.08 17.50± 0.60 18.23± 0.86

vsftpd cURL 11.49± 0.01 24.18± 1.79 31.24± 0.91 33.25± 1.37

LFTP 11.50± 0.02 16.17± 1.18 22.43± 1.06 23.40± 0.85

ProFTPD cURL 11.72± 0.01 19.37± 1.17 26.85± 0.90 28.06± 0.87

LFTP 11.74± 0.04 16.16± 1.57 22.57± 0.96 23.71± 0.83

OpenSSH SCP 11.63± 0.02 22.24± 1.13 33.90± 1.33 36.30± 2.05

300Mbps Apache2 wget 3.50± 0.89 21.62± 1.84 32.40± 1.58 32.53± 1.73

cURL 3.45± 0.97 18.54± 1.76 25.81± 1.35 26.59± 1.46

aria2c 2.69± 0.63 13.72± 1.50 18.02± 1.04 18.02± 0.88

nginx wget 3.33± 0.93 21.42± 1.25 32.68± 1.78 32.60± 2.40

cURL 3.35± 0.81 18.22± 1.09 26.07± 1.28 26.62± 1.77

aria2c 2.61± 0.69 13.16± 0.81 17.65± 0.94 18.53± 1.08

vsftpd cURL 7.77± 1.19 23.87± 1.78 31.29± 1.63 31.87± 1.62

LFTP 2.98± 0.78 15.72± 1.25 21.95± 1.01 22.66± 0.99

ProFTPD cURL 4.40± 1.01 19.12± 1.83 26.99± 1.48 27.77± 1.72

LFTP 3.46± 0.68 16.32± 1.51 22.08± 1.22 22.69± 1.17

OpenSSH SCP 3.31± 0.63 21.03± 1.54 34.58± 1.81 34.11± 1.55

5.2. Cross-System Data Flow Tracking and Policy Propagation 117

5.2.4 Transferring Files of Size 512MB

Transferring even larger files of 512MB (Figure 5.4 and Table 5.5 as well as Ap-

pendix C.4 for further details) confirms the above trends and observations. Again,

native transfer times () are limited by the network bit rate and they are constant for

each bit rate for all client client/server combinations (50Mbps: ∼90s, 100Mbps ∼45s,

300Mbps: ∼13s). As above, vsftpd/cURL on 300Mbps poses a significant exception.

Again, the overall file transfer time if the usage control infrastructure is enabled ()

is constant for each client/server combination for different bit rates.

When calculating the times needed to signal () each single system call to the

Controller, the results are insignificantly different to the 128MB case: for 50Mbps the

overhead per system call is 0 .017ms ± 0 .015ms, for 100Mbps it is 0 .161ms ± 0 .10ms,

and for 300Mbps it is 0 .314ms ± 0 .02ms. Also, the time that is needed to process the

system calls by the PDP/PIP () is similar to the 128MB case: for 50Mbps the overhead

per system call is 0 .056ms ± 0 .054ms, for 100Mbps it is 0 .122ms ± 0 .015ms, and for

300Mbps it is 0 .126ms ± 0 .02ms. The explanations for these results are equivalent to

what has already been discussed.

Cross-system data flow tracking () imposed an additional overhead of up to 6s.

Again, this overhead was within the standard deviation and could not be reliably

measured; e.g. for nginx/wget/100Mbps no additional overhead was measurable.

Lastly, the overall absolute overhead imposed by the usage control infrastructure to

transfer a file of size 512MB ranges from 0.85s (Apache2/aria2c/50Mbps) to 118.98s

(OpenSSH/SCP/300Mbps), whereas the overall relative overheads range from 1%

(Apache2/aria2c/50Mbps) to 1000% (OpenSSH/SCP/300Mbps).

Having analyzed the performance measurement results for different client/server com-

binations, file sizes and bit rates, it turned out that the overhead imposed by the usage

control infrastructure is generally lower for slow network bit rates. As explained before,

the reason is that in this case most of the usage control related tasks (i.e. signaling

of the system calls to the Controller as well as local/remote data flow tracking and

policy propagation) are performed while the actual client and server processes would

be waiting for the TCP communication channel to become ready to read/write. To

understand whether the above observations generalize, additional evaluations with a

very low network bit rate of 10Mbps were performed. The corresponding results are

presented in the subsequent section.

118 5. Evaluation

Figure 5.4: Transfer times for a 512MB file.

(a) Bit rate of 50Mbps.

 0

 20

 40

 60

 80

 100

 120

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(b) Bit rate of 100Mbps.

 0

 20

 40

 60

 80

 100

 120

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(c) Bit rate of 300Mbps.

 0

 20

 40

 60

 80

 100

 120

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

with

A/W: Apache2/wget N/W: nginx/wget V/C: vsftpd/cURL P/C: ProFTPD/cURL
A/C: Apache2/cURL N/C: nginx/cURL V/L: vsftpd/LFTP P/L: ProFTPD/LFTP
A/A: Apache2/aria2c N/A: nginx/aria2c S/S: OpenSSH/SCP

native signal local cross

5.2. Cross-System Data Flow Tracking and Policy Propagation 119

Table 5.5: Time and standard deviation [s] to transfer a 512MB file.

Bit rate Server Client native () signal () local () cross ()

50Mbps Apache2 wget 90.01± 0.2 92.47± 5.1 130.08± 3.7 131.37± 6.0

cURL 90.04± 0.3 90.73± 1.1 106.08± 3.6 106.65± 2.5

aria2c 90.29± 0.2 90.66± 0.4 91.11± 0.3 91.26± 0.4

nginx wget 90.02± 0.2 95.18± 5.2 130.63± 3.6 130.74± 2.7

cURL 90.02± 0.2 91.33± 1.2 105.87± 3.0 107.25± 3.2

aria2c 90.24± 0.3 90.63± 0.3 91.25± 0.4 91.09± 0.3

vsftpd cURL 90.32± 0.2 96.69± 2.8 125.00± 3.4 126.80± 4.2

LFTP 90.33± 0.5 90.75± 0.4 92.22± 2.1 93.10± 2.1

ProFTPD cURL 90.43± 0.5 91.40± 1.5 105.93± 2.4 107.07± 2.8

LFTP 90.57± 0.3 91.05± 0.3 92.37± 2.2 93.35± 1.9

OpenSSH SCP 90.32± 0.5 92.62± 2.4 127.96± 5.1 133.71± 5.5

100Mbps Apache2 wget 45.23± 0.3 89.18± 2.1 131.48± 5.1 132.94± 5.5

cURL 45.18± 0.1 77.09± 2.5 107.77± 3.4 109.07± 2.8

aria2c 45.43± 0.3 53.07± 2.1 72.72± 4.3 74.22± 4.4

nginx wget 45.18± 0.2 90.43± 3.7 131.26± 3.9 131.19± 4.6

cURL 45.18± 0.3 78.33± 2.5 106.36± 3.0 108.07± 3.3

aria2c 45.37± 0.2 54.46± 2.3 73.00± 3.1 74.14± 3.6

vsftpd cURL 45.31± 0.2 97.29± 3.3 126.24± 5.6 128.93± 3.9

LFTP 45.46± 0.1 64.33± 6.0 89.36± 3.4 91.77± 3.0

ProFTPD cURL 45.64± 0.2 77.18± 2.4 107.28± 3.3 109.01± 3.4

LFTP 45.73± 0.4 65.15± 4.0 88.96± 2.6 92.68± 2.5

OpenSSH SCP 45.45± 0.1 85.14± 2.9 128.93± 7.0 134.77± 5.8

300Mbps Apache2 wget 13.51± 3.4 86.18± 5.6 131.71± 4.7 129.01± 5.9

cURL 13.61± 2.9 74.41± 5.7 106.42± 3.6 105.22± 3.7

aria2c 10.85± 2.4 55.01± 3.9 72.27± 3.1 72.92± 3.8

nginx wget 13.81± 3.1 86.95± 5.0 131.29± 5.2 131.16± 5.7

cURL 13.32± 3.2 75.75± 6.0 105.81± 4.5 106.41± 3.7

aria2c 10.75± 2.6 54.88± 3.3 72.25± 3.5 74.21± 3.5

vsftpd cURL 31.91± 3.6 95.35± 4.9 124.57± 5.4 126.78± 5.6

LFTP 13.27± 2.4 63.37± 5.2 89.67± 3.0 87.98± 3.3

ProFTPD cURL 16.53± 3.1 77.00± 5.7 108.50± 3.5 106.49± 4.2

LFTP 13.05± 2.5 62.57± 4.2 88.08± 3.3 89.18± 3.4

OpenSSH SCP 11.90± 2.1 81.36± 4.5 128.15± 6.1 130.88± 4.2

120 5. Evaluation

5.2.5 Transferring Files with a Bit Rate of 10Mbps

Transferring files using a bit rate as low as 10Mbps confirmed the above observations

for a bit rate of 50Mbps, i.e. that the usage control infrastructure’s overhead decreases

with lower bit rates. The performance measurement results for this set of experiments

are provided in Table 5.6 and Figure 5.5. Notably, these results do not include the case

of transferring files of size 1KB. As discussed in Section 5.2.1, the network bit rate did

not have any significant influence when transferring such small files. This was also

true for a 10Mbps bit rate, which is why this case is covered in Section 5.2.1.

Considering the transfer of larger files of size 1MB and comparing the evaluation

results with the results for a bit rate of 50Mbps in Section 5.2.2, it turns out the

native file transfer times () increase in correspondence with the slower bit rate. The

additional overheads imposed by the usage control infrastructure turn out to be slightly

smaller for a bit rate of 10Mbps: For all client/server combinations but OpenSSH/SCP,

signaling of the system calls to the Controller () averages at ∼160ms ± 32ms for

10Mbps and at ∼167ms ± 24ms for 50Mbps; the additional overhead imposed by local

data flow tracking () averages at ∼65ms ± 52ms for 10Mbps and at ∼104ms ± 76ms

for 50Mbps; in terms of cross-system data flow tracking and policy propagation () the

additional overhead is similarly negligible in both cases.

Evaluation of the measurement results for files of size 128MB and 512MB reveals

that the overall overhead imposed by the usage control infrastructure () is quite

small for low network bit rates. For a 128MB file the absolute overall overhead is ∼3 .2s

for OpenSSH/SCP and ∼1 .3s for all other client/server combinations. Considering

the overall file transfer time of ∼112s, the relative overhead imposed by the usage

control infrastructure is as low as 1% to 3%. For a file of size 512MB the overall

absolute overhead averages ∼6 .8s for OpenSSH/SCP and at 4 .3s ± 2 .5s for all other

client/server combinations. Again, considering the overall file transfer time of ∼450s,

the relative overall overhead ranges between 0.4% and 1.5%.

5.2.6 Summary

Summarizing the results presented in the previous sections, the relative overhead

imposed by the usage control infrastructure when transferring files between systems

ranges between 0.4% (512MB/nginx/aria2c/10Mbps) and 1000% (512MB/OpenSSH/

SCP/300Mbps). Since this range is enormous, it is useful to further discuss and

differentiate those results, since the overheads depend on many different parameters

as follows.

File size. Naturally, the size of the file being transferred has a significant impact

onto the file transfer times. Due to the expensive startup phase of all client/server

applications used for the experiments, the usage controlled transfer of smaller files

(1KB, 1MB) involved an overhead of at least 45% for decent bit rates of at least 50Mbps.

This was different for larger files (128MB, 512MB), in which case the minimal relative

5.2. Cross-System Data Flow Tracking and Policy Propagation 121

Figure 5.5: Transfer times for a bit rate of 10Mbps.

(a) File size of 1MB.

 0

 0.5

1.0

 1.5

2.0

 2.5

3.0

 3.5

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(b) File size of 128MB.

 0

 20

 40

 60

 80

 100

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

(c) File size of 512MB.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

native
signal

local
cross

with

A/W: Apache2/wget N/W: nginx/wget V/C: vsftpd/cURL P/C: ProFTPD/cURL
A/C: Apache2/cURL N/C: nginx/cURL V/L: vsftpd/LFTP P/L: ProFTPD/LFTP
A/A: Apache2/aria2c N/A: nginx/aria2c S/S: OpenSSH/SCP

native signal local cross

122 5. Evaluation

Table 5.6: Time and standard deviation to transfer files at a bit rate of 10Mbps.

File size Server Client native () signal () local () cross ()

1MB Apache2 wget 894± 1 1026± 11 1071± 13 1067± 9
Ti

m
es

ar
e

in
m

s.

cURL 901± 1 1043± 9 1076± 13 1082± 19

aria2c 1022± 6 1192± 16 1228± 10 1264± 20

nginx wget 895± 1 1029± 8 1062± 9 1071± 7

cURL 904± 1 1040± 10 1081± 8 1099± 8

aria2c 974± 3 1140± 12 1182± 18 1204± 12

vsftpd cURL 1100± 1 1267± 37 1384± 25 1378± 24

LFTP 1066± 8 1252± 16 1265± 16 1305± 7

ProFTPD cURL 1337± 2 1465± 14 1572± 42 1603± 31

LFTP 1325± 10 1517± 16 1556± 14 1560± 19

OpenSSH SCP 1243± 9 2729± 141 3221± 104 3527± 412

128MB Apache2 wget 112.49± 0.00 112.67± 1.12 112.69± 0.02 113.82± 2.68

Ti
m

es
ar

e
in

s.

cURL 112.49± 0.00 112.67± 0.02 112.69± 0.17 113.73± 0.49

aria2c 112.77± 0.00 112.95± 0.43 113.06± 4.94 114.04± 0.03

nginx wget 112.49± 0.00 112.63± 0.03 112.66± 0.27 113.77± 0.27

cURL 112.50± 0.35 112.66± 0.02 112.69± 0.04 113.77± 1.42

aria2c 112.73± 0.07 112.91± 0.03 112.98± 0.83 113.98± 0.12

vsftpd cURL 114.60± 1.02 112.88± 0.02 113.04± 0.02 114.10± 0.05

LFTP 112.84± 0.70 113.02± 0.02 113.06± 0.02 114.09± 0.77

ProFTPD cURL 112.95± 2.21 113.12± 0.03 113.24± 0.03 114.22± 0.05

LFTP 113.17± 0.65 113.34± 0.41 113.33± 0.01 114.40± 0.08

OpenSSH SCP 112.76± 0.01 114.19± 0.09 114.79± 0.04 116.00± 0.13

512MB Apache2 wget 452.31± 1.3 450.13± 1.0 450.32± 0.9 454.52± 0.5

Ti
m

es
ar

e
in

s.

cURL 449.91± 0.3 450.77± 0.9 450.65± 1.2 454.54± 0.2

aria2c 450.69± 0.7 451.26± 0.7 451.21± 0.3 455.24± 0.5

nginx wget 449.92± 0.8 450.14± 0.8 450.40± 0.2 454.78± 1.1

cURL 452.09± 4.3 450.47± 0.3 451.20± 0.4 454.34± 1.2

aria2c 453.58± 1.5 451.04± 0.4 451.13± 0.1 455.39± 0.6

vsftpd cURL 450.73± 1.6 451.66± 0.6 451.13± 0.8 455.49± 0.5

LFTP 451.10± 1.5 451.09± 0.0 452.11± 1.5 455.18± 0.2

ProFTPD cURL 450.45± 1.6 450.78± 0.3 451.07± 1.2 455.05± 0.8

LFTP 451.14± 2.3 451.79± 2.6 451.71± 0.4 455.49± 0.1

OpenSSH SCP 449.96± 0.2 451.80± 0.1 452.78± 1.2 456.75± 0.1

5.2. Cross-System Data Flow Tracking and Policy Propagation 123

overhead dropped to 1%. Both for smaller and larger files, however, the relative

overhead might go up to 1000%—depending on the other parameters discussed in the

following.

Application. In particular when transferring large files the choice of the application

can heavily influence file transfer times. E.g., transferring a 512MB file using a bit

rate of 300Mbps takes 72.92s when using Apache2/aria2c, but 132.94s when using

Apache2/wget. For transferring small files, OpenSSH/SCP turned out to be extremely

expensive, taking 2.5ms to transfer a 1KB file which only takes 0 .5ms ± 0 .2ms for all

other client/server combinations. As the experiments show, there is a clear correlation

between those file transfer times and the amount of system calls being issued by the

corresponding applications. As a consequence, a redesign of the applications to use

less read and write system calls—which make up the majority of system calls when

transferring larger files—could significantly improve the above measurement results.

E.g., since version 2.2 the Linux kernel offers the system call sendfile, which is one

single system call that allows to “transfer data between file descriptors [which] is more

efficient than the combination of read and write” [122].

Bit rate. The overheads imposed by the usage control infrastructure are relatively low

for smaller network bit rates. As discussed, this is because in this case most of the

infrastructure’s tasks can be performed while the client and/or server process is waiting

for the TCP communication channel to become ready to read or write. Consequently,

for a bit rate of 10Mbps the experiments showed that the overall relative overhead can

be as low as 0.4%. For a bit rate of 50Mbps the relative overhead was as low as 1% for

some client/server/file size combinations. On the other hand, a network bit rate as

high as 300Mbps results in enormous overheads of up to 1000%, effectively degrading

the network’s throughput to 10% of its nominal value.

Considering this latter case, it is particularly beneficial to analyze which parts of

the usage control infrastructure account for which parts of the overall overhead. In

fact, for a bit rate of 300Mbps and a file size of at least 1MB signaling of the system

calls from the PEP to the Controller () accounts for 57% to 89% of the overall

imposed overhead (cf. Figures 5.2c, 5.3c and 5.4a and the corresponding tables). In

comparison, local data flow tracking () accounts for ‘only’ 11% to 39% percent of the

overall overhead. Cross-system data flow tracking and policy propagation () never

accounts for more than 7% of the overall overhead and is usually rather around 2%

to 3%. Signaling of the system calls to the Controller is so expensive is because

the Controller, including PDP, PIP, and PMP, have been implemented in Java (cf.

Section 4.1), while the PEP being used for these experiments was implemented in C (cf.

Section 4.1.4). Hence, signaling of the system calls demands expensive inter-process

communication which was implemented using the Apache Thrift RPC protocol. It

stands to reason that much of the above signaling overhead could be avoided by tightly

124 5. Evaluation

integrating the usage control infrastructure with the PEP, e.g. by implementing the

usage control infrastructure as a shared library and linking it to the PEP directly.

Which of the measured overheads are actually acceptable clearly depends on the given

application scenario. E.g., if in an application scenario small files are occasionally
transferred across systems, than a file transfer time of 171ms instead of 17ms (cf.

Section 5.2.1, 1KB/nginx/wget) might be totally acceptable. On the other hand, if

many such small files (e.g., 1000) would need to be transferred one after another in

batch mode, than a transfer time of 171s instead of 17s is likely not acceptable.

For low bit rates (cf. Section 5.2.5) and larger files the overall overhead is around

1% for most cases. This seems to be absolutely acceptable for most scenarios when

considering the overall transfer times of 130s for 128MB and 450s for 512MB. Given a

bit rate of 300Mbps, however, an overall file transfer time of 130s instead of the native

13.5s (512MB/Apache2/wget) is likely to be considered unacceptable.

5.3 Distributed Policy Decisions

Contents of this section have been published in [93].

The goal of this section is to understand which communication and performance

overheads are introduced when enforcing global policies in a decentralized manner

(RQ2) as conceptualized in Section 3.3 and implemented in Section 4.3 (requirement

R5). Further, the goal is to understand how these overheads compare to a centralized

infrastructure. For this, several case studies along the running example from Section 1.5

have been performed: Several data usage policies were enforced by multiple systems

simultaneously and the overheads in different situations were measured. After detailing

the system setup, identifying relevant parameters, and describing how the experiments

were executed, the subsequent sections present the actual evaluation results.

System Setup. The experiments presented in this section were run on twelve machines,

y0 , . . . , y11 , which were configured with a 4x2.6GHz CPU. y0 was configured with 16GB

RAM, while y1 , . . . , y11 were configured with 4GB RAM each. The software being used

was equivalent to what has been described in Section 5.2. For the central system

setup, y0 was hosting the central data usage control instance, consisting of one fully

functional Controller as described in Section 4.1.3. This central Controller was

responsible for policy evaluation and data flow tracking for several PEPs being run on

systems y1 , . . . , y11 . In this case, Cassandra was not executed. For the decentral setup,

systems y1 , . . . , y11 all run exactly one fully functional Controller; y0 was not used.

Again, all cross-system communication was encrypted using TLS, and Cassandra used

a consistency level of Quorum.

Parameters. While running and evaluating the experiments, the following parameters

turned out to influence the evaluation results when enforcing global data usage policies:

5.3. Distributed Policy Decisions 125

(i) The policy being enforced. In the following experiments, policies 1, 2 and 3 from

the running example were enforced. Note that for the performance evaluation

(Sections 5.3.4 to 5.3.6) it was of importance whether the policy was evaluated

upon actual and/or desired events. In order to get both best and worst case

evaluation results, policies were only evaluated upon actual events. Due to

the performed (distributed) policy evaluation, the evaluation times of actual

events yielded worst case results. Since desired events did not trigger any policy

evaluation, their evaluation times yielded best case results.

(ii) The total number of systems being usage controlled (t ∈ N), which was in

between 3 and 11, 3 ≤ t ≤ 11.

(iii) The number of systems actually enforcing the policy (e ∈ N). Given a number of

t usage controlled systems and a policy p, only some of those usage controlled

systems might in fact enforce policy p. E.g., if a system is not aware of any data

being addressed by policy p, then there is no need for this system to enforce

policy p. Hence, e ≤ t.
(iv) The global event frequency in events per second (Ev/s) (f ∈ R≥0), i.e. the amount

of events happening within a certain amount of time within the entire distributed

system. For the following experiments, event frequencies up to 167 Ev/s were

used.

(v) The percentage of events relevant for data flow tracking and/or policy evaluation

(r), since usually not all events being observed by PEPs are of relevance for the

PDP and/or PIP. Hence, 0% ≤ r ≤ 100%.

Although those parameters and the range of their potential values impose a huge

complexity on the performed experiments, the presented evaluation results provide

first insights of the influence of those parameters on any overheads.

Experiment Execution. For each measurement all of the above parameters were fixed

and an event trace was randomly generated. Each generated event trace matched

the given global event frequency f and had a nominal total execution time of 30

seconds (e.g., given f = 100Ev/s an event trace consisting of 3000 events was gen-

erated). Thereby, each event was randomly assigned to one of the t participating

usage controlled systems. Then, the event trace was executed, whereby the policy was

evaluated upon every trigger event as well as for a timestep interval of one second. In

correspondence with Section 4.3.1, time-based policy evaluation happened consistently

across all PDPs. After each run, the entire infrastructure was reset. Note, that the

PEPs intercepted the system events both before and after their execution, resulting in

a desired event and an actual event being sent to the PDP. Communication overhead

was measured by dumping the network communication using tcpdump; times were

measured using the C++ chrono datetime library.

Note that due to the vast input space it was not feasible to have multiple experiment

executions for every possible combination of parameters as explained above. Never-

126 5. Evaluation

Figure 5.6: Recap of policy 1 and the corresponding ECA rules.

Policy 1: ‘Exactly one contract offer must be sent to the customer not later than 30
days after a request for a contract offer has been received.’

Event: < any >

(a) Condition: ((requestOffer , {(obj , d)}) before 30)
and repmax (30 , 0 , (sendOffer , {(obj , d)}))

Action: (notifyManager , {(obj , d)})
Event: (sendOffer , {(obj , d)})

(b) Condition: repmax (30 , 0 , (requestOffer , {(obj , d)}))
or repmin(30 , 1 , (sendOffer , {(obj , d)}))

Action: inhibit

theless, the regularity of the obtained evaluation results (cf. the following sections)

indicates that the randomness in the evaluation process does not significantly influence

the results. This claim is further confirmed by the twentyfold execution of selected

parameter combinations and the corresponding minimal difference in the obtained

results.

Results in a Nutshell. The results show that neither the decentralized nor the cen-

tralized approach performs inexorably better than the other. In many cases, however,

the decentralized approach outperformed the centralized approach. The following

sections present the obtained evaluation results in detail. Sections 5.3.1 to 5.3.3 deal

with the measured communication overheads, while Sections 5.3.4 to 5.3.6 describe

the imposed performance overheads. Section 5.3.7 summarizes the results.

5.3.1 Communication Overhead: Policy 1

Figures 5.7 to 5.9 show the global communication overhead when enforcing ECA rules

1a and 1b, which are recapped in Figure 5.6. For Figures 5.7 and 5.8 a total number of

three usage controlled systems where monitored and all of them actually enforced ECA

rule 1a and 1b, respectively (e = 3 = t). For Figure 5.9 a total number of seven usage

controlled systems where monitored and three of them actually enforced ECA rule 1a

(e = 3 ≤ 7 = t).

For Figures 5.7a, 5.8a and 5.9a the depicted data points were obtained by fixing

several percentages of relevant events (r ∈ {0%, 10%, 25%, 50%, 75%, 100%}) and

by experimenting with the global event frequency 0.3Ev/s ≤ f ≤ 130Ev/s. The x-axis

shows the global event frequency f in Ev/s, while the y-axis shows the global amount

of exchanged Bytes per second. Trends are visualized using linear regression. The

same applies to Figures 5.11a, 5.13a and 5.14a within the upcoming sections.

For these and all future experiments the results produced by the central system

setup () where of little surprise: On average, each event being observed by a PEP

5.3. Distributed Policy Decisions 127

caused 1170 Bytes to be exchanged between the PEP and the central PDP. For the

central system setup the percentage of relevant events (r) did not have any influence on

the communication overhead. This is of no surprise when recapping (cf. Section 2.2.2)

that the PEP is stateless and that every event must be signaled to the central PDP.

Running the distributed infrastructure, the first observation is that Cassandra causes

some base ‘noise’ in order to keep the distributed database in a consistent state. This

implies that the centralized approach performs inexorably better for very low event

frequencies as can be seen in Figures 5.7a, 5.8a and 5.9a for f . 12Ev/s. However,

depending on the ECA rule being enforced, the event frequency f , the percentage of

relevant events r, as well as the amount of involved systems (t, e), the decentralized

approach is capable of outperforming the centralized approach.

While in general event traces with a low percentage of relevant events perform

particularly well (Figures 5.7a, 5.8a and 5.9a, (10% relevant events), (25%)),

some remarkable exceptions can be observed. First of all, aforementioned traces

perform good for two reasons: (i) policies can in many cases be conclusively evaluated

locally, avoiding costly lookups within the distributed database; (ii) a low percentage

of relevant events implies that a small amount of state changes (cf. Section 4.3) must

be notified to other PDPs and thus written to the distributed database. Secondly, traces

with a high percentage of relevant events perform badly ((75%), (100%)).

While in this case the PDPs can almost always decide locally, a high amount of state

changes must be notified to other PDPs. Thus, the lion’s share of the communication

overhead is due to events and state changes being written to the database. Thirdly,

traces with 0% of relevant events () may perform particularly good (cf. Figure 5.8a)

or particularly bad (cf. Figures 5.7a and 5.9a). The reason for this vast difference ist

that for ECA rule 1a the corresponding ECA rule’s trigger event is < any >, while for

ECA rule 1b the trigger event is one concrete event, namely (sendOffer , {(obj , d)}).
Consequently, ECA rule 1a is evaluated upon every observed event and for each the ECA

rule’s condition must be evaluated, resulting in expensive lookups within the database

(Figures 5.7a and 5.9a,). Since the percentage of relevant events is 0, the trigger

event of ECA rule 1b never happens and thus the ECA rule’s condition is only evaluated

once per timestep per PDP; consequently, for the most part only Cassandra’s base noise

can be observed (Figure 5.8a,).

Comparing Figures 5.7a and 5.8a, it turns out that ECA rule 1a can generally be

evaluated more efficiently than ECA rule 1b. The main reason is that the evaluation

of operator before in ECA rule 1a necessitates at most one database lookup per PDP

per timestep, while in the worst case each repmin operator, which occurs twice in the

condition of ECA rule 1b, necessitates one lookup upon every event.

Comparing Figures 5.7a and 5.9a, it turns out that the global communication

overhead decreases if the total amount of usage controlled systems (t) increases and

if the total amount of systems actually enforcing ECA rule 1a (e) remains constant

(Figure 5.7a: e = 3 = t; Figure 5.9a: e = 3 ≤ 7 = t). The reason is that if e = 3 = t,

128 5. Evaluation

Figure 5.7: Communication overhead when enforcing ECA rule 1a on three systems.

(a) Fixing six percentages of relevant events and experimenting with the event frequency.

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

110k

120k

130k

Bytes/sec

0 10 20 30 40 50 60 70 80 90 100 110 120 Ev/s

with Distributed; r = 0% Distributed; r = 10% Distributed; r = 25%
Distributed; r = 50% Distributed; r = 75% Distributed; r = 100%
Centralized

(b) Fixing four event frequencies and experimenting with the percentage of relevant events.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

average
Bytes/Event

 0 10 20 30 40 50 60 Percentage of relevant events

with Distributed; f = 17Ev/s Distributed; f = 33Ev/s
Distributed; f = 67Ev/s Distributed; f = 167Ev/s
Centralized

5.3. Distributed Policy Decisions 129

Figure 5.8: Communication overhead when enforcing ECA rule 1b on three systems.

(a) Fixing six percentages of relevant events and experimenting with the event frequency.

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

110k

120k

130k

Bytes/sec

0 10 20 30 40 50 60 70 80 90 100 110 120 Ev/s

with Distributed; r = 0% Distributed; r = 10% Distributed; r = 25%
Distributed; r = 50% Distributed; r = 75% Distributed; r = 100%
Centralized

(b) Fixing four event frequencies and experimenting with the percentage of relevant events.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

average
Bytes/Event

 0 10 20 30 40 50 60 Percentage of relevant events

with Distributed; f = 17Ev/s Distributed; f = 33Ev/s
Distributed; f = 67Ev/s Distributed; f = 167Ev/s
Centralized

130 5. Evaluation

Figure 5.9: Communication overhead enforcing ECA rule 1a on three of seven systems.

(a) Fixing six percentages of relevant events and experimenting with the event frequency.

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

110k

120k

130k

Bytes/sec

0 10 20 30 40 50 60 70 80 90 100 110 120 Ev/s

with Distributed; r = 0% Distributed; r = 10% Distributed; r = 25%
Distributed; r = 50% Distributed; r = 75% Distributed; r = 100%
Centralized

(b) Fixing four event frequencies and experimenting with the percentage of relevant events.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

average
Bytes/Event

 0 10 20 30 40 50 60 Percentage of relevant events

with Distributed; f = 17Ev/s Distributed; f = 33Ev/s
Distributed; f = 67Ev/s Distributed; f = 167Ev/s
Centralized

5.3. Distributed Policy Decisions 131

then every single observed event (i.e. e/t = 3/3 = 1 = 100%) causes the evaluation of

ECA rule 1a’s condition and thus potentially some reading or writing on the database.

However, if only three out of the seven usage controlled systems do in fact enforce ECA

rule 1a (e = 3 ≤ 7 = t), then only 43% of all observed events (i.e. e/t = 3/7 ≈ 0.43)

cause the evaluation of ECA rule 1a’s condition and thus potentially some reading or

writing on the database.

In Figures 5.7a, 5.8a and 5.9a several percentages for relevant events were fixed,

i.e. r ∈ {0%, 10%, 25%, 50%, 75%, 100%}. As described, these event frequencies do

have a major influence on the measured communication overheads. To understand

this influence better, Figures 5.7b, 5.8b and 5.9b fix several event frequencies (i.e.

f ∈ {17Ev/s, 33Ev/s, 67Ev/s, 167Ev/s}) and show how the percentage of relevant

events r (0% ≤ r ≤ 100%, x-axis) influences the total amount of Bytes being ex-

changed between all involved systems. To make those numbers comparable, the

measurements are normalized by dividing the total amount of exchanged Bytes by the

number of observed events, resulting in a number representing the average amount

of Bytes exchanged per event (y-axis). Again, for the centralized approach () the

communication overhead is constant (1170 Bytes per event) and the percentage of

relevant events does not infuence the amount of bytes being exchanged. Note that this

description also applies to Figures 5.11b, 5.13b and 5.14b.

For all scenarios it turns out that the decentralized approach performs best for high

event frequencies (Figures 5.7b, 5.8b and 5.9b, (67Ev/s), (167Ev/s)) and if the

percentage of relevant events is around 3% to 10%. Firstly, this is because higher event

frequencies exploit better Cassandra’s base noise which keeps the database consistent.

