
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik VII

Algebraic Systems of Fixpoint Equations
over Semirings: Theory and Applications

Maximilian Schlund

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik VII – Grundlagen der Softwarezuverlässigkeit und
Theoretische Informatik

Algebraic Systems of Fixpoint Equations
over Semirings: Theory and Applications

Maximilian Schlund

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. H. Seidl

Prüfer der Dissertation:
1. Prof. Dr. Dr. h.c. F. J. Esparza Estaun

2. Prof. Dr. M. Holzer,

Justus-Liebig-Universität Giessen

Die Dissertation wurde am 20.08.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 14.01.2016 angenommen.

Abstract

Algebraic systems of fixpoint equations X = F(X) arise in various areas of computer
science, such as program verification, deductive databases, and formal language the-
ory. In this thesis we study algorithms for solving algebraic systems based on Newton’s
method as proposed by (Esparza, Kiefer, Luttenberger, 2010). We first investigate the
theoretical properties and algorithmics of Newton’s method on semirings. Then we
present FPSOLVE, an efficient and generic implementation of various methods for solv-
ing algebraic systems over semirings. Exploring various applications, we (1) propose
general representations for the provenance of recursive Datalog programs, (2) study the
efficient computation of the subword closure of context-free languages, and (3) show
how statistical parsing of natural languages can be improved using ideas from the com-
binatorics underlying Newton’s method.

Kurzzusammenfassung

Algebraische Systeme von Fixpunktgleichungen der Form X = F(X) finden Anwen-
dung in verschiedenen Bereichen der Informatik, wie Programmverifikation, deduktive
Datenbanken und die Theorie der formalen Sprachen. In dieser Arbeit beschäftigen
wir uns mit Algorithmen zur Lösung von algebraischen Systemen, welche auf dem
Newtonverfahren basieren, wie von (Espraza, Kiefer, Luttenberger, 2010) vorgeschla-
gen. Hierbei untersuchen wir zuerst die theoretischen und algorithmischen Eigen-
schaften des Newtonverfahrens auf Semiringen. Anschließend stellen wir FPSOLVE vor,
eine effiziente und generische Implementierung verschiedener Methoden zur Lösung
algebraischer Systeme. Abschließend erkunden wir diverse Anwendungen. Wir
(1) präsentieren eine allgemeine Darstellung der Provenienz von rekursiven Datalog-
Programmen, (2) untersuchen die effiziente Berechnung des Teilwortabschlusses von
kontextfreien Sprachen und (3) zeigen, wie statistisches Parsen von natürlicher Sprache
mit Ideen der kombinatorischen Analyse des Newtonverfahrens verbessert werden
kann.

v

Acknowledgments

First and foremost I want to thank my advisor Prof. Javier Esparza for introducing me
to fascinating problems and for always taking the time to discuss progress and non-
progress. His inspiring personality and his style of research were a constant source of
motivation. I am especially grateful for his clever insights that stimulated my research
and for giving me the freedom to explore my own ideas.

I am especially indebted to Michael Luttenberger – many results in this theses originated
from joint work with him. I have learned so much about mathematics, music, and of
course etymology and Frankish history from him. Thanks for these last four years and
for the constant encouragement (Lemma 2).

Very special thanks go to Prof. Markus Holzer for agreeing to review this thesis.

Thanks to my great colleagues (current and former) at chair I7, especially to my favorite
office-roommate René, Stefan, Andreas (thanks for the encouragement during the last
weeks!), Jan, Christian, Christian, Theo, Philipp, Philipp, and Salomon.

I also want to thank Prof. Sándor Fekete who has been an inspiring mentor to me for
many years now. Thanks to all the other people from the working group on algorithmic
game theory: Jonas, Jano, Jann, and especially Sebastian Wild (for showing me the
beauty in generating functions and for very pleasant collaborations).

Thanks to my fellow PhD students at TUM: Flo (for being such a good roommate) and
Thomas and Wolf (for the 3 o’clock coffee-breaks, general nerd-talk, and for being great
friends).

Many thanks to Michał Terepeta (from whom I learned a lot about C++) and to my
student collaborators Michael Kerscher and Georg Bachmeier who all helped with the
implementation of FPSOLVE.
Thanks a lot to Anna for reading my horrible drafts, enduring my mood swings during
the last months, and for being my favorite person in this universe – I love you.

Last but not least, I am grateful to my parents for their unconditional love and support.

vii

Contents

Abstract v

Acknowledgements vii

Contents ix

1 Introduction 1
1.1 Modeling via Algebraic Systems . 3
1.2 Fixpoint iteration . 6
1.3 Algebraic Systems, Context-Free Grammars, and Newton’s Method 7
1.4 Applications of Algebraic Systems . 9
1.5 Contributions and Outline . 10

2 Preliminaries 13
2.1 Basics: Numbers, Languages, Orders, Fixpoints 13
2.2 Semirings, Formal Power Series, Polynomials, Matrices, Vectors 14
2.3 Automata and Formal Language Theory . 18

2.3.1 Regular Languages . 18
2.3.2 Context-Free Languages . 19

3 Theory of Algebraic Systems 23
3.1 Polynomial Systems . 24
3.2 From Equations to Grammars and Back . 25
3.3 Fixpoint Iteration . 29
3.4 Newton’s Method . 30

3.4.1 Definition of Newton’s Method as Dimension-Unfolding 32
3.4.2 Newton’s Method via Derivatives 34
3.4.3 Commutative Semirings and Newton’s Method over the Reals . . 38
3.4.4 Closed Form for Non-Commutative Semirings 40

3.5 Convergence of Newton’s Method . 45
3.5.1 Bounds on Convergence – General Case 46
3.5.2 Bounds on Convergence – Commutative Case 48

ix

Contents

3.6 Combinatorics of Tree Dimension . 55
3.6.1 Tree Dimension and Related Notions 55
3.6.2 Tree Dimension and Pathwidth . 56
3.6.3 Application: Optimizing Arithmetic Expressions 59

3.7 Conclusions . 62

4 Newton’s Method: Generic Algorithms and Implementation 63
4.1 Algorithmic Details of Newton’s Method 63

4.1.1 Generic Formulation of Newton’s Method 64
4.1.2 Specialization for Commutative Semirings 66
4.1.3 Solving Right-Linear Systems . 68
4.1.4 Symbolic Solving . 77
4.1.5 Decomposition into SCCs . 78

4.2 FPSOLVE: A Generic Library for Algebraic Systems 79
4.2.1 Overview and Architecture . 79
4.2.2 Using the Standalone Solver . 80
4.2.3 Implementation Details . 82
4.2.4 Performance of FPSOLVE . 85

4.3 Conclusions . 86

5 Algorithms and Data Structures for Semilinear Sets 89
5.1 Theoretical Background . 89
5.2 Explicit Vector Representation . 92

5.2.1 Defining the Semiring Operations 95
5.2.2 Optimizations . 96
5.2.3 Over-Approximations . 97

5.3 Symbolic Representation via NDDs . 100
5.3.1 Representing Semilinear Sets via NDDs 102
5.3.2 Optimizations . 104

5.4 Application: A Tool for Grammar Testing 105
5.5 Conclusions . 107

6 Application I: Provenance for Datalog 109
6.1 Introduction to Datalog and Provenance . 110

6.1.1 Datalog . 110
6.1.2 Green’s Semiring Framework for Provenance 113

6.2 Regular Expressions for Provenance . 118
6.2.1 Datalog Programs as Algebraic Systems 119
6.2.2 Extending the Provenance Hierarchy 120
6.2.3 Computing Provenance Expressions 123
6.2.4 Eliminating Kleene Stars from Shared Expressions 124

x

Contents

6.3 Related Work and Conclusions . 127

7 Application II: Subword and Superword Closure of Context-Free Languages 129
7.1 Introduction . 130
7.2 An Optimized Variant of Courcelle’s Construction 130

7.2.1 Preprocessing the Grammar . 132
7.3 Representations for the Subword Closure of CFLs 134

7.3.1 NFAs . 135
7.3.2 DFAs . 138
7.3.3 Regular Expressions . 140

7.4 Application: Approximate Answers to Undecidable Grammar Problems . 144
7.4.1 Equivalence Checking of NFAs Modulo Closure 145
7.4.2 Witness Generation . 148
7.4.3 Refinement . 149
7.4.4 Experiments . 150

7.5 Related Work and Conclusions . 150

8 Application III: Computational Linguistics and Natural Language Processing 153
8.1 Tree Dimension as a Measure of Sentence Complexity 154
8.2 Introduction to PCFG Parsing . 156

8.2.1 Motivation . 156
8.2.2 PCFGs . 157
8.2.3 Inducing Grammars from Treebanks 158
8.2.4 Refining PCFGs . 161
8.2.5 Evaluating Parsers . 162

8.3 Structural Annotations for Improved Parsing 165
8.3.1 Experimental Setup and Methods 167
8.3.2 Experimental Results . 168

8.4 Conclusions, Related, and Future Work . 170

9 Conclusions 173
9.1 Contributions . 173

9.1.1 Theoretical Foundations (Chapter 3) 173
9.1.2 Algorithms and Implementation (Chapters 4 and 5) 174
9.1.3 Applications . 174

9.2 Open Problems and Ideas for Future Work 175

xi

1
Introduction

This thesis is concerned with algebraic systems. On a purely syntactic level, an algebraic
system is a set of fixpoint equations of the form

X1 = F1(X1, . . . , Xn)

...

Xn = Fn(X1, . . . , Xn)

where X1, . . . , Xn are variables and F1, . . . , Fn are polynomials, i.e. formal terms involv-
ing multiplication and addition. For example if we fix some variables X, Y and constants
a, b, c, d then the following is an algebraic system

X = a · X · Y + b

Y = c · X · Y · Y + d

To give a semantics to algebraic systems we have to specify how to interpret the ad-
dition and multiplication operation and we have to fix “values” for the constants. For
the expressions to be well-defined, these values should live in an algebraic structure that
defines two operations (addition and multiplication). Such a natural structure is a semi-
ring, which intuitively is a ring without (additive) inverses. Hence, in a semiring we can
add and multiply but cannot (necessarily) subtract nor divide.

1

1 Introduction

Fixpoint equations inductively define semiring values X and Y. These values can be
obtained by repeatedly substituting the defining right hand side for variables:

X = a · X · Y + b

X
= a · (a · X · Y + b) + b = aaXY + ab+ b

Y
= aaX(c · X · Y · Y + d) + ab+ b = aaXcXYY + aaXd+ ab+ b

...

In the limit this process yields X as an infinite sum. This requires that infinite sums are
well-defined in our semiring and satisfy certain laws like infinite distributivity1. Semi-
rings enjoying this property are calledω-continuous semirings.

Example 1.1. Simple examples of semirings are

• The natural numbers N together with the usual addition and multiplication.

• The set of formal languages 2Σ
∗

where the addition operation is set-union and multiplica-
tion is given by the concatenation of languages.

Over the natural numbers multiplication is commutative, hence (N,+, ·, 0, 1) is a commuta-
tive semiring. Multiplication of formal languages on the other hand is not commutative:

{a} · {b} = {ab} 6= {ba} = {b} · {a}

The semiring of natural numbers is notω-continuous since the infinite sum 1+ 1+ 1+ . . . is
not an element of N. However, N can be turned into the ω-continuous semiring N∞ by adding
the special symbol∞ and defining∞+ x :=∞ and∞ · x =∞.

The formal languages on the other hand constitute an ω-continuous semiring
(2Σ

∗
,∪, ·, ∅, {ε}).

Over ω-continuous semirings, algebraic systems inductively define a value for each
variable. We call this value the solution of the equations. More precisely, since the defi-
nition specifies a least-fixpoint computation its value is the least solution.

