Efficiency of monolithic solvers for incompressible fluid-structure interaction problems

Matthias Mayr, Michael W. Gee
Mechanics & High Performance Computing Group, Technische Universität München, Germany

Motivation

- Real world problems require accurate predictions at reasonable computational costs (accuracy vs. numerical effort)
- Parallel scalability for very large problem sizes

Problem Definition & Discretization

- Solid domain Ω^s: nonlinear elastodynamics
- Fluid domain Ω^f: incompressible Navier-Stokes equations with ALE observer
- Fluid-Structure Interface Γ_{FSI}: weak enforcement of coupling conditions using Lagrange Multiplier field $\lambda = \lambda_{FSI} = -\nabla \cdot \psi_{FSI}$ [1]
- Spatial discretization of structure and fluid field with finite elements
- Temporal discretization with single-step, single-stage, and fully implicit marching time integrators

Adaptive Time Stepping: Algorithm

- Individual error estimation in both fields via:
 - Comparison to auxiliary explicit scheme (e.g. Adams-Bashforth 2)
 - Error norms: length-scaled L_2-norms
- Deduce separate norm for FSI interface DOFs to account for central role of the interface
- Adapt step size based on estimated errors $\kappa_{est} = \frac{\text{tol error}}{\Delta t}$

- Compute Δt_{new} for every subset of DOFs $\Delta t_{new} = \min (\Delta t_{max}, \min (\Delta t_{struct}, \Delta t_{fluid}))$
- Choose minimal time step size suggestion to guarantee accuracy everywhere in the domain $\Delta t_{new} = \min (\Delta t_{struct})$

Newton-Krylov with FSI-specific Preconditioning [4]

- Algebraic coarse level problem
- FSI coupling on all levels

Example: Pressure Wave

- Significant superiority in "difficult" FSI problems $\rho^s/\rho^f \approx 1$
- 3 Newton steps per time step (avg.)
- outperforms partitioned approaches by far
- Suitable for very large scale computations

Monolithic System of Equations

- Linear System of Equations
 - We exemplarily choose the structure field as master field \rightarrow structure-handled interface motion
 - Spatial discretization of structure and fluid field
 - Deduce separate norm for FSI interface DOFs to
 - Compute τ_{FSI} for every subset of DOFs
 - Adapt time step size based on estimated errors
 - Choose minimal time step size suggestion to guarantee accuracy everywhere in the domain

Condensation of Lagrange Multipliers

- Use balance of linear momentum of slave interface DOFs for condensation
- Dual Mortar method leads to diagonal form of Mortar matrix \mathbf{D}
- Computationally cheap condensation of Lagrange multipliers and slave interface DOFs

Nonlinear GMRES with AMG-FAS Preconditioning

- FAS: Full Approximation Scheme
- Variational residual evaluation
- Motivation
 - Timings: residual evaluation vs. linear solve
 - Residual evaluation scales perfectly for fine grained parallelization
- Idea
 - nonlinear FSI-coupling on coarse levels using FSI-AMG hierarchy
 - acceleration by outer nonlinear Krylov-type solver [5]
- Multigrid library: Trilinos/MueLu [6]

Algorithm

- Algebraic coarse level problem
- FSI coupling on all levels

Example: Pressure Wave

- Significant superiority in "difficult" FSI problems $\rho^s/\rho^f \approx 1$
- 3 Newton steps per time step (avg.)
- outperforms partitioned approaches by far
- Suitable for very large scale computations

AMG/BSG characteristics averaged over timesteps

<table>
<thead>
<tr>
<th>ρ^s</th>
<th>Newton</th>
<th>GMRES</th>
<th>time</th>
<th>ρ^f</th>
<th>ρ^s/ρ^f</th>
<th>time</th>
<th>ρ^s</th>
<th>GMRES</th>
<th>ρ^s/ρ^f</th>
<th>time</th>
<th>ρ^s</th>
<th>GMRES</th>
<th>ρ^s/ρ^f</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2.97</td>
<td>0.0013</td>
<td>8</td>
<td>0.0018</td>
<td>225.90</td>
<td>0.0018</td>
<td>225.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.96</td>
<td>0.0016</td>
<td>8</td>
<td>0.0014</td>
<td>451.71</td>
<td>0.0014</td>
<td>451.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.97</td>
<td>0.0016</td>
<td>12</td>
<td>0.0018</td>
<td>699.50</td>
<td>0.0018</td>
<td>699.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>2.78</td>
<td>0.0014</td>
<td>12</td>
<td>0.0016</td>
<td>939.71</td>
<td>0.0016</td>
<td>939.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References