Secondly, a low percentage of relevant events results in many situations in which

the local PDPs can decide conclusively, while a low amount of state changes must be

notified to other PDPs. However, if the amount of relevant events is too low (r . 2%),

then many lookups within the database are required, while the presence of many

relevant events results in many writes to the database. Hence, the centralized approach

outperforms the decentralized approach if the percentage of relevant events is very

low or very high (r . 2% ∨ r & 85%) and if the global event frequency is very low

(. 11Ev/s); concrete values depend on the ECA rule being enforced as well as on the

amount of usage controlled systems (t, e).

Recap that the above evaluation results are based on event traces that were ran-

domly generated. In order to show that the introduced randomness does not signifi-

cantly influence the evaluation results, the experiments were repeated twenty times

for selected parameter configurations. The obtained results, i.e. the median amount

of bytes exchanged per second as well as the standard deviation, are presented in

Tables 5.7 to 5.9 respectively for the enforcement ECA rule 1a within three systems,

for the enforcement ECA rule 1b within three systems, as well as for the enforcement

of ECA rule 1a within three out of seven systems. The presented numbers are in

correspondence with the results depicted in Figures 5.7a, 5.8a and 5.9a.

132 5. Evaluation

Table 5.7: Median KB per second and standard deviation for ECA rule 1a on three systems.

Event frequency

Relevant events 16Ev/s 32Ev/s 62Ev/s 113Ev/s

0% 13.9± 0.47 21.7± 0.12 36.6± 0.12 59.7± 0.21

10% 6.8± 0.58 8.0± 0.66 10.5± 0.43 13.7± 0.43

25% 8.6± 0.47 11.5± 0.36 16.1± 0.44 23.1± 0.52

50% 11.4± 0.27 16.4± 0.35 24.2± 0.74 37.8± 0.72

75% 14.0± 0.53 20.7± 0.46 33.0± 0.55 53.0± 1.02

100% 16.3± 0.33 25.2± 0.70 41.5± 0.75 67.4± 0.61

Table 5.8: Median KB per second and standard deviation for ECA rule 1b on three systems.

Event frequency

Relevant events 16Ev/s 32Ev/s 62Ev/s 113Ev/s

0% 5.6± 0.08 5.6± 0.10 5.6± 0.13 5.7± 0.27

10% 4.8± 0.18 6.4± 0.10 9.7± 0.11 15.4± 0.07

25% 7.3± 0.13 11.7± 0.10 19.9± 0.10 33.9± 0.12

50% 11.7± 0.13 20.5± 0.09 37.2± 0.09 64.2± 0.08

75% 16.3± 0.10 29.4± 0.45 54.4± 0.10 93.7± 0.21

100% 20.7± 0.08 38.2± 0.12 71.5± 0.14 121.8± 0.15

Table 5.9: Median KB per second for ECA rule 1a on three out of seven systems.

Event frequency

Relevant events 16Ev/s 32Ev/s 62Ev/s 113Ev/s

0% 15.5± 0.23 18.9± 0.42 25.4± 0.48 35.8± 0.46

10% 12.8± 0.74 12.9± 0.50 14.1± 0.39 15.9± 0.51

25% 13.0± 0.36 14.4± 0.39 16.7± 0.29 20.4± 0.43

50% 14.2± 0.35 17.0± 0.39 21.0± 0.44 27.1± 0.60

75% 15.4± 0.29 19.1± 0.38 24.9± 0.64 33.4± 0.78

100% 16.9± 0.34 21.4± 0.51 28.6± 0.60 40.4± 0.88

5.3. Distributed Policy Decisions 133

Figure 5.10: Recap of policy 2 and the corresponding ECA rule.

Policy 2: ‘If the customer declines a contract offer, then all associated and derived
data must not be used anymore.’

Event: (use, {(obj , d)})
Condition: not(always(not((declineOffer , {(obj , d)}))))

Action: inhibit

5.3.2 Communication Overhead: Policy 2

Figures 5.11a and 5.11b show the communication overheads when enforcing ECA rule

2, which is recapped in Figure 5.10, within a total of seven usage controlled systems

(e = 7 = t). ECA rule 2 can be enforced particularly efficient using the decentralized

infrastructure, in particular if the percentage of relevant events r is greater than 0,

r > 0%. The reason for this is the condition of ECA rule 2, which is satisfied if the

event (declineOffer , {(obj , d)}) happened at least once in the past. Once this event is

observed for the first time and notified to all other PDPs, no further coordination is

ever needed, and only Cassandra’s base noise is observed (Figure 5.11, (10%),

(25%), (50%), (75%), (100%)). If no relevant events are ever happening

(Figure 5.11a, (0%)), the ECA rule’s condition is evaluated once per timestep per

PDP. This necessitates a lookup in the database for each PDP in order to determine

whether the condition was satisfied at some other PDP. Consequently this case results

in a higher communication overhead. Again, the communication overhead caused by

the centralized infrastructure is linear in the number of events—irrespective of the

percentage of relevant events—and averages at 1170 Bytes/Event.

Similar to the enforcement of policies 1a and 1b in Section 5.3.1, Figure 5.11b

shows that a very low percentage of relevant events (r . 1%) causes relatively

high communication overheads. However, different from to the previous policies,

Figure 5.11b reveals that for ECA rule 2 the communication overhead for higher

percentages of relevant events (r > 1%) is constant for all event frequencies (

(17Ev/s), (3Ev/s), (67Ev/s), (167Ev/s)).

In summary, when enforcing ECA rule 2 on seven usage controlled systems the

decentralized approach outperforms the centralized approach if no relevant events

happen (r = 0%) and if the event frequency is greater than ∼16Ev/s, as well as if

relevant events do happen (r ≥ 1%) and if the event frequency is greater than ∼9Ev/s.

Also for ECA rule 2 experiments for certain parameter configurations were exe-

cuted twenty times in order to show the insignificance of the randomness within the

evaluation process. The corresponding results, i.e. the median amount of exchanged

bytes per second as well as the standard deviation, are presented in Table 5.10. Again,

these numbers are in line with the results depicted in Figure 5.11a.

134 5. Evaluation

Figure 5.11: Communication overhead when enforcing ECA rule 2 on seven systems.

(a) Fixing six percentages of relevant events and experimenting with the event frequency.

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

110k

120k

130k

Bytes/sec

0 10 20 30 40 50 60 70 80 90 100 110 120 Ev/s

with Distributed; r = 0% Distributed; r = 10% Distributed; r = 25%
Distributed; r = 50% Distributed; r = 75% Distributed; r = 100%
Centralized

(b) Fixing four event frequencies and experimenting with the percentage of relevant events.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

average
Bytes/Event

 0 10 20 30 40 50 60 Percentage of relevant events

with Distributed; f = 17Ev/s Distributed; f = 33Ev/s
Distributed; f = 67Ev/s Distributed; f = 167Ev/s
Centralized

5.3. Distributed Policy Decisions 135

Table 5.10: Median KB per second and standard deviation for ECA rule 2 on seven systems.

Event frequency

Relevant events 16Ev/s 32Ev/s 62Ev/s 113Ev/s

0% 19.4± 0.25 19.4± 0.23 19.4± 0.22 19.4± 0.59

10% 9.9± 0.73 10.0± 0.27 9.9± 0.90 10.0± 0.97

25% 9.9± 0.37 10.0± 0.44 10.3± 0.55 10.5± 0.54

50% 9.9± 0.41 10.2± 0.44 10.7± 0.51 11.0± 0.90

75% 10.0± 0.36 10.4± 0.42 10.8± 0.71 11.9± 1.29

100% 10.3± 0.50 10.5± 1.02 11.2± 0.91 11.5± 3.19

Figure 5.12: Recap of policy 3 and the corresponding ECA rule.

Policy 3: ‘Each contract must be reviewed and approved by at least two clerks.’

Event: (sendOffer , {(obj , d)})
Condition: repmax (30 , 1 , (review , {(obj , d)}))

or repmax (30 , 1 , (approve, {(obj , d)}))
Action: inhibit

5.3.3 Communication Overhead: Policy 3

Policy 3 (Figure 5.12) was enforced within two settings: Figures 5.13a and 5.13b

show the communication overhead when enforcing ECA rule 3 within a set of eleven

systems (e = 11 = t), while Figures 5.14a and 5.14b shows the overhead when

monitoring a set of eleven systems out of which only five are in fact enforcing ECA rule

3 (e = 5 < 11 = t). Note that the scales of the y-axes of Figures 5.13a and 5.14a, as

well as those of Figures 5.13b and 5.14b differ.

Technically ECA rule 3 is similar to ECA rule 1b: Both policies feature the same

trigger event and their conditions are similar, essentially consisting of a disjunction of

two repmin operators (recap that the repmax operator is a negated repmin operator,

cf. Section 2.1.3). For this reason the following evaluation results are also compared

to the results of enforcing ECA rule 1b within a set of three systems, providing some

further insights into how the amount of involved systems influences the communication

overhead.

Figure 5.13a reveals that the centralized approach outperforms the decentralized

approach for many combinations of event frequency (f) and the percentage of rele-

vant events (r). In particular for high percentages of relevant events (r & 50%) the

decentralized infrastructure will always perform worse than the centralized approach

which can be inferred from the steepness of the corresponding trendlines (cf.

(centralized) and (r = 50%) in Figure 5.13a). For lower amounts of relevant

events (Figure 5.13a, (0%), (10%), (25%)) and higher event frequencies

(f & 65Ev/s), however, the decentralized approach performs better than the cen-

tralized one. Concrete numbers can be read from Figure 5.13a. These results are

136 5. Evaluation

confirmed by Figure 5.13b, which shows that the decentralized approach does under

no circumstances perform better than the centralized approach if the event frequency

drops below ∼67Ev/s (Figure 5.13b,). At the same time, even for high event

frequencies (Figure 5.13b, (167Ev/s)) the percentage of relevant events must be

lower than ∼25% in order to perform better than the centralized approach.

Comparing these results with the ones obtained by enforcing ECA rule 1b within a

total amount of three systems (cf. Section 5.3.1), it turns out that enforcing ECA rule 3

within a total amount of eleven systems is much more expensive. Since the two policies

are very similar from a technical perspective as explained above, the root cause for

this difference must lie in the amount systems being usage controlled and enforcing

the corresponding ECA rule. This difference can be explained when recapping that

the underlying Cassandra database is configured to maintain strong data consistency

by using a consistency level of Quorum for all read and write operations. When

enforcing an ECA rule with consistency level Quorum within a set of three systems (as

was the case for ECA rule 1b in Section 5.3.1), then two Cassandra instances must

acknowledge each read and write on the database. In contrast, when enforcing an

ECA rule with the same consistency level within a set of eleven systems, then each

read and write on the database must be acknowledged by six Cassandra instances.

In fact, naively dividing these two numbers (6/2) results in a factor of three which

explains the difference in the communication overheads in these two scenarios to a

very large extent: The communication overhead for enforcing ECA rule 3 within eleven

systems (Figure 5.13a) is in fact ∼3.5 times the overhead for enforcing ECA rule 1b

within three systems (Figure 5.8a). The remaining factor of ∼0.5 can be attributed to

the larger management overhead in order to keep a database of eleven rather than

three Cassandra instances in a consistent state: the base noise of Cassandra for three

systems is ∼6KB/sec, while it is ∼70KB/sec for eleven systems (in Figures 5.8a

and 5.13a).

Figures 5.14a and 5.14b show the results of another experiment in which a total of

eleven systems were usage controlled, out of which five were enforcing ECA rule 3. As

expected, the communication overhead dropped significantly when compared with the

results described above. Comparing the communication overheads in Figures 5.13a

and 5.14a, the overhead in the former is 5.8 times the overhead in the latter for

percentages of relevant events r ∈ {50%, 75%, 100%}. For r = 25% the difference in

the overhead is a factor of 4.2; for r ∈ {0%, 10%} the difference in the overheads is a

factor of 2.7. There are two parameters that, in combination, explain the difference

in the communication overhead in this order of magnitude. First, only five out of

eleven systems are enforcing ECA rule 3, which implies that only the events issued by

those five systems are of interest for the ECA rule’s enforcement. In other words, only

5/11 ≈ 45% of all relevant events may cause any communication between the different

PDPs. Second, by only coordinating five Cassandra instances, each read and write

on the database must only be acknowledged by three Cassandra instances (instead

5.3. Distributed Policy Decisions 137

Figure 5.13: Communication overhead when enforcing ECA rule 3 on eleven systems.

(a) Fixing six percentages of relevant events and experimenting with the event frequency.

0k

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

220k

240k

260k

Bytes/sec

0 10 20 30 40 50 60 70 80 90 100 110 120 Ev/s

with Distributed; r = 0% Distributed; r = 10% Distributed; r = 25%
Distributed; r = 50% Distributed; r = 75% Distributed; r = 100%
Centralized

(b) Fixing four event frequencies and experimenting with the percentage of relevant events.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

average
Bytes/Event

 0 10 20 30 40 50 60 Percentage of relevant events

with Distributed; f = 17Ev/s Distributed; f = 33Ev/s
Distributed; f = 67Ev/s Distributed; f = 167Ev/s
Centralized

138 5. Evaluation

Figure 5.14: Communication overhead enforcing ECA rule 3 on five out of eleven systems.

(a) Fixing six percentages of relevant events and experimenting with the event frequency.

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

110k

120k

130k

Bytes/sec

0 10 20 30 40 50 60 70 80 90 100 110 120 Ev/s

with Distributed; r = 0% Distributed; r = 10% Distributed; r = 25%
Distributed; r = 50% Distributed; r = 75% Distributed; r = 100%
Centralized

(b) Fixing four event frequencies and experimenting with the percentage of relevant events.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

average
Bytes/Event

 0 10 20 30 40 50 60 Percentage of relevant events

with Distributed; f = 17Ev/s Distributed; f = 33Ev/s
Distributed; f = 67Ev/s Distributed; f = 167Ev/s
Centralized

5.3. Distributed Policy Decisions 139

Table 5.11: Median KB per second and standard deviation for ECA rule 3 on eleven systems.

Event frequency

Relevant events 16Ev/s 32Ev/s 62Ev/s 113Ev/s

0% 72.8± 0.61 72.2± 0.59 72.2± 0.57 71.8± 1.56

10% 68.1± 2.07 64.6± 3.35 63.2± 2.10 74.9± 2.82

25% 63.2± 2.13 66.8± 3.10 88.4± 2.20 128.1± 2.27

50% 68.5± 2.76 90.9± 1.73 141.2± 3.06 224.6± 1.99

75% 78.6± 3.35 117.8± 3.67 190.6± 5.32 338.2± 5.33

100% 90.9± 2.64 145.3± 3.26 245.7± 7.80 448.4± 7.28

of six as above) when using consistency level Quorum. Naively combining these two

parameters leads to a factor of 11/5 · 6/3 = 22/5 = 4.4, which is in fact within the

order of magnitude of the above numbers.

Lastly, Figures 5.14a and 5.14b show that for the latter scenario of enforcing ECA

rule 3 within five out of a total of eleven systems the decentral approach is again

able to outperform the centralized approach as long as the event frequency is at least

∼25Ev/s.
Again, the experiments were executed twenty times for certain parameter config-

urations. The corresponding results, i.e. the median amount of exchanged bytes per

second as well as the standard deviation, are presented in Table 5.11. The numbers

are in line with Figure 5.13a.

Before summarizing these analyses’ results in Section 5.3.7, the subsequent sections

discuss the imposed performance overheads within the above scenarios.

5.3.4 Performance Overhead: Policy 1

Figures 5.15a, 5.15b, 5.16a and 5.16b show the performance overhead when enforcing

ECA rules 1a and 1b, i.e. the average processing time in milliseconds (y-axis) per

event for different event frequencies (x-axis). This processing time includes signaling

of the event from the PEP to the Controller, evolution of the PIP’s data flow state,

(distributed) policy evaluation by the PDP, and signaling of the PDP’s decision to the

PEP. For the distributed infrastructure this overhead also depends on the percentage of

relevant events r, which is why several such percentages (i.e. 0% (), 25% (), 50%

(), 75% (), 100% ()) were fixed. Note that Figures 5.15a and 5.16a show the

corresponding performance overhead for actual events, while Figures 5.15b and 5.16b

show the same for desired events. As motivated in the introduction of Section 5.3, the

former was expected to yield worst case performance overheads, while the latter was

expected to yield best case performance overheads.

Each data point depicted in Figures 5.15a, 5.15b, 5.16a and 5.16b is based on

several hundred individual measurements. Recall that each experiment ran for 30

seconds and that event frequencies up to 167Ev/s were used. Then for an event

frequency of e.g. 100Ev/s, 3000 events are issued. Because for each event both its

140 5. Evaluation

Figure 5.15: Performance overheads for ECA rule 1a on three systems.

(a) Average time needed to signal and evaluate actual events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

Ev/s

(b) Average time needed to signal and evaluate desired events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

Ev/s

with Distributed; r = 0% Distributed; r = 25% Distributed; r = 50%
Distributed; r = 75% Distributed; r = 100% Centralized

5.3. Distributed Policy Decisions 141

Figure 5.16: Performance overheads for ECA rule 1b on three systems.

(a) Average time needed to signal and evaluate actual events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

Ev/s

(b) Average time needed to signal and evaluate desired events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

Ev/s

with Distributed; r = 0% Distributed; r = 25% Distributed; r = 50%
Distributed; r = 75% Distributed; r = 100% Centralized

142 5. Evaluation

intended and its actual counterpart is intercepted by the PEP and signaled to the

Controller (before and after the event’s execution, respectively), 6000 measurements

could be performed for one experiment run with an event frequency of 100Ev/s.

Similarly, for f = 3.3Ev/s, 200 events were measured while for f = 167Ev/s, 10000

events were measured. In order to get rid of exceeding outliers, the depicted data

points were obtained by calculating the 10% trimmed mean of all measurement results.

In other words, the mean was calculated after discarding the 10% highest values as

well as the 10% lowest values. Note that these explanations also apply to Figures 5.17a,

5.17b, 5.18a, 5.18b, 5.19a, 5.19b, 5.20a and 5.20b.

Comparing Figures 5.15a and 5.16a as well as Figures 5.15b and 5.16b, it turns out

that the performance measurement results for enforcing ECA rules 1a and 1b within

a total of three usage controlled systems (e = 3 = t) are very similar. Considering

the signaling and evaluation of actual events in the presence of a low event frequency

(f < 50Ev/s) as well as many relevant events (Figures 5.15a and 5.16a, 50% (),

75% (), 100% ()), the distributed approach performs particularly bad. The

reason is that in this case many state changes must be written to the distributed

database, resulting in wait times for the corresponding acknowledgements of remote

nodes. At the same time, however, Cassandra’s benefits can not be fully utilized for

low percentages of relevant events as also shown in the communication overhead

evaluation in Sections 5.3.1 to 5.3.3. In addition, some of this additional overhead

is attributed to Java’s warm up phase for both the usage control infrastructure and

the corresponding Cassandra nodes: For the distributed scenario both the code of the

usage control infrastructure as well as that of Cassandra must be warmed up on three

systems, whereas for the centralized approach only the usage control infrastructure

needs to be warmed up on only one system. For higher event frequencies (Figures 5.15a

and 5.16a, f > 50Ev/s) the reliance on Cassandra is more advantageous, which is why

in this case the distributed infrastructure performs better than the centralized approach.

Comparing the performance for low percentages of relevant events (Figures 5.15a

and 5.16a, 0% (), 25% ()), it turns out that actual events can be evaluated more

efficiently for ECA rule 1b. This observation can be explained by the different trigger

events of ECA rules 1a and 1b: While ECA rule 1a is evaluated upon every event,

ECA rule 1b is only evaluated upon event (sendOffer , {(obj , d)}) which occurs with

a probability of at most 25% for r = 25%, and with a probability of 0% for r = 0%.

In particular for r = 0% these observations are in correspondence with the measured

communication overheads in Section 5.3.1.

Investigating the performance for desired events (Figures 5.15b and 5.16b), the

first fact to note is that desired events never cause any state changes to be written to

the distributed database, since desired events never change the system’s actual state. It

turns out that the decentralized approach outperforms the centralized approach for

ECA rules 1a and 1b for all event frequencies and for all percentages of relevant events.

Note that for desired events, unlike for actual events, event traces with many relevant

5.3. Distributed Policy Decisions 143

Figure 5.17: Performance overheads for ECA rule 1a on three out of seven systems.

(a) Average time needed to signal and evaluate actual events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

active systems

inactive systems

Ev/s

(b) Average time needed to signal and evaluate desired events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ms

active systems

inactive systems

Ev/s

with Distributed; r = 0% Distributed; r = 25% Distributed; r = 50%
Distributed; r = 75% Distributed; r = 100% Centralized

144 5. Evaluation

events perform comparatively good. The reason is that the presence of many relevant

events allows for conclusive local policy evaluations, while no state changes must ever

be written to the distributed database for the reasons mentioned above.

Enforcing ECA rule 1a within three out of a total of seven usage controlled systems

(e = 3 < 7 = t) necessitates the differentiation between those three systems that do

in enforce ECA rule 1a and those four systems that do not enforce it. In the following

these two sets of systems are also referred to as active systems and inactive systems.
Intuitively, the performance of the latter is expected to be significantly better, since by

definition no policy evaluation must be performed. The corresponding performance

measurement results for actual events and desired events are depicted in Figures 5.17a

and 5.17b, respectively.

Considering the centralized infrastructure, the performance is slightly worse than

when enforcing ECA rule 1a within a total of three systems (cf. Figure 5.15), both for

actual as well as for desired events. While this slight difference is actually insignificant,

one reason for it might be the fact that in the current scenario of seven usage controlled

systems more events end up waiting in the Controller’s event processing queue since

the probability that an event from another PEP is already being processed is slightly

higher.

Looking at the performance of the distributed infrastructure, the first fact to note

is that for the four inactive systems (cf. the lowest data point lines in Figures 5.17a

and 5.17b) the percentage of relevant events r does not at all influence the performance

measurement results. Since no policies are deployed at the corresponding PDPs and

hence no matching with any such policies yields a positive result, this is not surprising.

Accordingly, the distributed infrastructure performs particularly good when considering

inactive systems: As expected, systems that are not part of the policy evaluation

process outperform the centralized approach significantly, because for the centralized

infrastructure still each event must be signaled to the central Controller.

The performance of the three active systems that do enforce ECA rule 1a is slightly

worse than in the earlier scenario in which no additional inactive systems existed

(Figure 5.15). The reason for this performance slowdown is that in the current

implementation the remaining four inactive systems still participate as nodes in the

distributed Cassandra cluster even though the corresponding PDPs do not enforce any

policy that necessitates coordination with other PDPs (cf. Section 4.3.5). Hence it

stands to reason that a revised implementation would yield performance results similar

to the ones provided in Figure 5.15a.

In summary, there are multiple factors that influence whether the centralized or

the decentralized approach performs better. When considering desired events, which

do never cause any write operations on the distributed database and which never

caused policy evaluation in the present scenarios, the decentralized approach always

outperformed the centralized approach. When evaluating actual events, which poten-

tially triggered policy evaluation and writes on the database, the centralized approach

5.3. Distributed Policy Decisions 145

performed better for low event frequencies and high percentages of relevant events.

Lastly, the decentralized approach performed inexorably better when considering usage

controlled systems that did not enforce the usage control policy (i.e. inactive systems):

in the centralized case these systems still need to signal all observed events to the

central PDP, while in the decentralized approach no such communication is ever

needed.

5.3.5 Performance Overhead: Policy 2

When enforcing ECA rule 2 within a total of seven usage controlled systems, it turned

out that neither the percentage of relevant events r nor the differentiation between

actual and desired events did significantly influence the performance. The corre-

sponding results are depicted in Figures 5.18a and 5.18b. In either case the decen-

tralized infrastructure outperformed the centralized approach for event frequencies

greater than 12Ev/s, f & 12Ev/s. Again, for lower event frequencies also Java’s

warm up phase influences the measurement results. Recapping the enforced pol-

icy 2, which does not necessitate any further coordination between PDPs once the

event (declineOffer , {(obj , d)}) has happened, it is not surprising that the decentral-

ized approach performs better than the centralized approach. However, note that

the decentralized approach’s performance is better then the centralized even if the

corresponding event never happens (Figures 5.18a and 5.18b,).

Further note the better performance of the centralized approach in comparison

with the enforcement of ECA rules 1a and 1b in Section 5.3.4, in particular for the

evaluation of actual events. Clearly this performance improvement is due to the simpler

ECA condition of ECA rule 2, thus revealing that the condition’s complexity significantly

influences the PDPs’ evaluation performance.

5.3.6 Performance Overhead: Policy 3

Lastly, ECA rule 3 was enforced within eleven usage controlled systems (e = 11 = t)

as well as in a setup in which five out of eleven systems where enforcing the policy,

whereas the remaining six systems where not enforcing the policy and thus inactive

(e = 5 < 11 = t). Figures 5.19a and 5.19b show the performance for eleven active

systems, while Figures 5.20a and 5.20b show the performance for five active and six

inactive systems.

For the centralized approach (Figures 5.19a, 5.19b, 5.20a and 5.20b,) the

performance measurement results are very similar to the enforcement of ECA rules 1a

and 1b within three active systems as described in Section 5.3.4. Since the conditions

of ECA rules 1a, 1b and 3 are technically similar (cf. Section 5.3.3), this observation

suggests that for the centralized approach the condition’s complexity has a significantly

larger influence on the performance than the amount of active systems enforcing the

ECA rule.

146 5. Evaluation

Figure 5.18: Performance overheads for ECA rule 2 on seven systems.

(a) Average time needed to signal and evaluate actual events.

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

ms

Ev/s

(b) Average time needed to signal and evaluate desired events.

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

ms

Ev/s

with Distributed; r = 0% Distributed; r = 25% Distributed; r = 50%
Distributed; r = 75% Distributed; r = 100% Centralized

5.3. Distributed Policy Decisions 147

Figure 5.19: Performance overheads for ECA rule 3 on eleven systems.

(a) Average time needed to signal and evaluate actual events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

Ev/s

(b) Average time needed to signal and evaluate desired events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

Ev/s

with Distributed; r = 0% Distributed; r = 25% Distributed; r = 50%
Distributed; r = 75% Distributed; r = 100% Centralized

148 5. Evaluation

Figure 5.20: Performance overheads for ECA rule 3 on five out of eleven systems.

(a) Average time needed to signal and evaluate actual events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

inactive systems

Ev/s

active systems

(b) Average time needed to signal and evaluate desired events.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ms

active systems

inactive systems

Ev/s

with Distributed; r = 0% Distributed; r = 25% Distributed; r = 50%
Distributed; r = 75% Distributed; r = 100% Centralized

5.3. Distributed Policy Decisions 149

As for the decentralized infrastructure, some further distinctions are necessary. In

the case of signaling and evaluating actual events (Figure 5.19a) the decentralized

approach is only able to outperform the centralized approach for high event frequencies

f and low percentages of relevant events r. E.g. for r = 0% and f ≥ 40Ev/s as well

as for r ≤ 25% and f ≥ 100Ev/s the decentralized approach performs better than

the centralized approach. For higher percentages of relevant events and lower event

frequencies, however, the overhead imposed by Cassandra is quite large. Again, a

further influencing factor in this case is Java’s warm up phase for eleven instances of

both Cassandra and the data usage control infrastructure. Considering the evaluation

of desired events (Figure 5.19b), the decentralized approach performs better than the

centralized approach for larger event frequencies (f & 30Ev/s); for very low event

frequencies (f . 20Ev/s), the centralized approach performs slightly better.

Enforcing ECA rule 3 within five out of a total of eleven usage controlled systems

(e = 5 < 11 = t), it is again useful to differentiate between the performance of

active and inactive systems. The performance measurement results are depicted in

Figures 5.20a and 5.20b. Comparing these results with Figure 5.17, in which three out

of seven usage controlled systems enforced ECA rule 1a, it turns out that in particular

the performance of the inactive systems (cf. lower data point lines in Figures 5.17a,

5.17b, 5.20a and 5.20b) is comparable. Since in those cases the corresponding PDPs

do not enforce any policies and can thus immediately provide a default evaluation

‘decision’ upon any signaled event, this similarity in the performance measurements

is not surprising. Further worth noting is the performance of active systems when

evaluating actual events (Figure 5.20a). As expected, the performance is better than in

the previous scenario in which a total of eleven systems where enforcing ECA rule 3.

This performance improvement can be observed because only five instead of eleven

PDPs synchronize via the distributed database. Since for the evaluation a Cassandra

consistency level of Quorum was used, this implies that each operation on the database

must only be acknowledged by three instead of six Cassandra nodes (cf. Section 5.3.3),

thus resulting in the improved performance.

5.3.7 Summary

In summary, it depends on many different factors whether a centralized or decen-

tralized approach performs better when enforcing global policies. For none of the

evaluated use cases either of the two infrastructures performed inexorably better than

the other. Hence this summary discusses which of the identified parameters influences

the communication and performance overheads to which extent. Since both the com-

munication and the performance overhead imposed by the centralized infrastructure

can be rather easily quantified (the communication overhead is linear in the event

frequency while the performance overhead mostly depends on the ECA rule’s condition

and trigger event), the following elaborations focus on a decentralized system setup.

150 5. Evaluation

Event Frequency. Summarizing the results of Figures 5.7b, 5.8b, 5.9b, 5.11b, 5.13b

and 5.14b as well as those of Figures 5.15 to 5.20, it turns out that the decentralized

infrastructure performs better the higher the event frequency: Both the communication

overhead as well as the performance overhead decrease with higher event frequencies.

There are two major reasons for this: (i) higher event frequencies allow to better utilize

Cassandra’s data distribution and synchronization capabilities since many state changes

must be coordinated between the distributed PDPs; (ii) the presence of many events

allows for many conclusive policy evaluations by the local PDPs and consequently

necessitates less costly (both in terms of communication and performance) lookups

within the distributed database.

Percentage of Relevant Events. As can be seen in Figures 5.7a, 5.8a, 5.9a, 5.11a,

5.13a and 5.14a, it is generally the case that lower percentages of relevant events

cause a decrease in the communication overhead. There are two reasons for this:

(i) less relevant events imply that less events match the ECA rule’s trigger event

which in turn causes less policy evaluations and therefore less coordination between

PDPs; (ii) less relevant events cause less state changes to be written to the distributed

database. Notably, however, there exist exceptions in which 0% of relevant events

cause comparatively high communication overheads, cf. Figures 5.7a, 5.9a and 5.11a.

Also in terms of performance overhead the decentralized approach performs better for

less relevant events. Again, the reason is the reduced amount of policy evaluations due

to the presence of less trigger events.

Policy. Considering the ECA rule being enforced, it is mostly the trigger event as well

as the condition’s complexity that influence both communication and performance

overheads. As mentioned above, the policy’s trigger event influences how often the

policy must be evaluated, whereas the condition influences the complexity (and thus

the runtime) of the policy evaluation process as well as how many state changes

must be potentially exchanged between PDPs upon each evaluation. As such, it is

beneficial for the decentralized infrastructure to deploy policies the evaluation of which

is triggered rarely, as well as the condition of which is simple.

Total Number of Usage Controlled Systems and Number of Systems Enforcing the

Policy. When compared with the centralized approach, the decentralized infrastructure

performs particularly well (both in terms of communication and performance) if the

ratio between those systems that do enforce the deployed policy (e, active systems)

and the total amount of usage controlled systems (t) is small. The reason is that for

the centralized approach each and every event of all t usage controlled systems must

be signaled to the central PDP, whereas for the decentralized infrastructure at most

e/t of all events (i.e. those events that are issued within the set of systems that do

enforce the deployed policy) cause any policy evaluation and consequently potentially

coordination between PDPs. In particular, it could be observed that the communication

5.4. Threats to Validity 151

and the performance overhead of the inactive systems is significantly smaller than for

the centralized approach.

Using Cassandra as a Means to Coordinate Policy Decisions. Using Cassandra

for the sake of synchronizing DMPs, and hence PDPs, eased the implementation of

the presented infrastructure. However, being a general-purpose distributed database

it may be hypothesized that synchronization mechanisms tailored to usage control

requirements perform better in terms of communication and performance overheads.

The main reason is that in this case domain specificities could be leveraged. However,

implementing such a distributed synchronization solution is by no means trivial and is

thus likely to impose significant development costs.

