
TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Lehrstuhl für Echtzeitsysteme und Robotik

A Model-Based Framework for System-Wide
Plug-and-Play with Flexible Timing Verification

for Automotive Systems

Hauke Stähle

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Alois Knoll

2. Hon.-Prof. Dr.-Ing. Gernot Spiegelberg,
Universität Budapest/Ungarn

Die Dissertation wurde am 12.11.2015 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 08.03.2016 angenommen.

Abstract

The integration of hardware and software components into today’s vehicles
from a variety of suppliers is a complex process and becomes more and more
challenging. The amount of code and data as well as the number of intercon-
nections increases rapidly and pushes the complexity of the on-board electronic
systems and the involved infrastructure to new limits. This stands in contrast
with the constantly growing demand for new functionalities to enhance safety,
comfort, and efficiency. Integration expenses are an increasing problem during
design time and the addition of hardware and software to a vehicle after sale
is limited today, because the systems are developed in a static manner.

To ease the integration process and to allow the addition of functionality after
sale, a model-based framework is proposed in this work that combines the plug-
and-play concept with an automatic timing verification to fulfill the real-time
requirements of automotive systems. The idea is to divide the functionality of
a vehicle into individual features that can be freely composed. Each feature
consists of a set of hardware and software components as well as communica-
tion and timing requirements, which are automatically matched and verified
in the resulting system setup. Addition of further features and automatic re-
verification is possible at any point in time with an adjustable approximation
level. The approach is capable to process event-based communication patterns
and is based on the data-centric design principle, i.e., data senders and receivers
are loosely coupled.

The contributions of this work comprise the introduction of the system-wide
plug-and-play approach, the definition of a minimal set of suitable models,
transformation patterns for a mapping to exemplary technologies, and the in-
troduction of a method to specify timing requirements for unknown setups.
They further include the development of a performance verification tool based
on the Real-Time Calculus framework, its enhancement for the automatic pro-
cessing of cyclic resource dependencies, and the design of an approach to con-
trol the approximation of the analysis and trade tightness of the derived timing
bounds for computation time.

The feasibility of the approach is shown by a running example based on the
electric vehicle demonstrator (eCar) throughout this work. The performance
of the extensions and approximation approaches for the verification process are
examined in detail by a series of experiments.

Zusammenfassung

Die Integration von Hardware- und Softwarekomponenten verschiedenster Zu-
lieferer in heutige Fahrzeuge ist ein komplexer Vorgang und wird immer schwie-
riger. Die Menge an Software und Daten sowie die Anzahl der Verbindungen
steigt rapide an und bringt die Komplexität der Elektronik im Fahrzeug und der
benötigten Infrastruktur an ihre Grenzen. Dies steht im Widerspruch zu dem
stetig wachsenden Bedarf an neuen Funktionen um Sicherheit, Komfort und
Effizienz zu erhöhen. Die Kosten für die Integration zur Entwurfszeit sind ein
zunehmendes Problem und das Hinzufügen von neuer Hardware und Software
in ein Fahrzeug ist heutzutage nach dem Kauf nur eingeschränkt möglich, weil
die Systeme statisch entwickelt werden.

Um den Integrationsprozess zu vereinfachen und um das Hinzufügen von Funk-
tionen nach dem Kauf zu ermöglichen, wird in dieser Arbeit ein modellgetriebe-
ner Ansatz erläutert, welcher den Plug-and-Play-Gedanken mit einer automati-
sierten zeitlichen Verifikation verknüpft, um den Echtzeitanforderungen eines
Fahrzeugsystems gerecht zu werden. Die Idee besteht aus einer Aufteilung der
Funktionen eines Fahrzeugs in einzelne Features, welche frei miteinander kom-
biniert werden können. Jedes Feature kann eine Menge von Hardware- und
Softwarekomponenten beinhalten sowie Anforderungen bezüglich der Kom-
munikation und des zeitlichen Verhaltens, welche automatisiert verarbeitet und
in der resultierenden Systemausprägung verifiziert werden. Das Hinzufügen
von weiteren Features und die erneute automatisierte Verifikation sind zu je-
dem Zeitpunkt möglich mit einer freien Wahl des Approximationsgrades. Der
Ansatz ist in der Lage, ereignisbasierte Kommunikationsmuster zu verarbeiten
und basiert auf dem datenzentrischen Entwurfsprinzip, bei dem die Sender und
Empfänger von Daten lose miteinander verbunden sind.

Die Beiträge dieser Arbeit umfassen die Einführung des systemweiten Plug-
and-Play-Ansatzes, die Definition einer minimalen Menge von geeigneten Mo-
dellen, Transformationsmuster für eine Abbildung auf exemplarische Techno-
logien und die Beschreibung einer Methode zur Spezifikation von zeitlichen
Anforderungen in unbekannten Konfigurationen. Sie beinhalten weiterhin die
Entwicklung eines Werkzeugs, basierend auf dem Real-Time Calculus, zur Veri-
fikation des zeitlichen Verhaltens und dessen Erweiterung zur automatisierten
Verarbeitung von zyklischen Abhängigkeiten sowie dem Entwurf einer Mög-
lichkeit, die Approximation der Analyse zu steuern und somit die Genauigkeit
der berechneten Zeitgrenzen gegen Berechnungsaufwand einzutauschen.

Die Realisierbarkeit des Ansatzes wird mittels eines durchgängigen Beispiels
innerhalb dieser Arbeit aufgezeigt, welches auf dem elektrischen Fahrzeugde-
monstrator (eCar) basiert. Die Eigenschaften der Erweiterungen und Approxi-
mationsmethoden für den Verifikationsvorgang werden durch eine Reihe von
Experimenten untersucht.

Danksagung

Die vorliegende Arbeit entstand während meiner Anstellungen als wissenschaft-
licher Mitarbeiter am Lehrstuhl für Echtzeitsysteme und Robotik an der Tech-
nischen Universität München sowie am Forschungs- und Transferinstitut fortiss.
Mein Dank geht an Professor Alois Knoll für das Ermöglichen dieser Arbeit,
seine wissenschaftliche Betreuung und unterstützende Organisation. Ebenso
danke ich Professor Gernot Spiegelberg für seinen Einsatz als Projektleiter von
Diesel Reloaded, die vielen aufgebrachten Stunden und die Chance an seinem
Weitblick teilhaben zu dürfen. Mein Dank gilt Claudia Meis und Dr. Ljubo
Mercep für die gegenseitige Hilfe in unserem gemeinsamen Projekt und darüber
hinaus. Dr. Christian Buckl möchte ich für die konstruktiven Ratschläge in allen
Belangen danken, für die Möglichkeit, in seiner Forschungsgruppe mitwirken
zu dürfen und für den stets motivierenden Umgang. Dr. Kai Huang gebührt
mein Dank für seinen Optimismus, seine wissenschaftliche Kompetenz und für
die hilfreichen Kommentare zu dieser Arbeit. André Gaschler und Michael
Geisinger danke ich für die wertvollen Vorschläge nach dem Durchsehen dieser
Ausarbeitung. Meinen Kollegen Benjamin Wiesmüller, André Leimbrock und
Michael Geisinger danke ich für ihre Geduld und Verständnis, als ich mich
in den letzten Schritten dieser Dissertation nur mit reduzierter Kraft unserem
Vorhaben widmen konnte. Ein umfangreiches Lob gilt den von mir betreuten
Studenten für ihr entgegengebrachtes Vertrauen und Engagement. Dies sind
in alphabetischer Reihenfolge: Roshan Chulyada, Christian Dietz und Raphael
Haase. Darüber hinaus möchte ich dem gesamten Lehrstuhl für Echtzeitsys-
teme und Robotik an der TUM sowie der Gruppe Cyber-Physical Systems am
fortiss danken für den freundlichen und kooperativen Umgang miteinander.

Meiner Freundin gilt ein besonderer Dank für ihre entgegengebrachte Wärme,
die notwendige Ablenkung und die Übernahme vieler Aufgaben, damit ich mich
intensiv dieser Arbeit widmen konnte. Bei meinen Freunden bedanke ich mich
für das erholende Einbringen von anderen Gedanken in mein Leben.

Zuletzt, aber nicht minder wichtig, möchte ich meiner Familie danken, welche
mich aus der Ferne stets in meinen Vorhaben unterstützt und an meinen Erfolg
glaubt.

München, im Oktober 2015 Hauke Stähle

Contents

List of figures iii

List of tables vii

List of acronyms ix

List of symbols and operators xi

1 Introduction 1
1.1 Factors increasing the complexity and amount of functions 1
1.2 Trends influencing the automotive electronic architecture 6
1.3 Research goals . 10
1.4 Main contributions . 11
1.5 Structure of this document . 12

2 Modeling and timing verification background 13
2.1 Component-based development . 13
2.2 Data-centric communication . 14
2.3 Model-driven engineering . 14
2.4 Time modeling, representation, and constraints 17
2.5 Timing analysis methods . 20
2.6 Real-Time Calculus and Modular Performance Analysis 23
2.7 Modeling and verification background summary 30

3 Combining plug-and-play and timing guarantees 31
3.1 Requirements for a flexible verification approach 31
3.2 Method for system-wide plug-and-play . 33
3.3 Introduction of the running example . 41
3.4 Combining plug-and-play and timing guarantees summary 44

4 Adequate meta-models 45
4.1 Requirements for adequate meta-models . 46
4.2 Meta-model representation . 47
4.3 FEATURE meta-model . 48

i

CONTENTS

4.4 FEATURE-SET meta-model . 49
4.5 SYSTEM meta-model . 49
4.6 DATA meta-model . 51
4.7 LOGICAL meta-model . 51
4.8 DEPLOYMENT meta-model . 53
4.9 TIMING REQUIREMENTS meta-model . 56
4.10 Adequate meta-models summary . 62

5 Model transformation and platform mapping 63
5.1 Transformation from a FEATURE-SET model to a combined FEATURE model . . 64
5.2 Transformation from a combined FEATURE model to an INSTANCE model . . . 64
5.3 Platform mapping: From an INSTANCE model to an ANALYSIS model 70
5.4 Model transformation and platform mapping summary 79

6 Timing verification framework 81
6.1 Refined ANALYSIS meta-model (M) . 81
6.2 Analysis and verification procedure . 82
6.3 Implementation . 84
6.4 Automatic handling of resource cycles in the system graph 90
6.5 Bounded buffer handling . 92
6.6 Discussion of the verification framework . 98
6.7 Timing verification framework summary . 100

7 Adaptive approximate analysis 101
7.1 Effects on the computation time of the analysis 101
7.2 Balancing computation time, tightness, and memory 102
7.3 Approximation strategies . 106
7.4 Adaptive approximate analysis summary . 117

8 Conclusion 119
8.1 Summary of contributions . 119
8.2 Future work . 120

A Appendix 123
A.1 Related work . 123
A.2 Definitions and equations of stream filters . 135
A.3 Complete parameter set of the eCar example . 139
A.4 Complete ANALYSIS model (M) of the eCar example 140

References 143

ii

List of figures

1.1 Development of automotive electronic architecture complexity 2
1.2 Research and technology demonstrator InnoTruck 3
1.3 Sidesticks of the InnoTruck . 4
1.4 Properties of smart cyber-physical systems . 7
1.5 Centralization of the physical architecture by integration 8
1.6 RACE architecture as an example of a physically centralized design 9
1.7 Centralization of the logical architecture by horizontal design 9
1.8 The 5-module approach . 10
1.9 Structure of this thesis . 12

2.1 Example of a component-based system design 13
2.2 Entities of the data-centric communication paradigm 14
2.3 Modeling layers . 15
2.4 Times associated with a task execution . 18
2.5 Example of an event chain and the related end-to-end timing 19
2.6 Structuring of performance analysis methods . 20
2.7 Comparison of bounded analysis to other analysis methods 21
2.8 Example system model of the Real-Time Calculus framework 24
2.9 Examples of arrival curves . 26
2.10 Examples of service curves . 27
2.11 Delay and backlog . 29
2.12 Stream filter element . 30

3.1 System-wide plug-and-play process and involved artifacts 34
3.2 Development and adaption timeline . 35
3.3 Phases of the system-wide plug-and-play approach 36
3.4 Comparison of integration variants . 38
3.5 Roles defined in AUTOSAR . 39
3.6 Roles within the system-wide plug-and-play approach 40
3.7 Rendering of the eCar demonstrator . 41
3.8 The base feature of the eCar . 42
3.9 The movement and control feature of the eCar . 43
3.10 The camera feature of the eCar . 43

iii

LIST OF FIGURES

4.1 Relations of the models . 46
4.2 Visualization of the used modeling elements . 48
4.3 FEATURE meta-model . 48
4.4 FEATURE-SET meta-model . 49
4.5 FEATURE-SET models of the eCar example . 49
4.6 SYSTEM meta-model . 50
4.7 DATA meta-model . 51
4.8 LOGICAL meta-model . 52
4.9 LOGICAL model of the movement and control feature of the eCar example . . 53
4.10 LOGICAL model of the camera feature of the eCar example 53
4.11 DEPLOYMENT meta-model . 54
4.12 DEPLOYMENT model of the movement and control feature of the eCar example 55
4.13 DEPLOYMENT model of the camera feature of the eCar example 55
4.14 TIMING REQUIREMENTS meta-model . 56
4.15 Elaboration of RelativeChainLatency . 58
4.16 Elaboration of TwoPointChainLatency . 59

5.1 Transformation steps from a FEATURE-SET model to an ANALYSIS model . . . 63
5.2 INSTANCE meta-model . 66
5.3 Exemplary visualization of transformation chain steps 67
5.4 Distribution variants and impact on the data instantiation process 67
5.5 Example for the transformation from an INSTANCE model to an ANALYSIS model 70
5.6 Simplified representation of the ANALYSIS meta-model 71
5.7 Mapping of software component instances . 72
5.8 Example for the handling of execution triggers and multiple outputs 73
5.9 Mapping of a switched Ethernet . 76
5.10 Mapping of a priority-based switched Ethernet 77
5.11 Mapping of a CAN bus . 78
5.12 Mapping of a serial bus . 79

6.1 Screenshot of our verification tool . 85
6.2 Unfolded curve representation . 86
6.3 Example for the envelope calculation during the min-plus convolution 89
6.4 Complex loop example . 91
6.5 Development of curves of a filter with cyclic resource dependencies 91
6.6 Examples for the subadditive closure of a single segment 97
6.7 Computation times for the subadditive closure with various heuristics 99

7.1 Visualization of arrival and service curve approximations before filtering . . . 103
7.2 Analysis of available memory versus computation time 104
7.3 Example for the transformation of a curve into its canonical representation . 107
7.4 Example of a three-segment approximation . 109
7.5 Event streams of the eCar example . 110
7.6 Event streams of the complex loop example . 111

iv

LIST OF FIGURES

7.7 Illustration of the maximal busy-period size . 112
7.8 Exemplary visualization of Finitary Real-Time Calculus 112
7.9 Cyclic mesh example . 114
7.10 Event chains of the cyclic mesh example . 114
7.11 Experimental results of the Fractional Finitary Real-Time Calculus approach . 116

A.1 Example of the abstraction levels of EAST-ADL 126
A.2 Complete ANALYSIS model of the eCar example 141

v

LIST OF FIGURES

vi

List of tables

2.1 Properties of timing analysis methods . 22
2.2 Definitions of selected types of service curves . 28

3.1 Scenarios for the reconfiguration of a vehicle . 32

4.1 Dictionaries of the eCar example . 51
4.2 List of timing requirements . 57
4.3 Comparison of proposed timing requirements with the AUTOSAR Timing

Extensions . 60
4.4 List of timing requirements of the eCar example 61

5.1 Distribution variants for network element types 68
5.2 Properties that influence the timing behavior of processing units 74
5.3 Properties that influence the timing behavior of switched Ethernet 76
5.4 Properties that influence the timing behavior of priority-based switched Eth-

ernet . 77
5.5 Properties that influence the timing behavior of a CAN bus 78

6.1 Basic operations for curves within the Real-Time Calculus 87
6.2 Parameters for the complex loop example . 91
6.3 Parameters for the construction of an ultimately pseudo-periodic curve for

the closure of a single segment . 98
6.4 Comparison of the computation times for the subadditive closure with dif-

ferent heuristics . 99

7.1 Effect on verification results caused by approximation 102
7.2 Point of the middle segment that is used for slope calculation 108
7.3 Comparison of analysis results for the eCar example 110
7.4 Verification results of the eCar example . 110
7.5 Comparison of analysis results for the complex loop example 111
7.6 Parameters for cyclic mesh example . 114
7.7 Comparison of analysis results for cyclic mesh example 114
7.8 Verification results of the eCar example for Fractional Finitary analysis 115

vii

LIST OF TABLES

A.1 Tools for system level performance analysis . 133
A.2 Parameter set of the eCar example – SYSTEM model 139
A.3 Parameter set of the eCar example – DEPLOYMENT model (software compo-

nents) . 139
A.4 Parameter set of the eCar example – DEPLOYMENT model (messages) 140
A.5 Parameter set of the eCar example – LOGICAL model 140

viii

List of acronyms

AUTOSAR Automotive Open System Archi-
tecture.

BCET Best-Case Execution Time.

CAN Controller Area Network.
CPU Central Processing Unit.

DAG Directed Acyclic Graph.

eCar Experimental Platform for Innovative
Electric Car Architectures.
ECU Electronic Control Unit.
ET Event-Triggered.

FIFO First-In-First-Out.
FPNP Fixed-Priority Non-Preemptive.

GPC Greedy Processing Component.

HMI Human-Machine Interface.

ICT Information and Communication Tech-
nology.

IEEE Institute of Electrical and Electronics
Engineers.
ISO International Organization for Stan-
dardization.
ISR Interrupt Service Routine.

MD Maximum Delay.

NC Network Calculus.

OMG Object Management Group.

PJD Period, Jitter, minimum Distance.

RTC Real-Time Calculus.

TD see TDMA.
TDMA Time Division Multiple Access.
TT Time-Triggered.

UML Unified Modeling Language.

WCET Worst-Case Execution Time.

ix

List of acronyms

x

List of symbols and operators

Notation Description
N Set of natural numbers.
B Set of Boolean values.
F Set of wide-sense increasing functions with f (t) = 0 ∀ t ≤ 0.
∆ A time interval.
α Pair of arrival curves.
β Pair of service curves.
{α,β}u, {α,β}l Upper/Lower arrival/service curve.
γ Pair of workload curves.
bα, bβ Scaled curves.
C Specification of a segment-wise defined curve.
Sa Set of all segments of aperiodic part of C .
Sp Set of all segments of periodic part of C .
s A single segment.
(cx0, cy0) Starting point of periodic part of C .
(c∆0, c∆0) Repetition vector for periodic part of C .
Cρ Long-term slope of curve C .
c(∆) Function of unfolded curve C .
Φ Limit for unfolding of a curve C .
⊗, ⊗ Min-plus/Max-plus convolution.
�, � Min-plus/Max-plus deconvolution.
x? Subadditive closure of x.
x? Superadditive closure operation of x.
p() Curve approximation function.
b c Floor function.
d e Ceiling function.
f () Stream filter function.
P Set of filter parameters.
E Set of analysis results.
d Delay.

xi

List of symbols and operators

Notation Description
de2e End-to-end delay.
b Backlog size.
D() Delay-bound function (max. horizontal distance).
B() Backlog-bound function (max. vertical distance).
MBS Maximal busy-period size.
r F F Fraction factor (approximation parameter).
x̃ Approximation of x .
M An ANALYSIS model.

xii

Chapter 1

Introduction

The electronic architecture of a vehicle today is a highly complex distributed system. Many
of the functions are implemented in software running on several electronic control units
(ECUs), which are distributed across the whole vehicle and that are interconnected via het-
erogeneous networks for data exchange. This electronic architecture supports and controls
the mechanical setup of the vehicle to enhance safety, comfort, efficiency, and other fac-
tors. The number of ECUs already reached 30 to 100 in one vehicle, with up to 100 million
lines of code running on them [1]. The number of functions and variants of vehicles will
continue to increase in the future [2]. With the amount of functions, the degree of inter-
connection will increase as well and the functions will become more dependent on each
other. This raises complexity and costs for the integration as the system grows further. The
current development processes are not suited to implement this growing complexity with
reasonable costs. Fig. 1.1 compares the complexity inherent to the functionality, which
cannot be changed, and the complexity that is caused by the currently applied technolo-
gies and architecture of the system. The gap between those two metrics defines a room for
improvement to reduce unnecessary costs and effort [3, 4].

This thesis proposes a method to reduce the gap between the actual and needed com-
plexity by a system-wide plug-and-play approach with an integrated, automatic verification
process. This ultimately helps to lower integration costs and increases flexibility during de-
velopment and configuration of a vehicle, even so far that it allows to change the setup
after sale.

1.1 Factors increasing the complexity and amount of functions
Following, reasons for the ever-growing amount of functions and complexity in the automo-
tive domain are given, divided into four categories: Social mega-trends, political decisions,
individual comfort and safety, and competition. The statements are an extension of a study
about the future vehicle information and communication technology architecture [3].

1.1.1 Social mega-trends

Social mega-trends are driven by individuals and societies whose actions stem new require-
ments for the electronic architecture. In the last decade, especially three social mega-trends

1

1. INTRODUCTION

Time

C
o
m

p
le

x
it

y
 &

 N
o

.
o
f

fu
n

ct
io

n
s

Introduction of CAN as
standard bus (1987)

Age of cable
~40 yrs

Age of busses and ECUs
~26 yrs

Age of Services
~17 yrs

203519851975

Bosch ABS introduced in
Mercedes S-Class (1978)

1995 20051955 2015 2025

1st Million of "VW
Beetle" produced

1965

~10 ECUs
(e.g.Passat B5, 1996)

~43 ECUs
(e.g. Passat B6 2005)

Centralized ICT
Architecture

~70 ECUs
(2010)

Cloud/Swarm oriented
ICT architecture

Actual
complexity

Amount of
functions
(~necessary
complexity)

Figure 1.1: Development of automotive electronic architecture complexity (adopted from [3]).
The gap between the actual and the necessary complexity defines a room for improvement for
future architectures.

were visible: Environmental care, increasing urbanization, and the demographic change of
society, which are elaborated in the following. Environmental care summarizes the ac-
tions and thoughts to reduce the environmental impact of a human being, e.g., to reduce
carbon dioxide exhausted by combustion engines or the effort it takes to build and recy-
cle a personal vehicle. The solutions include the usage of vehicles that run on alternative
energy sources than fossil fuels, like electric vehicles or vehicles with a mixture of combus-
tion and electric engines. This increases the number of vehicle types a manufacturer has to
provide in order to meet the expectations of costumers. This demands a flexible approach
that can handle different configurations seamlessly [6]. The environmental aspects are not
bounded by the borders of the vehicle. The approaches intend to give a holistic solution to
electric mobility, i.e., considering electric power generation, transmission, and storage as
well. Exemplary for the research activities in this area, the InnoTruck is shown in Fig. 1.2,
which functions as a smart grid if electric vehicles are connected to it and optimizes the
overall energy balance [5, 7]. Urbanization refers to the movement of households from
sparse populated areas into urban areas. People living in cities have different requirements
for transportation than those living at the countryside. During the growth of the cities,
this difference even increases. The acceptance of dependence on public transportation is
much more developed in urban areas as the public transportation system is usually better
equipped and space for individual vehicles is expensive and rare. Nevertheless, sometimes
demand for an individual vehicle arises to solve certain tasks. To solve this situation, car-
sharing concepts are available in cities that offer the possibility to easily rent vehicles, which
are distributed across the city. This combines the flexibility of an own vehicle while keeping

2

1.1 Factors increasing the complexity and amount of functions

Figure 1.2: The research and technology demonstrator InnoTruck as an example for a holistic
approach to electric mobility. Several electric vehicles can be connected to the InnoTruck to
show different aspects of micro smart-grids [5].

costs low. But car-sharing concepts bring up new challenges for the electronic architecture
of vehicles: Customers want to have instant access to personal data, independent of the ac-
tual vehicle that is used in that moment. Consequently, the authentication of the driver has
to be established with the ability to securely store and download data from remote points
[4]. As the life expectancy of the people in developed countries continues to increase and
in contrast the number of newborns shrinks every year, the distribution of society changes
– known as the demographic change. The wish for mobility persists in all ages, effectively
meaning that the average age of a driver increases as the average age of the society does
[8]. In this context, vehicles should support older people to keep their wish of mobility. This
can be established by intelligent and tolerant vehicles, which help the driver and intervene
in case of dangerous situations. That puts new challenges to the electronic architecture of
the vehicles as the responsibility of an accident-free journey is transferred from the driver
to the vehicle.

1.1.2 Political decisions

Beyond social mega-trends, political decisions influence the electronic architecture. The
international standard ISO 26262 [9] is meant as a guideline for the development of
safety-critical automotive systems. It covers the aspect of functional safety and contains
safety requirements, a methodology for the development, and implementation patterns.
The standard directly impacts the development process and electronic architecture of ve-
hicles, see for example [10]. Besides, the government defines functionalities that have to
be implemented in order to increase the safety or other aspects of a vehicle or traffic. An
example is the eCall system that was made compulsory for all new vehicles from 2018
on within the European Union [11]. The eCall system can automatically connect to an
emergency service in case of an accident and transfer relevant data like the position of the
vehicle. It is very likely that other systems will be made compulsory in the future, espe-
cially more advanced active safety systems that automatically intervene the commands of
the driver. Political regulations further demand vehicle manufacturers to reduce the ex-

3

1. INTRODUCTION

Figure 1.3: Sidesticks of the InnoTruck as an example for the human-machine interface of a
drive-by-wire system [15, 16].

hausting footprint of the produced fleet. This is possible, on the one hand, by a switch to
electric or hybrid vehicles [12] and, on the other hand, by an increase of the efficiency of
the drive-train by mechanical and electronic improvements. Because pollution of cities is
an increasing problem, it is expected that this trend will continue in the future.

1.1.3 Individual comfort and safety

While political decisions and social mega-trends limit or influence the decisions of individ-
uals to buy vehicles, personal factors are not less important, which focus on the individual
experience while driving, like comfort and safety. Intervention refers to the process of
taking control by an electronic system as part of an active safety system. Whenever a dan-
gerous situation is detected, the driver is first warned and in case the driver does not react,
steering, braking, and acceleration are directly controlled by the electronics. An exemplary
study of the impact of such an autonomous braking system is provided in [13]. The number
of such intervening functions probably increases in the future to enhance safety. These sys-
tems usually rely on multiple states of the vehicle from different sources, e.g., the wish of
the driver, the road condition, and an environmental representation, which leads to a strong
coupling of the involved electronic systems. Autonomous or semi-autonomous vehicles ex-
ecute a driving task with no or little inference from a driver. A driving task in this context
refers to a control of the vehicle for a certain amount of time and/or distance, in extreme a
complete journey. Autonomous vehicles render another challenge on the electronic archi-
tecture, because the driving task has to be constructed in a fail-operational manner [14],
i.e., the driving task must not fail even if a fault in the system occurs. For example, it
must not be interrupted by a malfunction of a sensor, actuator, or electronic control unit.
Drive-by-wire refers to a setup, where the primary connection between driver and vehi-
cle – regarding the execution of driving commands – is realized with an electronic system.
E.g., instead of a direct mechanical connection between steering wheel and axle, a sensor
at the steering wheel recognizes the commands, an electronic control unit processes the
data, and control actuators then in turn manipulate the axle. Drive-by-wire functionality
simplifies implementation of autonomous and intervening vehicles as direct execution of
control commands is possible [17], but are complex to implement. Vehicles become in-

4

1.1 Factors increasing the complexity and amount of functions

creasingly connected and access data from different sources. They connect to the internet
to access real-time data like traffic information or communication services like e-Mail. This
connection is not limited to internet services: Car-to-car and car-to-infrastructure commu-
nication is an upcoming topic to enhance the safety and comfort of vehicles [13]. This has
several impacts on the electronic architecture of the vehicle as multiple radio communica-
tion standards have to be supported and data transfers have to be established dynamically.
For example, a video call might be routed through the network of the vehicle, but only if
the available resources allow so.

1.1.4 Manufacturer competition

While the above mentioned trends are directly consumer-visible, the electronic architecture
is subject to modifications to reduce development effort and costs, and to increase reliability
and scalability. These are implicit changes that influence the competition of the manufac-
turers. Reduction of production and development costs of a vehicle is an omni-present
objective in order to stay competitive. New solutions for the electronic architecture are
demanded that provide the same functionality while cutting the expenses to a minimum.
This can be achieved, for example, by the integration of the functions of several electronic
control units into one unit and therefore reducing the hardware costs by the sharing of
resources [18]. Physical integration is not the only dimension as the development effort
contributes increasingly to the costs of a vehicle, especially when considering the grow-
ing amount of distributed and dependent functions that make the development process
difficult. Diagnosis services of vehicles should enable a service technician and the manu-
facturer to easily spot causes of faults. Diagnosis standards like the On-Board-Diagnostics
(OBD) are already existing, but those cover only a subset of the functionality of the vehi-
cle. While the diagnosis system is active, it might utilize a relevant part of the available
data rate and therefore might influence the timing of other functions. With new electronic
architecture concepts, which handle diagnosis ability as a first class objective, performance
of such services can be improved. To extend the functionality and to overcome errors in the
firmware of electronic control units, the possibility of updates has to be present [4]. Dur-
ing the update process the firmware is exchanged by deploying a new version into the non-
volatile memory. This process is usually performed via the existing infrastructure, where
the communication buses – depending on their data rate – can significantly slow down
this process. If the electronic architecture is re-designed, this bottleneck can be mitigated
[19]. The number of variants of vehicles is steadily increasing to fit the costumers’ needs
as close as possible. Handling those variants and their configuration becomes difficult as
more combinations have to be considered. By extending the capabilities of the electronic
architecture to support the verification and integration process, the variability problem can
be mitigated successfully. An additional argument is the limited extendibility of vehicles.
As of 2015, it is hardly possible to extend the functionality after sale. This includes the
addition of sensors, actuators, and/or software components, possibly by different vendors.
Certification describes the proof of functional or non-functional behavior of the system. It
is carried out by measurements, long-time testings, or with formal approaches. The certifi-
cation of safety-relevant components is frequently the most difficult part in the certification

5

1. INTRODUCTION

process. The electronic architecture can be designed in a way that it either supports this
process or even does it automatically, either before or during runtime [20].

1.1.5 Summary of influencing factors

The mentioned points show that the complexity of the electronic architecture is likely to
increase further in the future. Countermeasures have to be developed to reduce the devel-
opment and integration effort, in order to still be able to enhance the functionality while
keeping the induced costs to a minimum. This thesis contributes to this demand by provid-
ing an alternative design and verification approach.

1.2 Trends influencing the automotive electronic architecture
This section introduces current trends in the technology and structure of automotive elec-
tronic systems, which have the potential to reduce the development and integration effort
in the future.

1.2.1 Transition from static to dynamic systems

Vehicles used to be static systems – once built and configured, the setup did not change
throughout its whole lifetime. As software began to play an important role in the func-
tionality of a vehicle, diagnosis and updates of the system became necessary to mitigate
possible faults and to fix safety-related bugs that were found after delivery. This evolved
to partly-adaptable systems, where predefined hardware can be added and software cus-
tomizations are possible. These changes of the system are either already known during the
design time of the vehicle, or the modification is only possible in a limited way, e.g., by the
installation of additional “Apps” on dedicated, mostly user-interactive, control units. We
expect that this behavior will change in the future, towards more flexible systems that can
be extended by hardware and software unknown during the design time of a vehicle. In
order to support this, the vehicle has to be equipped with self-describing and reconfigura-
tion capabilities, in short, it has to become adaptive. The change to dynamic systems is
not limited to automotive systems, as can be seen by the upcoming topic of smart cyber-
physical systems. They extend the definition of cyber-physical systems (CPS), which are
”[...] an integration of computation with physical processes whose behavior is defined by both
cyber and physical parts [...]” [22]. In contrast, smart CPS focus on a cross-, self-, and
live-domain [21] as shown in Fig. 1.4. The main properties of these systems include that
they have an understanding of themselves, their requirements and the environment in that
they are embedded. Based on this information, flexible and dynamic systems can be built.
We expect these concepts to be transferred into the automotive area to overcome future
requirements.

The transition to dynamic systems goes hand-in-hand with a change of the messaging
paradigm towards data-centric communication [23], which decouples the senders and re-
ceivers of messages. The entities communicate via so-called topics that define the structure
of the data and provide a unique name for referencing. The actual communication routes of
the system are either calculated automatically during design time or during runtime. This
enables a flexible integration of components into the system.

6

1.2 Trends influencing the automotive electronic architecture

domain-
-discipline

-technology
organization-

functional-

Self
-documenting
-monitoring
optimizing-

healing-
adapting-

-(re)configuration
re)deployment-(

-(de)comissioning
-update
-extension

Auto-
mation

Tele-
com

CPS

Logis-
tics

Figure 1.4: Properties of smart cyber-physical systems (adopted from [21]). Smart cyper-
physical systems have a self-understanding of their capabilities and state, are deployed across
multiple technologies and offer the ability for a seamless reconfiguration. It is expected that
automotive systems will be equipped with similar features in order to become more flexible.

1.2.2 Transition from vertical, distributed to horizontal, integrated designs

One possibility to mitigate the increasing complexity is a shift of the architecture towards
a centralized design. This shift is two-fold: On the physical level by an integration of
several function onto a single electronic control unit [24], and on the logical level by a
re-arrangement of the functional dependencies into horizontal layers, see for example the
service architecture of [25].

At the physical level, centralization refers to a transition of distributed processing enti-
ties towards integrated ones to reduce hardware and software costs by resource sharing, see
Fig. 1.5. Furthermore, it is possible to upgrade the existing system by addition of functions
on the centralized nodes. Such a design typically consists of centralized processing units
as the integration point for most functions, smart aggregates as sensor and actuator enti-
ties, and a communication network to interconnect the different nodes [26]. One example
for a centralized physical architecture is the architecture of the RACE (Robust and Reliant
Automotive Computing Environment for Future eCars) project [27], shown in Fig. 1.6. A
circular topology for the communication system was chosen, forming one ring for the cen-
tral processing platforms and two rings for aggregates of the front and back of the vehicle.
The rings are interconnected with each other via gateways. Communication between cen-
tral processing platforms is implemented redundantly by a double-ring. Effectively, four
different paths exist: Two by each physical ring and one in each direction (clock-wise and
counter-clock-wise). Depending on the safety requirements, the rings to connect aggregates
are open or closed and realized either redundant or simple. One special feature of central

7

1. INTRODUCTION

Integrated HMI
Processing Platform

Smart
Sidestick

Smart
LCD

Integrated Drivetrain
Processing Platform

Smart
Motor

Smart
Wheel

ECU

Communication Backbone

Acceler-
ation

GearSteering Brake

ECU ECU ECU

Figure 1.5: Centralization of the physical architecture by integration (adopted from [6]). Costs
are reduced by sharing resources on the integrated processing platforms and the integration
process is simplified. Smart aggregates abstract the functionality of sensors and actuators and
offer a modularization point for a flexible system setup.

processing platforms is the double-lane architecture. Each central processing platform con-
sists of two processing lanes. Safety-critical data is processed by both lanes simultaneously
and an error is detected by a comparison of the results of both lanes. In case of an error,
the central processing platform is considered faulty and switched off. Therefore, with one
central processing platform, a system with fail-silent behavior can be implemented. If two
central processing platforms are utilized, each with a double-lane architecture, it is possible
to design a fail-operational system by a hot stand-by configuration.

At the logical level, centralization refers to a combination of arbitration and fusion
points by a shift from the vertical architecture paradigm to a horizontal architecture para-
digm. In the classic vertical paradigm, one electronic control unit is responsible to provide
one specific functionality of the vehicle combined with the mechatronic components, as
seen at the left side of Fig. 1.7. To enhance functionality, the electronic control units were
interconnected to share state and event information. With this approach, functions running
on electronic control units are highly coupled with each other across the vehicle, because
they need knowledge from each other for a proper arbitration and fusion of data. Sys-
tem management is distributed among multiple processing entities, a global state view and
strategy does not exist. With a centralization of the logical architecture, these kinds of prob-
lems are avoided. The idea is to decouple the strategy level from the execution level. The
two levels are interconnected by generic or generated layers for data fusion and arbitra-
tion, as depicted at the right side of Fig. 1.7. With this concept, it is possible to exchange or
extend functions of the strategy level as well as sensors and actuators of the execution level
with little mutual influence. For example, consider a drive-by-wire system: Sensors from
the driving wheel do not necessarily need to be exclusively connected with actuators that
control the posture of the wheels. Other functions (e.g., safety related intervention) might
control these actuators and a decoupling is useful in that case. An extreme implementation
of this principle was presented in the SPARC (Secure Propulsion Using Advanced Redun-

8

1.2 Trends influencing the automotive electronic architecture

Central Processing
Platform

CPU CPU

Central Processing
Platform

CPU CPU

SwitchSwitch

Smart
Aggregate

Smart
Aggregate

Smart
Aggregate

Smart
Aggregate

Figure 1.6: RACE architecture as an example of a physically centralized design (adapted from
[27]). The setup enables the execution of fail-operational functions.

Execution
Level

Strategy
Level

Driving
Functions

Comfort
Functions

Assistance
Functions

Arbitration

Interface

Fusion

Smart
Motor

Smart
Camera

Smart
Sidestick

ECU

Communication Backbone

Acceler-
ation

GearSteering Brake

ECU ECU ECU

Figure 1.7: Centralization of the logical architecture by horizontal design. In the horizontal
design, the direct relations between sensors/actuators and functions is broken up in favor of
functional layers. This decouples the strategy from the execution level and therefore increases
the flexibility.

dant Control) project [28, 29]. In that project, the interface between the strategy level and
the execution level consists only of a single vector that includes the desired direction and
velocity of the vehicle. With that minimalistic interface, a partly or complete change of the
execution level, e.g., engine or even vehicle type, is possible.

5-module approach as example for an integrated, horizontal design. The 5-module
architecture [26] as proposed by Prof. Spiegelberg is an example for a centralized design.
The modules and their relations are sketched in Fig. 1.8. This architecture describes a par-
titioning of functions of a vehicle on a logical and physical level into five separate modules:
Human-machine interface, virtual co-driver, drivetrain, comfort systems, and an infrastruc-
ture meta-module. From a logical point of view, the human-machine interface as well as
the virtual co-driver are mapped to the strategy level of the system. These modules pro-
vide a driving vector that is forwarded to the execution level, which consists of the comfort
systems and the drivetrain module. A fifth module, called infrastructure meta-module, ren-

9

1. INTRODUCTION

Module: Communication, Energy
and System Management

Execution Level

Module: Drivetrain

Strategy Level

Environment

Module: Virtual Co-DriverModule: Human-
Machine Interface

Module: Comfort
Systems

Arbitration Predictive Active Safety

Reactive Active Safety

Driver Sensors

Environment

Figure 1.8: The 5-module approach combines physical and logical architecture aspects
(adopted from [26]). Each module represents a certain set of functions that are executed
on an integrated platform. The possibility of an exchange of individual modules makes this
approach flexible in the configuration.

ders the access point for remote communication services and implements generic services
for platform monitoring and management. Beyond the logical structure also the physical
structure is defined by this approach as every module is mapped onto an individual platform
module. The infrastructure meta-module serves as the motherboard for the other modules.

1.2.3 Automotive architecture trends summary

Changes of the automotive architecture have the potential to mitigate the increasing com-
plexity. Solutions include a physical integration of functions and a horizontal design para-
digm for modularity and adaptability. The discussed principles rely on a possibility for an
automatic and adaptable verification of the system to support different setups effortlessly.
The remainder of this work contributes to this demand by the specification of an adaptive
integration and verification concept.

1.3 Research goals

Based on the increasing amount of functions and complexity in vehicles and the changes of
the automotive electronic architecture in general, the question arises, how processes and
systems can be improved to support more flexibility and to reduce integration effort. These
aspects are expressed with two research goals:

10

1.4 Main contributions

Goal 1: Reduce integration effort by an automatic integration and verification pro-
cess. The first goal is directly derived from the increasing complexity of the automotive
architecture caused by an increasing number of functions. The goal is to develop a sound
approach, which enables the automatic verification of timing constraints for systems that
are composed in a plug-and-play manner. The approach should not be limited to the de-
sign time of a vehicle, but should also be practicable after shipping to allow the addition of
hardware and software components after sale without expert knowledge.

Goal 2: Make the verification flexible in tightness and computation time. The second
goal is to approximate the verification process to make it flexible in the sense that tightness
can be traded for analysis computation time. This enables the application of the approach
in various scenarios: During the design time of the vehicle, when tight results are needed
and analysis time is not an issue, and during operation, when an instant verification should
be performed but the tightness of the results does not matter as they have only a limited
lifespan, e.g., when a temporary audio or video stream is established via the infrastructure
of the vehicle.

1.4 Main contributions
The main contributions of this thesis are summarized in the following:

• Methodology for system-wide plug-and-play with timing guarantees. The pro-
posed approach is based on a model-driven development of the vehicle’s subsystems.
A minimal set of seven adequate meta-models to represent the properties of these sub-
systems is introduced, which are the base of the approach. It includes the detailed
explanation of a method to specify timing requirements for data-centric communica-
tion, where the concrete relations between data senders and receivers are unknown.
The feasibility of the method is shown with a running example throughout this work.

• Transformations and patterns for execution platform mapping. To derive a rep-
resentation suitable for deployment and timing analysis, the different models have
to be combined and the entities have to be mapped onto an execution platform. The
involved strategies to calculate data paths across several subsystems is developed
and patterns for the mapping to concrete technologies are presented. The result is a
holistic, deployable, and analyzable model of the system as input for the verification
framework.

• Seamless framework for the timing verification. A verification framework is devel-
oped based on the mathematical foundations of the Real-Time Calculus [30], which
is capable to gain performance metrics for heterogeneous, event- or time-triggered
systems. The framework differentiates itself from other implementations by an inte-
grated and unique approach to automatically process resource cycles and the ability
to calculate the closure of curves in a simplified way, which is a prerequisite to han-
dle components with finite buffer semantics. It includes an automatic mechanism to
verify the timing requirements provided by the analyzable model.

11

1. INTRODUCTION

• Approximation techniques to trade analysis computation time for result tight-
ness. The time needed for the verification process depends in general on the setup
of the system and involved timing parameters. Because this may be unsuitable for
a quick decision process, it is shown how computational complexity can be reduced
by several approximation strategies. Those include the possibility to seamlessly ex-
change tightness of the results for analysis time, while still producing valid bounds,
i.e., a worst-case end-to-end delay is always over-approximated and a best-case end-
to-end delay is always under-approximated. Further, a method is introduced that en-
ables verification on memory-restricted platforms in trade for analysis time. The per-
formance of the suggested modifications are evaluated with a series of well-defined
experiments.

Chapter 1

Introduction

Chapter 2

Modeling and timing verification background

Chapter 3

Approach to combine timing guarantees and plug-and-play

Chapter 4

Adequate
meta-models

Chapter 5

Model
transfor-

mation and
platform
mapping

Chapter 6

Timing
verification
framework

Chapter 7

Adaptive
approximate

analysis

Chapter 8

Conclusion

Figure 1.9: Structure of this thesis.

1.5 Structure of this document
This thesis is divided into eight chapters, as illustrated in Fig. 1.9. Background information
for system modeling and timing verification is presented in Ch. 2. The actual approach
to combine timing guarantees and plug-and-play is introduced in Ch. 3. The implemen-
tation of the approach is detailed in Ch. 4 to Ch. 7. The meta-models used to model the
individual parts of the automotive electronic system are described and discussed in Ch. 4.
The transformations for the transfer of the abstract to a technology-dependent representa-
tion are shown in Ch. 5. The actual verification framework to analyze a system and check
the conformance to timing requirements is given in Ch. 6. The last step is the ability of
the framework to seamlessly trade analysis computation time for tightness of the results,
which is presented in Ch. 7. The last chapter concludes the thesis, gives an outlook on other
domains the approach can be mapped to, and discusses possible future research activities.

12

Chapter 2

Modeling and timing verification
background

This chapter gives background information on the basic principles that are required to
model the system for the plug-and-play approach in the following chapters. They include
component-based and model-driven development, and data-centric communication. Fur-
ther, time modeling and representation is discussed and appropriate methods for a timing
analysis are compared. The choice for a particular analysis framework (Real-Time Calculus
[30]) is justified and its concepts and mathematical foundations are introduced.

2.1 Component-based development
Component-based development [31] is built on an encapsulation of functionality in so-
called components with a hidden implementation, defined interfaces, and possibly an in-
ternal state. Composition of individual components and the definition of relations between
them yields an actual system setup. The black-box behavior of components hides complex-
ity from the system integrator, ultimately speeding up the development process. An exam-
ple is shown in Fig. 2.1, where the functions data acquisition (sensor component), data
processing (process component), and actuating (actuator component) are encapsulated
into components with external relations to each other. Points for data input and output of
a component are referred to as ports, the direction is indicated by an arrow. Highlighted in
[32], component-based development is characterized by four main principles: Reusability

ProcessSensor Actuator

Component Port

External RelationInternal Relation

Figure 2.1: Example of a component-based system design. Implementation and state is en-
capsulated into components, input and output ports define interfaces used for communication
with other entities.

13

2. MODELING AND TIMING VERIFICATION BACKGROUND

Publisher Subscriber
Global data

space

Topic specification
• Name
• Data type

Sends data according
to topic specification

Receives data according
to topic specification

Figure 2.2: Entities of the data-centric communication paradigm as used in this work. Senders
(publishers) and receivers (subscribers) of data are decoupled. The matching is based on topics
that include a unique name and a data format. Subscribers, publishers, and topics can be
enriched by attributes to specify quality-of-service requests and offers.

of components across several systems, substitutability of components while maintaining sys-
tem correctness, extensibility by addition of further components to the system or evolution
of components themselves, and composability of functional and extra-functional properties.
It is pointed out that the composition and substitution of components, while keeping the
extra-functional properties, is one of the major challenges of component-based develop-
ment. This thesis aligns with a number of approaches [33, 34, 35] that mitigate this point.

2.2 Data-centric communication
Data-centric communication [23] decouples senders and receivers of data in a system and is
intended to provide real-time communication in a flexible manner. The focus changes from
a direct specification of communication relations to a specification what kind of data are
needed or offered, which can be enriched by attributes. The tooling or infrastructure is re-
sponsible to find an appropriate matching of communication entities and to enforce quality-
of-service requests. The matching process falls back on so-called topics, where each topic is
associated with a data type specification and a unique name. In this context, senders to a
certain topic are called publishers, while receivers are named subscribers. From the view of
publishers and subscribers, data is transferred from and to a global data space, as visualized
in Fig. 2.2. A set of topic specifications is called dictionary and forms a global agreement
on the available data semantics and formats. We assume in this thesis that communication
is handled according to the data-centric paradigm, in order to be able to construct systems
in a plug-and-play manner. The data-centric communication principle was standardized
by the Object Management Group (OMG) with the specification of the Data Distribution
Service (DDS) [36]. It includes the definition of quality-of-service attributes to control the
transmission, receiving, and storage behavior. However, these attributes lack the possibility
to specify and enforce strict end-to-end latencies, which will be covered in this thesis.

2.3 Model-driven engineering
Model-driven engineering [37, 38] is a methodology for software development. It utilizes
models as abstract representations of systems with well-defined semantics instead of fo-
cusing directly on algorithms. Models have a limited expressiveness, but are rich enough
to be applied as a design, communication and implementation tool across several stake-
holders. Common is a representation as a graph with attributed and annotated edges and

14

2.3 Model-driven engineering

meta-meta-model

meta-model

model

real-world systemM0

M1

M2

M3

represented by

conformant to

conformant to

conformant to

ECU
Front

ECU
Center

Net.El.
Ethernet

Net.El.
CAN
Front

Net.El.
Serial
HMI

System

ECU

Network
Element

Figure 2.3: Modeling layers (adapted from [37]).

nodes. The meaning of the modeling elements has to be negotiated before the actual design
phase. Several views may exist for a specific model, covering separate aspects like user-
interaction, timing behavior or entity hierarchies. An approach to provide standards for
model-driven engineering is the Model Driven Architecture (MDA) initiative by the OMG
[39]. This standard includes specifications for the description and handling of models and
associated operations for processing them. For example, an interchange format is speci-
fied to transfer models between different machines. It also focuses on a clear separation of
platform-independent modeling (PIM) and platform-specific modeling (PSM). While PIM is
mostly a technology-independent representation of the system functionality, PSM is mapped
to a concrete technology, allowing a detailed analysis of the behavior. It is possible to gen-
erate code from a PSM to derive an executable implementation. As a third layer on top,
the Computation Independent Model (CIM) offers means to describe a system in a more
natural way, independent of any design decisions, e.g., without a separation of functions
into logical units. Beyond the industrial implementations, the Eclipse Modeling Framework
(EMF) [40] is a widely spread toolset for model-driven engineering, which is in most parts
compatible with the proposed Model Driven Architecture by the OMG.

