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K-RODE-TAYLOR SCHEMES OF ORDER 3 AND 4 FOR THE KANAI-TAJIMI

EARTHQUAKE MODEL

ALFREDO PARRA HINOJOSA† AND TOBIAS NECKEL†

Abstract. Random ordinary differential equations (RODEs) represent an alternative way to formulate many stochastic
ordinary differential equations (SODEs). RODEs allow us to rewrite SODEs in terms most scientists are familiar with,
namely as a special type of ODEs. For the numerical solution of RODEs, different approaches have been proposed, such as
averaged methods or K-RODE-Taylor schemes. K-RODE-Taylor schemes allow for higher-order discretisations at the prize
of more complex, recursive formulations.

In this contribution we derive the K-RODE-Taylor schemes of order K = 3 and K = 4 for the specific RODE formulation
of the Kanai-Tajimi earthquake model. Finally, we briefly discuss ways to compute approximations of the multiple integrals
that appear in the corresponding formulas.

1. Introduction. Many interesting application scenarios in scientific computing nowadays involve
random input. In the context of time-dependent problems, these problems have been treated in thems of
stochastic ordinary differential equations (SODEs). An alternative (yet less prominent) way to describe
these scenarios are random ordinary differential equations, which closely resemble regular ODEs (cf. [1]).
The general form of a RODE initial value problem reads

dx

dt
= Fω(t, x) := f(ω(t), x), x(t0) = x0, (1.1)

for almost all ω ∈ Ω. Here, ω(t) represents a realisation in time of a stochastic process. The more
common SODEs have the form

dXt = a(Xt, t)dt + b(Xt, t)dWt. (1.2)

The functions a(Xt, t) and b(Xt, t) are commonly referred to as the drift and the diffusion terms respec-
tively, and Wt is a usual Wiener process. The solution of (1.2) is given by

Xt = X0 +

∫ t

t0

a(Xs, s)ds +

∫ t

t0

b(Xs, s)dWs, (1.3)

with initial value Xt0 = X0. While the first integral in (1.3) is well defined, the second one requires us
to integrate with respect to the Wiener process and has to be treated in a special way. This is the main
downside of SODEs.

However, many SODEs can be formulated as RODEs and vice versa by means of the Doss-Sussmann
/ Imkeller-Schmalfuss (DSIS) correspondence [5, 10, 4]. Different numerical schemes have been devel-
oped for RODEs, most notably averaged methods and K-RODE-Taylor schemes [3, 8]. We focus on the
higher-order K-RODE-Taylor schemes and apply them to a specific model, the Kanai-Tajimi (KT) earth-
quake model. The KT model approximates the stochastic motion of the earth’s crust during earthquake
excitations.

In this paper we derive in detail the K-RODE-Taylor schemes of orders K = 3 and K = 4 for
the KT earthquake model explicitly. Since K-RODE-Taylor schemes are recursive, it is cumbersome to
write down their explicit form for a given RODE. But once this is done one can simplify and optimize
the computations of the individual terms, as we will see1. The resulting schemes have been used for
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1Alternatively, one could think of programming a K-RODE-Taylor scheme recursively for any K and a given RODE
without explicitly calculating its final form, which lifts the effort of carrying out the calculations we performed, but it would
not allow further optimizations or simplifications.
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different publications concerning different implementation and performance aspects of the schemes, but
their non-trivial derivation has not been described in detail. Furthermore, two ways to compute the
resulting multiple time integrals over the Ornstein-Uhlenbeck (OU) process are briefly discussed. Thus,
we have a reference covering all implementation aspects of the K-RODE-Taylor schemes of order 3 and
4.

The remainder of this paper is organized as follows: In Sec. 2 we briefly present the Kanai-Tajimi
earthquake model and its RODE form, before reviewing the general form of the K-RODE-Taylor schemes
in Sec. 3. We derive the K-RODE-Taylor scheme of orders K = 3 and K = 4 applied to the Kanai-
Tajimi RODE model in Sec. 4 and 5, respectively. Section 6 describes two alternative ways to modify
and approximate the multiple time integrals over the OU process, and we conclude this contribution in
Sec. 7.