Example 1.2. Consider the system from before under the interpretation a = 0.2, b = 0.8, c =

d = 0.5. We interpret the system over the semiring of (extended) nonnegative reals, R>0∞ =

R>0 ∪ {∞}.

X = a · X · Y + b

Y = c · X · Y · Y + d

1In other words, such infinite sums behave like absolutely convergent series over the real numbers.

2

1.1 Modeling via Algebraic Systems

This system has several solutions over R>0∞ :

(X, Y) = (∞,∞)

(X, Y) = (1, 1)

(X, Y) =

(
24

25
,
5

6

)
= (0.96, 0.833)

While the first two solutions are trivial, the third one is interesting since it is the least solution of
the system (w.r.t. the usual ordering 6) and is the limit of the sequence 0, F(0), F2(0), . . . :

(0, 0),

(
4

5
,
1

2

)
,

(
22

25
,
3

5

)
, . . .

1.1 Modeling via Algebraic Systems

Algebraic systems are commonly not studied out of mathematical curiosity alone but
because they help to model interesting problems.

Example 1.3. Consider a population with two types of individuals and . The reproductive
behavior of the population is governed by the following probabilistic rules (we can think of the
individuals as bacteria performing mitosis and apoptosis).

{
,
}

A

0.2

0.8

{
, ,

}

A

0.5

0.5

For example, an individual either dies with probability 0.8 or procreates by separating into
an individual of type and one of type . We further assume that individuals reproduce
independently of each other.

An example generation tree for a population starting out with one individual is depicted in
the following:

3

1 Introduction

A A

A A

A

In this history tree, all individuals of the population eventually die. Since individuals reproduce
independently, the probability of this “history tree” t is obtained by multiplying the probabilities
of the production rules involved which yields

Pr(t) = (0.2)2 · (0.8)2 · 0.5 · (0.5)3 = 1

625
= 0.0016

An interesting question is: what is the total probability that a population eventually dies out
if it initially consists of a single individual ?

This question can be solved by formulating an appropriate algebraic system whose least so-
lution yields the desired probability. To this end we use the law of total probability and the
independence assumption to obtain a recursive equation for the probability that the population
{ } eventually dies out:

Pr({ } dies out) = 0.2 · Pr({ } dies out) · Pr({ }dies out) + 0.8

and similarly for { }

Pr({ } dies out) = 0.5 · Pr({ } dies out) · Pr({ }dies out) · Pr({ }dies out) + 0.5

If we define X := Pr({ } dies out) and Y := Pr({ } dies out) we obtain the familiar system

X = 0.2 · X · Y + 0.8

Y = 0.5 · X · Y · Y + 0.5

with least solution (X, Y) = (0.96, 0.833). As we can see, the probability that the population
{ } eventually dies out is not 1, and hence the cumulative probability of all infinite histories is
larger than 0. The model mentioned here is an example of a Galton-Watson branching process
which is well-studied in probability theory (cf. [Har02]).

Important examples of algebraic systems arise from the static analysis of procedural
programs (cf. [EKL10]). In the following illustration we show the call graphs of two
mutually recursive procedures X and Y. The edges are labeled with call/return actions
and abstract letters representing statements in the program.

4

1.1 Modeling via Algebraic Systems

Procedure X

c

d d

b
callY

callY

return
return

Procedure Y
a a

callX b

retret

If we represent sequential composition of statements by multiplication and branching
by addition we can encode the above call graphs as the following algebraic system

X = c · (d · b+ d · Y · Y)
Y = a · X+ a · b.

Note that up to this point we have not specified a structure over which to interpret the
abstract constants a, b, c, In fact, different interpretations of these constants give rise
to different semantics of the program.

Example 1.4 (Relational interpretation). Let V be the set of program variables appearing in
procedures X and Y. If we fix a domain D (e.g. integers), a state of the program is specified by a
function s : V → D. Thus the set of states S := DV is given by the set of all functions from V

to D. Each statement of the program defines a transformation on the set of states and thus, each
program statement corresponds to a relation R ⊆ S× S. Sequential execution corresponds to the
join of relations and branching corresponds to the union of relations.

Hence, we interpret statements as elements of the semiring of relations

(2S×S,∪, ·, ∅, I)

with X · Y := {(x, y) : ∃z ∈ S (x, z) ∈ X ∧ (z, y) ∈ Y} and the identity relation I. The solution
(X, Y) of the algebraic system then gives a summary (a sound overapproximation) of the effects of
procedures X and Y. This interpretation can be seen as an instance of the more general functional
approach to program analysis proposed by Sharir and Pnueli [SP81].

Example 1.5 (Probabilistic interpretation). If we interpret the constants a, b, c, . . . as proba-
bilities to execute the respective statement we obtain (using that d+ d = 1 = a+ a)

X = cdb+ c(1− d)YY)

Y = aX+ (1− a)b.

Similar to the branching process example from before, the solution (X, Y) of this system gives
the probabilities that procedures X and Y eventually terminate.

5

1 Introduction

Example 1.6 (Language interpretation). If we interpret each constant x as the singleton lan-
guage {x} and further interpret multiplication as concatenation and addition as union we effec-
tively view the algebraic system as a context-free grammar.

X = {c} · ({d} · {b}+ {d} · Y · Y)
Y = {a} · X+ {a} · {b}

X → cdb | cdYY

Y → aX | ab

Note that the connection between algebraic systems and context-free grammars is well known
from the work of Chomsky and Schützenberger [CS63]. We recall this connection more formally
in Chapter 3.

The above examples motivate why we study algebraic systems abstractly over gen-
eral semirings. More importantly, they also motivate the study of generic algorithms
(that do not depend on a particular semiring) for solving (resp. approximating) alge-
braic systems. Since algebraic systems arise in very different applications, such generic
algorithms are widely applicable.

1.2 Fixpoint iteration

The classical generic algorithm for solving algebraic systems x = F(x) is fixpoint it-
eration: given an initial guess x0 we repeatedly apply the function F to compute the
sequence of approximations xk := Fk(x0),

x0, F(x0), F(F(x0)), F
3(x0), . . .

until either xk+1 = xk (i.e. we reached a fixpoint) or at least xk is “sufficiently close”
to F(xk). In mathematics, the Banach fixed-point theorem guarantees that the sequence
converges to a fixpoint (for any x0) if F defines a contraction over a complete metric
space X. In computer science, convergence of this sequence over an ω-complete partial
order is established by Kleene’s fixpoint theorem if F is continuous (and if x0 is chosen
as the least element of the set). In particular, if F is a polynomial over an ω-continuous
semiring we obtain from this result that fixpoint iteration converges (in the limit).

However, fixpoint iteration can take a long time to reach a sufficiently close approx-
imation, as shown by Etessami and Yannakakis [EY05] for the nonnegative reals. They
consider the following equation with unique solution X = 1

X =
1

2
X2 +

1

2
.

On this example, fixpoint iteration started with x0 = 0 needs at least 2k−3 steps to
approximate the solution with k bits of precision, i.e. 1− xn > 2−k for n < 2k−3 [EY05].

6

1.3 Algebraic Systems, Context-Free Grammars, and Newton’s Method

X = aXX+ b

a = 0.6, b = 0.4

Polynomial system over R>0

X → aXX | b

Context-free grammar

X =
∑
t∈TX val(t)

Solution in R>0

TX

Set of trees

solution derivation trees

Figure 1.1: Illustration of the connection between fixpoint systems and context-free
grammars.

As a faster alternative to fixpoint iteration, Etessami and Yannakakis propose to solve
such polynomial equations over the nonnegative reals using the well-known Newton’s
method from calculus starting with x0 = 0.

1.3 Algebraic Systems, Context-Free Grammars, and Newton’s
Method

Roughly speaking, a single fixpoint equation x =
∑n
i=0mi(x) corresponds to a grammar

rule of the form x → m0 | · · · | mn and a system of equations corresponds to a set of
such rules, viz. a context-free grammar. The formal relationship between grammars and
equations is depicted in Figure 1.1.

Given a derivation tree of this associated grammar, we define its valuation as the prod-
uct of its leaves in left-to-right order. It is well-known [Boz99, EKL10] that the solution of
an fixpoint system is given as the sum of (the valuations of) all derivation trees of the as-
sociated grammar. Hence, we can approximate the solution to a fixpoint equation using
any method that systematically explores (and evaluates) this set of derivation trees.

Fixpoint iteration can be seen as a particular method to enumerate derivation trees. By
induction we can show that fixpoint iteration corresponds to evaluating the derivation
trees of the associated grammar by increasing height (cf. [EKL07a, EKL10]).

Example 1.7. Consider the equation X = aXX+ c with an interpretation over the real numbers
with a = 0.6 and b = 0.4. The associated context-free grammar is X → aXX | c. In the

7

1 Introduction

following table we depict the derivation trees of G up to height 2 and for each height we also
record the sum of the yields of the trees up to that height (once un-interpreted and once evaluated
in R).

Since in this example every production is labeled by a unique alphabet symbol we can draw a
derivation trees (on the left) in an isomorphic fashion as shown on the right.

(X, a)

(X, c) (X, a)

(X, c) (X, c)

a

c a

c c

Height Trees
∑
t:height(t)6H Y(t) h

(∑
t:height(t)6H Y(t)

)
0 c c 0.4

1

a

c c c+ acc 62
125 = 0.496

2

a

a

c c

c

a

c a

c ca

a

c c

a

c c
c+ acc+ aaccc

+acacc+ aaccacc
≈ 0.565

In [EKL07a, EKL10], Esparza, Kiefer, and Luttenberger showed that Newton’s method
can be interpreted as a procedure for enumerating derivation trees w.r.t. tree dimension.

The dimension of a tree can be inductively defined in a bottom-up fashion as the
maximum dimension of its children (plus one, if this maximum is attained at least twice).
For the base case, we define the dimension of a leaf as 0.

Example 1.8. The following tree is of height 5 and has dimension 2. The number in each node
indicates the dimension of the subtree rooted at that node.

8

1.4 Applications of Algebraic Systems

2

2

1

0 0

1

0 1

1

0 0

0

0

1

0 1

0 0 0

The concept of tree dimension was originally discovered by Strahler [Str52] and is
thus often called Strahler number in combinatorics. We refer to Section 3.6 for a brief
survey (see also [ELS14a]).

Note that the set of trees of a particular dimension is in general infinite (as opposed
to the set of trees of a particular height). This infinite set however has a very simple
structure which allows us to evaluate it effectively. More specifically, we can unfold
a given context-free grammar G into a linear grammar G<d that generates exactly the
derivation trees ofG having dimension less than d (cf. Section 3.4.1). For each dimension
d, the unfolded grammar G<d can be interpreted as a linear system of equations which
are easier to solve than the original nonlinear system over many semirings. In particular,
over commutative semirings this system is right-linear of the form x = Ax + b and can
be explicitly solved by means of the Kleene star as x = A∗b.

1.4 Applications of Algebraic Systems

Datalog is a deductive language (a strict subset of Prolog) which is used to specify
and query databases. A Datalog program is a set of Horn clauses which can also be
interpreted as an algebraic system. In databases, provenance describes additional infor-
mation attached to facts which can be used to trace the origin of query results. Green
et al. [GKT07] showed how provenance analyses can be reduced to solving algebraic
systems over a suitable semiring.

Formal and Natural Languages The connection between algebraic systems and
context-free grammars is well-known from the work of Chomsky and Schützenberger
[CS63]. We review this connection in Section 3.2 and use it in Chapter 7 to study the
subword closure of context-free languages.

A “weighted” grammar formalism widely used in natural language processing (NLP)
are so called probabilistic context-free grammars (PCFGs) which are essentially algebraic
systems over [0, 1]. An important property of PCFGs for natural language is consistency,

9

1 Introduction

i.e. the cumulative probability of all finite derivations should be equal to 1. Etessami and
Yannakakis have shown how to check consistency of PCFGs in polynomial time [EY09].
Surprisingly, several examples of grammars used in NLP fail to be consistent [WE07].