While the performed evaluation is by no means exhaustive, it provides first insights

into how well a decentralized data usage control infrastructure as developed within

this thesis might perform. In conclusion, it depends very much on the individual

parameters of a given scenario whether the adoption of a centralized or a decentralized

infrastructure is beneficial. Given one concrete application scenario for which the

above parameters are known, experiments as the ones above could reveal which type

of infrastructure should be applied in practice.

5.4 Threats to Validity

While the above experiments have been carefully designed and executed, there exist

several threats to validity which are concisely discussed in the following.

Evaluation Environment and Generalizability to Real-world Application Scenar-

ios. All experiments were executed within a lab environment and no real-world usage

profiles were used within the evaluation. As for the evaluation within Section 5.2,

real-world applications were used in order to transfer files between systems, supposedly

resulting in event traces that approximate real-world usage profiles. The evaluation in

Section 5.3, however, is based on artificial and randomly generated event traces. In

addition, all executed event traces had a nominal runtime of 30 seconds. In the real

world, traces would rather have a runtime of days, months and even years. For these

reasons it remains open whether the results presented in Section 5.3 generalize to

real-world environments in the presence of real-world usage profiles (i.e. event traces).

Randomness of Experiment Execution. In Section 5.3 the executed event traces

were randomly generated. While for certain parameter values these event traces were

generated and executed 20 times, such repeated experiment execution could not be

performed for all possible parameter values due to the vast input space. However, for

those parameters for which the experiments were executed several times, the measured

standard deviations were rather small such that these results are hypothesized to

generalize to other parameter values.

152 5. Evaluation

Choice of Parameters. The parameters considered for evaluation were manually

selected, essentially relying upon common sense knowledge about which factors might

influence the experiment execution. For Section 5.2 these parameters include file sizes,

bit rates and applications used. The fact that in this case only trivial policies were used

is likely to have influenced the results. However, the evaluation yielded consistent

results, which is why it is hypothesized that the obtained results generalize to other

parameter values (i.e. other file sizes, bit rates, and applications). For Section 5.3 the

choice of parameters included policies, the amount of systems, event frequencies, and

percentages of relevant events. For this set of experiments the choice of policies is a

particular threat to validity, as there exist endless possibilities to formulate policies

which might yield fundamentally different results.

System Setup and System Environment. For experiment execution a virtualized

system environment (i.e. virtual machines and a virtual network) was used. Hence,

the performed experiments do not reveal how the evaluated infrastructure would

perform in case physical machines and networks were used. Along similar lines, other

kinds of systems (e.g. tablets, mobile phones, integrated devices) and networks (e.g.

mobile networks) might yield different results when equipped with the developed and

evaluated usage control infrastructure.

Missing Peer Review. Another important threat to validity is that the design, the

execution, as well as the evaluation of the experiments was performed by one single

person, thus leading to inevitable biases. Ideally, all of these tasks should have

been performed by individual persons and peer reviewed for correctness or at least

plausibility.

6
Related Work

6.1 Data Usage Control

Usage control as a generalization of access control was first introduced by Park and

Sandhu [164, 166]. Further research led to development of the UCONABC usage control

model [165, 185], which focused on single systems and addressed the shortcomings

of traditional access control models which fall short when it comes to the protection

of objects once they are accessed. Thus, besides authorizations, UCONABC includes

obligations and (environmental) conditions “as part of the decision process to pro-

vide a richer and finer decision capability” [165]. To this end, UCONABC imposes to

evaluate authorizations and conditions both before and during the usage of an object.

Similarly, obligations might need to be performed both before and during the usage of

an object. Being flexible and generic, the model has been shown to support Manda-

tory Access Control (MAC), Descretionary Access Control (DAC), Role-Based Access

Control (RBAC), Trust Management, as well as Digital Rights Management (DRM)

(cf. Section 6.6). However, differently than DRM, usage control also encompasses the

protection of end users’ objects and data [165].

Hilty et al. further investigate obligations in the context of usage control [78]. Most

importantly, their work differentiates between observable and non-observable events,

which is necessary to distinguish between controllable and observable obligations

[171]: While the adherence to controllable obligations can be technically ensured,

the violation of observable obligations can only be detected in hindsight. These

considerations also lay the grounds for preventive and detective enforcement of policies

[175]. In further work the Obligation Specification Language (OSL) is introduced [79],

a general-purpose language to specify data usage control requirements upon which

this thesis builds. On this basis, first consumer-side policy enforcement mechanisms,

which operate on traces of events, are proposed [172]. By integrating these models

and mechanisms with a generic model for data flow tracking [74, 170], it becomes

possible to enforce data usage control policies on all copies of some sensitive data.

155

156 6. Related Work

A comprehensive survey on usage control is provided by Lazouski et al. [116].

6.1.1 Policy Specification

Before policies can be enforced by technical usage control infrastructures, they ought

to be specified in a suitable language by eligible entities.

While this thesis builds upon the Obligation Specification Language, other models and

languages such as UCONABC [165], XACML [160], Ponder [40, 211], Metric First-Order

Temporal logics [15, 16, 35], and the PrimeLife Policy Language [7, 26, 205] have as

well been used for the specification of data protection requirements. A comparison of

some of those languages is provided in [73, 105].

Most relevant for this thesis is the work by Kumari et al. [106, 108, 109], which

translate high-level specification policies into low-level implementation policies. The

motivation is that regular end users aiming to protect their data are usually not capable

of writing policies in low-level policy languages. Thus, the idea is to provide assistance

to end users by developing templates which can then be easily instantiated by regular

users. Such an instantiation then results in ECA rules as described in Section 2.1.3,

making the instantiated policy template enforceable by the infrastructure provided in

Chapter 4. Policy templates are obtained by (i) having expert users define the problem

domain, including high-level user actions, systems, low-level system events, data,

data representations and their interrelations, (ii) having expert users define high-level

specification policies in terms of future temporal logics, (iii) automatically translating

these policies into low-level policies in terms of past temporal logics.

The work in [177] investigates the problem of evolution of data usage control policies

upon re-distribution of the corresponding protected data, i.e. how policies may be

altered before shipping them to other subjects. The general idea is to only allow

strengthening of policies by users that have a particular role. Thereby, strengthening

of policies boils down to reducing rights granted by the usage control policy and/or

imposing additional duties. To this end, the paper proposes to impose a partial order

onto event names as well as parameter values. Upon re-distribution, policies may then

only be altered in correspondence with this partial order.

Section 7.2 provides a further discussion on the question which users may specify and

deploy policies for which data.

6.1.2 Policy Enforcement

Policy Enforcement Points that are compatible with this thesis’ infrastructure (cf.

Sections 2.2 and 4.1) have been developed for many different system layers as described

in Section 2.2.2. Since these solutions’ general concepts are very similar to what has

been described in this thesis, they are not further investigated at this point.

6.1. Data Usage Control 157

Being a prominent usage control model, UCONABC has been applied in many different

contexts, some of which are concisely described in the following. Note that none

of these solutions integrates with data flow tracking technology. Katt et al. [91]

implement usage control for a health care information system, whereby the PEP is

implemented for a simple text editor. To represent UCONABC policies, the solution

develops a XACML policy specification. Xu et al. [217] leverage UCONABC to protect

the integrity of operating system kernels. This is achieved by implementing a usage

control monitor at the virtual machine level. Zhang et al. [225] implement UCONABC

for collaborative systems in which sensitive shared resources ought to be protected,

e.g. by only allowing access from certain locations or by only allowing one user to

access an object at each point in time. The prototype integrates with Subversion

and WebDAV; UCONABC policies are specified using XACML. Karopoulos et al. [90]

integrate UCONABC with SIP (Session Initiation Protocol) applications, thus supporting

authorizations, obligations and conditions for multimedia delivery. E.g., this approach

could be used to automatically issue a payment once multimedia content is streamed.

Martinelli et al. [37, 134] realize usage control for grid computational services by

making the grid user deploy her application together with the policy. The application is

monitored at the level of the Java Virtual Machine, whereby system calls are considered

as security-relevant actions. Their approach differs in that the policy is defined for

the application instead of data. Since this approach does not consider data flows,

cooperating applications could circumvent the usage control enforcement.

Mont et al. [143, 144] propose a technical framework to model, deploy and enforce

privacy-aware access control policies and privacy obligations which, among other

things, cater to the purpose of collection and usage of data. The framework is integrated

with an access control system as well as an identity management component. After

deploying privacy policy constraints at the Policy Decision Point (PDP), a Data Enforcer

(i.e. PEP) at the SQL database layer, intercepts accesses to personal data (i.e. SQL

queries) and enforces the PDP’s decision. In order to retrieve such a decision from

the PDP, the Data Enforcer must not only signal the attempted access to the PDP,

but also information such as the access’ purpose and its subject. Besides allowance

and inhibition, the PDP might also decide to allow conditional access, e.g. only if the

accessed data is filtered before access.

A survey on usage control enforcement mechanisms is provided by Nyre [158].

6.1.3 Intra-System Data Flow Tracking

Many solutions for tracking data flows within one system have been proposed. While

this thesis mainly leverages data flow tracking technology at the operating system layer

(Section 3.2), integrating data flow tracking technologies at multiple layers would allow

for more fine-granular cross-system data flow tracking. A discussion of intra-system

data flow tracking technologies follows.

158 6. Related Work

In the area of data usage control, tailored data flow tracking solutions have been

proposed and implemented for Mozilla Thunderbird [125], X11 [170], Java [61], MS

Office [188], MySQL [119], JavaScript [168], MS Windows [216], and Chromium

OS [214]. All of these solutions leverage the generic data flow model introduced in

Section 2.1.2 and provide a corresponding instantiation. Generally, data flow tracking

technology at the application-layer [125, 188] has the advantage that application-

specific abstractions and knowledge can be used to perform fine-grained data flow

tracking. On the other hand, such application-specific solutions must be developed

for many different applications since they are generally not reusable within different

contexts. In contrast, data flow tracking technology at the operating system layer [214,

216] or even at the CPU instruction layer is more general and can be used to track data

flows both within and across applications. However, such solutions can not leverage

application-specific knowledge. As a third option, data flow tracking at an intermediate

platform layer [61] might be able to compromise between the above (dis-)advantages.

Recent research combines data flow tracking technologies at different system

layers [126, 174]. The idea is to leverage knowledge about system events and their

interrelation at multiple system layers and to combine this knowledge to create data

flow tracking technology that spans multiple system layers. Using such an integrated

solution, it is possible to track data flows both within and across system layers and to

compensate the disadvantages of the individual solutions mentioned above.

While not specifically developed with data usage control in mind, solutions for data

flow tracking have been developed in different contexts as presented in the following.

Integration of these solutions with data usage control technology would improve the

granularity of data flow tracking and consequently policy enforcement.

A framework that dynamically and transparently gathers data flow information for

any kind of application without code modifications is presented in [67]. Building upon

DTrace [27], data flows within applications can be recognized even if their source

code is not available. The proposed solution does not intend to perform any policy

enforcement, but rather to log code points, system calls, or function calls whenever

some data passes them. The framework has been instantiated at the system call layer

for file manipulation, for the SQLite database [81], as well as for the Safari browser.

libdft [97] achieves intra-system data flow tracking without the need to modify

the applications being monitored or the underlying operating system. For this, libdft

leverages Intel’s Pin dynamic binary instrumentation framework [128], which allows

to instrument every program instruction that moves or combines data. Data flows are

monitored at the granularity of single bytes and each byte may be tagged with up to

eight distinct values. These tags are updated in correspondence with the observed

program instructions. Since libdft also allows to hook system calls, it could be used

as an alternative to strace which is used by the PEP presented in Section 2.3. By

operating at the granularity of single bytes, libdft could be leveraged to improve on the

precision of data flow tracking in the context of data usage control.

6.1. Data Usage Control 159

DBTaint [44] provides data flow tracking for the PostgreSQL database at the

granularity of single cells. By leveraging SQL rewriting techniques, this approach is

transparent to applications. In comparison with system-wide taint tracking solutions

such as libdft, this approach has both the advantage and disadvantage of being tailored

to one particular kind of application, i.e. databases. While making the solution less

generic, it also allows to leverage application-specific knowledge and semantics.

LabelFlow [34] is similar to DBTaint by tracking data flows within the MySQL

database at the granularity of rows. However, LabelFlow integrates data flow tracking

for databases with data flow tracking for web applications written in PHP. The goal is

to provide an API that allows to improve the security and privacy in legacy applications

without major code changes. Besides tracking data flows, LabelFlow allows to place

hooks in the application code and to enforce security policies upon reaching those hooks.

However, this specification of policies is rather ad-hoc and application-dependent.

Asbestos [50] is a prototype operating system providing isolation mechanisms in

order to “contain the effects of exploitable software flaws”. To this end, Asbestos

makes use of labels which are, among other things, used to “track and limit the flow

of information within system- and application-defined compartments”. By allowing

processes to keep private and isolated states for multiple users, contamination of a

process is limited to the compartment of single users—effectively tackling the problem

of data flow tracking overapproximations.

Similarly, HiStar [221] is a new operating system providing “strict information

flow control” to the end of minimizing the trusted code base. For this, HiStar allows

to attach labels to sensitive files and other objects, such as threads, address spaces,

and devices, which are then propagated in correspondence with observed system calls.

Security properties can be enforced by controlling where the labeled information might

flow.

Similar to Asbestos and HiStar, Flume [103] provides process-level information flow

control at the granularity of processes and communication abstractions such as sockets,

pipes, and file descriptors. Corresponding tags are propagated in correspondence with

system calls. However, unlike Asbestos and HiStar, Flume is implemented in user-space

within a traditional Linux environment.

Lastly, many recent works address the problem of collecting, storing and maintaining

data provenance at a multitude of software layers [24, 191]. While these technologies

have not been developed for data usage control purposes, most of them could be

leveraged in order to improve the precision of data flow tracking. More concretely,

provenance solutions have been developed for file systems [153, 187], databases [2,

23, 25], service-oriented architectures [57, 58] and many different kinds of application-

layer software, e.g. [132]. Finally, and similar to Lovat in the usage control context

[126], Muniswamy-Reddy et al. [152] design and implement a framework that in-

tegrates provenance collection and maintenance across multiple software layers, i.e.

Python, a workflow engine, a text-based web browser, and a file system.

160 6. Related Work

6.2 Cross-System Data Flow Tracking and Policy Propagation

By discussing works related to cross-system data flow tracking and policy propaga-

tion, this section constitutes the basis for RQ1 (Section 1.1.1) and complements the

corresponding solutions, contributions and evaluation presented in Sections 3.2, 4.2

and 5.2.

Fundamental conceptual work on sticky policies is provided by Chadwick et al. [29],

which propose and compare three different models for propagating policies across

systems along with the corresponding protected data. By not requiring any changes to

the monitored applications, the proposed ‘back channel model’ is most close to this

thesis’ approach. In this model, the communication between the PEP and the PDP is

mediated through an application independent PEP (AIPEP). Once protected data is

sent to a remote system, the AIPEP is responsible for sending the policy to the AIPEP of

the receiving system. This thesis splits the AIPEP’s responsibilities in a manner that is

more suitable for the data usage control context: while the PIP detects cross-system

data flows, the DMP is responsible for propagating the corresponding policies. Notably,

[29] does not provide any implementation of the proposed models.

Building upon libdft (cf. Section 6.1.3), Taint-Exchange [220] is a framework that

generically and transparently tracks data taints across processes both within and across

systems. Similar to the cross-system data flow tracking approach presented in this

thesis, Taint-Exchange intercepts relevant system calls. A global array keeps track of

all important channels, i.e. pipes and sockets, through which tainted data might be

exchanged and is updated in accordance with the observed system calls. Once the

framework detects that tainted data is written to one of these channels, a taint-header

is attached to the payload. Both the payload data and the taint-header are then sent

to the destination. Upon receiving the combined data, the framework detaches the

taint-header. While the payload data is handed to the receiving process, the taint

information is handed to the libdft framework for further intra-process taint tracking.

A limitation of Taint-Exchange is that it only makes use of one bit taints, effectively

not allowing to differentiate between different data. At the same time, however, the

underlying libdft framework allows for taint tracking within processes at a granularity

of bytes, which is currently not possible in this thesis’ approach. On the other hand,

such fine-grained tracking also comes with the drawback that grasping higher-level

application semantics becomes much more difficult. In any case, libdft or similar

frameworks could be integrated into the work presented in this thesis. It remains

unclear how Taint-Exchange handles forking of processes, i.e. whether forked child

processes are monitored as well and whether data taints are propagated to the forked

child process. Most importantly, this thesis goes beyond Taint-Exchange’s taint tracking

capabilities by propagating complex data usage policies rather than simple labels.

Different to this thesis’ approach, Taint-Exchange requires the presence of additional

hardware (i.e. Intel’s Pin) as it builds upon libdft.

6.2. Cross-System Data Flow Tracking and Policy Propagation 161

CloudFilter [161] aims at controlling data propagation between enterprises and cloud

storage services. More precisely, the solution allows employees of an enterprise to

upload confidential files to cloud storage services while ensuring that “(i) the operation

is logged, (ii) the action can be attributed to a user and (iii) other users can only

access [the file] from a designated set of networks ” [161]. To this end, a web browser

extension detects file uploads at the HTTP layer and attaches corresponding metadata

about the uploaded file. Once this HTTP request is intercepted by the enterprise’s proxy,

the metadata is evaluated and according Event-Condition-Action rules are triggered.

Corresponding actions may, among other things, log the upload, ask the user for a

security label for the file, or deny the upload altogether. A server-side proxy will then

receive the uploaded file and attached policies. While at the server side no policy

enforcement is taking place, the attached policies will be evaluated and propagated

once a user downloads the previously uploaded file. Different to the approach in

this thesis, CloudFilter is limited to one single application-layer protocol, namely

HTTP. Also, the presented implementation does not yet support file transfers over

HTTPS. Moreover, CloudFilter relies on the fact that the cloud storage service stores the

uploaded content in terms of files. Some of these limitations stem from CloudFilter’s

different trust model, in which end users are not expected to intentionally break the

security framework. This thesis goes beyond CloudFilter by also constraining the data

usage both within the client side and the server side system. In addition, the approach

taken in this thesis does not necessitate the adaptation of existing applications as is the

case for CloudFilter. However, the idea of tracking data flows across systems at the

HTTP(S) layer using proxies could be integrated with this thesis in order to perform

more-fine grained data flow tracking.

The goal of CloudFence [162] is to support benign cloud service providers in enhanc-

ing the security of their provided services. The work strictly distinguishes between

infrastructure providers and providers of higher-level services building upon those

infrastructures. In a nutshell, CloudFence is a data flow tracking framework which is

supposed to be deployed by cloud infrastructure providers and to be used by higher-

level service providers and end users. Essentially, CloudFence provides an API for

service developers which allows to tag sensitive data of end users using taint marks.

These taint marks are then transparently propagated in correspondence with the ob-

served CPU instructions by the underlying infrastructure. For this, Intel’s Pin dynamic

binary instrumentation framework [128] is leveraged. While observing the data flows

throughout the cloud infrastructure, CloudFence stores corresponding data trails. As

such, CloudFence’s data flow tracking capabilities are comparable to Taint-Exchange

and to what has been developed within this thesis. Additionally, however, CloudFence

integrates with a web-based dashboard [219] which allows end users to visualize

the audit trails of their data. By using 32-bit taint marks, CloudFence supports up

to 4 billion distinct taint marks. However, this value decreases as taint marks are

combined—in the worst case allowing for only 32 distinct taint marks. Along the same

162 6. Related Work

lines, memory consumption of CloudFence is enormous: Due to the 32 bit taint marks

for each tracked byte of program data, four additional bytes are needed for its taint

mark. Different to the work presented in this thesis, CloudFence only allows to track a

limited set of distinct data. Further CloudFence relies on additional hardware and is

not capable of propagating complex data usage policies.

Trabelsi et al. [19, 206] tackle the problem that cloud applications do not provide

technical guarantees that a user’s data is used in accordance with privacy regulations

and user preferences. Thus, they provide a software layer called SPACE which mediates

all accesses and usages of the protected data. In their scenario, users access cloud

services using their mobile phones. Whenever a user sends sensitive data to a cloud

provider, a client-side service attaches corresponding access and usage control policies

to the data. Upon data access and usage by the cloud provider, SPACE enforces

compliance with those policies. As SPACE is implemented using the concept of sticky

policies, the policies travel with the data upon further data dissemination. Furthermore,

SPACE allows the user to investigate accesses to her data, as well as at which IP

addresses his data has been stored. While very promising from an abstract point of

view, no details about the implementation are provided. Thus it remains unclear how

the proposed sticky policy paradigm is actually implemented. Hence, advantages as

well as limitations of the proposed approach are hard to identify. For example, it

remains unclear whether sticky policies are bound to certain file formats as in [115].

Neon [224] is a monitoring system at the hypervisor level which allows for transparent

information flow tracking both within and across systems. While intra-system tracking

is achieved at a granularity of single bytes, cross-system tracking is performed at a

granularity of network packets. Neon achieves its information flow tracking capabilities

by associating each byte of memory with a 32-bit label, where each bit is used to

represent a distinct policy. This allows for a combination of 32 policies. Neon has been

implemented within Domain 0 of the QEMU emulator [179], leaving the operating

system as well as applications unmodified. Locally, taints are propagated by an

appropriate QEMU process whenever the virtualized CPU handles tainted memory

addresses. For remote taint propagation, the QEMU process taints each outgoing IP

packet with the corresponding taint values by reusing the 8-bit Type-of-Service field,

effectively performing some overtainting with respect to the intra-system byte-level

tainting. Besides taint propagation, Neon is able to enforce information flow control

policies at the network/firewall layer. Corresponding firewall rules might mandate

encryption, logging, rerouting, or dropping of tainted network packets. While Neon’s

intra-system byte-level taint propagation is orthogonal to what has been presented

in this thesis, the cross-system information flow tracking capabilities of Neon and

this thesis are similar. The main difference is in the implementation: Neon performs

tracking at the hypervisor/firewall layer, this thesis features an implementation at the

operating system layer. One major limitation present in Neon but not in this thesis

6.2. Cross-System Data Flow Tracking and Policy Propagation 163

is the limitation to a fixed number of policies (i.e. 32) as well as the reliance on a

modified hypervisor. Besides, this thesis integrates cross-system data flow tracking with

the enforcement of expressive data usage policies.

While their main goal is to control which subject is allowed to receive which information

in a distributed setup, the solution proposed by Janicke et al. [89] also performs cross-

system data flow tracking and policy propagation. The key idea is to build a middleware

that intercepts application-layer events in order to track the flow of data within that

application. Data dissemination policies stipulate which data may be sent to which

recipients. Once the PEP observes an event of sending protected data to a remote

location, the PDP decides based on the deployed policies whether the data flow is

allowed. If so, then the corresponding policies are attached and the data is sent. The

receiving PEP will then detach the policy from the payload and deploy it at its local

PDP. Being implemented for the Java-Bytecode, the prototype results “in overheads of

factor 2-3 in execution time and memory usage” [89]. Unfortunately, no further details

about the implementation are provided. At this abstract level, the approach taken in

this thesis is different in that it builds on a more expressive data flow model and policy

language. Further, the approach of this thesis is built into a lower system layer, i.e. the

operating system, thus applying not only to Java applications. In sum, the work by

Janicke et al. [89] can thus be considered a subset of what is presented in this thesis.

The goal of DStar [222] is to make distributed applications more secure despite the

presence of potentially malicious application code. For this, information flow control

solutions for single operating systems [50, 103, 221] (cf. Section 6.1.3) are extended

to distributed systems. The proposed solution tracks information flows both within and

across systems using labels which may be associated with processes as well as network

messages. These labels are supposed to be in a partial order, which determines whether

data might flow from one process/message to another. When some data is sent from

one system to another, DStar determines whether the attempted cross-system data flow

is permissible. By also operating at the operating system layer, DStar’s granularity of

information flow control is similar to the cross-system data flow tracking presented

in Section 3.2.2. Different from this thesis, DStar has been designed for the sole

application in the information flow control context. Consequently, the propagation

and enforcement of more complex data usage policies was neither intended nor can

it be easily integrated. Besides, DStar is not transparent to applications, which must,

among other things, explicitly define trust between different systems. Again, this is

different to the approach in this thesis were all data flow tracking is transparent to the

applications.

Similar to DStar, Evans et al. [53] leverage information flow control to ensure that

inter- and intra-organizational information flow adheres to high-level data sharing

agreements. Different from DStar, their focus is on event-driven systems, in which

senders publish events for which receivers might subscribe. To perform information flow

164 6. Related Work

control, labels are assigned to data and events, as well as to data processing units. By

comparing these labels, it can be determined which processing unit is allowed to process

which data or event. If labeled events are sent to another organizational domain,

trusted gateways in both the sender’s and the recipient’s organization ensure that

the events are only forwarded to data processing units that are labeled appropriately.

Different from this thesis, the proposed approach is concerned with sole information

flow control and does not support to enforce or propagate more complex policies.

Lastly, recent research shows how data provenance technology (cf. Section 6.1.3) can be

extended to distributed systems. Bădoiu et al. [10] design and implement a provenance

aware distributed file system. The proposed solution intercepts operations, i.e. system

calls, at the virtual file system layer and passes them to a custom file system layer. This

custom file system layer is responsible of collecting and maintaining the provenance

based on the intercepted system calls. It is shown that the proposed approach works for

the Network File System [190]. Further research extends the collection of provenance

metadata to distributed systems [66, 130], distributed enterprise service buses [4] and

cloud services [154, 155, 223]. In particular, [154, 155] integrate provenance into the

Amazon Simple Storage Service (S3). The provenance information itself is collected in

correspondence with system calls issued by the client application that accesses files

from S3. Once the application closes a file which is stored within S3, the provenance

framework takes care of storing the collected provenance information. Depending on

the chosen architecture, the provenance data is stored along with the payload data

in S3 or within Amazon’s SimpleDB database. In general, however, data provenance

is only concerned with the collection of information about data flows and does not

consider the propagation or enforcement of any policies.

Summary. While there exist many approaches that track data flows across systems

and propagate corresponding policies, they also come with several shortcomings that

are not present in thesis’ approach. (1) Many of the discussed approaches present

obstacles that make them difficult to deploy within commodity systems: [162, 220]

necessitate additional hardware by building upon Intel’s Pin dynamic instrumentation

library; [161, 162, 223] necessitate the adaptation of existing applications; [224]

necessitates the presence of a particular hypervisor. (2) Some approaches are not

generic as they are tailored to specific applications and/or application protocols [89,

161, 223]. (3) Other approaches are limited in the number of distinct labels or policies

that can be tracked [162, 220, 224]. (4) Lastly, many approaches only support the

propagation of simple labels rather than complex policies [53, 162, 220, 222, 223].

6.3 Distributed Policy Decisions

This section discusses related work that covers decision making in case different aspects

of the decision process are distributed. Such aspects might include the events being

observed/controlled, resources being used, as well as additional information such as

6.3. Distributed Policy Decisions 165

attributes of subjects or resources. As such, this thesis constitutes the basis for RQ2

(Section 1.1.2) and complements the solutions, contributions and evaluation presented

in Sections 3.3, 4.3 and 5.3.

Service Automata [64] aim at enforcing policies that cannot be decided locally. For

this, so-called local ‘service automatons’ monitor the execution of programs within

a distributed system. Formally, Service Automata are modeled as Communicating

Sequential Processes (CSP), where the internal components of an automaton, roughly

equivalent to PEP, PDP and PMP within this thesis, run in parallel and communicate

with each other. In case an automaton’s knowledge is insufficient to take a policy

decision, an automaton-internal component called ‘coordinator’ delegates the decision

process to some other automaton via delegation requests/responses. Different to the

approach taken in this thesis, each security-relevant event is statically mapped to one

single, possibly remote, responsible automaton. Thus, whenever Service Automata

are instantiated for a new application scenario, possibly conflicting events must be

mapped to the one service automaton responsible for the corresponding decisions. In

contrast, the approach taken in this thesis does not rely on such a static mapping, but

allows each local PDP to take the corresponding decision. Mapping each event to one

single responsible automaton also comes with the drawbacks of being one single point

of failure and that communication with this responsible automaton must always be

possible. Lastly, Service Automata do not cater to dynamic data flows and the fact that

the data to be protected might be copied both within and across systems.

CliSeAu [63] builds upon Service Automata [64] and allows to secure distributed

Java programs. Similar to the work presented in Section 3.3, CliSeAu enables the

enforcement of policies for which the knowledge of one single local entity (called

‘enforcement capsule’ (EC) in CliSeAu) is insufficient. To this end, CliSeAu provides a

framework to intercept security-relevant actions, i.e. Java method calls, and to specify

and enforce security policies. If an EC intercepts an action for which its local knowledge

is insufficient to take a policy decision, a decision request is delegated to another EC.

This process might be repeated several times until enough information for taking a

decision has been gathered by multiple ECs. CliSeAu differs from the approach taken

in this thesis as it does not consider data flows. It remains unclear how CliSeAu copes

with copies of the data for which the original security policy was specified. Moreover, in

CliSeAu all related ECs are configured with the corresponding security policy from the

beginning. While this renders remote policy propagation as presented in Section 4.2

unnecessary, it also makes the framework less flexible. In addition, the formal approach

for taking distributed policy decisions presented in this thesis (Section 3.3) addresses

the problem in a more general manner, as it does not fix one particular implementation

scheme, such as delegation used in CliSeAu.

Lazouski et al. [115] provide a framework and a prototype implementation allowing

for the enforcement of usage control policies if data copies are distributed. The authors

166 6. Related Work

embed data usage policies into the data to be protected, effectively allowing the policy

to transparently migrate whenever the protected data is migrated. Besides access

and usage control rules, so-called PDP/PIP allocation policies are embedded into the

protected data. These allocation policies specify which PDPs and PIPs are involved

in the decision process and how they can be reached. Subject and object attributes

required for policy evaluation might be stored at different PIP locations, which will

be queried by the PDP as required. The work by Lazouski et al. is different from the

work presented in this thesis in several ways. Embedding policies into the protected

data comes with the drawback that implementations of the framework must be able

to cater with different file formats. Usage control enforcement is likely to break if the

protected data is converted into non-supported formats. This is inherently different in

the approach taken in this thesis, as policies are not embedded within the protected

data, but associated with it at the infrastructure level. Moreover, PDP/PIP allocation

policies as proposed by Lazouski et al. fix the PDPs and PIPs for the data’s entire

lifetime. Consequently, the same PDP will take all decisions w.r.t. a data’s usage,

and for each attribute the same single PIP will always maintain its state. From this

perspective, the approach still depends on central components, effectively introducing

several single points of failure: if only one of the PDPs and/or PIPs mentioned in a

PDP/PIP allocation policy breaks, no more policy evaluation is possible. In contrast,

the approach presented in this thesis does not employ any central components.

Basin et al. [12, 13, 14, 17] perform offline monitoring of usage control policies

in distributed systems. In their work policies are formalized in Metric First Order

Temporal Logic (MFOTL), a logic that is very similar to the Obligation Specification

Language (OSL) which was used in this thesis. In their approach system logs, i.e.

sequences of timestamped events, are decentrally collected by local monitors and later

pre-processed and merged for further evaluation against MFOTL policies. Their work

particularly considers the challenge that multiple concurrent monitors may associate

events with the same timestamp, effectively only imposing a partial rather than a total

order on the set of decentrally observed events. Differently, the approach taken in this

thesis does not specifically consider the problem of partially ordered event traces: the

distributed Cassandra database implicitly imposes an order on any pair of events that

(i) happen within the same timestep, (ii) happen at different systems, (iii) are relevant

for more than one systems for policy evaluation. Similar to this thesis’ approach in

Section 3.3.2, Basin et al. also identify situations in which the evaluation of ‘partial logs’

is sufficient because satisfaction (violation) of of this partial log implies satisfaction

(violation) of the overall merged log. Most importantly, the results of this thesis do

not only support a posteriori detection of policy violations, but they also allow for

the preventive enforcement of policies, e.g. by denying events which would otherwise

result in a policy violation.

6.3. Distributed Policy Decisions 167

While not concerned with actual distribution of policies and/or PDPs, PIPs, and PEPs,

the work presented by Janicke et al. [88] addresses the concurrent enforcement of

dependent usage control policies. It is identified that such dependencies occur if

policies are stateful, e.g. by referring to attributes and/or history. By deploying one

single PEP/PDP/PIP (the combination thereof is called ‘controller’ in [88]), the problem

could intuitively be solved by interleaving all access and usage decisions. However,

the authors argue that such an approach is prohibitively expensive, in particular if

some of the deployed policies could actually be enforced independently of each other.