2.3.1 Modeling layers

The Model Driven Architecture defines four layers for the modeling of a system, where three
layers represent an abstract view and one layer refers to the real-world system [37], see
Fig. 2.3 . The four layers are: The meta-meta-model (M3), the meta-model (M2), the model
(M1) and the actual system (M0). The abstraction level decreases along the layers from the
meta-meta-model to the actual system. The model represents the real-word system and is
conformant to the meta-model, i.e., the model can be described by means of entities of the

15

2. MODELING AND TIMING VERIFICATION BACKGROUND

meta-model. The meta-model is conformant to the meta-meta-model, i.e., the meta-model
can be described by elements of the meta-meta-model.

The meta-meta-model (M3) is a facility to describe meta-models (also called domain-
models). It is the most abstract representation of the modeling layers and is conformant to
itself. A meta-meta-model can be constructed by elements the meta-meta-model itself pro-
vides. The usage of a meta-meta-model makes domain-models compatible with each other
in a technical sense (but not semantically). This is a requirement for the implementation
of generic tools that process models and/or domain-models. Because each element of a
model or domain-model corresponds to an element of the meta-meta-model, a generic in-
terface for the processing is provided. A widely used specification of a meta-meta-model is
the Meta-Object Facility (MOF) [41] of the OMG that is part of the Model Driven Architec-
ture initiative, which already became an international standard1. The MOF is divided into
two parts, a reduced specification, Essential MOF (EMOF), and the complete specification,
Complete MOF (CMOF). The Eclipse Modeling Framework comes with its own meta-meta-
model, called Ecore. Ecore is in most parts a subset of the Essential MOF specification and
compatible with it. Meta-models (M2) (or domain-models) define the design space for
an actual model that represents the real-world system. The meta-model is conformant to
a meta-meta-model. The Eclipse Modeling Framework provides tools for the creation of
meta-models based on Ecore within a graphical user interface, including automatic valida-
tion. A prominent meta-model specification is the Unified Modeling Language (UML) [42],
which defines a standard for the design of software and other systems. It defines views of
a system that cover various aspects: For example, use cases are deployed to define require-
ments, class diagrams show the hierarchy of software classes and state machines represent
finite automata to model the implementation. Altogether, 14 different diagrams are de-
fined, which cover structural and behavioral aspects of the system to model. The Unified
Modeling Language provides extension points to either shape the functionality to a specific
domain or to enhance it. These extensions are called profiles and several of them exist.
In the automotive domain, the AUTOSAR profile for UML [43] is the most influential one,
which is the base for sharing software designs between manufacturers and suppliers. Other
profiles for UML include SysML [44], EAST-ADL [45] and MARTE [46]. A detailed discus-
sion of selected meta-models is presented in Appx. A.1.1. The model (M1) (also called
instance) is the bottom layer of the modeling world and directly represents a real-world
system (M0). Several models can exist that conform to the same meta-model, represent-
ing different real-world systems. Of course, the model is an abstraction from the real-world
system and describes only particular aspects. It is in the responsibility of the domain expert
to outfit the meta-model with enough features to be able to model a real-world system in
a suitable way. It is not necessary that a holistic model describes a real-world system. Sev-
eral descriptions, based on several meta-models, might co-exist and reference each other.
For example, descriptions for energy, thermal, communication, and packaging aspects may
exist.

1ISO/IEC 19508:204

16

2.4 Time modeling, representation, and constraints

2.3.2 Model operations

Models can be processed automatically by model operations [38]. This is an important step
for the tool-supported design and refinement of models. Two important operations, model-
to-model transformation and model-to-text transformation, are discussed in more detail in
the following. Model-to-model transformations are seen as one of the most important
operations involved in model-driven engineering [47]. Their purpose is to map entities of
a model conforming to a meta-model to entities of a model that conforms to a different or
the same meta-model. These mappings can be implemented by rules that have constraints
for their activation and produce one or multiple elements in the resulting model based
on one or multiple elements of the input model. It is possible to utilize multiple input
and output models for one transformation. A standard for model-to-model transforma-
tions was defined by the OMG with the Query/View/Transformation (QVT) specification
[48]. This specification defines a syntax, how elements of a model can be selected and
mapped onto another model. The QVT specification includes two parts: A description of
a declarative language, called QVT-Relation, and a description of an imperative language,
called QVT-Operational. Diverse implementations for both parts of the QVT specification
exist. Wide-spread examples are ATLAS [47] and QVTo [49], which are both part of the
EMF. Further options of model-to-model transformation frameworks include XTend1 and
the Epsilon Transformation Language [50] that are not aligned with the QVT specifica-
tion. Due to its simplicity and good usability, the model transformations in this thesis are
implemented in QVTo. Model-to-text transformations are operations that convert ele-
ments of the modeling world into text-based representations, commonly by instantiating
text templates. These text-based representations include program source code that can be
utilized to create firmware images that are deployed onto hardware platforms. Model-to-
text transformations render an important step for the seamless creation of software code
out of the model-driven engineering process. In the ideal case, program source code can
be completely generated and does not have to be reviewed or modified anymore before
deployment. By the usage of code generation templates, the model does not have to be
changed in order to adapt the implementation to a different hardware platform. However,
for validation and verification, it might still be necessary to work directly on the code or
even its compiled derivate, either manually or with automatic tools. A variety of tools exist
around the EMF that support model-to-text transformations, for example Xpand2 and its
successor Xtext3.

2.4 Time modeling, representation, and constraints
In this section, it is discussed how time can be modeled and represented for the analysis of
systems. Due to various digital physical clocks in a distributed embedded system, time can
be a vague term as it might lead to different interpretations. To specify constraints of a sys-
tem in the time-domain, a conflict-free understanding of the meaning has to be established.
Basically, we distinguish real time, digital physical clocks and logical clocks in computer-

1https://eclipse.org/xtend/, accessed 30-10-2015
2https://eclipse.org/modeling/m2t/?project=xpand, accessed 30-10-2015
3https://eclipse.org/Xtext/, accessed 30-10-2015

17

2. MODELING AND TIMING VERIFICATION BACKGROUND

Time

R
el

ea
se

 t
im

e

S
ta

rt
 t

im
e

P
re

em
p
ti

o
n

R
es

u
m

p
ti

o
n

F
in

is
h

 t
im

e

Delay d

+
Execution time te

Figure 2.4: Times associated with a task execution (adapted from [22]). Of interest is usually
the delay d, i.e., the time between the release of the task and the point, where the processing
is finished and the results are available.

based systems [51, 52]. We refer with real time to a Newtonian time base, which “assumes
a globally shared absolute time, where any reference anywhere [...] will yield the same value”
[22]. The real time is monotonic, i.e., always increasing, and effects due to relative velocity
and gravitational time dilatation are neglected. Digital physical clocks are a reproduction
of the real time in computer systems. The representation is imperfect, as a digital physical
clock can have an offset to the real time or be faster or slower, leading to a drift. If several
clock sources are present in a system, which is usually the case in a distributed setup like
within a vehicle, they are prone to clock skew problems and have to be actively synchro-
nized in order to form a consistent time base. Depending on the implementation, digital
physical clocks can jump or even go backwards, i.e., when a clock was “too fast” and has to
be turned back during the synchronization process. Logical clocks are used to consistently
order events in a distributed system. Logical clocks are not necessarily in synchronization
to the real time but guarantee a consistent time base for a complete system. Protocols exist
that handle the synchronization between multiple entities and avoid conflicts [53].

For this work, it is assumed that timings are given in the real time domain. Although
the nodes must have a digital physical clock to keep track of time, it is assumed that no
difference to the real time exists. This is a simplification, but the imperfections can be
respected partly during the modeling process. For example, an incorrect clock rate may
be modeled by a modification of the worst-case and best-case execution times of tasks.
Problems related to jumps of clocks, i.e., the multiple emission of events or the absence of
certain events, are not considered in this work.

An overview of time and constraint modeling in selected frameworks is omitted here
but presented in Appx. A.1.2.

2.4.1 Timing and constraints of software components

The times involved in the processing of events by software components are visualized in
Fig. 2.4 [22]. The delay is the difference of the finish time and the release time, which, in

18

2.4 Time modeling, representation, and constraints

Figure 2.5: Example of an event chain and the related end-to-end timing (from AUTOSAR
4.2.1 [55]).

our case, describes the point in time an incoming event was received. Although an event
arrived, processing might still be delayed due to unavailability of resources or the blocking
by other events that arrived earlier. The actual time when the processing is started is called
start time. After the start time, the component may get preempted again, for example
if the execution slot is finished or a component with higher priority was triggered. The
execution time is the overall time it needs to process an event, neglecting any interruptions
by preemption or other means. In this thesis, execution time is frequently split into a lower
and an upper bound, which is for example represented by the best-case execution time
(BCET) and worst-case execution time (WCET) of a software component. The calculation
of BCETs and WCETs is not part of this thesis, it is assumed that these values are known.
Several methods and tools exist to calculate concrete values, for example [54] gives an
overview.

2.4.2 Timing and constraints of event chains

Event chains contain multiple components, separated into event chain segments, which
affect the timing [55]. An event chain has a start point, usually a port of a component,
and an end point, usually also a port of a component or a component itself. Between the
start and the end, a directed path of internal and external relations of the components has
to exist in order to form a valid event chain. The typical property of interest for event
chains is the maximum end-to-end delay (de2e), i.e., the maximum delay an event observes
from the start point to the end point under the assumption it is processed at each involved
component of the chain, see Fig. 2.5 for an example. In case of over-/under-sampling,
the end-to-end delay is ambiguous. In the simplest case, it is then distinguished between

19

2. MODELING AND TIMING VERIFICATION BACKGROUND

Simulation/
Experimental

Timed Automata
based analysis
(e.g. UPPAAL)

Timing/Performance
analysis

Bounded analysis

Network Calculus/
Real-Time Calculus

(e.g. RTC Toolbox)

Compositional
approaches

(e.g. SYMTA/S)

Holistic analysis
(e.g. MAST)

- Delays
- Buffers
…

Exact analysis
(possibly infeasible)

Figure 2.6: Structuring of timing analysis methods.

the response time, the time until an event causes a reaction, and the maximum age, the
maximum time measured from the creation of the initial event. A more exact definition
of these semantics is provided in [56]. In this thesis, we refer to the response time if not
noted differently. Note that, in the case of under-sampling, events might get lost which are
then not regarded for the calculation of the end-to-end delay. The concept of event chains
does not match directly the loosely coupled character of data-centric systems, because data
paths are not necessarily known during design time. A method is presented in Sec. 4.9 that
combines both aspects for the specification of timing requirements.

2.5 Timing analysis methods

We distinguish three different kinds of analysis methods, each with different complexity and
accuracy: Simulation/Experimental-based analysis, exact analysis and bounded analysis,
where the latter two are formal methods. The structuring of the methods is visualized in
Fig. 2.6 and their properties are summarized in Tab. 2.1.

For an exact analysis, the system has to be modeled in every detail. Appropriate repre-
sentations are, e.g., timed automata [57] or time Petri nets [58]. Analysis tools in this area
calculate all reachable states, or state classes, with the according timing parameters. Ad-
vantage of this method are the exact results, which are the outcome of the analysis process
if the system is modeled in an appropriate detail. As a consequence, the calculated best-
and worst-case timings match the real timings of the system. A drawback is the high com-
putational complexity, which causes a long calculation time and may render this method
infeasible [57, 59]. The scalability of this approach is limited, it is not always possible
to connect models in an arbitrary way. It is further difficult to automatically find higher
abstractions for the modeling to speed up the calculation process in favor of a reduced
timing for analysis. Simulation/Experimental-based analysis is implemented frequently
in the automotive industry. To check the feasibility of a system or to extract performance
quantities, a system is either run in a virtual simulation [60, 61] or in the real-world with
varying completeness [62, 63]. The outcome of this approach is the result of some specific
instances of the system state and input signals. The extracted performance numbers may
not capture all corner-cases [64], which means that the real system behavior might differ
from the gained numbers, see also Fig. 2.7. It is easily possible to exchange result quality

20

2.5 Timing analysis methods

Lower
bound

Real
BCET

Simulation
minimum

Simulation
maximum

Real
WCET

Upper
bound

Result of bounded analysis

Result of exact (possibly infeasible) analysis

Result of simulation (or measurement)

Lower
tightness

Upper
tightness

D
is

tr
ib

u
ti

o
n

 o
f

d
e
la

y
s

Delay

Simulation

Real

Figure 2.7: Comparison of results of bounded analysis to other analysis methods (adapted
from [54]). Because the results of a simulation or measurement do not exactly capture the
best-case and worst-case behavior (grey area), the goal is to approximate the exact behavior
by lower and upper bounds. The exact calculation of the values is usually infeasible due to the
needed computational effort. The tightness denotes the difference between the bounds and
real values.

with the spent effort with this approach. The more often or longer a system is tested, the
higher is the probability that analysis results are close to the real values. Composability
of this approach is good, because limiting factors, in regards of analysis complexity, are
not existing. Bounded analysis does not aim to calculate exact results for the worst and
best cases. Instead, it calculates upper and lower bounds, i.e., a higher worst-case value
than the real value (over-approximation) and a lower best-case value than the real value
(under-approximation). One advantage is, that tightness of the results can be exchanged
for computation time by a modification of the analysis process, which is further detailed
in Ch. 7. Compared to an exact analysis, calculation effort can be heavily reduced [59].
Compared to simulation-based analysis, the calculated bounds are always valid. It is guar-
anteed that the system will not behave better than the calculated best-case and not worse
than the calculated worst-case. Nevertheless, it is possible that the results of a bounded
analysis indicate that a system is not runnable, but in reality it is. A comparison of the
bounded analysis to other techniques is visualized in Fig. 2.7.

For this work, verification is based on a bounded analysis as it overcomes the computa-
tional complexity of an exact analysis. Simulation and experimental-based methods were
not considered, because the results are not deterministic and are therefore not usable for a
formal verification.

From the bounded analysis methods, an approach based on the Real-Time Calculus
(RTC) [30] was chosen as the appropriate method, because it allows the analysis of dis-
tributed, heterogeneous, and event-based systems with hierarchical scheduling. A free im-
plementation is available with the RTC toolbox [65], but as not all needed features were

21

2. MODELING AND TIMING VERIFICATION BACKGROUND

Methodology Exact analysis Experimental analysis Bounded analysis
Bound of results Exact Low - High Low - High

Deterministic Yes No Yes
Computation time Very high Low - High Low - High

Composability Poor Good Medium - Good
Trade time vs. accuracy Limited Yes Yes

Table 2.1: Properties of timing analysis methods.

available for the approach of this thesis and the toolbox is closed-source, a customized tool
was implemented, see Ch. 6. Holistic analysis methods, which are an extension of classical
scheduling and response time analysis to distributed systems [66], was not considered as it
limits the scope of the system to analyze to a set of technologies. An exemplary tool for the
holistic analysis is the MAST framework [67], which implements a variety of techniques
[68]. Compositional-based approaches process event streams locally with classic schedul-
ing methods, but offer a global representation for the connection of components. Details
of this concept are for example available in [69, 70]. These methods lack the ability to
model hierarchical scheduling principles [71], for which reason they were not considered
for the approach presented in this work. An industrial tool in this area is the SYMTA/S
framework1. Timed-automata based approaches are a classic method for the performance
analysis of systems [72], but are subject to the state-space explosion problem, which ren-
ders these methods unsuitable if used exclusively [73]. One prominent tool in this area is
the UPPAAL framework [74]. On the other hand, timed automata-based methods can han-
dle state-based representations, which are not thoroughly covered by the other approaches,
why it is combined, e.g., with the RTC [73, 75].

The evaluation of the various methods is not consistent in the literature, especially re-
garding the analysis time and tightness of the results [57, 59, 73, 76, 77, 78, 79]. A short
resume is, that timed automata-based methods are still regarded to be prone to the state-
space explosion problem while they have potential to deliver exact results, bounded meth-
ods in comparison offer a better composability but might be overly pessimistic, depending
on the concrete use case.

Another possibility to guarantee the timing behavior of systems is the construction fol-
lowing architectural guidelines. These systems are modularized into parts that allow an
addition of components without the need for an analysis and verification step. The system
is guaranteed to operate according to the desired specification regardless of the combina-
tion of installed components, as long as these components comply to certain properties.
This can be achieved by a system strictly partitioned into memory blocks and timing slots,
where each block and slot can be occupied by a software component. Disadvantages are
the demand to conform to the predefined component properties and the limited system
size on the other hand. It is also hard to guarantee correct behavior of the interactions of
components, especially for multiple dependencies and long or branched event chains. Indi-
vidual solutions have to be found for implementations that exceed the predefined slot sizes
or memory limits. These configurations are commonly based on time-triggered frameworks

1http://www.symtavision.com, accessed 30-10-2015

22

2.6 Real-Time Calculus and Modular Performance Analysis

that introduce additional disadvantages like the possibly delayed processing of high-priority
messages. One example for this kind of systems is the proposed approach of the RACE
project [27]. Because of the limitations, especially the limited flexibility, that approach is
not suitable for the plug-and-play method proposed in this thesis.

2.6 Real-Time Calculus and Modular Performance Analysis

Modular Performance Analysis (MPA) [80] is a framework for best-case and worst-case
timing analysis of heterogeneous, event- or time-triggered embedded systems, based on the
mathematical background of the Real-Time Calculus (RTC) [30, 81], which itself is based
on the Network Calculus (NC) [82, 83, 84] and extends its ideas to embedded systems. The
basic concepts of the framework are explained in the following, because it builds the basis
for the analysis approach in this work.

The basic building blocks of the Real-Time Calculus are service curves for the model-
ing of resources, arrival curves for the modeling of event streams and stream filters for
the transformation of service and arrival curves as they are processed according to a cer-
tain strategy. Filters are abstract representations of real-world processing, communication
or manipulation entities. For most stream filters, the semantics include that the incoming
data is buffered in queues of infinite size if a processing is not immediately possible. Filters
can be composed by a linking with data streams and remaining service can be used as an
input for another filter element, enabling the modeling of hierarchical scheduling strate-
gies. A comparison between Real-Time Calculus and Network Calculus was conducted by
[85], with the result “that the main alternative to Network Calculus (NC), Real-Time Calculus
(RTC), is in fact very similar to NC” (with respect of expressiveness and result tightness).
Contrary, [80] emphasized in a previous work that Real-Time Calculus may provide tighter
results, enables modular composability, and extends the modeling scope due to its defini-
tion of arrival and service curves.

Fig. 2.8 shows an example of the Real-Time Calculus framework. The modeled system
consists of two processing units that are connected via a time-triggered bus and two data
streams that traverse several entities of the system. Stream A is first processed by proc. unit
1, sent via the time-triggered bus, and then processed by proc. unit 2. Stream B is once
processed at proc. unit 2 and traverses the system in the opposite direction, via the bus
and proc. unit 1. Processing elements need resources to process data flows, these can be,
for example, cycles of a processing unit or available time slots of a time-triggered bus.
The service element FS in this case stands for a resource offering full service, i.e., a CPU
that is completely available to the attached processing elements, while the service element
TD models the availability of a time-triggered resource. Stream sources are labeled with
PJD, which stands for event streams according to the period, jitter, and minimum distance
model. The event stream and service models are detailed later in this chapter, see Eq. 2.5
and Eq. 2.7 with the according examples and definitions. The stream filters are of type
GPC [77], which stands for greedy processing component, and FIFO [71], which stands
for first-in-first-out processing component. The semantics and equations of diverse stream
filters are presented in Appx. A.2. With the RTC framework, it is possible to derive the end-

23

2. MODELING AND TIMING VERIFICATION BACKGROUND

Time-triggered
bus

GPC

Proc.
unit 2

Proc.
unit 1

FS

GPC

GPC

PJD
A

TD

Service stream
source

Processing
element

Event stream
source

Data stream
relation

Service
relation

GPC

TD

Sink
A

Event stream
sink

FIFO

FS

Sink
B

PJD
B

Figure 2.8: Example system model of the Real-Time Calculus framework, showing two event
streams that traverse two processing units and a time-triggered bus.

to-end delays of the involved event streams. In the following, basic notions and semantics
of curves and other entities of the Real-Time Calculus framework are introduced.

A differential arrival function abstracts properties of one particular trace of an event
stream. They are an extension of the classic, cumulative arrival curves introduced by
Cruz [82] to an interval-based representation. Similar, differential service functions cap-
ture the properties of computation or communication resources.

Definition 2.1 A differential arrival function R[r, s) describes the sum of events in a time
interval r ≤ t < s and a differential service function C[r, s) denotes the sum of resources in a
time interval r ≤ t < s, where r, s ∈ R [77].

It follows, R[r, r) = C[r, r) = 0, because no events can occur or service can be available in
an infinite small amount of time, and R[r, s) ≥ 0, C[r, s) ≥ 0. Curves to represent event
streams and resources in the Real-Time Calculus fall into the class of wide-sense increasing
functions, which are defined as:

Definition 2.2 A function f belongs into the class of wide-sense increasing functions F if:

f (r)≤ f (s) ∀ r < s; r, s ∈ R
and f (r) = 0 ∀ r ≤ 0

(2.1)

The mathematics of the Real-Time Calculus rely on the min-plus algebra. The min-plus
algebra forms a Dioid (R ∪ {+∞},∧,+), where ∧ is the infimum or minimum operator.
For details about the definition of the Dioid and involved axioms, refer to [84, 86]. The
min-plus convolution operator (⊗) is equal to the convolution in traditional algebra, but
addition becomes the infimum and multiplication becomes the addition.

24

2.6 Real-Time Calculus and Modular Performance Analysis

Definition 2.3 Min-plus convolution (⊗) and deconvolution (�) of two functions f , g ∈ F:

(f ⊗ g)(∆) = inf
0≤λ≤∆

{ f (∆−λ) + g(λ)}

(f � g)(∆) = sup
λ≥0
{ f (∆+λ)− g(λ)}

(2.2)

Similar to the min-plus algebra, the max-plus algebra forms a Dioid (R ∪ {−∞},∨,+),
where ∨ is the supremum or maximum operator.

Definition 2.4 Max-plus convolution (⊗) and deconvolution (�) for two functions f , g ∈ F:

(f ⊗ g)(∆) = sup
0≤λ≤∆

{ f (∆−λ) + g(λ)}

(f � g)(∆) = inf
λ≥0
{ f (∆+λ)− g(λ)}

(2.3)

The convolution and deconvolution operators of the min-plus and max-plus algebra are
the backbone for filter operations to transform event streams and resource descriptions
according to a certain processing strategy.

Arrival curves describe classes of event streams by bounding differential arrival func-
tions. A pair of arrival curves gives an upper and lower bound for the occurrence of events
in an interval at any point in time, for a whole class of traces. They can be either constructed
if the parameters of an event source are known or extracted from an event trace.

Definition 2.5 Let α(∆) denote a pair of arrival curves, where ∆ is a timing interval:

α(∆) = [αu(∆),αl(∆)]

with αu(∆),αl(∆) ∈ F
(2.4)

The superscripts u and l in this context stand for upper and lower arrival curves. The curves
bound the differential arrival functions as follows [77]:

αl(∆)≤ R[s, s+∆)≤ αu(∆) ∀ s ∈ R,∆ ∈ R≥0 (2.5)

Commonly, the tightest bound of the trace is of interest, which is [87]:

αl(∆) = inf
s∈R

R[s, s+∆] αu(∆) = sup
s∈R

R[s, s+∆] (2.6)

The construction of tight upper and lower arrival curves from an event trace can be inter-
preted as follows: A window of fixed size is moved over the trace from negative to positive
infinity. At any position, the number of events inside that window are counted. The mini-
mum and maximum number of events at any point in time for a specific window size form
one point of the lower or upper arrival curves, respectively. Upper arrival curves are sub-
additive [87]. If at maximum one event occurs during one time unit, then no more than
two events can occur during two time units. Lower arrival curves are superadditive. If a

25

2. MODELING AND TIMING VERIFICATION BACKGROUND

period=2,5
jitter=20
distance=1

αl(Δ)

αu(Δ)

αl(Δ)

period=5

αu(Δ)

Figure 2.9: Examples of arrival curves. On the left side based on a completely periodic event
stream model, on the right side based on an event stream model with jitter and a minimum
distance between the events. The part with the higher slope of the upper curve on the right
side reflects the bursty behavior caused by the jitter.

minimum of two events occur during one time unit, then at least four events have to occur
within two time units. These implicit properties hold for all interval combinations:

αu(∆1 +∆2)≤ αu(∆1) +α
u(∆2) (subadditivity)

αl(∆1 +∆2)≥ αl(∆1) +α
l(∆2) (superadditivity)

(2.7)

Because lower arrival curves define the minimum number of events in a certain interval
and upper arrival curves define the maximum, the following explicit property holds:

αl(∆)≤ αu(∆) (2.8)

Another explicit property of arrival curves is the dependency between the upper and lower
parts. The upper curve must not contradict to the description of the lower part and vice
versa. For example, if the minimum amount of events is defined to be two within two time
units, then also the maximum amount of events has to grow with at least two events per
two time units. As analyzed and pointed out by [88], the upper and lower parts of arrival
curves have to fulfill the following equations in order to be causal:

αl(∆) = αl(∆)�αu(∆)

αu(∆) = αu(∆) � αl(∆)
(2.9)

Arrival curves are always causal if extracted from event streams. But approximations,
rounding errors and transformations to other representations may lead to the construc-
tion of non-causal curves, i.e., an arrival curve that describes a stream of events that is not
possible in reality. To mitigate this issue, methods were presented in [88, 89] to transform
any pair of curves into a causal representation.

Selected types of arrival curves. Fig. 2.9 shows two examples for arrival curves that
were generated according to the period, jitter, and minimum distance (PJ D) model. Within
this model, the events occur periodically according to the period parameter P. In addition,
events can deviate from the strictly periodic position by a jitter, denoted as J . The jitter

26

2.6 Real-Time Calculus and Modular Performance Analysis

βl(Δ)

bandwidth=10
max. delay=5

slot=1
cycle=5
bandwidth=10

βu(Δ) βu(Δ)

βl(Δ)

Figure 2.10: Examples of service curves. On the left side the model of a resource with a
maximum delay (MD) and on the right the model of a resource according to a time-division
multiple access (TD) schemata.

can be larger than the period, leading to overlapping ranges of the possible occurrences of
events. The third parameter, D, defines the minimum distance between any two events,
also in the overlapping areas caused by the jitter.

Definition 2.6 Tight arrival curves according to the PJ D model can be directly constructed
out from the parameters [80]:

αu(∆) =min
§¡

∆+ J
P

¤

,
¡

∆

D

¤ª

αl(∆) =
�

∆− J
P

�

(2.10)

Service curves describe classes of resources by bounding differential service functions.
Similar to arrival curves, the modeling is conducted in an interval-based domain. A pair of
service curves models the upper and lower amount of resources, which are available during
a certain time interval.

Definition 2.7 Let β(∆) denote a pair of service curves:

β(∆) = [βu(∆),β l(∆)]

with βu(∆),β l(∆) ∈ F
(2.11)

The properties of service curves are similar to arrival curves, except the unit: While arrival
curves represent the number of events, a service curve represents resources like available
cycles of a processing unit or available data rate of a network link.

Selected types of service curves. Two examples for service curves are shown in Fig.
2.10, a formal definition of selected curves is presented in Tab. 2.2. One shown example
is a maximum delay (MD) service curve with the parameters B for available bandwidth
and D for maximum delay. This curve models a resource with a fixed bandwidth that is
available latest after a delay of D. The other example is a curve of a time division multiple
access (TD) resource [90] with the parameters B, C , and S, where S is the duration of the
active time slot, C is the cycle time, and B is the available bandwidth during the time slot.
Intuitively, the curves are constructed as follows: For the upper service curve (βu), assume
that the time slot just started when looking at the system, which leads to an increase of the

27

2. MODELING AND TIMING VERIFICATION BACKGROUND

Resource type Lower service curve β l(∆) Upper service curve βu(∆)
FS (full service) B ·∆ B ·∆

MD (max. delay) max{B · (∆− D), 0} B ·∆
TD (time-division) [90] B ·max{b∆C c · S,

∆− d∆C e · (C − S)}
B ·min{d∆C e · S,
∆− b∆C c · (C − S)}

Table 2.2: Definitions of selected types of service curves. Parameters denote: B – bandwidth,
D – delay, C – cycle length, and S – slot length.

sum of the available resources with bandwidth B up to the slot length S. Afterwards, the
available resources do not change for C − S time units, because the slot is inactive. Then
the process repeats. For the lower service curve (β l) the process is equal but we assume
that we start looking at the system when the active slot has just passed. Therefore the sum
of available resources stays at zero for C − S time units, before ascending with a rate of B
for the slot time S. Not shown in the figure is a curve modeling a resource with full service
(FS), which provides resources at a constant bandwidth without delay. A single parameter
for the available bandwidth is sufficient for the modeling. The upper and lower curves of
such resources are equal.

Workload curves [91] relate event-based representations of arrival curves with resource-
based representations of service curves. For example, an event might consume a certain
number of processing cycles or demand a certain packet size if transferred via a network.
As arrival and service curves do not contain any phase information, i.e., an event is not
directly identifiable, only relative specifications for the transformation can be made. Those
transformations are expressed by workload curves that form an upper (γ(k)u) and a lower
(γ(k)l) bound for the resource demand of k consecutive events.

Definition 2.8 Workload relations [64] of a pair of workload curves γ(k)l ,γ(k)u ∈ F:

bαl(∆) = γl(αl(∆)) bαu(∆) = γu(αu(∆))
bβ l(∆) = γu−1(β l(∆)) bβu(∆) = γl−1(βu(∆))

(2.12)

with γu−1(r) = sup {e : γu(e)≤ r} γl−1(r) = inf
�

e : γl(e)≥ r
	

(2.13)

Where α are event-based and bα are resource-based arrival curves, and β are resource-
based and bβ are event-based service curves (the hat symbol (b) marks a transformation
into the "non-standard" representation.) In the simplest case, all event instances have a
constant factor for the transformation to the resource-based representation. For example,
all events may have an equal worst-case and best-case execution time (WCET/BCET). Then,
the workload curves degrade to a linear function and the relations can be expressed by:

bαl(∆) = αl(∆) · BCET bαu(∆) = αu(∆) ·WCET

bβ l(∆) = β l(∆) ·
1

WCET
bβu(∆) = βu(∆) ·

1
BCET

(2.14)

28

2.6 Real-Time Calculus and Modular Performance Analysis

Maximum
delay D()

Maximum backlog B()

βl(Δ)

αu(Δ)

Figure 2.11: Calculation of maximum delay and backlog for greedy processing components.

The performance parameters of interest include the maximum delay d an event ex-
periences while traversing a processing entity and the maximum backlog b, which is the
maximum number of events stored in the input buffer of the processing entity at any point
in time. In case of a greedy processing component (GPC), these bounds are derived as
follows [92]:

b ≤ B(αu
in,β l

in) d ≤ D(αu
in,β l

in) (2.15)

Definition 2.9 The backlog-bound function B() and the delay-bound function D() are defined
as [92]:

B(αu,β l) = sup
λ≥0

�

αu(λ)− β l(λ)
	

D(αu,β l) = sup
∆≥0

�

inf{τ≥ 0 : αu(∆)≤ β l(∆+τ)}
	 (2.16)

The calculation of maximum delay and backlog depends on the concrete strategy of the
processing entity and is given for several examples in Appx. A.2. Service and arrival curves
have to be expressed in the same units for these equations. The backlog-bound function
calculates the maximum vertical distance between its parameters, while the delay-bound
function calculates the maximum horizontal distance, see also Fig. 2.11 for clarification.

Stream filters model the behavior of processing or communication entities in the real
system that processes event flows under usage of resources according to a certain strategy.
Stream filters are composable and form the basis for the system analysis with the Real-Time
Calculus, a visualization is presented in Fig. 2.12.

Definition 2.10 A stream filter is a function fT that maps vectors of incoming service curves
−→
βin and incoming arrival curves −→αin to vectors of outgoing service curves

−−→
βout and outgoing

arrival curves −−→αout according to its type T and parameter set P. In addition, a result set E is
obtained that captures performance properties:

(−−→αout ,
−−→
βout ,E) = fT (

−→αin,
−→
βin,P) (2.17)

29

2. MODELING AND TIMING VERIFICATION BACKGROUND

Stream filter

𝑓𝑇

Vector of input service curves

βin = {βin
0 , βin

1 , … }

βin
i Δ = [βin

i,l Δ , βin
i,u Δ]

Vector of input arrival curves

αin = αin
0 , αin

1 , …

αin
i Δ = [αin

i,l Δ , αin
i,u Δ]

Vector of output arrival curves
αout = {αout

0 , αout
1 , … }

αout
i Δ = [αout

i,l Δ , αout
i,u Δ]

Vector of output service curves

βout = {βout
0 , βout

1 , … }

βout
i Δ = [βout

i,l Δ , βout
i,u Δ]

Set of filter parameters
ℙ

Set of analysis results
𝔼

Figure 2.12: Stream filter element for system analysis with the Real-Time Calculus that trans-
forms arrival and service curves according to a processing strategy, e.g., greedy or first-in first-
out processing. Stream filters are an abstract representation of real processing entities and can
be composed with each other by linking the arrival and service relations, forming a complete
model of a system.

The quantity of curves in the vectors −→α ,
−→
β depend on the type T of the stream filter and its

configuration, the result E usually includes information about scheduling feasibility, delays,
and buffer demands for the individual event streams. P normally contains data for the trans-
formation of service-based streams to event-based streams and vice-versa.

The exact semantics and equations of stream filters are presented in Appx. A.2 for the greedy
processing component (GPC), fixed-priority non-preemptive component (FPNP), first-in-
first-out processing component (FIFO), OR component (OR), AND component (AND) and
bounded greedy processing component (BGPC). The transfer functions are no contribution
of this thesis, but were collected from various sources [71, 77, 92, 93].

2.7 Modeling and verification background summary
This chapter introduced the basic background needed for the following developments and
discussions of this work. Component-based development, data-centric communication, and
model-driven engineering were introduced as those are a prerequisite for the system-wide
plug-and-play approach. Because this work focuses on the verification of constraints re-
lated to time, the different notions and semantics of timing definitions and properties were
listed. A classification of various analysis methods was provided and completed with an
introduction of the background on the Real-Time Calculus, which is the foundation for the
developed timing analysis and verification tool as part of this thesis.

30

Chapter 3

Combining plug-and-play and timing
guarantees

This chapter describes the proposed approach for the combination of plug-and-play behav-
ior with the guarantee of timing requirements. It highlights requirements that led to the
approach by an analysis of scenarios for a reconfiguration of the vehicle’s setup, gives an
overview of the actual approach and its steps, and introduces an example, which is the base
for further refinements of the method in the next chapters.

3.1 Requirements for a flexible verification approach
For a better understanding, different scenarios are analyzed in this section. They reflect
varying requirements and resulting strategies for the reconfiguration of a vehicle. After-
wards, the demand for a flexible verification approach is concretized, which is able to give
reliable results for the scenarios.

3.1.1 Verification scenarios

As a vehicle has non-functional requirements such as real-time and safety constraints, the
plug-and-play process has to consider those. We will focus on the timing requirements, i.e.,
the guarantee that all data in the system is delivered from the sender to the receiver within
a specific time bound or according to a particular pattern. Depending on the point in the
lifetime and current state of a vehicle, several verification scenarios are distinguished, see
also Tab. 3.1.

Scenario 1: Verification during design time. Over the lifetime of a vehicle, a set of func-
tions exists that will never change and are shared by many vehicle series. This includes the
basic infrastructure and systems like the braking system, which is unlikely to be modified or
extended because of its deep integration. Verification of these components is conducted by
the manufacturer, using all necessary resources. In this scenario, a system designer benefits
from a flexible approach for the analysis by the possibility to explore the performance of
design choices with varying approximation levels. In the end, a tight result of the analy-
sis is demanded in order to not waste system resources because of an overly pessimistic
dimensioning.

31

3. COMBINING PLUG-AND-PLAY AND TIMING GUARANTEES

Scenario 1 2 3 4

Point of
reconfiguration

Design time Customization
before delivery

Customization
after sale

In operation

Desired analysis
tightness

Tight Tight Medium Loose

Allowed
calculation time

Long Long - Medium Medium - Short Very short

No. of changed
functions

Many Medium Few Medium

Addition of
safety functions

Yes Yes Yes No

Scope Many series One vehicle One vehicle One vehicle
Lifetime of
functions

Complete
vehicle life

Complete
vehicle life

Complete
vehicle life

One journey

Table 3.1: Scenarios for the reconfiguration of a vehicle

Scenario 2: Verification of customization before delivery. Depending on the wishes of
a costumer, the vehicle is customized before it is handed out. This may include the addition
of sensors, screens, or other equipment. An integrated and flexible verification approach
enables an individual alignment of resources according to a specific configuration of the
vehicle. Requirements on the analysis time of this process are moderate; it should not delay
delivery for too long to avoid additional costs. Ultimately, tight bounds are to be derived,
which mark as much resources as possible available for further extensions. Compared to
the previous scenario, verification is conducted on a per-vehicle basis.

Scenario 3: Verification of customization after sale. Whenever the costumer decides
to change the function set of the vehicle after sale, two different situations are possible:
Either the functionality of the vehicle is changed by the costumer directly (e.g., software
download) or at a workshop (e.g., installation of an ultrasonic sensor). In both cases the
person conducting the change cannot be regarded as an expert of the electric and electronic
infrastructure of the vehicle. Therefore, the system should support the desired changes by
an automatic integration and verification. Constraints on analysis time are strict, because
the personal in the workshop as well as the costumer do not want to wait too long for
the system reconfiguration. The lifetime of the changed functions usually extend to the
complete vehicle life.

Scenario 4: Verification during operation. The system configuration may change while
the vehicle is in operation, i.e., while it is driving or persons are in it. The lifespan of the
reconfiguration in this scenario is bounded as it covers one journey, which is the range the
first person enters the vehicle and the last one exits it again. For example, a mobile phone
might connect to the system or a passenger starts an audio/video stream to a screen for
entertainment. These kind of requests should be answered almost immediately. The user
experience suffers if the decision process takes too long. However, it is valid for the system
to deny certain requests if it is out of resources. Compared to the other scenarios, a change
of safety-relevant functions is not permitted.

32

3.2 Method for system-wide plug-and-play

3.1.2 Properties of a flexible verification approach

The scenarios show that, depending on the vehicle state and point in the lifetime, varying
constraints for plug-and-play and verification have to be fulfilled: Depending on the sce-
nario, it can be necessary to reduce the tightness of the bounds in favor of a reduced analysis
time. A solution should be able to trade analysis time for the exactness of the results while
still guaranteeing a valid solution. Lifetime and scope of functions depend heavily on their
types. It is very likely that basic functions, e.g., the control of the braking system, will stay
constant over several series with the same platform. These systems are designed once and
hence the time spent for analyzing them is allowed to be very long. Customizations before
delivery are also usually installed once, e.g., a navigation system, and remain in the car for
its complete lifetime. Compared to those, devices which are connected during the opera-
tion are relevant for one journey only. Those devices include smartphones or video streams
within the infotainment system. The approach should allow the extension of the function
set after the point of sale to enable further customization. Depending on the functionality,
various timing constraints are required. If an automatic verification system is utilized, it is
important that it understands these constraints and checks if the runtime environment and
hardware platforms can accommodate the software components according to the specific
requirements. This should happen in a system-wide fashion, i.e., considering the already
existing components and infrastructure of the system. Further, the approach should be ho-
mogeneous, which means it can be used during the design and operation time of a vehicle
to effortlessly transfer and reuse analysis results. In the following, the system-wide plug-
and-play approach is developed that covers these points and offers a flexible framework
during the design and operation time of a vehicle.

3.2 Method for system-wide plug-and-play
This section introduces the system-wide plug-and-play approach, which combines an auto-
matic integration process of vehicle functions with the guarantee of global timing require-
ments.

3.2.1 Plug-and-play process and artifacts

The plug-and-play process is based on the model-at-runtime [94] principle, which utilizes
models at the design time and also at runtime to enable dynamic adaptation. The process
itself and involved artifacts are sketched in Fig. 3.1. The system state is a combination of
the current configuration of a system, captured in a system model, and a snapshot of the
analysis results, if available. New functionality can be added to the system by a feature
package, consisting of a model describing the feature’s functionality and requirements, the
runnable code of the feature and the hardware items that are packed with it. Once a feature
is added to the system, the plug-and-play process is triggered. To check if all timing require-
ments of the newly added feature are met, the feature model and the current system model
are combined in a model-to-model transformation step, yielding a combined model. The
combined model includes all the information of the current configuration of the system
plus the information from the newly added feature. With an additional model-to-model
transformation step, the combined model is transferred into a representation suitable for

33

3. COMBINING PLUG-AND-PLAY AND TIMING GUARANTEES

System state

Plug-and-play process

Feature
package

Feature
model

Feature
code

Feature
hardware

0100
1101
1000

Current system
model

Model-to-model
transformation

Analysis and
verification

Combined
model

Model-to-model
transformation

Analysis
model

{Update}

Current analysis
results

{Update}

AB

{Re-use of pre-
vious results}

AB
a=b
c<d

{Deferred refinement}

Figure 3.1: System-wide plug-and-play process and involved artifacts. Additional hardware
and software is added via feature packages, which are automatically integrated and verified.
The process is based on models that capture the technical and logical behavior, including a
description of requirements. Solid lines reference the automatic verification process, while
dashed lines indicate actions and data flows after a specific modification was accepted for
integration.

analysis. This model is then analyzed and it is verified that all constraints are met and the
feature can be safely integrated, which involves an update of the current system model.
Results from the previous analysis are used to speed up the process and are refreshed ac-
cording to the new results. As the tightness of the analysis step can be parameterized in
our approach, a deferred refinement of the analysis results is possible. For example, a quick
decision can be made with an analysis based on a rough approximation with loose tight-
ness. Later on, after the decision has already been made and resources of the system are
available, tightness of the results can be increased to allow a more exact representation of
the system’s performance. This approach extends concepts concerned about an integrated
verification possibility for component-based systems, e.g., [33, 34, 35], by providing plug-
and-play abilities and an adaptive verification, suitable for the design and operation phases
of vehicles. On the other side, it extends concepts focusing on the plug-and-play ability,
e.g., [94, 95, 96, 23], by an integrated, system-wide, and formal verification capability.

3.2.2 Development and adaption timeline

The development and adaption timeline of the proposed method changes compared to the
traditional process, which is shown in Fig. 3.2. In the traditional process, a feature set
of a vehicle is unchangeable after the design and implementation phase. Verification is
based on a superset variant of the vehicle, which combines all possible features. In this
hypothetical variant, excluding feature combinations might be considered that are actually
not compatible with each other. The functionality of each shipped variant of the vehicle
forms an according subset. After sale, adaptivity of the vehicle is limited, because only
features can be added that were previously defined in the design and implementation phase.

34

3.2 Method for system-wide plug-and-play

Proposed
process

Traditional
process

Feature
design

Feature
design

Feature
design

a=b
c<d

a=b
c<d

a=b
c<d

a=b
c<d

Variant
A

Variant
B

Variant
C

Variant

Variant

Variant

Variant
C

Variant
B

Feature
design

a=b
c<d

Variant
D

Before sale Point of sale After sale

Superset verification
(based on hypothetical

variant with full feature set)

Individual verification
(according to feature set)

Limited adaptivity
(based on pre-verified features)

Full adaptivity
(due to system-wide plug-and-play

with integrated verification)

Feature
design

Figure 3.2: Development and adaption timeline. In the traditional process, a configuration
with all possible functions is verified and subsets of it are sold. A modification after sale is
hardly possible. In the proposed process, only the relevant set of functions is verified, possibly
allowing the choice of a less powerful execution platform. Further, addition of features is
possible after sale via an integrated verification process.

The proposed process differs from the traditional approach. Design and implementation
phases are not strictly coupled with the resulting set of features of a vehicle. Especially,
possible variants are not fixed to predefined sets of features during the production phase. To
achieve this, each variant is verified individually, which is possible due to a deep integration
of the verification process within the development and production process. Each variant –
or even each vehicle – can be individually equipped with features this way and resources
for processing and communication can be trimmed to the actual needs. Additional features
can be easily integrated as they become available, even after the initial production phase
started. Furthermore, full adaptivity is achieved due to a system-wide verification process,
which can be triggered even after sale. This enables the addition of features that were
unavailable during the development or production of a vehicle. The approach relies on
a possibility to easily extend or modify the system capabilities in the sense of aggregates,
software, resources, and communication to enable the integration of previously unknown
functionality. This can be achieved by a centralized system architecture as the integration
base, see Sec. 1.2.2.

3.2.3 Plug-and-play phases

The phases of the proposed plug-and-play process are shown in Fig. 3.3. The representation
is a refinement of the steps already introduced in Fig. 3.1 with a focus on possible points

35

3. COMBINING PLUG-AND-PLAY AND TIMING GUARANTEES

[free resources]
Start

Change
detection

Generation of
analysis model

Verification

Reconfiguration

Optimization

User
decision

[rejected]

[accepted]

[dismiss]

[manual
adaption]

[change]

[finished/on request]

Figure 3.3: Phases of the system-wide plug-and-play approach.

for the interaction with a user and derived actions while omitting details of the involved
artifacts. The proposed approach shares similarities with the concept of the CHROMO-
SOME middleware [95], where basically a "Plug" (detection and reconfiguration) and a
"Play" (execution) phase are distinguished. The "Plug" phase is extended in our approach
by an integrated verification step to formally guarantee the timing behavior of the system.

Phase 0: Start. The start (or idle) state is the initial phase of the plug-and-play process.
If no changes of the system are conducted and no deferred work items have to be processed,
the system will stay in this state. Phase 1: Detection. After a change of the system was trig-
gered, either by an addition, removal, or change of a feature, a detection of the changed set
of features is performed. All relevant information is collected that is necessary for the ver-
ification process. Phase 2: Generation of the analysis model. After all available information
is collected, it is combined and an analysis model is derived. This model directly reflects
the physical configuration of the system, including transmitted messages, instances of the
software components, execution times, processor speeds of the electronic control units etc.
This phase mainly consists of a mapping of the logical system representation to the physical
entities considering the relations with each other. Phase 3: Analysis and verification. Based
on the concrete model, analysis and verification are conducted. The feasibility of the setup
is checked and end-to-end timings, resource utilizations and event patterns are calculated.
Once these metrics are available, they are verified against the constraints of the features.
If all constraints are met, the setup is considered as feasible and the reconfiguration is trig-
gered. If at least one constraint is not met, the verification failed and the user is informed
about the problem. In that case, no immediate changes are made to the system. Phase 4:
Reconfiguration. If the verification of the system yields that the set of features is feasible,
the reconfiguration of the system starts. This phase includes the configuration of the com-
munication system, network infrastructure, aggregates, and electronic control units. The
routes for the messages are adjusted, schedules are updated and the necessary software
components are installed on the according platforms. After everything is setup, the new
configuration is executed. All necessary information to apply the changes is available in
the system model. The analysis results and system model are updated to reflect the current

36

3.2 Method for system-wide plug-and-play

configuration. After this phase completed, the plug-and-play process is finished. Phase 3a:
User decision. If the verification phase fails because some constraints are not met, the user
is asked how to proceed. In that case the user can either chose to disable features in or-
der to free up resources and re-trigger the verification process, or the user can dismiss the
changed setup, which means that a reconfiguration of the system is not applied and the
system remains in its configuration. Although the setup is not feasible at that point, it can
become feasible by an addition of resources (memory, processing power) later on. In that
case, the plug-and-play process is triggered again and the verification is based on the new
setup with the added capabilities. Phase 0a: Optimization. The verification process can be
approximated, which still leads to valid bounds but with a looser tightness compared to the
non-approximated case. If a decision was based on such an approximation, the tightness
is later increased in the optimization step. The advantage is, that the utilization of the sys-
tem is captured more exactly and therefore further features added to the system are more
likely to be accepted. Whenever a change is triggered or the system has no free resources
available, this state is left again. It can be regarded as a background task to optimize the
analysis results. This step does not necessarily have to be conducted on the same resources
as the approximated verification process. For example, it could be transferred from the
infrastructure of a vehicle to external servers, where it is optimized.