1.5 Contributions and Outline

In this thesis we follow three major lines of work concerning algebraic systems and
Newton’s method:

• We contribute to the theoretical foundations of Newton’s method. We define New-
ton’s method via grammar unfolding, analyze its convergence behavior, and com-
binatorics of tree dimension.

• We devise efficient algorithms and data structures for Newton’s method and de-
velop FPSOLVE, a generic implementation of Newton’s method over semirings.

• We explore applications in Datalog provenance, formal language theory, and nat-
ural language processing.

Overview of Technical Contributions

1. Our theoretical contributions are described in Chapter 3. Most of our results were
published in [LS13, LS15].

In Section 3.5 we study the convergence behavior of Newton’s method and prove a
general theorem on the convergence speed of Newton’s method over commutative
semirings.

In Section 3.4 we suggest an improved definition of Newton’s method via
dimension-unfolding. We relate this unfolding to the usual definition via deriva-
tives and show how to obtain a closed formulation of Newton’s method over non-
commutative semirings, in particular matrix semirings with commutative entries.

In Section 3.6 we contribute to the combinatorial theory underlying Newton’s
method. We prove a tight relation between pathwidth and tree dimension, set-
tling an open question by David Eppstein.

2. In Chapter 4 we study the algorithmic aspects of Newton’s method and describe
our implementation FPSOLVE. Chapter 5 is devoted to the study of algorithms and
data structures for semilinear sets. Semilinear sets are important as the (algebraic)
elements of the “most general” commutative idempotent semiring. Most of these
results were published in [STL13, ELS14b, ELS15]:

3. We explore three different applications which use theoretical and algorithmic ideas
from the study of Newton’s method. Most of these results were published in the
following papers [BLS15, LS13, LS15, LS14, SLE14].

10

1.5 Contributions and Outline

a) In Chapter 6 we propose concisely stored regular expression as a general,
finite representation for provenance of recursive Datalog programs. We de-
scribe how to compute these expressions via Newton’s method and show
how to simplify them over special semirings. We generalize the work of
Green et al. [GKT07] and improve the work of Deutch et al. [DMRT14].

b) In Chapter 7 we study the descriptional complexity of finite automata and
regular expressions for representing the subword closure of context-free
grammars. We settle two open questions of Gruber, Holzer, and Kutrib
[GHK09], prove new complexity results, and describe an application to gram-
mar testing.

c) In Chapter 8 we suggest tree dimension as a measure for syntactic complexity
and briefly show how statistical parsing of natural language can be improved
by enriching grammars with dimension information.

11

2
Preliminaries

Here we fix some basic notions and definitions used throughout the thesis.

2.1 Basics: Numbers, Languages, Orders, Fixpoints

We denote the empty set by ∅. The set of all functions f : Y → X is denoted by XY . For
a set X, we denote its powerset by 2X (i.e. we identify a subset with its characteristic
function f : X → {0, 1}). For a relation R ⊆ X × X over a set X, we denote its reflexive,
transitive closure by R∗. We denote the natural numbers (non-negative integers) by
N = {0, 1, 2, . . . } and furthermore we define the natural numbers extended by a symbol
for infinity as N∞ := N ∪ {∞}. For any k, the first k + 1 natural numbers form the set
Nk := {n ∈ N : n 6 k}. Finally, for n ∈ N we set [n] := {k ∈ N : 1 6 k 6 n}, in particular
note that [0] = ∅. For a finite set X we denote the set of all its k-element subsets by(
X
k

)
:= {S ⊆ X : |S| = k}. If |X| = n we have that

∣∣∣(Xk)∣∣∣ = (
n
k

)
= n!

(n−k)!k! . We write

R for the real numbers, R>0 for the nonnegative reals, and R>0∞ := R>0 ∪ {∞} for the
nonnegative real numbers extended by a symbol for infinity.

An alphabet Σ is a finite set. A (finite) word w of length n over Σ is a sequence of n
elements from Σ (i.e. formally a function from [n] to Σ). We write w = a1 . . . an with
ai ∈ Σ for such a word. We denote the length of a word w by |w| and for a ∈ Σ we
write |w|a = |{i ∈ [|w|] : wi = a}| for the number of a’s appearing inw. The empty word is
the (unique) word of length 0 and is denoted by ε. Given two words u = a1 . . . an and
v = b1 . . . bm we define their concatenation as u · v := a1 . . . anb1 . . . bm. This definition

13

2 Preliminaries

extends canonically to sets of words: For two languages A,B over a common alphabet
Σ we define their concatenation as the language A · B := {u · v : u ∈ A, v ∈ B}.

For a language A, we inductively define A0 := {ε} and An+1 := A · An. This allows
us to define the Kleene star of A as A∗ :=

⋃
i>0A

i. Furthermore, we denote by A6k all
words from A of length at most k, i.e. A6k :=

⋃
06i6kA

i.
A relation 6 on a set X is called a partial order if it is reflexive, transitive, and antisym-

metric, i.e.

• x 6 x,

• x 6 y∧ y 6 z =⇒ x 6 z,

• x 6 y∧ y 6 x =⇒ x = y.

The resulting tuple (X,6) is called a partially ordered set (as usual, we just write X if
the partial order is clear). Given a subset A ⊆ X we call an element x ∈ X the least upper
bound (or supremum) of A if ∀a ∈ A : a 6 x and for every other y ∈ X also satisfying
∀a ∈ A : a 6 ywe have x 6 y. Not every subset has a supremum, but if it does, then by
the antisymmetry of 6 the supremum is unique and we denote it by sup6A (omitting
the reference to the partial order 6 if it is clear)

We call a countable, non-decreasing sequence in X anω-chain. Put formally, (xi)i∈N ∈
X is anω-chain, if xi 6 xi+1 ∀i ∈ N.

Let (X,6) be a partial order with a least element⊥ ∈ X. We call (X,6,⊥) anω-complete
partial order (ω-cpo), if everyω-chain (x)i∈N has a supremum.

A function f : (X,6,⊥) → (Y,v,⊥ ′) mapping an ω-cpo (X,6,⊥) to an ω-cpo (Y,v
,⊥ ′) is called monotone, if x 6 y =⇒ f(x) v f(y). f : (X,6,⊥) → (Y,v,⊥ ′) is called ω-
continuous, if for every ω-chain (x)i∈N with sup6{xi : i ∈ N} = x we have supv{f(xi) :
i ∈ N} = f(x) (in particular, this supremum exists).

Theorem 2.1 (Kleene’s fixpoint theorem [Kui97]). Every ω-continuous function f : (X,6
,⊥)→ (Y,v,⊥ ′) over aω-cpo has a least fixpoint x and

x := sup{fi(⊥) : i ∈ N}.

2.2 Semirings, Formal Power Series, Polynomials, Matrices,
Vectors

A monoid (M, ·, 1) is a set M together with an associative binary operation “·” and a
neutral element 1, i.e. the following conditions are satisfied:

• · :M×M→M,

• ∀x, y, z ∈M : (x · y) · z = x · (y · z),

14

2.2 Semirings, Formal Power Series, Polynomials, Matrices, Vectors

• ∀x ∈M : x · 1 = 1 · x = x.

We simply writeM to refer to the monoid, if the operation and neutral element are clear
from the context. A monoidM is commutative, if x · y = y · x holds for all x, y ∈M. Sim-
ple examples of (commutative) monoids are the natural numbers with the usual addi-
tion operation (N∞,+, 0) or the extended natural numbers with the minimum operation
(N∞,min,∞).

For a set Σ the free monoid generated by Σ is the set Σ∗ with · being the concatenation
of words. The free commutative monoid over Σ is denoted by Σ⊕ and is Σ∗ modulo the
set of congruences ∀x, y ∈ Σ : x · y = y · x. The set of functions NΣ together with the
pointwise addition on N is a commutative monoid, the neutral element (which we write
as 0) being the function that maps every a ∈ Σ to 0.

A monoid homomorphism h : M → M ′ is a mapping from a monoid (M, ·, 1) to a
monoid (M ′,⊗, 1 ′) that satisfies

• h(1) = 1 ′

• h(x · y) = h(x)⊗ h(y)

An important example of a monoid homomorphism is the Parikh image P of a word
w ∈ Σ∗, P : (Σ∗, ·, ε) → (NΣ,+, 0) defined as the (unique) homomorphism satisfying
P(a) = δa(x) with

δa(x) =

{
1, if x = a

0, otherwise
for all a ∈ Σ

It is easy to see (e.g. by induction on |w|) that the Parikh image just counts the number
of all letters appearing in w, i.e. P(w)(a) = |w|a for w ∈ Σ∗, a ∈ Σ.

A semiring (S,+, ·, 0, 1) is a set S together with an addition (+) and multiplication (·)
operation such that

• (S,+, 0) is a commutative monoid and (S, ·, 1) is a monoid.

• Multiplication distributes over addition, i.e. x · (y + z) = (x · y) + (x · z) and
(y+ z) · x = (y · x) + (z · x) for all x, y, z ∈ S.

• 0 is an annihilator for the multiplication, i.e 0 · x = x · 0 = 0 for all x ∈ S.

We call a semiring S commutative if the monoid (S, ·, 1) is commutative. S is called idem-
potent if x+ x = x holds for all x ∈ S. A semiring is finite, if S is a finite set. As usual, we
write sn for the n-fold product sn :=

∏n
i=1 s and additionally we write n · s to denote

the n-fold sum
∑n
i=1 s.

Examples of commutative semirings are again the natural numbers with the usual
addition and multiplication (N,+, ·, 0, 1) or the idempotent tropical semiring over the (ex-
tended) natural (N∞,min,+,∞, 0) or real numbers (R>0∞ ,min,+,∞, 0), respectively. A

15

2 Preliminaries

standard example of a non-commutative (but idempotent) semiring is the semiring of
formal languages with union and concatenation of languages (2Σ

∗
,∪, ·, ∅, {ε}).

A semiring S is called naturally ordered, if the relation v defined by x v y ⇐⇒ ∃z :

x + z = y is a partial order. We call a semiring ω-continuous if it is naturally ordered
and countably infinite sums are defined and behave like absolutely convergent series,
formally:

Definition 2.2 (ω-continuous semiring [Ési08, EKL07a]). A naturally ordered semiring
(S,+, ·, 0, 1) isω-continuous if the following conditions hold

1. For all sequences (ai)i∈N ∈ S,
∑
i∈N ai := sup{

∑
06i6n ai : n ∈ N} exists.

2. The order of summation is irrelevant for infinite sums, i.e. for all partitions {Ij : j ∈ J} of
N we have

∑
i∈N ai =

∑
j∈J
∑
i∈Ij ai.

3. The distributive laws also hold for infinite sums, i.e. for all c ∈ S we have
∑
i∈N(c · ai) =

c ·
(∑

i∈N ai
)

and
∑
i∈N ai · c =

(∑
i∈N ai

)
· c.

Inω-continuous semirings we can define the Kleene star of an element a ∈ S by

a∗ :=
∑
i∈N

ai

The following lemma collects identities that hold in anyω-continuous semiring 1.

Lemma 2.3 ([DKV09, ÉK04]). Let S be anω-continuous semiring and x, y ∈ S then

1. a∗ = 1+ aa∗

2. (ab)∗ = 1+ a(ba)∗b

3. (a+ b)∗ = (a∗b)∗a∗

Given two semirings (R,+R, ·R, 0R, 1R), (S,+S, ·S, 0S, 1S) a semiring homomorphism is
a map h : R→ S such that for all x, y ∈ R

• h(0R) = 0S and h(1R) = 1S,

• h(x+R y) = h(x) +S h(y),

• h(x ·R y) = h(x) ·S h(y).