The presented solution is a static analysis of the policies, breaking them down into

constraints that can be independently enforced by different controllers. Two constraints

are said to be independent if they do not share any mutable attributes. The output of a

corresponding algorithm is visualized as a dependency graph: independent subgraphs

can be enforced without any interaction between controllers, while nodes that are

connected but not neighbours can be concurrently enforced by the same controller. The

presented approach is complementary to what has been presented in this thesis. While

the static policy analysis is performed for policies written in Interval Temporal Logics

[146], the same approach could be performed for the policy language presented in

Section 2.1.3, effectively integrating the presented solution with this thesis’ results.

The work by Cormode [39] is more fundamental by providing a model in which

distributed observers each see a stream of observations and which would like to

compute a global function of these distributed observations. At this abstract level, the

proposed model is capable of expressing the distributed data flow state (Section 3.2)

and the distributed policy decisions (Section 3.3). While the proposed model is

very generic, the discussed instantiations are, however, very narrow and leverage

particularities of the function to be computed in order to reduce communication

overhead. Most importantly, the problem of threshold counting [100] is discussed,

in which the decentral observers would like to know whether the total number of

occurrences of a certain event is below a certain threshold. While the general model

still features a central component, the obtained theoretical results on how to improve

communication cost in the context of threshold counting can be leveraged to improve

on the performance of cardinality operators such as repmin in this thesis. Besides,

Cormode proposes to develop systems dedicated to distributed monitoring “which are

as accessible and as general purpose as traditional centralized [databases]”. While

Cormode is unsure “what classes of functions such tools should support”, in our case

these would be functions related to distributed data flow tracking, policy propagation,

and distributed policy decisions. Thus, this would boil down to implementing a

distributed database tailored to usage control requirements.

Alzahrani et al. [5, 6] propose and implement an overlay network that allows for

the dynamic and distributed deployment of multiple PDPs which are expected to

collaboratively enforce history-based XACML policies such as dynamic separation of

168 6. Related Work

duties [54]. Similar to the approach taken in Section 3.3.2, policies are analyzed and

divided into sub-policies which can be independently enforced by different distributed

PDPs. Policies which still pose dependencies among another, are “distributed among

various synchronized PDPs” [6]. Different from this thesis, Alzahrani et al. assume that

the objects being protected by policies are static, meaning that they are neither moved

across nor within systems and/or domains.

Chadwick et al. [28, 30, 31, 195] aim at controlling the cumulative use of distributed

but static grid resources. To this end, high-level grid-wide access control policies for

distributed resources are decomposed into low-level policies that can be enforced

at each site individually. Hereby, policies are formalized as ‘arithmetic and logical

expression trees’ (ALET) whose non-leaf nodes may be composed of arithmetic op-

erators, relational operators, logical operators, and complex functions; leaf nodes

could be constants or variables, possibly referring to attributes of subjects or resources.

In a nutshell, the policy decomposition algorithm leverages the fact that resources

are organized hierarchically and that a high-level resource (e.g. a computing facility)

represents multiple low-level resources (e.g. PCs 1 to 3, printer A, scanner B). It is then

determined which parts of the ALET can be evaluated by which sites and accordingly

ALETs are created that can be evaluated independently and locally. Attributes or values

that are shared between multiple PDPs are coordinated via a, possibly distributed,

database. While the general approach taken in Section 3.3 is similar to the above

works, the considered policy languages differ significantly. Further, this thesis allows to

protect data that keeps being propagated throughout the entire distributed system. In

addition, this thesis showed the correctness of the performed policy decomposition.

Bauer et al. [18] propose an approach for decentralized LTL monitoring, i.e. observing

satisfaction of LTL formulas in a distributed system without a central data collection

point. For this, the work assumes a synchronous system bus which acts as a global

clock, whereas the decentralized components emit events that can be observed by local

monitors. The central idea to monitor LTL formulas in a decentralized manner is based

on formula rewriting, which essentially splits a formula into a part that must currently

be satisfied and another part that must be satisfied in the future. After a given LTL

formula was distributed to all local monitors, the latter monitor the satisfaction of

those parts of the formula for which their local observations are sufficient. In case

a local monitor is unable to decide upon a subformula, the corresponding part is

rewritten and sent to other local monitors for further monitoring. While the proposed

approach builds upon assumptions that make it inapplicable in this thesis’ context (e.g.

synchronous system bus, monitoring of future time LTL formulas), the work presented

in Section 3.3 was indeed inspired by the work of Bauer et al.

Summary. While there exist several works that aim for the decentralized enforcement

of policies, all of them impose one or more of the following shortcomings that are

not present in this thesis’ approach: (1) For many approaches the decision process

6.4. Orthogonal Approaches to Distributed Usage Control 169

is not entirely distributed, as they effectively rely on certain central components [39,

63, 64, 115]. (2) Others do not consider that protected resources (i.e. data) keep

being propagated throughout the entire distributed system and are thus only able to

protect static resources [6, 28, 31, 63, 64]. (3) Some works only consider a posteriori

detective enforcement of policy violations rather than preventive enforcement [12, 13,

18]. (4) Lastly, one of the discussed approaches can not be deployed within commodity

systems/networks as it relies on a particular system bus [18].

6.4 Orthogonal Approaches to Distributed Usage Control

This section discusses related works on distributed data usage control that are orthogo-

nal to this thesis’ results. Hence, many of the discussed works could be integrated with

the models and infrastructure proposed in this thesis. Alternatively, some of the cited

works propose alternative approaches for problems also tackled in this thesis.

xDUCON [181, 182] is a framework that aims at the enforcement of Data Sharing

Agreements (DSAs) across collaborating organizations. The framework builds upon the

Shared Data Space (SDS) abstraction—some storage that is shared by the collaborating

entities. Before exchanging any sensitive resources, the organizations’ natural-language

DSAs are translated into technical representations, called xDPolicies (Cross Domain

Policies), which are stored within the SDS. Besides xDPolicies, also Subject tuples and

Target tuples are shared using the SDS. Hereby, Subject tuples refer to the organizations’

entities that might perform actions on resources, while Target tuples represent those

resources. xDPolicies are evaluated whenever a subject is about to disseminate or

access some resource: Once the PEP observes such an action, the PDP evaluates the

PEP’s decision request in correspondence with all applicable xDPolicies obtained from

the SDS. Since xDUCON also supports the evaluation of ongoing conditions, it is well

suited to revoke access rights while long-lived accesses are in progress. As xDUCON

has been instantiated to loosely-connected networks in which mobile devices build up

SDSs in an ad-hoc manner, the authors conclude that the framework “is well suited to

the needs of a decentralized dissemination and enforcement of policies for controlling

the accesses to data” [182]. However, it remains unclear to which extent data usage

can be controlled once a subject got access to some sensitive resource, i.e. whether an

accessing subject might create further copies of the resource and to which extent those

copies are protected. In addition, xDUCON does not seem to enforce policies requiring

coordination between multiple entities as described in Section 3.3.

Chen et al. [32, 33] present DataSafe, a solution to prevent “illegitimate secondary dis-

semination of protected plaintext data by authorized recipients”. Similar to this thesis’

approach, DataSafe allows unmodified applications to transparently use protected data

while ensuring that according usage policies will not be violated. For this, DataSafe

builds upon additional hardware as well as a trusted hypervisor, both of which must be

deployed on all devices that are expected to access and use protected data. In terms of

170 6. Related Work

data flow tracking, DataSafe makes use of hardware tags that are propagated whenever

data flow related hardware instructions are executed. Yet, it remains unclear how

data flow tracking can be maintained in case additional processors, such as graphics

processing units, are used for data processing. Instead, performing data flow tracking at

higher abstraction layers, such as the operating system as proposed in this thesis, does

not come with such problems. In addition, DataSafe is not able to enforce obligations,

e.g. in order to enforce the deletion of some sensitive data.

Stihler et al. [194] present a usage control architecture for business coalitions. In

their scenario, two businesses collaborate via web services. Hence, one of the two

collaborating businesses is called service provider, while the other is called service

consumer. The goal of this work is to constrain the usage of the provided web service

for users from within the service consumer business. For this, an independent broker

entity is introduced which provides a web service lookup functionality, a notification

service, a policy repository, and methods for policy provisioning. Before users of the

service consumer might use a provided web service, an administrator from within the

service consumer’s business must write usage policies. Those policies are sent to the

broker and then forwarded to the service provider. Whenever a user accesses the web

service, the request is mediated through a PEP which will contact a local PDP for policy

evaluation. In case of a policy violation, the broker’s notification service is leveraged to

inform the corresponding user about the policy violation. If the user does not take any

compensating actions within a predefined amount of time, the session will idle and an

administrator is notified. Notably, the proposed solution also allows for the ongoing

evaluation of policies: If relevant attributes of users, and/or the environment change

while a web service usage is in progress, a policy re-evaluation is triggered. This might

lead to a policy violation and consequently to a corresponding notification being sent

to the user (cf. above). This work is orthogonal to what has been presented in this

thesis, as the solution is specifically tailored to web services. As such, it does neither

cater to the data dimension (Section 3.2), nor to the fact that there might be multiple

PEPs and/or PDPs that might necessitate coordination (Section 3.3).

SafeShare [203, 204] introduces so-called self-controlling objects (SafeShare objects)—

encrypted containers which contain the sensitive data to be protected as well as

metadata about that data and allowed operations on it, i.e. policies. The approach is

embedded into a cloud environment in which data owners provide their SafeShare

objects via a cloud-based data sharing service. Once a data consumer downloads a

SafeShare object and tries to access it, at first it is evaluated whether the requestor

was granted access rights by the data owner. Such access rights for individual data

consumers are embedded within the SafeShare object a priori. Once a rightful data con-

sumer opens the SafeShare object, an additional background process is started which

continuously monitors the data consumer’s compliance with the granted permissions.

6.5. Securing Data Usage Control Infrastructures 171

Unfortunately, no further details are provided on how this continuous monitoring as

well as policy enforcement is technically achieved.

6.5 Securing Data Usage Control Infrastructures

By discussing different approaches that have been tailored to secure data usage control

infrastructures, this section complements the security evaluation in Section 5.1. The

solutions presented in the following could be integrated with this thesis’ infrastructure

in order to protect its security.

Zhang et al. [227] build a usage control reference monitor on the basis of the Security-

Enhanced Linux kernel security module (SELinux). The main issue being tackled is that

such reference monitors usually reside outside of the domain of the policy stakeholder,

which, however, wants some assurance on the enforcement of the policy. The paper thus

defines and implements a trusted usage control subsystem with a minimal trusted code

base, the integrity of which is protected using a TPM (Trusted Platform Module) and a

Core Root of Trust Measurement (CRTM). Upon boot time, the platform’s components

(i.e. BIOS, boot loader, OS kernel) are measured and the corresponding values are

stored to the TPM’s Platform Configuration Registers (PCR). Once the kernel is booted,

an integrity measurement service takes over and measures runtime components such

as the usage control infrastructure as well as configuration files, data usage policies,

client applications, etc. The measured values are then checked against known good

values. If the measured values are not known to be good, then the reference monitor

could be configured to shut down the corresponding applications or to disallow access

to protected data.

A solution to the secure enforcement of usage control policies within service-oriented

architectures is presented in [3]. Whenever an authenticated entity requests a protected

resource via a web service, a security gateway attaches data usage control policies

to the data which ought to be enforced by the resource requestor. However, before

releasing the data and its policy, the resource provider (i.e. the web service) performs

a remote attestation of the resource requestor’s platform with the help of the TPM

module. As for the solution above, the corresponding software stack is measured.

The measured values are then sent to the resource provider which will compare them

against a set of known good values. Only if this check yields a positive result, then the

requested resource and the attached policy are released.

UCLinux [111] is a Linux security module [215] that specializes in usage control

enforcement and supports attestation and sealing using the TPM. In a nutshell, UCLinux

stores usage controlled files within an encrypted file system. The corresponding data

usage policies are stored as file metadata, while the key for decryption of the encrypted

file system is sealed to a trusted configuration using the TPM. This ensures that the file

system decryption key is only accessible if the system’s current software stack, which is

172 6. Related Work

measured similarly to the approaches above, is in a valid state. Upon distribution of

usage controlled files, UCLinux uses a modified version of the TLS protocol in order

to perform attestation of the remote platform that is about to receive the files. For

this, the remote platform essentially sends its signed list of PCR values which will then

be checked against known trustworthy configurations. Building upon UCLinux and

leveraging its capabilities for encrypted storage and remote attestation, further work

[47] enables the secure posting and retrieval of protected documents via web servers.

6.6 Digital Rights Management (DRM)

Digital Rights Management (DRM) technology [45, 82, 85, 124, 193, 196, 218]

primarily aims at the persistent protection of copyrighted digital content such as

images, video, audio, book, games, text, or any combination thereof. In a nutshell,

the digital media created by creators is packaged by producers into formats that are

suitable for easy distribution as well as consumption by end users. Depending on the

concrete DRM system, the packaging of the digital content may also involve its (partial)

encryption and adding of digital watermarks. Further parties such as distributors (e.g.

online shops, web retailers) may be involved within the DRM process. Usually, the

packaged content is enriched with mechanisms for access control, copy protection as

well as mechanisms for the management of usage and payment (i.e. usage policies

or digital licenses). Thereby usage rules may be defined by a multitude of criteria

such as access frequency, access expiration, pay-per-use, product quality, etc. Among

others, central requirements for DRM systems are ease of use for all involved parties

and robustness to circumvention.

Notably, distribution of the content and its corresponding policies/licenses are not

necessarily intertwined. However, in any case the central idea is that the digital content

can only be used (in an unrestricted manner) after a license has been obtained, e.g.

from a central license server. In case the packaged content is encrypted, providing such

a license will usually trigger decryption of the content and consequently allow for its

usage in accordance with the obtained license. In fact, separation of the digital content

from licenses makes the system more flexible by allowing for the free distribution of the

(often encrypted) digital content across consumers. Once a license has been obtained,

client-side applications are responsible for monitoring the compliance with granted

usage rights (e.g. viewing, listening, copying, saving, modifying, distribution of the

content) as well as with payment obligations. Such applications may come in the form

of dedicated applications, such as multimedia players or PDF document viewers, or in

the form of plugins for existing applications.

One major drawback of DRM is that it lacks any standards [65]. Different DRM

solutions by different providers use different proprietary approaches and file types

[1, 138] which hinder interoperability between the solutions of different producers.

In other words, the content of one provider can usually only be accessed using this

6.6. Digital Rights Management (DRM) 173

provider’s applications. Often such a lack of interoperability also leads to lock-in effects

and dependency on these providers. Moreover, the corresponding client applications

are often enough only available for particular platforms. Consequently, DRM solutions

present usability obstacles that make users reluctant to adopt these technologies.

While some research addressed the lack of interoperability between DRM solutions

[75, 86, 87, 101, 136, 197], in recent years the HTML5 standard [213] aimed at

making web-based DRM more interoperable by replacing de facto DRM standards such

as Adobe Flash and Microsoft Silverlight. For this HTML5 introduces Encrypted Media

Extensions, primarily developed with the goal to provide interoperable streaming of

digitally protected videos within web browsers. Despite many disputes around the

technology [22, 148, 159] major web browser vendors (Apple [163], Google [69],

Microsoft [141], Mozilla [148, 149]) have already adopted the technology and only

the future will show whether it will also be adopted by end users.

In comparison with data usage control, DRM may be considered as one if its

predecessors: In 2000 Iannella [83, 84] pointed out that traditional DRM (as discussed

above) primarily focuses on the protection of content rather than on the corresponding

rights management issue. In other words, he emphasizes traditional DRM methods are

no longer sufficient in an environment in which digital media is not only consumed

but also re-used, combined and extended. Hence Iannella proposed the Open Digital
Rights Language [83] and moving towards more interoperable Open Digital Rights
Management [84], therewith also influencing original usage control work [165].

7
Conclusions, Discussion and
Future Work

After providing conclusions and summarizing this thesis’ results in Section 7.1, Sec-

tion 7.2 critically discusses this thesis’ results, both from a technical and an ethical

perspective. Finally, Section 7.3 discusses limitations and points to future work.

7.1 Conclusions

In recent years, many works addressed the enforcement of data usage control policies

within individual systems. What has not been investigated in depth, however, is how

usage control requirements can be enforced within complex distributed systems. In

fact, many data usage policies do not only address single individual systems but are

rather of a global scale, as they refer to data and data usage events that are distributed

across multiple systems. While such policies can trivially be enforced by a centralized

infrastructure, such a solution also introduces several drawbacks such as posing a single

point of failure, expected heavy communication and performance overheads, privacy

concerns, as well as the necessity for the central component to be always available.

Hence, this thesis investigated three related research questions, namely “How can

the flow of data across different systems be tracked in a generic and transparent

manner and how can data usage policies be propagated to the corresponding decision

points?” (RQ1), “How can usage control policies be enforced in an effective, preventive,

and decentralized manner if data, system events, and policies are distributed across

different independent systems?” (RQ2), and “Which guarantees for distributed usage

control enforcement are provided by the presented infrastructure and what are critical

attack vectors that necessitate further investigation?” (RQ3).

In order to address these research questions, this thesis built upon a policy specifi-

cation language from the literature as well as corresponding models and enforcement

infrastructures (Chapter 2). These models represent system runs as event traces and

175

176 7. Conclusions, Discussion and Future Work

integrate with data flow tracking technology in order to capture which usage controlled

data takes which concrete representations at runtime. Policies then allow to constrain

the legitimacy of certain event traces and system states.

On the basis of this model, this thesis contributed by providing a comprehensive and

generic model for distributed data usage control (Section 3.1). This allows to model

the execution of multiple concurrent event traces of different systems. In addition, it

was shown how these individual observations can be reassembled in order to mimic the

behavior of classical monolithic systems in which only one event trace can be observed.

In terms of RQ1, this thesis provided the first model (Section 3.2) and implementa-

tion (Section 4.2) to track data flows and data usage control policies across systems in a

manner that is independent of particular file types, applications, application-protocols,

hypervisors, or hardware. Technically, this tracking is performed in a decentralized

manner on the basis of intercepting networking related system calls. As such, no

modifications to applications or the operating system are required. The evaluation

(Section 5.2) showed that the performance overhead imposed by such cross-system

data flow tracking is hardly measurable and usually negligible.

In terms of RQ2, this thesis provided the first model (Section 3.3) and implementa-

tion (4.3) that allow for the fully decentralized, efficient, and preventive enforcement

of global data usage control policies, i.e. policies the data and events of which are

distributed across different systems. This approach includes the identification of sys-

tems that are potentially relevant to enforce a given policy, as well as the identification

of situations in which coordination of policy decisions can be safely omitted. The

thesis proves that the performed optimizations are correct (Appendices A and B). The

evaluation compared the implemented distributed infrastructure with a traditional cen-

tralized approach (Section 5.3). The results revealed that the decentralized approach

is capable of outperforming the centralized approach in most cases.

In terms of RQ3, this thesis evaluated the proposed solution in terms of security

(Section 5.1). The security analysis revealed assumptions and limitations of the

proposed models and the implemented infrastructure. Whenever appropriate, possible

solutions to the identified weaknesses were proposed.

7.2 Critical Reflection

While performing this thesis work, several technical, practical and ethical questions

and discussions arose. The most important ones are described in the following.

Specification and Deployment of Data Usage Policies. A central question when

designing usage control solutions is which entity should be allowed to specify and

deploy data usage policies for which data. This question is even more daunting when

it comes to distributed data usage scenarios, since the sensitive data being handled

and protected in a distributed manner is likely to be the property of different entities

or organizations. For example, when considering the insurance company’s contracts,

7.2. Critical Reflection 177

both the client and the insurance company are likely to demand protection of parts

of the contract. Possibly, the corresponding data protection requirements concern the

same parts of the contract and may be in conflict. In addition, other data protection

requirements, such as laws, might need to be considered. While such problems are out

of the scope of this work and rather related to works such as [106], they are the basis

for further critical considerations.

For example, if governments or other powerful organizations would have the

possibility to specify and deploy policies for any kind of usage controlled data, then

the usage control infrastructure could be (mis-)used as a censorship framework. For

example, those powerful organizations could then demand deletion of any kind of data

or impose arbitrary obligations upon data usage. These and similar attacks could also

be considered as Denial of Service (DoS) attacks, since they are capable of making

usage controlled data unavailable by specifying and deploying corresponding policies.

Control over the Infrastructure. A related question is who is in control over the

distributed data usage control enforcement infrastructure. While this thesis suggests

that each entity, such as end users, businesses or organizations, sets up its own usage

control infrastructure, the posed question is more complex when it comes to real-world

distributed deployment scenarios. The underlying problem is that at some point there

must exist a trust anchor, be it a trusted application, a trusted operating system, or

trusted hardware upon which the usage control infrastructure is deployed. However,

this trust anchor must not only be trusted by the entity which deploys the infrastructure,

but also by entities which deploy a remote infrastructure which will later communicate

with the former. Otherwise, i.e. if the trust anchor is not trusted by remote entities, the

corresponding infrastructures ought not exchange any sensitive information such as

usage controlled data, usage control policies, data flow states, or information about

policy decisions. However, whether such a universal trust anchor exists is questionable.

If, however, such a trust anchor would exist, then the entity providing this anchor

would essentially be in control over the entire usage control infrastructure.

Even assuming the existence of a universally trusted trust anchor, the question

remains how the availability of the usage controlled data can be assured. Since the

data would only be persistently stored in an encrypted manner in order to maintain

its confidentiality, it would need to be assured that the corresponding decryption key

is never lost. This in turn, would necessitate redundant and secure storage of the

corresponding decryption keys, effectively leading to a complex bootstrapping problem.

In the light of this discussion, it is noteworthy that end users do in many cases

no longer possess administrative privileges for many of today’s and tomorrow’s om-

nipresent computing systems such as mobile phones, tablet computers and embedded

(cyber-physical) systems ((autonomous) cars, airplanes, robots, wearable devices,

smart houses/cities, etc.). At a first glance this fact might seem to solve the ‘trust

anchor problem’, since it could keep users from disabling or circumventing the data

usage control infrastructure. However, it stands to reason that many end users would

178 7. Conclusions, Discussion and Future Work

consider such devices and a corresponding data usage control infrastructure as pa-

ternalism which they are unwilling to accept in practice. In the end, only real-world

deployment scenarios will show how such technology is adopted by end users. Very

likely, any such adoption process is to be accompanied by many more ethical, societal

and political discussions.

Resume. Considering the above discussions, it is questionable whether a data usage

control infrastructure as developed within this thesis and related works is indeed

desirable in completely open environments such as the world wide web. E.g., Digital

Rights Management (DRM), a technology aiming at the protection of payment-based

information such as audio, video, and software, faced much criticism and was finally

dropped by all major audio labels [135]. While the scope and application areas of

data usage control technology are broader than those of DRM technology, the above

example shows that deployment of such technology is not straight forward and that

user acceptance plays a critical role. Nevertheless, data usage control technology could

be deployed and adopted in business scenarios in which sensitive data is critical and

in which certain trust anchors are present, e.g. because employees are provided with

ready-to-use computing systems without administrative privileges.

7.3 Limitations and Future Work

Policy Specification and Deployment. This thesis does not cover aspects related to

the specification, translation, derivation, and evolution of policies. These and related

topics are partially covered in [79, 106, 108, 109]. However, none of these works does

explicitly cater to the particular requirements of policy specification and deployment in

complex distributed environments, e.g. addressing the problem which entities might

specify and deploy policies for which data. Another related, and yet unexplored,

problem is which entities, if any, should be capable of modifying policies for data

that has already been disseminated. Very likely, such research would not only involve

technical solutions, but also ethical, societal and political discussions.

Integration with Usage Control Solutions for Single Systems. This thesis focused

on the distributed aspects of data usage control. As such, problems related to data usage

control on single independent systems are not covered as they are addressed elsewhere

[55, 74, 110, 119, 125, 126, 168, 170, 174, 188, 214, 216]. It remains to mention that

all of the cited works are compatible with this thesis’ work both from a conceptual and

a technical point of view. Hence, it remains to build an encompassing infrastructure

that integrates all of the above works with this thesis’ approach, thus allowing for

comprehensive system-wide and cross-system data usage control enforcement.

Improving the Granularity of Cross-System Data Flow Tracking. This work tracks

cross-system data flows on the basis of system call interpositioning. While this approach

is generic by supporting any kind of user space application, it comes at the cost of data

7.3. Limitations and Future Work 179

flow tracking overapproximations since processes, files, memory regions, sockets, pipes,

etc. are treated as black boxes the contents of which can not be further distinguished.

The cross-system data flow tracking approach presented in this thesis would thus

benefit from an integration with application-layer usage control monitors (e.g. for

Firefox [110], Thunderbird [125], Microsoft Office [188]). Since these monitors would

be able to provide additional information about data flows within the corresponding

applications, the granularity of cross-system data flow tracking could be improved.

Cross-System Data Flow Tracking Beyond TCP. Although this thesis’ concepts and

implementation support most applications by realizing cross-system data flow tracking

at the level of TCP, other important applications such as multimedia streaming and

Voice over IP are not covered. This is because such applications use UDP as transport

layer, as low-latency delivery is preferred to the guarantees provided by TCP. Future

work is thus required in order to extend cross-system data flow tracking to UDP or

even other transport layers. Further, extending cross-system data flow tracking to raw

sockets would completely decouple cross-system data flow tracking from the transport

layer protocol and thus support any kind of IP-based communication.

Specifying Efficiently Enforceable ECA Rules. As researched in [106], there exist

multiple ways in which high-level usage control specification policies can be translated

into technical low-level ECA rules as enforced by this thesis’ infrastructure. As shown in

this thesis’ evaluation, however, both the ECA rules’ trigger events and conditions have

a significant influence on the efficiency of the policy evaluation. Hence, future work

is needed that aims at the specification of efficiently enforceable low-level ECA rules,

possibly on the basis of given use case scenarios, i.e. under consideration of expected

event traces.

Dedicated Technical Solutions for Distributed Policy Decisions. In order to ease

implementation, this thesis made use of the off-the-shelf distributed database Cassandra

in order to coordinate policy decisions across multiple PDPs. However, as the evaluation

showed, Cassandra introduces additional communication overheads even in case no

coordination between PDPs is required. Hence it stands to reason that a tailored

implementation, specifically developed with usage control requirements in mind, would

improve upon these overheads and operate with less communication and performance

overhead.

Evaluation. This thesis’ evaluation shows that the proposed distributed concepts are

able to compete with traditional centralized infrastructures and that the imposed

performance and communication overheads are acceptable in many cases. Often, the

decentralized approach is even able to outperform a centralized approach. However,

the present evaluation only gives a first insight into the performance of such distributed

usage control infrastructures. In order to understand their full impact, rigorous

evaluations using different and more complex policies as well as larger distributed

system setups would need to be performed. Ideally, such evaluations should be

180 7. Conclusions, Discussion and Future Work

performed within real-world production environments and consider real-world use

cases and event traces. This way, it would also be possible to perform usability studies

with the goal to understand whether end users accept the imposed performance

overheads as well as the way they are constrained when working with usage controlled

data.

Security and Trustworthiness of the Usage Control Infrastructure. One limitation

of this thesis’ implementation is that communication between remote usage control in-

frastructures is only rudimentary secured using TLS. While TLS provides confidentiality

and integrity of messages as well as both client and server authentication mechanisms,

it does not solve the problem that the underlying infrastructure, such as the hardware

and the operating systems, as well as the certificate authorities must be trustworthy.

While the assurance of the hardware’s and operating system’s trustworthiness is an

issue on its own (cf. below), valid certificates signed by trusted certificate authorities

are at least able to provide a minimal amount of accountability by being able to know

with which other entities some sensitive information was shared.

In order to further secure the distributed usage control infrastructure and to

defend against stronger attackers than non-privileged end users, additional security

mechanisms would need to be deployed. For this, the trust anchor would need to

be embedded at a lower layer than the operating system, e.g. by using technologies

such as TPMs [208] or SmartCards [76]. Corresponding solutions are described in

Section 6.5.

Side Channels and Media Breaks. The solutions provided in this thesis do not cover

side channel attacks such as timing attacks or power monitoring, which could be used

to infer usage controlled data and consequently to use it in an unrestricted manner.

Further, media breaks are out of the scope of this work. Once data is legitimately

displayed on the screen or printed as a hard copy, no further protection of the corre-

sponding data can be guaranteed.

Bibliography

[1] Adobe Systems Incorporated. Adobe Content Server. 2015. URL: http : / /

www . adobe . com / solutions / ebook / content - server . html (visited on

09/08/2015) (cited on pages 17, 19, 172).

[2] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha

Nabar, Tomoe Sugihara, and Jennifer Widom. “Trio: A System for Data, Un-

certainty, and Lineage”. In: Proceedings of the 32nd International Conference
on Very Large Data Bases. VLDB ’06. Seoul, Korea: VLDB Endowment, 2006,

pages 1151–1154. URL: http://dl.acm.org/citation.cfm?id=1182635.

1164231 (cited on page 159).

[3] Berthold Agreiter, Muhammad Alam, Ruth Breu, Michael Hafner, Alexander

Pretschner, Jean-Pierre Seifert, and Xinwen Zhang. “A Technical Architecture

for Enforcing Usage Control Requirements in Service-oriented Architectures”.

In: Proceedings of the 2007 ACM Workshop on Secure Web Services. SWS ’07.

Fairfax, Virginia, USA: ACM, 2007, pages 18–25. ISBN: 9781595938923. DOI:

10.1145/1314418.1314422 (cited on page 171).

[4] M. David Allen, Adriane Chapman, Barbara Blaustein, and Len Seligman.

“Capturing Provenance in the Wild”. In: Provenance and Annotation of Data
and Processes. Edited by Deborah L. McGuinness, James R. Michaelis, and Luc

Moreau. Volume 6378. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2010, pages 98–101. ISBN: 9783642178184. DOI: 10.1007/978-

3-642-17819-1_12 (cited on page 164).

[5] Ali Mousa G. Alzahrani. “Efficient Enforcement of Security Policies in Dis-

tributed Systems”. PhD thesis. De Montfort University, Leicester, UK, Apr. 2013.

URL: http://hdl.handle.net/2086/9029 (cited on pages 18, 167).

[6] Ali Alzahrani, Helge Janicke, and Sarshad Abubaker. “Decentralized XACML

Overlay Network”. In: IEEE 10th International Conference on Computer and
Information Technology (CIT). June 2010, pages 1032–1037. DOI: 10.1109/

CIT.2010.189 (cited on pages 18, 19, 167–169).

[7] Claudio A. Ardagna, Laurent Bussard, Sabrina De Capitani di Vimercati,

Gregory Neven, Stefano Paraboschi, Eros Pedrini, Franz-Stefan Preiss, Dave

Raggett, Pierangela Samarati, Slim Trabelsi, and Mario Verdicchio. “PrimeLife

Policy Language”. In: W3C Workshop on Access Control Application Scenarios.
Nov. 2009, pages 1–6. ISBN: 9788897253006 (cited on page 156).

183

http://www.adobe.com/solutions/ebook/content-server.html
http://www.adobe.com/solutions/ebook/content-server.html
http://dl.acm.org/citation.cfm?id=1182635.1164231
http://dl.acm.org/citation.cfm?id=1182635.1164231
http://dx.doi.org/10.1145/1314418.1314422
http://dx.doi.org/10.1007/978-3-642-17819-1_12
http://dx.doi.org/10.1007/978-3-642-17819-1_12
http://hdl.handle.net/2086/9029
http://dx.doi.org/10.1109/CIT.2010.189
http://dx.doi.org/10.1109/CIT.2010.189

184 Bibliography

[8] Francois Audet and Cullen Jennings. RFC 4787: Network Address Translation
(NAT) Behavioral Requirements for Unicast UDP. 2007. URL: https://tools.

ietf.org/html/rfc4787 (cited on page 54).

[9] Autodesk, Inc. Autodesk Licensing. 2010. URL: http://docs.autodesk.com/

ACD/2011/ENU/pdfs/adsk_lic.pdf (visited on 09/02/2015) (cited on

page 17).

[10] Mihai Bădoiu, Kiran-Kumar Muniswam-Reddy, Anastasios Sidiropoulos, and

Mythili Vutukuru. A Distributed Provenance Aware Storage System. Technical

report. MIT, 2005 (cited on page 164).