3.2.4 System-wide and local plug-and-play principles

The method presented in this thesis is based on the system-wide plug-and-play principle
that considers relations of multiple functions across several execution platforms and their
dependencies for the plug-and-play process. In the following, a comparison between the
system-wide and local plug-and-play principle is conducted. These are also presented in
Fig. 3.4, as two possible integration variants beyond a manual and a pre-defined approach.

The idea of system-wide plug-and-play is the consideration of a whole system for
the plug-and-play process, based on a model-driven and component-based development
process with data-centric communication semantics. The approach applies an end-to-end
analysis of event chains considering the mutual influence of functions of the system. For
example, a collision avoidance feature, which is integrated to the existing vehicle infrastruc-
ture, usually consists of and interacts with several components: A camera may get installed
that sends its data to a software component on a (already existing) central processing unit
that in turn distributes a breaking command to the brake actuators. In this example, it is not
enough to just look at the pairwise interaction of the involved components (sensor – pro-
cessing unit, and processing unit – brake actuators). Instead, the important characteristic
of this example is the involved end-to-end latency between the image capture of the camera
and the execution of the braking command by the actuators. The system-wide plug-and-
play approach always considers the complete processing chain – from the sensors to the
actuators, including all processing stages in between and possible data dependencies – to
decide if a certain setup is feasible in operation. In contrast to system-wide plug-and-play,
local plug-and-play methods can appear as a client-server setup or in a contract-based
manner. In the client-server scenario, a plug-and-play entity of the system is orchestrated
by a master entity that manages the available resources and handles the configuration of
those. The Universal Serial Bus (USB) [97] can be mentioned as a prominent example for

37

3. COMBINING PLUG-AND-PLAY AND TIMING GUARANTEES

Manual Pre-verified Local plug-and-play System-wide plug-and-play

System System

Subsystem 1

Subsystem 2

Subsystem 3

System 1

System 2

System 3

Individual integration
for each configuration

Pre-defined slots
for integration

Plug-and-play for
subsystems, constraints
limited to subsystems

Plug-and-play
considering system-wide

constraints

Figure 3.4: Comparison of integration variants. The manual variant cannot handle changes
during the lifetime of the system, the pre-verified variant only allows changes of previously
known and verified entities, the local plug-and-play variant only considers the relations within
a limited area of the overall system, and the system-wide plug-and-play variant, as proposed in
this work, holistically considers the entities in the system and is able to guarantee system-wide
constraints.

the client-server method. The USB master in this case is responsible to handle the resources
data rate and energy according to the requests of the attached devices. Notice that this is a
local approach as only the bus itself is managed – no guarantees are given with respect to
the chaining of processing stages. For example, consider two computers that are connected
to each other via an USB-to-Ethernet adapter. While each USB master can handle the local
resources, the overall latency between the computers (from a software component on one
computer, via the USB and the adapters to a software component on the other computer)
is not manageable. Beyond the client-server based method, we consider contract-based
methods, e.g. [98, 99], to belong to the class of local plug-and-play approaches. In these
methods, integration and refinement of components depends on a matching of assumptions
and guarantees about their behavior [100]. In difference to the system-wide approach, the
decomposition of guarantees is in the responsibility of a system designer. Correctness of the
system is guaranteed as long as all local contracts are fulfilled. However, the decomposition
is fixed, which limits flexibility. For example, it is not possible to automatically distribute a
timing budget on a chain of components.

3.2.5 User roles of the system-wide plug-and-play approach

User roles define the tasks and responsibilities of a certain person or group within a project.
As the scope of the user roles changes with the proposed approach compared to the classic
procedure, the differences and similarities are highlighted in the following. As the approach
is mainly focused on the timing behavior of the considered systems, only user roles affected
by this topic are chosen for examination.

38

3.2 Method for system-wide plug-and-play

Figure 3.5: Roles defined in AUTOSAR 4.2.1 (Screenshot2)

User roles according to the AUTOSAR [101] methodology are shown in Fig. 3.5.
Considering the timing behavior of the system, related characteristics are specified and
influenced by the roles basic software designer, basic software module developer, ECU inte-
grator, software component designer, software component developer and system engineer.
Especially the ECU integrator and the system engineer are involved in several tasks in par-
allel according to the AUTOSAR methodology, because the ECU integrator has to handle
all aspects of the software running on a particular ECU, while the system engineer has
to handle the system-wide interaction of the individual ECUs. Both roles are involved in
the specification of timing requirements and the guarantee of those by test, simulation, or
analysis of the ECUs and/or complete system. In practice, user roles are frequently not
occupied by a single person but by a mixture of groups. Each of these groups is associated
with a certain functionality and takes care of all aspects of it, i.e., all roles involved with
this functionality. To the author’s knowledge, AUTOSAR does not specify the interaction
of those groups with each other, but treats the user roles as singular instances. In conse-
quence, individual groups compete on the system resources, e.g., the available data rate
on a communication entity. The user roles in the system-wide plug-and-play approach
change compared to the classic methodology, which is sketched in Fig. 3.6. Due to the
automatic verification process, the roles of the ECU integrator and system engineer are not
responsible for the integration anymore. Instead, the system handles the integration auto-
matically and gives feedback whether the process succeeded or failed. In the latter case,
another configuration can be chosen or resources can be added to the system by a techni-
cian, which, in turn, are again detected automatically. To make this approach work, feature
developers responsible for the roles of the basic software and software component designer
and developer have to annotate the software components and feature bundles with timing
information and constraints. Without these annotations, an automatic integration is not
possible.

2Screenshot of Enterprise Architect, (c) Sparx Systems

39

3. COMBINING PLUG-AND-PLAY AND TIMING GUARANTEES

Change of set of features

Feature developer

Vehicle owner

System (Automatic)

Detection of changes Analysis Reconfiguration

Feedback from system
Feature definition

(hardware, software, constraints)

Addition of resources

Technician

System engineer

Figure 3.6: Roles within the system-wide plug-and-play approach. The changes compared to
the classic roles are induced by the automatic verification process of the system.

3.2.6 Possible causes for a refused reconfiguration

The system may refuse a reconfiguration for several reasons. In this work, resource uti-
lization and timing behavior is the focus. A configuration is refused if the analysis results
indicate an over-utilization of the physical resources or if the results show that the timing
requirements are not met by the system. An over-utilization is defined as the case where
resources like processing time or communication data rate exceeds the limits of the under-
lying hardware. Timing requirements are defined to be not met if they exceed the specified
bounds for the behavior in at least one case, e.g., the end-to-end timing is more than the
specified maximum or the jitter of a data stream exceeds the maximum.

Beyond that, other measurements are also important to guarantee the correct execution
of the system, but are not within the scope of this work. For example, the handling of safety
requirements has to be an integrated part of a flexible approach to mitigate possible failures
of the system [20, 102]. Also energy consumption of the electronic control units might play
a role or in general the interface compatibility on a mechanical, electrical, and data level.

3.2.7 Comparison to other plug-and-play and reconfiguration approaches

As far as the author knows, the presented approach is unique in its combination of system-
wide plug-and-play possibilities with integrated verification of hard real-time constraints
for automotive systems, which are developed according to the data-centric communication
paradigm in a component-based fashion. Other approaches [27, 95, 96, 98, 103, 104,
105] do not take into account an end-to-end analysis of data flows, are limited in their
flexibility by only supporting certain types of hardware, implement a different execution or
communication model, or do not take into account plug-and-play abilities. A comparison
of the proposed to other selected approaches is given in Appx. A.1.4.

40

3.3 Introduction of the running example

Figure 3.7: Rendering of the eCar demonstrator (adopted from [106]). On each corner, an
eCorner is installed – an integrated component for steering, acceleration, and deceleration.
Each eCorner can be controlled individually.

3.3 Introduction of the running example
A configuration based on the eCar demonstrator [106] (Fig. 3.7) is chosen to show the fea-
sibility of the approach. The eCar demonstrator is an experimental platform for evaluation
of information and communication technology (ICT) architectures in the automotive do-
main [4, 107]. The setup features four eCorners, which are integrated, electromechanical
components for acceleration, deceleration, and turning of the vehicle. Each eCorner is con-
trolled individually and includes an in-hub traction motor and a steering motor on the top.
The eCar can transport one person and is controlled with a sidestick for the movement of
the vehicle and a touch-screen for changing the drive modes and further interactions with
the driver. To show the feasibility of the approach, the system will be constructed in several
steps that show the possibility to iteratively grow a system in a plug-and-play manner. The
following visualizations capture only a certain subset of the explained features, a complete
introduction of the utilized models is given in Ch. 4, including models for the logical system
and requirements. The running example starts with the base feature of the eCar, which can
be extended by the control and movement feature, and further by the camera feature, which
realizes a collision avoidance functionality. The example is used throughout this thesis to
illustrate certain aspects of the approach.

The base feature of the eCar, as shown in Fig. 3.8, consists of ECUs and communica-
tion systems that form the basic infrastructure of the eCar. In this configuration, the eCar
cannot be driven as no data flows and functions are defined yet. The base system consists
of three ECUs, one for the vehicle center (ECU Center), one for the front axle (ECU Front),
and one for the rear axle (ECU Back). The ECUs are connected with each other via a com-

41

3. COMBINING PLUG-AND-PLAY AND TIMING GUARANTEES

ECU Front ECU Center

ETH

CAN
Front

CAN
Back

SER

ECU Back

Figure 3.8: The base feature of the eCar, consisting of three ECUs that are interconnected via
an Ethernet network. The central ECU has in addition a serial communication bus, while the
front and back ECUs each have a CAN bus.

munication system based on switched Ethernet (ETH). In addition, ECU Center has a serial
bus (SER) as a further communication possibility and the ECU Front and ECU Back are each
connected to a CAN bus, named CAN Front and CAN Back, respectively. The movement
and control feature of the eCar (Fig. 3.9) adds components and functionality to actually
drive with the eCar. This feature requires the base feature and cannot work without it.
The base system is extended by four eCorner aggregates, named Agg. eCornerFR/-FL/-BR
and -BL according to their position in the eCar. Aggregates are black-box systems, which
means that internal relations of the software components are not completely known. Each
eCorner is equipped with a virtual software component (Control eCornerFR/-FL/-BR and
-BL) that represents the data flow to the eCorners. The two front eCorners are connected
to CAN Front and the other two to CAN Back. Three software components are part of the
feature: Control Front and Control Back bundle information to eCorners on the according
axle, and Control Central is responsible for the system-wide control and synchronization
of the eCorner modules. The human-machine interface is connected to the system via the
serial bus SER. It is modeled as an aggregate Agg. HMI with a virtual component Sidestick
that abstracts the input characteristics from the sidestick used to control the vehicle. The
human-machine interface is modeled as an aggregate with black-box behavior, because the
internal relations are assumed to be unknown. The camera feature adds a collision warn-
ing system to the vehicle, based on a camera that observes traffic. The feature is built
on the movement and control feature and requires it to work. The camera is modeled as
an aggregate Agg. Camera with a virtual software component Camera, which abstracts the
flow of objects from the camera. It is assumed that the camera preprocesses data and only
transmits descriptions of recognized objects, like pedestrians or other vehicles. The camera
is connected to CAN Front and the objects are processed in ECU Front in the software com-
ponent Camera Process. This software component is connected to Control Front in order
to have a prediction of the future movement of the vehicle. The data is forwarded by the
software component Camera Forwarder on ECU Center to the aggregate HMI, where an ad-
ditional virtual software component Camera Signaler is installed. This software component

42

3.3 Introduction of the running example

ECU Front ECU Center

ETH

CAN
Front

CAN
Back

SER

Agg. HMI

Agg.
eCornerFR

Agg.
eCornerFL

Agg.
eCornerBR

Control
Central

Control
eCornerFR

Control
eCornerFL

Control
eCornerBR

Control
eCornerBL

Control
Front

Sidestick

ECU Back

Control
Back

Agg.
eCornerBL

Figure 3.9: The movement and control feature adds driving capabilities to the eCar. It consists
of four eCorner aggregates that abstract the behavior of the eCorner modules, several software
components for the control and synchronization of the eCorners and an additional aggregate
that abstracts the human-machine interface.

ECU Front ECU Center

ETH

CAN
Front

CAN
Back

SER

Agg. HMI

Agg.
eCornerFR

Agg.
eCornerFL

Agg.
eCornerBR

Control
Central

Control
eCornerFR

Control
eCornerFL

Control
eCornerBR

Control
eCornerBL

Control
Front

Sidestick

Agg.
Camera

Camera
Signaler

Camera
Process

Camera
Forwarder

Camera

ECU Back

Control
Back

Agg.
eCornerBL

Figure 3.10: The camera feature adds a camera to the eCar infrastructure to implement a
collision warning functionality. The detected objects of the camera are processed and possible
collisions are shown on the human-machine interface.

43

3. COMBINING PLUG-AND-PLAY AND TIMING GUARANTEES

represents an indicator on the human-machine interface, which warns the driver in case a
possible collision is detected by the system.

In the next chapters, it is shown how the eCar example can be modeled by the proposed
approach and how the features can be added in a plug-and-play manner (Ch. 4 and Ch. 5).
Requirements are specified based on a fuzzy knowledge of the system’s topology, which are
automatically checked by our verification framework (Ch. 6). The verification framework
is capable to exchange computation time for tightness, which is evaluated by experiments
based on the introduced eCar example and other examples (Ch. 7).

3.4 Combining plug-and-play and timing guarantees summary
In this chapter, the proposed system-wide plug-and-play approach was introduced. The ap-
proach utilizes models to represent system behavior, structure, and requirements, which are
the basis for an automatic integration process. It was pointed out that a flexible approach
is needed where the verification tightness can be parameterized in exchange for analysis
computation time to fit several scenarios. Processing phases and artifacts of the plug-and-
play method were described and details of the involved development and adaption timeline
were pointed out. The approach enables the addition of features into the vehicle, which
were not integrated or not yet developed during the point of sale. The individual phases
of the plug-and-play process, including the possible interaction points with the user, were
highlighted, after which the method was differentiated against local plug-and-play meth-
ods. The advantage of the system-wide plug-and-play process is that end-to-end paths are
considered even across heterogeneous system boundaries and a manual, static allocation
of resources is not necessary. The system is always handled as a whole during the plug-
and-play and verification processes, therefore leaving possibilities for a flexible adaption.
Furthermore, the impacts on the classic user roles were discussed as the task of integration
is now part of the system and not a manual process anymore. The chapter ended with the
introduction of a running example based on the eCar demonstrator with its three differ-
ent features (base, movement and control, camera), which will be used in the following
chapters to show the feasibility of the system-wide plug-and-play method and to refine it.

44

Chapter 4

Adequate meta-models

This chapter develops meta-models for the system-wide plug-and-play approach. The goal
is to define a minimal set of adequate models that capture the necessary information of a
system for timing verification and that are extensible in a plug-and-play manner to show
the feasibility of the approach. Apart from the specification of the according meta-models,
which can be used as a blueprint for similar approaches, contributions include the definition
of a set of timing requirements for loosely coupled systems according to the data-centric
communication paradigm. Seven different model types are utilized for the approach, the
relations between them are visualized in Fig. 4.1. A brief overview is given in the following.

A LOGICAL model describes software and external components including their ports,
communication with certain topics, and captures properties of these components. A DATA

model is a dictionary of available data topics in the system, forming the foundation for
the communication specification. A dictionary abstracts from the direct communication re-
lations and implements the data-centric principle [23]. A TIMING REQUIREMENTS model
extends a LOGICAL model and captures timing constraints of software components as well
as data chains with known or unknown sources or sinks. A SYSTEM model represents an
electronic architecture of a vehicle with electronic control units, aggregates, and network
elements. It captures specific properties of the hardware like processing speed or device
latency. A DEPLOYMENT model defines a mapping of the LOGICAL model and DATA model
to elements of the SYSTEM model. It covers instantiations of software and external compo-
nents and includes properties of the mapping regarding the timing, e.g., execution times of
a software component on a certain device. A FEATURE model combines a LOGICAL, DATA,
TIMING REQUIREMENTS, SYSTEM, and DEPLOYMENT model. A feature represents a certain
functionality of the vehicle with its sensors, actuators, and data processing. Features form
a package that includes all information for the integration of a certain functionality and are
an important concept of the system-wide plug-and-play approach. A FEATURE-SET model
is a set of FEATURE models that represents a certain configuration of a vehicle. The union
of all referenced FEATURE models yields the complete system for verification. The proposed
structure of models implements the ideas of the Model Driven Architecture (MDA) [39] and
can be regarded as an extension of the approach presented in [95] with a feature concept
and the consideration of timing requirements.

45

4. ADEQUATE META-MODELS

FEATURE-
SET

FEATURE

LOGICAL

DATA

TIMING

REQUIRE-
MENTS

SYSTEM
DEPLOY-

MENT

Model Instances

References

Figure 4.1: Relations of the models. Arrows represent references. A FEATURE-SET model com-
bines several FEATURE models and stands for a certain configuration of a vehicle. Each FEATURE

model can include a TIMING REQUIREMENTS, LOGICAL, DATA, DEPLOYMENT and SYSTEM model.
A LOGICAL model is a component-based representation of the real-world system with data-
centric communication based on a DATA model. TIMING REQUIREMENTS can be annotated to a
LOGICAL model. A DEPLOYMENT model maps a LOGICAL and DATA model to a concrete hardware
representation, captured by a SYSTEM model.

4.1 Requirements for adequate meta-models

Before the meta-models are described in detail, the requirements, which led to the actual
representation, and applied solutions are briefly explained:

Requirement: The system described by the models is expandable. This requirement
directly reflects the plug-and-play behavior of the approach. Starting from a certain system,
it must be possible to correctly capture the addition of further functionality by the extension
of the models representing the system. This is achieved in the approach by FEATURE mod-
els that capture constraints, components, and behavior of a certain functionality with their
sub-models. The FEATURE models can be freely combined in FEATURE-SET models to specify
the actual configuration of a vehicle. Requirement: Functionality and technical realiza-
tion is independent. The functionality should be described in a technology-independent
way in order to be re-usable for different setups of the hardware and communication sys-
tems. This guarantees a fast adaption of a functionality to various hardware platforms.
In the proposed approach, a LOGICAL model captures the setup of the system in an ab-
stract, platform independent way. This representation can be mapped via a DEPLOYMENT

to a SYSTEM model in order to link it to a certain hardware configuration. Requirement:
Communication between entities is abstracted. Instead of a manual, message-wise in-
tegration, a data-centric integration should be utilized. The communication must not be
modeled by direct references between the components, but by references to an abstract
data representation that can either be read or written by the components without know-
ing each other. This enables an extension of the communication behavior of the system,
because components can read or write data without knowing the actual sender or receiver.
In the approach, this is achieved by a DATA model, which represents a data dictionary – a
set of available topics in the system. Features can add topics to this dictionary or access the

46

4.2 Meta-model representation

already existing topics. The communication of components within a LOGICAL model is re-
stricted to publish or subscribe data to or from these topics. This representation is mapped
automatically to messages during the model transformation steps. Requirement: Timing
requirements can be annotated. As the approach integrates an automatic verification of
a system configuration, the timing requirements have to be captured by the models. In ad-
dition, it has to be possible to describe timing constraints even if the sender or receiver of
certain data instances is unknown, which might be the case in a data-centric communica-
tion abstraction. This is implemented by a TIMING REQUIREMENTS model, which captures
all constraints of a certain functionality and is part of a FEATURE model. Constraints are
available that directly reference component ports within a data chain, but also constraints
that reference the source or sink of a data chain. Requirement: Timing requirements
are technology-independent. During the design of a function, the actual mapping to a
certain technology might be unknown. Hence, it should be possible to define constraints
that are independent of the actual hardware mapping. This is achieved in the proposed
approach because a TIMING REQUIREMENTS model exclusively references artifacts from a
LOGICAL model. This way, a hardware-independent specification of constraints is possi-
ble. Requirement: The models allow formal analysis. The system-wide plug-and-play
approach with automatic verification only works if the models allow a formal analysis in
the end. This may not be directly possible with the input models, but at least after some
further processing like model-to-model transformations. This is achieved in the approach
because the different modeling elements have attributes that allow a concrete instantiation
of the system, suitable for a formal analysis. For example, a DEPLOYMENT model includes
execution times of all mapped software components and the size of topic items on several
communication media.

4.2 Meta-model representation

Without loss of generality, the meta-models derived in this chapter were implemented and
visualized with the Eclipse Modeling Framework (EMF) [40], which is based on the Ecore
meta-meta-model. No exclusive features were used and therefore the approach can be
transferred to other modeling concepts as well. Graphical representations are employed
as a formal definition of the meta-models. The elements are visualized in Fig. 4.2 and are
explained in the following:

Classes are templates for abstract representations of real-world or virtual objects. They
can include functions and attributes that stand for operations, queries, and states of an
object. Abstract classes do not directly represent an object but form the foundation for
classes sharing certain properties. Classes can become super-classes of other entities that
inherit all their properties. Attributes model states or properties of an object. Each attribute
has a name associated to it and a data type. With enumerations, data types can be user-
defined and applied within attributes. Containments are an inclusion relation between
objects, while references are a knowledge relation. Usually, objects can only be part of one
containment but may have several references to it. References are allowed to span across
multiple meta-models, visualized by the indicator for external elements. Cardinalities form
constraints or requirements for the number of objects that can be contained or referenced,

47

4. ADEQUATE META-MODELS

CookBook

CuisineType :
EString

Book

Title : EString

PublishYear : EInt = 0

Cover : CoverType =
SoftCover

FictionBook

Category :
EString

Bookshelf AuthorList

Author

Name : EStringCoverType

SoftCover

HardCover

City

Name : EString

CityList

[0..*] books

[1..*]

bookAuthors

authors[0..*]

[1..1]

birthplace

cities[0..*]

Class
Cardinality

Abstract Class
Superclass

reference

Enumeration

Reference

Containment

Attribute (Name : Type)

External
element

Figure 4.2: Visualization of the used modeling elements from the Ecore meta-meta-model
[40], based on a book database example.

Feature

name : EString

TopicDictionary Deployment LogicalSystemSystemRequirementSet

[0..1] topicdictionary

[0..1] deployment

[0..1] logicalsystem

[0..1] system

[0..1] requirementset

Figure 4.3: FEATURE meta-model. It models building blocks of a system, which can be com-
posed in a plug-and-play manner.

and for the quantity of attribute instances that can be part of a class instance. Lower and
upper bounds can be specified, where an asterisk (*) represents an arbitrary quantity. For
example, [1..∗] means a cardinality of at least one and undefined maximum. If the lower
and upper bounds are equal, only one number may be shown.

4.3 FEATURE meta-model

The FEATURE meta-model, as shown in Fig. 4.3, references zero or one of each DATA, DE-
PLOYMENT, TIMING REQUIREMENTS, SYSTEM and LOGICAL models. A feature is the basic
building block of a concrete system and models one particular functionality. The idea is to
be able to combine features with each other in order to define or change the functionality
of a system. It is not necessary that a feature is self-contained. Elements of a feature might
reference elements of another one. As restriction, it is assumed that the dependencies be-
tween features form no cycles.

48

4.4 FEATURE-SET meta-model

FeatureSet FeatureItem

isActive : EBoolean = true

Feature

name : EString

[0..*] featureItem [1..1] featureReference

Figure 4.4: FEATURE-SET meta-model.

FEATURE-
SET 1

FEATURE-
SET 2

FEATURE-
SET 3

FEATURE

Base

FEATURE

Movement
and control

FEATURE

Camera

References

Figure 4.5: The three FEATURE-SET models of the eCar example. Each FEATURE-SET model
represents a certain configuration.

The eCar [106] example consists of three different FEATURE models, according to the
description in Sec. 3.3: Base FEATURE model, movement and control FEATURE model, and
camera FEATURE model.

4.4 FEATURE-SET meta-model
The FEATURE-SET meta-model is shown in Fig. 4.4. Instances serve as a container to de-
scribe active features of a system. A FEATURE-SET model therefore forms a snapshot of a
current system configuration. The referenced FEATURE instances may have cross-references
to each other. A FEATURE-SET model represents one particular system configuration in a
one-to-one relationship.

The three FEATURE-SET models of the eCar example, as shown in Fig. 4.5, represent the
three possible configurations. FEATURE-SET 1 has only one reference to the base FEATURE

model. In comparison, FEATURE-SET 2 has references to the base FEATURE and movement
and control FEATURE models. The FEATURE-SET 2 is a configuration of the eCar that makes
it driveable. FEATURE-SET 3 adds the camera feature to the system, while keeping the
other two features. Each FEATURE model has several sub-models attached to it that are not
visualized and are explained in the following sections.

4.5 SYSTEM meta-model
The SYSTEM meta-model, as shown in Fig. 4.6, represents the technical realization of a
system and hence belongs to the platform-specific modeling view in the model-driven de-
velopment process [39]. It describes processing units, aggregates, and communication in-
frastructure. Hence, it is compatible with a centralized architecture approach [26, 27] (see
also Sec. 1.2.2). The SYSTEM model of one feature may reference and extend the SYSTEM

model of another feature, e.g., to represent addition of hardware. Elements of a SYSTEM

49

4. ADEQUATE META-MODELS

Aggregate

Device

name : EString

ECU

rate : EDouble = 0.0

NetworkElement

name : EString
datarate : EDouble = 0.0
latency : EDouble = 0.0
networkElementType : NetworkElementType = EthernetSwitch

System

ConnectionDescription

stackLatency : EDouble = 0.0

NetworkElementType

EthernetSwitch
EthernetSwitchPrio
CANBus
SerialBus

[0..*] devices

[0..*] networkElements

[0..*] connections

[1..1] networkElementReference

Figure 4.6: SYSTEM meta-model. It represents the technical realization of a system, including
electronic control units, aggregates, communication relations, and network infrastructure.

model are annotated with parameters for technical properties (e.g., processor speed and
network data rate). The SYSTEM meta-model consists of the following entities: Electronic
control units (ECUs) model processing units of the system. ECUs can execute instances of
software components and may have an undefined number of connections to network ele-
ments. For our approach, it is assumed that every ECU has one processing core and the
parameters of all executed instances on the processing core are known. Aggregates are con-
tainers for sensors and/or actuators of the system. Only the external behavior of aggregates
is known, e.g., parameters of outgoing data streams, which makes aggregates black-box en-
tities of the system (compared to the white-box behavior of ECUs, where dependencies are
known). Network elements define the protocol of the communication relations and may
in extension represent network infrastructure elements. The parameters include available
data rate and a possible latency during the processing in infrastructure or other elements.
Connections stand for physical connections between network elements and devices, where
devices include ECUs and aggregates. To limit the scope for an analysis, a direct connection
of network elements is not considered in our approach, e.g., connections between Ether-
net switches. Each connection includes a parameter to model the possible latency of the
communication stack on the devices.

Each feature of the eCar example includes an individual SYSTEM model. For the base
feature, the SYSTEM model describes the basic electronic system of the eCar consisting of
three electronic control units, two controller area network (CAN) buses [108], a serial bus
and a switched Ethernet. The movement and control feature adds four eCorners and a
human-machine interface to steer the vehicle, all modeled as an aggregate. The camera
feature adds a camera aggregate to the SYSTEM model. This is visualized in the Figs. 3.8,
3.9 and 3.10 if the software and external components are omitted.

50

4.6 DATA meta-model

Topic

name : EString

TopicDictionary
[0..*] topics

Figure 4.7: DATA meta-model. A topic defines data type and semantic to enable a decoupled
communication. All available topics are combined in a dictionary.

Topic Name Description
Movement and control feature

MovementVector Desired velocity and direction of the
vehicle.

ControllerFront, ControllerBack Control of the front or back axle.
WheelFrontLeft, WheelFrontRight, WheelBackLeft,

WheelBackRight
Control of one of the four eCorners.

Camera feature
CameraRaw Raw objects from the camera.

CameraProcessed Processed objects containing collision
information.

CameraSignalHMI Collision warning indicator.

Table 4.1: Dictionaries of the eCar example.

4.6 DATA meta-model

Communication relations are implemented according to the data-centric paradigm in our
approach. Concrete dependencies between senders and receivers are abstracted. Instead,
a communication is based on so-called topics, where each topic includes a definition of
a data structure and a unique name. Since the concrete structure is not of interest for
our approach, the only available attribute for topics is the name, see Fig. 4.7. The active
dictionary can be extended by the addition of features and features can access already
defined topics. In practice, the access rights to the dictionary have to be managed, which
was not considered in this work. The topics can further be extended by quality-of-service
attributes. For example, the Data Distribution Service (DDS) [36] defines 13 attributes,
including durability, liveliness, lifespan, ownership, and history window of data samples.

For the base feature of the eCar example, a dictionary is not defined. The dictionaries
for the movement and control, and camera features are combined in Tab. 4.1.

4.7 LOGICAL meta-model

The LOGICAL meta-model describes relations between software and external components
in an abstracted, technology independent manner. The LOGICAL model itself does not de-
scribe the functionality but the type, characteristics, and dependencies of data relations.
A representation is shown in Fig. 4.8. Note that no references to hardware modeling el-
ements exists, which corresponds to the characteristics of a platform-independent model
in the model-driven development process [39]. We employ the component-based design

51

4. ADEQUATE META-MODELS

ExternalComponent ExternalPort

name : EString

InPort
triggersExecution
: EBoolean = true

InPortExternal

LogicalSystem

OutPortOutPortExternal

period : EDouble = 0.0
jitter : EDouble = 0.0
distance : EDouble = 0.0

Port

name : EString

SoftwareComponent

AnyComponent

name : EString

Topic

name : EString

AnyPort

[0..*] ports [0..*] ports

[0..*] components

[1..1] topicReference

Figure 4.8: LOGICAL meta-model. It defines communication relations of software and external
components to and from topics.

principle [31] in our approach; software instances are isolated from their environment and
may only communicate via dedicated ports with each other. A direct communication or
alternation of and between software instances is not allowed. This leads to the following
elements in the LOGICAL meta-model: Components are entities that can produce, consume,
and process data. We distinguish software components, which can be mapped onto elec-
tronic control units, and external components, which can be mapped onto aggregates. The
internal behavior of software components is known, while only a specification of the in-
coming and outgoing data is available for external components. Ports form interfaces be-
tween components and topic instances. A communication of components is only possible
via ports, which limits the behavior of the system and makes an analysis feasible. Ports have
an associated direction (inbound or outbound) and topic. Only data corresponding to the
associated topic might be received or transmitted. Outbound ports of external components
can be annotated by information describing characteristics of the data stream according to
the PJD model [80] (see Sec. 2.6). Furthermore, it can be chosen if an inbound port of
a software component triggers its execution. For simplicity, we assume that all triggering
inbound ports cause an equal behavior.

The LOGICAL model of the movement and control feature of the eCar example is shown
in Fig. 4.9. It is visible that the ports of components are not directly connected to each other,
but reference topics. The actual data flows are calculated later. The topics were previously
defined in the topic dictionary and correspond to the definition of Tab. 4.1. The LOGICAL

model of the camera feature is visualized in Fig. 4.10. It seems that the topic ControllerFront
is referenced for input but no publisher for it is defined. This is not an issue, because it is
already served within the movement and control feature. The example shows that topics
are a possibility to decouple the functionality. It is not of interest within the camera feature,
where the data actually comes from.

52

4.8 DEPLOYMENT meta-model

Control
Central

Control
eCornerFR

Control
eCornerFL

Control
eCornerBR

Control
eCornerBL

Control
Front

Sidestick

Control
Back

MovementVector
WheelFrontRight

WheelFrontLeft

C
o
n
tr

o
ll
er

F
ro

n
t

C
o
n
tr

o
ll
er

B
a
ck WheelBackRight

WheelBackLeft

Parameters
Period = 10ms
Jitter = 20ms
Distance = 5ms

External Component

External Comp. Port

Topic

Software
Component

Software Comp.
Port

Reference

Figure 4.9: LOGICAL model of the movement and control feature of the eCar example. The
components are not directly coupled. Instead, topics are referenced and the actual data flows
are calculated later – this explains the counter-intuitive direction of the edges for input ports.

Camera
Signaler

Camera
Process

Camera
Forwarder

Camera

C
a
m

er
a
R

a
w

C
a
m

er
a
P
ro

ce
ss

ed

C
a
m

er
a
S
ig

n
a
lH

M
IControllerFront

Parameters
Period = 16ms
Jitter = 16ms
Distance = 5ms

Figure 4.10: LOGICAL model of the camera feature of the eCar example.

4.8 DEPLOYMENT meta-model

The DEPLOYMENT meta-model, as shown in Fig. 4.11, models the mapping of elements
from a LOGICAL model to a SYSTEM model. It is possible to map elements multiple times
if necessary, e.g., for redundancy reasons or if software instances are just used several
times. The DEPLOYMENT model together with the SYSTEM, LOGICAL and DATA models de-
scribe a functionality completely. The DEPLOYMENT meta-model consists of the follow-
ing elements: Software mappings represent instantiations of logical software components
onto system elements, in our case electronic control units. Software mappings have to be
annotated with the best-case and worst-case execution times to make the system analyz-
able. Exemplary, we distinguish four different kinds of software mappings in our approach:
Highest-priority interrupt service routines mappings, high-priority event-triggered map-
pings, medium-priority time-triggered mappings, and low-priority event-triggered map-
pings. All of the mappings are annotated with a priority valid for the individual group,
except the medium-priority time-triggered mappings, which are annotated with a period
for the triggering frequency. External mappings instantiate external software components
onto aggregates. Dependencies between instances on aggregates are usually not known,

53

4. ADEQUATE META-MODELS

DataMapping

size : EInt = 0
priority : EInt = 0
distribution : DataMappingDistributionType = Standard

Deployment

ExternalMapping

HighPriorityET

priority : EInt = 0

ISR

priority : EInt = 0

LowPriorityET

priority : EInt = 0

MediumPriorityTT

period : EDouble = 0.0

SoftwareMapping

bcet : EDouble = 0.0
wcet : EDouble = 0.0

ExternalComponent

SoftwareComponent

AnyMapping

ComponentMapping

Topic

name : EString

NetworkElement

name : EString
datarate : EDouble = 0.0
latency : EDouble = 0.0
networkElementType : NetworkElementType =
EthernetSwitch

DataMappingDistributionType

Standard
Unicast
Multicast
Broadcast

Aggregate

ECU

rate : EDouble = 0.0

[1..1] externalComponentReference

[1..1] softwareComponentReference

[0..*] mappings

[1..1] topicReference

[1..1] networkElementReference

[1..1] aggregateReference

[1..1] ECUReference

Figure 4.11: DEPLOYMENT meta-model. Software and external components are mapped to
electronic control units and aggregates with a DEPLOYMENT model. It includes quantitative,
technology-dependent annotations needed for a timing analysis of the system.

hence no annotations are available. It directly corresponds to the black-box behavior of
aggregates. Data mappings describe technology-dependent parameters for topics that are
sent via a specific network element. They include the size of a message, priority and distri-
bution policy. The distribution policy can be unicast, multicast, or broadcast behavior, but
the choice is limited by the underlying technology. For example, the distribution policy for
controller area networks is always multicast, while for a serial bus it is always broadcast.

Four different kinds of software mappings are distinguished. These categories should
be regarded as an example configuration to cover the most important use cases. The cho-
sen software mappings are as follows: ISR mappings (ISR) correspond to highest priority,
non-preemptive software instances. ISR routines are executed asynchronously to the pro-
gram flow and handle external events approaching the processing unit. Compared to the
other mappings, this is the only mapping that cannot be preempted. High-priority event-
triggered mappings (HighPriorityET) are used for high-priority data, especially related to
safety-relevant communication. For example, the triggering of an airbag-system falls into
this category. Medium-priority time-triggered mappings (MediumPriorityTT) are employed
to model periodic tasks, like those involved in control applications. Low-priority event-
triggered mappings (LowPriorityET) model tasks that are related to background-traffic, e.g.,

54

4.8 DEPLOYMENT meta-model

Control
eCornerFR

Control
Back

MovementVector

WheelFrontRight
WheelFrontLeft

ControllerFront
ControllerBack

WheelBackRight
WheelBackLeft

External Component
(LOGICAL Model)

External Mapping
(DEPLOYMENT Model)

Agg.
eCornerFR

Agg.
eCornerFL

Agg.
eCornerBR

Agg.
eCornerBL

ECU Back

Agg.
HMI

Control
Central

Control
Front

Control
eCornerFL

Control
eCornerBR

Control
eCornerBL

Sidestick

ECU Center

ECU Front

Aggregate
(SYSTEM Model)

Software Component
(LOGICAL Model)

ECU
(SYSTEM Model)

Topic
(DATA Model)

Network Element
(SYSTEM Model)

Software Mapping
(DEPLOYMENT Model)

Data Mapping
(DEPLOYMENT Model)

Parameters
BCET
WCET
(Period)
(Priority)

Parameters
Size
Priority
Distribution

SER

ETH

CAN
Front

CAN
Back

Figure 4.12: DEPLOYMENT model of the movement and control feature of the eCar example.
The DEPLOYMENT model maps the LOGICAL and DATA models to the SYSTEM model and anno-
tates it with all required parameters for an analysis.

firmware update, internet and diagnosis traffic. The four software mapping categories
have also advantages for the analysis: Ad-hoc changes of the system, e.g., a connection of
a smartphone to the internet via the infrastructure of the vehicle, fall usually into the last
category, the low-priority mapping. Consequential, the timing of the other three categories
is not affected and has not to be re-evaluated for this kind of changes.

The DEPLOYMENT models for the eCar example are visualized in Fig. 4.12 for the move-
ment and control feature, and in Fig. 4.13 for the camera feature. Both figures show the
mapping of the LOGICAL model to the SYSTEM model via external, software, and data map-
pings, stemming from the DEPLOYMENT model. The deployment is unambiguous in this
example. However, several mappings from the logical model to the system model could
exist, enabling the possibility of a design-space exploration as part of future work.

Camera
Camera
Process

CameraSignalHMI

CameraRaw

CameraProcessed

External Mapping

Agg.
Camera

ECU Front

Camera
Forwarder

ECU Center

Software Mapping Data Mapping

SER

ETH

CAN
Front

Camera
Signaler Agg.

HMI

Figure 4.13: DEPLOYMENT model of the camera feature of the eCar example.

55

4. ADEQUATE META-MODELS

RelativeChainLatency

Direction : EDirection = StimulusDir
Scope : EScope = NextElement
AfterExecution : EBoolean = false

TimingRequirementAnyRequirement

name : EString

RequirementSet

TwoPointChainLatency

AfterExecution : EBoolean = false

ArrivalPattern

ComponentDelay

AnyPort

AnyReference

Topic

name : EString

SoftwareComponent

RangeRequirement

Minimum : EDouble = 0.0
Maximum : EDouble = 0.0

EScope

NextElement
ChainEnd

EDirection

StimulusDir
ResponseDir

[0..*]
requirements

[0..1] anyPortReference[0..1] topicReference

[1..1] startElementReference

[1..1] endElementReference

[1..1] elementReference

[1..1] elementReference

[1..1]
componentReference

[1..1] latencyRange

[1..1] latencyRange

[0..1] jitterRange

[0..1] distRange

[0..1] periodRange

[1..1] delayRange

Figure 4.14: TIMING REQUIREMENTS meta-model, showing the relations of the four require-
ments RelativeChainLatency, TwoPointChainLatency, ArrivalPattern and ComponentDelay.

4.9 TIMING REQUIREMENTS meta-model

To complete our approach, properties of the TIMING REQUIREMENTS meta-model, shown in
Fig. 4.14, are discussed. Its purpose is to annotate a LOGICAL model by descriptions for tim-
ing requirements. After the analysis of a system, it is verified that all timing requirements
are met and the configuration is valid. Because communication between software instances
is abstracted by the data-centric principle, a direct annotation of communication relations
with timing requirements is not always possible. For this reason, we define a method in
the following to specify timing requirements with unknown senders or receivers. The ideas
of static concepts [46, 55, 109, 110] are hereby extended to support timing requirements
within the data-centric, system-wide plug-and-play approach. Start and end points of event
chains can be referenced, which makes it possible, for example, to specify the maximum
delay until a certain data sample in the system causes a reaction in the physical world. Tim-
ing requirements can be annotated to ports, topics, or software components. If annotated
to ports or software components, requirements apply directly to the referenced element.
For topics, the behavior is different as multiple publishers and subscribers can exist. If a
requirement applies to a topic, it automatically applies to all its subscribers or publishers,
depending on its type. Each requirement bounds the range of certain attributes of the ana-

56

4.9 TIMING REQUIREMENTS meta-model

Name References Parameters Description
Timing requirement: RelativeChainLatency

RCL1
Topic

Scope: NextElement,
Direction: Any

Latency between all publishers and all
subscribers of the topic (see Fig. 4.15).

RCL2 Scope: ChainEnd,
Direction: Stimulus

Latency between all sources of event chain
and all subscribers of topic (see Fig. 4.15).

RCL3 Scope: ChainEnd,
Direction: Response

Latency between all publishers of topic and
sinks of event chain (see Fig. 4.15).

RCL4
Port

Scope: NextElement,
Direction: Response

Latency between all direct successor ports
and referenced port.

RCL5 Scope: NextElement,
Direction: Stimulus

Latency between all direct predecessor
ports and referenced port.

RCL6 Scope: ChainEnd,
Direction: Response

Latency between all sinks of event chain
and referenced port.

RCL6 Scope: ChainEnd,
Direction: Stimulus

Latency between all sources of the event
chain and referenced port.

Timing requirement: TwoPointChainLatency
TPCL1 Two topics Latency between all publishers of 1st and

all subscribers of 2nd topic (see Fig. 4.16).
TPCL2 Two ports Latency between the two referenced ports.

Timing requirement: ArrivalPattern
AP1 Topic Pattern valid for all subscribers of topic.
AP2 Port Pattern valid for referenced port.

Timing requirement: ComponentDelay
CD1 Software

Component
Delay experienced by any input event of

component.

Table 4.2: List of timing requirements, associated parameters and descriptions. The timing
requirements are annotated to a LOGICAL model and can reference either topics, ports, or soft-
ware components. For simplicity, the parameter AfterExecution was not included in this list.

lyzed system. For example, the minimum as well as the maximum jitter of an event chain at
a certain component port can be specified or the maximum delay. In general, we distinguish
between four types of timing requirements in our approach, named RelaitveChainLatency,
TwoPointChainLatency, ArrivalPattern and ComponentDelay. These requirements are an ex-
emplary set to show the applicability. A summary of the requirements with the according
parameters, elements they apply to, and description is given in Tab. 4.2. Details are elabo-
rated in the following.

The timing requirement RelativeChainLatency bounds the minimum and maximum
latency between the referenced element and a relative point before or after this element
in the event chain. The requirement applies either to a topic or to a port of a software or
external component. The relative point in the event chain can be configured by the param-
eters Scope, Direction and AfterExecution. In case the requirement is applied to a port and
Scope is set to NextElement, the latency between the referenced port and its direct succes-
sors or predecessors is meant, according to the chosen Direction. Direction may either be
Stimulus, in the direction of the event sources, or Response, in the direction of the event

57

4. ADEQUATE META-MODELS

T
o
p
ic

 A

Scope: ChainEnd, Direction: Stimulus

Scope: NextElement

Scope: ChainEnd, Direction: Response

Stimulus ResponseReceived by subscribersSent by publishers
Time

After
execution

Causal
relationship

Requirement
applies to

Software
component

Aggregate

PortData flow

Figure 4.15: Elaboration of the different configurations of RelativeChainLatency for Topic A.
The requirement is always valid for all publishers or subscribers of the topic under considera-
tion or for all possible paths to and from chain ends. The concrete number of publishers and
subscribers as well as the number of chain ends is possibly unknown during design time.

sinks. As the referenced port might be linked to several other ports, the requirement is
applied to all possible paths. For example, if the requirement is applied to the outgoing
port of a certain software component, it may describe the minimum or maximum allowed
latency until an event of the outgoing port is transferred to all direct receiving ports. If the
Boolean parameter AfterExecution is set to true, the maximum processing duration of the
receiving component is added to the latency. In that case, not only the receiving of data is
constrained, but the constraint also applies to its processing. When Scope is set to ChainEnd
all existing sources or sinks of the event chain are considered, depending on the Direction
parameter. For example, it can be specified that a brake signal has to cause a physical re-
action within a certain latency by all actuators at the end of the event chain. Depending
on the setup of the system, multiple chain ends may exist. In case RelativeChainLatency is
applied to a topic, it has to be specified what timings are meant exactly, because samples
of topics might exist at several locations simultaneously in the running system and hence
the requirement is fuzzy at first sight. In our definition, RelativeChainLatency applied to
topics constraints the transmission latency between all publishers and subscribers of that
topic if Scope is set to NextElement. The parameter Direction is ignored in that case. In
that configuration, the requirement guarantees that the transmission latency of any topic
sample is within a certain range. If Scope is set to ChainEnd, all possible sinks or sources of
all event chains related to the topic are considered. If Direction is set to Stimulus, all delays
between event sources and subscribers of the referenced topic are constrained. If Direction
is set to Response, delays are measured from the publishers of the referenced topic until all
sinks of the related event chains. For example, a maximum delay between the occurrence
of an external event and its receiving by all relevant components can be defined, without
a need to consider intermediate components for conversion and processing. The different

58

4.9 TIMING REQUIREMENTS meta-model

T
o
p
ic

 A
TwoPointChainLatency for topics

B received by subscribersA sent by publishers
Time

After
execution

Data flow

T
o
p
ic

 B

Software componentCausal relationshipPort

Figure 4.16: Elaboration of TwoPointChainLatency for Topic A and Topic B. The requirement
is valid between all publishers of Topic A and all subscribers of Topic B, assuming a causal
relationship exists.

configurations of RelativeChainLatency for topics are visualized in Fig. 4.15. The timing re-
quirement TwoPointChainLatency bounds the minimum and maximum latency between
two referenced elements. These elements might be either ports or topics and we assume,
without loss of generality, that they are of the same type. If the requirement is applied to
ports, all possible event paths between the first and second port are constrained. In case
of topics, all possible paths between the publishers of the first topic and the subscribers of
the second topic are considered, as shown in Fig. 4.16. In both cases, a causal relationship
between the two entities has to exist. If a causal relationship is not present but a require-
ment is defined, the analysis will always reject the configuration. This is useful to verify
that two topics are related with each other, e.g., it can be checked that way that a steering
wheel causes a movement of the wheels with a certain system configuration. The parame-
ter AfterExecution defines if the execution duration of the receiving component is added to
the delay. The timing requirement ArrivalPattern applies constraints on the characteristics
of an event stream for ports or topics. The characteristics are the minimum and maximum
period, jitter, and inter-arrival time within an event stream. If ArrivalPattern is applied to
topics, it refers to all subscribers of the referenced topic. The timing requirement Compo-
nentDelay constraints the minimum or maximum processing delay of a specific software
component. For the calculation of the delay, the preemption of the component is consid-
ered, see Fig. 2.4. ComponentDelay applies to all possible combinations between input and
output ports according to the internal relations of a component. It is not possible to map
this constraint to external components because the internal behavior is not available during
the analysis.

A comparison to the AUTOSAR Timing Specification [55] is summarized in Tab. 4.3
and detailed in the following. A main difference of the proposed approach is that it enables
the specification of requirements based on topics. In AUTOSAR, timing constraints in the
logical view ("Virtual Function Bus Timing") are always bound to ports. The proposed Ar-
rivalPattern requirement is comparable to AUTOSAR’s EventTriggeringConstraint. It further
allows the specification of timings for individual events, which is not directly possible in our
proposed framework because of the lack of phase information during the analysis with the

59

4. ADEQUATE META-MODELS

AUTOSAR concept Comparable concept in
proposed approach

Differences of our approach

EventTriggeringConstraint ArrivalPattern Can also be attached to topics.
LatencyTimingConstraint TwoPointChainLatency Event chain automatically

calculated. Can be attached to
topics. No multirate possible.