As remarked in [Lut10], a homomorphism h between two ω-continuous semirings is
ω-continuous if and only if h

(∑
i∈N ai

)
=
∑
i∈N h(ai) for all ai ∈ S.

A mapping r from a monoid M to a semiring S is called a formal power series over
M with coefficients in S. Such mappings are commonly written as r =

∑
m∈M(r,m)m

1More generally, these identities hold in any inductive ∗-semiring, e.g. the semiring of regular or context-
free languages which are both notω-continuous.

16

2.2 Semirings, Formal Power Series, Polynomials, Matrices, Vectors

where (r,m) ∈ S is the image of m ∈ M, called the coefficient of m. The set of all such
formal power series is denoted by S〈〈M〉〉. For a power series r ∈ S〈〈M〉〉 we define its
support as elements in M with non-zero coefficients: supp(r) = {m ∈ M : (r,m) 6= 0}. If
the support of r is finite, we call r a polynomial. The set of all polynomials over M with
coefficients in S is denoted by S〈M〉.

To be able to define a semiring structure on S〈〈M〉〉 we have to make either some ad-
ditional assumptions on the semiring, e.g. that arbitrary (i.e. also non-countable) sums
are defined, or restrict the monoid M (cf. [DKV09]). Here, we follow the approach of
Ésik [Ési08] and require that M is finitely decomposable, i.e. every element m ∈M can be
written as a product m = x · y only in a finite number of ways. The set of formal power
series over a locally finite monoid M with coefficients in a semiring S can be endowed
with a semiring structure by defining for r =

∑
m∈M(r,m)m and s =

∑
m∈M(s,m)m

the addition component-wise

r+ s :=
∑
m∈M

((r,m) + (s,m))m

and multiplication via the Cauchy product

r · s :=
∑
m∈M

 ∑
x,y∈M
xy=m

(r, x) · (s, y)

m.
It is well-known that S〈〈M〉〉 is anω-continuous semiring if S is [DKV09].
A power series is called a polynomial if it has finite support. We write S〈M〉 for the

set of polynomials over M with coefficients in S. Note that S〈M〉 is also a semiring,
but in general not ω-continuous since countable sums of polynomials need not be a
polynomial anymore. In particular, the Kleene star cannot be defined in S〈M〉. However,
in special cases, e.g. when S is finite, S〈M〉 isω-continuous.

Of particular interest to us is the semiring N∞〈〈Σ∗〉〉 of formal power series (resp. poly-
nomials) over the free monoid Σ∗ with coefficients in the extended natural numbers
N∞. This semiring is “free” in the sense that every valuation h : Σ → S of alpha-
bet symbols into an ω-continuous semiring S extends uniquely to a homomorphism
ĥ : N∞〈〈Σ∗〉〉 → S. Similarly, the semiring N∞〈〈Σ⊕〉〉 of power series in commuting vari-
ables with coefficients in N∞ can be seen as the commutative semiring freely generated
by Σ.

Given two finite index sets I, J the set of I × J matrices over a semiring is SI×J, i.e. a
matrix with entries in a semiring S is a mapping from I×J to S. We writeA = (ai,j)i∈I,j∈J
and Ai,j = ai,j. For a matrix A ∈ SI×J its transpose AT ∈ SJ×I is defined by ATi,j := Aj,i
for i ∈ I, j ∈ J.

The set of square matrices SI×I is a semiring with the usual matrix addition and mul-
tiplication:

(A+ B)i,j := Ai,j + Bi,j for i, j ∈ I

17

2 Preliminaries

(A · B)i,j :=
∑
k∈I

Ai,k · Bk,j for i, j ∈ I

As for power series, SI×I is anω-continuous semiring if S is.
Vectors over S indexed by an index set I are simply functions from SI. Given a matrix

A ∈ SI×J and a vector b ∈ SJ, the product A · b is the vector

(A · b)i :=
∑
j∈J

ai,j · bj for i ∈ I

Similarly, for A ∈ SI×J and a vector b ∈ SI the product b ·A is defined by

(b ·A)j :=
∑
i∈I

bi · ai,j for j ∈ J

2.3 Automata and Formal Language Theory

2.3.1 Regular Languages

A (nondeterministic) finite automaton (NFA) A is a tuple A = (Q,Σ, δ, q0, F) where Q is a
finite set of states, Σ is a finite alphabet, δ : Q×Σ→ 2Q is the transition function, q0 ∈ Q
is the initial state, and F ⊆ Q is the set of final states. We write q a−→ q ′ if q ′ ∈ δ(q, a). The
transition function extends naturally to a function δ̂ : Q×Σ∗ via the inductive definition
for q ∈ Q,a ∈ Σ,w ∈ Σ∗:

δ̂(q, ε) := {q},

δ̂(q, aw) :=
⋃

q ′∈δ(q,a)

δ̂(q ′, w).

Abusing notation, we use δ as well to denote this extension of the transition function to
Q× Σ∗, and write q w−→ q ′ if q ′ ∈ δ(q,w) as well.

An ε-NFA is an NFA where we also allow the empty word as a transition label. It is
well-known that every ε-NFA can be transformed into an (ε-free) NFA over the same set
of states (albeit with a quadratic increase in the number of transitions). Thus, we also
allow transitions of an NFA to carry the label ε.

The language accepted by an NFA A is defined as L(A) := {w ∈ Σ∗ : δ(q0, w) ∩ F 6= ∅}.
We call an NFA deterministic (or DFA) if |δ(q, a)| = 1 for all q ∈ Q,a ∈ Σ. Hence, for
DFAs we can view δ as a function δ : Q× Σ∗ → Q.

The set of regular (or rational) expressions REGΣ over an alphabet Σ is the set of terms
inductively defined by:

• ε ∈ REGΣ, a ∈ REGΣ for every a ∈ Σ.

• If r, s ∈ REGΣ then (r+ s) ∈ REGΣ and (r · s) ∈ REGΣ.

18

2.3 Automata and Formal Language Theory

• If r ∈ REGΣ then (r)∗ ∈ REGΣ.

As usual, we omit parentheses and assume that multiplication binds stronger than ad-
dition to improve readability (furthermore we often write multiplication implicitly by
juxtaposition).

The language of a regular expression is inductively defined by

• L(ε) := {ε} and L(a) := {a} for every a ∈ Σ.

• L(r+ s) := L(r) ∪ L(s) and L(r · s) := L(r) · L(s).

• L(r∗) := L(r)∗.

Kleene’s theorem [DKV09] states that for a finite alphabet Σ,

• the set of languages over Σ defined by regular expressions and

• the set of languages over Σ accepted by NFAs

coincide. Hence, we call this set the regular languages.

2.3.2 Context-Free Languages

A context-free grammar (CFG) is a tuple G = (X, Σ,→) with

• X is a finite set of nonterminals (or variables),

• Σ is a finite alphabet of terminals,

• → ⊆ X× (X ∪ Σ)∗ is a set of (production) rules, and

When writing down the set of rules of a grammar, we often collect all productions of
the form X→ ri for a nonterminal X and write X → r1 | r2 | . . . | rk. A CFG is linear, if
every rule is of the form X→ vYw or X→w for some v,w ∈ Σ∗. We call a CFG ε-free, if
(A, ε) /∈ → for all A ∈ X.

The size of a CFG G, denoted by |G|, is defined as the total sum of lengths of the right-
hand-sides of all rules. An easy observation is that for L := max{

∑
r:x→ r|r| : x ∈ X} the

maximal length of all right-hand-sides and n := |X|, we have |G| 6 n · L.
Note that in our definition of CFGs we have not fixed a particular start symbol. The

elements of (X ∪ Σ)∗ are called sentential forms and the rules of the grammar induce a
derivation relation⇒G over sentential forms. This relation⇒G ⊆ (X ∪ Σ)∗ × (X ∪ Σ)∗ is
defined by: If X→β for some β ∈ (X ∪ Σ)∗ then αXγ⇒G αβγ for all α, γ ∈ (X ∪ Σ)∗.

We call a sequence αi ∈ (X ∪ Σ)∗ with X⇒G α1⇒G · · ·⇒G αn a derivation of αn from
X ∈ X. If αn ∈ Σ∗ we call it a terminal derivation. More concisely, we can express this
derivation via the reflexive transitive closure ⇒∗G of the derivation relation: X⇒∗G αn.
We define the language of a nonterminal X ∈ X as L(X) := {w ∈ Σ∗ : X⇒∗Gw}. At times

19

2 Preliminaries

we explicitly fix a start symbol S which allows us to talk about the language of a CFG
L(G) := L(S).

We slightly divert from the usual definition of derivation trees of a CFG G by requiring
that each node is labeled with a production rule of the grammar.

Definition 2.4 (Labels, derivation tree, yield). For a node labeled with (X,α), we call X the
label of the node and write lab(t) for the set of all labels of a tree t. The label of a tree is the label
of its root node. Let G be a CFG,

• A single node v labeled with (X,α) is a derivation tree of G if X→α is a rule in G. Its
yield is defined as Y(v) := α.

• The tree t with subtrees t1, . . . , tk is a derivation tree if

– t1, . . . , tk are derivation trees with labels X1, . . . , Xk,

– t is labeled with (X,α) where α = w0X1w1X2 · · ·wk−1Xkwk (with wi ∈ Σ∗),

– X→α is a rule of G.

Its yield is Y(t) := w0Y(t1)w1 · · ·wk−1Y(tk)wk.

We call t a partial derivation tree if Y(t) /∈ Σ∗ (i.e. there is at least one nonterminal in
its yield). A partial tree is a pump tree if Y(t) contains exactly one nonterminal X which
is also the label of the root of t. If Y(t) ∈ Σ∗, we call t a terminal derivation tree.

We denote the set of all terminal derivation trees of a grammarG that are labeled with
X by TGX . In the following, we reserve the name “derivation trees” for terminal trees, and
explicitly state when we mean partial trees.

A context-free grammar is in 2-normal form (2NF) if the right hand side of every pro-
duction has length at most two, i.e.→ ⊆ X× (Σ ∪ X)62. It is well-known that every CFG
G can be transformed into a CFG G ′ in 2NF (by introducing fresh variables to binarize
all rules) such that (1) there is a bijection between the sets of derivation trees of both
grammars, and (2) that there is a constant c (independent of G) such that |G ′| 6 c · |G|
[LL09].

While 2NF is very simple, one often has to consider rules of the form A→aB or
A→Ba as special cases. Hence we often use a more restricted normal form that for-
bids such rules: A CFG is in canonical two form (C2F) if→ ⊆ X×

(
{ε} ∪ Σ ∪ X ∪ X2

)
. This

normal form has appealing properties (cf. [Ben77]):

1. Every grammar G can be transformed into a grammar G ′ in C2F with at most
linear blowup in size.

2. The transformation is ambiguity preserving, i.e. there is a bijection between the set
of derivation trees of G and G ′.

3. If G is ε-free then G ′ is ε-free.

20

2.3 Automata and Formal Language Theory

The transformation into C2F is again carried out by introducing fresh variables to bina-
rize all rules and eliminate terminals from quadratic rules. Note that despite being at
most linear, the increase in size can be practically relevant. Unfortunately, finding the
smallest binarization of a CFG is an NP-hard problem [GR14].

21

3
Theory of Algebraic Systems

In this chapter we present our theoretical results concerning Newton’s method for solv-
ing algebraic systems over semirings.

We first review the connections between algebraic systems and context-free grammars
in Section 3.2. In particular, we recall that the solution of an algebraic system can be
viewed as the ambiguity function of the associated grammar. In Section 3.3 we review
how fixpoint iteration can be viewed combinatorially as an enumeration method for
derivation trees by height.

Next, in Section 3.4 we present two equivalent definitions of Newton’s method:
First, a combinatorial definition based on a grammar unfolding by tree dimension
(aka. Strahler number) and a definition of Newton’s method via derivatives that can
be related to the usual definition of Newton’s method over R.