[11] Peter Bailis and Ali Ghodsi. “Eventual Consistency Today: Limitations, Ex-

tensions, and Beyond”. In: Communications of the ACM 56.5 (May 2013),

pages 55–63. ISSN: 0001-0782. DOI: 10.1145/2447976.2447992 (cited on

page 88).

[12] David Basin, Germano Caronni, Sarah Ereth, Felix Harvan Matúšand Klaedtke,

and Heiko Mantel. “Scalable Offline Monitoring”. In: Runtime Verification.

Edited by Borzoo Bonakdarpour and ScottA. Smolka. Volume 8734. Lecture

Notes in Computer Science. Springer International Publishing, 2014, pages 31–

47. ISBN: 9783319111636. DOI: 10.1007/978-3-319-11164-3_4 (cited on

pages 18, 19, 166, 169).

[13] David Basin, Felix Harvan Matúšand Klaedtke, and Eugen Zălinescu. “Mon-

itoring Data Usage in Distributed Systems”. In: Software Engineering, IEEE
Transactions on 39.10 (Oct. 2013), pages 1403–1426. ISSN: 0098-5589. DOI:

10.1109/TSE.2013.18 (cited on pages 16, 18, 19, 166, 169).

[14] David Basin, Felix Harvan Matúšand Klaedtke, and Eugen Zălinescu. “Moni-

toring Usage-Control Policies in Distributed Systems”. In: 18th International
Symposium on Temporal Representation and Reasoning (TIME). Sept. 2011,

pages 88–95. DOI: 10.1109/TIME.2011.14 (cited on page 166).

[15] David Basin, Felix Klaedtke, and Samuel Müller. “Monitoring Security Policies

with Metric First-order Temporal Logic”. In: Proceedings of the 15th ACM
Symposium on Access Control Models and Technologies. SACMAT ’10. Pittsburgh,

Pennsylvania, USA: ACM, 2010, pages 23–34. ISBN: 9781450300490. DOI:

10.1145/1809842.1809849 (cited on page 156).

[16] David Basin, Felix Klaedtke, and Samuel Müller. “Policy Monitoring in First-

Order Temporal Logic”. In: Computer Aided Verification. Edited by Tayssir Touili,

Byron Cook, and Paul Jackson. Volume 6174. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2010, pages 1–18. ISBN: 9783642142949.

DOI: 10.1007/978-3-642-14295-6_1 (cited on page 156).

https://tools.ietf.org/html/rfc4787
https://tools.ietf.org/html/rfc4787
http://docs.autodesk.com/ACD/2011/ENU/pdfs/adsk_lic.pdf
http://docs.autodesk.com/ACD/2011/ENU/pdfs/adsk_lic.pdf
http://dx.doi.org/10.1145/2447976.2447992
http://dx.doi.org/10.1007/978-3-319-11164-3_4
http://dx.doi.org/10.1109/TSE.2013.18
http://dx.doi.org/10.1109/TIME.2011.14
http://dx.doi.org/10.1145/1809842.1809849
http://dx.doi.org/10.1007/978-3-642-14295-6_1

Bibliography 185

[17] David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu. “Moni-

toring Metric First-Order Temporal Properties”. In: Journal of the ACM 62.2

(May 2015), 15:1–15:45. ISSN: 0004-5411. DOI: 10.1145/2699444 (cited on

pages 18, 50, 166).

[18] Andreas Bauer and Yliès Falcone. “Decentralised LTL Monitoring”. In: FM 2012:
Formal Methods. Edited by Dimitra Giannakopoulou and Dominique Méry.

Volume 7436. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2012, pages 85–100. ISBN: 9783642327582. DOI: 10.1007/978-3-642-32759-

9_10 (cited on pages 18, 19, 168, 169).

[19] Michele Bezzi and Slim Trabelsi. “Data Usage Control in the Future Internet

Cloud”. In: The Future Internet. Volume 6656. Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, 2011, pages 223–231. ISBN: 9783642208973.

DOI: 10.1007/978-3-642-20898-0_16 (cited on page 162).

[20] Andrea Bittau, Michael Hamburg, Mark Handley, David Mazières, and Dan

Boneh. “The Case for Ubiquitous Transport-level Encryption”. In: Proceedings
of the 19th USENIX Conference on Security. USENIX Security’10. Washington,

DC: USENIX Association, 2010. URL: http://dl.acm.org/citation.cfm?id=

1929820.1929855 (cited on page 99).

[21] Eric A. Brewer. “Towards Robust Distributed Systems”. In: Proc. of the 19th
Annual ACM Symposium on Principles of Distributed Computing. Keynote. 2000.

ISBN: 1581131836. DOI: 10.1145/343477.343502 (cited on page 88).

[22] Peter Bright. DRM in HTML5 is a victory for the open Web, not a defeat. 2013.

URL: http://arstechnica.com/business/2013/05/drm-in-html5-is-

a-victory-for-the-open-web-not-a-defeat/ (visited on 09/04/2015)

(cited on page 173).

[23] Peter Buneman, Adriane Chapman, and James Cheney. “Provenance Manage-

ment in Curated Databases”. In: Proceedings of the 2006 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’06. Chicago, IL, USA: ACM,

2006, pages 539–550. ISBN: 1595934340. DOI: 10.1145/1142473.1142534

(cited on page 159).

[24] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. “Why and Where: A

Characterization of Data Provenance”. In: Database Theory – ICDT 2001. Edited

by Jan Van den Bussche and Victor Vianu. Volume 1973. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2001, pages 316–330. ISBN:

9783540414568. DOI: 10.1007/3-540-44503-X_20 (cited on page 159).

[25] Peter Buneman and Wang-Chiew Tan. “Provenance in Databases”. In: Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’07. Beijing, China: ACM, 2007, pages 1171–1173. ISBN:

9781595936868. DOI: 10.1145/1247480.1247646 (cited on page 159).

http://dx.doi.org/10.1145/2699444
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-642-20898-0_16
http://dl.acm.org/citation.cfm?id=1929820.1929855
http://dl.acm.org/citation.cfm?id=1929820.1929855
http://dx.doi.org/10.1145/343477.343502
http://arstechnica.com/business/2013/05/drm-in-html5-is-a-victory-for-the-open-web-not-a-defeat/
http://arstechnica.com/business/2013/05/drm-in-html5-is-a-victory-for-the-open-web-not-a-defeat/
http://dx.doi.org/10.1145/1142473.1142534
http://dx.doi.org/10.1007/3-540-44503-X_20
http://dx.doi.org/10.1145/1247480.1247646

186 Bibliography

[26] Laurent Bussard, Gregory Neven, and Franz-Stefan Preiss. “Downstream Usage

Control”. In: IEEE International Symposium on Policies for Distributed Systems
and Networks (POLICY). July 2010, pages 22–29. DOI: 10.1109/POLICY.2010.

17 (cited on page 156).

[27] Bryan Cantrill, Adam Leventhal, Mike Shapiro, and Brendan Gregg. dtrace.org:
About DTrace. 2015. URL: http://dtrace.org/blogs/about/ (visited on

09/02/2015) (cited on page 158).

[28] David Chadwick. “Coordinated Decision Making in Distributed Applications”.

In: Information Security Tech. Report 12.3 (June 2007), pages 147–154. ISSN:

1363-4127. DOI: 10.1016/j.istr.2007.05.003 (cited on pages 18, 19, 168,

169).

[29] David W. Chadwick and Stijn F. Lievens. “Enforcing “Sticky” Security Policies

Throughout a Distributed Application”. In: Proceedings of the 2008 Workshop
on Middleware Security. MidSec ’08. Leuven, Belgium: ACM, 2008, pages 1–6.

ISBN: 9781605583631. DOI: 10.1145/1463342.1463343 (cited on page 160).

[30] David W. Chadwick, Linying Su, and Romain Laborde. “Coordinating Access

Control in Grid Services”. In: Concurrency and Computation: Practice & Ex-
perience - Middleware for Grid Computing: Future Trends 20.9 (June 2008),

pages 1071–1094. ISSN: 1532-0626. DOI: 10.1002/cpe.v20:9 (cited on

pages 18, 168).

[31] David W. Chadwick, Linying Su, Oleksandr Otenko, and Romain Laborde.

“Coordination between Distributed PDPs”. In: 7th IEEE International Workshop.
on Policies for Distributed Systems and Networks. 2006. DOI: 10.1109/POLICY.

2006.14 (cited on pages 18, 19, 35, 168, 169).

[32] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. “A Software-Hardware

Architecture for Self-Protecting Data”. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security. CCS ’12. Raleigh, North

Carolina, USA: ACM, Oct. 2012, pages 14–27. ISBN: 9781450316514. DOI:

10.1145/2382196.2382201 (cited on page 169).

[33] Yu-Yuan Chen and Ruby B. Lee. “Hardware-Assisted Application-Level Access

Control”. In: Proceedings of the 12th International Conference on Information
Security. ISC ’09. Pisa, Italy: Springer-Verlag, 2009, pages 363–378. ISBN:

9783642044731. DOI: 10.1007/978-3-642-04474-8_29 (cited on page 169).

[34] Georgios Chinis, Polyvios Pratikakis, Sotiris Ioannidis, and Elias Athanasopou-

los. “Practical Information Flow for Legacy Web Applications”. In: Proceedings
of the 8th Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems. ICOOOLPS’13. Montpellier, France:

ACM, 2013, pages 17–28. ISBN: 9781450320450. DOI: 10.1145/2491404.

2491410 (cited on page 159).

http://dx.doi.org/10.1109/POLICY.2010.17
http://dx.doi.org/10.1109/POLICY.2010.17
http://dtrace.org/blogs/about/
http://dx.doi.org/10.1016/j.istr.2007.05.003
http://dx.doi.org/10.1145/1463342.1463343
http://dx.doi.org/10.1002/cpe.v20:9
http://dx.doi.org/10.1109/POLICY.2006.14
http://dx.doi.org/10.1109/POLICY.2006.14
http://dx.doi.org/10.1145/2382196.2382201
http://dx.doi.org/10.1007/978-3-642-04474-8_29
http://dx.doi.org/10.1145/2491404.2491410
http://dx.doi.org/10.1145/2491404.2491410

Bibliography 187

[35] Jan Chomicki. “Efficient Checking of Temporal Integrity Constraints Using

Bounded History Encoding”. In: ACM Transactions on Database Systems 20.2

(June 1995), pages 149–186. ISSN: 0362-5915. DOI: 10.1145/210197.210200

(cited on page 156).

[36] CipherShed project. CipherShed — Secure Encryption Software. 2015. URL:

https://ciphershed.org/ (visited on 09/02/2015) (cited on page 96).

[37] Maurizio Colombo, Fabio Martinelli, Paolo Mori, and Aliaksandr Lazouski.

“On Usage Control for GRID Services”. In: International Joint Conference on
Computational Sciences and Optimization. Volume 1. Apr. 2009, pages 47–51.

DOI: 10.1109/CSO.2009.479 (cited on page 157).

[38] Contributors to the cURL project. curl and libcurl. 2015. URL: http://curl.

haxx.se/ (visited on 09/02/2015) (cited on page 105).

[39] Graham Cormode. “The Continuous Distributed Monitoring Model”. In: SIG-
MOD Rec. 42.1 (May 2013), pages 5–14. ISSN: 0163-5808. DOI: 10.1145/

2481528.2481530 (cited on pages 18, 167, 169).

[40] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. “The

Ponder Policy Specification Language”. English. In: Policies for Distributed
Systems and Networks. Edited by Morris Sloman, EmilC. Lupu, and Jorge Lobo.

Volume 1995. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2001, pages 18–38. ISBN: 9783540416104. DOI: 10.1007/3-540-44569-2_2.

URL: http://dx.doi.org/10.1007/3-540-44569-2_2 (cited on page 156).

[41] DataStax, Inc. DataStax - NoSQL Cassandra Database — Fastest, Most Scalable.

2015. URL: http://www.datastax.com/ (visited on 09/02/2015) (cited on

page 87).

[42] DataStax, Inc. Lightweight transactions in Cassandra 2.0 : DataStax. 2015. URL:

http://www.datastax.com/dev/blog/lightweight-transactions-in-

cassandra-2-0 (visited on 09/02/2015) (cited on page 88).

[43] DataStax, Inc. Timeuuid functions — DataStax CQL 3.0 Documentation. 2015.

URL: http://docs.datastax.com/en/cql/3.0/cql/cql_reference/

timeuuid_functions_r.html (visited on 09/02/2015) (cited on page 88).

[44] Benjamin Davis and Hao Chen. “DBTaint: Cross-application Information Flow

Tracking via Databases”. In: Proceedings of the 2010 USENIX Conference on Web
Application Development. WebApps’10. Boston, MA: USENIX Association, 2010.

URL: http://dl.acm.org/citation.cfm?id=1863166.1863178 (cited on

page 159).

[45] Eric Diehl. “A Four-Layer Model for Security of Digital Rights Management”.

In: Proceedings of the 8th ACM Workshop on Digital Rights Management.
DRM ’08. Alexandria, Virginia, USA: ACM, Oct. 2008, pages 19–28. ISBN:

9781605582900. DOI: 10.1145/1456520.1456527 (cited on page 172).

http://dx.doi.org/10.1145/210197.210200
https://ciphershed.org/
http://dx.doi.org/10.1109/CSO.2009.479
http://curl.haxx.se/
http://curl.haxx.se/
http://dx.doi.org/10.1145/2481528.2481530
http://dx.doi.org/10.1145/2481528.2481530
http://dx.doi.org/10.1007/3-540-44569-2_2
http://dx.doi.org/10.1007/3-540-44569-2_2
http://www.datastax.com/
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
http://docs.datastax.com/en/cql/3.0/cql/cql_reference/timeuuid_functions_r.html
http://docs.datastax.com/en/cql/3.0/cql/cql_reference/timeuuid_functions_r.html
http://dl.acm.org/citation.cfm?id=1863166.1863178
http://dx.doi.org/10.1145/1456520.1456527

188 Bibliography

[46] Tim Dierks and Eric Rescorla. RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2. 2008. URL: https://tools.ietf.org/html/rfc5246

(cited on pages 71, 96).

[47] Peter Djalaliev and JoséCarlos Brustoloni. “Secure Web-Based Retrieval of

Documents with Usage Controls”. In: Proceedings of the 2009 ACM Symposium
on Applied Computing. SAC ’09. Honolulu, Hawaii: ACM, 2009, pages 2062–

2069. ISBN: 9781605581668. DOI: 10.1145/1529282.1529738 (cited on

page 172).

[48] Ralph Droms. RFC 2131: Dynamic Host Configuration Protocol. 1997. URL:

https://tools.ietf.org/html/rfc2131 (cited on page 54).

[49] David Durham, Jim Boyle, Ron Cohen, Raju Rajan, Shai Herzog, and Arun

Sastry. RFC 2748: The COPS (Common Open Policy Service) Protocol. 2000. URL:

https://tools.ietf.org/html/rfc2748 (cited on pages 35, 72).

[50] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David

Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.

“Labels and Event Processes in the Asbestos Operating System”. In: ACM SIGOPS
Operating Systems Review 39.5 (Oct. 2005), pages 17–30. ISSN: 0163-5980.

DOI: 10.1145/1095809.1095813 (cited on pages 159, 163).

[51] Paul England, John D. DeTreville, and Butler W. Lampson. “Digital Rights

Management Operating System”. Patent US6330670 (US). Dec. 2001. URL:

http://www.google.com/patents/US6330670 (cited on page 97).

[52] Chris Evans. vsftpd - Secure, fast FTP server for UNIX-like systems. 2015. URL:

https://security.appspot.com/vsftpd.html (visited on 09/02/2015)

(cited on page 105).

[53] David Evans and David M. Eyers. “Efficient Policy Checking across Adminis-

trative Domains”. In: IEEE International Symposium on Policies for Distributed
Systems and Networks (POLICY). July 2010, pages 146–153. DOI: 10.1109/

POLICY.2010.36 (cited on pages 17, 18, 163, 164).

[54] David F. Ferraiolo, Janet A. Cugini, and D. Richard Kuhn. “Role-Based Access

Control (RBAC): Features and Motivations”. In: Proceedings of the 11th An-
nual Computer Security Application Conference. New Orleans, LA, USA, 1995,

pages 242–248 (cited on page 168).

[55] Denis Feth and Alexander Pretschner. “Flexible Data-Driven Security for An-

droid”. In: IEEE Sixth International Conference on Software Security and Relia-
bility. SERE. June 2012, pages 41–50. DOI: 10.1109/SERE.2012.14 (cited on

pages 16, 36, 43, 77, 178).

https://tools.ietf.org/html/rfc5246
http://dx.doi.org/10.1145/1529282.1529738
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2748
http://dx.doi.org/10.1145/1095809.1095813
http://www.google.com/patents/US6330670
https://security.appspot.com/vsftpd.html
http://dx.doi.org/10.1109/POLICY.2010.36
http://dx.doi.org/10.1109/POLICY.2010.36
http://dx.doi.org/10.1109/SERE.2012.14

Bibliography 189

[56] Michael J. Fischer. “The Consensus Problem in Unreliable Distributed Systems

(A Brief Survey)”. In: Foundations of Computation Theory. Edited by Marek

Karpinski. Volume 158. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 1983, pages 127–140. ISBN: 9783540126898. DOI: 10.1007/3-

540-12689-9_99 (cited on page 88).

[57] Ian Foster. “The Virtual Data Grid: A New Model and Architecture for Data-

intensive Collaboration”. In: Proceedings of the 15th International Conference
on Scientific and Statistical Database Management. SSDBM ’03. Cambridge, MA:

IEEE Computer Society, 2003. ISBN: 0769519644. DOI: 10.1109/SSDM.2003.

1214945 (cited on page 159).

[58] Ian Foster and Carl Kesselman. “Globus: A Metacomputing Infrastructure

Toolkit”. In: International Journal of High Performance Computing Applications
11.2 (1997), pages 115–128 (cited on page 159).

[59] Free Software Foundation, Inc. GNU Wget. 2015. URL: http://www.gnu.org/

software/wget/ (visited on 09/02/2015) (cited on page 105).

[60] Alexander Fromm. Data Protection in Composed Service Oriented Computing.

Technical report. Doctoral Thesis Proposal. Technische Universität München,

2014 (cited on page 98).

[61] Alexander Fromm, Florian Kelbert, and Alexander Pretschner. “Data Protection

in a Cloud-Enabled Smart Grid”. In: Smart Grid Security. Volume 7823. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2013, pages 96–107.

ISBN: 9783642380297. DOI: 10.1007/978- 3- 642- 38030- 3_7 (cited on

pages 25, 36, 77, 158).

[62] Dov Gabbay. “The Declarative Past and Imperative Future”. In: Temporal Logic
in Specification. Edited by B. Banieqbal, H. Barringer, and A. Pnueli. Vol-

ume 398. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

1989, pages 409–448. ISBN: 9783540518037. DOI: 10.1007/3-540-51803-

7_36 (cited on page 32).

[63] Richard Gay, Jinwei Hu, and Heiko Mantel. “CliSeAu: Securing Distributed

Java Programs by Cooperative Dynamic Enforcement”. In: Information Systems
Security. Edited by Atul Prakash and Rudrapatna Shyamasundar. Volume 8880.

Lecture Notes in Computer Science. Springer International Publishing, 2014,

pages 378–398. ISBN: 9783319138404. DOI: 10.1007/978-3-319-13841-

1_21 (cited on pages 18, 36, 77, 165, 169).

[64] Richard Gay, Heiko Mantel, and Barbara Sprick. “Service Automata”. In: Formal
Aspects of Security and Trust. Volume 7140. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2012, pages 148–163. ISBN: 9783642294198. DOI:

10.1007/978-3-642-29420-4_10 (cited on pages 18, 19, 165, 169).

http://dx.doi.org/10.1007/3-540-12689-9_99
http://dx.doi.org/10.1007/3-540-12689-9_99
http://dx.doi.org/10.1109/SSDM.2003.1214945
http://dx.doi.org/10.1109/SSDM.2003.1214945
http://www.gnu.org/software/wget/
http://www.gnu.org/software/wget/
http://dx.doi.org/10.1007/978-3-642-38030-3_7
http://dx.doi.org/10.1007/3-540-51803-7_36
http://dx.doi.org/10.1007/3-540-51803-7_36
http://dx.doi.org/10.1007/978-3-319-13841-1_21
http://dx.doi.org/10.1007/978-3-319-13841-1_21
http://dx.doi.org/10.1007/978-3-642-29420-4_10

190 Bibliography

[65] David Geer. “Digital Rights Technology Sparks Interoperability Concerns”. In:

Computer 37.12 (2004), pages 20–22. ISSN: 0018-9162. DOI: 10.1109/MC.

2004.242 (cited on pages 19, 172).

[66] Ashish Gehani and Dawood Tariq. “SPADE: Support for Provenance Auditing in

Distributed Environments”. In: Proceedings of the 13th International Middleware
Conference. Middleware ’12. Montreal, Quebec, Canada: Springer-Verlag New

York, Inc., 2012, pages 101–120. ISBN: 9783642351693. URL: http://dl.acm.

org/citation.cfm?id=2442626.2442634 (cited on page 164).

[67] Eleni Gessiou, Vasilis Pappas, Elias Athanasopoulos, Angelos D. Keromytis,

and Sotiris Ioannidis. “Towards a Universal Data Provenance Framework Us-

ing Dynamic Instrumentation”. In: Information Security and Privacy Research.

Volume 376. IFIP Advances in Information and Communication Technology.

Springer Berlin Heidelberg, 2012, pages 103–114. ISBN: 9783642304354. DOI:

10.1007/978-3-642-30436-1_9 (cited on page 158).

[68] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Con-

sistent, Available, Partition-tolerant Web Services”. In: SIGACT News 33.2 (June

2002). ISSN: 0163-5700. DOI: 10.1145/564585.564601 (cited on page 88).

[69] Google Inc. Chrome 26 Beta: Template Element & Unprefixed CSS Transitions.
2013. URL: http : / / blog . chromium . org / 2013 / 02 / chrome - 26 - beta -

template-element.html (visited on 09/04/2015) (cited on page 173).

[70] Valient Gough. EncFS. 2014. URL: http://www.arg0.net/#!encfs/c1awt

(visited on 09/02/2015) (cited on page 96).

[71] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William

Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward

W. Felten. “Lest We Remember: Cold-boot Attacks on Encryption Keys”. In:

Communications of the ACM 52.5 (May 2009), pages 91–98. ISSN: 0001-0782.

DOI: 10.1145/1506409.1506429 (cited on page 100).

[72] Jiho Han and Deog-Kyoon Jeong. “A Practical Implementation of IEEE 1588-

2008 Transparent Clock for Distributed Measurement and Control Systems”.

In: IEEE Transactions on Instrumentation and Measurement 59.2 (Feb. 2010),

pages 433–439. ISSN: 0018-9456. DOI: 10.1109/TIM.2009.2024371 (cited on

page 89).

[73] Weili Han and Chang Lei. “A Survey on Policy Languages in Network and

Security Management”. In: Computer Networks 56.1 (2012), pages 477–489.

ISSN: 1389-1286. DOI: 10.1016/j.comnet.2011.09.014 (cited on page 156).

[74] Matús Harvan and Alexander Pretschner. “State-Based Usage Control Enforce-

ment with Data Flow Tracking using System Call Interposition”. In: Third
International Conference on Network and System Security. NSS. Oct. 2009,

http://dx.doi.org/10.1109/MC.2004.242
http://dx.doi.org/10.1109/MC.2004.242
http://dl.acm.org/citation.cfm?id=2442626.2442634
http://dl.acm.org/citation.cfm?id=2442626.2442634
http://dx.doi.org/10.1007/978-3-642-30436-1_9
http://dx.doi.org/10.1145/564585.564601
http://blog.chromium.org/2013/02/chrome-26-beta-template-element.html
http://blog.chromium.org/2013/02/chrome-26-beta-template-element.html
http://www.arg0.net/#!encfs/c1awt
http://dx.doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1109/TIM.2009.2024371
http://dx.doi.org/10.1016/j.comnet.2011.09.014

Bibliography 191

pages 373–380. DOI: 10.1109/NSS.2009.51 (cited on pages 15–17, 27, 30,

31, 36, 43, 46, 77, 155, 178).

[75] Gregory L. Heileman and Pramod A. Jamkhedkar. “DRM Interoperability Anal-

ysis from the Perspective of a Layered Framework”. In: Proceedings of the 5th
ACM Workshop on Digital Rights Management. DRM ’05. Alexandria, VA, USA:

ACM, Nov. 2005, pages 17–26. ISBN: 1595932305. DOI: 10.1145/1102546.

1102551 (cited on page 173).

[76] Mike Hendry. Smart Card Security and Applications, Second Edition. 2nd.

Norwood, MA, USA: Artech House, Inc., 2001. ISBN: 1580531563 (cited on

page 180).

[77] Michael Henson and Stephen Taylor. “Memory Encryption: A Survey of Existing

Techniques”. In: ACM Computing Surveys (CSUR) 46.4 (Mar. 2014), 53:1–53:26.

ISSN: 0360-0300. DOI: 10.1145/2566673 (cited on page 100).

[78] Manuel Hilty, David Basin, and Alexander Pretschner. “On Obligations”. In:

Computer Security — ESORICS 2005. Edited by Sabrinade Capitani di Vimer-

cati, Paul Syverson, and Dieter Gollmann. Volume 3679. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2005, pages 98–117. ISBN:

9783540289630. DOI: 10.1007/11555827_7 (cited on page 155).

[79] Manuel Hilty, Alexander Pretschner, David Basin, Christian Schaefer, and

Thomas Walter. “A Policy Language for Distributed Usage Control”. In: Com-
puter Security – ESORICS 2007. Volume 4734. Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, 2007, pages 531–546. ISBN: 9783540748342.

DOI: 10.1007/978-3-540-74835-9_35 (cited on pages 15, 27, 32, 155, 178).

[80] Manuel Hilty, Alexander Pretschner, David Basin, Christian Schaefer, and

Thomas Walter. “Monitors for Usage Control”. In: Trust Management. Edited

by Sandro Etalle and Stephen Marsh. Volume 238. IFIP International Feder-

ation for Information Processing. Springer US, 2007, pages 411–414. ISBN:

9780387736549. DOI: 10.1007/978-0-387-73655-6_29 (cited on page 32).

[81] D. Richard Hipp. SQLite Home Page. 2015. URL: https://www.sqlite.org/

(visited on 09/02/2015) (cited on page 158).

[82] Renato Iannella. “Digital Rights Management (DRM)Architectures”. In: D-Lib
Magazine 7.6 (2001). ISSN: 1082-9873. DOI: 10.1045/june2001-iannella

(cited on pages 172, 173).

[83] Renato Iannella. Open Digital Rights Language (ODRL) Version 1.1. 2002. URL:

http://www.w3.org/TR/odrl/ (visited on 09/04/2015) (cited on page 173).

[84] Renato Iannella. Open Digital Rights Management. Technical report. A Position

Paper for the W3C DRM Workshop. IPR Systems Pty Ltd, 2000 (cited on

page 173).

http://dx.doi.org/10.1109/NSS.2009.51
http://dx.doi.org/10.1145/1102546.1102551
http://dx.doi.org/10.1145/1102546.1102551
http://dx.doi.org/10.1145/2566673
http://dx.doi.org/10.1007/11555827_7
http://dx.doi.org/10.1007/978-3-540-74835-9_35
http://dx.doi.org/10.1007/978-0-387-73655-6_29
https://www.sqlite.org/
http://dx.doi.org/10.1045/june2001-iannella
http://www.w3.org/TR/odrl/

192 Bibliography

[85] Pramod A. Jamkhedkar and Gregory L. Heileman. “Digital Rights Management

Architectures”. In: Computers and Electrical Engineering 35.2 (Mar. 2009),

pages 376–394. ISSN: 0045-7906. DOI: 10.1016/j.compeleceng.2008.06.

012 (cited on page 172).

[86] Pramod A. Jamkhedkar and Gregory L. Heileman. “DRM as a Layered System”.

In: Proceedings of the 4th ACM Workshop on Digital Rights Management. DRM

’04. Washington DC, USA: ACM, Oct. 2004, pages 11–21. ISBN: 1581139691.

DOI: 10.1145/1029146.1029151 (cited on page 173).

[87] Pramod A. Jamkhedkar, Gregory L. Heileman, and Chris C. Lamb. “An Inter-

operable Usage Management Framework”. In: Proceedings of the tenth Annual
ACM Workshop on Digital Rights Management. DRM ’10. Chicago, Illinois, USA:

ACM, Oct. 2010, pages 73–88. ISBN: 9781450300919. DOI: 10.1145/1866870.

1866885 (cited on page 173).

[88] Helge Janicke, Antonio Cau, François Siewe, and Hussein Zedan. “Concurrent

Enforcement of Usage Control Policies”. In: IEEE Workshop on Policies for
Distributed Systems and Networks. POLICY ’08. 2008, pages 111–118. DOI:

10.1109/POLICY.2008.44 (cited on pages 18, 50, 167).

[89] Helge Janicke, Mohamed Sarrab, and Hamza Aldabbas. “Controlling Data

Dissemination”. In: Data Privacy Management and Autonomous Spontaneus
Security. Edited by Joaquin Garcia-Alfaro, Guillermo Navarro-Arribas, Nora

Cuppens-Boulahia, and Sabrina de Capitani di Vimercati. Volume 7122. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2012, pages 303–309.

ISBN: 9783642288784. DOI: 10.1007/978-3-642-28879-1_21 (cited on

pages 17, 18, 163, 164).

[90] Georgios Karopoulos, Paolo Mori, and Fabio Martinelli. “Usage Control in

SIP-based Multimedia Delivery”. In: Computers & Security 39, Part B (2013),

pages 406–418. ISSN: 0167-4048. DOI: 10.1016/j.cose.2013.09.005 (cited

on page 157).

[91] Basel Katt, Xinwen Zhang, Ruth Breu, Michael Hafner, and Jean-Pierre Seifert.

“A General Obligation Model and Continuity: Enhanced Policy Enforcement

Engine for Usage Control”. In: Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies. SACMAT ’08. Estes Park, CO, USA: ACM, 2008,

pages 123–132. ISBN: 9781605581293. DOI: 10.1145/1377836.1377856

(cited on pages 15, 157).

[92] Florian Kelbert. “Data Usage Control for the Cloud”. In: Proceedings of the
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing. CCGrid ’13. Delft, The Netherlands: IEEE, 2013, pages 156–159. ISBN:

9781467364652. DOI: 10.1109/CCGrid.2013.35 (cited on page 24).

http://dx.doi.org/10.1016/j.compeleceng.2008.06.012
http://dx.doi.org/10.1016/j.compeleceng.2008.06.012
http://dx.doi.org/10.1145/1029146.1029151
http://dx.doi.org/10.1145/1866870.1866885
http://dx.doi.org/10.1145/1866870.1866885
http://dx.doi.org/10.1109/POLICY.2008.44
http://dx.doi.org/10.1007/978-3-642-28879-1_21
http://dx.doi.org/10.1016/j.cose.2013.09.005
http://dx.doi.org/10.1145/1377836.1377856
http://dx.doi.org/10.1109/CCGrid.2013.35

Bibliography 193

[93] Florian Kelbert and Alexander Pretschner. “A Fully Decentralized Data Us-

age Control Enforcement Infrastructure”. In: Applied Cryptography and Net-
work Security. Edited by Tal Malkin, Vladimir Kolesnikov, Allison Bishop

Lewko, and Michalis Polychronakis. Volume 9092. Lecture Notes in Com-

puter Science. Springer International Publishing, 2015, pages 409–430. ISBN:

9783319281650. DOI: 10.1007/978-3-319-28166-7_20 (cited on pages 21,

22, 24, 25, 27, 49, 84, 124).

[94] Florian Kelbert and Alexander Pretschner. “Data Usage Control Enforcement in

Distributed Systems”. In: Proceedings of the Third ACM Conference on Data and
Application Security and Privacy. CODASPY ’13. San Antonio, Texas, USA: ACM,

2013, pages 71–82. ISBN: 9781450318907. DOI: 10.1145/2435349.2435358

(cited on pages 24, 27, 49, 53, 78, 98, 103).

[95] Florian Kelbert and Alexander Pretschner. “Decentralized Distributed Data

Usage Control”. In: Cryptology and Network Security. Edited by Dimitris Gritza-

lis, Aggelos Kiayias, and Ioannis Askoxylakis. Volume 8813. Lecture Notes in

Computer Science. Springer International Publishing, 2014, pages 353–369.