2. The Kanai-Tajimi Earthquake Model. We will apply the K-RODE-Taylor schemes of orders
3 and 4 to a variant of the Kanai-Tajimi earthquake model, which models earthquake-induced ground
excitations properly for high frequency ranges [6, 7, 11].

The SODE form of the Kanai-Tajimi model for the ground acceleration üg(t) is

üg = ẍg + ξt = −2ζgωgẋg − ω2
gxg ,

where xg denotes the solution of a stochastic oscillator driven by zero-mean Gaussian white noise ξt

ẍg + 2ζgωgẋg + ω2
gxg = −ξt , xg(0) = ẋg(0) = 0 . (2.1)

ζg and ωg represent parameters to adapt the model to local geological site conditions. Using the definition
of the OU process (cf. [2]) and the Doss-Sussmann/Imkeller-Schmalfuss correspondence (cf. [5, 10, 4])
one can formulate the SODE (2.1) as a first-order system of RODEs

(
ż1
ż2

)
=

(
−(z2 +Ot)

−2ζgωg(z2 +Ot) + ω2
gz1 +Ot

)
, (2.2)

with initial condition z(0) = z0 ∈ R2. The exact update formula of the OU process is given by

Ot+h = Ot · µX + σX · n1 (2.3)

for a timestep h > 0 and parameters µX = e−h/τ and σX = ( cτ2 (1 − µ2
X))

1
2 . The constants c and τ are

called relaxation time and diffusion constant respectively, and are problem dependent. (In the following
we choose τ = c = 1.) Also, n1 ∼ N (0, 1) is a normally distributed random variable.

3. Recursive Definition of the K-RODE-Taylor Schemes. The basic idea of the K-RODE-
Taylor schemes is to derive higher-order schemes via Taylor expansions of the r.h.s. function f of Eq. (1.1),
analogous to Runge-Kutta methods for deterministic ODEs. This is achieved by expanding f in the
smooth variables Xt and ω, but not in time, where f is not smooth due to the dependence on the
stochastic process. The resulting schemes are described in detailed in [8], and require a special notation,
to which we now turn our attention.

Since we will use two-dimensional Taylor-like expansions of f (with respect to ω and x), we use
multi-indices α = (α1, α2) ∈ N

2
0. Their magnitude is represented by |α| := α1+α2 and can be generalised

by a weight θ ∈ (0, 1] such that |α|θ := θα1 + α2. In addition, for each K ∈ R+ with K ≥ |α|θ, we define
|α|Kθ := K − |α|θ . Additionally, the factorial of the multi-index is given by α! := α1!α2! and we denote
the partial derivatives w.r.t. the multi-index as fα := (∂1)

α1(∂2)
α2f . The order of the scheme is denoted

K ∈ R+, and with it we can define the sets of multi-indices

AK := {α = (α1, α2) ∈ N
2
0 : |α|θ = θα1 + α2 < K}.
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The explicit update formula of the K-RODE-Taylor scheme for the approximated solution yK,h
n then

reads

yK,h
n+1 := yK,h

n +
∑

AK

N (K)
α (tn+1, tn, y

K,h
n ), (3.1)

where h ∈ (0, 1] is the stepsize and

N (K)
α (t̂+ h, t̂, ŷ) :=

1

α!
fα(ω(t̂), ŷ)

∫ t̂+h

t̂

(∆ωs)
α1

(
∆y

(|α|Kθ )
∆s (t̂, ŷ)

)α2

ds, (3.2a)

∆y
(L)
h (t̂, ŷ) :=

∑

AL

N (L)
α (t̂+ h, t̂, ŷ), (3.2b)

with ∆ωs := ω(s)− ω(t̂), ∆s = s− t̂ for an arbitrary time t̂ ∈ [t0, T ).

The recursive structure of the scheme (3.1) is visible in Eqs. (3.2a)–(3.2b), since ∆y
(|α|Kθ )
∆s is of order

|α|Kθ = K − |α|θ < K. The value of the weight θ is chosen as the supremum of the Hölder coefficients of
the sample paths of the underlying stochastic process (see [8] for details). The recursivity of the K-RODE-
Taylor schemes makes the derivation and implementation of the scheme a nontrivial task. However, the
particular form of our RODE (2.2) allows for an explicit form of the scheme for moderate K, which we
derive in the next two sections.