In Section 3.4.4 we study Newton’s method in the non-commutative setting. Specif-
ically, we show how to obtain a closed form for the Newton approximations as regu-
lar tree expressions over non-commutative semirings, and how to compute Newton’s
method over the (non-commutative) matrix semirings with commutative entries.

Our main technical contribution is the convergence result for Newton’s method over
commutative semirings in Section 3.5.2 and the consequence that Newton’s method con-
verges in finite time over all commutative k-collapsed semirings.

Finally, in Section 3.6 we study the tree dimension in greater detail and prove a new
connection to the pathwidth of a tree in 3.6.2 which answers an open question by David
Eppstein. Furthermore, we show how to apply the combinatorial properties of tree di-
mension for the optimization of arithmetic expressions in Section 3.6.3.

23

3 Theory of Algebraic Systems

Most of these results were published in [LS13, LS15] apart from the study of Newton’s
method in the non-commutative setting (especially for matrices) and the combinatorial
optimization of arithmetic expressions.

3.1 Polynomial Systems

In the following we fix an ω-continuous semiring S and a finite set of variables X =

{X1, . . . , Xn}. Informally speaking, a polynomial system over S is a set of defining equa-
tions

X1 = F1(X1, . . . , Xn)

...

Xn = Fn(X1, . . . , Xn)

where F1, . . . , Fn are “polynomial expressions” built from elements of S and variables in
X and a “solution” of such system is any valuation (replacing the variables with elements
in S) such that the equations are satisfied.

More precisely, we define a monomial m as a (non-empty) finite product term m =

a0 · Xi1 · a1Xi1 · · ·ak−1 · Xik · ak with ai ∈ S. A polynomial expression p over S is a finite
sum of monomials p =

∑N
i=1mi with N > 1. We write PolXS for the set of polynomial

expressions over S with variables in X. Note that formally the “product” and “sum”
are uninterpreted function symbols and hence polynomial expressions do not have an
interpretation yet. The interpretation is given by viewing a polynomial expression p as
a function: For p ∈ PolXS s.t. p =

∑N
j=1mj we define the associated polynomial function

p̂ : S[n] → S by p̂(s) :=
∑N
j=1 h(mj), where h is the evaluation homomorphism given

by h(Xi) = si, h(a) = a for a ∈ S and h(x · y) = h(x) · h(y) for subterms x, y of a
monomial. A polynomial system over S in variables X is a finite set of equations Xi = pi

where Xi ∈ X, pi ∈ PolXS for all i ∈ [n]. A solution of such a system is a vector s ∈ S[n]

such that si = p̂i(s) for all i ∈ [n].
It is well-known that the associated polynomial function of a polynomial expression

over S is ω-continuous (cf. [Kui97]) and hence, every polynomial system has a least
solution in S[n].

Note that we strictly distinguish “polynomial expressions” PolXS which are terms,
from “polynomials” with coefficients in S, i.e. elements from S〈X∗〉 which are functions
with finite support from X∗ to S. Intuitively, the difference is that in a polynomial ex-
pression the semiring coefficients can appear both in front of and in between variables:

Example 3.1. Consider the semiring S of formal languages over the alphabet Σ = {a, b, c},
i.e. S = (2Σ

∗
,∪, ·, ∅, {ε}). Let X = {X}, then the polynomial expression p = {a} · X · {b} + {c}

defines the function p̂(X) = {a} · X · {b}+ {c} with least fixpoint L = {an+1cbn+1 : n ∈ N}.

24

3.2 From Equations to Grammars and Back

However, the only polynomial q ∈ S〈X∗〉, i.e. q =
∑
i>0 ci · Xi such that q has the least

fixpoint L is the trivial q = L · X0. This can be seen easily since Li ∩ (Σ∗ \ L) 6= ∅ for all i > 1,
so we must have ci = 0 for all i > 0.

3.2 From Equations to Grammars and Back

Here we survey the well-known relations between systems of equations and context-free
grammars. We recall the fact that the least solution of an algebraic system is equal to the
ambiguity function of the associated grammar, which counts the number of derivation
trees for a given word. Hence, to approximate solutions of algebraic system it suffices to
approximate the set of derivation trees of a context-free grammar.

Polynomial Equations and Algebraic Systems The above example justifies why we
introduce “polynomial expressions” instead of just viewing polynomial systems as a
vector of polynomials from S〈X∗〉.

However, to obtain a unified presentation of the theory we can move to a richer struc-
ture and view a polynomial system over S as a vector of polynomials from N1〈(X∪Σ)∗〉
together with an interpretation function ι : Σ → S, where Σ are new symbolic names
replacing the semiring constants in the polynomial system. Hence, from a theoretical
point of view it is sufficient to consider so called “algebraic systems” over N∞〈〈Σ∗〉〉 if
we want to study polynomial systems over some S. Also note that since our polynomial
expressions consist only of non-empty monomials, the corresponding polynomials are
even members of N1〈(X ∪ Σ)+〉, i.e. the coefficient of the empty monomial is 0.

Similarly to [Sal90] we define an algebraic system in variables X = {X1, . . . , Xn} over
N∞〈〈Σ∗〉〉 as a vector of polynomials p1, . . . , pn ∈ N1〈(Σ ∪ X)∗〉. It is important to note
that we only allow coefficients in N1 = {0, 1} for the polynomials.

A solution of such an algebraic system is a vector r of power series r =

(r1, . . . , rn), ri ∈ N∞〈〈Σ∗〉〉 satisfying the system, i.e. for the evaluation homomorphism
h : N∞〈(Σ ∪ X)∗〉 → N∞〈〈Σ∗〉〉 induced by h(Xi) = ri we have ri = h(pi)∀i ∈ [n].

It is well-known [Boz99] (see also [MW67]) that we can associate with any polynomial
system X1 = p1, . . . , Xn = pn over S an algebraic system over N∞〈〈Σ∗〉〉 such that the
least solution of the polynomial system can be obtained by applying the homomorphism
h : N∞〈〈Σ∗〉〉 → S (induced by the interpretation ι : Σ → S) to the least solution of the
algebraic system. Figure 3.1 illustrates this result.

We furthermore define an “algebraic system over an ω-continuous semiring S” as an
algebraic system p1, . . . , pn ∈ N1〈(Σ ∪ X)∗〉 together with an interpretation function
ι : Σ→ S. A solution of this system over S is a solution r1, . . . , rn of the algebraic system
(over N∞〈〈Σ∗〉〉) together with a vector of elements s1, . . . , sn ∈ S such that h(ri) = si

where h is the unique homomorphism h : N∞〈〈Σ∗〉〉 → S induced by ι. For a fixed

25

3 Theory of Algebraic Systems

X = XsY + t

Y = YYt+ sX+ t

Polynomial system over S

X = XaY + b

Y = YYb+ aX+ b

Algebraic system over N∞〈〈Σ∗〉〉

X =
∑
w∈{a,b}∗ cX,w ·w

Y =
∑
w∈{a,b}∗ cY,w ·w

Solution: power series in N∞〈〈Σ∗〉〉

sX =
∑
w∈{a,b}∗ cX,w · h(w)

sY =
∑
w∈{a,b}∗ cY,w · h(w)

Solution: element of S

un-interpret

ι(a) = s, ι(b) = t

least solution

re-interpret

ι; h

least solution (sX, sY) in S

Figure 3.1: Illustration of the connection between polynomial and algebraic systems.

interpretation, the polynomials p1, . . . , pn define functions on S via the evaluation ho-
momorphisms h : X∗ → Swhich we denote by p̂i as before.

Algebraic Systems and Grammars It is well-known from the work of Chomsky and
Schützenberger, that algebraic systems are closely related to context-free grammars
[CS63]. Every algebraic system p1, . . . , pn ∈ N1〈(Σ ∪ X)∗〉 induces a context-free gram-
mar G := (X, Σ,→) where → is defined by: If (α, pi) 6= 0 then Xi→α. Since the coef-
ficients of the pi are in N1 = {0, 1} this correspondence even yields a bijection between
algebraic systems and CFGs (as remarked already in [Sal90]).

The ambiguity of a CFG G w.r.t. a nonterminal X is a mapping giving the number of
derivation trees labeled with X that yield w for each word w ∈ Σ∗, i.e.

ambG,X(w) :=
∣∣{t ∈ TGX : Y(t) = w}

∣∣
is a formal power series in N∞〈〈Σ∗〉〉. Given an algebraic system over N∞〈〈Σ∗〉〉, it is well-
known that its least solution is equal to the ambiguity of the corresponding grammar G.
Since N∞〈〈Σ∗〉〉 is the ω-continuous semiring freely generated by Σ, the solution to any
algebraic system over someω-continuous semiring S is obtained via mapping amb to S
via the unique homomorphism h : N∞〈〈Σ∗〉〉 → S induced by the interpretation ι : Σ→ S

[EKL10, Boz99]. Figure 3.2 depicts this connection schematically.
Similar to amb, the commutative ambiguity of a CFG G counts for every word w the

number of derivation trees that yield a permutation of w, i.e.

cambG,X(w) :=
∣∣{t ∈ TGX : P(Y(t)) = P(w)}

∣∣,
26

3.2 From Equations to Grammars and Back

X = XaY + b

Y = YYb+ aX+ b

Algebraic system over N∞〈〈Σ∗〉〉
X → XaY | b

Y → YYb | aX | b

Context-free grammar

X =
∑
w∈{a,b}∗ cX,w · h(w)

Y =
∑
w∈{a,b}∗ cY,w · h(w)

Solution in N∞〈〈Σ∗〉〉

ambX =
∑
w∈{a,b}∗ cX,w · h(w)

ambY =
∑
w∈{a,b}∗ cY,w · h(w)

Ambiguity in N∞〈〈Σ∗〉〉

least solution count trees

X = ambX

Y = ambY

Figure 3.2: Illustration of the connection between algebraic systems and context-free
grammars.

where P denotes the Parikh image (cf. Section 2.2). Let us illustrate these results by
means of a longer example.

Example 3.2. Consider the simple equation over the semiring R>0∞ from Example 1.7 in the
introduction

X = 0.6XX+ 0.4

which corresponds to the algebraic “system”

X = aXX+ c

with ι(a) = 0.6, ι(c) = 0.4. The algebraic system in turn corresponds to a context-free grammar
over Σ = {a, c} in the obvious way:

X→ aXX | c.

Since this grammar is unambiguous, we have ambG,X(w) ∈ {0, 1}. For example
ambG,X(acc) = 1 and ambG,X(cc) = 0. For unambiguous grammars like these, each
word in L(X) encodes exactly one derivation tree. In our case this is a binary tree with inner
nodes labeled with a and leaves labeled with c. For instance the word acacc describes the
derivation tree shown below on the left. Recall from the Example 1.7 that we can draw the
derivation tree on the left in an isomorphic fashion as shown on the right since every rule in the
grammar is labeled with a unique terminal.

27

3 Theory of Algebraic Systems

(X, a)

(X, c) (X, a)

(X, c) (X, c)

a

c a

c c

To determine camb, we have to count for each w ∈ Σ⊕ how many derivation trees yield
w modulo commutativity. For n ∈ N, every tree with n inner nodes has n + 1 leaves, so
camb(w) 6= 0 if and only if w = ancn+1 for some n ∈ N. Up to n 6 3 inner nodes, it is still
easy to enumerate all possible derivation trees:

c a

c c

a

c a

c c

a

a

c c

c

a

a

c c

a

c c

a

c a

a

c c

c

a

c a

c a

c c

a

a

a

c c

c

c

a

a

c a

c c

c

As we can see, the numbers of trees with n inner nodes are (for n = 0, 1, 2, 3)

1, 1, 2, 5, . . .