ISBN: 9783319122793. DOI: 10.1007/978-3-319-12280-9_23 (cited on

pages 22, 24, 27, 49, 60, 223, 233).

[96] Florian Kelbert and Alexander Pretschner. “Towards a Policy Enforcement

Infrastructure for Distributed Usage Control”. In: Proceedings of the 17th ACM
Symposium on Access Control Models and Technologies. SACMAT ’12. Newark,

New Jersey, USA: ACM, 2012, pages 119–122. ISBN: 9781450312950. DOI:

10.1145/2295136.2295159 (cited on page 24).

[97] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.

Keromytis. “libdft: Practical Dynamic Data Flow Tracking for Commodity Sys-

tems”. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments. VEE ’12. London, England, UK: ACM, Mar. 2012,

pages 121–132. ISBN: 9781450311762. DOI: 10.1145/2151024.2151042

(cited on page 158).

[98] David Kempe, Jon Kleinberg, and Alan Demers. “Spatial Gossip and Re-

source Location Protocols”. In: Journal of the ACM (JACM) 51.6 (Nov. 2004),

pages 943–967. ISSN: 0004-5411. DOI: 10.1145/1039488.1039491 (cited on

page 91).

[99] Stephen Kent and Karen Seo. RFC 4301: Security Architecture for the Internet
Protocol. 2005. URL: https://tools.ietf.org/html/rfc4301 (cited on

page 99).

[100] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. “Com-

munication-Efficient Distributed Monitoring of Thresholded Counts”. In: Pro-
ceedings of the 2006 ACM SIGMOD International Conference on Management

http://dx.doi.org/10.1007/978-3-319-28166-7_20
http://dx.doi.org/10.1145/2435349.2435358
http://dx.doi.org/10.1007/978-3-319-12280-9_23
http://dx.doi.org/10.1145/2295136.2295159
http://dx.doi.org/10.1145/2151024.2151042
http://dx.doi.org/10.1145/1039488.1039491
https://tools.ietf.org/html/rfc4301

194 Bibliography

of Data. SIGMOD ’06. Chicago, IL, USA: ACM, 2006, pages 289–300. ISBN:

1595934340. DOI: 10.1145/1142473.1142507 (cited on page 167).

[101] Rob H. Koenen, Jack Lacy, Michael Mackay, and Steve Mitchell. “The Long

March to Interoperable Digital Rights Management”. In: Proceedings of the IEEE
92.6 (June 2004), pages 883–897. ISSN: 0018-9219. DOI: 10.1109/JPROC.

2004.827357 (cited on page 173).

[102] Paul Kranenburg and Dmitry Levin. strace. 2015. URL: http://sourceforge.

net/projects/strace/ (visited on 09/02/2015) (cited on page 77).

[103] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans

Kaashoek, Eddie Kohler, and Robert Morris. “Information Flow Control for

Standard OS Abstractions”. In: Proceedings of the 21st ACM SIGOPS Symposium
on Operating Systems Principles. SOSP ’07. Stevenson, Washington, USA: ACM,

2007, pages 321–334. ISBN: 9781595935915. DOI: 10.1145/1294261.1294293

(cited on pages 159, 163).

[104] Amol Kulkarni and Jesse Walker. RFC 4261: Common Open Policy Service
(COPS) Over Transport Layer Security (TLS). 2005. URL: https://tools.ietf.

org/html/rfc4261 (cited on pages 35, 72).

[105] Ponnurangam Kumaraguru, Jorge Lobo, Lorrie Faith Cranor, and Seraphin

B. Calo. “A Survey of Privacy Policy Languages”. In: Proceedings of the 3rd
Symposium on Usable Privacy and Security / Workshop on Usable IT Security
Management. ACM, 2007 (cited on page 156).

[106] Prachi Kumari. “Model-Based Policy Derivation for Usage Control”. PhD thesis.

Technische Universität München, Garching b. München, Germany, 2015 (cited

on pages 32, 42, 78, 89, 156, 177–179).

[107] Prachi Kumari, Florian Kelbert, and Alexander Pretschner. “Data Protection in

Heterogeneous Distributed Systems: A Smart Meter Example”. In: Proceedings
der 41. GI-Jahrestagung / Lecture Notes in Informatics (LNI). INFORMATIK 2011:

Dependable Software for Critical Infrastructures. Berlin, Germany: Gesellschaft

für Informatik e.V., Oct. 2011. ISBN: 9783885792864 (cited on page 24).

[108] Prachi Kumari and Alexander Pretschner. “Deriving Implementation-level

Policies for Usage Control Enforcement”. In: Proceedings of the Second ACM
Conference on Data and Application Security and Privacy. CODASPY. San An-

tonio, Texas, USA: ACM, 2012, pages 83–94. ISBN: 9781450310918. DOI:

10.1145/2133601.2133612 (cited on pages 32, 156, 178).

[109] Prachi Kumari and Alexander Pretschner. “Model-Based Usage Control Policy

Derivation”. In: Engineering Secure Software and Systems. Volume 7781. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2013, pages 58–74.

ISBN: 9783642365621. DOI: 10.1007/978- 3- 642- 36563- 8_5 (cited on

pages 32, 156, 178).

http://dx.doi.org/10.1145/1142473.1142507
http://dx.doi.org/10.1109/JPROC.2004.827357
http://dx.doi.org/10.1109/JPROC.2004.827357
http://sourceforge.net/projects/strace/
http://sourceforge.net/projects/strace/
http://dx.doi.org/10.1145/1294261.1294293
https://tools.ietf.org/html/rfc4261
https://tools.ietf.org/html/rfc4261
http://dx.doi.org/10.1145/2133601.2133612
http://dx.doi.org/10.1007/978-3-642-36563-8_5

Bibliography 195

[110] Prachi Kumari, Alexander Pretschner, Jonas Peschla, and Jens-Michael Kuhn.

“Distributed Data Usage Control for Web Applications: A Social Network Im-

plementation”. In: Proceedings of the First ACM Conference on Data and Ap-
plication Security and Privacy. CODASPY. San Antonio, TX, USA: ACM, 2011,

pages 85–96. ISBN: 9781450304665. DOI: 10.1145/1943513.1943526 (cited

on pages 17, 35, 36, 77, 178, 179).

[111] David Kyle and JoséCarlos Brustoloni. “UCLinux: a Linux Security Module

for Trusted-Computing-based Usage Controls Enforcement”. In: Proceedings of
the 2007 ACM Workshop on Scalable Trusted Computing. STC ’07. Alexandria,

Virginia, USA: ACM, 2007, pages 63–70. ISBN: 9781595938886. DOI: 10.1145/

1314354.1314371 (cited on page 171).

[112] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Structured

Storage System”. In: ACM SIGOPS Operating Systems Review 44.2 (Apr. 2010),

pages 35–40. ISSN: 0163-5980. DOI: 10.1145/1773912.1773922 (cited on

page 87).

[113] Leslie Lamport. “Paxos Made Simple”. In: SIGACT News Distributed Computing
Column 5 32.4 (Dec. 2001), pages 51–58. ISSN: 0163-5700. DOI: 10.1145/

568425.568433 (cited on page 88).

[114] Leslie Lamport. “The Part-time Parliament”. In: ACM Transactions on Computer
Systems 16.2 (May 1998), pages 133–169. ISSN: 0734-2071. DOI: 10.1145/

279227.279229 (cited on page 88).

[115] Aliaksandr Lazouski, Gaetano Mancini, Fabio Martinelli, and Paolo Mori. “Ar-

chitecture, Workflows, and Prototype for Stateful Data Usage Control in Cloud”.

In: IEEE Security and Privacy Workshops (SPW). May 2014, pages 23–30. DOI:

10.1109/SPW.2014.13 (cited on pages 15, 17, 18, 35, 36, 77, 162, 165, 166,

169).

[116] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. “Usage Control in Com-

puter Security: A Survey”. In: Computer Science Review 4.2 (2010), pages 81–99.

ISSN: 1574-0137. DOI: 10.1016/j.cosrev.2010.02.002 (cited on page 156).

[117] Wlodzimierz Lewandowski and Claudine Thomas. “GPS Time Transfer”. In:

Proceedings of the IEEE 79.7 (July 1991), pages 991–1000. ISSN: 0018-9219.

DOI: 10.1109/5.84976 (cited on page 89).

[118] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. “The Glory of the Past”.

In: Logics of Programs. Edited by Rohit Parikh. Volume 193. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 1985, pages 196–218. ISBN:

9783540156482. DOI: 10.1007/3-540-15648-8_16 (cited on page 32).

[119] Daniel Lienert. “Distributed Usage Control for the MySQL Database Server”.

Diploma Thesis. Karlsruhe Institute of Technology, Germany, 2012 (cited on

pages 31, 36, 53, 77, 158, 178).

http://dx.doi.org/10.1145/1943513.1943526
http://dx.doi.org/10.1145/1314354.1314371
http://dx.doi.org/10.1145/1314354.1314371
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/568425.568433
http://dx.doi.org/10.1145/568425.568433
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1109/SPW.2014.13
http://dx.doi.org/10.1016/j.cosrev.2010.02.002
http://dx.doi.org/10.1109/5.84976
http://dx.doi.org/10.1007/3-540-15648-8_16

196 Bibliography

[120] Linux man pages. ptrace(2): process trace. 2015. URL: http://linux.die.

net/man/2/ptrace (visited on 09/02/2015) (cited on pages 44, 77).

[121] Linux man pages. scp(1): secure copy. 2015. URL: http://linux.die.net/

man/1/scp (visited on 09/02/2015) (cited on page 105).

[122] Linux man pages. sendfile(2). 2015. URL: http://linux.die.net/man/2/

sendfile (visited on 09/02/2015) (cited on page 123).

[123] Linux man pages. time - time a simple command or give resource usage. 2015.

URL: http://linux.die.net/man/1/time (visited on 09/02/2015) (cited on

page 107).

[124] Qiong Liu, Reihaneh Safavi-Naini, and Nicholas Paul Sheppard. “Digital Rights

Management for Content Distribution”. In: Proceedings of the Australasian
Information Security Workshop Conference on ACSW Frontiers 2003 - Volume 21.

ACSW Frontiers ’03. Darlinghurst, Australia, Australia: Australian Computer

Society, Inc., 2003, pages 49–58. ISBN: 1920682007. URL: http://dl.acm.

org/citation.cfm?id=827987.827994 (cited on pages 19, 172).

[125] Michael Lörscher. “Data Usage Control for the Thunderbird Mail Client”. Mas-

ter’s thesis. University of Kaiserslautern, Germany, 2012 (cited on pages 17,

31, 36, 77, 158, 178, 179).

[126] Enrico Lovat. “Cross-layer Data-centric Usage Control”. PhD thesis. Technische

Universität München, Garching b. München, Germany, 2015 (cited on pages 32,

78, 158, 159, 178).

[127] Enrico Lovat and Florian Kelbert. “Structure Matters – A new Approach for

Data Flow Tracking”. In: IEEE Security and Privacy Workshops. May 2014 (cited

on page 25).

[128] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation”.

In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’05. Chicago, IL, USA: ACM, 2005, pages 190–

200. ISBN: 1595930566. DOI: 10.1145/1065010.1065034 (cited on pages 158,

161).

[129] Alexander Lukyanov. LFTP - sophisticated file transfer program. 2015. URL:

http://lftp.yar.ru/ (visited on 09/02/2015) (cited on page 105).

[130] Tanu Malik, Ligia Nistor, and Ashish Gehani. “Tracking and Sketching Dis-

tributed Data Provenance”. In: IEEE Sixth International Conference on e-Science.

Dec. 2010, pages 190–197. DOI: 10.1109/eScience.2010.51 (cited on

page 164).

http://linux.die.net/man/2/ptrace
http://linux.die.net/man/2/ptrace
http://linux.die.net/man/1/scp
http://linux.die.net/man/1/scp
http://linux.die.net/man/2/sendfile
http://linux.die.net/man/2/sendfile
http://linux.die.net/man/1/time
http://dl.acm.org/citation.cfm?id=827987.827994
http://dl.acm.org/citation.cfm?id=827987.827994
http://dx.doi.org/10.1145/1065010.1065034
http://lftp.yar.ru/
http://dx.doi.org/10.1109/eScience.2010.51

Bibliography 197

[131] Masoud Mansouri-Samani and Morris Sloman. “Monitoring Distributed Sys-

tems”. In: Network, IEEE 7.6 (Nov. 1993), pages 20–30. ISSN: 0890-8044. DOI:

10.1109/65.244791 (cited on page 87).

[132] Daniel W. Margo and Margo Seltzer. “The Case for Browser Provenance”. In:

First Workshop on Theory and Practice of Provenance. TAPP’09. San Francisco,

CA: USENIX Association, 2009. URL: http://dl.acm.org/citation.cfm?id=

1525932.1525941 (cited on page 159).

[133] Nicolas Markey. “Past is for Free: on the Complexity of Verifying Linear Tem-

poral Properties with Past”. In: Electronic Notes in Theoretical Computer Sci-
ence 68.2 (72002). EXPRESS’02, 9th International Workshop on Expressive-

ness in Concurrency, pages 87–104. ISSN: 1571-0661. DOI: 10.1016/S1571-

0661(05)80366-4 (cited on page 32).

[134] Fabio Martinelli, Paolo Mori, and Anna Vaccarelli. “Towards Continuous Usage

Control on Grid Computational Services”. In: Joint International Conference on
Autonomic and Autonomous Systems and International Conference on Networking
and Services. Oct. 2005, pages 82–82. DOI: 10.1109/ICAS-ICNS.2005.93

(cited on page 157).

[135] Matt Buchanan. DRM Officially Dead: Last Major Label Sony BMG Plans to Finally
Drop DRM. 2008. URL: http://gizmodo.com/340598/drm-officially-dead-

last-major-label-sony-bmg-plans-to-finally-drop-drm (visited on

09/02/2015) (cited on page 178).

[136] Sam Michiels, Kristof Verslype, Wouter Joosen, and Bart De Decker. “Towards

a Software Architecture for DRM”. In: Proceedings of the 5th ACM Workshop on
Digital Rights Management. DRM ’05. Alexandria, VA, USA: ACM, Nov. 2005,

pages 65–74. ISBN: 1595932305. DOI: 10.1145/1102546.1102559 (cited on

page 173).

[137] Microsoft Corporation. Architecture of Windows Media Rights Manager. 2004.

URL: http : / / www . microsoft . com / windows / windowsmedia / howto /

articles / drmarchitecture . aspx (visited on 09/02/2015) (cited on

pages 17, 19).

[138] Microsoft Corporation. Architecture of Windows Media Rights Manager. 2004.

URL: http : / / www . microsoft . com / windows / windowsmedia / howto /

articles / drmarchitecture . aspx (visited on 09/08/2015) (cited on

page 172).

[139] Microsoft Corporation. BitLocker Drive Encryption Overview. 2015. URL: http:

//windows.microsoft.com/en- us/windows- vista/bitlocker- drive-

encryption-overview (visited on 09/02/2015) (cited on page 96).

http://dx.doi.org/10.1109/65.244791
http://dl.acm.org/citation.cfm?id=1525932.1525941
http://dl.acm.org/citation.cfm?id=1525932.1525941
http://dx.doi.org/10.1016/S1571-0661(05)80366-4
http://dx.doi.org/10.1016/S1571-0661(05)80366-4
http://dx.doi.org/10.1109/ICAS-ICNS.2005.93
http://gizmodo.com/340598/drm-officially-dead-last-major-label-sony-bmg-plans-to-finally-drop-drm
http://gizmodo.com/340598/drm-officially-dead-last-major-label-sony-bmg-plans-to-finally-drop-drm
http://dx.doi.org/10.1145/1102546.1102559
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx
http://windows.microsoft.com/en-us/windows-vista/bitlocker-drive-encryption-overview
http://windows.microsoft.com/en-us/windows-vista/bitlocker-drive-encryption-overview
http://windows.microsoft.com/en-us/windows-vista/bitlocker-drive-encryption-overview

198 Bibliography

[140] Microsoft Corporation. Next-Generation Secure Computing Base. 2015. URL:

http://www.microsoft.com/resources/ngscb/default.mspx (visited on

09/02/2015) (cited on page 97).

[141] Microsoft Corporation. Supporting Encrypted Media Extensions with Microsoft
PlayReady DRM in web browsers. URL: https://msdn.microsoft.com/en-

us/library/windows/apps/dn466732.aspx (visited on 09/04/2015) (cited

on page 173).

[142] David L. Mills, Jim Martin, Jack Burbank, and William Kasch. RFC 5905:
Network Time Protocol Version 4: Protocol and Algorithms Specification. 2010.

URL: https://tools.ietf.org/html/rfc5905 (cited on page 87).

[143] Marco Casassa Mont, Siani Pearson, and Robert Thyne. “A Systematic Ap-

proach to Privacy Enforcement and Policy Compliance Checking in Enterprises”.

In: Trust and Privacy in Digital Business. Edited by Simone Fischer-Hübner,

Stevel Furnell, and Costas Lambrinoudakis. Volume 4083. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2006, pages 91–102. ISBN:

9783540377504. DOI: 10.1007/11824633_10 (cited on page 157).

[144] Marco Casassa Mont and Robert Thyne. “Privacy Policy Enforcement in En-

terprises with Identity Management Solutions”. In: Proceedings of the 2006
International Conference on Privacy, Security and Trust: Bridge the Gap Between
PST Technologies and Business Services. PST ’06. Markham, Ontario, Canada:

ACM, 2006, 25:1–25:12. ISBN: 1595936041. DOI: 10.1145/1501434.1501465

(cited on page 157).

[145] John Morrissey, Michael Renner, Daniel Roesen, and TJ Saunders. The ProFTPD
Project. 2015. URL: http://www.proftpd.org/ (visited on 09/02/2015) (cited

on page 105).

[146] Ben Moszkowski. “Executing Temporal Logic Programs”. In: Seminar on Con-
currency. Edited by Stephen D. Brookes, Andrew William Roscoe, and Glynn

Winskel. Volume 197. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 1985, pages 111–130. ISBN: 9783540156703. DOI: 10.1007/3-

540-15670-4_6 (cited on page 167).

[147] Cornelius Moucha, Enrico Lovat, and Alexander Pretschner. “A Hypervisor-

Based Bus System for Usage Control”. In: Sixth International Conference on
Availability, Reliability and Security. ARES. Aug. 2011, pages 254–259. DOI:

10.1109/ARES.2011.44 (cited on page 16).

[148] Mozilla Corporation. DRM and the Challenge of Serving Users. 2014. URL:

https://blog.mozilla.org/blog/2014/05/14/drm-and-the-challenge-

of-serving-users/ (visited on 09/04/2015) (cited on page 173).

http://www.microsoft.com/resources/ngscb/default.mspx
https://msdn.microsoft.com/en-us/library/windows/apps/dn466732.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/dn466732.aspx
https://tools.ietf.org/html/rfc5905
http://dx.doi.org/10.1007/11824633_10
http://dx.doi.org/10.1145/1501434.1501465
http://www.proftpd.org/
http://dx.doi.org/10.1007/3-540-15670-4_6
http://dx.doi.org/10.1007/3-540-15670-4_6
http://dx.doi.org/10.1109/ARES.2011.44
https://blog.mozilla.org/blog/2014/05/14/drm-and-the-challenge-of-serving-users/
https://blog.mozilla.org/blog/2014/05/14/drm-and-the-challenge-of-serving-users/

Bibliography 199

[149] Mozilla Corporation. Update on Digital Rights Management and Firefox. 2015.

URL: https://blog.mozilla.org/blog/2015/05/12/update-on-digital-

rights - management - and - firefox/ (visited on 09/04/2015) (cited on

page 173).

[150] Tilo Müller, Felix C. Freiling, and Andreas Dewald. “TRESOR Runs Encryption

Securely Outside RAM”. In: Proceedings of the 20th USENIX Conference on
Security. SEC’11. San Francisco, CA: USENIX Association, 2011. URL: http:

//dl.acm.org/citation.cfm?id=2028067.2028084 (cited on page 100).

[151] Zsolt Müller. How to compile strace for use on an Android phone (running an
ARM CPU). 2012. URL: http://muzso.hu/2012/04/21/how-to-compile-

strace-for-use-on-an-android-phone-running-an-arm-cpu (visited on

09/02/2015) (cited on page 78).

[152] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko,

Diana Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. “Layering in

Provenance Systems”. In: Proceedings of the 2009 Conference on USENIX Annual
Technical Conference. USENIX’09. San Diego, California: USENIX Association,

2009. URL: http://dl.acm.org/citation.cfm?id=1855807.1855817 (cited

on page 159).

[153] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo

Seltzer. “Provenance-Aware Storage Systems”. In: Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference. ATEC ’06. Boston, MA:

USENIX Association, 2006. URL: http://dl.acm.org/citation.cfm?id=

1267359.1267363 (cited on page 159).

[154] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer. “Making

a Cloud Provenance-aware”. In: First Workshop on on Theory and Practice of
Provenance. TAPP’09. San Francisco, CA: USENIX Association, 2009, 12:1–

12:10. URL: http://dl.acm.org/citation.cfm?id=1525932.1525944 (cited

on page 164).

[155] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer. “Prove-

nance for the Cloud”. In: Proceedings of the 8th USENIX Conference on File and
Storage Technologies. FAST’10. San Jose, California: USENIX Association, 2010.

URL: http://dl.acm.org/citation.cfm?id=1855511.1855526 (cited on

page 164).

[156] Ricardo Neisse, Alexander Pretschner, and Valentina Di Giacomo. “A Trustwor-

thy Usage Control Enforcement Framework”. In: Sixth International Conference
on Availability, Reliability and Security (ARES). Aug. 2011, pages 230–235. DOI:

10.1109/ARES.2011.40 (cited on pages 19, 32, 35).

[157] NGINX, Inc. nginx. 2015. URL: http://www.nginx.org (visited on 09/02/2015)

(cited on page 105).

https://blog.mozilla.org/blog/2015/05/12/update-on-digital-rights-management-and-firefox/
https://blog.mozilla.org/blog/2015/05/12/update-on-digital-rights-management-and-firefox/
http://dl.acm.org/citation.cfm?id=2028067.2028084
http://dl.acm.org/citation.cfm?id=2028067.2028084
http://muzso.hu/2012/04/21/how-to-compile-strace-for-use-on-an-android-phone-running-an-arm-cpu
http://muzso.hu/2012/04/21/how-to-compile-strace-for-use-on-an-android-phone-running-an-arm-cpu
http://dl.acm.org/citation.cfm?id=1855807.1855817
http://dl.acm.org/citation.cfm?id=1267359.1267363
http://dl.acm.org/citation.cfm?id=1267359.1267363
http://dl.acm.org/citation.cfm?id=1525932.1525944
http://dl.acm.org/citation.cfm?id=1855511.1855526
http://dx.doi.org/10.1109/ARES.2011.40
http://www.nginx.org

200 Bibliography

[158] Åsmund Ahlmann Nyre. “Usage Control Enforcement - A Survey”. In: Avail-
ability, Reliability and Security for Business, Enterprise and Health Information
Systems. Edited by AMin Tjoa, Gerald Quirchmayr, Ilsun You, and Lida Xu.

Volume 6908. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2011, pages 38–49. ISBN: 9783642232992. DOI: 10.1007/978-3-642-23300-

5_4 (cited on page 157).

[159] Danny O’Brien. Lowering Your Standards: DRM and the Future of the W3C.

2013. URL: https://www.eff.org/deeplinks/2013/10/lowering-your-

standards (visited on 09/04/2015) (cited on page 173).

[160] Organization for the Advancement of Structured Information Standards (OA-

SIS). “eXtensible Access Control Markup Language (XACML) Version 3.0”.

In: OASIS Standard (Jan. 2013), pages 1–154. URL: http://docs.oasis-

open.org/xacml/3.0/xacml- 3.0- core- spec- os- en.pdf (visited on

09/02/2015) (cited on pages 35, 72, 156).

[161] Ioannis Papagiannis and Peter Pietzuch. “CloudFilter: Practical Control of

Sensitive Data Propagation to the Cloud”. In: Proceedings of the 2012 ACM
Workshop on Cloud Computing Security Workshop. CCSW ’12. Raleigh, North

Carolina, USA: ACM, Oct. 2012, pages 97–102. ISBN: 9781450316651. DOI:

10.1145/2381913.2381931 (cited on pages 17, 18, 161, 164).

[162] Vasilis Pappas, Vasileios P. Kemerlis, Angeliki Zavou, Michalis Polychronakis,

and Angelos D. Keromytis. “CloudFence: Data Flow Tracking as a Cloud Ser-

vice”. In: Research in Attacks, Intrusions, and Defenses. Edited by Salvatore J.

Stolfo, Angelos Stavrou, and Charles V. Wright. Volume 8145. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, 2013, pages 411–431. ISBN:

9783642412837. DOI: 10.1007/978-3-642-41284-4_21 (cited on pages 17,

18, 161, 164).

[163] Anthony Park and Mark Watson. HTML5 Video in Safari on OS X Yosemite. 2014.

URL: http://techblog.netflix.com/2014/06/html5-video-in-safari-

on-os-x-yosemite.html (visited on 09/08/2015) (cited on page 173).

[164] Jaehong Park and Ravi Sandhu. “Originator Control in Usage Control”. In:

Proceedings of the Third International Workshop on Policies for Distributed
Systems and Networks. 2002, pages 60–66. DOI: 10 . 1109 / POLICY . 2002 .

1011294 (cited on page 155).

[165] Jaehong Park and Ravi Sandhu. “The UCONABCUsage Control Model”. In: ACM
Transactions on Information and System Security 7.1 (Feb. 2004), pages 128–

174. ISSN: 1094-9224. DOI: 10.1145/984334.984339 (cited on pages 15, 155,

156, 173).

http://dx.doi.org/10.1007/978-3-642-23300-5_4
http://dx.doi.org/10.1007/978-3-642-23300-5_4
https://www.eff.org/deeplinks/2013/10/lowering-your-standards
https://www.eff.org/deeplinks/2013/10/lowering-your-standards
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://dx.doi.org/10.1145/2381913.2381931
http://dx.doi.org/10.1007/978-3-642-41284-4_21
http://techblog.netflix.com/2014/06/html5-video-in-safari-on-os-x-yosemite.html
http://techblog.netflix.com/2014/06/html5-video-in-safari-on-os-x-yosemite.html
http://dx.doi.org/10.1109/POLICY.2002.1011294
http://dx.doi.org/10.1109/POLICY.2002.1011294
http://dx.doi.org/10.1145/984334.984339

Bibliography 201

[166] Jaehong Park and Ravi Sandhu. “Towards Usage Control Models: Beyond

Traditional Access Control”. In: Proceedings of the 7th ACM Symposium on Access
Control Models and Technologies. SACMAT ’02. Monterey, California, USA: ACM,

2002, pages 57–64. ISBN: 1581134967. DOI: 10.1145/507711.507722 (cited

on pages 15, 155).

[167] Siani Pearson and Boris Balacheff. Trusted Computing Platforms: TCPA Technol-
ogy in Context. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002. ISBN:

0130092207 (cited on page 19).

[168] Jonas Peschla. “Information Flow Tracking for JavaScript in Chromium”. Mas-

ter’s Thesis. University of Kaiserslautern, Germany, 2012 (cited on pages 36,

53, 77, 158, 178).

[169] Peter A.H. Peterson. “Cryptkeeper: Improving Security With Encrypted RAM”.

In: IEEE International Conference on Technologies for Homeland Security. Nov.

2010, pages 120–126. DOI: 10.1109/THS.2010.5655081 (cited on page 100).

[170] Alexander Pretschner, Matthias Büchler, Matúš Harvan, Christian Schaefer,

and Thomas Walter. “Usage Control Enforcement with Data Flow Tracking for

X11”. In: 5th International Workshop on Security and Trust Management. STM.

2009 (cited on pages 16, 30, 31, 36, 53, 77, 155, 158, 178).

[171] Alexander Pretschner, Manuel Hilty, and David Basin. “Distributed Usage

Control”. In: Communications of the ACM 49.9 (Sept. 2006), pages 39–44. ISSN:

0001-0782. DOI: 10.1145/1151030.1151053 (cited on pages 15, 16, 155).

[172] Alexander Pretschner, Manuel Hilty, David Basin, Christian Schaefer, and

Thomas Walter. “Mechanisms for Usage Control”. In: Proceedings of the 2008
ACM Symposium on Information, Computer and Communications Security. ASI-

ACCS. Tokyo, Japan: ACM, 2008, pages 240–244. ISBN: 9781595939791. DOI:

10.1145/1368310.1368344 (cited on pages 15, 27, 32, 155).

[173] Alexander Pretschner, Manuel Hilty, Florian Schütz, Christian Schaefer, and

Thomas Walter. “Usage Control Enforcement: Present and Future”. In: IEEE
Security & Privacy 6.4 (2008), pages 44–53. ISSN: 1540-7993. DOI: 10.1109/

MSP.2008.101 (cited on page 15).

[174] Alexander Pretschner, Enrico Lovat, and Matthias Büchler. “Representation-

Independent Data Usage Control”. In: Data Privacy Management and Au-
tonomous Spontaneus Security. Volume 7122. Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, 2012, pages 122–140. ISBN: 9783642288784.

DOI: 10.1007/978-3-642-28879-1_9 (cited on pages 15–17, 27, 30–32, 35,

53, 158, 178).

http://dx.doi.org/10.1145/507711.507722
http://dx.doi.org/10.1109/THS.2010.5655081
http://dx.doi.org/10.1145/1151030.1151053
http://dx.doi.org/10.1145/1368310.1368344
http://dx.doi.org/10.1109/MSP.2008.101
http://dx.doi.org/10.1109/MSP.2008.101
http://dx.doi.org/10.1007/978-3-642-28879-1_9

202 Bibliography

[175] Alexander Pretschner, Fabio Massacci, and Manuel Hilty. “Usage Control in

Service-Oriented Architectures”. In: Trust, Privacy and Security in Digital Busi-
ness. Edited by Costas Lambrinoudakis, Günther Pernul, and AMin Tjoa. Vol-

ume 4657. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2007, pages 83–93. ISBN: 9783540744085. DOI: 10.1007/978-3-540-74409-

2_11 (cited on page 155).

[176] Alexander Pretschner, Judith Rüesch, Christian Schaefer, and Thomas Walter.

“Formal Analyses of Usage Control Policies”. In: International Conference on
Availability, Reliability and Security. ARES. Mar. 2009, pages 98–105. DOI:

10.1109/ARES.2009.100 (cited on page 27).

[177] Alexander Pretschner, Florian Schütz, Christian Schaefer, and Thomas Walter.

“Policy Evolution in Distributed Usage Control”. In: Proceedings of the 4th
International Workshop on Security and Trust Management. Volume 244. 2009,

pages 109–123. DOI: 10.1016/j.entcs.2009.07.042 (cited on page 156).

[178] Niels Provos. “Improving Host Security with System Call Policies”. In: Proceed-
ings of the 12th Conference on USENIX Security Symposium. Washington, DC:

USENIX Association, 2003. URL: http://static.usenix.org/publications/

library/proceedings/sec03/tech/full_papers/provos/provos_html/

(cited on page 44).

[179] QEMU Team. QEMU: Open Source Processor Emulator. 2015. URL: http://www.

qemu.org (visited on 09/02/2015) (cited on page 162).

[180] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. “DroidForce:

Enforcing Complex, Data-centric, System-wide Policies in Android”. In: Ninth
International Conference on Availability, Reliability and Security (ARES). Sept.

2014, pages 40–49. DOI: 10.1109/ARES.2014.13 (cited on pages 36, 77).

[181] Giovanni Russello and Naranker Dulay. “xDUCON: Coordinating Usage Control

Policies in Distributed Domains”. In: Third International Conference on Network
and System Security. NSS ’09. Oct. 2009, pages 246–253. DOI: 10.1109/NSS.

2009.77 (cited on page 169).

[182] Giovanni Russello, Enrico Scalavino, Naranker Dulay, and Emil C. Lupu. “Coor-

dinating Data Usage Control in Loosely-Connected Networks”. In: IEEE Interna-
tional Symposium on Policies for Distributed Systems and Networks. POLICY ’10.

July 2010, pages 30–39. DOI: 10.1109/POLICY.2010.20 (cited on page 169).

[183] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn. “Attes-

tation-based Policy Enforcement for Remote Access”. In: Proceedings of the
11th ACM Conference on Computer and Communications Security. CCS ’04.