AgeConstraint RelativeChainLatency Specification in response and
stimulus direction, but

reaction semantics. Can be
attached to topics.

SynchronizationTimingCon-
straint,

OffsetTimingConstraint

n/a Hardly possible because of
lack of phase information.

ExecutionOrderConstraint,
ExecutionTimeConstrain

n/a (but possible) Was not implemented.

n/a (indirectly possible) ComponentDelay All port relations covered.
(AUTOSAR: can be mapped to

LatencyTimingConstraints.)

Table 4.3: Comparison of proposed specification possibilities for timing requirements with
concepts of the AUTOSAR Timing Extensions [55].

Real-Time Calculus [30] framework. The proposed TwoPointChainLatency is comparable to
AUTOSAR’s LatencyTimingConstraint, but the latter needs a complete specification of the
event chain and cannot be mapped to topics. In our approach, the event chain calculation
is an integrated part, which enables the specification of latencies between entities without
direct knowledge of their relationship. On the other hand, this can lead to ambiguities in
multi-path scenarios. AUTOSAR considers scenarios with over- and undersampling behav-
ior for the LatencyTimingConstraint, which is only partly captured in our approach, i.e., no
maximum-age semantics are provided. The proposed RelativeChainLatency has similarities
to AUTOSAR’s AgeConstraint, because both provide a possibility to specify relative require-
ments. In our approach, we provide reaction instead of age semantics and the specification
is possible in both directions of the event chain, while AUTOSAR limits it to the stimulus
direction. AUTOSAR’s SynchronizationTimingConstraint and OffsetTimingConstraint, used
for the specification of tolerances for offsets between events in one or different event chains
with or without functional dependencies, cannot directly be analyzed with the Real-Time
Calculus and thus no mapping is possible. Modeling of constraints on the execution or-
der of entities is possible with the ExecutionOrderConstraint in AUTOSAR and could be
mapped to an analysis of the components’ relations in a LOGICAL model in the proposed
approach. For simplicity reasons, it was not considered as it does not directly reference the
timing behavior. AUTOSAR’s ExecutionTimeConstraint constraints the worst-case execution
time of components. The intention is to formulate requirements for the implementation of
software components. Actual latencies of components are modeled with the specification
of an event chain between the input and output ports of the components in connection
with a LatencyTimingConstraint. Although this is also possible with our approach and the

60

4.9 TIMING REQUIREMENTS meta-model

Name Type Description Value
Feature: Movement and control

MovVecResp RCL3 Latency until MovementVector topic causes
physical reaction.

d ≤ 30ms

CContrIn RCL5 Transmission latency for data to Control Central
input port.

d ≤ 5ms

MovVecPer AP1 Minimum and maximum period for
MovementVector topic.

8ms ≤ p ≤ 12ms

Feature: Camera
CamSigIn RCL7 Maximum latency for data of Camera Signaler

input port.
d ≤ 75ms

CamProSig TPCL2 Latency between Camera Process output port and
Camera Signaler input port.

d ≤ 10ms

CamRate AP2 Minimum/maximum message rate for camera
input stream of Camera Process.

16ms ≤ p ≤ 34ms

CamProDel CD1 Maximum delay for Camera Process component. d ≤ 40ms

Table 4.4: List of timing requirements of the eCar example. Types are explained in Tab. 4.2.

TwoPointChainLatency requirement, the additional ComponentDelay requirement helps to
specify constraints for all possible combinations of events on input and output ports simul-
taneously. A direct constraint of the worst-case or best-case execution time according to
the ExecutionTimeConstraint was not added in our approach for simplicity reasons.

A summary of the TIMING REQUIREMENTS models of the eCar example is given in
Tab. 4.4 and is explained in the following. The first three requirements are part of the
movement and control feature, the last four are part of the camera feature. The require-
ments were chosen to cover a mixture of the available types while be based on the eCar
example and should be regarded as an exemplary set for demonstration purposes of the
approach rather than real-world examples. The Movement Vector Response Latency
(MovVecResp) defines the maximum latency until any event associated with the Move-
mentVector topic is processed and has caused a physical reaction. It is modeled by a Rela-
tiveChainLatency (RCL3) requirement that references the topic, has the chain end as scope,
and is directed to the response direction. The requirement was attached to the topic and
not a port as other software components might publish data for this topic if the car is
reconfigured, e.g., if it is equipped with an autonomous driving ability that provides the
MovementVector. The value was chosen to be d ≤ 30ms, which is equal to the requirement
defined in the examples for the AUTOSAR timing extension [55]. There, a maximum delay
of 30ms was proposed between a change of the accelerator paddle and the reaction of the
actuator. In contrast, it was specified in a use case of the TIMMO2-USE project that the de-
lay of a brake-by-wire system should be in the range of 70ms to 120ms [111]. The Central
Control Input Latency (CContrIn) limits the transmission latency of events approaching
the input port of the Control Central software component and the according senders. It is
realized with a RelativeChainLatency (RCL5) requirement that references the port, has next
element as scope and directs to the stimulus of the event chain. The requirement was not
attached to the topic to not affect other entities listening to the same topic. Exemplary,

61

4. ADEQUATE META-MODELS

the value was chosen to be d ≤ 5ms. The Movement Vector Period (MovVecPer) is an
ArrivalPattern (AP1) requirement and constraints the minimum and maximum period of all
subscribers of the MovementVector topic. This ensures that the topic is updated frequently.
Exemplary, the value was chosen to be 8ms ≤ p ≤ 12ms. The Camera Signaler Stimulus
Latency (CamSigIn) constraints the maximum allowed latency between any stimulus and
the input port of the Camera Signaler component. It is realized as a RelativeChainLatency
(RCL7) requirement in direction of the stimulus with the chain end as scope. The execu-
tion latency of the last component in the chain is not considered. This requirement ensures
that the driver is warned in time if a critical situation appears on the road. Exemplary,
the constraint was chosen to be d ≤ 75ms. The Camera Process to Camera Signaler
Latency (CamProSig) bounds the transmission latency between the Camera Process com-
ponent’s output port and the Camera Signaler component’s input port. The requirement is
of type TwoPointChainLatency (TPCL2) without considering the execution time of the re-
ceiving component. As an example, the value was chosen to be d ≤ 10ms. The Camera
Message Rate at Camera Process Input Constraint (CamRate) constraints the message
rate at the input port of the Camera Process component. It is an ArrivalPattern (AP2) require-
ment and the constraint was defined to be 16ms ≤ p ≤ 34ms, which roughly corresponds
to a rate between 30 and 60 messages per second, reflecting the accepted frame rate of a
camera system. The Camera Process Delay (CamProDel) bounds the maximum process-
ing latency of the Camera Process component. It is of type ComponentDelay requirement
that constraints all possible combinations of input and output ports. The value was chosen
to be d ≤ 40ms.

4.10 Adequate meta-models summary
In this chapter, a minimal set of meta-models was described, which are suitable to im-
plement the system-wide plug-and-play approach with timing verification. After the re-
quirements were developed, each meta-model was discussed in detail and the feasibility
was shown with examples based on the eCar test case. The LOGICAL, DATA, SYSTEM and
DEPLOYMENT models are utilized to describe interactions, topology, and dependencies of
logical and physical entities of the vehicle. The LOGICAL description can be annotated by
elements of the TIMING REQUIREMENTS model to define requirements relative or absolute
to topics or ports in the event chains of components. The relative approach makes it pos-
sible to define requirements if the concrete event chains are unknown during design time.
The five mentioned meta-models are combined to a FEATURE model, which represents one
functionality of the vehicle, composable in a plug-and-play manner. A concrete configu-
ration of the vehicle is represented with a FEATURE-SET model, which combines all active
features.

62

Chapter 5

Model transformation and platform
mapping

This chapter describes transformation and mapping patterns to convert a FEATURE-SET

model into a representation that can be analyzed and eventually deployed. After the anal-
ysis step, the timing requirements are verified based on the results of the analysis and a
decision of the feasibility of the system is drawn. The transformation is conducted in sev-
eral steps as visualized in Fig. 5.1:

1. Combination of FEATURES: The individual FEATURE models of a system are com-
bined to a single feature, represented by the combined FEATURE model.

2. Transformation to an INSTANCE model: The combined FEATURE model is trans-
formed to an INSTANCE model. An INSTANCE model is a deployable representation
where all software, hardware, and communication entities are instantiated and the
data flows through the system are known.

3. Transformation to an ANALYSIS model: The INSTANCE model is further transformed
to yield the analyzable model. An ANALYSIS model consists of entities that represent

• System instantiation
• Component instantiation
• Topic matching
• Data instantiation
• Requirements

transformation

• Mapping of processing
units, aggregates and
network elements

• Quantification of
properties

• Simplification

FEATURE 1
Base

AB

FEATURE 2
Movement
and control

FEATURE 3
Camera

Combined FEATURE

model
FEATURE-SET

Current system model
INSTANCE

model
ANALYSIS

model

AB AB

Transformation Transformation Transformation

Figure 5.1: Transformation steps from a FEATURE-SET model to an ANALYSIS model.

63

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

components of the Real-Time Calcululs framework. The model is self-contained, i.e.,
no reference to external models exist, and all quantities from the DEPLOYMENT models
are integrated for the analysis.

The result of the complete transformation and mapping process is available in Appx. A.4
for the eCar example. The set presented in Appx. A.3 was used as exemplary values for the
parameters.

5.1 Transformation from a FEATURE-SET model to a combined
FEATURE model

The first step in the transformation chain is the combination of individual FEATURE mod-
els into a combined FEATURE model. A FEATURE-SET model references all FEATURE models
under consideration and is the starting point for this transformation. The goal of the trans-
formation is to generate a holistic model, which combines all unique model elements of
the active FEATURE models. A feature is called active if it is part of the FEATURE-SET model
and the active attribute is set to true. Because FEATURE models might have cross-references
between them, it is important in this step to resolve these references and to guarantee that
each element in the combined FEATURE model is unique. However, collisions might still oc-
cur, e.g., if model elements have identical names, but this aspect is subject to future work.
The combination of homogeneous models is a basic operation in model-driven development
and frequently referred to as a composition or merge of models [38, 50, 112].

Definition 5.1 Transformation step from a FEATURE-SET model to a combined FEATURE model.
Input: A FEATURE-SET model with references to an arbitrary number of FEATURE models. Each
FEATURE model may reference zero or one of each SYSTEM, LOGICAL, DEPLOYMENT, TOPIC and
TIMING REQUIREMENTS models. Output: One FEATURE model with zero to one of each SYS-
TEM, LOGICAL, DEPLOYMENT, TOPIC and TIMING REQUIREMENTS models. Constraints: Each
input FEATURE model is a subset of the resulting combined FEATURE model, i.e., all model el-
ements of the input are represented in the output. The output model consists only of unique
model elements.

5.2 Transformation from a combined FEATURE model to an IN-
STANCE model

The second step in the chain is the transformation of the combined FEATURE model to an
INSTANCE model. An INSTANCE model consists of all instantiated software, hardware, and
communication elements including data flows. These instances are independent from nu-
meric properties of the underlying technology, like data rates or processing speeds, but
topology and data distribution schemata are integrated to correctly calculate data flows
within the system. Relative timing requirements are resolved and mapped to absolute ref-
erences. An INSTANCE model is a deployable representation of a configuration, which is
utilized to reconfigure the setup after a successful verification.

Definition 5.2 Transformation step from a combined FEATURE model to an INSTANCE model.
Input: A combined FEATURE model representing a complete system. Output: An INSTANCE

64

5.2 Transformation from a combined FEATURE model to an INSTANCE model

model. Constraints: The INSTANCE model contains all software and hardware instances of
the combined FEATURE model and data flows between them. The INSTANCE model may still
contain references to the combined FEATURE model. All timing requirements are absolute.

This transformation step is divided into three sub-steps. 1. System and component instanti-
ation: Relations between network elements and containers for aggregates and processing
units are built, defining the system topology. All software and external components with the
according ports are instantiated according to the DEPLOYMENT model. During the instan-
tiation, the execution priorities of the components are calculated and for each container,
the published and subscribed topics are collected. 2. Topic matching and data instantiation:
Correspondent to published and subscribed topics of each component within a container,
reference connections to the network elements are setup for further processing. Depending
on the availability and requests of certain topic instances at network elements, data flows
are initiated. Quantity and characteristics of data flows depend on the amount of senders
and receivers as well as the underlying distribution strategy for a certain message and the
capabilities of the network element. 3. Requirements transformation: All relative require-
ment specifications are resolved to absolute references only, because data flows are known
at this point and absolute references are required for the analysis.

INSTANCE meta-model and transformation sub-steps

The INSTANCE meta-model, as shown in Fig. 5.2, is the basis for the deployment of a con-
figuration and for the final transformation into a model representation that can be ana-
lyzed. Compared to the meta-models introduced in the previous chapter, the INSTANCE

meta-model does not implement measurements for clarification or to enforce constraints
as it is machine generated and processed, and hence is not affected by human modeling
mistakes. An INSTANCE model is not self-contained as it includes references to the com-
bined FEATURE model. For example, performance metrics from a DEPLOYMENT model are
not represented directly in an INSTANCE model. In the following, the introduced sub-steps
to transform a combined FEATURE model into an INSTANCE model are explained in detail.

1. System and component instantiation. Each device (aggregate or electronic control
unit) and network element of the combined SYSTEM model is mapped to a generic container.
Links between devices and network elements are transformed to external connections, one
for each direction, and terminated by additional ports of the containers. This defines the
complete topology of the system. Virtual network elements, e.g. for a CAN bus, are also
transformed to containers, which unifies the following transformations. Software and ex-
ternal mappings of the combined DEPLOYMENT model are both mapped to component in-
stances. Those stemming from ECUs are sorted and linked according to their priorities.
Software components of the combined LOGICAL model might be mapped to several pro-
cessing units, e.g., because of duplication for safety reasons. For each container a virtual
inbound port, called internal inbound collector, and a virtual outbound port, called inter-
nal outbound collector, is instantiated. The inbound collector represents the distribution of
incoming topic samples to the components, the outbound collector stands for the combi-
nation of outgoing topic samples from component instances. For each subscribed topic per
component, a reference connection is created between the internal inbound collector and

65

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

Node

name : EString

Edge

Container
type : ContainerType =
ContainerTypeDevice

ComponentInstance

Port
type :
PortType =
PortTypeInbou
nd

ContainerType

ContainerTypeDevice
ContainerTypeNetwork

ExternalConne
ction

PortType

PortTypeInbound
PortTypeOutbound
PortTypeInternalInbound
PortTypeInternalOutbound

ReferenceConn
ection

Topic

name : EString

ComponentMappingDevice

name : EString

NetworkElement

name : EString
datarate : EDouble = 0.0
latency : EDouble = 0.0
networkElementType : NetworkElementType = EthernetSwitch

InstanceConne
ction

ComponentPortInsta
nce
triggersExecution :
EBoolean = false

ExternalPort

name : EString

Port

name : EString

ComponentPortInstanceType

ComponentPortInstanceTypeIn
ComponentPortInstanceTypeOut TimingDescription

period : EDouble = 0.0
jitter : EDouble = 0.0
distance : EDouble = 0.0

DataMapping

size : EInt = 0
priority : EInt = 0
distribution : DataMappingDistributionType = Standard

ConnectionDes
cription
stackLatency :
EDouble = 0.0

RequirementA
rrivalPattern

name : EString

RequirementL
atency

name : EString
afterExecution :
EBoolean = false

RangeRequirement

Minimum : EDouble = 0.0
Maximum : EDouble = 0.0

[1..1] container

[1..1] container

[0..1] parent

[0..1] lastInstance

[1..1] from

[1..1] to

[1..1]
topicRef
erence

[1..1] componentReference[0..1] deviceReference

[0..1]
networkElement

Reference

[0..*]
predecessor

Ref

[1..1]

[0..1] externalPortReference [1..1] topicReference

[0..1]
port

[1..1]
component
InstanceRe

ference

[0..1] timingDescription

[1..1]
topicRefer

ence

[1..1] networkElementReference [0..1] dataMappingReference

[0..1]
referenceConnection

Reference

[0..1]
externalConnection

Reference

[0..*]
conne
ctions

[1..1] networkElementReference

[1..1]
connectionDescriptio

nReference

[1..*] portInstanceReference

[1..*] startPortInstanceReference

[1..*] endPortInstanceReference

[1..1]
latencyR

ange[0..1] distRange

[0..1] periodRange

[0..1] jitterRange

topicReference

Reference

Figure 5.2: INSTANCE meta-model. External model elements are marked with shaded boxes.

the according component port instance. For each published topic per component, a refer-
ence connection is created between the component port instance and the internal outbound
collector. An exemplary result is shown on the left side of Fig. 5.3.

2. Topic matching and data instantiation. In the second sub-step, topics are matched
across network elements and message instances are derived. A topic is matched if a pub-
lisher and a subscriber of the topic under consideration are connected to the same network
element and are not part of the same container. In that case, reference connections are es-
tablished between containers and network elements to model the availability and request
of topic types. Reference connections are the base for the further refinement into instance
connections, which model transmitted messages. A topic is further matched via the inter-
nal inbound and outbound collectors if the publisher and subscriber reside on the same
container. An exemplary result is shown in the center of Fig. 5.3.

Subsequently, each reference connection is mapped to one or more instance connections
according to the number of subscribers and publishers and the desired distribution method.
An exemplary result is shown on the right side of Fig. 5.3. Each instance connection has a
reference to its predecessor; the complete chain between data sources, processing entities,
and data sinks is captured in the graph of data instance elements. The distribution variants
considered in this work are visualized in Fig. 5.4 and detailed in the following:

66

5.2 Transformation from a combined FEATURE model to an INSTANCE model

Ethernet Switch

ECU A

Software
Instance

A.1
A

B
Software
Instance

A.2

C
B

Ethernet Switch

ECU A

Software
Instance

A.1

A
B

Software
Instance

A.2

C
B

A

A

A

C

C DDA

C

ECU A

Software
Instance

A.1

A
B

Software
Instance

A.2

C
B

A,A

A

C

C DDA

C

A,A

B

After system and component
instantiation

After topic matching After data instantiation

Topic
reference

connection

Port
(Internal
outbound
collector)

Component
port instance

Component
instance

Port
(Internal
inbound

collector)

External
connection

Port (Inbound and
outbound)

Instance
connection

B

Figure 5.3: Exemplary visualization of transformation steps from a combined FEATURE to an
INSTANCE model. After system and component instantiation (left figure) system topology and
software instance relations are known. Internal inbound and outbound collectors represent
points for the branching and joining of topic instances. After topic matching (center figure) and
data instantiation (right figure), all topics are matched across network devices and messages
are instantiated according to the network media and distribution strategy.

Network Element

A (Offered
Topic)

A A (Req.
Topic)

A,A (Data
Instances)

A A

A (Data
Instance)

A A

A (Data
Instance)

A A A

Unicast instantiation:
One frame per receiver

Multicast instantiation:
One frame for all receivers

Broadcast instantiation:
One frame received by all

Starting point:
Network element

with topic references

Figure 5.4: Distribution variants and impact on the data instantiation process.

67

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

Technology Distribution Variants Default
Switched Ethernet Unicast, multicast, broadcast Unicast

CAN Multicast Multicast
Serial bus Broadcast Broadcast

Table 5.1: Choices of distribution variants for network element types.

In the unicast case, an individual frame is created for each external receiver of the
topic. Each frame is described by a chain of data instance relations that start at an inter-
nal outbound collector and end at an internal inbound collector. It is important that these
instances are already modeled in the devices to account for the queuing delay and prece-
dence of frames in the networking stack later on correctly. An example is visible in the left
of Fig. 5.4, where one topic reference connection (visible in the top figure) was mapped
to two data instance connections, because two external subscribers exist. In the multicast
case, one frame instance serves a multitude of receivers. Compared to unicast, a device
only sends a single frame, which gets replicated as necessary within the network infras-
tructure. Consequently, the networking stack on the device only has to process one single
instance, represented by a single instance relation between the internal outbound collector
and network element. An example is shown in the center of Fig. 5.4. In the broadcast case,
the frame is transmitted to all receivers that are connected to a network element – inde-
pendent from whether a subscription to the topic exists. The instance relation is multiplied
within the network element, with each relation ending at the internal inbound collector
of all connected devices. The right part of Fig. 5.4 shows an example for the broadcast
case. Notice that the device attached to the rightmost port does not subscribe to the topic
but an instance relation exists because of the broadcast behavior. The set of choices of the
distribution variant is technology dependent. If several variants are possible, the devel-
oper can decide on one. Tab. 5.1 shows the different possibilities for the communication
technologies available in the introduced examples of our approach.

3. Requirements transformation. Because data and software instances are known at
this point, all requirements can be transformed to a representation with absolute refer-
ences. The objective is to have only requirements regarding the arrival pattern at certain
component port instances or requirements regarding the delay between two component
port instances. Topics no longer exist in an INSTANCE model and hence requirements at-
tached to topics have to be resolved as well. The transformation is explained below:

A RelativeChainLatency requirement involves the most complex transformation com-
pared to the other requirements, because references can be relative and it can be attached
to ports and topics. Further, scope can be the next element or the end of the event chain.
A sketch of the transformation algorithm is shown in Alg. 5.1. It transforms all require-
ments of the type RelativeChainLatency in the combined TIMING REQUIREMENTS model to
elements of the type RequirementLatency in the INSTANCE model. The function toComp-
PortInstances resolves directly the referenced port instance if the requirement is valid for a
port, or resolves all input or output port instances that handle data of a certain topic if a
requirement is attached to a topic. If a topic is resolved, the direction influences the result
and has to be provided as a parameter, because either all subscribing or all publishing ports

68

5.2 Transformation from a combined FEATURE model to an INSTANCE model

Algorithm 5.1: Mapping of RelativeChainLatency of a combined TIMING REQUIRE-
MENTS model to RequirementLatency elements of an INSTANCE model (sketch).

Input: TIMINGREQUIREMENTSPackageMM::RelativeChainLatency self
Result: INSTANCEPackageMM::RequirementLatency (startPortInstRef, endPortInstRef:

Sequence(INSTANCEPackageMM::ComponentPortInstance))
1 if self.Direction = ResponseDir then
2 startPortInstRef← self.elementRef.toCompPortInstances(dirResponse=false);
3 if self.Scope = NextElement then
4 endPortInstRef← startPortInstRef.findRelPortsOneStep(dirResponse=true);
5 else /* self.Scope = ChainEnd */
6 endPortInstRef← startPortInstRef.findRelChainEndPorts(dirResponse=true);
7 end
8 else /* self.Direction = StimulusDir */
9 endPortInstRef← self.elementRef.toCompPortInstances(dirResponse=true);

10 if self.Scope = NextElement then
11 startPortInstRef← endPortInstRef.findRelPortsOneStep(dirResponse=false);
12 else /* self.Scope = ChainEnd */
13 startPortInstRef← endPortInstRef.findRelChainEndPorts(dirResponse=false);
14 end
15 end

are of interest. The functions findRelPortsOneStep and findRelChainEndPorts backtrack the
event chains according to the data instance relations that were created previously. Direc-
tion has to be provided as a parameter (stimulus or response). Depending on the respective
function, event chains are backtracked until the next component port instance or until the
end of the event chain. As event chains may join or branch, the functions can return a set
of results. The end of an event chain is defined as a software component instance without
any output port instances in case the backtracking is performed in the response direction,
or without any input port instances in case of the other direction. As the backtracking only
stops at component port instances, all intermediate ports and data relations introduced by
the communication infrastructure are included in the resulting requirement Requirement-
Latency. The transformation of a requirement of type TwoPointChainLatency is similar to
the previous mapping of RelativeChainLatency, but without the backtracking step. If it is
attached to topics, according ports have to be resolved, where senders are always selected
for the starting topic and receivers are always selected for the ending topic. In case topics
are referenced, the relevant component port instances may form a set after the transfor-
mation. The result of the transformation is a requirement of the type RequirementLatency
in the INSTANCE model. Requirements of type ArrivalPattern are transformed to Require-
mentArrivalPattern elements. In case component ports are referenced, the transformation
is straightforward. In case topics are referenced, the requirement is applied to receiving
component port instances. A ComponentDelay requirement is transformed to a Require-
mentLatency, where the resulting requirement is applied to all meaningful combinations of
input and output component port instances that are derived from the referenced software
component.

69

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

Electronic Control
Unit A

Software
Instance
A (TT)

Electronic Control
Unit B

Software
Instance
B (ET)

Electronic Control
Unit C

Software
Instance
C (ET)

Ethernet Switch

GPC
A

PJD

FS

MD

FIFO

FIFO

MD

GPC
B

FS

MD

FIFO

FIFO

MD

GPC
C

FS

Arri-
val

End

Figure 5.5: Example for the transformation from an INSTANCE model (left side) to an ANALYSIS

model (right side). The transformation includes the handling of the execution orders of soft-
ware component instances and the latency and order introduced by the communication stacks
on the devices. Delay within network elements is also considered.

5.3 Platform mapping: From an INSTANCE model to an ANALYSIS

model
After a FEATURE-SET model was transformed to an INSTANCE model, the final transformation
to an ANALYSIS model is executed. The result is a tool dependent representation to derive
real-time properties of the system and verify those against a set of requirements. In the
following sections, it is shown how a transformation to elements of the Real-Time Calculus
framework [30] is conducted. An exemplary transformation is shown in Fig. 5.5.

Definition 5.3 INSTANCE model to ANALYSIS model transformation.
Input: An INSTANCE model. Output: An ANALYSIS model. Constraints: The ANALYSIS model
is self-contained and includes all information necessary for a timing analysis and verification,
including the requirements. The elements can be directly mapped to elements of the Real-Time
Calculus framework. The transformation preserves the system semantics.

5.3.1 ANALYSIS meta-model

An ANALYSIS model is a graph that captures stream filters with arrival and service rela-
tions. Arrival relations describe the progress of data streams through a system and service
relations represent the progress of available resources. Resources may refer to computa-
tional capacity (e.g., available cycles of a processing unit) or communication capacity (e.g.,
available data rate of a bus). In the following, a semi-formal definition of the ANALYSIS

meta-model elements is given; a more rigorous definition is provided in Sec. 6.1. A sim-
plified representation of the ANALYSIS meta-model is shown in Fig. 5.6. Arrival sources
provide one outgoing arrival stream. An arrival stream (α) consists of an upper and a lower
curve (α = [αl ,αu]), representing the upper and lower bound of a data stream. A typical

70

5.3 Platform mapping: From an INSTANCE model to an ANALYSIS model

AND

ArrivalSource

BGPC
bufferSize :
EInt = 0

FIFO

Filter

invokeFilter()

FPNP
maxWCETSuccess
or : EDouble = 0.0

FS

rate : EDouble = 0.0

GPC

MD

delay : EDouble = 0.0
bandwidth : EDouble = 0.0

OR

PJD

Period : EDouble = 0.0
Jitter : EDouble = 0.0
Distance : EDouble = 0.0

ServiceSource

TDMA

slot : EDouble = 0.0
cycle : EDouble = 0.0
bandwidth : EDouble = 0.0

ArrivalEnd

Requirement

name : EString

PatternRequirement

periodMin : EDouble = 0.0
periodMax : EDouble = +Infinity
jitterMin : EDouble = 0.0
jitterMax : EDouble = +Infinity
distMin : EDouble = 0.0
distMax : EDouble = +Infinity

LatencyRequirement

minLatency : EDouble = 0.0
maxLatency : EDouble = +Infinity

Figure 5.6: Simplified representation of the ANALYSIS meta-model. Edges representing arrival
and service relations are omitted from this representation.

specification of an arrival stream, captured by this model element, is a stream according to
period, jitter, and minimum distance parameters (PJD). Beyond, arbitrary data streams can
be modeled. Service sources have exactly one outgoing service stream. A service source
models available resources for stream filters. A service stream (β) consists of an upper
and a lower curve (β = [β l ,βu]), representing bounds of the described resource. Stream
filters (fT) are entities that manipulate data streams. This corresponds to processing com-
ponents, e.g., greedy (GPC) or FIFO processing components, or logical components, e.g.,
interleaving of data streams with an OR component [92]. Depending on the stream fil-
ter type, a filter has a specific number of incoming service streams. If it has an incoming
service stream, it can also have an outgoing one. The amount and relations of incoming
and outgoing arrival streams depend on the filter type as well. Possible connection points
for arrival streams are referred to as slots. Each inbound slot of a filter can be connected
to at most one arrival stream. Outbound slots on the other hand can be connected to an
arbitrary number of successor elements. For each stream filter, a set of internal relations (I)
is defined. This set describes the relations of incoming to outgoing slots. For example, each
outgoing slot of a FIFO filter is influenced by one incoming slot and the available service.
For an AND filter the behavior is different – the outgoing slot is influenced by all incom-
ing slots. A set of parameters (P) is associated with each filter that describes parameters

71

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

Electronic Control
Unit

MD

FPNP

GPC

GPC

ISR
(event-triggered,
non-preemptive)

HighPriorityET
(event-triggered)

MediumPriorityTT
(time-triggered)

LowPriorityET
(event-triggered)

GPC

PJD

1

2

3

4

1

2

3

4

Figure 5.7: Mapping of software component instances from an INSTANCE model (left side) to
elements of an ANALYSIS model (right side).

like worst- and best-case execution times for a certain slot, and a set of results (E) that
holds the performance metrics after the analysis, as depicted in Fig. 2.12. Edges connect
arrival sources, service sources and stream filters and represent the progress of event or
service streams. All edges are unidirectional within an ANALYSIS model with two possible
types: Arrival edges are utilized exclusively to propagate arrival relations, and service edges
to propagate service relations.

5.3.2 Mapping of processing units

A processing unit offers computational, memory, and communication resources to execute
software component instances. Amount and properties of these units were initially defined
in the SYSTEM models of features, and software components of the LOGICAL models were
instantiated via the DEPLOYMENT models on these units. The mapping of processing units
uses information from the INSTANCE and combined SYSTEM, LOGICAL, and DEPLOYMENT

models.

Mapping of containers. Each ECU is represented as a generic container in the INSTANCE

model. For each of these containers, a FS (full service) service source is created to model
the available computational resources.

Mapping of software component instances. Four exemplary mapping types are defined
in the DEPLOYMENT meta-model. Each software component instance of the mapping type
ISR is transformed to a FPNP (fixed-priority non-preemptive) stream filter [92]. All in-
stances of types HighPriorityET, MediumPriorityTT and LowPriorityET are transformed to
GPC (greedy) filters. For all instances of type MediumPriorityTT, a PJD arrival source is
instantiated in addition and linked to the filter input to model the periodic activation. In
the end, the highest-priority element of the sorted instances of type ISR is connected to the
FS service source. The chain is completed in order by the instances of type HighPriorityET,

72

5.3 Platform mapping: From an INSTANCE model to an ANALYSIS model

FPNP
or GPC

Component
instance

A

B

C

D

E

OR

Arri-
val

End

D

E

A

B

C

Port that triggers execution

Port that does not trigger execution

Instance
connection

Figure 5.8: Example for the handling of execution triggers and multiple outputs. On the left
side, an extract of an INSTANCE model is shown with ingoing and outgoing instance relations
derived from topic publications and subscriptions. This representation is transformed to ele-
ments of an ANALYSIS model, shown on the right side. All incoming subscriptions are combined
with an OR filter if these trigger an execution. All other subscriptions are mapped to ArrivalEnd
filters.

MediumPriorityTT and LowPriorityET, an example for this mapping is shown in Fig. 5.7. The
filters are parametrized with the worst- and best-case execution times from the combined
DEPLOYMENT model.

Mapping of software component instance subscriptions and publications. Each soft-
ware component instance in the INSTANCE model can have several input and output port
instances. These instances were derived from the subscriptions and publications to or from
topics in LOGICAL models. For each software component instance, an OR filter is instan-
tiated where all subscriptions are connected to that trigger an execution. The OR filter is
connected to the input slot of the filter representing the processing to model the combina-
tion of arriving data streams. All subscriptions that do not trigger an execution according
to the combined LOGICAL model are connected to an ArrivalEnd stream filter, modeling the
sink of an arrival stream. Outgoing slots of the filter are connected to all following filter
elements according to the instance relations. This behavior is shown in Fig. 5.8.

Mapping of internal inbound and outbound collectors. The incoming and outgoing
data streams of a device are modeled by internal inbound and outbound collectors in the
INSTANCE model. For each topic at those collectors, an OR filter is instantiated that com-
bines the data streams of a certain topic. This models the combination of all data streams
before these are distributed to the software component instances as well as the combina-
tion before the instances are forwarded to the communication stacks. It re-assembles the
data-centric handling of data, where samples from different sources, or to different sinks,
are not distinguished.

Mapping of incoming and outgoing data streams from and to the network. For outgo-
ing data streams to the network, the ordering of messages, the communication stack delay
and properties introduced by the communication technology have to be considered. As this
is technology dependent, mappings are presented for the available communication methods
of our approach: For all outgoing ports connected to a switched Ethernet, an MD service

73

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

Property influencing timing ANALYSIS element

computational capacity full service (FS) source element
software components greedy processing components (GPC)

component precedence graph of service streams
interrupts fixed-priority non-preemptive (FPNP) components

transmission rate, comm. stack delay maximum-delay (MD) service source element
queuing delay first-in-first-out (FIFO) elements

communication priority chain of FIFO elements
multi-core architectures n/a (not covered)

Table 5.2: Properties that influence the timing behavior of processing units and their according
elements in an ANALYSIS model.

source is instantiated with the available data rate and a parameter to model the communi-
cation stack delay. All outgoing instances are connected to a FIFO filter to account for the
queuing delay of the messages. The filter itself is connected to the MD service source. The
transformation for switched Ethernet with priority is almost similar, except that one FIFO
filter is instantiated for each priority and the filters are chained according to the priorities.
The delay parameter of the MD service source is increased by the maximum blocking time
of a packet to compensate the preemptive semantics of the FIFO filter chaining. This modi-
fication compensates the semantics of the model: the preemption of a low-priority message
by a high-priority message, which is usually not possible in practice. If the outgoing port
is connected to a CAN bus, a transformation is not performed as the complete behavior is
captured later during the transformation of the corresponding network element. On the
devices, hardware usually handles transmission and reception of messages, which means
no additional delays have to be taken into account. For a communication via a serial bus,
an MD service source to model the data rate restriction and stack delay is instantiated as
well as a FIFO filter to account for the queuing delay of the messages. This is the same
transformation as for the switched Ethernet. However, the transformation of the network
element is different for both cases, which is explained later (Sec. 5.3.4).

Discussion of modeling properties, assumptions and possible extensions. The shown
mappings are based on some implicit assumptions of the technical architecture of the plat-
form and the behavior of the communications stacks and operating systems. In the follow-
ing, the captured and open points are discussed and possible variations in the mapping to
adapt to other architecture concepts. An overview of properties that influence the timing
behavior is given in Tab. 5.2. For our approach, we only consider processing units with
one available core at a fixed speed. It is possible to extend the approach to also cover de-
lays introduced by shared resource access on multi-core platforms. For example, [113]
and [114] have implemented this within the Real-Time Calculus framework. The consid-
eration of adaptive processing speeds was introduced by [115]. However, as the best-case
and worst-case execution times model the resource demand in means of processing cycles,
execution times can be given independently from the actual processing speed of the de-
vices in the proposed approach. For simplicity reasons, interrupts are always mapped to
non-preemptive filters in our approach, which does not always model the reality correctly.

74

5.3 Platform mapping: From an INSTANCE model to an ANALYSIS model

Interrupt service routines might preempt each other and have another counterpart within
the common program flow, which gets activated by the initial interrupt service routine.
The system tick behavior of an operating system can influence the execution point of com-
ponents. Especially for periodic tasks, it might be the case that the start time is affected
by the granularity of the system tick frequency. This introduces a possible additional delay
that can be accounted for by a change of the FS service source element stemming from the
transformation of the ECU modeling element to an MD service source, which can reflect an
additional delay. For simplicity, this was omitted in the presentation.

5.3.3 Mapping of aggregates

Compared to processing units, only external behavior is specified and modeled for aggre-
gates. For the mapping, aggregates are handled like processing units, but internal relations
are not resolved. In the current implementation of our approach, it is not possible to model
the dependencies of the virtual components inside aggregates, this could be a possible
extension. The exact best- and worst-case execution-times of the internal event chains of
aggregates are usually not known but could be given either as a possible range representing
an assumption or simply as a causal relationship.

5.3.4 Mapping of network elements

Network elements abstract the data transfer between processing units and/or aggregates.
Primarily, network elements define the access strategy to the communication medium but
may also represent infrastructure elements (e.g., for switched Ethernet). The following
points of network elements are considered for an ANALYSIS model: In case the commu-
nication is based on infrastructure elements, the processing delay influences the timing of
messages. Depending on the technology, arbitration schemata have to be considered. The
transmission delay of network elements describes time needed to push all bits into the wire.
Queuing delay defines the time the transmission is blocked by messages of an equal priority
and the communication precedence accounts for the preference of messages according to
their priorities. These definitions are adapted from [116, 117]. The concrete mapping is
given below for the network elements available in our approach.

Mapping of switched Ethernet. Simplified, packets processed by an Ethernet switch are
subject to a delay caused by the input buffer, the switching fabric and the output buffer
[118]. In practice, input buffer delay is not relevant as the processing capacity of a network
switch is equal or higher to the maximum possible load caused by the input connections. In
our approach, a generic latency can be given per network element that combines possible
delays. To capture the transmission rate and the generic latency, an MD service source
element is instantiated per outgoing port of the switched Ethernet model. A FIFO stream
filter element is attached to this service source and all packets that are transmitted via
the output port pass the filter, which models the queuing of the packets according to the
first-in-first-out semantic. The suggested approach follows the modeling of [119] (omitting
priorities), which itself was derived from a comparison of modeling variants in [118] and
the adaption to the Real-Time Calculus. An example for the mapping is visualized in Fig. 5.9
and a summary of the modeling artifacts to represent the timing effects is given in Tab. 5.3.

75

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

MD

MD

FIFO

FIFO
1 2

1

2

A B C

B_R2 C_R2A_R1

A A_R1

B B_R2

C C_R2

Sent
messages

Received
messages

Figure 5.9: Mapping of a switched Ethernet network element of an INSTANCE model to ele-
ments of an ANALYSIS model. Messages queue up in the outgoing ports if several are sent at
the same time. This behavior is modeled with FIFO elements.

Property influencing timing ANALYSIS element

processing delay, transmission delay maximum-delay (MD) element
queuing delay first-in-first-out (FIFO) element

Table 5.3: Properties that influence the timing behavior of switched Ethernet infrastructure
elements and their according elements in an ANALYSIS model.

Mapping of priority-based switched Ethernet. Compared to the modeling of a switched
Ethernet element without priorities, the following differences exist in the mapping: For
each priority and output port, one FIFO filter element is instantiated and all packets of
the according priority traverse this element. The filter elements are chained according
to their priorities to model the precedence of messages. The delay parameter of the MD
service source element is increased to account for the possible blocking by non-preemptable
packets with lower priority (head-of-line blocking) [119]. An example for the mapping is
shown in Fig. 5.10 and the artifacts influencing the timing are listed in Tab. 5.4.

Mapping of controller area network. Messages sent via a controller area network (CAN)
bus [108] are arbitrated according to a fixed-priority non-preemptive strategy. Each mes-
sage is assigned an identifier (ID) that defines the priority of the message. A value of 0
for the identifier corresponds to the highest possible priority. No two senders may send
the same identifier. The arbitration is performed locally for each transceiver individually,
which means that no network infrastructure exists. The CAN bus implements a multicast
behavior, because all nodes attached to the bus receive all sent messages. We do not regard
it as a broadcast bus for the analysis, since the hardware is usually able to filter incom-
ing messages according to the identifiers and therefore only lets required messages pass.
Messages with identifiers that are not of interest for a particular node are not forwarded
to the communication stack and do not occupy processing capacity. The concrete mapping
is defined follows: A maximum-delay (MD) service source element is instantiated per CAN

76

5.3 Platform mapping: From an INSTANCE model to an ANALYSIS model

MD

MD

FIFO

1 2

1

2

FIFO

Prio 1 Prio 1

Prio 1 Prio 2

Prio 1

Prio 1

Prio 1

Prio 2

A B C D

A_R1 B_R2

C_R2

D_R2

A

B

C

B_R2

A_R1

C_R2

D_R2D

FIFO

Figure 5.10: Mapping of a priority-based switched Ethernet network element from an IN-
STANCE model (left side) to elements of an ANALYSIS model.

Property influencing timing ANALYSIS element

processing delay, transmission delay,
head-of-line blocking

maximum-delay (MD) element

queuing delay first-in-first-out (FIFO) elements
communication precedence chain of FIFO elements

Table 5.4: Properties that influence the timing behavior of priority-based switched Ethernet
elements and their according elements in an ANALYSIS model.

bus to represent the transmission rate and possible delays. For each sent message of the
bus, one fixed-priority non-preemptive (FPNP) filter is instantiated. The filters are chained
according to the priorities of the messages. Each FNPN filter has one input connection
(the sending entity) and possibly multiple output connections, according to the amount of
receivers. This follows from the finding, that CAN buses can be modeled by FPNP filters,
pointed out in [120] and [121]. An example of the mapping is shown in Fig. 5.11 and the
applied ANALYSIS elements are given in Tab. 5.5.

Mapping of serial bus. In our context, a serial bus is a bidirectional point-to-point con-
nection between devices. It is assumed that messages are queued within a node and sent
in a first-come-first-serve manner, which is already handled by the communication stack
mapping within the processing units transformation. For a serial bus, a network infrastruc-
ture does not exist and hence does not influence the communication timing. Data instance
connections are simply mapped to arrival connections in the ANALYSIS model as shown in
Fig. 5.12.

5.3.5 Mappings of further communication technologies

Certainly, the shown mappings cover only a few technologies, which can be modeled and
analyzed within the Real-Time Calculus framework. In the following, a selection of fur-

77

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

MD

FPNP

A

Prio 1

B

A_R1 A_R2

FPNP

FPNP

A
A_R1

A_R2

B

C

B_R2

C_R2

C

B_R2

C_R2

Prio 2 Prio 3

Prio 1

Prio 2

Prio 3

Figure 5.11: Mapping of a CAN bus from an INSTANCE model (left side) to elements of an
ANALYSIS model.

Property influencing timing ANALYSIS element

transmission delay, other delays maximum-delay (MD) element
processing delay not applicable

arbitration fixed-priority non-preemptive (FPNP) elements
communication precedence chain of FPNP elements

Table 5.5: Properties that influence the timing behavior of a CAN bus and their according
elements in an ANALYSIS model.

ther transformations is given that could be integrated into the approach. As pointed out in
[122], the Audio-Video Bridging (AVB) [123] standard is a candidate for a future communi-
cation technology within vehicles. A communication system according to the AVB standard
offers possibilities to guarantee rate and latency of data streams across several network
elements. Queck [124] has shown how the Network Calculus can be used to derive the
performance properties of such a network in the automotive context and in [125] a similar
analysis was conducted with the Real-Time Calculus framework. The parameters needed
can directly be extracted from the presented models of our approach. For the successor of
AVB, called Time-Sensitive Networking (TSN) according to the IEEE task group1, a formal
analysis within the Real-Time Calculus or Network Calculus frameworks is not yet known
to the author of this work. FlexRay is another protocol deployed in vehicles that guarantees
fixed delays by a time-triggered transfer of messages. The analysis within the Real-Time
Calculus framework was shown in [126] and later refined in [127]. Although FlexRay is
available as an ISO standard2, the future is fuzzy as the consortium disbanded in 2009. For
the protocols Media-Oriented Systems Transport3 (MOST) and Local Interconnect Network
(LIN), no approaches for a formal analysis within the Network Calculus or Real-Time Cal-

1http://www.ieee802.org/1/pages/tsn.html, accessed 30-10-2015
2ISO standards 17458-1 to 17458-5
3http://www.mostcooperation.com, accessed 30-10-2015

78

5.4 Model transformation and platform mapping summary

(no mapping)

A B C

A_R1 B_R1 C_R1

A

B

C

A_R1

B_R1

C_R1

Figure 5.12: Mapping of a serial bus from an INSTANCE model (left side) to elements of an
ANALYSIS model.

culus frameworks are known to the author of this work. While LIN is not further developed
and under transfer into an international standard1, the consortium of MOST is still active.

5.3.6 Mapping of timing requirements

The resolving of relative references, which is the most complex part of the timing require-
ments mapping, was already conducted during the transformation of a combined FEATURE

model to an INSTANCE model, see Sec. 5.2. The mapping of these timing requirements from
an INSTANCE model to an ANALYSIS model is a straightforward process and the artifacts are
simply copied into the resulting model.

5.4 Model transformation and platform mapping summary
The transformations and mappings shown in this chapter are an important step to enable
the deployment and timing verification of systems that are capable of system-wide plug-
and-play. It enables the composition and verification of loosely-coupled systems with ini-
tially fuzzy timing requirements. It was described how a system representation according
to a FEATURE-SET model can be step-wise transformed to a combined FEATURE model, an
INSTANCE model and finally an ANALYSIS model, where the latter one is a representation
suitable for an analysis within the Real-Time Calculus framework. For the transformation
to an INSTANCE model, several sub-steps were introduced that map the loose coupling of
senders and receivers according to the data-centric approach to a concrete representation.
It was also discussed how relative timing requirements are mapped to absolute references
during the transformation. For the transformation to an ANALYSIS model, several strategies
were given how the abstract representation for the processing units and communication
variants are mapped to concrete technologies.

1ISO 17987 Part 1-7, as stated at http://www.lin-subbus.org, accessed 30-10-2015

79

5. MODEL TRANSFORMATION AND PLATFORM MAPPING

80

Chapter 6

Timing verification framework

This chapter introduces the timing verification framework and how it is applied in the
system-wide plug-and-play approach. The verification framework analyzes the effects of
filters, representing processing entities, on data streams through a system. It considers the
interaction of processing elements and is able to derive delay bounds on data instances
of particular streams. The verification itself is based on the Real-Time Calculus [30, 77]
and extends it by an automatic analysis and verification process. The objective is, starting
from a system description and timing requirements specification according to an ANALYSIS

model, to check if timing bounds are met by the running system. The verification framework
forms an essential part of the system-wide plug-and-play approach and makes a modular
configuration possible while guaranteeing timing requirements. The RTC was chosen as
the mathematical backbone because it allows an analysis of distributed, event-based, het-
erogeneous systems with hierarchical scheduling strategies. It also allows an adaption of
result tightness for analysis runtime, which is further detailed in Ch. 7. The main contribu-
tions of this chapter include the specification of the automatic verification process, a novel
handling of cyclic resource dependencies in the system graph, a simplified derivation of a
closed-form solution of the subadditive closure for bounded buffer handling, and the eval-
uation of different heuristics for the combination of intermediate results of the subadditive
closure.

The verification framework developed in this thesis presents novel approaches to han-
dle cyclic resource dependencies, closures, and approximations. A selected overview and
comparison to other implementations is presented in Appx. A.1.5.

6.1 Refined ANALYSIS meta-model (M)
Parts of the ANALYSIS meta-model were already introduced in Sec. 5.3. Now, their descrip-
tion is refined and constraints of the model are explained.

Definition 6.1 An ANALYSIS model M= (A,B,F,E,R) consists of a set of arrival sources A,
a set of service sources B, a set of stream filters F, a set of edges E, and a set of timing require-
ments R. Each edge e ∈ E is unidirectional and described by e = (efrom, e#from, eto, e#to, eT),
where the type of edges eT ∈ {Arrival, Service} comprises arrival or service relations. The slot
numbers e#from and e#to define the input or output position at a filter if multiple positions

81

6. TIMING VERIFICATION FRAMEWORK

are possible, e.g., for FIFO filter elements, which can have an unlimited amount of input and
output streams. Each filter f = (fT , fP, fI) ∈ F, arrival source a = (aT , aP) ∈ A and service
source b = (bT , bP) ∈B is described by its type (aT , bT , fT) and a set of parameters (aP, bP,
fP) that depend on the type. In addition, each filter f has a set of internal relations (fI). The
set of all nodes V in the model M is defined as V= A∪B∪F. A requirement u ∈R is defined
as u= (ufrom, u#from, uto, u#to, uT, uP) with the available types uT ∈ {Latency, Pattern} and the
parameter set uP. The other variables of u are similar to those in the definition of an edge e.