Hence, the first terms of the power series camb are

cambG,X = 1 · c+ 1 · acc+ 2 · a2c3 + 5 · a3c4 +

In general, the number of binary trees with n inner nodes is the n-th Catalan number [GKP89]
Cn given by

Cn :=
1

n+ 1

(
2n

n

)
for n ∈ N.

Therefore

cambG,X(ancn+1) =
1

n+ 1

(
2n

n

)
.

We can use the fact that camb is the least solution of the algebraic system X = aXX + c over
N∞〈〈Σ⊕〉〉 to obtain the solution of

X = 0.6 · X · X+ 0.4

28

3.3 Fixpoint Iteration

over the real numbers. To this end we apply the (unique) homomorphism h : N∞〈〈Σ⊕〉〉 → R
induced by the interpretation ι(a) = 3

5 , ι(c) =
2
5 to our solution camb:

X = h(cambG,X) =
∞∑
n=0

1

n+ 1

(
2n

n

)(
3

5

)n(
2

5

)n+1
=
2

5

∞∑
n=0

Cn

(
6

25

)n
=

=
2

5

∞∑
n=0

Cn

(
6

25

)n
=

=
2

5
C

(
6

25

)

with C(z) the generating function of the Catalan numbers, which is well-known [GKP89]:

C(z) =
1−
√
1− 4z

2z
.

So we can continue to get

X =
2

5
·
1−

√
1− 24

25

12
25

=
2

5
· 20
12

=
2

3

as the least solution to the equation X = 0.6 · X · X+ 0.4 over R.

Note that the purpose of the previous example is not to compute the solution of a
quadratic equation in the most complicated way imaginable but rather to illustrate that
solving (resp. approximating) the solution of algebraic systems over semirings reduces
to computing (resp. approximating) the ambiguity function amb of the associated gram-
mar. Similarly, it suffices to study camb if the semiring is commutative.

3.3 Fixpoint Iteration

Fixpoint iteration is the straightforward translation of Kleene’s fixpoint theorem into an
approximation method. To approximate the least fixpoint of an algebraic system p =

(p1, . . . , pn) over anω-continuous semiring S, fixpoint iteration computes the sequence
0, p̂(0), p̂2(0), . . . , p̂n(0) ∈ S until either a fixpoint is reached (i.e. p̂n(0) = p̂n−1(0)) or
the approximation is deemed sufficient.

By induction on the number of fixpoint iterations we can easily show that fixpoint
iteration on an algebraic system corresponds to evaluating the yields of the derivation
trees of the associated context-free grammar by increasing height (cf. [EKL07a, EKL10]).

29

3 Theory of Algebraic Systems

Moreover, we can unfold the grammar G into a grammar G<h whose derivation
trees are in one-to-one correspondence with those derivation trees of G having height
less than h. The following definition is a slightly improved version of the one given
in [EL11]. It is inspired by the semi-naive evaluation strategy for Datalog programs
(cf. [AHV95]).

Definition 3.3 (Height unfolding). Given a context-free grammar G = (X, Σ,→) the height
unfolding of G is the sequence of grammars G<H = (XH, Σ,→H), H ∈ N defined by:

• If X ∈ X then X=h ∈ XH for all 0 6 h 6 H− 1 and X<h ∈ XH for all 1 6 h 6 H.

• If X→α ∈ Σ∗ then X=0→H α.

• X<h→H X=h−1 for all 1 6 h 6 H and X<h→H X<h−1 for all 2 6 h 6 H.

• If X→w0X1w1 · · ·wkXkwk+1 with wi ∈ Σ∗ then we have for all 1 6 j 6 k and
0 6 h 6 H− 1

X=h→Hw0X<h1 w1 · · ·X<hj−1wj−1X=h−1
j wjX

<h−1
j+1 · · ·wkX<h−1k

The intuition is that X<h can only produce derivation trees of height less than h and
similarly, X=h produces only derivation trees of height exactly h. The unfolding is then
obtained by distinguishing the cases how to obtain a tree of height h: Let t be a deriva-
tion tree of height (exactly) h labeled with X and having subtrees t1, . . . , tk labeled with
X1, . . . , Xk, respectively. Then there exists exactly one rule in the above unfolding that
generates the given subtrees since the rule is uniquely determined by the (label of the)
rightmost subtree having height h− 1.

More formally, we can obtain the following result, e.g. by structural induction on t
(see also [EL11]).

Theorem 3.4. Let G be a CFG and G<H for some H ∈ N be its height unfolding. Every
derivation tree t of G of height less than H with root label X ∈ X corresponds to exactly one
derivation tree t̂ of G<H with root label X<H ∈ XH. Moreover, the yields of t and t̂ coincide,
Y(t) = Y(t̂).

3.4 Newton’s Method

In the same way as fixpoint iteration can be viewed as a systematic procedure for enu-
merating derivation trees by height, we can define Newton’s method as a procedure
for enumerating derivation trees by a different tree parameter, called the dimension (or
Strahler number). We review this definition in Section 3.4.1 and relate it to the more fa-
miliar definition via derivatives in Section 3.4.2. Then in Section 3.4.3 we recall how
Newton’s method can be simplified over commutative semirings. In particular we pro-
vide a link to Newton’s method over the real numbers. Finally in Section 3.4.4 we show

30

3.4 Newton’s Method

how to give a closed formulation of Newton’s method over non-commutative semirings
and in particular for the semirings of matrices with commuting entries.

Most results reviewed here are well-known from [EKL07a, EKL07b, EL11, LS13, LS15]
and especially M. Luttenbergers thesis [Lut10]. One contribution is to make the connec-
tion to Newton’s method over R explicit which has appeared implicitly in the previous
work. The other contribution is the study of Newton’s method for non-commutative
semirings and in particular for the matrix semirings with commuting entries.

Since our goal is to define Newton’s method as an enumeration of trees by dimension
we first define the notion of tree dimension and give an easy combinatorial characteri-
zation. For a rooted tree we define its dimension inductively

Definition 3.5 (Dimension). Let t be a rooted tree with subtrees t1, . . . , tk. The dimension of
t is defined inductively as follows:

• If t is a single node (i.e. k = 0) we set dim(t) := 0.

• Otherwise, let D := max{dim(ti) : i ∈ [k]} and set

dim(t) :=

{
D+ 1, if ∃i 6= j : D = dim(ti) = dim(tj)

D, otherwise

Hence, the dimension of a tree is simply the maximum dimension of its children (plus
one, if this maximum is attained at least twice).

Remark 3.6. The name “dimension” stems from the fact that trees of dimension d > 1 can be
naturally drawn in Rd (cf. [Lut10]).

The following useful characterization of the tree dimension is used in Section 3.5.2 to
prove our main convergence result for Newton’s method. We call a binary tree of height
h perfect if it has 2h leaves. A rooted tree t ′ is a minor of a rooted tree t if t ′ can be
obtained from t by edge contractions1.

Lemma 3.7. Let t be a rooted tree. Then dim(t) is the maximum height of a perfect binary tree
that is a minor of t.

Proof. We show the statement by induction on the structure of t. If t is a leaf the state-
ment trivially holds. Otherwise, let dim(t) = D; we distinguish two cases:

1) t has (exactly) one subtree ti of dimensionD and all other subtrees have dimension
at most D− 1:

By induction, the highest perfect binary embeddable into ti has height D and is
also a minor of t. Moreover, the highest perfect binary tree minors of all other
subtrees have height at mostD− 1, so the highest binary tree minor of t is the one
found in ti.

1Contracting an edge (u, v) means to identify vertices u and v.

31

3 Theory of Algebraic Systems

2) t has at least two subtrees ti, tj of dimension D − 1 and all other subtrees have
dimension at most D− 1:

Again, by induction we can embed perfect binary trees of height D − 1 into at
least two subtrees and hence t possesses a perfect binary tree minor of height D.
Moreover, we cannot find a higher binary tree minor since the highest minors of
all subtrees inductively have height at most D− 1.

Corollary 3.8. For any tree T we have dim(T) 6 h(T).

3.4.1 Definition of Newton’s Method as Dimension-Unfolding

Similar to the height-unfolding, we can unfold every CFG G into a grammar G<d such
that there is a bijection between the derivation trees ofG<d and the derivation trees ofG
having dimension less than d. For simplicity, we define the unfolding first for grammars
in C2F, i.e. each rule has the form A → a, A → ε, A → BC, or A → B. Note that this
is not really a restriction since every CFG can be transformed into C2F preserving the
ambiguity of the grammar (and with at most linear blowup).

Definition 3.9 (Dimension unfolding – C2F, [LS15]). Given a context-free grammar G =

(X, Σ,→) in C2F the dimension unfolding of G is the sequence of grammars G<D =

(XD, Σ,→D), D ∈ N defined by:

• If X ∈ X then X=d ∈ XD for all 0 6 d 6 D− 1 and X<d ∈ XD for all 1 6 d 6 D.

• If X→ x with x ∈ Σ ∪ {ε} then X=0→D x.

• X<d→D X=d−1 for all 1 6 d 6 D and X<d→D X<d−1 for all 2 6 d 6 D.

• If X→ Y with Y ∈ X then for all 0 6 d 6 D− 1 we have X=d→D Y=d.

• If X→ YZ with Y, Z ∈ X then for all 1 6 d 6 D− 1 we have

X=d→D Y=dZ<d | Y<dZ=d | Y=d−1Z=d−1.

We can observe that every unfolded grammar G<D is of size O(D · |G|)).

Example 3.10. Unfolding the grammar X → XX + c w.r.t. dimension produces the following
grammar G<D for 1 6 d < D.

X=0 → c

X<1 → X=0

X<d+1 → X<d | X=d

X=d → X<dX=d | X=dX<d | X=d−1X=d−1

32

3.4 Newton’s Method

Similarly to the height-unfolding, we have that the dimension unfolding partitions
the set of all derivation trees of Gw.r.t. their dimension:

Theorem 3.11 ([LS15]). Let G be a CFG in C2F. For every derivation tree t of G with
dim(t) < d having root label X there is exactly one derivation tree t̂ of G<d having root la-
bel X<d. Moreover, the yields of t and t̂ are the same, Y(t) = Y(t̂).

A (fairly technical) proof by induction can be found in [LS15]. To unfold general gram-
mars of arbitrary arity we can either transform them into C2F and use the above unfold-
ing or define the unfolding directly. This definition is a slightly improved version of the
one given in [EL11] which produces unfoldings of sizeΩ(2k) for grammars of arity k.

Definition 3.12 (Dimension unfolding – general case). Given a context-free grammar
G = (X, Σ,→) the dimension unfolding of G is the sequence of grammars G<D =

(XD, Σ,→D), D ∈ N defined by:

• If X ∈ X then X=d ∈ XD for all 0 6 d 6 D− 1 and X<d ∈ XD for all 1 6 d 6 D.

• If X→α ∈ Σ∗ then X=0→D α.

• X<d→D X=d−1 for all 1 6 d 6 D and X<d→D X<d−1 for all 2 6 d 6 D.

• If X→α0X1α1 · · ·Xnαn with αi ∈ Σ∗ is a rule in G, we add for all 1 6 j < k 6 n the
following rules:

X=d→D
j−1∏
i=1

αi−1X
<d
i · αj−1X=d

j αj ·
n∏

i=j+1

X<di αi and

X=d→D
j−1∏
i=1

αi−1X
<d
i · αj−1X=d−1

j αj

k−1∏
i=j+1

X<d−1i αk−1 · X=d−1
k αk

n∏
i=k+1

X<d−1i αi.

As we remarked before, this general definition is not strictly necessary since we can
transform every grammar G of arity k into C2F with linear increase in size and then
apply the unfolding to this grammar in C2F resulting in an unfolded grammar of size∣∣G<D∣∣ ∈ O(k ·D · |G|). On the other hand, if we apply the general unfolding scheme to
a grammar of arity k directly, the unfolding G<D has size

∣∣G<D∣∣ ∈ Θ(k2 ·D · |G|). This
mismatch seems strange at first, but note that even the general unfolding scheme is not
as compact as it could be – in fact one can also reach a linear increase in size as well by
compacting the grammar further using sharing. However, most of the time it is both
easier and more efficient to first transform grammars into C2F.