Washington DC, USA: ACM, 2004, pages 308–317. ISBN: 1581139616. DOI:

10.1145/1030083.1030125 (cited on page 19).

http://dx.doi.org/10.1007/978-3-540-74409-2_11
http://dx.doi.org/10.1007/978-3-540-74409-2_11
http://dx.doi.org/10.1109/ARES.2009.100
http://dx.doi.org/10.1016/j.entcs.2009.07.042
http://static.usenix.org/publications/library/proceedings/sec03/tech/full_papers/provos/provos_html/
http://static.usenix.org/publications/library/proceedings/sec03/tech/full_papers/provos/provos_html/
http://www.qemu.org
http://www.qemu.org
http://dx.doi.org/10.1109/ARES.2014.13
http://dx.doi.org/10.1109/NSS.2009.77
http://dx.doi.org/10.1109/NSS.2009.77
http://dx.doi.org/10.1109/POLICY.2010.20
http://dx.doi.org/10.1145/1030083.1030125

Bibliography 203

[184] David Samyde, Sergei Skorobogatov, Ross Anderson, and Jean-Jacques

Quisquater. “On a New Way to Read Data from Memory”. In: Proceedings of the
First International IEEE Security in Storage Workshop. Dec. 2002, pages 65–69.

DOI: 10.1109/SISW.2002.1183512 (cited on page 100).

[185] Ravi Sandhu and Jaehong Park. “Usage Control: A Vision for Next Gener-

ation Access Control”. In: Computer Network Security. Edited by Vladimir

Gorodetsky, Leonard Popyack, and Victor Skormin. Volume 2776. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2003, pages 17–31.

ISBN: 9783540407973. DOI: 10.1007/978- 3- 540- 45215- 7_2 (cited on

page 155).

[186] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. “Towards Trusted

Cloud Computing”. In: Proceedings of the 2009 Conference on Hot Topics in
Cloud Computing. HotCloud’09. San Diego, California: USENIX Association,

2009. URL: http://dl.acm.org/citation.cfm?id=1855533.1855536 (cited

on page 19).

[187] Can Sar and Pei Cao. Lineage File System. URL: http://crypto.stanford.

edu/~cao/lineage.html (visited on 09/02/2015) (cited on page 159).

[188] Shakti Saxena. “Data Usage Control In Office Application”. Master’s Thesis.

Technische Universität München, Germany, 2014 (cited on pages 31, 36, 53,

77, 158, 178, 179).

[189] Dries Schellekens, Brecht Wyseur, and Bart Preneel. “Remote Attestation on

Legacy Operating Systems with Trusted Platform Modules”. In: Science of
Computer Programming 74.1-2 (2008). Special Issue on Security and Trust,

pages 13–22. ISSN: 0167-6423. DOI: 10.1016/j.scico.2008.09.005 (cited

on page 19).

[190] Spencer Shepler, Mike Eisler, and David Noveck. RFC 5661: Network File
System (NFS) Version 4 Minor Version 1 Protocol. 2010. URL: https://tools.

ietf.org/html/rfc5661 (cited on page 164).

[191] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Prove-
nance Techniques. Technical report. Computer Science Department, Indiana

University, Bloomington IN, 2005 (cited on page 159).

[192] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable Cross-
Language Services Implementation. Technical report. Facebook Inc., 2007 (cited

on page 72).

[193] Mark Stamp. “Digital Rights Management: The Technology Behind the Hype”.

In: Journal of Electronic Commerce Research 4.3 (2003), pages 102–112 (cited

on page 172).

http://dx.doi.org/10.1109/SISW.2002.1183512
http://dx.doi.org/10.1007/978-3-540-45215-7_2
http://dl.acm.org/citation.cfm?id=1855533.1855536
http://crypto.stanford.edu/~cao/lineage.html
http://crypto.stanford.edu/~cao/lineage.html
http://dx.doi.org/10.1016/j.scico.2008.09.005
https://tools.ietf.org/html/rfc5661
https://tools.ietf.org/html/rfc5661

204 Bibliography

[194] Maicon Stihler, Altair Olivo Santin, Alcides Calsavara, and Arlindo L. Marcon

Jr. “Distributed Usage Control Architecture for Business Coalitions”. In: IEEE
International Conference on Communications. ICC ’09. June 2009, pages 708–

713. ISBN: 9781424434343. DOI: 10.1109/ICC.2009.5198940 (cited on

page 170).

[195] Linying Su, David W. Chadwick, Andrew Basden, and James A. Cunningham.

“Automated Decomposition of Access Control Policies”. In: Sixth IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks. June 2005,

pages 3–13. DOI: 10.1109/POLICY.2005.10 (cited on page 168).

[196] S.R. Subramanya and Byung K. Yi. “Digital Rights Management”. In: Potentials,
IEEE 25.2 (Mar. 2006), pages 31–34. ISSN: 0278-6648. DOI: 10.1109/MP.2006.

1649008 (cited on pages 19, 172).

[197] Gelareh Taban, Alvaro A. Cárdenas, and Virgil D. Gligor. “Towards a Secure

and Interoperable DRM Architecture”. In: Proceedings of the ACM Workshop
on Digital Rights Management. DRM ’06. Alexandria, Virginia, USA: ACM, Oct.

2006, pages 69–78. ISBN: 159593555X. DOI: 10.1145/1179509.1179524

(cited on page 173).

[198] The Apache Software Foundation. Apache Thrift. 2015. URL: https://thrift.

apache.org/ (visited on 09/02/2015) (cited on page 72).

[199] The Apache Software Foundation. The Apache Cassandra Project. 2015. URL:

http://cassandra.apache.org/ (visited on 09/02/2015) (cited on page 87).

[200] The Apache Software Foundation. The Apache HTTP Server Project. 2015. URL:

http://httpd.apache.org/ (visited on 09/02/2015) (cited on page 105).

[201] The GnuPG Project. The GNU Privacy Guard. 2015. URL: https://gnupg.org/

(visited on 09/02/2015) (cited on page 99).

[202] The OpenBSD Project. OpenSSH. 2015. URL: http://www.openssh.com/

(visited on 09/02/2015) (cited on page 105).

[203] Danan Thilakanathan, Rafael Calvo, Shiping Chen, and Surya Nepal. “Secure

and Controlled Sharing of Data in Distributed Computing”. In: 16th IEEE
International Conference on Computational Science and Engineering (CSE). Dec.

2013, pages 825–832. DOI: 10.1109/CSE.2013.125 (cited on page 170).

[204] Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael Calvo, and Leila

Alem. “A Platform for Secure Monitoring and Sharing of Generic Health Data in

the Cloud”. In: Future Generation Computer Systems 35 (2014). Special Section:

Integration of Cloud Computing and Body Sensor Networks; Guest Editors:

Giancarlo Fortino and Mukaddim Pathan, pages 102–113. ISSN: 0167-739X.

DOI: 10.1016/j.future.2013.09.011 (cited on page 170).

http://dx.doi.org/10.1109/ICC.2009.5198940
http://dx.doi.org/10.1109/POLICY.2005.10
http://dx.doi.org/10.1109/MP.2006.1649008
http://dx.doi.org/10.1109/MP.2006.1649008
http://dx.doi.org/10.1145/1179509.1179524
https://thrift.apache.org/
https://thrift.apache.org/
http://cassandra.apache.org/
http://httpd.apache.org/
https://gnupg.org/
http://www.openssh.com/
http://dx.doi.org/10.1109/CSE.2013.125
http://dx.doi.org/10.1016/j.future.2013.09.011

Bibliography 205

[205] Slim Trabelsi, Akram Njeh, Laurent Bussard, and Gregory Neven. “PPL Engine:

A Symmetric Architecture for Privacy Policy Handling”. In: W3C Workshop on
Privacy and data usage control. W3C, 2010, pages 1–5. ISBN: 9788897253013

(cited on page 156).

[206] Slim Trabelsi and Jakub Sendor. “Sticky Policies for Data Control in the Cloud”.

In: Privacy, Security and Trust (PST), 2012 Tenth Annual International Confer-
ence on. July 2012, pages 75–80. DOI: 10.1109/PST.2012.6297922 (cited on

page 162).

[207] TrueCrypt Foundation. TrueCrypt. 2014. URL: http://www.truecrypt.org

(visited on 09/02/2015) (cited on page 96).

[208] Trusted Computing Group. TPM Main Specification. 2014. URL: http://www.

trustedcomputinggroup.org/resources/tpm_main_specification (vis-

ited on 09/02/2015) (cited on pages 97, 180).

[209] Tatsuhiro Tsujikawa. aria2. 2015. URL: http://aria2.sourceforge.net/

(visited on 09/02/2015) (cited on page 105).

[210] John Turek and Dennis Shasha. “The Many Faces of Consensus in Distributed

Systems”. In: IEEE Computer 25.6 (June 1992), pages 8–17. ISSN: 0018-9162.

DOI: 10.1109/2.153253 (cited on page 88).

[211] Kevin Twidle, Naranker Dulay, Emil Lupu, and Morris Sloman. “Ponder2: A

Policy System for Autonomous Pervasive Environments”. In: Autonomic and
Autonomous Systems, 2009. ICAS ’09. Fifth International Conference on. Apr.

2009, pages 330–335. DOI: 10.1109/ICAS.2009.42 (cited on page 156).

[212] Werner Vogels. “Eventually Consistent”. In: Communications of the ACM 52.1

(Jan. 2009), pages 40–44. ISSN: 0001-0782. DOI: 10.1145/1435417.1435432

(cited on page 88).

[213] W3C. HTML 5. 2014. URL: http://www.w3.org/TR/html5/ (visited on

09/04/2015) (cited on page 173).

[214] Patrick Wenz. “Data Usage Control for ChromiumOS”. Diploma Thesis. Karl-

sruhe Institute of Technology, Germany, 2012 (cited on pages 17, 36, 43, 77,

158, 178).

[215] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-

Hartman. “Linux Security Modules: General Security Support for the Linux

Kernel”. In: Proceedings of the 11th USENIX Security Symposium. Berkeley,

CA, USA: USENIX Association, 2002, pages 17–31. ISBN: 1931971005. URL:

http://dl.acm.org/citation.cfm?id=647253.720287 (cited on page 171).

[216] Tobias Wüchner and Alexander Pretschner. “Data Loss Prevention Based on

Data-Driven Usage Control”. In: IEEE 23rd International Symposium on Software
Reliability Engineering. ISSRE. Nov. 2012, pages 151–160. DOI: 10.1109/ISSRE.

2012.10 (cited on pages 16, 17, 31, 36, 43, 53, 77, 158, 178).

http://dx.doi.org/10.1109/PST.2012.6297922
http://www.truecrypt.org
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://aria2.sourceforge.net/
http://dx.doi.org/10.1109/2.153253
http://dx.doi.org/10.1109/ICAS.2009.42
http://dx.doi.org/10.1145/1435417.1435432
http://www.w3.org/TR/html5/
http://dl.acm.org/citation.cfm?id=647253.720287
http://dx.doi.org/10.1109/ISSRE.2012.10
http://dx.doi.org/10.1109/ISSRE.2012.10

206 Bibliography

[217] Min Xu, Xuxian Jiang, Ravi Sandhu, and Xinwen Zhang. “Towards a VMM-

based Usage Control Framework for OS Kernel Integrity Protection”. In: Pro-
ceedings of the 12th ACM Symposium on Access Control Models and Technolo-
gies. SACMAT ’07. Sophia Antipolis, France: ACM, 2007, pages 71–80. ISBN:

9781595937452. DOI: 10.1145/1266840.1266852 (cited on page 157).

[218] Chih-Ta Yen, Horng-Twu Liaw, and Nai-Wei Lo. “Digital Rights Management

System with User Privacy, Usage Transparency, and Superdistribution Support”.

In: International Journal of Communication Systems 27.10 (2014), pages 1714–

1730. ISSN: 1099-1131. DOI: 10.1002/dac.2431 (cited on page 172).

[219] Angeliki Zavou, Vasilis Pappas, Vasileios P. Kemerlis, Michalis Polychronakis,

Georgios Portokalidis, and Angelos D. Keromytis. “Cloudopsy: An Autopsy of

Data Flows in the Cloud”. In: Human Aspects of Information Security, Privacy,
and Trust. Edited by Louis Marinos and Ioannis Askoxylakis. Volume 8030. Lec-

ture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pages 366–

375. ISBN: 9783642393440. DOI: 10.1007/978-3-642-39345-7_39 (cited on

page 161).

[220] Angeliki Zavou, Georgios Portokalidis, and Angelos Keromytis. “Taint-Exchange:

A Generic System for Cross-Process and Cross-Host Taint Tracking”. In: Ad-
vances in Information and Computer Security. Volume 7038. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2011, pages 113–128. ISBN:

9783642251405. DOI: 10.1007/978-3-642-25141-2_8 (cited on pages 17,

18, 160, 164).

[221] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.

“Making Information Flow Explicit in HiStar”. In: Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation. OSDI ’06. Seattle,

Washington: USENIX Association, 2006, pages 263–278. ISBN: 1931971471.

URL: http://dl.acm.org/citation.cfm?id=1298455.1298481 (cited on

pages 159, 163).

[222] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. “Securing Dis-

tributed Systems with Information Flow Control”. In: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation. NSDI’08.

San Francisco, California: USENIX Association, 2008, pages 293–308. URL:

http : / / dl . acm . org / citation . cfm ? id = 1387589 . 1387610 (cited on

pages 17, 18, 163, 164).

[223] Olive Qing Zhang, Markus Kirchberg, Ryan KL Ko, and Bu Sung Lee. “How

to Track Your Data: The Case for Cloud Computing Provenance”. In: IEEE
Third International Conference on Cloud Computing Technology and Science
(CloudCom). Nov. 2011, pages 446–453. DOI: 10.1109/CloudCom.2011.66

(cited on pages 18, 164).

http://dx.doi.org/10.1145/1266840.1266852
http://dx.doi.org/10.1002/dac.2431
http://dx.doi.org/10.1007/978-3-642-39345-7_39
http://dx.doi.org/10.1007/978-3-642-25141-2_8
http://dl.acm.org/citation.cfm?id=1298455.1298481
http://dl.acm.org/citation.cfm?id=1387589.1387610
http://dx.doi.org/10.1109/CloudCom.2011.66

Bibliography 207

[224] Qing Zhang, John McCullough, Justin Ma, Nabil Schear, Michael Vrable, Amin

Vahdat, Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. “Neon:

System Support for Derived Data Management”. In: Proceedings of the 6th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments. VEE ’10. Pittsburgh, Pennsylvania, USA: ACM, 2010, pages 63–74. ISBN:

9781605589107. DOI: 10.1145/1735997.1736008 (cited on pages 17, 162,

164).

[225] Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and Ravi Sandhu. “A

Usage-based Authorization Framework for Collaborative Computing Systems”.

In: Proceedings of the Eleventh ACM Symposium on Access Control Models and
Technologies. SACMAT ’06. Lake Tahoe, California, USA: ACM, 2006, pages 180–

189. ISBN: 1595933530. DOI: 10.1145/1133058.1133084 (cited on page 157).

[226] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park.

“Formal Model and Policy Specification of Usage Control”. In: ACM Transactions
on Information and System Security 8.4 (Nov. 2005), pages 351–387. ISSN:

1094-9224. DOI: 10.1145/1108906.1108908 (cited on page 15).

[227] Xinwen Zhang, Jean-Pierre Seifert, and Ravi Sandhu. “Security Enforcement

Model for Distributed Usage Control”. In: International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (2008), pages 10–18. DOI:

10.1109/SUTC.2008.79 (cited on pages 15, 19, 171).

http://dx.doi.org/10.1145/1735997.1736008
http://dx.doi.org/10.1145/1133058.1133084
http://dx.doi.org/10.1145/1108906.1108908
http://dx.doi.org/10.1109/SUTC.2008.79

INDICES

209

Index

Symbols
A (Addresses) . 54

C (Containers) . 30

D (Data) . 30

E (Events) . 27

EA (Actual events) . 28

EF (Data flow events) . 28

EI (Intended events) .28

EU (Data usage events) . 28

I (Identifiers). .30

N (Parameter names) .27

Ω (State-based operators) . 32

P (Principals). .30

R (Transition relation) .30

refines (Event refinement) . 28

refinesΣ (Event refinement using states) . 31

relevant . 60

Σ (Data flow states). .30

S (System events) . 28

SA (Actual system events) . 28

SA
F (Actual data flow system events) . 28

SF (Data flow system events) . 28

SI (Intended system events) . 28

SU (Data usage system events) . 28

Sat .64

T (Traces) . 29

V (Parameter values) . 27

Y (Systems) . 50

A
Action . 32

Actual data flow system events (SA
F) . 28

Actual events (EA) . 28

Actual system events (SA) . 28

Addresses (A) . 54

211

212 Index

Alias function (a) . 30

C
Cardinality operators. .33

Cluster. .87

Condition . 32

Consistency Level . 90

Containers (C) . 30

D
Data (D) . 30

Data flow events (EF) . 28

Data flow states (Σ) . 30

Data flow system events (SF) . 28

Data usage events (EU) . 28

Data usage system events (SU) . 28

E
ECA rule . 32

Event refinement (refines) . 28

Event refinement using states (refinesΣ) . 31

Events (E) . 27

Expression tree . 37

F
Formula projections . 64

G
Global data flow state . 52

Global policy. .24

I
Identifiers (I). .30

Initial State . 30

Intended events (EI) .28

Intended system events (SI) . 28

K
Keyspace . 88

L
Local socket name . 55

N
Naming function (n) . 30

Index 213

O
Overlay of traces . 52

P
Parameter names (N) .27

Parameter values (V) . 27

Principals (P). .30

Propositional operators . 33

R
Refinement (refines) . 28

Remote socket name . 55

Replication strategy . 88

S
State-based operators . 32

Storage function (s) . 30

System events (S) . 28

Systems (Y) . 50

T
Temporal operators . 33

Timestep. .29

Traces (T) . 29

Transition relation (R) . 30

Trigger event . 32

List of Figures

1.1 Sequence of events in the running example. 23

2.1 Interactions of PEP, PDP, PIP and PMP upon observation of system event e. 36

2.2 Expression tree of the condition of ECA rule 1a. 38

2.3 Policy evaluation by the PDP in the presence of event e at timestep i . . . 39

3.1 Two independent systems, each featuring three PEPs. 51

3.2 Three systems running in parallel and the overlay of their traces. 52

3.3 Sequence of TCP-related system calls. 55

4.1 High-level component diagram and its most important interfaces. 70

4.2 Modeling the establishment of a remote TCP channel.1 80

4.3 Modeling the establishment of a local TCP channel.1 81

4.4 Cross-system data flow tracking and policy propagation.1 83

4.5 Four systems connected via the Cassandra database. 87

5.1 Transfer times for a 1KB file. 108

5.2 Transfer times for a 1MB file. 110

5.3 Transfer times for a 128MB file. 114

5.4 Transfer times for a 512MB file. 118

5.5 Transfer times for a bit rate of 10Mbps. 121

5.6 Recap of policy 1 and the corresponding ECA rules. 126

5.7 Communication overhead when enforcing ECA rule 1a on three systems. 128

5.8 Communication overhead when enforcing ECA rule 1b on three systems. 129

5.9 Communication overhead enforcing ECA rule 1a on three of seven systems. 130

5.10 Recap of policy 2 and the corresponding ECA rule. 133

5.11 Communication overhead when enforcing ECA rule 2 on seven systems. 134

5.12 Recap of policy 3 and the corresponding ECA rule. 135

5.13 Communication overhead when enforcing ECA rule 3 on eleven systems. 137

5.14 Communication overhead enforcing ECA rule 3 on five out of eleven

systems. 138

5.15 Performance overheads for ECA rule 1a on three systems. 140

5.16 Performance overheads for ECA rule 1b on three systems. 141

5.17 Performance overheads for ECA rule 1a on three out of seven systems. . 143

5.18 Performance overheads for ECA rule 2 on seven systems. 146

215

216 List of Figures

5.19 Performance overheads for ECA rule 3 on eleven systems. 147

5.20 Performance overheads for ECA rule 3 on five out of eleven systems. . . 148

C.1 Legend for boxplots in Appendix C. 243

C.2 Performance measurement results when transferring a 1KB file. 244

C.3 Measurement results when transferring a 1MB file with 50Mbps. 246

C.4 Measurement results when transferring a 1MB file with 100Mbps. 246

C.5 Measurement results when transferring a 1MB file with 300Mbps. 247

C.6 Measurement results when transferring a 128MB file with 50Mbps. . . . 249

C.7 Measurement results when transferring a 128MB file with 100Mbps. . . 249

C.8 Measurement results when transferring a 128MB file with 300Mbps. . . 250

C.9 Measurement results when transferring a 512MB file with 50Mbps. . . . 252

C.10 Measurement results when transferring a 512MB file with 100Mbps. . . 252

C.11 Measurement results when transferring a 512MB file with 300Mbps. . . 253

List of Tables

2.1 Example event trace spanning several timesteps. 29

2.2 Specification of the example policies from Section 1.5 as ECA rules. . . . 34

2.3 Evaluation of operators Ψ by the PDP; Java-like syntax. 38

2.4 Evaluation of operators Φ by the PDP; Java-like syntax. 40

2.5 Evaluation of operators Ω by the PIP; Java-like syntax. 43

5.1 Amount of intercepted and signaled system calls. 106

5.2 Time and standard deviation [ms] to transfer a 1KB file. 108

5.3 Time and standard deviation [ms] to transfer a 1MB file. 112

5.4 Time and standard deviation [s] to transfer a 128MB file. 116

5.5 Time and standard deviation [s] to transfer a 512MB file. 119

5.6 Time and standard deviation to transfer files at a bit rate of 10Mbps. . . 122

5.7 Median KB per second and standard deviation for ECA rule 1a on three

systems. 132

5.8 Median KB per second and standard deviation for ECA rule 1b on three

systems. 132

5.9 Median KB per second for ECA rule 1a on three out of seven systems. . . 132

5.10 Median KB per second and standard deviation for ECA rule 2 on seven

systems. 135

5.11 Median KB per second and standard deviation for ECA rule 3 on eleven

systems. 139

C.1 Absolute and relative overall median overhead when transferring a 1KB file. 244

C.2 Absolute and relative overall overheads when transferring a 1MB file. . . 247

C.3 Absolute and relative overall overheads when transferring a 128MB file. 250

C.4 Absolute and relative overall overheads when transferring a 512MB file. 253

217

List of Listings

4.1 Interfaces provided by the PDP. 73

4.2 Interfaces provided by the PIP. 74

4.3 Interfaces provided by the PMP. 74

4.4 Interfaces provided by the DMP. 75

219

APPENDICES

221

A
Correctness of Function relevant

Contents of this appendix have been published in [95].

Assuming ECA conditions to be given in disjunctive normal form (DNF), this appendix

shows that function relevant as defined in Section 3.3.1 is correct in the following

sense: For any tuple of concurrently executing traces τ ∈
∏
T, point in time i ∈ N,

formula ϕ ∈ Φ, set of systems Y = relevant(ϕ, i , τ) and X ⊆ Y \ Y it holds that

(tτY , i) |= ϕ ⇐⇒ (tτY∪X , i) |= ϕ.

In other words, the set of systems Y = relevant(ϕ, i , τ) is sufficient to evaluate ϕ

at time i given τ . Adding any other set of systems X ⊆ Y \ Y to the evaluation process

does not change the evaluation’s result. For each of the following proofs,

part a) shows (tτY , i) |= ϕ =⇒ (tτY∪X , i) |= ϕ, while

part b) shows (tτY , i) |= ϕ ⇐= (tτY∪X , i) |= ϕ.

Due to the uniqueness of sets Cy and Iy for any system y ∈ Y and the definition of the

data flow state of sets of systems X,Y ⊆ Y (Section 3.1.2), it follows that

∀Y ⊆ Y, X ⊆ Y \ Y, τ ∈
∏
y∈Y
Ty , c ∈ C \ {nil}, j ∈ I, t ∈ T :

σi
tτY
.s(c) ⊆ σi

tτY∪X
.s(c)

∧ σi
tτY
.a(c) ⊆ σi

tτY∪X
.a(c)

∧ σi
tτY
.n(j) = c =⇒ σi

tτY∪X
.n(j) = c

∧ σi
tτY
.n(j) = nil ⇐= σi

tτY∪X
.n(j) = nil

These relations between sets of systems Y ⊆ Y and X ⊆ Y \ Y will be leveraged

throughout the following proofs.

223

224 A. Correctness of Function relevant

Proof. For ϕ = e; e ∈ E

a) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, e ∈ E , ϕ ∈ Φ, ϕ = e, Y = relevant(ϕ, i , τ),

X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ ∃e′ ∈ tτY (i) : (e′, σi
tτY
) refinesΣ e

=⇒ ∃e′ ∈ tτY∪X (i) : (e′, σi
tτY∪X

) refinesΣ e

⇐⇒ (tτY∪X , i) |= ϕ

b) Assume: ∃τ ∈
∏
y∈Y
Ty , i ∈ N, e ∈ E , ϕ ∈ Φ, ϕ = e,

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY∪X , i) |= ϕ 6=⇒ (tτY , i) |= ϕ

⇐⇒ ∃e′ ∈ tτY∪X (i) : (e′, σi
tτY∪X

) refinesΣ e

∧ @e′′ ∈ tτY (i) : (e′′, σi
tτY
) refinesΣ e

=⇒ ∃e′ ∈ tτX (i) : (e′, σi
tτX
) refinesΣ e

=⇒ happens(e, i , τ) ∩X 6= ∅

=⇒ Y ∩X 6= ∅ ∧ Y ∩X = ∅ (Contradiction)

since Y = relevant(ϕ, i , τ) = relevant(e, i , τ) = happens(e, i , τ)

and X ⊆ Y \ Y.

Hence ∀τ ∈
∏
y∈Y
Ty , i ∈ N, e ∈ E , ϕ ∈ Φ, ϕ = e, Y = relevant(ϕ, i , τ),

X ⊆ Y \ Y :

(tτY∪X , i) |= ϕ =⇒ (tτY , i) |= ϕ

225

Proof. For ϕ = isNotIn(d,C); d ∈ D, C ⊆ C

a) Assume: ∃τ ∈
∏
y∈Y
Ty , i ∈ N, d ∈ D, C ⊆ C, ϕ ∈ Φ, ϕ = isNotIn(d,C),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ 6=⇒ (tτY∪X , i) |= ϕ

⇐⇒ ∀c ∈ C : d 6∈ σi
tτY
.s(c) ∧ ∃c ′ ∈ C : d ∈ σi

tτY∪X
.s(c ′)

⇐⇒ @c ∈ C : d ∈ σi
tτY
.s(c) ∧ ∃c ′ ∈ C : d ∈ σi

tτY∪X
.s(c ′)

=⇒ ∃c ∈ C : d ∈ σi
tτX
.s(c)

=⇒ knowD({d}, i , τ) ∩ knowC (C) ∩X 6= ∅

=⇒ Y ∩X 6= ∅ ∧ Y ∩X = ∅ (Contradiction)

since Y = relevant(ϕ, i , τ) = relevant(isNotIn(d,C), i , τ)

= knowD({d}, i , τ) ∩ knowC (C)

and X ⊆ Y \ Y.

Hence ∀τ ∈
∏
y∈Y
Ty , i ∈ N, d ∈ D, C ⊆ C, ϕ ∈ Φ, ϕ = isNotIn(d,C),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y :

(tτY , i) |= ϕ =⇒ (tτY∪X , i) |= ϕ

b) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, d ∈ D, C ⊆ C, ϕ ∈ Φ, ϕ = isNotIn(d,C),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY∪X , i) |= ϕ

⇐⇒ ∀c ∈ C : d 6∈ σi
tτY∪X

.s(c)

=⇒ ∀c ∈ C : d 6∈ σi
tτY
.s(c)

⇐⇒ (tτY , i) |= ϕ

226 A. Correctness of Function relevant

Proof. For ϕ = isMaxIn(d,m,C); d ∈ D,m ∈ N, C ⊆ C

a) Assume: ∃τ ∈
∏
y∈Y
Ty , i ∈ N, d ∈ D,m ∈ N, C ⊆ C, ϕ ∈ Φ,

ϕ = isMaxIn(d,m,C), Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ 6=⇒ (tτY∪X , i) |= ϕ

⇐⇒ |{c ∈ C | d ∈ σi
tτY
.s(c)}| ≤ m ∧ |{c ∈ C | d ∈ σi

tτY∪X
.s(c)}| > m

=⇒ |{c ∈ C | d ∈ σi
tτY∪X

.s(c)}| − |{c ∈ C | d ∈ σi
tτY
.s(c)}| > 0

=⇒ ∃c ∈ C : d ∈ σi
tτX
.s(c)

=⇒ knowD({d}, i , τ) ∩ knowC (C) ∩X 6= ∅

=⇒ Y ∩X 6= ∅ ∧ Y ∩X = ∅ (Contradiction)

since Y = relevant(ϕ, i , τ) = relevant(isMaxIn(d,m,C), i , τ)

= knowD({d}, i , τ) ∩ knowC (C)

and X ⊆ Y \ Y.

Hence ∀τ ∈
∏
y∈Y
Ty , i ∈ N, d ∈ D,m ∈ N, C ⊆ C, ϕ ∈ Φ,

ϕ = isMaxIn(d,m,C), Y = relevant(ϕ, i , τ), X ⊆ Y \ Y :

(tτY , i) |= ϕ =⇒ (tτY∪X , i) |= ϕ

b) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, d ∈ D, C ⊆ C, ϕ ∈ Φ, ϕ = isNotIn(d,C),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY∪X , i) |= ϕ

⇐⇒ ∀c ∈ C : d 6∈ σi
tτY∪X

.s(c)

=⇒ ∀c ∈ C : d 6∈ σi
tτY
.s(c)

⇐⇒ (tτY , i) |= ϕ

227

Proof. For ϕ = isCombined(d1 , d2 ,C); d1 , d2 ∈ D, C ⊆ C

a) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, d1 , d2 ∈ D, C ⊆ C, ϕ ∈ Φ, ϕ = isCombined(d1 , d2 ,C),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ ∃c ∈ C : {d1 , d2} ⊆ σi
tτY
.s(c)

=⇒ ∃c ∈ C : {d1 , d2} ⊆ σi
tτY∪X

.s(c)

⇐⇒ (tτY∪X , i) |= ϕ

b) Assume: ∃τ ∈
∏
y∈Y
Ty , i ∈ N, d1 , d2 ∈ D, C ⊆ C, ϕ ∈ Φ,

ϕ = isCombined(d1 , d2 ,C), Y = relevant(ϕ, i , τ),

X ⊆ Y \ Y, t ∈ T :

(tτY∪X , i) |= ϕ 6=⇒ (tτY , i) |= ϕ

⇐⇒ ∃c ∈ C : {d1 , d2} ⊆ σi
tτY∪X

.s(c) ∧ @c ′ ∈ C : {d1 , d2} ⊆ σi
tτY
.s(c ′)

=⇒ ∃c ∈ C : {d1 , d2} ⊆ σi
tτX
.s(c)

=⇒ knowD({d1 , d2}, i , τ) ∩ knowC (C) ∩X 6= ∅

=⇒ Y ∩X 6= ∅ ∧ Y ∩X = ∅ (Contradiction)

since Y = relevant(ϕ, i , τ) = relevant(isCombined(d1 , d2 ,C), i , τ)

= knowD({d1 , d2}, i , τ) ∩ knowC (C)

and X ⊆ Y \ Y.