For the constraints, we define the following operator: The number |v|{in,out}
{α,β} : v ∈V 7→

N represents the number of incoming (in) or outgoing (out) arrival (α) or service (β) edges
for a node v. If the description of the direction or type is omitted, v refers to the union
of options. The model M has to fulfill the following properties: All service sources and all
arrival sources are connected (|a|out

α ≥ 1∀a ∈ A and |b|out
β
≥ 1∀b ∈B). Arrival edges must

not start from service source nodes and vice versa (|a|out
β
= 0 ∀a ∈ A and |b|out

α = 0 ∀b ∈
B). No incoming connections to service and arrival sources are allowed (|v|in = 0 ∀v ∈
A∪B). Each stream filter f has at least one incoming arrival relation (| f |inα ≥ 1 ∀ f ∈ F)
and zero to one incoming service relations (| f |in

β
= {0, 1} ∀ f ∈ F, depends on filter type).

No two edges must share the same incoming slot of a filter (∀(x , y) ∈ E, x 6= y : xto =
yto =⇒ x#to 6= y#to).

6.2 Analysis and verification procedure
The analysis and verification engine processes a system specification according to an ANAL-
YSIS model (M). It calculates the end-to-end timing behavior of the modeled system, com-
pares the results with the given requirements and generates a report for further processing.
This is performed in several steps: Detection of cycles in the system graph, execution order
calculation, analysis execution, result collection, and requirements checking. These steps
are detailed below.

1. Cycle detection. To analyze a model M with the Real-Time Calculus, an execution
order of the stream filters has to be defined. A filter can be executed once the characteristics
of all input arrival and input service streams are known. If the dependencies between the
filters form a directed acyclic graph (DAG), an order can be calculated and one filter after
each other is evaluated. A different approach is needed if the input of a specific filter
depends on its output and hence the dependencies form a cycle. In that case, the analysis
strategy is changed to a fixed point calculation. We distinguish three cycle configurations:

• Resource (arrival-service) cycles are cycles that partly consist of one or more arrival
connections and partly of one or more service connections. This is a common situa-
tion, for example, if two tasks share the same processing resource and a lower-priority
task forwards data to a higher-priority task. In that case, the available resources of
the lower-priority task are only known after the evaluation of the higher-priority task.
But, that can only be calculated if the incoming event characteristics of the higher-
priority task are known, which in turn is dependent from the lower-priority task. This
forms a cycle in the analysis process that has to be resolved.

82

6.2 Analysis and verification procedure

• Data flow (arrival-arrival) cycles are cycles within the arrival connections of the anal-
ysis graph. If the number of events is limited or joined, for example by an AND-filter
or a filter with bounded input buffer, such constructs are analyzable, otherwise the
number of events might grow to infinity. These kind of cycles were not further con-
sidered for the implementation of the verification framework; a model M with such
a cycle is considered invalid.

• Service-service cycles refer to a cycle of service connections within a graph. This con-
cept was applied in [81] to model proportional share scheduling within one stream
filter with multiple inputs, where remaining resources after processing of one event
stream are transfered to another stream. A generic relevance across filter boundaries
is doubtful to the author of this work. In our framework, those cycles are detected
and the system is considered as an invalid configuration.

In order to detect cycles, the strongly connected components [128] of the model M are
calculated. The strongly connected components are a partition of the vertices V of the
original graph V ∪ E into strongly connected subgraphs Si , where

⋃

i Si =V. A subgraph
is strongly connected if all vertices are reachable from each other one. This especially means
that all cycles are within the subgraphs in the end and that the relations between subgraphs
themselves form a DAG, as visible in the examples of Figs. 6.4 and 7.9. For implementation,
the classic algorithm proposed by Tarjan [128] is applied.

2. Analysis order. After the system graph was partitioned into a DAG consisting of sub-
graphs Si , the execution order can be determined. This is done by topological sorting
[129] of the subgraphs Si , with all edges of E that connect the subgraphs. Depending on
the concrete graph, multiple solutions may exist. This is not a problem as it will not affect
the output of the analysis process nor change the analysis complexity. For implementa-
tion, the classic algorithm according to Kahn [129] is utilized. This processing step always
succeeds as the partitioning step guarantees that the graph is a directed acyclic graph.

3. Analysis execution. The analysis of the subgraphs Si is conducted in the order of the
topological sort. This guarantees that all incoming arrival and service streams are known
before the subgraph is processed. If only a single filter is part of the subgraph, i.e., |Si|= 1,
then the analysis is as follows:

(a) Schedulability check: Based on the input service and arrival curves, the schedulability
of the filter is checked. Filters that do not depend on service resources (e.g., logical
OR/AND of data streams) always have a positive schedulability result. If the schedu-
lability check fails, the outgoing service and arrival curves are marked as invalid.

(b) Filter process: In this step, the actual filtering of the arrival streams considering the
available service takes place. If the schedulability check fails, this step is not executed.
Depending on the concrete execution semantic of the filter, the maximum delays and
backlogs of the streams are calculated.

83

6. TIMING VERIFICATION FRAMEWORK

(c) Result propagation: The derived results are forwarded to the successor elements of
the current filter for further processing. This includes the arrival as well as the service
curves.

If the current subgraph Si contains cyclic dependencies, i.e., |Si| > 1, the execution is
different and explained further in section 6.4.

4. Collection of results. After all filters are processed, the results are collected. Starting
from each arrival source, the network graph is traversed and the latencies introduced by
each filter are accumulated. The results are stream descriptions that include the latency
introduced at each filter and the overall latency of the stream. The traversal of a stream
stops if the outgoing slot of a filter is not connected or the filter itself forms a sink. As
streams might be forwarded to several elements, the descriptions may branch and form a
tree in the end; see Fig. 7.5 for an example representation for the eCar instance.

5. Requirements checking. As the last step, the requirements are matched against the
collected results. The requirements define either bounds for latencies or characteristics
of the event streams at certain points that can be compared to the results. The result of
the requirements checking is binary: Either a model M fulfills a requirement according
to the analysis or it fails to do so. However, because the analysis is an approximation,
requirements might still be met by the real-world system even if the analysis contradicts.

6.3 Implementation
The verification concepts were implemented in a Java-based tool, a screenshot is shown in
Fig. 6.1. This section elaborates the implementation details.

6.3.1 Curve representation

Representation of curves in the verification tool is analogous to the approach used in [130]
and [131]. The representation is based on segment-wise defined curves that belong to the
class of wide-sense increasing functions (F) with ultimately pseudo-periodic behavior. The
description of curves is split into an aperiodic and a periodic part, an exemplary visualiza-
tion is provided in Fig. 6.2.

Definition 6.2 Formally, an ultimately pseudo-periodic curve C is a tuple

C = (Sa,Sp, cx0, cy0, c∆x , c∆y) (6.1)

with two parts: A set of segments Sa defining the aperiodic part of the curve from 0 up to cx0,
and a set of segments Sp for the periodic part that defines a pattern, which is repeated from
the point (cx0, cy0) on. Parameters of the pattern include the translation in x- and y-direction
(c∆x , c∆y) during each repetition step. The periodic or aperiodic part can be omitted (Sa = ;
or Sp = ;).

Definition 6.3 Each segment s ∈ Sa,Sp is described as a four-tuple s = (sm, sn, smin, smax)
that reflects the parameters of the standard line equation, where the inclusion or exclusion of
the starting and ending point depends on the type of the curve (upper or lower):

s(∆) =

�

sm ·∆+ sn ∀smin ≤∆< smax for upper curves (αu,βu)
sm ·∆+ sn ∀smin <∆≤ smax for lower curves (αl ,β l)

(6.2)

84

6.3 Implementation

Figure 6.1: Screenshot of our verification tool, showing representations of graphs of ANALYSIS

models (top left and bottom right) and arrival/service curve representations at stream filter
inputs and outputs (top right and bottom left).

Given a set of segments S, the functions c(∆){a/p}, which represent the aperiodic and peri-
odic parts of C in the time interval domain, are defined as the union of all relevant segments:

c{a/p}(∆) =
⋃

i

si(∆) ∀si ∈ S{a/p} (6.3)

Definition 6.4 Given a curve description C, the complete curve can be reconstructed in the
time interval domain with the unfolding operation, where the aperiodic part is kept and the
periodic part is constructed by the union of shifted segment sequences of the periodic part:

c(∆) = ca(∆) 0≤∆< cx0

c(∆) =
⋃

i∈N≥0

�

cp(∆− cx0 − i · c∆x) + cy0 + i · c∆y

�

∆≥ cx0
(6.4)

The process is analogous to the building method in [77], but adapted to the segment def-
inition in this work. Because the unfolding until infinity is not feasible for processing, a

85

6. TIMING VERIFICATION FRAMEWORK

cp(Δ)ca(Δ)

(cxo,cyo)

cΔx

cΔy

Figure 6.2: Unfolded representation of an ultimately pseudo-periodic curve C with the ape-
riodic part ca(∆) and periodic part cp(∆). The periodic part starts at point (cx0, cy0) and the
repetitions have the offset (c∆x , c∆y).

certain point Φ is determined up to which the unfolding is carried out. This point depends
on the operation and on the parameters of the curve(s).

Definition 6.5 The unfolding of a curve C up to a point Φ is given by the function

c(∆)Φ =

�

c(∆) ∀∆≤ Φ
undefined ∀∆> Φ (6.5)

An important property of a curve C is its long-term slope Cρ, which describes the rate
of events or the availability of resources for an infinite-long observation [73] and always
exist for super- or subadditive functions [87]. The long-term slope is required to check the
schedulability of stream filters and to execute curve operations.

Definition 6.6 The long-term slope Cρ of a curve C equals

Cρ = lim
∆→∞

�

c(∆)
∆

�

(6.6)

In case Sp 6= ;, the long-term slope is Cρ =
c∆y
c∆x

. In case Sp = ;, the long-term slope equals
the slope of the last segment of the aperiodic part: Cρ = sm,i , where i = |Sa| and si ∈ Sa.

Comparison to curve representations in related works. Wandeler [77] defines a dif-
ferent representation for segments. Instead of four parameters s = (sm, sn, smin, smax), only
three parameters are used: A start point of the segment in x- and y-direction (x0, y0) and
a parameter sw for the slope of the curve, giving the tuple (x0, y0, sw). The length of a
segment is defined by the start of a successor element in the ordered list of segments for
the aperiodic and periodic parts. We did not use this concept, because it cannot describe
finite curves or gaps in the definition. Gaps do usually not appear in the results of the basic
operations, but may exist in intermediate representations, for example during the calcula-
tion of the min-plus convolution. Except for the representation of individual segments, a

86

6.3 Implementation

Unary Operators Binary Operators

Ceiling/Floor (d e,b c) Min-/Max-plus convolution (⊗, ⊗)

Subadditive/Superadditive closure (x?,x?) Min-/Max-plus deconvolution (�, �)

Scaling (·) Minimum/Maximum (min/∧, max/∨)

Shifting ((c(∆− x0) + y0) Addition/Subtraction (+, −)

Vertical/Horizontal distance (B(), D())

Table 6.1: Basic operations for curves within the Real-Time Calculus.

curve is described in [77] similar to Eq. 6.1. On the other hand, [131] utilizes also four
parameters to represent a segment: t i = (x i , f (x i), f (x i+),ρi), where x i and f (x i) define
the starting point, f (x i+) the y-coordinate directly right of the starting point and ρi the
slope of the segment. Consequently, it is possible to define a gap between the starting point
and the actual segment. We did not use this representation, because the interpretation if
a segment is right- or left-continuous is implicitly applied in our approach. An ultimately
pseudo-periodic curve is described in [131] by three additional parameters for an ordered
list of segments: The x-coordinate, where the periodic part starts, and the offset in x- and
y-direction of the periodic part. This definition was re-defined in [132], where a curve
is represented as c = va ∧ (vp ⊗ r?), which is inspired from [86]. We will use this repre-
sentation later on for the calculation of the subadditive closure because it simplifies the
implementation (Sec. 6.5.1).

6.3.2 Basic operations

The basic operations of the Real-Time Calculus, as implemented in our verification tool, are
shown in Tab. 6.1. These operators form the mathematical backbone for the calculations
and are needed to transform streams traversing filters and to derive real-time properties.
Because curves are represented with an aperiodic and a periodic part, they are unfolded
before the actual operation is executed. Unfolding generates a connected set of segments
that represents the curve up to a certain point. The basic operations of the curves were
already presented and partly analyzed in [77] and [131], also with the calculation of the
corresponding unfolding points. For clarity, the basic algorithm is shown on the example
of the min-plus convolution below.

Min-plus convolution of curves (adapted from [77]). Given two curves C1, C2 as input,
the process of min-plus convolution Cr = C1 ⊗ C2 is divided into five steps, which are
described in the following.

1. Calculation of parameters for unfolding of curves. Operations are usually not directly
performed on ultimately pseudo-periodic curves because of their infinite definition. A fi-
nite representation has to be found for the calculation. Based on the parameters of both
curves, the characteristics of the resulting curve are calculated or approximated and are the
foundation for the definition of the limit Φ for unfolding. Depending on the operation, the
limit Φ depends on the long-term slope Cρ, periodicity c∆x and c∆y , starting point of the
periodic part (cx0, cy0), cross point of both curves∆x , or hyper-period hp() of the periods in

87

6. TIMING VERIFICATION FRAMEWORK

x-direction (hp(C1, C2) = lcm(c∆x ,1, c∆x ,2), where lcm refers to the least common multiple
of the arguments.) The parameters in the case of the min-plus convolution can be obtained
as follows:

c∆x ,r =







c∆x ,1 if Cρ,1 < Cρ,2
c∆x ,2 if Cρ,1 > Cρ,2
hp(C1, C2) otherwise

Φ=

�

max(cx0,1 + cx0,2 + hp(C1, C2),∆x + c∆x ,r) if C1,ρ 6= C2,ρ
cx0,1 + cx0,2 + hp(C1, C2) otherwise

(6.7)

In case a curve C does not have a periodic part, i.e., Sp = ;, we set c∆x = 0 and cx0 is equal
to the start of the definition range of the last aperiodic segment: cx0 = smin,i , where i = |Sa|
and si ∈ Sa.

2. Unfolding of curves. In this step, the curves to be processed are unfolded according
to Eq. 6.4 up to the previously calculated unfolding limit Φ (Eq. 6.7).

3. Execution of the operation. Usually, the operations can be further divided so that
they can be applied segment-wise or range-wise. The min-plus convolution is calculated
segment-pair-wise with an additional step of calculating the envelope of the results: Given
the segment sets S = s0 ∧ s1 ∧ ...∧ sn and V = q0 ∧ q1 ∧ ...∧ qm from the unfolding step of
both curves C1, C2, then the min-plus convolution S⊗V is calculated as:

r(∆) = S⊗V
= (s0 ∧ s1 ∧ ...∧ sn)⊗ (q0 ∧ q1 ∧ ...∧ qm)

= (s0 ⊗ q0)∧ (s0 ⊗ q1)∧ ...∧ (s0 ⊗ qm)

∧ (s1 ⊗ q0)∧ (s1 ⊗ q1)∧ ...∧ (s1 ⊗ qm)

...

∧ (sn ⊗ q0)∧ (sn ⊗ q1)∧ ...∧ (sn ⊗ qm)

= inf
i≤n
j≤m

(si ⊗ q j)

(6.8)

This transformation is possible because of the distributivity property within the min-plus
algebra, see [84] and [133] for details. According to Eq. 6.8, all segments of set S are
convoluted with each of set V and the envelope of all segment-pair-convolutions equals the
overall result. In this case, the envelope is the infimum of all piecewise linear segments
after the pair-wise convolution operation. The envelope operation is detailed in the next
section, an exemplary visualization is shown in Fig. 6.3.

4. Construction of a new curve from the intermediate result. The intermediate result r(∆)
has to be transformed into a representation Cr according to an ultimately pseudo-periodic

88

6.3 Implementation

c1(Δ)

c2(Δ)

(a) Two exemplary ultimately
pseudo-periodic, piecewise lin-
ear curves, c1(∆) and c2(∆), as
input for the min-plus operator
(⊗).

(b) An intermediate result
of the min-plus convolution,
showing the pair-wise convo-
lution of all relevant segments
of c1 and c2.

c1(Δ)⭙c2(Δ)

(c) The final result of the min-
plus convolution after the en-
velope calculation of the inter-
mediate result.

Figure 6.3: Example for the envelope calculation during the min-plus convolution.

curve. For this step, the previously calculated parameters are used to divide the result into
an aperiodic and a periodic part. For the min-plus convolution, these parameters are:

c∆x ,r = (see Eq. 6.7)

c∆y,r =

�

c∆x ,r · Cρ,1 if Cρ,1 ≤ Cρ,2
c∆x ,r · Cρ,2 otherwise

cx0,r = Φ− c∆x ,r

cy0,r = r(cx0,r)

c(∆)a = r(∆) ∀ 0≤∆< cx0,r

c(∆)p = r(∆+ cx0,r) ∀ 0≤∆≤ c∆x ,r

(6.9)

The functions c(∆)a and c(∆)p stand for the according set of segments Sa and Sp of the
result, and r(∆) refers to the set of segments of the intermediate pair-wise convolution.

5. Optimization of the result. After each operation in the analysis, the curves are post-
processed to remove artifacts caused by numerical issues and to minimize the amount of
segments needed for the representation. As the results of this step directly influence the
processing time of the following operations, details are deferred to Sec. 7.2.3.

6.3.3 Envelope calculation

The calculation of the envelope is a crucial part of many operations within the min-plus
calculus if linear piece-wise segments are deployed as a representation for the curves like
in our case. The envelope operation is needed for the convolution, deconvolution, mini-
mum, maximum, and indirectly for the subadditive closure. Depending on the operation,
the envelope refers to either the infimum or supremum of a set of segments. For example,
the min-plus convolution needs an infimum envelope, an example is shown in Fig. 6.3, and
the min-plus deconvolution needs a supremum envelope. Algorithms are known that can
find the envelope of n linear piece-wise segments in O(n log n) time in the single-processor
case [134], and in O(log n) using O(n) processors in the parallel case [135].

89

6. TIMING VERIFICATION FRAMEWORK

The following two sections introduce two concepts that were integrated into our ver-
ification tool: The automatic handling of resource cycles in an ANALYSIS model (M) and
the simplified calculation of the subadditive closure for ultimately pseudo-periodic curves
defined as segment-wise linear functions, which is needed for the analysis of stream filters
with bounded buffer semantics.

6.4 Automatic handling of resource cycles in the system graph
Cycles in an ANALYSIS model (M) are handled with a special analysis approach. For cycles, a
fixed point iteration is conducted. This approach was introduced by [87] for cyclic resource
dependencies and in [136, 137] for cyclic data flow dependencies. However, both works
are not concerned with an automatic analysis processing and are founded on a manual
derivation of the formulas for the calculation. In [138], a framework was presented that
is able to handle cyclic resource dependencies by a greedy and recursive construction of
the according filter operations by code generation. The approach presented here differs in
its automatic, non-recursive processing character, novel strategies for the initialization and
iteration steps, and in its deep integration into the system-wide plug-and-play approach for
automotive systems. In the following, the handling of cyclic resource dependencies for an
automatic processing within the verification tool is described. In general, the fixed point
iteration consists of the following steps, where ΣSi

represents all parameters of a certain
processing step for subgraph Si , especially, the state of all arrival and service curves:

(a) Definition of the starting point Σ0
Si

: The starting point Σ0
Si

defines the initial values
of the parameters of the equation. In our case, it refers to the definition of an initial
set of arrival and service streams, which are used for the first iteration.

(b) Definition of the iteration step ξ(ΣSi
) : The iteration step transforms one state of the

subgraph into its successor state: ξ(Σn
Si
) ⇒ Σ(n+1)

Si
. Mapped to our case, all filters

involved in a cycle are executed. During each iteration, the stateΣSi
converges closer

to the final solution Σ∗Si
.

(c) Definition of the stop condition χ(Σn
Si

,Σn−1
Si
): The stop condition defines the termi-

nation of the iteration; χ(Σn
Si

,Σn−1
Si
) 7→ B, where Σn

Si
is the current state of the

subgraph Si and Σn−1
Si

refers to the previous iteration state. In the verification tool,
the termination is reached once the output curves do not change anymore.

This approach works only if the system converges during the iteration step towards a fixed
point Σ∗. As shown by [87], this is always the case for cyclic resource dependencies in the
Real-Time Calculus framework. In the following, the individual steps are more elaborated.

Starting point Σ0
Si

. Before the calculation of a subgraph Si begins, all inbound stream

references have to be known. Then, we derive the starting point Σ0
Si

for a certain subgraph
Si according to the following strategy: The arrival and service curves available for filters
with incoming edges from outside the subgraph are propagated. Depending on the filter
type, curves are either directly copied from the input slots to the output slots, or, if an
approximation of an outgoing stream is possible, the according operation is executed before

90

6.4 Automatic handling of resource cycles in the system graph

FS
(A)

GPC
(A)

GPC
(B)

GPC
(C)

PJD
(A)

1

PJD
(B)

2
AND

OR
GPC
(D)

FS
(B)

3

45

Subgraph
boundary

Initial approx.
order considering
arrival relations

FS
(A)

GPC
(A)

GPC
(B)

GPC
(C)

PJD
(A)

2

PJD
(B)

3
AND

OR
GPC
(D)

FS
(B)

5

41

Initial approx.
order considering
service relations

Figure 6.4: Approximation order for the starting point of a fixed point calculation for an exam-
ple with cyclic resource dependencies. The order is derived by a topological sort of the nodes of
the subgraph considering arrival and omitting service relations (left side) and vice-versa (right
side). This example is referred to as complex loop example.

Node Parameters Node Parameters Node Parameters

FS (A) rate=rloop PJD (B) p=10,j=6,d=0.1 GPC (B) et=4
FS (B) rate=rloop PJD (C) p=12,j=7,d=0.2 GPC (C) et=2

PJD (A) p=10,j=5,d=0.1 GPC (A) et=2 GPC (D) et=5

Table 6.2: Parameters for the complex loop example (Fig. 6.4). rloop = {1.0, 2.0}, depending
on test case.

i=0

i=1
i=*

i=0
i=1

i=*

i=0

i=1

i=*

i=0
i=1
i=*

αu(Δ) αl(Δ)

βu(Δ) βl(Δ)
(2)

(1)

Figure 6.5: Development of arrival and service curves of node GPC (A) in example shown in
Fig 6.4 with parameters of Tab. 6.2 (rloop = 1.0). The indexes right of the graphs refer to the
iteration step, where i=* defines the final result. The arrow corresponds to the direction of
convergence.

91

6. TIMING VERIFICATION FRAMEWORK

propagation. The last point is valid for OR and AND filters, because they do not depend
on service curves. To derive the order for the initialization, two topological sortings with
the nodes of the subgraph are conducted. First, sorting is performed considering all arrival
relations in the subgraph, second, sorting is performed considering all service relations in
the subgraph. Afterwards, both results are combined. Because we require the graph to be
free of cyclic data flows and cyclic service streams, an order can always be derived in the
proposed way. The corresponding algorithm is sketched in Alg. 6.1 and the initialization
order of an exemplary system is presented in Fig. 6.4. With this strategy, long-term rates
of the initial arrival curves match the long-term rates of the fixed point solution, but are
tighter:

α0,u
ρ = α

∗,u
ρ α0,u(∆)≤ α∗,u(∆)

α0,l
ρ = α

∗,l
ρ α0,l(∆)≥ α∗,l(∆) (6.10)

Here, α0 refers to the initial approximation of the arrival curve, α∗ to the fixed point solution
and the sub-index ρ to the long-term slope (Eq. 6.6). Service curves are initialized with
higher values than the fixed point solution and the long-term slope is different:

β0,u
ρ 6= β

∗,u
ρ β0,u(∆)≥ β∗,u(∆)

β0,l
ρ 6= β

∗,l
ρ β0,l(∆)≥ β∗,l(∆) (6.11)

β0 refers to the initial approximation of the service curve and β∗ to the fixed point solution.
The proposed initialization schemata provided reasonable results in our experiments and
led to a quick convergence. In contrast, [87] proposed an initialization either by a simu-
lation trace or by an analytical derivation based on the long-term rates, where the latter
one is an adaption of the work in [139]. Compared to [138], our approach is non-recursive
and approximates filter operations where possible during the initialization, which leads to
a tighter starting point, depending on the system configuration.

Iteration step Σ(n+1)
Si

= ξ(Σn
Si
). After the initialization was done, the iteration phase of

the subgraph starts. During each step, filters are invoked in topological order according
to the arrival stream and service stream relations, similar to the initialization step. After
each step, it is checked if the stop condition is fulfilled. The overall algorithm is sketched
in Alg. 6.2. An example for the development of arrival and service streams during the
iterations is presented in Fig. 6.5.

Stop condition χ(Σn
S,Σn−1

S). The iteration stops once all arrival and service streams,
referred to as Σn

Si
for a certain subgraph Si and iteration step n, do not change between

iteration steps anymore, expressed by χ(Σn
Si

,Σn−1
Si
) = true. Two curves are defined to be

equal, if their canonical representation has an equal number of segments for the aperiodic
and the periodic part, the parameters defining the start and periodicity of the periodic
part are equal and all segments of the aperiodic and periodic part match each other. The
definition of the canonical representation is deferred, see Eq. 7.1.

6.5 Bounded buffer handling
The semantics of classic Real-Time Calculus include the assumption that processing ele-
ments are equipped with infinite buffers. In case of bursts or unavailable service resources,

92

6.5 Bounded buffer handling

Algorithm 6.1: Initialization of a fixed point calculation for cyclic resource depen-
dencies (sketch).

Input: SubGraph Si

Result: Initialized SubGraph state Σ0
Si

1 FilterList flSorted← topologicalSortArrivalEdges(Si);
2 flSorted← flSorted ∪ topologicalSortServiceEdges(Si);
3 forall the Filters f ∈ flSorted do
4 f .invokeCycleApproximation(); /* updates Σ0

Si
*/

5 f .propagateStreamsOneStep(); /* updates Σ0
Si

*/

6 end

Algorithm 6.2: Algorithm for iteration step of fixed point calculation (sketch).

Input: SubGraph Si , initial SubGraph state Σ0
Si

Result: SubGraph fixpoint state Σ∗Si

1 FilterList flSorted← topologicalSortArrivalEdges(Si);
2 flSorted← flSorted ∪ topologicalSortServiceEdges(Si);
3 Σn

Si
← Σ0

Si
;

4 repeat
5 Σn−1

Si
← Σn

Si
;

6 forall the filters f ∈ flSorted do
7 f .invokeFilter(); /* updates Σn

Si
*/

8 f .propagateStreamsOneStep(); /* updates Σn
Si

*/

9 end
10 until χ(Σn

Si
,Σn−1

Si
) = true; /* check for fixpoint */

incoming events are enqueued before processing. In reality, bounded buffers are deployed
frequently in automotive systems for several reasons: Considering real-time control flows,
regularly only the most current sample is relevant. For example, if a function requires the
current velocity of the vehicle, only the most up-to-date sample is of interest. However, it
may be the case that several samples are kept to calculate an average or median of a certain
value to mitigate outliers. Due to the heterogeneous structure of the electronic architec-
ture, individual systems work with different processing frequencies. If a sender provides
data with a higher rate than the receiver can process it, the buffer of the receiving process-
ing element will eventually overflow if no counter-measurements are provided. Further, the
memory of the electronic control units is limited and thus simply cannot handle an infinite
amount of data samples. The imprecise modeling of this facts leads to overly conservative
timing estimates [140]. In the following, we consider the correct modeling of systems with
under-sampling behavior; a receiver processes the data at a slower rate than they are pro-
duced by the sender. As a result, packets will be dropped due to the bounded buffer. To
handle this issue, the Real-Time Calculus was extended by two approaches:

93

6. TIMING VERIFICATION FRAMEWORK

• Transformation to stateful analysis tools. One option is to convert arrival and service
curves in a representation suitable for the input of a state-based analysis tool and to
re-convert the results of that tool. For example, an interface to connect the Real-Time
Calculus with timed automata was described in [73] and [141], and a bridge between
RTC and the programming language Lustre was constructed in [142].

• Integrated approach. An integrated approach was developed by [93], which natively
works in the Real-Time Calculus framework, without the need to transform between
different tools. They succeeded to derive a mathematical concept to model the be-
havior of a bounded buffer. These equations are a mapping of the results in [84,
"Losses in a Finite Storage Element"] to the Real-Time Calculus.

The advantage of the approach by conversion is that it can handle complex buffer semantics
and over- as well as under-sampling. For example, time variant buffers are possible that
drop samples after a certain amount of time. Drawbacks are the expensive transforma-
tions of arrival curves and the application of a reachability analysis, which is prone to the
state-explosion problem [73]. Further, the transformation does not fit into the proposed
verification framework. Especially the approximation approach, which will be introduced
in the next chapter, does not fit seamlessly. The integrated approach matches smoothly
into the Real-Time Calculus framework but relies on the expensive calculation of the sub-
/superadditive closure of curves. It is an approximation of the behavior of finite buffer
semantics and was only derived for under-sampling scenarios.

Because the integrated approach is compatible with the approximation strategies and
is based on the mathematical background of the min-plus algebra, we have chosen to use it
in our verification tool. However, the subadditive closure of an ultimately pseudo-periodic,
piecewise linear defined curve is an operation that is, to our knowledge, not available yet
in any free tool (see Appx. A.1.5). Hence, we derive the concrete implementation of the
subadditive closure in detail in the following. The superadditive closure can be calculated
analogously.

6.5.1 Calculation of the subadditive closure

The subadditive closure is an expensive operation, but a closed-form solution exists. The
basic algorithm to calculate it was explained in [131], which is based on the decomposi-
tion of a curve into segments and iterated segments, and the calculation of the subadditive
closure of these parts and a combination of the results. Segments and iterated segments
are handled separately in the approach and the calculation of the resulting closures are
subject to distinction of many cases. We are going to show that, by another curve represen-
tation (adapted from [86]), a distinction between segments and iterated segments is not
necessary anymore, which reduces the complexity of an implementation. This concept was
already mentioned in [132], but a completion of the concept or an implementation has not
been presented in prior works. In contrast, the following derivation shows the complete
process how the subadditive closure is calculated for ultimately pseudo-periodic curves
based on a compact curve representation, which can directly be implemented in according
frameworks. It simplifies the method from [131] because the concept of iterated segments
is not necessary and because the derivation is based on a more simple representation of

94

6.5 Bounded buffer handling

linear segments. Let us represent an alternative description of ultimately pseudo-periodic
functions [132]:

v(∆) = va(∆)∧ [vp(∆)⊗ r?(∆)] (6.12)

Here, va is the aperiodic part of the curve, vp is the periodic part, r describes the offset of
repetition of the periodic parts, and r? is the union of all possible offsets. The equation can
express the identical class of curves to those of Eq. 6.4. The transformation between both
representations is given by:

va(∆) = ca(∆) ∀ 0≤∆≤ cx0

vp(∆) = cp(∆− cx0) + cy0 ∀ cx0 ≤∆≤ cx0 + c∆x
(6.13)

The aperiodic part va(∆) is equal to Eq. 6.3, but the periodic part vp(∆) is shifted by the
offsets. The function for repetition is a single point at the offsets for the periodic part:

r(∆) =

�

c∆y if ∆= c∆x
+∞ otherwise

(6.14)

The closure r? is effectively a repetition of the point r(∆) with an offset of (c∆x , c∆y):

r?(∆) =

�

i · c∆y if ∆= i · c∆x ∀i ∈ N≥0
+∞ otherwise

(6.15)

The min-plus convolution of the periodic part with the repeated points (vp(∆) ⊗ r?(∆))
re-assembles in the end the complete periodic part of the curve. The minimum operation
(∧) connects the aperiodic and periodic parts. The subadditive closure of Eq. 6.12 can be
transformed [133] to:

v? = [va ∧ (vp ⊗ r?)]?

= v?a ⊗ (vp ⊗ r?)?
(6.16)

In Eq. 6.16, the term va already has a finite number of segments and therefore the closure
v?a can be calculated. However, vp ⊗ r? contains an infinite amount of segments and has to
be further refined. According to the definition [133] of the closure operator (?), the term
equals

(vp ⊗ r?)? = (vp ⊗ r?)(0) ∧ (vp ⊗ r?)(1) ∧ (vp ⊗ r?)(2) ∧ ... (6.17)

where the upper number in brackets refers to the number of self-convolutions, i.e., f (1) =
f , f (2) = f ⊗ f , etc. Knowing that r? ⊗ r? = r?, the individual summands of Eq. 6.17
become:

(vp ⊗ r?)(0) = δ0

(vp ⊗ r?)(1) = vp ⊗ r?

(vp ⊗ r?)(2) = (vp ⊗ r?)⊗ (vp ⊗ r?) = v(2)p ⊗ r?

...

(vp ⊗ r?)(n) = v(n)p ⊗ r?

(6.18)

95

6. TIMING VERIFICATION FRAMEWORK

where δ0 is the identity element (δ0(∆) = 0 ∀∆ ≤ 0 and δ0(∆) = +∞ otherwise). This
results in:

(vp ⊗ r?)? = δ0 ∧ (v(1)p ⊗ r?)∧ (v(2)p ⊗ r?)∧ ...∧ (v(n)p ⊗ r?)

= δ0 ∧ [r? ⊗ (v(1)p ∧ v(2)p ∧ ...∧ v(n)p)]

= δ0 ∧ vp ⊗ [r? ⊗ (δ0 ∧ v(1)p ∧ ...∧ v(n)p)]

= δ0 ∧ vp ⊗ [r? ⊗ v?p]

(6.19)

Inserting Eq. 6.19 into Eq. 6.16 yields our final result:

v? = v?a ⊗ [δ0 ∧ vp ⊗ (r? ⊗ v?p)] (6.20)

Compared to Eq. 6.16, this representation does only contain the closure of a finite amount
of segments (v?a , v?p) and spots (r?). We will now show how these closures are calculated.
The presented equations for the closure of a point and a single segment are analogous to
the description of [131], but based on our definition of segments. Assume a segment set
S = s0 ∧ s1 ∧ s2 ∧ ...∧ sn with n segments s of the form of Eq. 6.2. Then, the closure of the
set S can be written as:

S? = (s0 ∧ s1 ∧ s2 ∧ ...∧ sn)
?

= s?0 ⊗ s?1 ⊗ s?2 ⊗ ...⊗ s?n
(6.21)

It is enough to calculate the closure of each segment individually and then combine the
results via the min-plus convolution. Equal to spots, the result of a closure of a segment is
itself an ultimately pseudo-periodic function, i.e., the definition range of the result spans
to infinity. Analog to Eq. 6.17, the closure of a single segment s ∈ S is defined as:

s? = s(0) ∧ s(1) ∧ s(2) ∧ s(3) ∧ ...

= inf
k≥0
{s(k)} (6.22)

Using the definition of the min-plus convolution (Eq. 2.2), the terms s(k) of the closure of
a segment s can be directly given as:

s(0) = δ0

s(1) = sm ·∆+ 1 · sn ∀∆ ∈ [1 · smin, 1 · smax]

s(2) = sm ·∆+ 2 · sn ∀∆ ∈ [2 · smin, 2 · smax]

...

s(k) = sm ·∆+ k · sn ∀∆ ∈ [k · smin, k · smax]

(6.23)

The range intervals grow with each summand by smax − smin, which will eventually lead
to an overlapping of the definition intervals. To calculate the number of segments until
they overlap, it is checked when the starting range of the next segment (smin · (k + 1)) is
lower than the ending range of the current segment (smax · k) to get the number of the first
overlapping segment k0 (this is similar to [131]):

smin · (k+ 1)< smax · k

k0 =
¡

smin

smax − smin

¤

+ 1
(6.24)

96

6.5 Bounded buffer handling

k=1

k=2

k=3

Initial segment s:
s(Δ) = 0.7·Δ-1.5 [5.0;6.0]
(n<0, k0=6)

Definition range from k0:
[k·smin, (k+1)·smin]

Initial segment s:
s(Δ) = 0.2·Δ+1.0 [5.0;6.0]
(n≥0, k0=6)

Definition range from k0:
[(k−1)·smax, k·smax]k=1

k=2

k=3

Figure 6.6: Two examples for the subadditive closure of a single segment s. On the left side
with sn ≥ 0 and on the right side with sn < 0, where sn refers to the offset of the initial linear
segment s for the subadditive closure operation.

With the knowledge of the starting point k0 for the overlapping of the segments, we derive
a representation of the complete curve from that point on. We will see that from k0 on,
the elements are similar and only differ by a translation. The difference of two consecutive
summands of the closure is an offset equal to sn:

s(k+1) − s(k) = sm ·∆+ (k+ 1) · sn − (sm ·∆+ k · sn) = sn (6.25)

Therefore, neglecting the definition range, the segments s(k) are all parallel lines, where
sn defines if these lines are above or below each other with increasing k. Depending on sn,
two cases are distinguished to construct the complete closure of a segment s (see Fig. 6.6
for an example):

s?(∆) =
∧

k∈N>0











sm ·∆+ k · sn ∀∆ ∈ [k · smin, k · smax] if k < k0
sm ·∆+ k · sn ∀∆ ∈ [k · smin, (k+ 1) · smin] if k ≥ k0 and sn < 0
sm ·∆+ k · sn ∀∆ ∈ [(k− 1) · smax , k · smax] if k ≥ k0 and sn ≥ 0
+∞ otherwise

(6.26)
The closure of the segment (s?) has gaps for k < k0 and is periodic from k ≥ k0. Thus, it is
possible to represent the closure as a ultimately pseudo-periodic function similar to Eq. 6.1.
The parameters are presented in Tab. 6.3.

6.5.2 Order of artifact combination for the subadditive closure

For the subadditive closure of a finite set of segments, the min-plus convolution of the indi-
vidual segment closures is necessary (Eq. 6.21). Due to the associativity of the convolution
operation, the result does not depend on the order of the operations, but the computation
time is affected by the ordering. To the author’s knowledge, up to now, no methods have
been examined that consider a speedup of the calculations by a re-ordering of the individual
results.

A comparison of different heuristics is given in the following, which were empirically
evaluated with our verification tool. For evaluation, random curves Cr were generated
with the following properties: Each curve contains exactly five segments, where the first

97

6. TIMING VERIFICATION FRAMEWORK

sn ≥ 0 sn < 0

Sa = (see Eq. 6.26, k < k0) Sa = (see Eq. 6.26, k < k0)
c∆x = smax c∆x = smin

c∆y = sm · c∆x + sn

Sp = {s(∆) = sm ·∆ ∀∆ ∈ [0; c∆x]}
cx0 = (k0 − 1) · c∆x cx0 = k0 · c∆x

cy0 = sm · cx0 + k0 · sn

Table 6.3: Parameters for the construction of an ultimately pseudo-periodic curve for the clo-
sure s? of a single segment s(∆) = sm ·∆+ sn ∀∆ ∈ [smin; smax].

segment’s (s0
r) parameters are: s0

r,m = κ(), s0
r,n = κ(), s0

r,min = 0.0 and s0
r,max = κ(), where

κ() refers to a function choosing pseudo-randomly a number of the set {0.0, 0.1, 0.2, ...,
0.9, 1.0}. The other segments (si

r , 1 ≤ i ≤ 4) are constructed as follows: si
r,min = s(i−1)

r,max ,

si
r,max = si

r,min + κ(), si
r,m = κ(), si

r,n = (s
(i−1)
r,m − si

r,m) · s
(i−1)
r,max + s(i−1)

r,n + κ(), i.e., no definition
gap along the x-axis exist, the starting point is higher or equal to the ending point of the
previous segment and the slope is randomly chosen.

The following heuristics were compared: Standard means that the individual closures
of the segment were convoluted in direction of increasing index: C?r = (((s

0,? ⊗ s1,?) ⊗
s2,?) ... ⊗ s4,?, and Reverse refers to a convolution in the opposite direction. The Random
heuristic selects two curves for convolution randomly until only one remains. LeastHyperPe-
riod choses those two curves with the smallest hyper-period, and MinMax selects those for
convolution that have the highest and lowest long-term slope until only one curve remains.
A graph of the normalized computation times of the experiments is shown in Fig. 6.7 and
the results are summarized in Tab. 6.4. Each point in the graph stands for the mean of
one test run, where each test run consists of 50 subadditive closures of pseudo-randomly
generated curves according to the above definition. 100 test runs were conducted and the
measured computation times were normalized in the end correspondent to the Standard
heuristic. It is visible that the MinMax heuristic outperforms all other heuristics for curves
fulfilling the above mentioned construction properties – it was faster than the Standard ap-
proach in 99% of the cases, and faster than any of the other heuristics in 97% of the cases.
Over the average of all test runs, the MinMax heuristic is 40% faster than the Standard
approach. This is caused by the fact that this strategy decreases the unfolding point for
the convolution in many cases; very differing long-term slopes lead to a cross-point with a
small x-coordinate, which is part of the calculation of the range for unfolding (see Eq. 6.7).
The range for unfolding influences the number of segments needed for the convolution and
hence has a direct effect on the complexity. However, the calculation of the unfolding point
can be dominated by the hyper-period of the involved curves for the convolution. In that
case, a heuristic following the LeastHyperPeriod strategy is significantly faster.

6.6 Discussion of the verification framework
This section discusses the possibilities and limitations in the application of the proposed
verification approach based on the Real-Time Calculus (RTC). Because the RTC describes

98

6.6 Discussion of the verification framework

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

N
or

m
al

iz
ed

 c
om

pu
ta

ti
on

 t
im

e

Test run

Standard
Reverse
MinMax

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

Test run

Standard
Random

LeastHyperPeriod

Figure 6.7: Comparison of computation times for the subadditive closure of a curve with a
finite amount of segments with various heuristics. Each point represents the average of 50
closure operations.

Norm. comp. times per test run
Strategy Mean Maximum Minimum

Standard 1 1 1
Reverse 8.6 243.6 0.05

Randomized 5.8 247.3 0.15
LeastHyperPeriod 1.5 26.1 0.14

MinMax 0.6 4 0.03

Table 6.4: Comparison of the normalized computation times for the calculation of the sub-
additive closure of a curve with a finite number of segments with several heuristics, see also
Fig. 6.7

event and service streams in an interval-based domain [81], restrictions to the system under
consideration apply. The proposed verification framework is in general suitable for a flexi-
ble analysis of systems-of-systems as required for the system-wide plug-and-play approach.
The strong points include the composability of the system to analyze and the versatility of
the framework to model characteristics of various platforms and technologies. The preci-
sion of results is appropriate to draw a decision about the feasibility of a certain setup in
reasonable time. In contrast, a detailed analysis of a subsystem is subject to other methods,
because the bounded analysis strategy of the RTC can lead to pessimistic results, which
might not be suitable for certain use cases. In the Real-Time Calculus, data and events
are directly coupled. Whenever an event triggers a stream filter, it is assumed that data
needed for the processing is available when it is consumed. By filters with bounded buffer
semantics [93], situations with under-sampling can be modeled, although only with the
computational expensive operation of the subadditive closure. On the other hand, the han-
dling of over-sampling in a native way has not been considered yet. A direct mapping is not
possible, because events are consumed, i.e., semantically disappear at the input buffer after
first processing. In real systems, both sampling types might occur [56], e.g., for data that is
sent via a CAN bus and updated asynchronously. In that case, depending on the frequency

99

6. TIMING VERIFICATION FRAMEWORK

of the processing task, an over- and under-sampling might occur. Because event and ser-
vice streams are represented in the interval domain, phase information is not available for
a refinement of the calculations. Although worst- and best-case patterns are modeled, it is
not possible to express at what exact time they occur. The point in time might be between
negative and positive infinity, this directly follows from the definition of the differential
arrival and service functions. Consequently, results might be overly pessimistic compared
to approaches that handle phase-correct relations between events [80, 76]. This fact is ac-
cepted because the abstraction from a phase-correct calculation reduces analysis time and
enhances composability. The complexity of each basic operation is directly influenced by the
number of segments that are used to perform the operation after the unfolding of curves.
This complexity is usually in the class P, i.e., the complexity is bounded by a polynomial
with the number of curve segments as parameter. This fact was pointed out by [131] for
several operations. Because the analysis process of a whole system involves many basic
calculations with unknown parameters of the resulting curves, the complete process is part
of the complexity class NP, i.e., nondeterministic polynomial time, where a polynomial as
bound for the complexity exists but is not known in advance. In practice, this can lead to
long analysis times that not only depend on the size of the modeled system but also on its
parameters, eventually limiting the scalability of the approach. Therefore, approximation
methods are introduced in Ch. 7, which can significantly speed up the analysis process.

6.7 Timing verification framework summary
In this chapter, we have introduced our verification framework based on foundations of the
Real-Time Calculus. It is capable of an automatic verification process given a description
according to the ANALYSIS meta-model (M). Compared to other approaches, our proposed
solution features a unique concept to handle resource loops in the model graph and can
automatically check the gained results according to the given requirements. A method to
simplify the calculation of the subadditive closure was presented and various heuristics
to speed up the process were evaluated. The framework can handle several representa-
tion of curves, including those based on a finite amount of linear segments and ultimately
pseudo-periodic functions. It enables the implementation of the system-wide plug-and-play
principle with an integrated, automatic verification process. However, so far the problem
of computational complexity of the analysis has not fully been solved. Depending on size,
topology, and involved parameters of the concrete graph for the verification process, the
analysis may take up a considerable amount of time. In the next chapter, we will introduce
methods to control the tightness of the approximation in trade for computation time.

100

Chapter 7

Adaptive approximate analysis

The analysis of systems with the Real-Time Calculus can take an extensive amount of com-
putation time. This chapter introduces approaches to reduce the calculation time in ex-
change for result tightness and memory utilization. The selection of the tightness in this
context does not have to be a global property of the analysis process. It is possible to
switch between different tightness levels as desired, even during processing. The main
contributions of this chapter include a method to perform an analysis with restricted mem-
ory resources, the specification of the three-segment approximation for a fast analysis, the
extension of the Finitary Real-Time Calculus approach [143] to be controllable in compu-
tation time and tightness, and experimental evaluations of the proposed methods.

The demand for an adaptive approximate analysis was motivated in Sec. 3.1 and sum-
marized in Tab. 3.1. The discussed scenarios show that the requirements for the flexibility
of the analysis are multi-folded. First, it should be possible to seamlessly switch between
computational effort and tightness, even during the analysis of one particular system. Sec-
ond, it should be possible to choose the desired tightness during the design time to speed up
the development process. Third, it should be possible to re-use existing results for further
calculations. Not yet mentioned in the scenarios, is an adaption of the analysis process to
platform abilities, i.e., the amount of available processing and memory resources may be
different depending on the platform for the analysis. This feature becomes relevant when
the analysis is conducted completely or in parts on the vehicle.

7.1 Effects on the computation time of the analysis
The computation time of the basic Real-Time Calculus operations (Tab. 6.1) mainly de-
pends on the number of segments after the unfolding process, the parameters of ultimately
pseudo-periodic curves, the application of ceiling and floor operations, and the available
amount of memory. These four influencing factors are elaborated in the following.