Definition 3.13 (Newton Approximations). Given an algebraic system F = (f1, . . . , fn) with
fi ∈ N1〈(Σ∪X)∗〉, with an interpretation ι : Σ→ S, we define its d-th Newton approximation
νd as the function νd : X→ S given by

νd(X) := h(ambG<d,X).

33

3 Theory of Algebraic Systems

Here, h is the unique homomorphism h : N∞〈〈Σ∗〉〉 → S induced by ι as defined in
the previous Section 3.2. For the sake of readability, we do not explicitly indicate the
dependency of νd on the system F. If the semiring S is commutative, we can work
with the commutative ambiguity camb instead, i.e. νd(X) = h ′(cambG<d,X) with h ′ :
N∞〈〈Σ⊕〉〉 → S.

Unfolding Algebraic Systems Applying the natural translation from the context-
free grammars to algebraic systems over N∞〈〈Σ∗〉〉 we can also define the dimension-
unfolding of an algebraic system over a semiring S directly. Let F = (f1, . . . , fn) with
fi ∈ N1〈(Σ∪X)∗〉 and an appropriate interpretation ι : Σ→ S. Informally, we can obtain
the unfolded algebraic system from the unfolded grammar in a purely syntactic way:
replace “→” by “=” and “|” by “+”. We denote the so obtained algebraic system by F<d.
Let r(d)i ∈ N∞〈〈Σ∗〉〉 be the X<di -component of the solution of the unfolded system F<d.
The d-th Newton approximation νd is then given by

νd(Xi) = h(r
(d)
i),

(with h : N∞〈〈Σ∗〉〉 → the homomorphism induced by the interpretation ι).

3.4.2 Newton’s Method via Derivatives

From the definition via unfolding we can obtain a form of the d-th Newton approxima-
tion of a polynomial system F that looks more like the familiar definition of Newton’s
method over the real numbers. The benefit of this form is that it is better suited for
an algorithmic treatment, as it works directly on the polynomial expressions and also
avoids the explicit construction of the unfolding. For this we first need the definition of
derivatives of polynomial expressions.

Definition 3.14 (Derivative, Jacobian). Letm = a0X1a1 . . . akXkak+1 be a monomial with
Xi ∈ X. The derivative of m w.r.t. X ∈ X is defined as the following polynomial expression in
variables X ∪ {X̂}:

∂m

∂X
:=
∑
i∈[k]
Xi=X

a0X1a1 · · ·ai−1X̂ai · · ·akXkak+1

Accordingly, the derivative of a polynomial expression f =
∑l
i=1mi is defined as

∂f

∂X
:=

l∑
i=1

∂mi
∂X

.

For a vector of polynomial expressions F = (f1, . . . , fn) over variables X1, . . . , Xn, the Jacobian
of F is the n× n matrix collecting all derivatives, i.e.

Ji,j :=
∂fi
∂Xj

34

3.4 Newton’s Method

Combinatorially, the derivative of a polynomial w.r.t. some variable X is the following
procedure: For each monomial containing X, we choose one X that gets “marked” as
X̂ and we sum over all the choices. Formally we can define this “marking” as a vari-
able substitution: For a monomial m = a0X1a1 . . . akXkak+1 we define m[Xi ← X̂] as
the monomial where the variable Xi has been substituted by X̂ (note that we explicitly
number the variables, so Xi refers to a single variable).

Example 3.15. Consider the polynomials f1 = aXXX + Xb and f2 = aXbY + YbY Then we
have

∂f1
∂X

= aX̂XX+ aXX̂X+ aXXX̂+ X̂b and
∂f1
∂Y

= 0

Note how the marking remembers the position of the chosen X. If we assume commutative multi-
plication, then we obtain the more familiar definition: the derivative is the linear approximation
of f1 (in variable X̂) with slope 3aX2:

∂f1
∂X

= 3 · aX2 · X̂.

Finally, the Jacobian of the system (f1, f2) is

J =

(
∂f1
∂X

∂f1
∂Y

∂f2
∂X

∂f2
∂Y

)
=

(
aX̂XX+ aXX̂X+ aXXX̂+ X̂b 0

aX̂bY aXbŶ + ŶbY + YbŶ

)

Note that ∂
∂X can be viewed a function mapping polynomial expressions from PolXS to

PolX∪{X̂}S . Also note that the order in which we apply the derivative w.r.t. variables in
X does not matter. Now we are ready to relate the grammar unfolding to the familiar
form of Newton’s method. For simplicity, we assume (w.l.o.g.) our system F to be in C2F,
s.t. each expression fi is of the form

fi =
∑

XY∈Q(Xi)

XY +
∑

X∈L(Xi)

X+ γ(i)

with γ(i) ∈ S representing the sum of all constant terms of the expression fi and where
L(Xi) and Q(Xi) are the set of all linear and quadratic monomials in the polynomial
expression fi, respectively.

The defining equation of Xi in the associated algebraic system over N∞〈〈Σ∗〉〉 looks
essentially the same with an alphabet symbol γ̂(i) ∈ Σ representing γ(i), i.e. ι(γ̂(i)) =

γ(i).

Xi =
∑

XY∈Q(Xi)

XY +
∑

X∈L(Xi)

X+ γ̂(i).

35

3 Theory of Algebraic Systems

In the unfolded system the defining equations for Xi are given by

X<0i = 0

X=0
i = γ̂(i) +

∑
X∈L(Xi)

X=0

X<di = X<d−1i + X=d−1
i

X=d
i =

∑
XY∈Q(Xi)

(
X=dY<d−1 + X<d−1Y=d + X=d−1Y=d−1

)
+
∑

X∈L(Xi)

X=d

For a polynomial expression f, a variable X ∈ X and T a variable or a semiring con-
stant, we define the evaluation f

∣∣∣
X=T

as the substitution

f
∣∣∣
X=T

:= f[X← T].

We extend this in the natural way to evaluate multiple variables at once: Let X =

(X1, . . . , Xk) denote a vector of variables and T = (T1, . . . , Tk) be variables or semiring
constants, then f

∣∣∣
X=T

is the result of substituting each Ti for Xi.

Now we can conveniently reformulate the equation for X=d using derivatives:

X=d
i =

∑
Z∈X

∂fi
∂Z

∣∣∣
X=X<d−1

Ẑ=Z=d

+
∑

XY∈Q(Xi)

X=d−1Y=d−1

=
∑
Z∈X

∂fi
∂Z

∣∣∣
X=X<d−1

Ẑ=Z=d

+
∑

{Y,Z}∈(X2)

∂

∂Y

∂

∂Z
(fi)

∣∣∣
Ŷ=Y=d−1

Ẑ=Z=d−1

Note that we have ∂fi∂Z = 0 if the variable Z does not appear in the polynomial fi.
According to the definition of the Newton approximations we have νd(Xi) =

h(r
(d)
i) ∈ S, where ri ∈ N∞〈〈Σ∗〉〉 is the X<di -component of the solution of the unfolded

equations and h is the evaluation homomorphism induced by interpreting the constants
Σ. Abusing notation, we let X<di in the above equations represent this value νd(Xi)
and similarly let X=d

i represent the value ∆d(Xi). Then we can express the (evaluated)
unfolding as follows:

ν0(Xi) = 0

∆0(Xi) = γ
(i) +

∑
Z∈X

∂fi
∂Z

∣∣∣X=0
X̂=∆0

νd+1(Xi) = νd(Xi) + ∆d(Xi)

∆d(Xi) =
∑
Z∈X

∂fi
∂Z

∣∣∣X=νd−1
Ẑ=∆d(Z)

+
∑

{Y,Z}∈(X2)

∂

∂Y

∂

∂Z
(fi)

∣∣∣Ŷ=∆d−1(Y)
Ẑ=∆d−1(Z)

36

3.4 Newton’s Method

We can even describe Newton’s method more succinctly by writing it in vector-form.
To this end, we view the evaluated Jacobian matrix J

∣∣∣
X=s

for some point s ∈ SX as a

linear function J
∣∣∣
X=s

: S[n] → S[n] as follows: For x = (x1, . . . , xn) ∈ S[n](
J
∣∣∣
X=s

(x)
)
i
:=
∑
j∈[n]

Ji,j

∣∣∣
X̂j=xj

Example 3.16. Consider the polynomial equations in 2NF

X = ZX+ Yb+ c

Y = XZ+ c

Z = aX

The Jacobian of this system assuming the variable order (X, Y, Z) is

J =

 ZX̂ Ŷb ẐX

X̂Z 0 XẐ

aX̂ 0 0

 .
For s = (u, v,w) we get

J
∣∣∣
X=s

=

 wX̂ Ŷb Ẑu

X̂w 0 uẐ

aX̂ 0 0


For (x, y, z) ∈ S3 we have

J
∣∣∣
X=s

(x, y, z) =

 wx+ yb+ zu

xw+ uz

ax

 ∈ S3

If we assume commutative multiplication, then the function J
∣∣∣
X=s

is given by the matrix-vector
product:

J
∣∣∣
X=s

(x, y, z) =

 w b u

w 0 u

a 0 0

 ·
 x

y

z

 =

 wx+ by+ uz

wx+ uz

ax

 .
Setting νd = (νd(X1), . . . , νd(Xn)) and ∆d = (∆d(X1), . . . , ∆d(Xn)) and given the

Jacobian J of the system, we get the concise vector-formulation of Newton’s method for

37

3 Theory of Algebraic Systems

systems in C2F (or 2NF).

ν0 = 0

νd+1 = νd + ∆d

∆d = J
∣∣∣
X=νd−1

(∆d) + δd

(δd)i =
∑

{Y,Z}∈(X2)

∂

∂Y

∂

∂Z
(fi)

∣∣∣Ŷ=∆d−1(Y)
Ẑ=∆d−1(Z)

Note that this formulation does not yet give a closed form expression for νd nor does it
specify how to compute ∆d, since it is only implicitly defined as the least solution of the
system of linear equations

∆d = J
∣∣∣
X=νd−1

(∆d) + δd.

Nevertheless, ∆d is well-defined, since J
∣∣∣
X=νd−1

is an ω-continuous function and hence

this system has a unique least solution. We discuss how to solve linear systems ef-
ficiently in Section 4.1 (for right-linear systems). Next, we describe how to obtain a
closed-form description of Newton’s method.

3.4.3 Commutative Semirings and Newton’s Method over the Reals

In the case of commutative semirings we can give a closed form of Newton’s method
by representing the function J

∣∣∣
X=νd−1

as a matrix-vector product. Hence, the defining

equations for ∆d turn into a right-linear system of the form X = AX+ b:

∆d = J
∣∣∣
X=νd−1

· ∆d + δd

It is well-known [DKV09] that the least solution to a system of right-linear equations
X = A·X+b for ann×nmatrixA ∈ S[n]×[n] and b ∈ S[n] is given byX = A∗·bwithA∗ :=∑∞
i=0A

i. This series is called the Neumann series (named after Carl Neumann2) and is a
generalization of the geometric series. It is usually studied for A being an operator over
a complete normed vector space where it converges to (I−A)−1 if |A| < 1.

Over semirings we cannot define the inverse of a matrix in general, but we can com-
pute the Kleene starA∗ of a matrix effectively if the Kleene star can be computed for each
element (cf. Section 4.1). Applying these insights leads us to the final form of Newton’s

2The series’ name is often incorrectly attributed to John von Neumann.