4. The 3-RODE-Taylor Scheme. In this section, we formulate the K-RODE-Taylor scheme of
order K = 3 for the Kanai-Tajimi earthquake model in the RODE form (2.2). Since the sample paths of
the Ornstein-Uhlenbeck process are Hölder continous of order < 1/2, we have θ = 1/2, which results in
the index set

A3 = {(α1, α2) ∈ N, α1 + 2α2 < 6}. (4.1)

So, A3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (5, 0)}. The scheme has
the form

y
(3),h
n+1 = y(3),hn +

∑

A3

N (3)
α (tn+1, tn, y

(3),h
n ), (4.2)

where the “step vectors” N
(3)
α are computed with ∆Os := Os −Otn and ∆s := s− tn as

N (3)
α (tn+1, tn, y

(3),h
n ) :=

1

α!
fα(Otn , y(tn))

∫ tn+1

tn

(∆Os)
α1

(
∆y

(|α|
(3)

1/2
)

∆s (tn, y
3,h
n )

)α2

ds, (4.3)

using

∆y
|α|

(L)

1/2

∆s (tn, y
3,h
n )) :=

∑

|α|1/2<L

N (L)
α (tn +∆s, tn, y

K,h
n ). (4.4)

Here, L := K − |α|θ < K, i.e., we sum over a set smaller or equal to AK (which is equivalent to say that
we use a method of lower order L).

Now we evaluate the sum in (4.2) for every pair (α1, α2). However, since our function f is linear in
both Ot and z, any derivative of order 2 or higher vanishes, as well as the pair (1, 1) (since f is additive in
z and Ot), so the only index pairs we need to evaluate are {(0, 0), (0, 1), (1, 0)}. Omitting the arguments
of f and its partial derivatives for the sake of simplicity, we have:
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• For (0, 0),

N
(3)
(0,0)(tn+1, tn, y

3,h
n ) =

1

0!
f(0,0)

∫ tn+1

tn

(∆Os)
0 ·

(
∆y

(|α|
(3)

1/2
)

∆s (tn, y
3,h
n )

)0

ds = hf.

• For (1, 0),

N
(3)
(1,0)(tn+1, tn, y

3,h
n ) = f(1,0)

∫ tn+1

tn

∆Osds =
∂f

∂Ot

∫ tn+1

tn

(Os −Otn)ds.

• For (0, 1),

N
(3)
(0,1)(tn+1, tn, y

3,h
n ) = f(0,1)

∫ tn+1

tn

∆y
(|α|31/2)

∆s (tn, y
3,h
n )ds,

= f(0,1)

∫ tn+1

tn

(
∑

A2

N (2)
α (tn +∆s, tn, y

3,h
n )

)
ds,

where we evaluate f(0,1) = ∂zf(z) as the Jacobian matrix of f (since z ∈ R
2). From the last term

(0, 1), we obtain the sum over one order lower, A2, which requires again the evaluation of the pairs
{(0, 0), (1, 0), (0, 1)}, and so on, until the lowest order is achieved (namely, K = 0 where all contributions
are zero due to empty sums in definition (4.4)). For the sake of clarity, let us write the last term explicitly
(without writing the dependencies on tn and yn),

N
(3)
(0,1) = f(0,1)

∫ tn+1

tn

(
∑

A2

N (2)
α (∆s)

)
ds

= f(0,1)

∫ tn+1

tn

(
N

(2)
(0,0)(∆s) +N

(2)
(1,0)(∆s) +N

(2)
(0,1)(∆s)

)
ds

= f(0,1)

∫ tn+1

tn

(
N

(2)
(0,0)(∆s) +N

(2)
(1,0)(∆s) + f(0,1)

∫ s

tn

(
∑

A1

N (1)
α (∆v)

)
dv

)
ds

= f(0,1)

∫ tn+1

tn

(
N

(2)
(0,0)(∆s) +N

(2)
(1,0)(∆s) + f(0,1)