The number of segments refers to the segment count after the unfolding of a curve,
before the actual execution of a basic operation. In case of the convolution, the segment
count directly influences the calculation time as all segments of the two involved curves
are convoluted with each other. Each single convolution step might result in up to two
segments that are part of the following envelope calculation, which forms the bottleneck

101

7. ADAPTIVE APPROXIMATE ANALYSIS

System fulfills constraints System violates constraints

Feasibility analysis
positive

Quantity reduced after
approximation

(False positive) Not affected,
guaranteed to be avoided

Feasibility analysis
negative

(False negative) More likely
after approximation

Not affected, guaranteed to be
detected

Table 7.1: Effect on verification results caused by approximation. The likeliness of false neg-
atives is increased by the approximation and the number of correctly as feasible considered
setups is decreased.

in the process. Let ca(∆) and cb(∆) be the functions of two unfolded curves, with an equal
segment count of |ca| = |cb| = n. The first step of the min-plus convolution produces an
intermediate result with a maximum of 2·n2 segments as input for the envelope calculation.
The best known envelope algorithms for single-core processors are in the complexity class
of O(n·log n) (Sec. 6.3.3), thus the overall complexity lies in the class O(n2·log n). However,
specialized algorithms exist for certain classes of curves. For example, the convolution of
convex functions can be constructed by a sort of the involved segments by increasing slope
([84, Theorem 3.1.5, Rule 9]). In our case, as the arrival curves are usually step-wise
curves, these specializations cannot be used. The parameters of ultimately pseudo-periodic
functions include the start of the periodic part (cx0, cy0), and an according translation for
repetitions (c∆x , c∆y). In certain cases, the calculations depend on the hyper-period of the
periodic length of the involved curves. This causes two effects: The hyper-period might
lead to a long length estimation for the unfolding process and the periodic length of the
resulting curve of the operation can be the hyper-period. Especially the last point can occur
at every processing step, hence leading to an exponential growth of the periodic lengths
of the curves, known as the hyper-period explosion [143]. This particularly takes place
if the curves have the same long-term slope and are interleaved with each other. Many
stream filters include ceiling and floor operations in their calculations, because a fractional
processing of events is not useful for a timing analysis. It semantically guarantees that
only completed events are forwarded to successor filters. The complexity of the ceiling and
floor operations are directly coupled with the slope of the curves under consideration; the
higher the slope, the more segments the resulting curve will have. The available memory
during the basic operations has an indirect effect on the computation time. As the memory
may run low during the segment-wise calculation of the convolution and deconvolution,
counter-measurements have to be considered that monitor the memory utilization during
the calculation and react on situations with low memory. These measurements have a
negative effect on the computation time but will prevent out-of-memory exceptions.

These four effects – segment count, curve parameters, ceiling/floor operations, and
available memory, are mitigated in the following sections.

7.2 Balancing computation time, tightness, and memory

This section introduces the approaches to speed up the analysis process and to handle
situations with limited available memory.

102

7.2 Balancing computation time, tightness, and memory

Stream filter

 𝑓𝑇

 αin

= p(αin)

αout

= 𝑓T,α (αin, βin, ℙ)

βin

βout

= 𝑓𝑇,β (αin, βin, ℙ)

αin
p()

p()

 βin = p(βin)

 𝔼

ℙ

Figure 7.1: Visualization of arrival and service curve approximations before filtering, the in-
dication of vectors is omitted from this representation for clarity. Approximated arrival and
service curves (α̃, β̃) are derived from the original arrival and service curves (α,β) with an
approximation function p(). The internals of the filters fT are also partly approximated, e.g.,
the floor/ceiling functions, which is denoted as f̃T . The analysis result eE includes an over-
approximation of the worst-case timing and an under-approximation of the best-case timing.

7.2.1 Approximation approach

The approximation has to guarantee that the results of the analysis are still valid bounds. To
achieve this, upper curves are over-approximated and lower curves are under-approximated,
which is called a safe approximation [144]. This makes sure that the verification does not
produce false positives, i.e., the requirements are accidentally regarded as fulfilled by the
verification while the real-world system does not stick to the constrains. This situation has
to be avoided under all circumstances to prevent system failures because of timing prob-
lems. In contrast, an approximation increases the likeliness of false negatives, i.e., the
results of the verification indicate that the system does not fulfill the requirements, but in
reality all constraints are met. These facts are summarized in Tab. 7.1.

Our proposed approximation process includes additional steps in the generic analysis
strategy. The basic idea is to approximate curves before entering stream filters in order to
reduce the segment count and to decrease the computation time, see Fig. 7.1. The degree
and strategy of approximation can be selected individually for each stream filter, leading
to a flexible approach with configurable tightness and computation time. Besides, the ap-
proximation impacts the kernel level, where floor and ceiling operations are abstracted by
counterparts that simply shift the curves along the y-axis. This contributes to a reduction
of the tightness of the results but reduces computation complexity. The replacement of the
floor and ceiling operations is binary in our approach, i.e., the degree of approximation
cannot be chosen in this case. The advantage of the proposed approximation approach
is that the filtering functions do not have to be modified in any way. The degree of ap-
proximation is not visible and its knowledge is not necessary during the processing of one
filter. This makes the approach flexible as the degree of approximation is orthogonal to

103

7. ADAPTIVE APPROXIMATE ANALYSIS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 c

om
pu

ta
ti

on
 t

im
e

Normalized available memory

Figure 7.2: Analysis of available memory versus computation time. Each cross stands for the
result of one complete analysis process of an exemplary system. The obtained analysis results
are equal, but the amount of available memory influences the computation time. The vertical
asymptote on the left is the minimum amount of memory that has to be available so that the
results fit into memory. The horizontal asymptote marks the minimum achievable computation
time.

the actual analysis process. Our approach shares similarities with the general procedure of
[144], where arrival curves are approximated before entering a filter. But our concepts ex-
tends it by an approximation of service curves, an adaption of floor and ceiling operations
at kernel level, and more powerful approximation strategies for curves, which are detailed
in Sec. 7.3.

7.2.2 Effect of memory size

The pair-wise convolution of segments within the min-plus convolution operation (Eq. 6.8)
can cause an enormous amount of segments for the subsequent envelope calculation. Be-
cause the memory is limited, it is likely possible to reach an out-of-memory exception in
this step. To avoid this situation, the occupied memory is constantly observed in our ap-
proach. When memory runs low, the envelope calculation is triggered to reduce the amount
of segments. Consequently, the envelope operation might be calculated several times ac-
cording to the progress of the memory utilization. From a timing point of view, the shortest
computation time can be achieved if all segments are first collected and then the envelope
calculation is carried out in a singular step. However, this is not always possible because of
the finite amount of available memory.

The approach does not help to prevent situations where the resulting curve of an op-
eration does not fit into memory. In this case, the approximation level of the curves has
to be increased. It only helps to mitigate situations, where the intermediate results might
lead to a memory overflow. Note that this does not affect the tightness of the results in
any way. Independent of the available memory, the results are equal, but the computation
time changes. An exemplary result for the exchange of available memory for computation
time is presented in Fig. 7.2, the exact algorithm is depicted in Alg. 7.1. In the algorithm,

104

7.2 Balancing computation time, tightness, and memory

the parameter TMem defines a threshold when the envelope calculation is executed. In our
experiments, we found a value of TMem = 0.75 appropriate. The double-check of the avail-
able memory and the amount of intermediate segments (line 6) takes care of the fact that
the garbage collection in Java might be deferred.

Algorithm 7.1: Memory observation and shortage handling during min-plus convo-
lution operation (sketch).

Input: SegmentList S1,S2, Memory threshold TMem
Result: SegmentList V= S1 ⊗ S2
Data: Segment threshold TSeg

1 TSeg ← 0,V← ;;
2 forall the Segment s1 ∈ S1 do
3 forall the Segment s2 ∈ S2 do
4 V= V∪ (s1 ⊗ s2); /* s1 ⊗ s2 can be a set of Segments */
5 end
6 if (usedMemory() > maxMemory() ·TMem) and (|V|> TSeg) then
7 TSeg = |V|;
8 V= envelope(V);
9 end

10 end
11 V= envelope(V);

7.2.3 Reduction of curves

Since the calculations to derive the parameters for the extraction of curves after the basic
operations are based on worst-case assumptions, reduced representations of curves may
exist than the direct output of the basic operations provide. For example, the start of the
periodic part might be shifted further to the origin without changing its actual expressive-
ness as shown in Fig. 7.3. In general, a reduction step is executed after each filter operation
in our verification framework and has two purposes: First, removal of redundant artifacts
and gaps caused by numerical issues. Second, reduction of the curve representation to a
minimal form.

Artifacts in the results of an operation may appear because of numerical errors within
the calculations. To mitigate them, the resulting curve is processed according to Alg. 7.2.
The algorithm removes small gaps in the definition of curves and joins neighboring curve
segments if possible. This algorithm is applicable if the curve is ultimately affine, i.e., has
a finite set of segments. This is usually the case for the intermediate results of the basic
operations. Because the number of segments is reduced, the computation time of further
curve operations is shortened.

An ultimately pseudo-periodic curve has multiple representations. This is due to the
fact that no constraints for the transition point from the aperiodic to the periodic part were
defined up to now. Because the periodic part is repetitive, any unfolded range of it can

105

7. ADAPTIVE APPROXIMATE ANALYSIS

Algorithm 7.2: Removal of artifacts of curves (sketch).
Input: SegmentList S
Result: SegmentList V (equals S, but artifacts are removed)
Data: Segment s,o

1 V← ;;
2 o← S.getAndRemoveFirst();
3 V← V∪ o;
4 while |S|> 0 do
5 s← S.getAndRemoveFirst();
6 if (smin ≈ smax) and (!s.isPoint()) then
7 continue; /* Remove point-like segments */
8 end
9 if (sm ≈ om) and (sn ≈ on) and (smin ≈ omax) then

10 omax ← smax ; /* Combine previous and current segment */
11 continue;
12 end
13 if smin ≈ omax then
14 smin← omax ; /* Remove gaps in definition range */
15 end
16 V← V∪ s;
17 o← s;
18 end

be added to the aperiodic part without changing the overall curve. For an unambiguous
representation of the transition point, the canonical definition of curves is introduced.

Definition 7.1 Let C = (Sa,Sp, cx0, cy0, c∆x , c∆y) be a curve description (Eq. 6.1), then we
define its canonical representation CC as:

CC =min
c i

x0

{C i | c i(∆)∞ = c(∆)∞} (7.1)

From all equivalent curve representations C i the one with the smallest starting point c i
x0 is

chosen. The condition c i(∆)∞ = c(∆)∞ guarantees that the curves are equal if unfolded
until infinity (Eq. 6.4). Beyond the starting point for the periodic part cx0, it is possible to
further try to find a representation with also a minimal period c∆x . However, this was not
required for our use cases and is part of future work. The algorithm to reduce a curve to
its canonical form is detailed in Alg. 7.3 and an example is presented in Fig. 7.3.

7.3 Approximation strategies
This section introduces the approximation strategies for curves applied in our verification
tool. The overall goal is to trade computation time for analysis tightness. The proposed
strategies come with individual advantages and disadvantages that are discussed in the
respective subsections.

106

7.3 Approximation strategies

Original Curve Swap 1

Swap 2 Canonical Form

(cx0,cy0)
(cx0+cΔx,cy0+cΔy)

Figure 7.3: Example for the transformation of a curve into its canonical representation. Seg-
ments of the periodic part (between the two points) are swapped into the aperiodic part of the
curve. The goal is to minimize the starting coordinate cx0 of the periodic part.

7.3.1 Three-segment approximation

The three-segment approximation reduces the number of segments to represent arrival and
service curves to a maximum of three. This reduces computational complexity but weakens
the tightness of the results. We consider the three-segment approach as one of the fastest
but most inaccurate analysis methods. An approximation of the Real-Time Calculus by
curves based on three segments was also presented in [145], but without the possibility to
switch between approximation levels. Instead, the mathematical framework was adapted to
handle three-segment based curves directly – as only option for the representation of curves.
This gives advantages in sense of analysis performance, but lacks the seamless integration
into a framework with different approximation levels. Therefore, we present a strategy to
convert an arbitrary sub- or superadditive curve into a three-segment based representation.
As the curves are still described according to Eq. 6.1, it can be applied at any point in time
within the verification framework without a modification of the underlying mathematical
relations. Furthermore, the operators for ceiling and floor are changed to simple shifts of
the curves during the processing. These measurements efficiently bound the computational
complexity as the number of segments involved in the operations is limited.

The approximation of upper and lower curves has to be handled differently. As an
example, we consider the approximation of an arrival curve α(∆) = [αu(∆),αl(∆)]. Then,
the approximation α̃(∆) = [α̃u(∆), α̃l(∆)] of the curve has to fulfill [144]

α̃u(∆)≥ αu(∆) and α̃l(∆)≤ αl(∆) (7.2)

107

7. ADAPTIVE APPROXIMATE ANALYSIS

Algorithm 7.3: Transformation of a curve to its canonical form (sketch).
Input: Curve C = (Sa,Sp ∈ SegmentList; cx0, cy0, c∆x , c∆y ∈ R)
/* Sa,Sp must be free of artifacts according to Alg. 7.2 */
Result: Curve CC (canonical form of C)
Data: Segment a,p

1 while Sa 6= ; do
2 p← Sp.getLastCopy(); /* Get last segment of periodic... */

a← Sa.getLastCopy(); /* ...and aperiodic part. */
dx←min(amax − amin, pmax − pmin);

3 pmin← pmax − dx; /* Equalize definition range... */
amin← amax − dx /* ...to minimum of segments. */
a← a.shift(c∆x − cx0, c∆y − cy0); /* Aper. segm. to per. part. */

4 if p 6= a then break;
5 Sp← Sp.extract(0.0, c∆x −dx);/* Swap seg. from end to start... */
6 Sp← p.shift(dx− c∆x ,−c∆y)∪ Sp.shift(dx, 0.0); /* ...of per. part. */
7 cx0← cx0 − dx; /* Adjust per. start point. */
8 Sa← Sa.extract(0.0, cx0); /* Adjust aper. part. */
9 dy← Sp.first().n(); /* Handle possibly... */

10 Sp← Sp.shift(0.0, dy); /* ...negative... */
11 cy0← cy0 − dy; /* ...per. part. */

12 end

s0
n 6= 0 or s0

m 6= 0 s0
n = 0 and s0

m = 0

lim
∆→∞

c(∆)≥ 0 mx = 0.0 my = s0
n Invalid

lim
∆→∞

c(∆)< 0 Invalid mx = s0
max my = 0.0

Table 7.2: Point (mx , my) of the middle segment that is used for slope calculation. so
n refers to

the first segment of the curve C that is to be approximated.

in order to be safe. To reduce the number of cases we have to distinguish, the calculation
of the lower approximation is mapped to the upper as follows: α̃l(∆) = −ζu(−αl(∆)),
where ζu() is the approximation function for the upper curve. For the calculation of the
upper three-segment approximation ζu(), we calculate the first (sζ0), middle (sζ1) and last
segment (sζ2) with different strategies.

If the long-term slope Cρ is positive then the first segment sζ0 is not considered, because
it only exists virtually, see Fig. 7.4 (left side). If the long-term slope is negative, then the
first segment is defined as sζ0(∆) = 0.0 ∀ ∆ ∈ R≥0. One point of the middle segment sζ1

is defined by the end of the first segment. Tab. 7.2 shows the parameters of this point
(mx , my). The segment with the minimum possible slope that goes through this point and
does not cut the original curve is the tightest bound that can be achieved. The slope is
defined as follows: sζ1

m =min(sm | sm · (∆−mx) +my ≥ c(∆) ∀ ∆ ≥ mx). The calculation
of the offset sζ1

n is then straight-forward by inserting the known point (mx , my) and the

108

7.3 Approximation strategies

sζ0

sζ1

sζ2
sζ0 sζ1

sζ2

Figure 7.4: Example of a three-segment approximation for a positive curve (left side) and a
negative curve (right side). Both curves are subadditive.

slope sζ1
m into the segment equation (Eq. 6.2). For the algorithmic construction of sζ1

m ,
the curve is unfolded until φ = cx0 + c∆x . Let Sφ contain all segments of the unfolded
part of the curve, then a slope candidate si

m,c for the segment si ∈ Sφ is calculated as
si
m,c = (s

i
m · s

i
x + si

n−my)/(si
x −mx), where si

x = si
min for positive and si

x = si
max for negative

curves. The slope is then the maximum candidate: sζ1
m =max∀i(si

m,c). For the last segment
sζ2 we know the slope as it has to be equal to the long-term slope of the original curve,
i.e., sζ2

m = Cρ (Eq. 6.6). The offset sζ2
n of the last segment is then defined as the minimum

offset sn, which is still above the original curve for a segment with slope sζ2
m , i.e., sζ2

n =
min(sn | sζ2

m ·∆+ sn ≥ c(∆) ∀ ∆ ∈ R≥0). For the algorithmic construction in this case, we
take the same set of segments Sφ and definition of si

x as for the middle segment and select
the smallest candidate for the offset sζ2

n = min∀i(si
n,c), where each candidate is calculated

as si
n,c = (s

i
m − sζ2

m) · s
i
x + si

n. To derive the final result, the envelope is calculated: ζu =
sζ0 ∧ sζ1 ∧ sζ2. As desired, the result has a maximum of three segments and is subadditive.

Examples and discussion of the three-segment approximation. To make the results
comparable, two metrics are defined to work with approximated results. We will refer to a
latency derived with the standard approach by de2e, where e2e stands for end-to-end, and
for a latency derived with an approximate approach by d̃e2e. Then, we define the normal-
ized delays dN to be: dN

e2e = de2e/de2e = 1.0 and d̃N
e2e = d̃e2e/de2e, i.e., the ratio between

the results of the approximated and the standard approach. Further, we define the average
normalized delay to be d̃�N

e2e =
∑

∀i d̃N
e2e,i/imax , where i is the stream number and imax the

number of streams of the test case under consideration. The same definition holds for the
computation time tc t of the different approaches, where the normalized computation time
is tN

ct = 1.0 and t̃N
ct = t̃c t/tc t .

Tab. 7.3 shows the results of the analysis of the eCar example in the standard and
approximate case. On average, the end-to-end delay of each stream is 285% higher when
computed with the approximation, while the computation time is≈ 31 times faster. The in-
troduced approximation error of the delays causes some of the requirements to fail the ver-
ification, see Tab. 7.4. Tab. 7.5 depicts the results for the complex loop example (Fig. 6.4).
The method for the fixed point calculation was not altered, the curves were only approxi-

109

7. ADAPTIVE APPROXIMATE ANALYSIS

Sidestick Control Central Control Back eCornerBL

eCornerBR

Control Front eCornerFL

eCornerFR

Camera Process

Camera Camera Process Camera Forwarder Camera Signaler (Stream #1)

(Stream #2)

(Stream #3)

(Stream #4)

(Stream #5)

(Stream #6)

Figure 7.5: Event streams of the eCar example.

Worst-case end-to-end
timings for stream

Strategy Comp. time #1 #2 #3 #4 #5 #6
Absolute values

Standard 0.332s 28.28 9.14 9.14 9.56 9.82 5.13
Finitary 0.141s 28.28 9.14 9.14 9.56 9.82 5.13

Three-segment 0.011s 75.52 42.16 42.28 38.27 38.83 16.59
Normalized values d̃�N

e2e
Standard 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Finitary 0.42 1.0 1.0 1.0 1.0 1.0 1.0

Three-segment 0.03 2.67 4.61 4.63 4.00 3.95 3.24 3.85

Table 7.3: Comparison of analysis results with standard processing, three-segment approxima-
tion and Finitary processing for the eCar example. The verification of some requirements fails
with the three-segment approach due to the over-approximation. A description of the streams
is available in Fig. 7.5.

Req. /
Strategy

Cam-
ProDel

CamRate CContr-
In

CamSigIn Cam-
ProSig

Mov-
VecPer

Standard OK OK OK OK OK OK
Finitary OK OK OK OK OK OK

Three-segment FAIL OK OK OK FAIL OK
MovVecResp

BackLeft Back-
Right

FrontLeft Front-
Right

CamProc

Standard OK OK OK OK OK
Finitary OK OK OK OK OK

Three-segment FAIL FAIL FAIL FAIL OK

Table 7.4: Verification results of the eCar example with standard approach, three-segment
approximation and Finitary processing.

110

7.3 Approximation strategies

GPC (C) AND OR GPC (A)

GPC (B) AND OR GPC (A) (Stream #1)

(Stream #2)

(Stream #3)

PJD (B)

PJD (A)

GPC (D) OR GPC (A)PJD (C)

Figure 7.6: Event streams of the complex loop example (Fig. 6.4).

Worst-case end-to-end
timings for stream

Strategy Comp. time #1 #2 #3
Absolute values

Standard 0.26s 40.00 45.00 4.50
Finitary 0.12s 40.00 45.00 4.50

Three-segment 0.02s 92.88 98.77 9.57
Normalized values d̃�N

e2e
Standard 1.00 1.00 1.00 1.00
Finitary 0.46 1.00 1.00 1.00

Three-segment 0.10 2.32 2.19 2.13 2.21

Table 7.5: Comparison of analysis results with standard processing, Finitary processing and
three-segment approximation for the complex loop example (Fig. 6.4) with parameters of
Tab. 6.2 (rloop = 2.0). The classification of the stream numbers is available in Fig. 7.6.

mated before entering a filter (Fig. 7.1). In this case, the average approximation error per
stream is 121%, while the computation is ≈ 13 times faster. In Tab. 7.7, the results for the
cyclic mesh example (see Fig. 7.9) are presented. While the average approximation error
for the three-segment approach in this case is 115%, the computation time could be reduced
by a factor of ≈ 1200. The three examples show, that the gained speedup and approxima-
tion error can vary heavily depending on the test case. No suitable method is known to the
author of this work to predict the approximation error or computational speedup exactly in
advance. As it depends on the modeled system and its many parameters, it is hard to give
a meaningful prediction.

7.3.2 Integration of Finitary Real-Time Calculus

Finitary Real-Time Calculus was proposed by [143] as a method to speed up the analysis
within the RTC framework. The approach exploits the fact that curves are only needed
up to a certain length to calculate the relevant parameters maximum delay and backlog at
a specific stream filter. This also explains the name ”Finitary“ as curves are only kept up
to a certain threshold. Compared to standard RTC, Finitary RTC is a three-step approach:
In the first step, the system is analyzed with a high abstraction level. The second step
is an accumulation of derived bounds, which are later used to limit the size of curves.
In the third and final step, the system is analyzed according to standard RTC, but curves
are only considered up to the bounds previously calculated. These steps are visualized in
Fig. 7.8. In the following, the Finitary Real-Time Calculus idea from [143] is summarized.
We extend the concept with the ability to process cyclic resource dependencies, show how it
is integrated into our verification framework and provide experimental results. In addition,
we extend the method in the next section by a flexible approximation concept.

111

7. ADAPTIVE APPROXIMATE ANALYSIS

αu

βl

MBS(αu,βl)

Figure 7.7: Illustration of the maximal busy-period size (MBS, [143]). The MBS is the first
point on the interval axis, where the upper arrival curve (αu) is above the lower service curve
(β l). To calculate the maximum delay and backlog at a component, only those ranges of the
curves are relevant that are smaller or equal to the MBS.

G
PC

1
G

PC
2

Step 1
Approximation

of MBS

Step 3
Standard processing,

approximation after MBSΣ

Step 2
Calculation of

MBSΣ

GPC
(1)PJD

TD
(2)

GPC
(2)

TD
(1)

Example System:

MBSΣ(GPC1)=
MBS(GPC1)

+MBSΣ(GPC2)

MBSΣ(GPC2)=
MBS(GPC2)

MBS(GPC1)

MBS(GPC2)

MBSΣ(GPC1)

MBSΣ(GPC2)

α

β

Figure 7.8: Exemplary visualization of Finitary Real-Time Calculus. In the 1st step, the MBS
(see Fig. 7.7) is approximated with help of the three-segment approximation (see Fig. 7.4). The
2nd step recursively sums up the maximum MBS of all successor components. In the 3rd step,
the standard processing is executed, but input curves are approximated after the summed up
MBS. The result is equal to the standard approach, but computational complexity is reduced.

112

7.3 Approximation strategies

1. Analysis with high abstraction level, calculation of àMBS. The maximal busy-period
size (MBS) of GPC stream filters is the first point, where the lower input service curve β l

in
is above the upper input arrival curve αu

in: MBS(αu
in,β l

in) =min(∆> 0 : αu
in(∆)≥ β

l
in(∆)),

see Fig. 7.7 for an example. Only the parts of these curves with ∆ ≤ MBS are needed to
calculate the maximum delay (as it is the maximal horizontal deviation between αu

in,β l
in),

and the maximum buffer utilization (as it is the maximal vertical deviation). Hence, the
MBS defines a bound up to which the curves are relevant. For other filter types, the MBS is
calculated analogously, but depends on the concrete filter equations. For a determination of
the MBS of the filters, the system is first analyzed with a high abstraction level to calculate
àMBS – an over-approximation of the MBS. We do this in our approach by analyzing the
system with the three-segment approximation as described in the previous section.

2. Calculation of àMBSΣ from àMBS. The sums of the àMBS are recursively defined as

follows: áMBS i
Σ =áMBS i +max(âMBS j : j ∈ f i

succesor), where f i
succesor refers to the indices

of relevant successors of the filter with index i. àMBSΣ defines the bound until which the
curves are needed at the input of a certain filter considering the successor filters, see [143]
for details. For systems with cyclic resource dependencies, the recursive calculation of
àMBSΣ does not work as it would lead to infinite loops. Therefore, we derive it after the
pre-analysis as follows: àMBSΣ is constructed in the reverse order of the topological sorting
of the subgraphs Si . For each stream filter of a subgraph with a cyclic dependency, an
recursive algorithm is executed while keeping track to not calculate àMBSΣ for any filter
twice, which breaks the cyclic dependency. The results are stored, all the filters of the
subgraph are reset and the process is repeated with the next filter of the subgraph. The
recursion compromises all arrival and service relations to successor elements, but stops in
case a filter is referenced that is not part of the processed subgraph. In the end, àMBSΣ for
each filter is the maximum of the individual results.

3. Standard processing with bounding of curves by àMBSΣ. For the actual analysis, the
standard steps of the verification framework are executed, but each input curve of a filter
is approximated after ∆≥àMBSΣ with a linear (possibly shifted) segment with the overall
slope of the curve. The used approximation of a curve by a single segment from a certain
point on is equal to the approach presented in [144]. With the shift of the last segment,
it is guaranteed that the curve is always strictly above or strictly under the original curve.
For systems with cyclic resource dependencies, the algorithm as introduced in the previous
chapter is executed until a fixed point is found.

Examples and discussion of the Finitary Real-Time Calculus. The analysis results with
the Finitary Real-Time Calculus are equal to the standard approach. Because the curves
are bounded and so are the number of segments, the computational complexity is usually
lower. This effect can change if the calculation of the size of the maximal busy-period size
is too pessimistic or if the curves’ parameters allow an immense reduction (Sec. 7.2.3) in
the standard approach.

Tab. 7.3 shows the results of the eCar example. The processing according to the Fini-
tary RTC approach is ≈ 2.4 times faster compared to the standard approach. The results
of the complex loop example (Tab. 7.5) show a speedup of factor ≈ 2.2. Not shown in the
results, if a rate of rloop = 1.0 is chosen for the service sources of the same example, the

113

7. ADAPTIVE APPROXIMATE ANALYSIS

GPC
(11)

GPC
(21)

GPC
(31)

PJD
(2)

PJD
(3)

PJD
(1)

TD
(2)

GPC
(12)

GPC
(22)

GPC
(32)

TD
(3)

GPC
(13)

GPC
(23)

GPC
(33)

GPC
(41)

PJD
(4)

GPC
(42)

GPC
(43)

Figure 7.9: Cyclic mesh example with cyclic resource dependencies for the evaluation of ap-
proximation approaches, adapted from [143]. See Tab. 7.6 for parameters and Tab. 7.7 for
results.

Node Parameters Node Parameters Node Parameters

GPC (all) et=1 PJD (1) p=10,j=2,d=4 PJD (3) p=14,j=5,d=8
TDMA (2) s=6,c=8,b=1 PJD (2) p=12,j=3,d=6 PJD (4) p=21,j=6,d=4
TDMA (3) s=8,c=10,b=10 s=slot,c=cycle,b=bandw./p=period,j=jitter,d=min. dist.

Table 7.6: Parameters for cyclic mesh example (Fig. 7.9).

GPC (11) GPC (12) GPC (13) (Stream #1)PJD (1)

GPC (21) GPC (22) GPC (23) (Stream #2)PJD (2)

GPC (31) GPC (32) GPC (33) (Stream #3)PJD (3)

GPC (41) GPC (42) GPC (43) (Stream #4)PJD (4)

Figure 7.10: Event chains of the cyclic mesh example (Fig. 7.9).

Worst-case end-to-end
timings for stream

Strategy Comp. time #1 #2 #3 #4
Absolute values

Standard 47.5s 7.80 9.00 10.20 16.50
Finitary 3.0s 7.80 9.00 10.20 16.50

Three-segment 0.04s 13.49 19.24 26.56 35.14
Normalized values d̃�N

e2e
Standard 1.0 1.0 1.0 1.0 1.0
Finitary 0.06 1.0 1.0 1.0 1.0

Three-segment 0.001 1.73 2.14 2.60 2.13 2.15

Table 7.7: Comparison of analysis results with standard processing, Finitary processing
and three-segment approximation for cyclic mesh example with cyclic resource dependencies
(Fig. 7.9). The meaning of the stream numbers is shown in Fig. 7.10.

114

7.3 Approximation strategies

Req. /
Strategy

Cam-
ProDel

CamRate CContr-
In

CamSigIn Cam-
ProSig

Mov-
VecPer

Finitary 100% OK OK OK OK OK OK
Finitary 17.8% OK OK OK OK FAIL OK
Finitary 5.6% FAIL OK OK OK FAIL OK

MovVecResp
BackLeft Back-

Right
FrontLeft Fron-

tRight
CamProc

Finitary 100% OK OK OK OK OK
Finitary 10.0% OK FAIL OK OK OK
Finitary 5.6% FAIL FAIL OK OK OK
Finitary 2.4% FAIL FAIL FAIL FAIL OK

Table 7.8: Verification results of the eCar example with Fractional Finitary analysis. The anal-
ysis results of the approximation are less tight than with the standard approach, leading to
negative verification results. The requirements are summarized in Tab. 4.4.

calculation with the Finitary Real-Time Calculus is substantially slower than with the stan-
dard approach. This is due to the high utilization (partly more than 93%) of the filters in
the loop, causing high values for àMBS and àMBSΣ. In the cyclic mesh example (Tab. 7.7),
the measured computation times were ≈ 16 times faster. Compared to the three-segment
approach, the Finitary RTC is not always faster as the standard approach. However, if the
utilization is low and the hyper-periods are large, the computational time can be reduced
by several orders of magnitude (see also [143]).

7.3.3 Fractional Finitary Real-Time Calculus

We now introduce Fractional Finitary Real-Time Calculus, which is a modification of the
Finitary approach to allow seamless tightness adjustments. The bounds calculated by the
first two phases of the Finitary approach are scaled by a user-adjustable factor. The param-
eter can directly control the tightness of the results in exchange for the computation time of
the analysis. Our approach is only possible due to the fact that an upper bound àMBSΣ exists
after the first two steps of the Finitary RTC, which can be utilized for the scaling. This is an
advantage to approaches that have a fixed value for bounding of curves or a bound derived
from the curve’s parameters (e.g., [144]), because these values depend on the concrete
system parameters and have to be provided by an expert. Formally, given a fraction factor
(FF) r F F with {r F F ∈ R | 0%≤ r F F ≤ 100%}, then the fraction factor maximal busy-period

size sum àMBS
F F
Σ is used to bound the input curves of a filter, where àMBS

F F
Σ =àMBSΣ · r F F .

While a fraction factor of r F F = 100% corresponds to the standard Finitary RTC, a factor
of r F F → 0% corresponds to an approximation with two segments.

Examples and discussion of Fractional Finitary Real-Time Calculus. Results for several
examples that were processed according to the Fractional Finitary RTC approach are shown
in Fig. 7.11, the according verification results for the eCar example with different approx-
imation levels are presented in Tab. 7.8. Although hard to see in the graphs of Fig. 7.11,
because of the logarithmic scaling of the fraction factor r F F , the computation time is re-
duced almost linearly with the fraction factor. The computation time is bounded on the

115

7. ADAPTIVE APPROXIMATE ANALYSIS

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

100.0
75.0

56.25
42.19

31.64
23.73

17.8
13.35

10.01
7.51

5.63
4.22

3.17
2.38

1.78
1.34

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 e
nd

-t
o-

en
d

de
la

y

N
or

m
al

iz
ed

 c
om

p.
 t

im
e

Fraction factor rFF [%]

Comp. time
Stream #1

Stream #2
Stream #3

Stream #4
Stream #5

Stream #6

(a) eCar example

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

100.0
75.0

56.25
42.19

31.64
23.73

17.8
13.35

10.01
7.51

5.63
4.22

3.17
2.38

1.78
1.34

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 e
nd

-t
o-

en
d

de
la

y

N
or

m
al

iz
ed

 c
om

p.
 t

im
e

Fraction factor rFF [%]

Comp. time Stream #1 Stream #2 Stream #3

(b) Complex loop example

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

100.0
75.0

56.25
42.19

31.64
23.73

17.8
13.35

10.01
7.51

5.63
4.22

3.17
2.38

1.78
1.34

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 e
nd

-t
o-

en
d

de
la

y

N
or

m
al

iz
ed

 c
om

p.
 t

im
e

Fraction factor rFF [%]

Comp. time
Stream #1

Stream #2
Stream #3

Stream #4

(c) Cyclic mesh example

Figure 7.11: Normalized end-to-end delays and normalized computation times for various ex-
amples, which are processed according to the Fractional Finitary Real-Time Calculus approach.
The scaling of the fraction factor r F F is logarithmic. The results indicate that a trade of com-
putation time for result tightness is possible with the proposed approach.

116

7.4 Adaptive approximate analysis summary

left side (r F F = 100%) by the timing of the standard Finitary approach, and on the right
side (r F F → 0%) by the processing time caused with a two-segment approximation. It is
noticeable that the calculated end-to-end delays do not change from the tightest possible
analysis (r F F = 100%) a certain range with decreasing r F F . For example, in the cyclic mesh
setup (7.11c), the delays do not change much for r F F ≥ 6%. This is a direct effect of the
over-approximation of the maximal busy-period size àMBSΣ. Because the approximation
errors are summed up, the overall error of the over-approximation increases with the num-
ber of filters that have data- or service-dependencies with each other. The approximated
curves are not necessarily strictly sub-/superadditive. As the curves are approximated from
an arbitrary point on as a single segment, which has to be strictly above/under the original
curve (see Eq. 7.2), inconsistencies might be introduced regarding the sub-/superadditive
property (Eq. 2.7) and the causality of the curves (Eq. 2.9). In practice, we did not en-
counter any instabilities during the processing with the proposed approximation methods.
However, a formal proof that the calculations are always stable remains open. Another
possibility to ensure the sub-/superadditive property and causality is the application of the
closure operation or specialized algorithms [88, 89] on the resulting curves. But these
options introduce excessive overhead and increase the number of segments of the approx-
imated curves significantly, why we do not regard it as an option. Further, we have chosen
a linear curve approximation approach, i.e., the approximation point is a constant fraction
from àMBSΣ. Because the approximation error increases with the quantity of stream filters
traversed by a particular arrival or service stream, other (non-linear) functions can be cho-
sen for the calculation of the approximation point. Overall, the provided results show that
the seamless trade of tightness and computation time is possible.

7.4 Adaptive approximate analysis summary
In this chapter, it was shown which parameters affect the computational complexity of the
operations involved in the Real-Time Calculus and how this complexity can be influenced,
with and without affecting the tightness of the results. An algorithm was presented that
adapts analysis calculations to scenarios with different available memory sizes. Experi-
mental data indicate that the computation time of the analysis is slower if less memory is
available. A canonical form of segment-wise defined, ultimately pseudo-periodic curves was
introduced that helps to minimize the computational complexity by a compact represen-
tation without altering the results. A three-segment based approximation was developed
that can be seamlessly integrated into the analysis framework at any point. The Finitary
Real-Time Calculus approach [143] was extended to handle cyclic resource dependencies
and to the Fractional Finitary approach, which allows a fine-granular exchange of result
tightness for analysis computation time. The performance of the approximation strategies
was verified by three experimental setups, including the dataset from the eCar example. In
the discussions of the results, limiting factors were pointed out. The reduction of computa-
tional complexity helps to make the system-wide plug-and-play approach feasible. Without
our proposed methods, the analysis can take a considerable amount of time, which makes
it unusable for a quick verification process of a changed system.

117

7. ADAPTIVE APPROXIMATE ANALYSIS

118

Chapter 8

Conclusion

The thesis in hand proposed an approach to combine system-wide plug-and-play with au-
tomatic timing verification for automotive systems that are developed in a model-driven
manner according to the component-based and data-centric paradigms. This directly ad-
dresses the increasing complexity and diversity of automotive electric and electronic sys-
tems caused by the permanent addition of functionality, with a focus on the domain inherent
real-time constraints. The approach helps to automate the development process of vehicles
and makes it possible to deeply integrate software and hardware components even after
sale by non-experts. The basic idea is to modularize the functionality into features, where
each feature provides its own specification of software, hardware, and requirements. The
proposed and implemented framework automatically combines a set of features and verifies
that all timing requirements are met in the final system, even across feature borders. The
analysis process itself can be controlled to trade analysis computation time for accuracy of
the approximation to adapt it to miscellaneous scenarios.

8.1 Summary of contributions
The idea of system-wide plug-and-play was introduced, which holistically considers the
setup of a system and applies an end-to-end analysis of event chains, considering the mu-
tual influence of functions and communication relations. It was compared to the existing
solutions in the automotive domain and a minimal set of meta-models was developed, suit-
able to implement the proposed system-wide plug-and-play approach. In this context, a
concept was described that allows the specification of timing requirements for data-centric
systems, where the relations of senders and receivers of data are not known at the point of
development. A chain of transformations was defined that combines a given set of features
for a vehicle, instantiates it for deployment, and refines it for the analysis process. Examples
were given for the mapping of the abstract, platform-independent representations to con-
crete information and communication technologies. The feasibility of the transformations
was shown on the example of the eCar demonstrator. A verification framework was imple-
mented, based on the Real-Time Calculus theory, which is suitable to calculate performance
metrics of event-based, distributed systems. It includes a unique approach to automati-
cally handle cyclic resource dependencies in the analysis model and a simplified method

119

8. CONCLUSION

to calculate the closure for segment-wise defined curves. The verification framework can
determine delays and characteristics of event and service streams and verify these against
a given set of requirements. The analysis methods were enhanced with various computa-
tion and approximation strategies, which allow a fine-grained trade of analysis tightness
for computation time and that enable the analysis with limited memory capabilities. The
proposed strategies were evaluated on a set of well-defined example systems, including the
eCar demonstrator.

Applications in other domains

Although this thesis originated from the context of automotive systems, the approach is not
limited to the automotive domain. In general, it is suited for all cases where system-wide
plug-and-play and hard real-time requirements have to be combined. For example, it is
applicable in the domain of industrial automation, where the quick adaptivity of manufac-
turing sites becomes a requirement [146, 147] and where communication according to the
data-centric paradigm is an emerging topic [148]. The approach can further be utilized
to enhance the composability of audio and video studio applications. The Audio Video
Bridging (AVB) standard [123] specifies a plug-and-play network protocol for the real-time
distribution of audio and video streams, but does not consider the chained interactions
of attached devices. With the proposed framework, system-wide end-to-end guarantees
could be given, with respect to the complete processing chains. Other fields of application
include test systems, where the demand of a fast and adaptable setup stands in contrast
to challenging requirements on data quality and synchronization. The proposed approach
could be used to automatically integrate the individual test components and to check the
characteristics and feasibility of a certain setup.

8.2 Future work
The scope of this thesis was the proof-of-concept for the applicability of a development
process according to the system-wide plug-and-play principle with automatic timing ver-
ification. The following list summarizes selected directions for a further extension of the
proposed approach:

• Alignment with AUTOSAR. Although the impact to a development process according
to the AUTOSAR methodology was discussed, a complete mapping of the approach to
AUTOSAR artifacts was not conducted and the impact on the involved development
roles was not elaborated in detail.

• Extended timing requirements for data-centric communication. We have shown
basic possibilities for the specification of timing requirements when data senders or
receivers are not known during design time. For example, it is possible to specify
requirements relative to the begin or end of event chains. This approach has its
limitations, because relative points cannot be further constrained. For example, a
diagnostic component at the begin or end of an event chain is considered for the ver-
ification process. As this behavior is not always intended, future work can generalize
this behavior with additional constraints.

120

8.2 Future work

• Mapping to new technologies. The mappings from the platform-independent repre-
sentation to specific technologies during the transformation steps towards the anal-
ysis model can be enhanced by further technologies. For example, Time-Sensitive
Networking (TSN) is extensively discussed as a communication technology for future
vehicle infrastructures. The correct modeling of this technology within the Real-Time
Calculus is still a research question.

• Analysis with multiple approximation levels. Specific parts of the system might be
analyzed at different approximation levels. For example, parts that seldom change
can be analyzed with an approximation with tight results, while often-changing parts
can be analyzed with a focus on a reduction of computation time. In general, a switch
between approximation levels is possible at any point during the analysis process, but
the details are not presented in this thesis.

• Extension for parallel processing. The algorithms for the calculations within the
min-plus/max-plus algebra and the analysis steps themselves can be partly paral-
lelized. The verification framework can be modified accordingly to benefit from anal-
ysis platforms with multi-core processing capabilities.

121

8. CONCLUSION

122

Appendix A

A.1 Related work

A.1.1 Selected modeling approaches of the automotive domain

This section introduces selected modeling approaches for the design and development of
software and electronics in the automotive domain and highlights the relations with each
other. Refer to [149] for a brief comparison of the approaches with a focus on consistency.

Automotive Open System Architecture (AUTOSAR). AUTOSAR [101, 150] is a stan-
dardized and open software architecture to provide the automotive manufacturers and
suppliers a common specification and guideline for the development of vehicle software
and electronics. It was developed by several automotive manufacturers, suppliers, tool
creators and semi-conductor producers. The first version was published in 2005 and is
continuously improved, leading to yearly or two-yearly releases. A discussion of the evolu-
tion is provided in [43]. AUTOSAR includes a standardization of the software architecture
running on electronic control units, a set of basic services including the application pro-
gramming interfaces, a communication abstraction and semantic definition, a definition of
the development methodology of automotive electronic systems, and a specification of a
set of standard signals present in the classic automotive domains. It includes a meta-model
that supports the development according to the AUTOSAR architecture and methodology.
Based on this meta-model, systems can be integrated and exchanged between different
manufacturers and suppliers. The meta-model itself is a based on UML2 [42]. AUTOSAR
can be regarded as the most important standard for the collaborative development of au-
tomotive software.

Electronics Architecture and Software Technology – Architecture Description Lan-
guage (EAST-ADL). EAST-ADL was developed within two European research projects. Its
design goal was the extension of the functionality of AUTOSAR, therefore a unidirectional
mapping between EAST-ADL elements to AUTOSAR elements exists. An AUTOSAR model
can still exist without the EAST-ADL extension, but usually not the other way around. The
second release, EAST-ADL2, includes four abstraction layers [151]: Vehicle Level, Analysis
Level, Design Level and Implementation Level. Each level refines its predecessor, including
non-functional requirements. The bottom level, the implementation level, corresponds to
a system description within AUTOSAR and renders the point of highest refinement. During
the development of EAST-ADL, non-functional requirements like timing constraints were

123

A. APPENDIX

not yet included in AUTOSAR. As the development of AUTOSAR continued, more and more
functions previously exclusive to EAST-ADL were integrated into the AUTOSAR standard.

Architecture Analysis and Design Language (AADL). AADL [152] is a domain-specific
language for the design of distributed, real-time embedded systems and was standardized
by the Society of Automotive Engineers (SAE). AADL was initially developed and used in the
field of avionics and was known as the Avionics Architecture Description Language before
it was renamed. AADL is not an UML profile, but an own meta-language specification. It
combines the modeling of functional and non-functional properties of embedded systems
and focuses on a description close to the actual real-world system. Compared to AUTOSAR,
the aspect of non-functional properties was always deeply integrated from the beginning
on into AADL. On the other hand, more abstract views of the system, like a use case or
feature specification, are missing. Compared to EAST-ADL, the focus of AADL is closer to
the actual hardware [153].

Modeling and Analysis of Real Time and Embedded Systems (MARTE). MARTE [46]
is a UML2 profile to support the development of real-time and embedded applications.
Compared to AADL, MARTE is a more generic representation supporting a multitude of
views of embedded systems and implementations. However, it was pointed out in [154] that
a description of a system in MARTE can be simpler compared to AADL. The standard also
includes a mapping of MARTE elements to AADL elements. This can be used to transform a
MARTE model into an AADL representation and to analyze it with the according tools. Non-
functional properties are an integrated part of MARTE, especially the notion and handling
of time. Resources can be modeled in detail, e.g., scheduling strategies, buffer semantics
and synchronization strategies. A harmonization to benefit from the advantages of MARTE,
EAST-ADL and AUTOSAR was discussed in [155].

Systems Modeling Language (SysML). SysML [44] is a graphical modeling language
based on UML2 to describe complex systems. The standard was developed by the Ob-
ject Management Group (OMG) in conjunction with several industrial partners. The first
standard was available in 2007 and subsequently refined in the next years. SysML partly
directly adopts diagrams from UML and also introduces new types. The diagrams are cat-
egorized into four pillars: Structure, behavior, requirements, and parametrics, where the
latter two describe new diagram types compared to UML. The aim of SysML is to provide a
standardized mean to describe the behavior and requirements of systems. Those descrip-
tions should be used for the communication between different partners that are involved in
the design and development of a certain system, and should also be the base for the anal-
ysis and evaluation of design alternatives. Compared to AUTOSAR, SysML focuses on a
higher level of abstraction and is comparable to EAST-ADL, while EAST-ADL features more
domain-specific extensions, i.e., automotive related, while SysML is more generic and also
suitable for avionic and other systems.

A.1.2 Comparison of time handling in selected frameworks

This section gives an overview of selected frameworks and standards that are applied to
specify properties and constraints of the timing behavior of systems.

124

A.1 Related work

AUTOSAR Timing Extension (TIMEX). Since version 4.0, AUTOSAR includes means
to express timing-related requirements and properties of automotive systems including a
methodology to handle these requirements. This extension is included in the official AU-
TOSAR specification [55]. The Timing Extension covers different levels of the implemen-
tation, but lacks traceability across all these levels [156]. The different levels are [55]:
Virtual Functional Bus Timing (VfbTiming) for the specification of constraints on a logical
level, without regarding the distribution, internal behavior or execution platform of soft-
ware components. Software Component Timing (SwcTiming) handles the internal behav-
ior of software components, especially the behavior of runnable tasks that implement the
functionality. Each software component can include several tasks and interactions. System
Timing (SystemTiming) includes the deployment of the software components and therefore
can map the communication between components either to a local communication process
or an external communication technology. Basic Software Module Timing (BswModuleTim-
ing) captures all constraints related to the modules of the basic software, i.e., the drivers
and runtime system of a certain electronic control unit. The BswModuleTiming is similar
to the SwcTiming but refers to basic software modules that are determined during the con-
figuration process of an ECU. The Electronic Control Unit Timing (EcuTiming) is the most
concrete representation level for timing constraints and includes all information that is nec-
essary to determine the timing of one single electronic control unit, i.e., configuration and
mapping of the basic software modules and software components, complete configuration
of the ECU and mapping of messages and signals to internal and external communication
means. Compared to the SystemTiming, this view also includes all the information about
the basic software modules and their interactions. The timing constraints themselves are
organized into eight groups: Event triggering, latency timing, age, synchronization timing
for events, synchronization timing for event chains, offset timing, execution order and execu-
tion time. The age constraint abstracts from the concrete event chain and can be used to
specify requirements on the freshness of data if the source is unknown. While in the syn-
chronization timing for events and event chains it is assumed that either a common stimulus
or response exists to formulate the constraint, the offset timing is utilized to relate events
that do not have a common cause or reaction, for example when an event is processed by a
cyclic execution of a software component. In that case, the processing is not related to the
actual arriving event. The execution order does not bound timings, but allows the specifica-
tion of constraints relating the execution order of either software components or events in
a standard, hierarchical, or cyclic manner. A comparison to the proposed approach in this
thesis is provided in Sec. 4.9.