Hence ∀τ ∈
∏
y∈Y
Ty , i ∈ N, d1 , d2 ∈ D, C ⊆ C, ϕ ∈ Φ,

ϕ = isCombined(d1 , d2 ,C), Y = relevant(ϕ, i , τ), X ⊆ Y \ Y :

(tτY∪X , i) |= ϕ =⇒ (tτY , i) |= ϕ

228 A. Correctness of Function relevant

Proof. For ϕ = not(α);α ∈ Φ

a) & b) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, α, ϕ ∈ Φ, ϕ = not(α), Y = relevant(ϕ, i , τ),

A = relevant(α, i , τ), X ⊆ Y \ Y, Ã ⊆ Y \A, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ ¬((tτY , i) |= α)

⇐⇒ ¬((tτA, i) |= α)

since A = relevant(α, i , τ) = relevant(not(α), i , τ)

= relevant(ϕ, i , τ) = Y

⇐⇒ ¬((tτ
A∪Ã

, i) |= α)

⇐⇒ ¬((tτY∪X , i) |= α)

since A = Y and Ã = X

⇐⇒ (tτY∪X , i) |= ϕ

Proof. For ϕ = α and β;α, β ∈ Φ

a) & b) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, α, β, ϕ ∈ Φ, ϕ = α and β, Y = relevant(ϕ, i , τ),

A = relevant(α, i , τ), B = relevant(β, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ (tτY , i) |= α ∧ (tτY , i) |= β

⇐⇒ (tτA, i) |= α ∧ (tτB , i) |= β

since A = relevant(α, i , τ)

⊆ relevant(α, i , τ) ∪ relevant(β, i , τ) = relevant(ϕ, i , τ) = Y

and B = relevant(β, i , τ)

⊆ relevant(α, i , τ) ∪ relevant(β, i , τ) = relevant(ϕ, i , τ) = Y

⇐⇒ (tτ
A∪Ã

, i) |= α ∧ (tτ
B∪B̃

, i) |= β

with Ã = (Y \A) ∪X

and B̃ = (Y \B) ∪X

⇐⇒ (tτA∪((Y \A)∪X), i) |= α ∧ (tτB∪((Y \B)∪X), i) |= β

⇐⇒ (tτY∪X , i) |= α ∧ (tτY∪X , i) |= β

⇐⇒ (tτY∪X , i) |= ϕ

229

Proof. For ϕ = α or β;α, β ∈ Φ

a) & b) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, α, β, ϕ ∈ Φ, ϕ = α or β, Y = relevant(ϕ, i , τ),

A = relevant(α, i , τ), B = relevant(β, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ (tτY , i) |= α ∨ (tτY , i) |= β

⇐⇒ (tτA, i) |= α ∨ (tτB , i) |= β

since A = relevant(α, i , τ)

⊆ relevant(α, i , τ) ∪ relevant(β, i , τ) = relevant(ϕ, i , τ) = Y

and B = relevant(β, i , τ)

⊆ relevant(α, i , τ) ∪ relevant(β, i , τ) = relevant(ϕ, i , τ) = Y

⇐⇒ (tτ
A∪Ã

, i) |= α ∨ (tτ
B∪B̃

, i) |= β

with Ã = (Y \A) ∪X

and B̃ = (Y \B) ∪X

⇐⇒ (tτA∪((Y \A)∪X), i) |= α ∨ (tτB∪((Y \B)∪X), i) |= β

⇐⇒ (tτY∪X , i) |= α ∨ (tτY∪X , i) |= β

⇐⇒ (tτY∪X , i) |= ϕ

Proof. For ϕ = α before j ;α ∈ Φ, j ∈ N

a) & b) ∀τ ∈
∏
y∈Y
Ty , i , j ∈ N, α, ϕ ∈ Φ, ϕ = α before j , Y = relevant(ϕ, i , τ),

A = relevant(α, i − j , τ), X ⊆ Y \ Y, Ã ⊆ Y \A, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ (tτY , i − j) |= α

⇐⇒ (tτA, i − j)) |= α

since A = relevant(α, i − j , τ) = relevant(α before j , i , τ)

= relevant(ϕ, i , τ) = Y

⇐⇒ (tτ
A∪Ã

, i − j) |= α

⇐⇒ (tτY∪X , i − j) |= α

since A = Y and Ã = X

⇐⇒ (tτY∪X , i) |= ϕ

230 A. Correctness of Function relevant

Proof. For ϕ = α since β;α, β ∈ Φ

a) & b) ∀τ ∈
∏
y∈Y
Ty , i ∈ N, α, β, ϕ ∈ Φ, ϕ = α since β, Y =

i⋃
l=0

relevant(ϕ, l , τ),

A =
i⋃
l=0

relevant(α, l , τ), B =
i⋃
l=0

relevant(β, l , τ), X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ ∃j ∈ [0, i] : ((tτY , j) |= β ∧ ∀k ∈ (j, i] : (tτY , k) |= α)

∨ ∀k ∈ [0, i] : (tτY , k) |= α

⇐⇒ ∃j ∈ [0, i] : ((tτBj
, j) |= β ∧ ∀k ∈ (j, i] : (tτAk

, k) |= α)

∨ ∀k ∈ [0, i] : (tτAk
, k) |= α

with Bj = relevant(β, j , τ) ⊆
i⋃
l=0

relevant(β, l , τ)

⊆
i⋃
l=0

(relevant(α, l , τ) ∪ relevant(β, l , τ))

=
i⋃
l=0

relevant(ϕ, l , τ) = Y ; ∀j ∈ [0, i]

and Ak = relevant(α, k , τ) ⊆
i⋃
l=0

relevant(α, l , τ)

⊆
i⋃
l=0

(relevant(α, l , τ) ∪ relevant(β, l , τ))

=
i⋃
l=0

relevant(ϕ, l , τ) = Y ; ∀k ∈ [0, i]

⇐⇒ ∃j ∈ [0, i] : ((tτ
Bj∪B̃j

, j) |= β ∧ ∀k ∈ (j, i] : (tτ
Ak∪Ãk

, k) |= α)

∨ ∀k ∈ [0, i] : (tτ
Ak∪Ãk

, k) |= α

with B̃j = (Y \Bj) ∪X;∀j ∈ [0, i]

and Ãk = (Y \Ak) ∪X;∀k ∈ [0, i]

⇐⇒ ∃j ∈ [0, i] : ((tτBj∪((Y \Bj)∪X), j) |= β

∧ ∀k ∈ (j, i] : (tτAk∪((Y \Ak)∪X), k) |= α)

∨ ∀k ∈ [0, i] : (tτAk∪((Y \Ak)∪X), k) |= α

⇐⇒ ∃j ∈ [0, i] : ((tτY∪X , j) |= β ∧ ∀k ∈ (j, i] : (tτY∪X , k) |= α)

∨ ∀k ∈ [0, i] : (tτY∪X , k) |= α

⇐⇒ (tτY∪X , i) |= ϕ

231

Proof. For ϕ = repmin(j ,m, e); j,m ∈ N, e ∈ E

a) ∀τ ∈
∏
y∈Y
Ty , i , j,m ∈ N, e ∈ E , ϕ ∈ Φ, ϕ = repmin(j ,m, e),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY , i) |= ϕ

⇐⇒ m ≤
min{i ,j}−1∑

k=0

|{e′ ∈ tτY (i − k) | (e′, σi−k
tτY

) refinesΣ e}|

=⇒ m ≤
min{i ,j}−1∑

k=0

|{e′ ∈ tτY∪X (i − k) | (e′, σi−k
tτY∪X

) refinesΣ e}|

⇐⇒ (tτY∪X , i) |= ϕ

b) Assume: ∃τ ∈
∏
y∈Y
Ty , i , j,m ∈ N, e ∈ E , ϕ ∈ Φ, ϕ = repmin(j ,m, e),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y, t ∈ T :

(tτY∪X , i) |= ϕ 6=⇒ (tτY , i) |= ϕ

⇐⇒ m ≤
min{i ,j}−1∑

k=0

|{e′ ∈ tτY∪X (i − k) | (e′, σi−k
tτY∪X

) refinesΣ e}|

∧m >

min{i ,j}−1∑
k=0

|{e′ ∈ tτY (i − k) | (e′, σi−k
tτY

) refinesΣ e}|

=⇒ ∃k ∈ [0,min{i , j} − 1], e′ ∈ tτX (i − k) : (e′, σi−k
X) refinesΣ e

=⇒ (

min{i ,j}−1⋃
k=0

happens(e, i − k , τ)) ∩X 6= ∅

=⇒ Y ∩X 6= ∅ ∧ Y ∩X = ∅ (Contradiction)

since Y = relevant(ϕ, i , τ) = relevant(repmin(j ,m, e), i , τ)

=

min{i ,j}−1⋃
k=0

happens(e, i − k , τ)

and X ⊆ Y \ Y.

Hence ∀τ ∈
∏
y∈Y
Ty , i , j,m ∈ N, e ∈ E , ϕ ∈ Φ, ϕ = repmin(j ,m, e),

Y = relevant(ϕ, i , τ), X ⊆ Y \ Y :

(tτY∪X , i) |= ϕ =⇒ (tτY , i) |= ϕ

B
Correctness of Predicate Sat

Contents of this appendix have been published in [95].

This appendix proves that predicate Sat as defined in Section 3.3.2 is correct in the

following sense: For any tuple of concurrently executing traces τ ∈
∏
T, set of systems

Y ⊆ Y, point in time i ∈ N and formula ϕ ∈ Φ in DNF, it holds that

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ) =⇒ (tτY , i) |= ϕ.

In other words, if Sat(τ,Y , i , ϕ) holds then the set of systems Y can conclusively

infer the global evaluation result of formula ϕ by only evaluating the corresponding

formula projection ϕY locally.

Proof. For relevant(ϕ, i , τ) ⊆ Y with ϕ ∈ Φ, i ∈ N, τ ∈
∏

y∈Y Ty , Y ⊆ Y.

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, relevant(ϕ, i , τ) ⊆ Y, t ∈ T, ϕ ∈ Φ :

(tτY , i) |= ϕY =⇒ (tτY , i) |= ϕ.

This follows immediately with the claims and proofs provided in Section 3.3.2

and Appendix B, which essentially state:

∀Y ′, X ⊆ Y, Y ′ = relevant(ϕ, i , τ), X = Y \ Y ′ :

(tτY ′ , i) |= ϕ ⇐⇒ (tτY ′∪X , i) |= ϕ

In particular, Y ′ = relevant(ϕ, i , τ) ⊆ Y, and tτY ′ = tτrelevant(ϕ,i ,τ) = tτY ,

and thus

(tτY ′ , i) |= ϕ ⇐⇒ (tτY , i) |= ϕ ⇐⇒ (tτY ′∪X , i) |= ϕ ⇐⇒ (tτY , i) |= ϕ.

233

234 B. Correctness of Predicate Sat

Proof. For ϕ = e with e ∈ E .

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, t ∈ T, ϕ ∈ Φ, e ∈ E , ϕ = e :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ ∃e′ ∈ tτY (i) : (e′, σi
tτY
) refinesΣ e ∧ Sat(τ,Y , i , e)

=⇒ ∃e′ ∈ tτY(i) : (e
′, σi

tτY
) refinesΣ e

Note: Sat(τ,Y , i , e) = true by construction (Section 3.3.2).

⇐⇒ (tτY , i) |= ϕ

Proof. For ϕ = not(isNotIn(d,C)) with d ∈ D, C ⊆ C.

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, t ∈ T, ϕ ∈ Φ, d ∈ D, C ⊆ C,

ϕ = not(isNotIn(d,C)) :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= not(isNotIn(d,C ∩ CY))

∧ Sat(τ,Y , i ,not(isNotIn(d,C)))

⇐⇒ ¬((tτY , i) |= isNotIn(d,C ∩ CY))

Note: Sat(τ,Y , i ,not(isNotIn(d,C))) = true

by construction (Section 3.3.2).

⇐⇒ ¬(∀c ∈ C ∩ CY : d 6∈ σi
tτY
.s(c))

⇐⇒ ∃c ∈ C ∩ CY : d ∈ σi
tτY
.s(c)

=⇒ ∃c ∈ C : d ∈ σi
tτY
.s(c)

⇐⇒ ¬(∀c ∈ C : d 6∈ σi
tτY
.s(c))

⇐⇒ ¬((tτY , i) |= isNotIn(d,C))

⇐⇒ (tτY , i) |= not(isNotIn(d,C))

⇐⇒ (tτY , i) |= ϕ

235

Proof. For ϕ = isCombined(d1 , d2 ,C) with d1 , d2 ∈ D, C ⊆ C.

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, t ∈ T, ϕ ∈ Φ, d1 , d2 ∈ D, C ⊆ C,

ϕ = isCombined(d1 , d2 ,C) :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= isCombined(d1 , d2 ,C ∩ CY)

∧ Sat(τ,Y , i , isCombined(d1 , d2 ,C))

⇐⇒ ∃c ∈ C ∩ CY : {d1 , d2} ⊆ σi
tτY
.s(c)

Note: Sat(τ,Y , i , isCombined(d1 , d2 ,C)) = true

by construction (Section 3.3.2).

=⇒ ∃c ∈ C : {d1 , d2} ⊆ σi
tτY
.s(c)

⇐⇒ (tτY , i) |= isCombined(d1 , d2 ,C)

⇐⇒ (tτY , i) |= ϕ

Proof. For ϕ = not(isMaxIn(d,m,C)) with d ∈ D,m ∈ N, C ⊆ C.

∀τ ∈
∏
y∈Y
Ty , i ,m ∈ N, Y ⊆ Y, t ∈ T, ϕ ∈ Φ, d ∈ D, C ⊆ C,

ϕ = not(isMaxIn(d,m,C)) :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= not(isMaxIn(d,m,C ∩ CY))

∧ Sat(τ,Y , i ,not(isMaxIn(d,m,C)))

⇐⇒ ¬((tτY , i) |= isMaxIn(d,m,C ∩ CY))

Note: Sat(τ,Y , i ,not(isMaxIn(d,m,C))) = true

by construction (Section 3.3.2).

⇐⇒ ¬(|{c ∈ C ∩ CY | d ∈ σi
tτY
.s(c)}| ≤ m)

⇐⇒ |{c ∈ C ∩ CY | d ∈ σi
tτY
.s(c)}| > m

=⇒ |{c ∈ C | d ∈ σi
tτY
.s(c)}| > m

⇐⇒ ¬(|{c ∈ C | d ∈ σi
tτY
.s(c)}| ≤ m)

⇐⇒ ¬((tτY , i) |= isMaxIn(d,m,C))

⇐⇒ (tτY , i) |= not(isMaxIn(d,m,C))

⇐⇒ (tτY , i) |= ϕ

236 B. Correctness of Predicate Sat

Proof. For ϕ = α and β with α, β ∈ Φ.

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, t ∈ T, ϕ, α, β ∈ Φ, ϕ = α and β :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= αY and βY ∧ Sat(τ,Y , i , α and β)

⇐⇒ (tτY , i) |= αY and βY ∧ Sat(τ,Y , i , α) ∧ Sat(τ,Y , i , β)

⇐⇒ (tτY , i) |= αY ∧ (tτY , i) |= βY ∧ Sat(τ,Y , i , α) ∧ Sat(τ,Y , i , β)

⇐⇒ (tτY , i) |= αY ∧ Sat(τ,Y , i , α) ∧ (tτY , i) |= βY ∧ Sat(τ,Y , i , β)

=⇒ (tτY , i) |= α ∧ (tτY , i) |= β

⇐⇒ (tτY , i) |= α and β

⇐⇒ (tτY , i) |= ϕ

Proof. For ϕ = α or β with α, β ∈ Φ.

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, t ∈ T, ϕ, α, β ∈ Φ, ϕ = α or β :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= αY or βY ∧ Sat(τ,Y , i , α or β)

⇐⇒ (tτY , i) |= αY or βY

∧ ((tτY , i) |= αY ∧ Sat(τ,Y , i , α)

∨ (tτY , i) |= βY ∧ Sat(τ,Y , i , β))

⇐⇒ ((tτY , i) |= αY ∨ (tτY , i) |= βY)

∧ ((tτY , i) |= αY ∧ Sat(τ,Y , i , α)

∨ (tτY , i) |= βY ∧ Sat(τ,Y , i , β))

⇐⇒ (tτY , i) |= αY ∧ Sat(τ,Y , i , α) ∨ (tτY , i) |= βY ∧ Sat(τ,Y , i , β)

=⇒ (tτY , i) |= α ∨ (tτY , i) |= β

⇐⇒ (tτY , i) |= α or β

⇐⇒ (tτY , i) |= ϕ

237

Proof. For ϕ = α since β with α, β ∈ Φ.

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, t ∈ T, ϕ, α, β ∈ Φ, ϕ = α since β :

(tτY , i) |= ϕY

∧ ((∃j ∈ [0, i] : (tτY , j) |= βY ∧ Sat(τ,Y , j , β)

∧ ∀k ∈ (j, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α))

∨ (∀k ∈ [0, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α)))

(tτY , i) |= αY since βY

∧ ((∃j ∈ [0, i] : (tτY , j) |= βY ∧ Sat(τ,Y , j , β)

∧ ∀k ∈ (j, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α))

∨ (∀k ∈ [0, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α)))

⇐⇒ ((∃j ∈ [0, i] : (tτY , j) |= βY ∧ ∀k ∈ (j, i] : (tτY , k) |= αY)

∨ (∀k ∈ [0, i] : (tτY , k) |= αY))

∧ ((∃j ∈ [0, i] : (tτY , j) |= βY ∧ Sat(τ,Y , j , β)

∧ ∀k ∈ (j, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α))

∨ (∀k ∈ [0, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α)))

⇐⇒ ((∃j ∈ [0, i] : (tτY , j) |= βY ∧ Sat(τ,Y , j , β)

∧ ∀k ∈ (j, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α))

∨ (∀k ∈ [0, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k , α)))

=⇒ ((∃j ∈ [0, i] : (tτY , j) |= β ∧ ∀k ∈ (j, i] : (tτY , k) |= α)

∨ (∀k ∈ [0, i] : (tτY , k) |= α))

⇐⇒ (tτY , i) |= α since β

⇐⇒ (tτY , i) |= ϕ

238 B. Correctness of Predicate Sat

Proof. For ϕ = not(α since β) with α, β ∈ Φ.

∀τ ∈
∏
y∈Y
Ty , i ∈ N, Y ⊆ Y, t ∈ T, ϕ, α, β ∈ Φ, ϕ = not(α since β) :

(tτY , i) |= ϕY

∧ ((∀j ∈ [0, i] : (tτY , j) 6|= βY ∧ Sat(τ,Y , j ,not(β))

∧ ∃k ∈ (j, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α)))

∨ (∃k ∈ [0, i] : (tτY , k) |= αY ∧ Sat(τ,Y , k ,not(α))))

⇐⇒ (tτY , i) |= not(αY since βY)

∧ ((∀j ∈ [0, i] : (tτY , j) 6|= βY ∧ Sat(τ,Y , j ,not(β))

∧ ∃k ∈ (j, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α)))

∨ (∃k ∈ [0, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α))))

⇐⇒ ((∀j ∈ [0, i] : (tτY , j) 6|= βY ∧ ∃k ∈ (j, i] : (tτY , k) 6|= αY

∨ (∃k ∈ [0, i] : (tτY , k) 6|= αY))

∧ ((∀j ∈ [0, i] : (tτY , j) 6|= βY ∧ Sat(τ,Y , j ,not(β))

∧ ∃k ∈ (j, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α)))

∨ (∃k ∈ [0, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α))))

⇐⇒ ((∀j ∈ [0, i] : (tτY , j) 6|= βY ∧ Sat(τ,Y , j ,not(β))

∧ ∃k ∈ (j, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α)))

∨ (∃k ∈ [0, i] : (tτY , k) 6|= αY ∧ Sat(τ,Y , k ,not(α))))

=⇒ ((∀j ∈ [0, i] : (tτY , j) 6|= β ∧ ∃k ∈ (j, i] : (tτY , k) 6|= α)

∨ (∃k ∈ [0, i] : (tτY , k) 6|= α))

⇐⇒ (tτY , i) |= not(α since β)

⇐⇒ (tτY , i) |= ϕ

239

Proof. For ϕ = α before j with α ∈ Φ, j ∈ N.

∀τ ∈
∏
y∈Y
Ty , i , j ∈ N, Y ⊆ Y, t ∈ T, ϕ, α ∈ Φ, ϕ = α before j :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= αY before j ∧ Sat(τ,Y , i , α before j)

⇐⇒ (tτY , i − j) |= αY ∧ Sat(τ,Y , i − j , α)

=⇒ (tτY , i − j) |= α

⇐⇒ (tτY , i) |= α before j

⇐⇒ (tτY , i) |= ϕ

Proof. For ϕ = not(α before j) with α ∈ Φ, j ∈ N.

∀τ ∈
∏
y∈Y
Ty , i , j ∈ N, Y ⊆ Y, t ∈ T, ϕ, α ∈ Φ, ϕ = not(α before j) :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= not(αY before j) ∧ Sat(τ,Y , i ,not(α before j))

⇐⇒ ¬((tτY , i) |= αY before j) ∧ Sat(τ,Y , i ,not(α before j))

⇐⇒ ¬((tτY , i − j) |= αY) ∧ Sat(τ,Y , i − j ,not(α))

⇐⇒ (tτY , i − j) |= not(αY) ∧ Sat(τ,Y , i − j ,not(α))

=⇒ (tτY , i − j) |= not(α)

⇐⇒ ¬((tτY , i − j) |= α)

⇐⇒ ¬((tτY , i) |= α before j)

⇐⇒ (tτY , i) |= not(α before j)

⇐⇒ (tτY , i) |= ϕ

240 B. Correctness of Predicate Sat

Proof. For ϕ = repmin(j ,m, e) with e ∈ E , j,m ∈ N.

∀τ ∈
∏
y∈Y
Ty , i , j,m ∈ N, Y ⊆ Y, t ∈ T, e ∈ E , ϕ = repmin(j ,m, e) :

(tτY , i) |= ϕY ∧ Sat(τ,Y , i , ϕ)

⇐⇒ (tτY , i) |= repmin(j ,m, e) ∧ Sat(τ,Y , i , repmin(j ,m, e))

⇐⇒ m ≤
min{i ,j}−1∑

k=0

|{e′ ∈ tτY (i − k) | (e′, σi−k
tτY

) refinesΣ e}|

Note: Sat(τ,Y , i , repmin(j ,m, e)) = true

by construction (Section 3.3.2).

=⇒ m ≤
min{i ,j}−1∑

k=0

|{e′ ∈ tτY(i − k) | (e′, σi−k
tτY

) refinesΣ e}|

⇐⇒ (tτY , i) |= repmin(j ,m, e)

⇐⇒ (tτY , i) |= ϕ

C
Evaluation: Cross-System Data
Flow Tracking and Policy
Propagation

This appendix complements Section 5.2 by providing more accurate and detailed

measurement results. The legend for all boxplots in this appendix is given in Figure C.1.

C.1 Transferring Files of Size 1KB

Figure C.2 plots the measurement results presented in Table 5.2 (Section 5.2.1) as

boxplots. Hence, the medians of the plotted boxes correspond to the values within the

aforementioned table. Further, Figure C.2 shows for each set of measurements those

two quartiles that are most close to the computed median.

In addition, Table C.1 shows for each client/server combination both the absolute

and the relative performance overhead imposed by a fully functional usage control

infrastructure, i.e. when signaling system calls to the Controller, and performing

both local and remote data flow tracking ().

Figure C.1: Legend for boxplots in Appendix C.

with
A/W: Apache2/wget N/W: nginx/wget V/C: vsftpd/cURL P/C: ProFTPD/cURL
A/C: Apache2/cURL N/C: nginx/cURL V/L: vsftpd/LFTP P/L: ProFTPD/LFTP
A/A: Apache2/aria2c N/A: nginx/aria2c S/S: OpenSSH/SCP

and

with
native signal

local cross

243

244 C. Evaluation: Cross-System Data Flow Tracking and Policy Propagation

Figure C.2: Performance measurement results when transferring a 1KB file.

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

 1.6

 1.8

2.0

 2.2

 2.4

 2.6

 2.8

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

Table C.1: Absolute and relative overall median overhead when transferring a 1KB file.

Overall overhead ()

Protocol Server Client (any bit rate)

HTTPS Apache2 wget 165ms (971%)

cURL 168ms (672%)

aria2c 184ms (131%)

nginx wget 154ms (906%)

cURL 164ms (683%)

aria2c 183ms (203%)

FTPS vsftpd cURL 317ms (122%)

LFTP 232ms (100%)

ProFTPD cURL 276ms (64%)

LFTP 237ms (53%)

SSH OpenSSH SCP 2110ms (573%)

C.2. Transferring Files of Size 1MB 245

C.2 Transferring Files of Size 1MB

Figures C.3 to C.5 on pages 246 and 247 visualize the performance measurement

results presented in Table 5.3 as boxplots. For a bit rate of 50Mbps (Figure C.3) each

boxplot is based on 30 repeated measurements, for a bit rate of 100Mbps (Figure C.3)

each boxplot is based on 30 repeated measurements, and for a bit rate of 300Mbps

(Figure C.3) each boxplot is based on 40 repeated measurements. The plotted medians

correspond to the median values presented in Table 5.3.

In addition, Table C.2 (page 247) shows for each client/server combination and for

different bit rates both the absolute and the relative performance overhead imposed by

a fully functional usage control infrastructure, i.e. when signaling system calls to the

Controller, and performing both local and remote data flow tracking ().

246 C. Evaluation: Cross-System Data Flow Tracking and Policy Propagation

Figure C.3: Measurement results when transferring a 1MB file with 50Mbps.

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

 1.6

 1.8

2.0

 2.2

 2.4

 2.6

 2.8

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

Figure C.4: Measurement results when transferring a 1MB file with 100Mbps.

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

 1.6

 1.8

2.0

 2.2

 2.4

 2.6

 2.8

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

C.2. Transferring Files of Size 1MB 247

Figure C.5: Measurement results when transferring a 1MB file with 300Mbps.

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

 1.6

 1.8

2.0

 2.2

 2.4

 2.6

 2.8

ms

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

Table C.2: Absolute and relative overall overheads when transferring a 1MB file.

Overall overhead () for a bit rate of

Protocol Server Client 50Mbps 100Mbps 300Mbps

HTTPS Apache2 wget 256ms (132%) 335ms (313%) 400ms (816%)

cURL 220ms (109%) 311ms (270%) 344ms (593%)

aria2c 217ms (68%) 243ms (104%) 304ms (187%)

nginx wget 262ms (135%) 341ms (319%) 373ms (794%)

cURL 226ms (112%) 307ms (269%) 380ms (667%)

aria2c 212ms (79%) 226ms (123%) 317ms (278%)

FTPS vsftpd cURL 407ms (103%) 475ms (152%) 503ms (167%)

LFTP 248ms (67%) 310ms (108%) 356ms (138%)

ProFTPD cURL 305ms (50%) 405ms (78%) 456ms (97%)

LFTP 270ms (45%) 330ms (63%) 354ms (71%)

SSH OpenSSH SCP 2257ms (410%) 2306ms (503%) 2317ms (581%)

248 C. Evaluation: Cross-System Data Flow Tracking and Policy Propagation

C.3 Transferring Files of Size 128MB

Figures C.6 to C.8 on pages 249 and 250 visualize the performance measurement

results presented in Table 5.4 as boxplots. For a bit rate of 50Mbps (Figure C.6) each

boxplot is based on 30 repeated measurements, for a bit rate of 100Mbps (Figure C.6)

each boxplot is based on 30 repeated measurements, and for a bit rate of 300Mbps

(Figure C.6) each boxplot is based on 40 repeated measurements. The plotted medians

correspond to the median values presented in Table 5.4.

In addition, Table C.3 (page 250) shows for each client/server combination and for

different bit rates both the absolute and the relative performance overhead imposed by

a fully functional usage control infrastructure, i.e. when signaling system calls to the

Controller, and performing both local and remote data flow tracking ().

C.3. Transferring Files of Size 128MB 249

Figure C.6: Measurement results when transferring a 128MB file with 50Mbps.

 0

 5

 10

 15

 20

 25

 30

 35

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

Figure C.7: Measurement results when transferring a 128MB file with 100Mbps.

 0

 5

 10

 15

 20

 25

 30

 35

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

250 C. Evaluation: Cross-System Data Flow Tracking and Policy Propagation

Figure C.8: Measurement results when transferring a 128MB file with 300Mbps.

 0

 5

 10

 15

 20

 25

 30

 35

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

Table C.3: Absolute and relative overall overheads when transferring a 128MB file.

Overall overhead () for a bit rate of

Protocol Server Client 50Mbps 100Mbps 300Mbps

HTTPS Apache2 wget 10.69s (47%) 22.15s (196%) 29.03s (829%)

cURL 4.46s (20%) 16.50s (146%) 23.14s (671%)

aria2c 0.38s (2%) 6.92s (60%) 15.33s (570%)

nginx wget 10.50s (47%) 22.32s (198%) 29.27s (879%)

cURL 4.53s (20%) 16.45s (146%) 23.27s (695%)

aria2c 0.38s (2%) 6.83s (60%) 15.92s (610%)

FTPS vsftpd cURL 9.93s (44%) 21.76s (189%) 24.10s (310%)

LFTP 0.70s (3%) 11.90s (103%) 19.68s (660%)

ProFTPD cURL 4.84s (21%) 16.34s (139%) 23.37s (531%)

LFTP 0.77s (3%) 11.97s (102%) 19.23s (556%)

SSH OpenSSH SCP 13.09s (57%) 24.67s (212%) 30.80s (931%)

C.4. Transferring Files of Size 512MB 251

C.4 Transferring Files of Size 512MB

Figures C.9 to C.11 on pages 252 and 253 visualize the performance measurement

results presented in Table 5.5 as boxplots. For a bit rate of 50Mbps (Figure C.9) each

boxplot is based on 30 repeated measurements, for a bit rate of 100Mbps (Figure C.9)

each boxplot is based on 30 repeated measurements, and for a bit rate of 300Mbps

(Figure C.9) each boxplot is based on 40 repeated measurements. The plotted medians

correspond to the median values presented in Table 5.5.

In addition, Table C.4 (page 253) shows for each client/server combination and for

different bit rates both the absolute and the relative performance overhead imposed by

a fully functional usage control infrastructure, i.e. when signaling system calls to the

Controller, and performing both local and remote data flow tracking ().

252 C. Evaluation: Cross-System Data Flow Tracking and Policy Propagation

Figure C.9: Measurement results when transferring a 512MB file with 50Mbps.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

Figure C.10: Measurement results when transferring a 512MB file with 100Mbps.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

C.4. Transferring Files of Size 512MB 253

Figure C.11: Measurement results when transferring a 512MB file with 300Mbps.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

s

A/W A/C A/A N/W N/C N/A V/C V/L P/C P/L S/S

Legend: cf. Figure C.1.

Table C.4: Absolute and relative overall overheads when transferring a 512MB file.

Overall overhead () for a bit rate of

Protocol Server Client 50Mbps 100Mbps 300Mbps

HTTPS Apache2 wget 41.36s (46%) 87.71s (194%) 115.50s (855%)

cURL 16.61s (18%) 63.89s (141%) 91.61s (673%)

aria2c 0.97s (1%) 28.79s (63%) 62.07s (572%)

nginx wget 40.72s (45%) 86.01s (190%) 117.35s (850%)

cURL 17.23s (19%) 62.89s (139%) 93.09s (699%)

aria2c 0.85s (1%) 28.77s (63%) 63.46s (590%)

FTPS vsftpd cURL 36.48s (40%) 83.62s (185%) 94.87s (297%)

LFTP 2.77s (3%) 46.31s (102%) 74.71s (563%)

ProFTPD cURL 16.64s (18%) 63.37s (139%) 89.96s (544%)

LFTP 2.78s (3%) 46.95s (103%) 76.13s (583%)

SSH OpenSSH SCP 43.39s (48%) 89.32s (197%) 118.98s (1000%)

	Introduction
	Gap Analysis and Research Question
	Solution
	Contributions
	Threat Model
	Running Example
	Relevant Publications

	Usage Control Models and Infrastructures
	Formal Data Usage Control Model
	Enforcement Infrastructure
	Instantiation to Unix-like Systems

	Distributed Data Usage Control
	Distributed System Model
	Cross-System Data Flow Tracking
	Coordinating Policy Decisions Across Systems

	Architecture and Implementation
	High-level Architecture
	Cross-System Data Flow Tracking and Policy Propagation
	Taking Distributed Policy Decisions

	Evaluation
	Security Evaluation
	Cross-System Data Flow Tracking and Policy Propagation
	Distributed Policy Decisions
	Threats to Validity

	Related Work
	Data Usage Control
	Cross-System Data Flow Tracking and Policy Propagation
	Distributed Policy Decisions
	Orthogonal Approaches to Distributed Usage Control
	Securing Data Usage Control Infrastructures
	Digital Rights Management (DRM)

	Conclusions, Discussion and Future Work
	Conclusions
	Critical Reflection
	Limitations and Future Work

	Bibliography
	Indices
	Index
	List of Figures
	List of Tables
	List of Listings*0.4em

	Appendices
	Correctness of Function relevant
	Correctness of Predicate Sat
	Evaluation: Cross-System Data Flow Tracking and Policy Propagation