∫ s

tn

(
N

(1)
(0,0)(∆v) +N

(1)
(1,0)(∆v)

)
dv

)
ds

= f(0,1)

∫ tn+1

tn

(
f

∫ s

tn

+f(1,0)

∫ s

tn

∆Ovdv + f(0,1)

∫ s

tn

(
f

∫ v

tn

+f(1,0)

∫ v

tn

∆Owdw

)
dv

)
ds

= f(0,1)f
h2

2
+ f(0,1)

∫ tn+1

tn

(
f(1,0)

∫ s

tn

∆Ovdv + f(0,1)

∫ s

tn

(
(v − tn)f + f(1,0)

∫ v

tn

∆Owdw

)
dv

)
ds

= f(0,1)f
h2

2
+ f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds+ f2
(0,1)f

h3

6
+ f2

(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds.

Note that inserting the different terms recursively requires to keep the dependency on ∆s (which is

indicated by stating only the first argument ∆s of N
(2)
α ). This results in a rapidly increasing number of

integrals with respect to s that have to be computed.
Finally, the scheme (3.1) takes the following form:

y
(3),h
n+1 = y(3),hn + hf + f(1,0)

∫ tn+1

tn

∆Osds+ f(0,1)f
h2

2
+ f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds (4.5)

+ f2
(0,1)f

h3

6
+ f2

(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds,
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again, with

f(Ot, z) =

(
−(z2 +Ot)

−2ζgωg(z2 +Ot) + ω2
gz1 +Ot

)
, (4.6)

f(1,0)(Ot, z) =

(
−1

−2ζgωg + 1

)
, (4.7)

f(0,1)(Ot, z) =

(
0 −1
ω2
g −2ζgωg

)
. (4.8)

5. The 4-RODE-Taylor Scheme. The derivation of the 4-RODE-Taylor scheme for the KT model
is similar to the one for K = 3. Additional terms with higher multiplicity in the integrals will appear

due to the recursivity of N
(4)
(0,1), but only due to that term.

For K = 4, we have

A4 = {(α1, α2) ∈ N, α1 + 2α2 < 8}, (5.1)

but the linearity of f limits this set again to {(0, 0), (0, 1), (1, 0)} for evaluations. Thus, we have:

• For (0, 0),

N
(4)
(0,0)(tn+1, tn, y

4,h
n ) =

1

0!
f(0,0)

∫ tn+1

tn

(∆Os)
0 ·

(
∆y

(|α|
(4)

1/2
)

∆s (tn, y
4,h
n )

)0

ds = hf.

• For (1, 0),

N
(4)
(1,0)(tn+1, tn, y

4,h
n ) = f(1,0)

∫ tn+1

tn

∆Osds =
∂f

∂Ot

∫ tn+1

tn

(Os −Otn)ds.

Calculating the remaining term N
(4)
(0,1) results in

N
(4)
(0,1) = f(0,1)

∫ tn+1

tn

(
∑

A3

N (3)
α (∆s)

)
ds

= f(0,1)

∫ tn+1

tn

(
N

(3)
(0,0)(∆s) +N

(3)
(1,0)(∆s) +N

(3)
(0,1)(∆s)

)
ds

= f(0,1)

∫ tn+1

tn

(
N

(3)
(0,0)(∆s) +N

(3)
(1,0)(∆s) + f(0,1)

∫ s

tn

(
∑

A2

N (2)
α (∆v)

)
dv

)
ds

= f(0,1)f
h2

2
+ f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds

+ f(0,1)

∫ tn+1

tn

(
f(0,1)

∫ s

tn

(
N

(2)
(0,0)(∆v) +N

(2)
(1,0)(∆v) +N

(2)
(0,1)(∆v)

)
dv

)
ds
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= f(0,1)f
h2

2
+ f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds

+ f(0,1)f(0,1)f

∫ tn+1

tn

∫ s

tn

∫ v

tn

dwdvds + f(0,1)f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds

+ f(0,1)

∫ tn+1

tn

(
f(0,1)

∫ s

tn

(
f(0,1)

∫ v

tn

(
∑

A1

N (1)
α (∆w)