Timing Augmented Description Language V2 (TADL2). TADL2 was adopted with ver-
sion 2.1.11 (2013) into the EAST-ADL2 specification [45]. It was developed in the TIMMO-
2-USE [109] project and replaced its predecessor TADL. TADL2 covers the feature, analysis,
and design levels of a vehicle and thus is focused on higher levels of abstraction than AU-
TOSAR, which mainly captures the implementation level [157]. In fact, TADL2 models can
reference events from AUTOSAR and allow a seamless traceability of the constraints. The
other way around, a referencing of TADL2 model elements from AUTOSAR, is not possible.
TADL2 allows the specification of probabilistic timings, constraints dependent from modes,

125

A. APPENDIX

Figure A.1: Example of the abstraction levels of EAST-ADL and the according TADL2 annota-
tions for a break-by-wire system (adapted from [109]). The analysis and design levels make
usage of symbolic expressions to specify timing requirements.

and allows the usage of symbolic expressions for constraints, see Fig. A.1. The concrete
constraints, like SynchronizationConstraint, PatternConstraint or DelayConstraint, form on
the one hand a superset of the AUTOSAR constraints as they are more expressiveness, and
are on the other hand aligned to AUTOSAR if possible. A concrete comparison of the re-
lationships between the timing constraints available in AUTOSAR and TADL2 is presented
in [109]. Compared to the proposed approach of this work, the refinement of timing con-
straints is a manual process in TADL2.

Architecture Analysis and Design Language (AADL). The AADL allows the specifica-
tion of constraints on event flows. The property Latency can be specified for end-to-end
flows, flow specifications and connections [110]. It represents the maximum allowed time
difference for an event to enter and exit an event flow. The delays for the execution of com-
munication and implementation processes can be bounded in the same manner. Semantics
to describe constraints for the synchronization between events or for the pattern of events
do not exist yet. A more expressiveness model for timing specification is designed within
annexes that are under development [158].

SysML [44], a profile of UML [42] for systems engineering applications, has rather lim-
ited capabilities to express timing properties and constraints. However, an annotation rate
is available, which can be attached to flows, ports, and blocks to specify the expected data,
event, or block rate. For the rate specification also distributions are allowed. The UML
elements communication, interaction overview and timing diagram were explicitly excluded
from the SysML specification. This shows that the focus of SysML is not the detailed mod-
eling of the timing behavior. UML on the other hand gives means to define interval-based,

126

A.1 Related work

absolute, or symbolic constraints on durations of certain actions. But the expressiveness of
these constraints is limited and an end-to-end specification is not directly considered [42].

Clock Constraint and Specification Language (CCSL). MARTE [46] with its CCSL di-
rectly addresses the specification of timing properties and requirements. While SysML is
suitable for the modeling at a system level, MARTE’s focus is the complete opposite di-
rection by enabling technology-dependent and very exact descriptions of concrete imple-
mentations. MARTE’s capabilities are the most generic of the derivates introduced in this
section and hence it is very complex [159]. The specification includes guidelines to map
EAST-ADL2 and AADL models to the MARTE syntax for analysis. MARTE distinguishes be-
tween chronometric clocks that are bound to the real time and logical clocks. A specification
can have multiple clock sources and the relations between individual clocks and events can
be expressed with the CCSL, including relations like "clock A is finer than clock B", "clock
A is faster than clock B", "clock A is periodic with clock B" or "clock A alternates with clock
B". Many properties of digital physical clocks can be modeled like offsets, clock skew or
drifting. Several arrival patterns for events are available including periodic, aperiodic, spo-
radic, and burst patterns. Constraints may be attached to processing elements, end-to-end
flows or event streams, e.g., limitations for the maximum jitter or delay. Utilization of ele-
ments and data rates can also be modeled as well as the laxity of the constraints (hard real
time, soft real time or user-defined). Compared to the proposed approach of this work, the
adaptivity of a system is not in the focus of the CCSL.

A.1.3 Extensions and improvements to Real-Time Calculus

Since the first introduction of Real-Time Calculus in [30] several improvements and exten-
sions to the framework have been proposed by the research community. In the following,
some of the key results are highlighted: Interface-based design in the context of RTC was
described in [130] and [77]. The idea is to extend the interfaces of components to also
include information about the assumed and guaranteed properties of resource and event
streams. This enables the automatic proof of compatibility if two components are linked
to each other. It is comparable to a contract-based composition approach and thus does
not include end-to-end requirement specification and analysis possibilities. The concept
of interface-based design was refined to be able to minimize the energy needs for a sin-
gle processing unit [160] and pipelined multiprocessor systems [115]. This is possible by
defining the desired performance of the system and optimizing the processor speed(s) while
obeying the constraints. A more complete discussion of this topic is available in [161]. The
effect of cyclic dependencies between components was analyzed in [87] and a fixed point
solution was shown. That work focused on cycles formed by resource dependencies, i.e.,
the available resource to a component depends on a component later in the event chain.
This concept was further enhanced by [136] and [137] for component networks that can be
represented by marked graphs and that can have data flow dependencies, i.e., the arrival
pattern of events at a component depends on the arrival pattern at its output. Real-Time
Calculus can capture the behavior of stateless systems. But often also a stateful analysis is
demanded, e.g., to model special buffer access and overriding strategies. For this reason, an
interface between Real-Time Calculus and timed automata was developed in [73] and

127

A. APPENDIX

further refined in [71]. This method can be applied to transform arrival curves into a rep-
resentation suitable for the analysis with timed automata. Beyond, a transformation of the
results back into the framework of the Real-Time Calculus was shown. A similar approach
was presented in [142], where the RTC was connected to the synchronous programming
language Lustre. The assumption of infinite FIFO-buffers at the input of processing ele-
ments was weaken in [93] by considering data refresh semantics. The authors present a
method to directly model finite buffers within the RTC framework. The work is an adap-
tion of the analysis of systems with losses in [84]. The approach discussed in [162] focuses
on another aspect: Instead of lossy systems, systems with blocking-write semantics and
state-based scheduling policies are considered. Both results make the transformation
to stateful analysis methods obsolete for certain cases as those can be directly expressed
within the RTC framework. Some extensions to RTC add phase information to the analy-
sis to increase the accuracy of the results. In [163], the correlation of events in a split-join
scenario is exploited to increase the tightness. In the analyzed scenario, events are first
split to several processing units and afterwards joined again to a common event stream. As
the distribution to the processing units follows a round-robin fashion in the scenario and
the processing time is equal for all units, the results have a well-known phase shift from
each other, which is exploited for an improved analysis. The correlation of events to the
workload was analyzed in [64] for cases where each event or group of events has different
resource demands. With the help of structured streams the analysis of join-fork scenarios
for event streams can be improved. For example, this could happen during the traversal
of a communication stack where multiple event streams are joined before being processed
by the stack and afterwards are separated again into individual streams. This concept was
introduced in [164] and refined in [71]. A lot of efforts were put into the speedup of
the analysis process, either by an approximation approach or by an optimized compu-
tation. An approximation based on a three-piece linear approximation was presented in
[165, 166, 145], without the possibility of a seamless switch during an analysis. Another ap-
proximation with improved tightness, but also increased analysis time, was given in [144]
by a linearization of the arrival and service curves from a dynamic point on. In [167] and
[168], a hierarchical decomposition of arrival curves to adjust the analysis time and tight-
ness was shown. However, the approach also needs a modification of the transfer functions
and feasibility checks of the processing elements and therefore is not ad-hoc compatible
with the mathematical background of the RTC. The work in [143] proposes a method for
an optimized computation of component networks without the loss of any tightness. Some
of these aspects are further discussed and developed in Ch. 6 and Ch. 7.

A.1.4 Comparison of selected plug-and-play and reconfiguration approaches

In the following, a brief comparison of the proposed system-wide plug-and-play concept to
selected other approaches, mainly from research projects, is given.

CHROMOSOME Middleware and Run-Time Environment. CHROMOSOME is devel-
oped at the research institute fortiss (since 2011) and consists of a run-time environment
and a configuration tool to build “Plug&Play-Capable Embedded Real-Time Systems” [95]. It
utilizes a model-based development process for component-based applications with com-

128

A.1 Related work

munication semantics according to the data-centric paradigm. It distinguishes a "Plug"
phase, where newly added components are detected and changed schedules and commu-
nication routes are established, and a "Play" phase, where the configuration is then exe-
cuted. CHROMOSOME was applied in the RACE project [27] (described below) and in
the AutoPnP project [146] to realize adaptable manufacturing systems. Compared to the
approach presented in this work, the specification and verification of system-wide timing
requirements was not in the focus and is not available as an integrated part of the plug-and-
play procedure. However, similar are the component-based and data-centric development
process and the ability to integrate new functions into an existing system based on a model
of the currently running setup and a specification of properties of the newly added func-
tions.

Robust and Reliant Automotive Computing Environment for Future eCars (RACE).
The aim of the RACE project (2012-2015) was the development of a centralized ICT in-
frastructure for vehicles, which helps to reduce the design and implementation complex-
ity. The resulting RACE architecture [27] is a synchronized, globally time-triggered execu-
tion framework with plug-and-play capabilities that support safety-critical functions [20].
Application logic is developed according to the data-centric and component-based design
principles. The execution framework and development tools are an adaption of the CHRO-
MOSOME middleware [95]. Because of its separation of communication and computation
cycles, the deployment location of software components has no impact on the timing be-
havior. To check the feasibility of a setup on the node level, the worst-case execution times
of individual components are summed up and it is verified that the result is still within
the duration of a time slot. While this approach guarantees that a single node is within
its limits, it does not handle the properties of data flows traversing multiple components
on one or several nodes. In addition, a possible over-utilization of the communication in-
frastructure is not considered and the flexibility of the system is limited due to the globally
time-triggered architecture.

Dynamically Self-Configuring Automotive Systems (DySCAS). The aim of the DySCAS
[96] project (2006-2008) was the development of a middleware for adaptive and self-
configurable systems in the automotive domain. It was part of the 6th framework program
"Information Society Technologies" of the European Commission. Beyond the middleware,
the results include a model-based approach to specify composable components of a system.
From a first look, this is very similar to the approach presented here. For example, the
use cases are analogous to the ones used in this work, as they compromise: The automatic
integration of devices into the vehicle IT systems, the integration of new software function-
ality, and a closed reconfiguration, i.e., the degradation or migration of functions in case
of failures [96]. In DySCAS, tools were analyzed and proposed to perform a verification of
the system configuration automatically [169]. However, the verification approach was not
completed and in the end limited to the verification of the single-node case. Furthermore,
the flexible configuration of the analysis in terms of tightness and computation time was not
scope of the project. The applied analysis technology was based on timed automata [170]
rather than on the Real-Time Calculus as presented here. For the online case, a reconfig-
uration strategy was presented [171], which takes into account the utilization of different

129

A. APPENDIX

electronic control units across a network and matches the input and output signals to each
other. That work did not cover the timed interaction of tasks and the utilization handling
is based on a simple approximation.

Framework for Real-time Embedded Systems based on COntRacts (FRESCOR). The
FRESCOR project’s (2006-2009) main objective was “to develop the enabling technology and
infrastructure required to effectively use the most advanced techniques developed for real-time
applications with flexible scheduling requirements, in embedded systems design methodolo-
gies and tools, providing the necessary elements to target reconfigurable processing modules
and reconfigurable distributed architectures.” [98] The result was a contract-based design
model (called FRSH) in connection with an execution platform. The main difference to this
work is that only local guarantees can be given with the contract-based approach. Global
properties, like the timing of flows through several software components, are not captured.
Although all components according to the FRESCOR methodology may pass a feasibility
test, the behavior of the overall system might still not meet the assumed constraints. The
analysis of the systems itself is based on the sporadic server principle and was presented in
[172].

AUTOSAR does not directly support an equivalent mechanism like proposed in this work.
The limiting point is that parts of the software are generated according to the specified com-
munication demands of the software components. This configuration cannot be changed
after the deployment of the system. To achieve a rudimentary amount of flexibility, it is stan-
dard to make the implementation of the software components themselves changeable. This
means that the implementation of a software component can be replaced in the firmware
of an electronic control unit. This works as long as the replaced image sticks to the same
external interface and does not violate the previous negotiated properties like the timing
behavior and memory demand. Therefore, this approach is suitable when the external in-
terface is constant and when bug fixes or features should be added in this way. However,
it is usually not possible to install new software components in the system or to alter the
communication relations. To do so, the firmware has to be re-generated and it is very likely
that it has an impact on several ECUs.

DREAMS (Distributed Real-time Architecture for Mixed Criticality Systems). The DRE-
AMS project (2013-2017) aims at the development of an architecture that supports the dis-
tributed execution of mixed-criticality multicore systems, considering reconfiguration and
security aspects. The project started in 2013 and is going to last until 2017. As of writ-
ing of this thesis, the deliverables for the requirements and building blocks specification
are available [173] and a description of the architectural style [174]. It is visible from
these documents that the architecture shall support a dynamic reconfiguration considering
system-wide constraints like the end-to-end timing between certain functions across mul-
tiple nodes. According to the requirements document, a candidate for the specification of
timing requirements is the Timing Augmented Description Language V2 (see Appx. A.1.2)
and an analysis based on the principles of the Network Calculus is considered. For the
resource management and dynamic reconfiguration, the results of the projects FRESCOR,

130

A.1 Related work

ACTORS, DIVA, and SCARLETT shall be integrated. The concrete realization is to be de-
fined in the work packages during the remaining project duration.

DiVA (Dynamic Variability in complex, Adaptive systems). In the EU-ICT DiVA (2008-
2011) project, software models are utilized at execution and design time to create dynam-
ically adapting component-based applications (models-at-runtime approach) [94]. During
runtime, the performance of the system is monitored and a reconfiguration can be triggered
to adapt the system to changes. Several variants of the system’s architecture are evaluated
and the best fitting configuration is chosen. This process depends on a fuzzy description of
the impact factors on the system, e.g., "high", "medium" and "low" priorities [103], which
are mapped to numbers to calculate a score for a possible configuration candidate. The
whole process is comparable with a design-space exploration method, but with a feedback
loop from the running system and a model-centric approach that also allows a reconfig-
uration during runtime. Although the scope of the project does not cover hard real-time
systems and is therefore different to the approach presented in this work, it certainly shows
how a completely model-driven approach can be used for the adaption of systems. Work
started to standardize the underlying syntax and semantics as the Common Variability Lan-
guage (CVL) [175].

SCARLETT (SCAlable and ReconfigurabLe Electronics plaTforms and Tools). The fo-
cus of the SCARLETT project (2008-2012) was the development of the next generation of
the Integrated Modular Avionic (IMA) platform to reduce development and maintenance
cost and speed up the integration of functions in the avionic domain [104]. The proposed
platform contains services to re-allocate functions in case of a node failure. This does not
directly re-assemble the plug-and-play principle proposed in this thesis but already includes
many of the steps as an altered configuration has to be validated and accepted before it is
actually executed. This can either happen in a pre-calculated fashion or also online on the
proposed platform of the SCARLETT project.

A.1.5 Comparison of performance analysis tools

This section gives an overview and comparison of selected tools and frameworks for the
performance analysis of networked and embedded systems, which are based on the Net-
work Calculus, Real-Time Calculus or similar concepts. The frameworks and tools differ in
the representation of curves, available operations, and features to handle the systems to
analyze; a summary is presented in Tab. A.1.

The closest match to the approach presented in this work is the Real-Time Calculus
Toolbox [30] that was developed at the ETH Zürich. The toolbox consists of a Java library
for the min-plus/max-plus calculus operations and a set of Matlab functions that implement
filter operations. The Matlab part is called Modular Performance Analysis, because it imple-
ments a compositional systems analysis. The analysis with the Real-Time Calculus Toolbox
itself is a manual process, an automatic interpretation of an adaptive system graph is not
implemented. Compared to the proposed approach, the subadditive closure operation is
limited, cycles are not handled automatically, the analysis of filters with bounded buffer se-
mantics is not available, and an exchange of analysis tightness for computation time is not
possible. The toolbox was integrated into a framework for the exploration of architectural

131

A. APPENDIX

designs for MPSoCs (Multiprocessor System-on-Chip) [138], which is able to generate the
according Matlab code out of a system model. It can also generate the code for resource
cycles in the system graph in a greedy manner, but the utilized initialization and iteration
strategies for the fixed point calculation differ from the approach presented in this work,
refer to Sec. 6.4 for details. chronVal [176] is a commercial tool for the timing verification
of real-time systems, based on a hierarchical event stream model introduced by [167]. The
event stream model allows an approximation to reduce the complexity of feasibility tests
and filter operations. The approach deploys the Real-Time Calculus framework for the cal-
culation of response times in distributed systems, the interfacing between both worlds was
shown in [177]. According to [176], “The chronVAL analysis is mainly based on the Real-Time
Calculus with the necessary supplements for a better support of realistic systems. These are for
example analysis methods for cooperative scheduling, support of offset analysis and so on.” As
the implementation or specification was not available to the author of this work, a detailed
analysis was not conducted. The Cyclic Network Calculus (CyNC) [178] is a theory and
tool to calculate the performance of systems with loops in the data flow. It was developed
at the Aalborg University and the tool comes as a set of Matlab functions and Simulink
modeling elements. With the Simulink modeling elements, it is possible to define a process
network in a graphical manner. The approach is based on a discrete description of arrival
and service curves and does not support ultimately pseudo-periodic functions. Periodic
functions can be defined but are approximated from a configurable point on. In general,
CyNC extends the Network Calculus theory by the ability to process loops. The Determin-
istic Network Calculator (DiscoDNC) [179] from the University of Kaiserslautern is a tool
for the system-level performance analysis on the basis of the Network Calculus. It includes
the possibility to specify a network graph with an automatic execution of the corresponding
stream filters. The underlying curves are represented as a finite amount of linear segments.
Ultimately pseudo-periodic functions are not supported. DiscoDNC comes as a set of com-
mented Java source code files that can be easily extended with further functionality. Except
the convolution and deconvolution of curves, most of the complex operations like subad-
ditive closure and pseudo-inverses are missing. The Computational Issues in Network
Calculus (COINC) [132] library offers basic operations to manipulate curves according to
the min-plus algebra. It uses an alternative representation of curves according to the model
presented in [86]. The representation allows partly a more convenient expression of the
mathematical operations. Except for the one publication, no further mentioning of this tool
are known to the author of this work. The implementation seems rudimentary. NC-Maude
[180] is a specification of Network Calculus operations in the tool Maude. Maude itself is
an implementation of rewriting logic, i.e., it is possible to specify algebraic systems with
operations and relations. Given an algebraic expression, Maude can automatically reduce
(rewrite) it until a more compact or normalized state is reached. As the operators and
algebraic classes are in a certain order, the aim of the rewriting task is implicitly defined.
NC-Maude is a set of files for Maude that implement an algebra and rules to operate on
curves within the Network Calculus. As far as the author of this work knows, NC-Maude is
based on curve representations with a finite set of linear segments. According to the author
of NC-Maude, the amount of features is a subset of the features of the COINC library. The

132

A.1 Related work

Ta
bl

e
A

.1
:

To
ol

s
fo

r
sy

st
em

le
ve

lp
er

fo
rm

an
ce

an
al

ys
is

,b
as

ed
on

N
et

w
or

k
C

al
cu

lu
s,

R
ea

l-T
im

e
C

al
cu

lu
s

or
si

m
ila

r
co

nc
ep

ts
.

N
am

e
O

rg
an

iz
a-

ti
on
/C

om
pa

n
y

D
ev

el
op

-
m

en
t

C
om

m
en

ts
R

ef
er

en
ce

s

To
ol

s
ba

se
d

on
R

ea
l-T

im
e

C
al

cu
lu

s,
N

on
-C

om
m

er
ci

al
R

ea
l-T

im
e

C
al

cu
lu

s
To

ol
bo

x
(M

at
la

b)
ET

H
Zü

ri
ch

20
06

-
20

11
(?

)
U

se
s

ul
ti

m
at

el
y

ps
eu

do
-p

er
io

di
c

fu
nc

ti
on

s,
lim

it
ed

cl
os

ur
e

op
er

at
or

[6
5,

30
,9

2,
77

,7
1,

13
7]

To
ol

s
ba

se
d

on
R

ea
l-T

im
e

C
al

cu
lu

s,
C

om
m

er
ci

al
ch

ro
nV

A
L

(G
U

I)
In

ch
ro

n
20

12
(?

)-
20

15
+

A
pp

ro
xi

m
at

io
n

po
ss

ib
le

,o
w

n
ev

en
t

st
re

am
m

od
el

[1
76

,1
67

,
17

7]
To

ol
s

ba
se

d
on

N
et

w
or

k
C

al
cu

lu
s,

N
on

-C
om

m
er

ci
al

C
yc

lic
N

et
w

or
k

C
al

cu
lu

s
(C

yN
C

)
(M

at
la

b/
Si

m
ul

in
k)

A
al

bo
rg

U
ni

ve
rs

it
et

20
05

(?
)

U
se

s
ul

ti
m

at
el

y
af

fin
e

fu
nc

ti
on

s
[1

39
,1

78
]

C
om

pu
ta

ti
on

al
Is

su
e

in
N

et
w

or
k

C
al

cu
lu

s
(C

O
IN

C
)

(M
in

-P
lu

s
In

te
rp

re
te

r)
IN

R
IA

20
09

(?
)

A
lt

er
na

ti
ve

cu
rv

e
re

pr
es

en
ta

ti
on

,
ru

di
m

en
ta

ry
im

pl
em

en
ta

ti
on

[1
32
]

D
et

er
m

in
is

ti
c

N
et

w
or

k
C

al
cu

la
to

r
(D

is
co

D
N

C
)

(J
av

a
So

ur
ce

s)
U

ni
ve

rs
it

y
of

K
ai

se
rs

la
ut

er
n

20
06

-
20

15
+

O
nl

y
co

nc
av

e/
co

nv
ex

fu
nc

ti
on

s,
fin

it
e

am
ou

nt
of

se
gm

en
ts

[1
79

,1
84
]

N
C

-M
au

de
(L

ib
ra

ry
fo

r
M

au
de

in
te

rp
re

te
r)

O
N

ER
A

20
10

-
20

14
(?

)
B

as
ed

on
re

w
ri

ti
ng

lo
gi

c,
ul

ti
m

at
el

y
af

fin
e

fu
nc

ti
on

s
on

ly
[1

83
,1

80
]

D
el

ay
B

ou
nd

R
at

in
g

A
lg

or
it

hm
(D

EB
O

R
A

H
)

(C
+
+

So
ur

ce
s)

U
ni

ve
rs

it
y

of
Pi

sa
20

08
-

20
10

FI
FO

an
d

Ta
nd

em
co

nfi
gu

ra
ti

on
s,

lim
it

ed
sc

op
e

[1
81
]

To
ol

s
ba

se
d

on
N

et
w

or
k

C
al

cu
lu

s,
C

om
m

er
ci

al
M

in
-P

lu
s

C
on

so
le

(M
in

-P
lu

s
In

te
rp

re
te

r)
R

ea
l-T

im
e

at
W

or
k

20
10

-
20

12
(?

)
U

lt
im

at
el

y
ps

eu
do

-p
er

io
di

c
fu

nc
ti

on
s,

cl
os

ur
e-

op
er

at
or

lim
it

ed
[1

82
]

Fu
rt

he
r

to
ol

s
(n

ei
th

er
N

C
no

r
R

TC
)

Sy
m

bo
lic

Ti
m

in
g

A
na

ly
si

s
fo

r
Sy

st
em

s
(S

ym
TA
/S

)
(C

om
m

er
ci

al
)

(G
U

I)
Sy

m
ta

vi
si

on
20

05
-

20
15
+

C
la

ss
ic

lo
ca

la
na

ly
si

s
w

it
h

ge
ne

ri
c

in
te

rf
ac

es
[6

9,
70

,1
85
]

C
om

po
si

ti
on

al
A

na
ly

si
s

of
R

ea
l-T

im
e

Sy
st

em
s

(C
A

R
TS

)
(J

av
a

G
U

I)
(R

es
ea

rc
h)

U
ni

ve
rs

it
y

of
Pe

nn
sy

lv
an

ia
20

09
H

ie
ra

rc
hi

ca
ls

ch
ed

ul
in

g
an

al
ys

is
[1

83
,1

86
]

133

A. APPENDIX

Delay Bound Rating Algorithm (DEBORAH) [181] by the University of Pisa is a tool for
the evaluation of FIFO and tandem configurations with the Network Calculus. The curve
representations are restricted, i.e., a convolution is only implemented for a curve with two
segments, which makes it inapplicable in a generic context. The Min-Plus Console [182]
was developed by the company Real-Time at Work within the research project PEGASE. The
Min-Plus console is a command-line interpreter to execute operations within the min-plus
algebra. It features two implementations for evaluation: One based on increasing convex
or concave curves for a fast processing in trade for expressiveness of the available curves,
and an implementation based on the class of ultimately pseudo-periodic functions. It fur-
ther implements operators for the subadditive closure and pseudo-inverse. But it seems that
these operators only work properly for the class of increasing convex and concave functions,
but not for the more general class of ultimately pseudo periodic functions. The tool is free
for research and educational purposes. Real-time at Work offers industry-grade libraries
for calculations based on the min-plus algebra. These libraries were not evaluated in this
work as they are not freely available. Symbolic Timing Analysis for Systems (SymTA/S)
[69] is a commercial tool for the end-to-end timing analysis of heterogeneous architectures.
Locally, it uses classic scheduling approaches to calculate the performance of components.
The interconnection of components follows a standardized event model, which makes the
approach composable. Because the event model between the components is based on a
fixed amount of parameters, the expressiveness is limited. The approach does not support
hierarchical scheduling analysis, because the remaining service of a component is not de-
rived. The Compositional Analysis of Real-Time Systems (CARTS) [183] is a theory and
tool for the performance calculation of hierarchical resource interfaces. It covers the cal-
culation of deadlines, jitters, and utilization of task sets that are scheduled under various
strategies like earliest deadline first (EDF) and rate-monotonic (RM). Although it is not
possible to calculate end-to-end delays with CARTS, because a representation of events is
not part of the analysis, this tool is useful for feasibility checks of heterogeneous scheduler
configurations on one node, for example as experienced by the utilization of virtualization
technologies.

134

A.2 Definitions and equations of stream filters

A.2 Definitions and equations of stream filters
In the following, the definition and equations of the stream filters applied in the examples
are given, based on the Real-Time Calculus framework. None of the equations were ini-
tially developed by the author of this work, the references to the according sources and
modifications to it are given in the descriptions.

A.2.1 Greedy processing component (GPC)

A greedy processing component (GPC) is a stream filtering block of the Real-Time Calculus
framework that models the processing of events in a greedy fashion. Whenever resources
are available and at least one event arrives or is already in the input queue, the event is
immediately processed. In case more events arrive than can be processed, the events are
queued in an infinite-sized buffer.

Definition A.1 The GPC interface is defined as

(αout ,βout , d, b) = fGPC(αin,βin,γ) (A.1)

where αin, αout ∈ F are pairs of arrival curves, βin, βout ∈ F are pairs of service curves,
d, b ∈ R are the scalars maximum delay and backlog, and γ ∈ F is a pair of workload curves.

Definition A.2 The transfer function for the GPC is derived and proved in [77]:

αu
out = dmin{(αu

in ⊗ bβ
u
in)� bβ

l
in, bβu

in}e

αl
out = bmin{(αl

in � bβ
u
in)⊗ bβ

l
in, bβ l

in}c

βu
out = (β

u
in − bα

l
in) � 0

β l
out = (β

l
in − bα

u
in) ⊗ 0

d ≤ D(αu
in, bbβ l

inc)

b ≤ B(αu
in, bbβ l

inc)

(A.2)

with bβ l , bβu, bαl , bαu according to Eq. 2.12 or Eq. 2.14.

Note that in the older publication [187], a different definition was given for the GPC
component. The difference are the time domains of consideration: While the here pre-
sented equations from [77] consider the whole time domain t ∈ [−∞,+∞], the equations
from [187] are valid for the positive time domain only [81].

A.2.2 Fixed-priority non-preemptive component (FPNP)

The fixed-priority non-preemptive processing component (FPNP) is a stream filtering block
of the RTC framework that models the processing of events in a greedy-like fashion, but
might get blocked for a certain amount of time by a non-preemptive component with lower
priority. The FPNP component itself is not necessarily non-preemptive, but one or more
components along the remaining service stream chain. This definition is different from
those in [92], where a FPNP component has several streams as input, which are all non-
preemptive. We have chosen the alternative setup as it enhances the modularity of the

135

A. APPENDIX

analysis process. Another derivation of the equations was presented in [121] with better
tightness according to the authors, but it was not applied as the processing is more complex.

Definition A.3 The FPNP interface is defined as:

(αout ,βout , d, b) = fFPNP(αin,βin,γ,δmax) (A.3)

where αin, αout ∈ F are pairs of arrival curves, βin, βout ∈ F are pairs of service curves,
d, b ∈ R are the scalars maximum delay and backlog, γ ∈ F is a pair of workload curves and
δmax ∈ R is the maximum quantity of resources demanded by a lower-priority non-preemptive
task.

Definition A.4 The transfer function of the FPNP is an adaption from [92]:

αu
out = dmin{(αu

in ⊗ β̆
u)� β̆ l , β̆u}e

αl
out = bmin{(αl

in � β̆
u
i)⊗ β̆

l , β̆ l}c

βu
out = (β

u
in − bα

l
in) � 0

β l
out = (β

l
in − bα

u
in) ⊗ 0

d ≤ D(αu
in, bβ̆ l

inc)

b ≤ B(αu
in, bβ̆ l

inc)

(A.4)

with
β̆u = γl−1(βu

in)

β̆ l = γu−1
�

max(β l
in −δmax , 0)

�

and bαl , bαu according to Eq. 2.12 or Eq. 2.14.

A.2.3 First-in-first-out processing component (FIFO)

The first-in-first-out processing component (FIFO) is a stream filtering block of the RTC
framework that models the processing of events from multiple event streams in a FIFO
manner. Whenever resources are available, the incoming events are processed in the same
order as they arrived. If the processing of events is deferred because of missing resources or
because other events arrived before, the according events are queued in a buffer of infinite
length. The deployed equations are taken from [71]. In [77], another realization based
on a mapping to earliest deadline first filters is suggested, which was also implemented in
[65]. The latter possibility was not considered in this work.

Definition A.5 The FIFO interface is defined as:

(~αout ,βout , ~d,~b) = fFIFO(~αin,βin, ~γ) (A.5)

where ~αin, ~αout ∈ F are a vector of pairs of arrival curves, βin, βout ∈ F are pairs of service
curves, ~d,~b ∈ R are the maximum delay and backlog results, and ~γ ∈ F is a vector of pair of
workload curves.

136

A.2 Definitions and equations of stream filters

Definition A.6 Then the transfer functions of the FIFO are as follows [71]:

αu
out,i = dmin{(αu

in,i ⊗ β̆
u
i)� β̆

l
i , β̆

u
i }e

αl
out,i = bmin{(αl

in,i � β̆
u
i)⊗ β̆

l
i , β̆

l
i }c

βu
out = (β

u
in −

∑

i

bαl
in,i) � 0

β l
out = (β

l
in −

∑

i

bαu
in,i) ⊗ 0

di ≤ D(αu
in, bβ̆ l

inc)

bi ≤ B(αu
in, bβ̆ l

inc)

(A.6)

with
β̆u

i = γ
l−1
i (β

u
in)

β̆ l
i = γ

u−1
i

(β l
in −

∑

j 6=i

bαu
j) ⊗ 0

!

and bαl , bαu according to Eq. 2.12 or Eq. 2.14.

A.2.4 OR component (OR)

The OR processing component is a stream filtering block of the RTC framework that joins
a set of arrival streams. Whenever an event is available at any of the input streams, one
event at the output is created. This component does not introduce delay nor backlog into
the stream and does not depend on any service resources. The equations are available in
[92] or [77].

Definition A.7 The OR interface is defined as:

αout = fOR(~αin) (A.7)

where ~αin ∈ F is a vector of pairs of arrival curves and αout ∈ F is a pair of arrival curves.

Definition A.8 The transfer functions of the OR is [92]:

αu
out =

∑

i

αu
in,i

αl
out =

∑

i

αl
in,i

(A.8)

A.2.5 AND component (AND)

The AND processing component is a stream filtering block of the RTC framework that pro-
cesses a set of two incoming arrival streams. Whenever an event is available at both inputs,
one event at the output is created and one event from each input queue is removed. It is
possible that events sum up in the input queues. The AND component is feasible for setups

137

A. APPENDIX

where both input streams have an equal long-term slope. Otherwise, the number of events
in one of the input queues ultimately grows to infinity and bounds for the delay and backlog
go to infinity, too. The equations are from [92] and [77] and are presented here without
considering initial tokens in the input queues.

Definition A.9 The AND interface is defined as:

(αout , ~d,~b) = fAND(~αin) (A.9)

where ~αin ∈ F is a vector of two pairs of arrival curves, αout ∈ F is the resulting pair of arrival
curves, and ~d,~b ∈ R are the maximum delay and backlog results.

Definition A.10 The transfer functions of the AND are [92]:

αu
out =max

�

min{αu
1 �α

l
2,αu

2}, min{αu
2 �α

l
1,αu

1}
	

αl
out =min

�

max{αl
1 � α

u
2,αl

2}, max{αl
2 � α

u
1,αl

1}
	

d1 ≤ D(αu
1,αl

2)

d2 ≤ D(αu
2,αl

1)

b1 ≤max
�

B(αu
1,αl

2), 0
	

b2 ≤max
�

B(αu
2,αl

1), 0
	

(A.10)

A.2.6 Bounded greedy processing component (BGPC)

The bounded greedy processing component (BGPC) is equal to the greedy processing com-
ponent but implements the semantics of a bounded buffer at the input. If the buffer is full
and another event approaches the component, the oldest event is deleted from the buffer
and the arriving one is enqueued. Therefore, this component is useful in scenarios, where
under-sampling occurs, i.e., the data is processed slower than received. The presented
equations are adapted from [93].

Definition A.11 The BGPC interface is defined as

(αout ,βout , d, b) = fBGPC(αin,βin,γ, bmax) (A.11)

where αin, αout are pairs of arrival curves, βin, βout are pairs of service curves, d and b are the
scalars maximum delay and backlog, γ is a pair of workload curves and Bmax is the maximum
buffer size of the input queue.

Definition A.12 Transfer function of the BGPC according to [93], but omitting the refinement
of the results [93, Lemma 3.9]:

αu
out = dmin{(αu

in ⊗ β̆
u)� β̆ l , β̆u}e

αl
out = bmin{(αl � β̆u)⊗ β̆ l , β̆ l}c

βu
out = (β

u
in − ᾰ

l) � 0

β l
out = (β

l
in − ᾰ

u) ⊗ 0

b ≤ Bmax

d ≤min
�

V (αl
in, Bmax), V (bβ l

in,Bmax), D
�

min(αu, bβu + Bmax), bβ
l
in

�	

(A.12)

138

A.3 Complete parameter set of the eCar example

with

ᾰu =min{(αu
in ⊗ β

u
in)� β

l
in,β

u
in} β̆u = bβu

in ⊗ β
u

ᾰl =min{(αl
in � β

u
in)⊗ β

l
in,β

l
in} β̆ l = bβ l

in ⊗ β
l

V (x(∆), k) =min {∆≥ 0|x(∆)≥ k} β
u
= αu

in ⊗ (α
u
in ⊗ bβ

u
in + Bmax)

?

β
l
= (bβ l

in + Bmax)
?

and bβ l , bβu, bαl , bαu according to Eq. 2.12 or Eq. 2.14.

Note that b refers to a service-curve in an event-based representation and ()? is the
subadditive closure of a function.

A.3 Complete parameter set of the eCar example

The parameters in the Tabs. A.2, A.3, A.4, and A.5 are exemplary values that were applied
for the eCar example to evaluate the verification framework with various approximation
strategies.

Entity Parameter Value Feature

ECU Center Processor speed 30k cycles/ms Base
ECU Center→ HMI Serial Stack latency 2 ms Base

ECU Center→ Ethernet Center Stack latency 0.5 ms Base
ECU Front Processor speed 25k cycles/ms Base

ECU Front→ Ethernet Center Stack latency 2 ms Base
ECU Back Processor speed 20k cycles/ms Base
HMI Serial Data rate 62.5 bytes/ms Base

CAN Front/Back Data rate 31.25 bytes/ms Base
CAN Front/Back Latency 0.5 ms Base
Ethernet Center Data rate 1250 bytes/ms Base
Ethernet Center Latency 1 ms Base

Table A.2: Parameter set of the eCar example – SYSTEM model.

Component WCET/BCET Type Mapped to Feature

Control Central 90k cycles HighPriorityET ECU Center Mov./Cntr.
Control Front 60k cycles HighPriorityET ECU Front Mov./Cntr.
Control Back 60k cycles HighPriorityET ECU Back Mov./Cntr.

Camera Process 120k cycles LowPriorityET ECU Front Camera
Camera Forwarder 5k cycles LowPriorityET ECU Center Camera

Table A.3: Parameter set of the eCar example – DEPLOYMENT model (software components).

139

A. APPENDIX

Topic Size Mapped to Priority Feature

MovementVector 32 bytes HMI Serial n/a Mov./Cntr.
ControllerFront 48 bytes Ethernet Center n/a Mov./Cntr.
ControllerBack 48 bytes Ethernet Center n/a Mov./Cntr.
WheelFrontLeft 8 bytes CAN Front 0 Mov./Cntr.

WheelFrontRight 8 bytes CAN Front 1 Mov./Cntr.
WheelBackLeft 8 bytes CAN Back 0 Mov./Cntr.

WheelBackRight 8 bytes CAN Back 1 Mov./Cntr.
CameraRaw 40 bytes CAN Front 2 Camera

CameraProcessed 48 bytes Ethernet Center n/a Camera
CameraSignalHMI 8 bytes HMI Serial n/a Camera

Table A.4: Parameter set of the eCar example – DEPLOYMENT model (messages).

External source Period Jitter Min. distance

Camera 16.0 16.0 5.0
Sidestick 10.0 20.0 5.0

Table A.5: Parameter set of the eCar example – LOGICAL model.

A.4 Complete ANALYSIS model (M) of the eCar example
The ANALYSIS model of the eCar example (Fig. A.2) is the derived model after the transfor-
mation and mapping process, which renders the input for the verification tool.

140

A
gg

. C
am

er
a

A
g
g
.
eC

o
rn

er
B

R

A
g
g
.
eC

o
rn

er
B

L

A
gg

. e
C

o
rn

er
FR

C
A

N

B
a
ck

E
th

er
n

et
 C

en
te

r

E
C

U
 B

a
ck

A
g
g
.
H

M
I

S
er

ia
l
H

M
I

E
C

U
 C

en
te

r

M
D

(1
)

F
IF

O
(1

)

M
D

(5
)

F
IF

O
(3

)

F
S

(3
)

G
P

C
(2

)
F
IF

O
(2

)

M
D

(4
)

G
P

C
(4

)

M
D

(8
)

F
IF

O
(6

)

F
S

(1
)

G
P

C
(1

)

M
D

(2
)

F
P

N
P

(1
)

F
P

N
P

(3
)

A
rr

i-
v
a
l

E
n

d

A
rr

i-
v
a
l

E
n

d

M
D

(9
)

F
IF

O
(7

)

M
D

(7
)

F
IF

O
(5

)

E
C

U
 F

ro
n

t F
S

(2
)

G
P

C
(3

)

C
A

N

F
ro

n
t

M
D

(3
)

F
P

N
P

(2
)

F
P

N
P

(4
)

A
gg

. e
C

o
rn

er
FL

A
rr

i-
v
a
l

E
n

d

A
rr

i-
v
a
l

E
n

d

G
P

C
(5

)
P

JD (2
)

F
P

N
P

(5
)

M
D

(6
)

F
IF

O
(4

)

A
rr

i-
v
a
l

E
n

d

P
JD (1

)

ra
te

=
3
0
k

ra
te

=
1
2
5
0

,
d

el
a
y=

0
.5

ra
te

=
2
5
k

ra
te

=
6
2
.5

d
el

a
y=

0

ra
te

=
6
2
.5

d
el

a
y=

2

ra
te

=
1
2
5
0

,
d

el
a
y=

1

ra
te

=
1
2
5
0
,

d
el

a
y=

1
ra

te
=

1
2
5
0
,

d
el

a
y=

1

ra
te

=
3
1
.2

5
,

d
el

a
y=

0
.5

ra
te

=
3
1
.2

5
,

d
el

a
y=

0
.5

ra
te

=
2
0
k

ra
te

=
1
2
5
0

,
d

el
a
y=

2

et
=

6
0

k

et
=

1
2
0
k

et
=

8
,

et
_s

cc
=

4
0

et
=

8
,

et
_s

cc
=

4
0

et
=

4
0
,

et
_s

cc
=

0
et

=
4
8

et
=

3
2

et
=

8
et

=
5
k

et
=

4
8

et
=

4
8

et
=

9
0
k

et
=

4
8

et
=

4
8

et
=

4
8

et
=

6
0
k

et
=

8
,

et
_s

cc
=

8

et
=

8
,

et
_s

cc
=

0

M
D

 (
1

)
–

S
er

ia
l
O

u
tp

u
t

S
ta

ck
 A

g
g
.
H

M
I

M
D

 (
2

)
–

S
er

vi
ce

 C
A

N
 B

a
ck

M
D

 (
3

)
–

S
er

vi
ce

 C
A

N
 F

ro
n

t
M

D
 (

4
)
–

E
th

er
n

et
 O

u
tp

u
t

S
ta

ck
 E

C
U

 C
en

te
r

M
D

 (
5

)
–

S
er

ia
l
O

u
tp

u
t

S
ta

ck
 E

C
U

 C
en

te
r

M
D

 (
6
)
–

E
th

er
n

et
 O

u
tp

u
t

S
ta

ck
 E

C
U

 F
ro

n
t

M
D

 (
7
)
–

O
u

tp
u

t
P
o
rt

 C
en

tr
a
l
E

th
er

n
et

 S
w

it
ch

M
D

 (
8

)
–

O
u

tp
u

t
P
o
rt

 C
en

tr
a
l
E

th
er

n
et

 S
w

it
ch

M
D

 (
9

)
–

O
u

tp
u

t
P
o
rt

 C
en

tr
a
l
E

th
er

n
et

 S
w

it
ch

P
JD

 (
1

)
–

S
id

es
ti

ck
O

u
tp

u
t

P
JD

 (
2
)
–

C
a
m

er
a
 O

u
tp

u
t

F
IF

O
 (

1
)
–

S
er

ia
l
O

u
tp

u
t

S
ta

ck
 A

g
g
.
H

M
I

F
IF

O
 (

2
)
–

E
th

er
n

et
 O

u
tp

u
t

S
ta

ck
 E

C
U

 C
en

te
r

F
IF

O
 (

3
)
–

S
er

ia
l
O

u
tp

u
t

S
ta

ck
 E

C
U

 C
en

te
r

F
IF

O
 (

4
)
–

E
th

er
n

et
 O

u
tp

u
t

S
ta

ck
 E

C
U

 F
ro

n
t

F
IF

O
 (

5
)
–

O
u

tp
u

t
P
o
rt

 C
en

tr
a
l
E

th
er

n
et

 S
w

it
ch

F
IF

O
 (

6
)
–

O
u

tp
u

t
P
o
rt

 C
en

tr
a
l
E

th
er

n
et

 S
w

it
ch

F
IF

O
 (

7
)
–

O
u

tp
u

t
P
o
rt

 C
en

tr
a
l
E

th
er

n
et

 S
w

it
ch

G
P

C
 (

1
)
–

C
o
n

tr
o
l
B

a
ck

G
P
C

 (
2
)
–

C
o
n

tr
o
l
C

en
tr

a
l

G
P

C
 (

3
)
–

C
o
n

tr
o
l
F
ro

n
t

G
P

C
 (

4
)
–

C
a
m

er
a
 F

o
rw

a
rd

er
G

P
C

 (
5

)
–

C
a
m

er
a
 P

ro
ce

ss

A
rr

i-
v
a
l

E
n

d

F
S

 (
1

)
–

C
P
U

 E
C

U
 B

a
ck

F
S

 (
2

)
–

C
P
U

 E
C

U
 F

ro
n

t

F
P
N

P
 (

1
)
–

C
A

N
 M

es
sa

g
e

(W
h

ee
lB

a
ck

L
ef

t)
F
P
N

P
 (

2
)
–

C
A

N
 M

es
sa

g
e

(W
h

ee
lF

ro
n

tL
ef

t)
F
P
N

P
 (

3
)
–

C
A

N
 M

es
sa

g
e

(W
h

ee
lB

a
ck

R
ig

h
t)

F
P
N

P
 (

4
)
–

C
A

N
 M

es
sa

g
e

(W
h

ee
lF

ro
n

tR
ig

h
t)

F
P
N

P
 (

5
)
–

C
A

N
 M

es
sa

g
e

(C
a
m

er
a
R

a
w

)

A
b
b
re

vi
a
ti

o
n

s

et

=
 e

x
ec

u
ti

o
n

 t
im

e
et

_s
cc

=
 m

a
x
.
et

 s
u

cc
es

so
r

U
n

it
s

et
[c

yc
le

s]
 o

r
[b

yt
es

]
ra

te
[c

yc
le

s/
m

s]
 o

r
[b

yt
es

/m
s]

d
el

a
y

[m
s]

Fi
gu

re
A

.2
:

C
om

pl
et

e
A

N
A

LY
S

IS
m

od
el

of
th

e
eC

ar
ex

am
pl

e.

141

A. APPENDIX

142

References

[1] ROBERT N. CHARTTE. This Car Runs on Code. IEEE Spectrum, 2009.

[2] ULRICH ABELEIN, HELMUT LOCHNER, DANIEL HAHN, AND STEFAN STRAUBE. Complexity, qual-
ity and robustness - the challenges of tomorrow’s automotive electronics. In 2012 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), pages 870–871, Dresden,
March 2012. IEEE.

[3] MANUEL BERNARD, CHRISTIAN BUCKL, VOLKMAR DÖRICHT, MARCUS FEHLING, LUDGER FIEGE,
HELMUTH VON GROLMAN, NICOLAS IVANDIC, CHRISTOPH JANELLO, CORNEL KLEIN, KARL-
JOSEF KUHN, CHRISTIAN PLATZLAFF, BETTINE CASSANDRA RIEDL, BERNHARD SCHÄTZ, AND

CHRISTIAN STANEK. Mehr Software (im) Wagen : Informations- und Kommunikation-
stechnik (IKT) als Motor der Elektromobilität der Zukunft. Technical report, fortiss
GmbH, 2011.

[4] CHRISTIAN BUCKL, ALEXANDER CAMEK, GERD KAINZ, CARSTEN SIMON, LJUBO MERCEP, HAUKE

STÄHLE, AND ALOIS KNOLL. The Software Car: Building ICT Architectures for Future
Electric Vehicles. In 2012 IEEE International Electric Vehicle Conference - IEVC’12, pages 1–8,
Greenville, SC, USA, March 2012. IEEE.

[5] LJUBO MERCEP, CLAUDIA BUITKAMP, HAUKE STÄHLE, GERNOT SPIEGELBERG, ALOIS KNOLL, AND

MARKUS LIENKAMP. The Innotruck Case Study on a Holistic Approach to Electric Mobility.
In 5th International Conference on Sustainable Automotive Technologies - ICSAT’13, pages 277–
287, Ingolstadt, Germany, September 2013. Springer International Publishing.

[6] ALOIS KNOLL, LJUBO MERCEP, AND HAUKE STÄHLE. Electric Mobility: Chances and Tech-
nical Challenges. In HARDO BRUHNS, editor, Energie - Technologien und Energiewirtschaft,
pages 47–62. Deutsche Physikalische Gesellschaft, Dresden, Germany, November 2013.

[7] GITTA ROHLING, GERNOT SPIEGELBERG, HAUKE STÄHLE, LJUBO MERCEP, AND CLAUDIA

BUITKAMP. Das Fahrzeug der Zukunft. Faszination Forschung (ISSN 1865-3022), (10):76–
84, June 2012.

[8] SONJA HAUSTEIN, ANU SIREN, ELISABETH FRAMKE, DANIEL BELL, EIKE POKRIEFKE, ALINE

ALAUZET, CLAUDE MARIN-LAMELLET, JIMMY ARMOOGUM, AND DESMONG O’NEIL. CONcerns
and SOLutions - Road Safety in the Ageing Societies: WP1 Demographic Change and
Transport Final Report. Technical Report February, CONSOL Partners, 2013.

[9] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO); TC 22/SC 3. ISO 26262:2011.
Road vehicles - Functional safety, 2010.