)
dw

)
dv

)
ds

= f(0,1)f
h2

2
+ f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds+ f2
(0,1)f

h3

6
+ f2

(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds

+ f(0,1)

∫ tn+1

tn

(
f(0,1)

∫ s

tn

(
f(0,1)

∫ v

tn

(
f

∫ w

tn

dx+ f1,0

∫ w

tn

∆Oxdx

)
dw

)
dv

)
ds

= f(0,1)f
h2

2
+ f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds+ f2
(0,1)f

h3

6
+ f2

(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds

+ f3
(0,1)f

h4

24
+ f3

(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∫ w

tn

∆Oxdxdwdvds .

Therefore, the overall 4-RODE-Taylor scheme for the KT model has the form

y
(4),h
n+1 = y(4),hn + hf + f(1,0)

∫ tn+1

tn

∆Osds+ f(0,1)f
h2

2
+ f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds (5.2)

+ f2
(0,1)f

h3

6
+ f2

(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds

+ f3
(0,1)f

h4

24
+ f3

(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∫ w

tn

∆Oxdxdwdvds ,

with f , f(1,0), and f(0,1) defined via (4.6)–(4.8).

6. Integration of the OU process terms. The final step is to calculate the (multiple) integrals of
the OU process in (4.5) and (5.2). We restrict our discussion to the case of order K = 3 which is complex
enough to observe higher multiplicity of the integrals but moderate enough to keep the notation compact.
We first follow a direct approach to compute the multiple integrals by reformulating the problem using
properties of the underlying OU process. Then, a more general approach is briefly discussed which allows
to transform the relevant multiple integrals into one-dimensional counterparts.

6.1. Direct Approach for Integrating OU terms. From the theory of stochastic processes [2],
we know that the OU process Ot is the solution of the following stochastic ordinary differential equation
(known as the Langevin equation):

dOt = −
1

τ
Oth+ c1/2dWt. (6.1)

The solution of the OU process at a time t+ h for some h > 0 is then given by Eq. (2.3). Furthermore,

the integral of the OU process (which we will denote Õt) can also be written down explicitly. It is defined

through the relation Õt+h = Õt +Ot + h, and its explicit expression is given by

Õt+∆t = Õt +Otτ(1 − µ) +

(
σ2
Y −

κ2
XY

σ2
X

)1/2

n2 +
κXY

σX
n1, (6.2)



K-RODE-TAYLOR SCHEMES OF ORDER 3 AND 4 FOR THE KANAI-TAJIMI MODEL 7

where µ := e−h/τ , σ2
Y := cτ3[∆t/τ − 2(1−µ)+ (1/2)(1−µ2)] and κXY := (cτ2/2)(1−µ)2. With the use

of Eq. (6.2) it is possible to evaluate the first integrals in our numerical scheme (4.5). For instance

∫ tn+1

tn

∆Osds =

∫ tn+1

tn

(Os −Otn)ds = ∆Õtn+1 − hOtn = Õtn+1 − Õtn − hOtn ,

= Otn [τ(1 − µ)− h] +

(
σ2
Y −

κ2
XY

σ2
X

)1/2

n2 +
κXY

σX
n1.

Since the integral is given in terms of the OU process itself, it can be integrated again, but with the
additional difficulty that µ depends on ∆t. Thus, the expressions for the second and third integrals are
complicated. Therefore, if one does not have a closed expression for the integrals of the stochastic process
involved in the differential equation, one can always calculate the integrals numerically, taking care that
the order of precision of the integration method is at least as high as that of the K-RODE Taylor scheme.