[10] VLADIMIR RUPANOV, CHRISTIAN BUCKL, LUDGER FIEGE, MICHAEL ARMBRUSTER, ALOIS KNOLL,
AND GERNOT SPIEGELBERG. Early Safety Evaluation of Design Decisions in E/E Archi-
tecture according to ISO 26262. In Proceedings of the 3rd international ACM SIGSOFT

143

REFERENCES

symposium on Architecting Critical Systems - ISARCS ’12, page 1, Bertinoro, Italy, 2012. ACM
Press.

[11] EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION. Decision No
585/2014/EU of the European Parliament and of the Council of 15 May 2014 on the
deployment of the interoperable EU-wide eCall service, 2014.

[12] TROY R. HAWKINS, OLA MOA GAUSEN, AND ANDERS HAMMER STRØMMAN. Environmental
impacts of hybrid and electric vehicles - a review. The International Journal of Life Cycle
Assessment, 17(8):997–1014, September 2012.

[13] SAM DOECKE, ALEX GRANT, AND ROBERT W. G. ANDERSON. The Real-World Safety Potential
of Connected Vehicle Technology. Traffic Injury Prevention, 16(sup1):S31–S35, June 2015.

[14] PURNENDU SINHA. Architectural design and reliability analysis of a fail-operational
brake-by-wire system from ISO 26262 perspectives. Reliability Engineering & System
Safety, 96(10):1349–1359, October 2011.

[15] LJUBO MERCEP. Context-Centric Design of Automotive Human-Machine Interfaces. Phd thesis,
Technische Universität München, 2014.

[16] LJUBO MERCEP, GERNOT SPIEGELBERG, AND ALOIS KNOLL. A Case Study on Implementing
Future Human-Machine Interfaces. In 2013 IEEE Intelligent Vehicles Symposium (IV), pages
1077–1082, Gold Coast City, Australia, June 2013. IEEE.

[17] GERNOT SPIEGELBERG, ANDREAS SCHWARZHAUPT, OTTMAR GEHRING, ARMIN A. SULZMANN,
AND OLIVER ROOKS. Using drive-by-wire technology to design integrated powertrain
modules - integration of the evaluation of surrounding variables. In Proceedings of the
2002 American Control Conference (IEEE Cat. No.CH37301), 5, pages 3719–3728. IEEE,
American Automatic Control Council, 2002.

[18] MARCO DI NATALE AND ALBERTO L. SANGIOVANNI-VINCENTELLI. Moving From Federated
to Integrated Architectures in Automotive: The Role of Standards, Methods and Tools.
Proceedings of the IEEE, 98(4):603–620, April 2010.

[19] SHANE TUOHY, MARTIN GLAVIN, CIARAN HUGHES, EDWARD JONES, MOHAN TRIVEDI, AND LIAM

KILMARTIN. Intra-Vehicle Networks: A Review. IEEE Transactions on Intelligent Transporta-
tion Systems, pages 1–12, 2014.

[20] JELENA FRTUNIKJ, VLADIMIR RUPANOV, ALEXANDER CAMEK, CHRISTIAN BUCKL, AND ALOIS

KNOLL. A Safety Aware Run-Time Environment for Adaptive Automotive Control Sys-
tems. In Embedded Real-Time Software and Systems (ERTS2), Toulouse, France, 2014.

[21] BERNHARD SCHÄTZ. The Role of Models in Engineering of Cyber-Physical Systems - Chal-
lenges and Possibilities. In 10. Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung einge-
betteter Systeme X, pages 91–96, March 2014.

[22] EDWARD ASHFORD LEE AND SANJIT ARUNKUMAR SESHIA. Introduction to Embedded Systems -
A Cyber-Physical Systems Approach. UC Berkeley, second edition, 2015.

[23] GERARDO PARDO-CASTELLOTE, BERT FARABAUGH, AND RICK WARREN. An Introduction to
DDS and Data-Centric Communications. Technical report, Real-Time Innovations (RTI),
2005.

[24] ROMAN OBERMAISSER, CHRISTIAN EL SALLOUM, BERNHARD HUBER, AND HERMANN KOPETZ.
From a Federated to an Integrated Automotive Architecture. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(7):956–965, July 2009.

144

REFERENCES

[25] P. PETI, R. OBERMAISSER, F. TAGLIABO, A. MARINO, AND S. CERCHIO. An Integrated Architec-
ture for Future Car Generations. In Eighth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’05), pages 2–13, Seattle, May 2005. IEEE.

[26] HAUKE STÄHLE, LJUBO MERCEP, ALOIS KNOLL, AND GERNOT SPIEGELBERG. Towards the De-
ployment of a Centralized ICT Architecture in the Automotive Domain. In 2nd Mediter-
ranean Conference on Embedded Computing - MECO’13, pages 66–69, Budva, Montenegro,
June 2013. IEEE.

[27] STEPHAN SOMMER, ALEXANDER CAMEK, KLAUS BECKER, CHRISTIAN BUCKL, ANDREAS ZIRKLER,
LUDGER FIEGE, MICHAEL ARMBRUSTER, GERNOT SPIEGELBERG, AND ALOIS KNOLL. RACE: A
Centralized Platform Computer Based Architecture for Automotive Applications. In
2013 IEEE International Electric Vehicle Conference (IEVC), pages 1–6, Santa Clara, CA, USA,
October 2013. IEEE.

[28] FRÉDÉRIC HOLZMANN, MARIO BELLINO, SASCHA KOLSKI, ARMIN SULZMANN, GERNOT SPIEGEL-
BERG, AND ROLAND SIEGWART. Robots go automotive - the SPARC approach. In Intelligent
Vehicles Symposium 2005, pages 478–483, Las Vegas, NV, USA, June 2005. IEEE.

[29] MARIO BELLINO, YURI LOPEZ DE MENESES, PETER RYSER, AND JACQUES JACOT. Lane detec-
tion algorithm for an onboard camera. In THOMAS P. PEARSALL, editor, SPIE proceedings
of the first Workshop on Photonics in the Automobile, pages 102–111, Geneva, Switzerland,
February 2005.

[30] LOTHAR THIELE, SAMARJIT CHAKRABORTY, AND MARTIN NAEDELE. Real-time calculus for
scheduling hard real-time systems. In 2000 IEEE International Symposium on Circuits and
Systems, pages 101–104, Geneva, Switzerland, May 2000. Presses Polytech. Univ. Romandes.

[31] CLEMENS SZYPERSKI, DOMINIK GRUNTZ, AND MURER STEPHAN. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, second edition, 2002.

[32] IVICA CRNKOVIC, JUDITH STAFFORD, AND CLEMENS SZYPERSKI. Software Components be-
yond Programming: From Routines to Services. IEEE Software, 28(3):22–26, May 2011.

[33] JAN CARLSON, JOHN HÅKANSSON, AND PAUL PETTERSSON. SaveCCM: An Analysable Com-
ponent Model for Real-Time Systems. Electronic Notes in Theoretical Computer Science,
160:127–140, August 2006.

[34] ANETA VULGARAKIS, JAGADISH SURYADEVARA, JAN CARLSON, CRISTINA SECELEANU, AND PAUL

PETTERSSON. Formal Semantics of the ProCom Real-Time Component Model. In 2009
35th Euromicro Conference on Software Engineering and Advanced Applications, pages 478–
485, Patras, Greece, August 2009. IEEE.

[35] MARCO PANUNZIO AND TULLIO VARDANEGA. A component-based process with separation
of concerns for the development of embedded real-time software systems. Journal of
Systems and Software, 96:105–121, October 2014.

[36] OBJECT MANAGEMENT GROUP (OMG). Data Distribution Service for Real-time Systems
Version 1.2, 2007.

[37] JEAN BÉZIVIN. In search of a basic principle for Model Driven Engineering. Special
Novatica Issue - UML and Model Engineering, 5(2):21–24, 2004.

[38] THOMAS STAHL, MARKUS VÖLTER, JORN BETTIN, ARNO HAASE, SIMON HELSEN, AND

KRZYSZTOF CZARNECKI. Model-Driven Software Development: Technology, Engineering, Man-
agement. John Wiley & Sons Ltd., 2006.

145

REFERENCES

[39] OBJECT MANAGEMENT GROUP (OMG). MDA Guide Version 1.0.1, 2003.

[40] DAVE STEINBERG, FRANK BUDINSKY, ED MERKS, AND MARCELO PATERNOSTRO. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, second edition, 2009.

[41] OBJECT MANAGEMENT GROUP (OMG). OMG Meta Object Facility (MOF) Core Specification
Version 2.4.1, 2013.

[42] OBJECT MANAGEMENT GROUP (OMG). OMG Unified Modeling Language (OMG UML)
Version 2.5, 2015.

[43] DARKO DURISIC, MIROSLAW STARON, MATTHIAS TICHY, AND JORGEN HANSSON. Evolution of
Long-Term Industrial Meta-Models – An Automotive Case Study of AUTOSAR. In 2014
40th EUROMICRO Conference on Software Engineering and Advanced Applications, pages 141–
148, Verona, Italy, August 2014. IEEE.

[44] OBJECT MANAGEMENT GROUP (OMG). Systems Modeling Language (SysML), 2012.

[45] EAST-ADL ASSOCIATION. EAST-ADL Domain Model Specification V2.1.12, 2013.

[46] OBJECT MANAGEMENT GROUP (OMG). UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems, 2011.

[47] FRÉDÉRIC JOUAULT, FREDDY ALLILAIRE, JEAN BÉZIVIN, AND IVAN KURTEV. ATL: A model trans-
formation tool. Science of Computer Programming, 72(1-2):31–39, 2008.

[48] OBJECT MANAGEMENT GROUP (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.2, 2005.

[49] ALEXANDER KRAAS. Realizing Model Simplifications with QVT Operational Mappings. In
4th International Workshop on OCL and Textual Modelling co-located with 17th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2014), pages 53–
62, Valencia, Spain, 2014.

[50] DIMITRIS KOLOVOS, LOUIS ROSE, ANTONIO GARCÍA-DOMÍNGUEZ, AND RICHARD PAIGE. The
Epsilon Book. Eclipse Foundation, 2015.

[51] LESLIE LAMPORT. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, July 1978.

[52] HERMANN KOPETZ. Real-Time Systems. Real-Time Systems Series. Springer US, Boston, MA,
2011.

[53] M. RAYNAL AND M. SINGHAL. Logical Time: Capturing Causality in Distributed Systems.
Computer, 29(2):49–56, 1996.

[54] REINHARD WILHELM, TULIKA MITRA, FRANK MUELLER, ISABELLE PUAUT, PETER PUSCHNER,
JAN STASCHULAT, PER STENSTRÖM, JAKOB ENGBLOM, ANDREAS ERMEDAHL, NIKLAS HOLSTI,
STEPHAN THESING, DAVID WHALLEY, GUILLEM BERNAT, CHRISTIAN FERDINAND, AND REIN-
HOLD HECKMANN. The Worst-Case Execution Time Problem - Overview of Methods and
Survey of Tools. ACM Transactions on Embedded Computing Systems, 7(3):1–53, April 2008.

[55] AUTOSAR 4.2.1. Specification of Timing Extensions, 2014.

[56] NICO FEIERTAG, KAI RICHTER, JOHAN NORDLANDER, AND JAN JONSSON. A Compositional
Framework for End-to-End Path Delay Calculation of Automotive Systems under Dif-
ferent Path Semantics. In IEEE Real-Time System Symposium - Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems, Barcelona, Spain, 2008.

146

REFERENCES

[57] MARTIJN HENDRIKS AND MARCEL VERHOEF. Timed Automata Based Analysis of Embedded
System Architectures. In Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium, page 8 pp., Rhodes Island, Greece, April 2006. IEEE.

[58] BERNARD BERTHOMIEU AND MICHEL DIAZ. Modeling and Verification of Time Dependent
Systems Using Time Petri Nets. IEEE Transactions on Software Engineering, 17(3):259–273,
March 1991.

[59] SIMON PERATHONER, ERNESTO WANDELER, LOTHAR THIELE, ARNE HAMANN, SIMON

SCHLIECKER, RAFIK HENIA, RAZVAN RACU, ROLF ERNST, AND MICHAEL GONZÁLEZ HARBOUR.
Influence of different abstractions on the performance analysis of distributed hard real-
time systems. Design Automation for Embedded Systems, 13(1-2):27–49, April 2008.

[60] SEBASTIAN REITER, ANDREAS BURGER, ALEXANDER VIEHL, OLIVER BRINGMANN, AND WOLF-
GANG ROSENSTIEL. Virtual Prototyping Evaluation Framework for Automotive Embedded
Systems Engineering. In Proceedings of the Seventh International Conference on Simulation
Tools and Techniques, Lisbon, Portugal, March 2014. ICST.

[61] ARQUIMEDES CANEDO, JIANG WAN, AND MOHAMMAD ABDULLAH AL FARUQUE. Functional
Modeling Compiler for System-Level Design of Automotive Cyber-Physical Systems. In
2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 39–46,
San Jose, CA, USA, November 2014.

[62] HOSAM K. FATHY, ZORAN S. FILIPI, JONATHAN HAGENA, AND JEFFREY L. STEIN. Review of
Hardware-in-the-Loop Simulation and Its Prospects in the Automotive Area. In KEVIN

SCHUM AND ALEX F. SISTI, editors, Modeling and Simulation for Military Applications, 6228,
pages 1–20, May 2006.

[63] VEJLUPEK JOSEF, GREPL ROBERT, KREJCI PETR, LESAK FRANTISEK, AND MATOUS KAREL.
Hardware-In-the-Loop Simulation for Automotive Parking Assistant Control Units. In
Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014, pages
325–330, Brno, Czech Republic, December 2014. IEEE.

[64] ERNESTO WANDELER AND LOTHAR THIELE. Characterizing Workload Correlations in Multi
Processor Hard Real-Time Systems. In 11th IEEE Real Time and Embedded Technology and
Applications Symposium (RTAS 2005), pages 46–55, San Francisco, CA, USA, March 2005.
IEEE.

[65] ERNESTO WANDELER AND LOTHAR THIELE. Real-Time Calculus (RTC) Toolbox, 2006.

[66] KEN TINDELL AND JOHN CLARK. Holistic schedulability analysis for distributed hard real-
time systems. Microprocessing and Microprogramming, 40(2-3):117–134, April 1994.

[67] M. GONZALEZ HARBOUR, J.J. GUTIERREZ GARCIA, J.C. PALENCIA GUTIERREZ, AND J.M. DRAKE

MOYANO. MAST: Modeling and Analysis Suite for Real Time Applications. In Proceed-
ings 13th Euromicro Conference on Real-Time Systems (ECRTS01), pages 125–134, Delft, The
Netherlands, June 2001. IEEE Comput. Soc.

[68] MICHAEL GONZÁLEZ HARBOUR. Analysis Techniques used in MAST. Technical report, Grupo
de Ingeniería de Software y Tiempo Real, Universidad de Cantabria, 2014.

[69] R. HENIA, A. HAMANN, M. JERSAK, R. RACU, K. RICHTER, AND R. ERNST. System level per-
formance analysis - the SymTA/S approach. IEEE Proceedings - Computers and Digital
Techniques, 152(2):148–166, 2005.

147

REFERENCES

[70] KAI RICHTER. Compositional Scheduling Analysis Using Standard Event Models - The SymTA/S
Approach. Phd thesis, Technical University of Braunschweig, 2005.

[71] SIMON PERATHONER. Modular Performance Analysis of Embedded Real-Time Systems: Improv-
ing Modeling Scope and Accuracy. Phd thesis, Swiss Federal Institute of Technology Zurich
(ETH), 2011.

[72] RAJEEV ALUR AND DAVID L. DILL. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

[73] KAI LAMPKA, SIMON PERATHONER, AND LOTHAR THIELE. Analytic Real-Time Analysis and
Timed Automata: A Hybrid Methodology for the Performance Analysis of Embedded
Real-Time Systems. Design Automation for Embedded Systems, 14(3):193–227, 2010.

[74] KIM G. LARSEN, PAUL PETTERSSON, AND WANG YI. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134–152, February 1997.

[75] KAI LAMPKA AND LOTHAR THIELE. Combining computational and analytic model descrip-
tions for evaluating embedded real-time systems. Technical report, Computer Engineering
and Communication Networks Lab., ETH Zurich, Switzerland, 2008.

[76] STEFFEN KOLLMAN AND VICTOR POLLEX. Comparative Application of Real-Time Verifica-
tion Methods to an Automotive Architecture. In 18th International Conference on Real-Time
and Network Systems, pages 89–98, Toulouse, November 2010.

[77] ERNESTO WANDELER. Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. Phd thesis, Swiss Federal Institute of Technology Zurich (ETH), 2006.

[78] GODOFREDO R. GARAY, JULIO ORTEGA, AND VICENTE ALARCON-AQUINO. Comparing Real-
Time Calculus with the Existing Analytical Approaches for the Performance Evaluation
of Network Interfaces. In 21st International Conference on Electrical Communications and
Computers (CONIELECOMP 2011), pages 119–124, Cholula, Mexico, February 2011. IEEE.

[79] THILO STREICHERT AND MATTHIAS TRAUB. Elektrik/Elektronik-Architekturen im Kraftfahrzeug
- Modellierung und Bewertung von Echtzeitsystemen. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2012.

[80] ERNESTO WANDELER, LOTHAR THIELE, MARCEL VERHOEF, AND PAUL LIEVERSE. System ar-
chitecture evaluation using modular performance analysis: a case study. International
Journal on Software Tools for Technology Transfer, 8(6):649–667, July 2006.

[81] SAMARJIT CHAKRABORTY, SIMON KUNZLI, AND LOTHAR THIELE. A General Framework for
Analysing System Properties in Platform-Based Embedded SystemDesigns. In 2003 De-
sign, Automation and Test in Europe Conference and Exhibition (DATE), pages 190–195, Mu-
nich, Germany, February 2003. IEEE Comput. Soc.

[82] RENE L. CRUZ. A Calculus for Network Delay, Part I: Network Elements in Isolation. IEEE
Transactions on Information Theory, 37(1):114–131, 1991.

[83] RENE L. CRUZ. A Calculus for Network Delay, Part II: Network Analysis. IEEE Transactions
on Information Theory, 37(1):132–141, 1991.

[84] JEAN-YVES LE BOUDEC AND PATRICK THIRAN. Network Calculus - A Theory of Deterministic
Queuing Systems for the Internet, 2050 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Berlin, Heidelberg, January 2001.

148

REFERENCES

[85] ANNE BOUILLARD, LAURENT JOUHET, AND ERIC THIERRY. Service curves in Network Calcu-
lus: dos and don’ts. Technical report, INRIA (French Institute for Research in Computer
Science and Automation), 2009.

[86] FRANCOIS BACCELLI, GUY COHEN, GEERT J. OLSDER, AND JEAN-PIERRE QUADRAT. Synchro-
nization and Linearity - An Algebra for Discrete Event Systems. École des Ponts ParisTech, web
edition, 2001.

[87] BENGT JONSSON, SIMON PERATHONER, LOTHAR THIELE, AND WANG YI. Cyclic Dependencies
in Modular Performance Analysis. In Proceedings of the 8th ACM international conference
on Embedded software - EMSOFT ’08, page 179, Atlanta, GA, USA, October 2008. ACM Press.

[88] MATTHIEU MOY AND KARINE ALTISEN. Arrival Curves for Real-Time Calculus: The Causal-
ity Problem and Its Solutions. In Proceedings of the 16th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 6015, pages 358–372, Paphos,
Cyprus, March 2010.

[89] KARINE ALTISEN AND MATTHIEU MOY. Causality Closure for a New Class of Curves in
Real-Time Calculus. In 1st International Workshop on Worst-Case Traversal Time, pages 3–
10, Vienna, Austria, November 2011. ACM Press.

[90] ERNESTO WANDELER AND LOTHAR THIELE. Optimal TDMA Time Slot and Cycle Length
Allocation for Hard Real-Time Systems. In Proceedings of the 11th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 479–484, Yokohama, Japan, January 2006.

[91] ALEXANDER MAXIAGUINE, SIMON KÜNZLI, AND LOTHAR THIELE. Workload Characterization
Model for Tasks with Variable Execution Demand. In Proceedings of Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2, pages 1040–1045, Paris, France,
February 2004. IEEE.

[92] WOLFGANG HAID AND LOTHAR THIELE. Complex Task Activation Schemes in System Level
Performance Analysis. In Proceedings of the 5th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis - CODES+ISSS ’07, pages 173–178, Salzburg,
Austria, October 2007. ACM Press.

[93] LINH THI XUAN PHAN, REINHARD SCHNEIDER, SAMARJIT CHAKRABORTY, AND INSUP LEE. Mod-
eling Buffers with Data Refresh Semantics in Automotive Architectures. In Proceedings
of the tenth ACM international conference on Embedded software - EMSOFT ’10, page 119,
Scottsdale, AZ, USA, October 2010. ACM Press.

[94] BRICE MORIN, OLIVIER BARAIS, JEAN-MARC JEZEQUEL, FRANCK FLEUREY, AND ARNOR SOL-
BERG. Models@Run.time to Support Dynamic Adaptation. Computer, 42(10):44–51, Oc-
tober 2009.

[95] CHRISTIAN BUCKL, MICHAEL GEISINGER, DHIRAJ GULATI, FRAN J. RUIZ-BERTOL, AND ALOIS

KNOLL. CHROMOSOME: A Run-Time Environment for Plug & Play-Capable Embedded
Real-Time Systems. ACM SIGBED Review, 11(3):36–39, 2014.

[96] RICHARD ANTHONY, ACHIM RETTBERG, DEJIU CHEN, ISABELL JAHNICH, GERRIT DE BOER, AND

CECILIA EKELIN. Towards a Dynamically Reconfigurable Automotive Control System Ar-
chitecture. Embedded System Design: Topics, Techniques and Trends, 231:71–84, 2007.

[97] COMPAQ; HEWLETT-PACKARD; INTEL; LUCENT; MICROSOFT; NEC; PHILIPS. Universal Serial
Bus Specification Revision 2.0, 2000.

149

REFERENCES

[98] FRESCOR PARTNERS. Framework for Real-time Embedded Systems based on COntRACTS
(FRESCOR) Deliverable - Final Project Report. Technical report, Universidad de Cantabria,
2005.

[99] WERNER DAMM, HARDI HUNGAR, BERNHARD JOSKO, THOMAS PEIKENKAMP, AND INGO

STIERAND. Using Contract-based Component Specifications for Virtual Integration Test-
ing and Architecture Design. In 2011 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1–6, Grenoble, France, March 2011.

[100] ALBERTO SANGIOVANNI-VINCENTELLI, WERNER DAMM, AND ROBERTO PASSERONE. Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European Journal
of Control, 18(3):217–238, January 2012.

[101] AUTOSAR 4.2.1. Methodology, 2014.

[102] KLAUS BECKER AND SEBASTIAN VOSS. Analyzing Graceful Degradation for Mixed Critical
Fault-Tolerant Real-Time Systems. In 2015 IEEE 18th International Symposium on Real-Time
Distributed Computing (ISORC), pages 110–118, Auckland, New Zealand, April 2015.

[103] FRANCK FLEUREY AND ARNOR SOLBERG. A Domain Specific Modeling Language Supporting
Specification, Simulation and Execution of Dynamic Adaptive Systems. Lecture Notes in
Computer Science, 5795 LNCS:606–621, 2009.

[104] PIERRE BIEBER, FRÉDÉRIC BIONIOL, MARC BOYER, ERIC NOULARD, AND CLAIRE PAGETTI. New
Challenges for Future Avionic Architectures. Aerospace Lab Journal, 11(4):1–10, 2012.

[105] JAKOB AXELSSON AND AVENIR KOBETSKI. On the Conceptual Design of a Dynamic Com-
ponent Model for Reconfigurable AUTOSAR Systems. In ACM SIGBED Review - Special
Issue on the 5th Workshop on Adaptive and Reconfigurable Embedded Systems, pages 45–48,
Philadelphia, PA, USA, December 2013.

[106] MARTIN EDER AND ALOIS KNOLL. Design of an Experimental Platform for an X-by-wire
Car with Four-wheel Steering. In 2010 IEEE International Conference on Automation Science
and Engineering, pages 656–661, Toronto, Canada, August 2010. IEEE.

[107] HAUKE STÄHLE, KAI HUANG, AND ALOIS KNOLL. Drive-by-Wireless with the eCar Demon-
strator. In 4th ACM SIGBED International Workshop on Design, Modeling, and Evaluation of
Cyber-Physical Systems - CyPhy’14, pages 19–22, Berlin, Germany, April 2014. ACM Press.

[108] ROBERT BOSCH GMBH. CAN Specification Version 2.0, 1991.

[109] TIMMO-2-USE. Language syntax, semantics, metamodel V2 Version 1.2, 2012.

[110] PETER H. FEILER AND JÖRGEN HANSSON. Flow Latency Analysis with the Architecture
Analysis and Design Language (AADL). Technical Report CMU/SEI-2007-TN-010, Software
Engineering Institute, Carnegie Mellon University, 2007.

[111] ARDA GOKNIL, JAGADISH SURYADEVARA, MARIE AGNÈS PERALDI-FRATI, AND FRÉDÉRIC MAL-
LET. Analysis Support for TADL2 Timing Constraints on EAST-ADL Models. Lecture Notes
in Computer Science, 7957 LNCS:89–105, 2013.

[112] JEAN BÉZIVIN, SALIM BOUZITOUNA, MARCOS DIDONET DEL FABRO, MARIE-PIERRE GERVAIS,
FRÉDÉRIC JOUAULT, DIMITRIOS S. KOLOVOS, IVAN KURTEV, AND RICHARD F. PAIGE. A Canonical
Scheme for Model Composition. Model Driven Architecture - Foundations and Applications,
pages 346–360, 2006.

150

REFERENCES

[113] RODOLFO PELLIZZONI, ANDREAS SCHRANZHOFER, JIAN-JIA CHEN, MARCO CACCAMO, AND

LOTHAR THIELE. Worst Case Delay Analysis for Memory Interference in Multicore Sys-
tems. In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
741–746, Dresden, Germany, March 2010. IEEE.

[114] ANDREAS SCHRANZHOFER. Efficiency and predictability in resource sharing multicore systems.
PhD thesis, Swiss Federal Institute of Technology Zurich (ETH), 2011.

[115] GANG CHEN, KAI HUANG, AND ALOIS KNOLL. Adaptive Dynamic Power Management for
Hard Real-time Pipelined Multiprocessor Systems. In 2014 IEEE 20th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10,
Chongqing, China, August 2014. IEEE.

[116] JAMES F. KUROSE AND KEITH W. ROSS. Computer Networking - A Top-Down Approach. Pearson,
sixth edition, 2012.

[117] JORK LOESER AND HERMANN HAERTIG. Low-latency Hard Real-Time Communication over
Switched Ethernet. In Proceedings of the 16th Euromicro Conference on Real-Time Systems
(ECRTS 2004), pages 13–22, Catania, Italy, June 2004. IEEE.

[118] JEAN-PHILIPPE GEORGES, THIENY DIVOUX, AND ERIC RONDEAU. Comparison of Switched
Ethernet Architectures Models. In Proceedings of the 9th IEEE International Conference on
Emerging Technologies and Factory Automation (EFTA), 1, pages 375–382, Lisbon, Portugal,
September 2003. IEEE.

[119] KASPER REVSBECH, HENRIK SCHIØLER, TATIANA K. MADSEN, AND JIMMY J. NIELSEN. Worst-
Case Traversal Time Modelling of Ethernet Based In-Car Networks Using Real Time
Calculus. Lecture Notes in Computer Science, 6869/2011:219–230, 2011.

[120] MATTHIAS A. TRAUB. Durchgängige Timing-Bewertung von Vernetzungsarchitekturen und
Gateway-Systemen im Kraftfahrzeug. PhD thesis, Karlsruhe Institut für Technologie (KIT),
2010.

[121] DEVESH B. CHOKSHI AND PURANDAR BHADURI. Modeling Fixed Priority Non-Preemptive
Scheduling with Real-Time Calculus. In 2008 14th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications, pages 387–392, Kaohsiung, China,
August 2008. IEEE.

[122] SHANE TUOHY, MARTIN GLAVIN, EDWARD JONES, MOHAN TRIVEDI, AND LIAM KILMARTIN. Next
Generation Wired Intra-Vehicle Networks, A Review. In 2013 IEEE Intelligent Vehicles
Symposium (IV), pages 777–782, Gold Coast City, Australia, June 2013. IEEE.

[123] MICHAEL D. JOHAS TEENER, ANDRE N. FREDETTE, CHRISTIAN BOIGER, PHILIPPE KLEIN, CRAIG

GUNTHER, DAVID OLSEN, AND KEVIN STANTON. Heterogeneous Networks for Audio and
Video: Using IEEE 802.1 Audio Video Bridging. Proceedings of the IEEE, 101(11):2339–
2354, November 2013.

[124] RENE QUECK. Analysis of Ethernet AVB for Automotive Networks using Network Calcu-
lus. In 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pages
61–67, Istanbul, Turkey, July 2012. Ieee.

[125] FELIX REIMANN, SEBASTIAN GRAF, FABIAN STREIT, MICHAEL GLAS, AND JURGEN TEICH. Tim-
ing Analysis of Ethernet AVB-based Automotive E/E Architectures. In 2013 IEEE 18th
Conference on Emerging Technologies & Factory Automation (ETFA), pages 1–8, Cagliari, Italy,
September 2013. IEEE.

151

REFERENCES

[126] ANDREI HAGIESCU, UNMESH D. BORDOLOI, SAMARJIT CHAKRABORTY, PRAHLADAVARADAN

SAMPATH, P. VIGNESH V. GANESAN, AND S. RAMESH. Performance Analysis of FlexRay-based
ECU Networks. In 44th ACM/IEEE Design Automation Conference (DAC), pages 284–289, San
Diego, CA, USA, June 2007. IEEE.

[127] DEVESH B. CHOKSHI AND PURANDAR BHADURI. Performance analysis of FlexRay-based
systems using Real-Time Calculus, Revisited. In Proceedings of the 2010 ACM Symposium
on Applied Computing - SAC ’10, page 351, Sierre, Switzerland, March 2010. ACM Press.

[128] ROBERT TARJAN. Depth-first search and linear graph algorithms. 12th Annual Symposium
on Switching and Automata Theory (swat 1971), 1(2):146–160, 1971.

[129] A. B. KAHN. Topological Sorting of Large Networks. Communications of the ACM,
5(11):558–562, 1962.

[130] ERNESTO WANDELER AND LOTHAR THIELE. Interface-Based Design of Real-Time Systems
with Hierarchical Scheduling. In 12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’06), pages 243–252, San Jose, CA, USA, April 2006. IEEE.

[131] ANNE BOUILLARD AND ÉRIC THIERRY. An Algorithmic Toolbox for Network Calculus. Dis-
crete Event Dynamic Systems, 18(1):3–49, October 2007.

[132] ANNE BOUILLARD, BERTRAND COTTENCEAU, BRUNO GAUJAL, LAURENT HARDOUIN, SÉBASTIEN

LAGRANGE, AND MEHDI LHOMMEAU. COINC Library: a toolbox for the Network Calculus.
In Proceedings of the 4th International ICST Conference on Performance Evaluation Methodolo-
gies and Tools, pages 1–3, Pisa, Italy, October 2009. ICST.

[133] CHENG-SHANG CHANG. Performance Guarantees in Communication Networks. European
Transactions on Telecommunications, 12(4):357–358, July 2001.

[134] JOHN HERSHBERGER. Finding the upper envelope of n line segments in O(n log n) time.
Information Processing Letters, 33(4):169–174, December 1989.

[135] WEI CHEN AND KOICHI WADA. On Computing the Upper Envelope of Segments in Parallel.
IEEE Transactions on Parallel and Distributed Systems, 13(1):5–13, 2002.

[136] LOTHAR THIELE AND NIKOLAY STOIMENOV. Modular Performance Analysis of Cyclic
Dataflow Graphs. In Proceedings of the 9th ACM international conference on Embedded soft-
ware - EMSOFT ’09, page 127, Grenoble, France, October 2009. ACM Press.

[137] NIKOLAY N. STOIMENOV. Compositional Design and Analysis of Distributed, Cyclic, and Adaptive
Embedded Real-Time Systems. PhD thesis, Swiss Federal Institute of Technology Zurich (ETH),
2011.

[138] KAI HUANG, WOLFGANG HAID, IULIANA BACIVAROV, MATTHIAS KELLER, AND LOTHAR THIELE.
Embedding Formal Performance Analysis into the Design Cycle of MPSoCs for Real-time
Streaming Applications. ACM Transactions on Embedded Computing Systems, 11(1):1–23,
March 2012.

[139] HENRIK SCHIOLER, JAN J. JESSEN, JENS D. NIELSEN, AND KIM G. LARSEN. Network Cal-
culus for Real Time Analysis of Embedded Systems with Cyclic Task Dependencies. In
20th International Conference on Computers and Their Applications, CATA 2005, New Orleans,
Louisiana, USA, 2005.

[140] LICONG ZHANG, REINHARD SCHNEIDER, ALEJANDRO MASRUR, MARTIN BECKER, MARTIN

GEIER, AND SAMARJIT CHAKRABORTY. Timing Challenges in Automotive Software Archi-
tectures. In Companion Proceedings of the 36th International Conference on Software Engi-
neering - ICSE Companion 2014, pages 606–607, Hyderabad, India, May 2014. ACM Press.

152

REFERENCES

[141] LINH T. X. PHAN, SAMARJIT CHAKRABORTY, P. S. THIAGARAJAN, AND LOTHAR THIELE. Com-
posing Functional and State-Based Performance Models for Analyzing Heterogeneous
Real-Time Systems. In 28th IEEE International Real-Time Systems Symposium (RTSS 2007),
pages 343–352, Tucson, Arizona, USA, December 2007. IEEE.

[142] KARINE ALTISEN AND MATTHIEU MOY. ac2lus: Bringing SMT-Solving and Abstract Inter-
pretation Techniques to Real-Time Calculus through the Synchronous Language Lustre.
In 2010 22nd Euromicro Conference on Real-Time Systems, pages 207–216, Brussels, Belgium,
July 2010. IEEE.

[143] NAN GUAN AND WANG YI. Finitary Real-Time Calculus: Efficient Performance Analysis of
Distributed Embedded Systems. In 2013 IEEE 34th Real-Time Systems Symposium, pages
330–339, Vancouver, Canada, December 2013. IEEE.

[144] URBAN SUPPIGER, SIMON PERATHONER, KAI LAMPKA, AND LOTHAR THIELE. A simple approx-
imation method for reducing the complexity of Modular Performance Analysis. Techni-
cal report, Computer Engineering and Networks Laboratory of the Swiss Federal Institute of
Technology, Zurich (ETH), 2010.

[145] SIMON KÜNZLI. Efficient Design Space Exploration for Embedded Systems. Phd thesis, Swiss
Federal Institute of Technology Zurich (ETH), 2006.

[146] NADINE KEDDIS, GERD KAINZ, CHRISTIAN BUCKL, AND ALOIS KNOLL. Towards Adaptable
Manufacturing Systems. In 2013 IEEE International Conference on Industrial Technology
(ICIT), pages 1410–1415, Cape Town, Western Cape, South Africa, February 2013. IEEE.

[147] YORAM KOREN. The Global Manufacturing Revolution. John Wiley & Sons, Inc., Hoboken, NJ,
USA, May 2010.

[148] NADINE KEDDIS, JONATHAN BURDALO, GERD KAINZ, AND ALOIS ZOITL. Increasing the Adapt-
ability of Manufacturing Systems by using Data-centric Communication. In 19th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA 2014),
Barcelona, Spain, September 2014.

[149] YANJA DAJSUREN, MARK VAN DEN BRAND, ALEXANDER SEREBRENIK, AND RUDOLF HUISMAN.
Automotive ADLs: A Study on Enforcing Consistency Through Multiple Architectural
Levels. In Proceedings of the 8th international ACM SIGSOFT conference on Quality of Software
Architectures - QoSA ’12, page 71, Bertinoro, Italy, June 2012. ACM Press.

[150] HUANG BO, DONG HUI, WANG DAFANG, AND ZHAO GUIFAN. Basic Concepts on AUTOSAR
Development. In 2010 International Conference on Intelligent Computation Technology and
Automation, pages 871–873, Changsha, China, May 2010. IEEE.

[151] MICHAEL SEIBT. Architekturmodellierung mit EAST-ADL2 und AUTOSAR. AUTOMOTIVE
- Spezial Baden-Baden 2009, pages 38–41, 2009.

[152] PETER H. FEILER, DAVID P. GLUCH, AND JOHN J. HUDAK. The Architecture Analysis & Design
Language (AADL): An Introduction. Technical Report CMU/SEI-2006-TN-011, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2006.

[153] ANDREAS JOHNSEN AND KRISTINA LUNDQVIST. Developing Dependable Software-Intensive
Systems: AADL vs. EAST-ADL. In 16th Ada-Europe International Conference on Reliable
Software Technologies, 6652 LNCS, pages 103–117, Edinburgh, UK, 2011. Springer Berlin
Heidelberg.

153

REFERENCES

[154] FRÉDÉRIC MALLET AND ROBERT DE SIMONE. MARTE vs. AADL for Discrete-Event and
Discrete-Time Domains. In PROF. DR. MARTIN RADETZKI, editor, Languages for Embedded
Systems and their Applications, 36, pages 27–41. Springer Netherlands, 2009.

[155] HUASCAR ESPINOZA, SÉBASTIEN GÉRARD, HENRIK LÖNN, AND RAMIN TAVAKOLI KOLAGARI.
Harmonizing MARTE, EAST-ADL2, and AUTOSAR to Improve the Modelling of Automo-
tive Systems. In Standards workshop (Satellite workshop of the 21st Euromicro Conference on
Real-Time Systems), Dublin, Ireland, June 2009.

[156] ANDREAS WEINMANN. Automobile Systeme in der Automatisierung - AUTOSAR und
Echtzeit, 2013.

[157] TIMMO-2-USE. Methodology description V2 Version 1.0, 2012.

[158] LOÏC BESNARD, THIERRY GAUTIER, PAUL LE GUERNIC, AND JEAN-PIERRE TALPIN. Whitepaper:
Towards a Synchronous Timing Annex for AADL, 2013.

[159] CHRISTIAN BUCKL, IRINA GAPONOVA, MICHAEL GEISINGER, ALOIS KNOLL, AND EDWARD A.
LEE. Model-Based Specification of Timing Requirements. In Proceedings of the Tenth ACM
International Conference on Embedded Software - EMSOFT ’10, page 239, Scottsdale, Arizona,
October 2010. ACM Press.

[160] KAI HUANG, LUCA SANTINELLI, JIAN-JIA CHEN, LOTHAR THIELE, AND GIORGIO C. BUTTAZZO.
Periodic Power Management Schemes for Real-Time Event Streams. In Proceedings of
the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pages 6224–6231, Shanghai, China, December 2009. IEEE.

[161] PRATYUSH KUMAR. Hard Real-Time Guarantees in Cyber-Physical Systems. PhD thesis, Swiss
Federal Institute of Technology Zurich (ETH), 2014.

[162] ANNE BOUILLARD, LINH T.X. PHAN, AND SAMARJIT CHAKRABORTY. Lightweight Modeling of
Complex State Dependencies in Stream Processing Systems. In 2009 15th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 195–204, San Francisco, CA,
United States, April 2009. IEEE.

[163] KAI HUANG, LOTHAR THIELE, TODOR STEFANOV, AND ED DEPRETTERE. Performance Analysis
of Multimedia Applications using Correlated Streams. In 2007 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1–6, Nice Acropolis, France, April 2007.
IEEE.

[164] SIMON PERATHONER, TOBIAS REIN, LOTHAR THIELE, KAI LAMPKA, AND JONAS ROX. Modeling
Structured Event Streams in System Level Performance Analysis. ACM SIGPLAN Notices,
45(4):37, April 2010.

[165] LOTHAR THIELE KÜNZLI, SAMARJIT CHAKRABORTY, MATTHIAS GRIES, AND SIMON. Design
Space Exploration of Network Processor Architectures. Network Processor Design: Issues
and Practices, 1:30–51, 2002.

[166] SAMARJIT CHAKRABORTY. System-Level Timing Analysis and Scheduling for Embedded Packet
Processors. Phd thesis, Swiss Federal Institute of Technology Zurich (ETH), 2003.

[167] KARSTEN ALBERS, FRANK BODMANN, AND FRANK SLOMKA. Advanced Hierarchical Event-
Stream Model. In 2008 20th Euromicro Conference on Real-Time Systems, pages 211–220,
Prague, Czech Republic, July 2008. IEEE.

[168] KARSTEN ALBERS. Approximative Real-Time Analysis. Phd thesis, University of Ulm, 2008.

154

REFERENCES

[169] DAVID HUTCHISON AND JOHN C MITCHELL. Model-Based Engineering of Embedded Real-
Time Systems. International Dagstuhl Workshop, Dagstuhl Castle, Germany, November 4-9,
2007. Revised Selected Papers, 6100, 2011.

[170] MAGNUS PERSSON. Adaptive Middleware for Self-Configurable Embedded Real-Time Systems.
PhD thesis, KTH Schhol of Industrial Technology and Management, 2009.

[171] LEI FENG, DEJIU CHEN, AND MARTIN TÖRNGREN. Self Configuration of Dependent Tasks
for Dynamically Reconfigurable Automotive Embedded Systems. In 47th IEEE Conference
on Decision and Control, pages 3737–3742, Cancun, Mexico, December 2008. Ieee.

[172] GONZÁLEZ H. MICHAEL, DANIEL SANGORRÍN, AND MIGUEL T. DE ESTEBAN. FRESCOR De-
liverable - Schedulability analysis techniques for distributed systems. Technical report,
Universidad de Cantabria, 2005.

[173] DREAMS CONSORTIUM. Architectural Conceptualization - Deliverable D1.1.1, Dis-
tributed Real-time Architecture for Mixed Criticality Systems (DREAMS), 2015.

[174] DREAMS CONSORTIUM. Architectural Style - Deliverable D1.2.1, Distributed Real-time
Architecture for Mixed Criticality Systems (DREAMS), 2014.

[175] IBM, FRAUNHOFER FOKUS, THALES, AND TATA CONSULTANCY SERVICES. Common Variability
Language (CVL) OMG Revised Submission, 2012.

[176] SAOUSSEN ANSSI, KARSTEN ALBERS, MATTHIAS DÖRFEL, AND SÉBASTIEN GÉRARD. chron-
VAL/chronSIM: A Tool Suite for Timing Verification of Automotive Applications. In 2012
Embedded Real Time Software and Systems Congress (ERTS), Toulouse, France, February 2012.

[177] KARSTEN ALBERS, STEFFEN KOLLMANN, FRANK BODMANN, AND FRANK SLOMKA. Advanced Hi-
erarchical Event-Stream Model and the Real-Time Calculus. Technical report, Embedded
Systems / Real-Time Systems, University of Ulm, Ulm, 2008.

[178] HENRIK SCHIOLER, HANS P. SCHWEFEL, AND MARTIN B. HANSEN. CyNC: A MATLAB/SimuLink
Toolbox for Network Calculus. In Proceedings of the 2nd International ICST Conference on
Performance Evaluation Methodologies and Tools, page 60, Nantes, France, October 2007.
ICST.

[179] JENS B. SCHMITT AND FRANK A. ZDARSKY. The DISCO Network Calculator - A Toolbox
forWorst Case Analysis. In Proceedings of the 1st international conference on Performance
evaluation methodolgies and tools - valuetools ’06, page 8, Pisa, Italy, October 2006. ACM
Press.

[180] MARC BOYER. NC-Maude: A Rewriting Tool to Play with Network Calculus. Lecture Notes
in Computer Science, 6415 LNCS(PART 1):137–151, 2010.

[181] LUCA BISTI, LUCIANO LENZINI, ENZO MINGOZZI, AND GIOVANNI STEA. DEBORAH: A Tool
for Worst-Case Analysis of FIFO Tandems. In Lecture Notes in Computer Science, pages
152–168. Springer Berlin Heidelberg, 2010.

[182] MARC BOYER, NICOLAS NAVET, XAVIER OLIVE, AND ERIC THIERRY. The PEGASE Project:
Precise and Scalable Temporal Analysis for Aerospace Communication Systems with
Network Calculus. In TIZIANA MARGARIA AND BERNHARD STEFFEN, editors, 4th Interna-
tional Symposium on Leveraging Applications, ISoLA 2010, 6415 of Lecture Notes in Computer
Science, pages 122–136. Springer Berlin Heidelberg, Berlin, Heidelberg, October 2010.

155

REFERENCES

[183] LINH T. X. PHAN, JAEWOO LEE, ARVIND EASWARAN, VINAY RAMASWAMY, SANJIAN CHEN, IN-
SUP LEE, AND OLEG SOKOLSKY. CARTS: A Tool for Compositional Analysis of Real-Time
Systems. ACM SIGBED Review, 8(1):62–63, March 2011.

[184] STEFFEN BONDORF AND JENS SCHMITT. The DiscoDNC v2 - A Comprehensive Tool for
Deterministic Network Calculus. In Proceedings of the 8th International Conference on Per-
formance Evaluation Methodologies and Tools, Bratislava, Slovakia, December 2014. ICST.

[185] MAREK JERSÁK. Compositional Performance Analysis for Complex Embedded Applications. Phd
thesis, Technical University of Braunschweig, 2005.

[186] INSIK SHIN AND INSUP LEE. Compositional Real-Time Scheduling Framework with Peri-
odic Model. ACM Transactions on Embedded Computing Systems, 7(3):1–39, April 2008.

[187] LOTHAR THIELE, SAMARJIT CHAKRABORTY, MATTHIAS GRIES, ALEXANDER MAXIAGUINE, AND

JONAS GREUTERT. Embedded Software in Network Processors - Models and Algorithms.
In First International Workshop on Embedded Software, EMSOFT 2001, pages 416–434, Tahoe
City, CA, USA, October 2001. Springer Berlin Heidelberg.

156

	List of figures
	List of tables
	List of acronyms
	List of symbols and operators
	1 Introduction
	1.1 Factors increasing the complexity and amount of functions
	1.2 Trends influencing the automotive electronic architecture
	1.3 Research goals
	1.4 Main contributions
	1.5 Structure of this document

	2 Modeling and timing verification background
	2.1 Component-based development
	2.2 Data-centric communication
	2.3 Model-driven engineering
	2.4 Time modeling, representation, and constraints
	2.5 Timing analysis methods
	2.6 Real-Time Calculus and Modular Performance Analysis
	2.7 Modeling and verification background summary

	3 Combining plug-and-play and timing guarantees
	3.1 Requirements for a flexible verification approach
	3.2 Method for system-wide plug-and-play
	3.3 Introduction of the running example
	3.4 Combining plug-and-play and timing guarantees summary

	4 Adequate meta-models
	4.1 Requirements for adequate meta-models
	4.2 Meta-model representation
	4.3 Feature meta-model
	4.4 Feature-Set meta-model
	4.5 System meta-model
	4.6 Data meta-model
	4.7 Logical meta-model
	4.8 Deployment meta-model
	4.9 Timing Requirements meta-model
	4.10 Adequate meta-models summary

	5 Model transformation and platform mapping
	5.1 Transformation from a Feature-Set model to a combined Feature model
	5.2 Transformation from a combined Feature model to an Instance model
	5.3 Platform mapping: From an Instance model to an Analysis model
	5.4 Model transformation and platform mapping summary

	6 Timing verification framework
	6.1 Refined Analysis meta-model (M)
	6.2 Analysis and verification procedure
	6.3 Implementation
	6.4 Automatic handling of resource cycles in the system graph
	6.5 Bounded buffer handling
	6.6 Discussion of the verification framework
	6.7 Timing verification framework summary

	7 Adaptive approximate analysis
	7.1 Effects on the computation time of the analysis
	7.2 Balancing computation time, tightness, and memory
	7.3 Approximation strategies
	7.4 Adaptive approximate analysis summary

	8 Conclusion
	8.1 Summary of contributions
	8.2 Future work

	A Appendix
	A.1 Related work
	A.2 Definitions and equations of stream filters
	A.3 Complete parameter set of the eCar example
	A.4 Complete Analysis model (M) of the eCar example

	References