The double integral reduces to

∫ tn+1

tn

∫ s

tn

∆Ovdvds =

∫ tn+1

tn

(
Õs − Õtn − (s− tn)Ots

)
ds =

∫ tn+1

tn

∆Õsds−
h2

2
Otn .

Finally, for the triple integral, we have

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds =

∫ tn+1

tn

∫ s

tn

∆Õvdvds−
h3

6
Otn .

Thus, with the help of the explicit expressions for Ot and Õt we have simplified our scheme (4.5) from

calculating three integrals of ∆Ot (one simple, one double, and one triple) to only two integrals of ∆Õt

(one simple and one double). Let us write it once again:

y
(3),h
n+1 =y(3),hn + hf + f(1,0)

(
∆Õtn+1 − hOtn

)
+ f(0,1)f

h2

2
+ f(0,1)f(1,0)

(∫ tn+1

tn

∆Õsds−
h2

2
Otn

)
(6.3)

+
h3

6
f2
(0,1)f + f2

(0,1)f(1,0)

(∫ tn+1

tn

∫ s

tn

∆Õvdvds−
h3

6
Otn

)
,

Following [8], we can further simplify the double integral using integration by parts, namely

∫ tn+1

tn

∫ s

tn

∆Õvdvds =

∫ tn+1

tn

ds

∫ tn+1

tn

∆Õsds−

∫ tn+1

tn

∫ s

tn

∆Õsdvds,

= h

∫ tn+1

tn

∆Õsds−

∫ tn+1

tn

∆Õs(s− tn)ds = h

∫ h

0

(
1−

u

h

)
∆Õtn+udu,

≈ hδ
m∑

k=1

(
1−

kδ

h

)
∆Õtn+kδ = h δ

m∑

k=1

∆Õtn+kδ

︸ ︷︷ ︸
=:I1

− δ2
m∑

k=1

k ·∆Õtn+kδ

︸ ︷︷ ︸
=:I2

,

= hI1 − I2,

with δ = h/m and m sufficiently large so that the desired order is obtained. Note that we used a simple
Riemann sum to appoximate the integrals. A higher order method—for instance, Simpson’s rule—would
not attain its order, since the integrands do not have the required smoothness. Thus, using a higher order
method would not bring any advantages.
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Now we have all the ingredients to directly implement the numerical scheme, given in its final form
as

y
(3),h
n+1 = y(3),hn + hf + f(1,0)

(
∆Õtn+1 − hOtn

)
+ f(0,1)f

h2

2
+ f(0,1)f(1,0)

(
I1 −

h2

2
Otn

)
(6.4)

+
h3

6
f2
(0,1)f + f2

(0,1)f(1,0)

(
hI1 − I2 −

h3

6
Otn

)
.

6.2. Reduction of Multiple Integrals: General Approach. In this section we briefly describe
a general approach to transform the multiple integrals into a one-dimensional one that is then going to
be approximated by a quadrature rule.

As described in [5] and [9], multiple integrals can be simplified in the following way:

∫ tn+1

tn

∫ xd

tn

∫ xd−1

tn

· · ·

∫ x1

tn

f(z)dzdx1 · · · dxd =

∫ tn+1

tn

1

d!
(tn+1 − z)df(z)dz. (6.5)

Using this method for the multiple time integrals over the difference of the OU process (i.e. ∆Oz etc. as
integrand f), we can directly apply low-order numerical quadrature rules such as Riemann sums2,

∫ tn+1

tn

1

d!
(tn+1 − z)d∆Ozdz ≈ δ

M∑

j=1

1

d!
(tn+1 − zj)

d∆Ozj = δ

M∑

j=1

1

d!
(h− jδ)d(Otn+jδ −Otn) , (6.6)

where h = tn+1 − tn, δ = h/M , and zj := tn + jδ. Note, again, that due to a lack of smoothness
in time, higher-order quadrature rules would not attain their order and thus present no advantages.
Furthermore, M has to be chosen such that the quadrature approximation error is of the same order as
the K-RODE-Taylor scheme itself. The general approach consists then in reducing the multiple integrals
to one-dimensional integrals that can be approximated numerically with low-order quadrature rules.

7. Conclusion. We have shown how to apply high-order K-RODE-Taylor schemes to approximate
a given RODE, namely the Kanai-Tajimi earthquake model. Since the schemes are recurvise it is difficult
to write them down explicitly, even for simple RODEs. We described the necessary steps to do this for
K = 3 and K = 4, and we made use of our knowledge of the OU process to simplify several multiple
integrals. These can be rewritten as one-dimensional integrals which are easy to compute. This can
justify the extra effort of deducing closed expressions for the recursive schemes, especially if performance
is an issue.
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