38

3.4 Newton’s Method

method for systems in 2NF over commutative semirings:

νd+1 = νd + ∆d

∆d = J
∣∣∣∗X=νd−1
X̂=1

· δd

(δd)i =
∑

{Y,Z}∈(X2)

∂

∂Y

∂

∂Z
(fi)

∣∣∣Ŷ=∆d−1(Y)
Ẑ=∆d−1(Z)

Note that the purpose of the evaluation J
∣∣∣
X̂=1

is to erase the “marked” variables X̂ in J.

We can now show that “Newton’s method” according to our definition really coin-
cides with the well-known Newton’s method over the real numbers which is commonly
introduced as an approximation algorithm for finding the solution of a non-linear sys-
tem of equations G(X) = 0 for G : Rn → Rn.

First consider the univariate case (n = 1). Given a starting guess ν0 ∈ R for the root
of G, Newton’s method computes the sequence of approximations

νd+1 = νd −
G(νd)

G ′(νd)
,

where G ′ denotes the derivative of G. Setting G(x) = F(x) − xwe obtain

νd+1 = νd −
F(νd) − νd
F ′(νd) − 1

= νd +
1

1− F ′(νd)
· (F(νd) − νd)

= νd + F ′(νd)
∗ · (F(νd) − νd)︸ ︷︷ ︸

=:δd, (see below)

where the last equality holds if |F ′(νd)| < 1 since then the value of the Neumann series
F ′(νd)

∗ is given by 1
1−F ′(νd)

.
In the multivariate case the derivative F ′ is replaced by the Jacobian J of F and we get

νd+1 = νd + J
∣∣∣∗
X=νd

· (F(νd) − νd)︸ ︷︷ ︸
=:δd, (see below)

It remains to justify equating δd with (F(νd) − νd). To this end, we assume the per-
spective of derivation trees and view F as a grammar (in 2NF). From this perspective
and by slightly abusing notation, νd(X) corresponds to the set of all derivation trees of F
(with root label X) having dimension less than d. Accordingly, ∆d−1(X) corresponds to
the set of all trees having dimension exactly d− 1. Hence, from the definition of δd by

(δd)i =
∑

{Y,Z}∈(X2)

∂

∂Y

∂

∂Z
(fi)

∣∣∣Ŷ=∆d−1(Y)
Ẑ=∆d−1(Z)

39

3 Theory of Algebraic Systems

we see that (δd)i corresponds to the set of all derivation trees of F with root label Xi
having exactly two subtrees of dimension exactly d − 1. In particular, the trees in (δd)i
have dimension exactly d.

In the same way, the i-th component (F(νd) − νd)i corresponds to the set difference

D := fi(νd) \ νd(Xi).

Since νd corresponds to the set of all trees of dimension less than d, every tree t in D
has dimension exactly d. This tree t is built by combining derivation trees of dimension
less than d according to the rules fi. Since fi is in 2NF, tmust have exactly two subtrees
of dimension exactly d − 1. Hence, D ⊆ (δd)i viewed as sets of trees. The other inclu-
sion holds since ∆d−1 ⊆ νd (viewed as sets of trees) and therefore D = (δd)i. By our
discussion we have shown the following

Proposition 3.17. Over the semiring (R,+, ·, 0, 1) of non-negative real numbers we have

δd = F(νd) − νd.

3.4.4 Closed Form for Non-Commutative Semirings

In Section 3.4.4 we study Newton’s method over non-commutative semirings and de-
scribe how to obtain a description of the iterates via symbolic tree expressions.

For the (non-commutative) semiring of matrices with commutative entries we show a
different closed form in Section 3.4.4 via the Kronecker product of matrices.

General Form via Tree Expressions

In the commutative case we can find a closed form of the Newton approximations be-
cause we can turn the linear equations defining ∆d into a right-linear system by using
commutativity of multiplication.

For non-commutative semirings we can still give a somewhat “closed-form” represen-
tation of ∆d using regular tree expressions. We refer to the literature [CDG+07, DKV09]
for a thorough treatment of tree languages and expressions, and just briefly sketch the
ideas.

A ranked alphabet is a set of function symbols with different arity. We can denote the
arity explicitly as a superscript when specifying ranked alphabets, e.g. Σ = {s1, f2, z0} is
a ranked alphabet where s is a unary and f is a binary function symbol. Nullary symbols
like “z” are also called constants. From ranked alphabets we can build terms in the usual
way, e.g. s(s(z)) or f(s(z), s(s(s(z))). Terms can be viewed as trees in the natural way.

Definition 3.18 (Terms). Let Σ be a ranked alphabet. A term over Σ is defined inductively

• All constants x0 ∈ Σ are terms.

40

3.4 Newton’s Method

• If fk ∈ Σ is a symbol of arity k and t1, . . . , tk are terms, then f(t1, . . . , tk) is a term.

Example 3.19. We briefly describe how we can view an ordinary alphabet Σ as a ranked alphabet
and words in Σ∗ as terms. To this end, let Σ ′ := Σ ∪ {ε} with ε /∈ Σ be a ranked alphabet,
where all a ∈ Σ have arity 1 and ε is the only constant. Then a word w = a1 · · ·an ∈ Σ∗

corresponds to the term a1(a2(. . . an(ε) . . .)). To save parentheses we can write the composition
of function symbols as “·” and we omit the “·” when no confusion arises. Consider the word
alphabet Σ = {a, b, c}. Then Σ ′ = {a1, b1, c1, ε0} and w = abaac corresponds to the term
t = a · b · a · a · c · ε = abaacε. It is easy to see that we can obtain a bijection between words
over Σ and terms over Σ ′. Viewed as trees, the terms over Σ ′ are just paths ending with ε.

Sets of terms over a ranked alphabet are called tree languages. Those languages can be
specified in different ways, e.g. as the least solution of a system of fixpoint equations.
For a function symbol fk ∈ Σ, and a set of terms T we write f(T) for the set of terms that
can be built using f and existing terms from T , i.e. f(T) := {f(t1, . . . , tk) : ti ∈ T }.

Example 3.20. As a standard example we can specify the set of natural numbers using the
ranked alphabet Σ = {s1, n0} (we interpret s as the successor function and z as the value 0). The
set of terms N describing the natural numbers are the least solution (w.r.t. set inclusion) of

N = {z} ∪ s(N).

We can also concisely describe the set of termsN via the regular tree expressionN = s(�1)∗1 ·1z.
Here the symbol �1 is a placeholder for substitution, the operation ·1 denotes a substitution for
the symbol �1, and the operation “∗1” denotes iterated substitution.

N = {�1 ·1 n} ∪ {s(�1) ·1 n} ∪ {s(s(�1)) ·1 n} ∪ . . .
= {n} ∪ {s(n)} ∪ {s(s(n))} ∪ · · · = {n, s(n), s(s(n)), . . . }

Formally, we write t[�k ← u] for the term obtained by substituting the symbol �k in
t by the term u. This substitution operation can be lifted to sets of terms: For sets T,U
we write T [�k ← U] := {t[�k ← u] : t ∈ T, u ∈ U}.

Example 3.21. If T = {f(�1,�1), g(�1)} and U = {a, b} then

T [�1 ← U] = {f(a, a), f(a, b), f(b, a), f(b, b), g(a), g(b)}.

For a set of terms T , the set described by the expression T∗1 is the set of terms obtained
by iterated substitution of the symbol �1 for terms in T . More specifically,

T0k := {�k}

T (n+1)k := Tnk [�k ← T]

The Kleene closure for substitution of �k is then defined by taking the union over all
iterates: T∗k :=

⋃
i∈N T

ik .

41

3 Theory of Algebraic Systems

Example 3.22. Let T = {f(�1,�1)}, then

T∗1 = {�1, f(�1,�1), f(f(�1,�1),�1), f(�1, f(�1,�1)), f(f(�1,�1), f(�1,�1)), . . . }

We can solve systems of linear equations successively (similar to Gaussian elimina-
tion) and obtain regular tree expressions representing their solution. The trees repre-
sented by these expressions are built using tree substitution at a unique leaf.

Example 3.23. Consider the system of linear equations

X = aXa+ bYc+ e

Y = dYd+ fX

We can first solve for Y
Y = (d�1d)

∗1 ·1 (fX)

and substitute this solution in the equation for X

X = aXa+ b ((d�1d)
∗1 ·1 (fX)) c+ e

and hence
X = [a�2a+ b ((d�1d)

∗1 ·1 (f�2)) c]∗2 ·2 e)

Just like the Kleene star x∗ can be seen as a shorthand for the infinite sum
∑∞
i=0 x

i we
can view a regular tree expression (x�1y)∗1 ·1 w as a shorthand for the infinite sum

(x�1y)
∗1 ·1 w =

∞∑
i=0

xiwyi

Over certain semirings we can transform the tree expressions representing solutions of
linear equations back to standard word expressions. An example where this is possible
are the (idempotent, non-commutative) lossy semirings [EKL08] describing subword-
closed languages (cf. Chapter 7). In these semirings the identity x = 1 + x holds and
hence

xnwyn = (1+ x)nw(1+ y)n
1+1=1
=

(
n∑
k=0

xk · 1n−k
)
w

(
n∑
l=0

yl · 1n−l
)

=

n∑
k,l=0

xkwyl

where (1+ x)n =
∑n
k=0 x

k1n−k follows from idempotence and 1 · x = x · 1. Again using
idempotence we can then simplify the mentioned expression

(x�1y)
∗1 ·1 w =

∞∑
n=0

xnwyn =

∞∑
n=0

n∑
k,l=0

xkwyl
Id.
=

∞∑
k,l=0

xkwyl = x∗wy∗.

Similarly it holds that

(x0�1y0 + · · ·+ xn�1yn)∗1 ·1 w = (x0 + · · ·+ xn)∗w(y0 + · · ·+ yn)∗

This fact can be used for lossy semirings to successively transform any regular tree ex-
pression into an equivalent standard regular expression.

42

3.4 Newton’s Method

Example 3.24. Consider the expression obtained in the previous example:

X = [a�2a+ b ((d�1d)
∗1 ·1 (f�2)) c]∗2 ·2 e).

If we assume the idempotence x+ x = x and “lossiness” x = 1+ x axioms we get

X = [a�2a+ b (d∗(f�2)d
∗) c]∗2 ·2 e = (a+ b+ d+ f)∗ · (e) · (a+ d+ c)∗

Note that since (xy)∗ = ((x+1)(y+1))∗ = (xy+x+y+1)∗ > (x+y)∗ and (xy)n 6 (x+y)2n

for all n, we have (xy)∗ = (x+ y)∗.

Semiring of Matrices with Commutative Entries

Natural examples of non-commutative semirings are the semirings of (square) matrices
over a commutative semiring.

Example 3.25. Consider the 2 × 2-matrices over the (commutative) tropical semiring over N:
(N∞,min,+,∞, 0).

A :=

(∞ 1

0 ∞
)

B :=

(∞ 0

1 ∞
)

A · B =

(
2 ∞∞ 0

)

B ·A =

(
0 ∞∞ 2

)
6= A · B

To show that we can effectively compute Newton approximations also for algebraic
systems over matrix semirings with commutative entries, we have to show that we can
obtain a closed form solution of the linear equations defining ∆d. Over commutative
semirings we have axb = abx for all a, x, b ∈ S which allows us to transform arbitrary
linear equations into right-linear equations. The solution of right-linear equations can
then be expressed using the Kleene star operation. We show that a similar identity holds
for matrices over commutative semirings, allowing us to transform any linear system
into a right-linear one.

To formulate the generalization of axb = abxwe use the Kronecker product of matri-
ces [DKV09]: Given index sets I1, J1, I2, J2 we define for two matrices A =∈ SI1×J1 and
B ∈ SI2×J2 their Kronecker product (or tensor product) as the (I1 × I2)× (J1 × J2) matrix

(A⊗ B)((i1,i2),(j1,j2)) := ai1,j1 · bi2,j2 for i1 ∈ I1, j1 ∈ J1, i2 ∈ I2, j2 ∈ J2.

Observe that the matrix (A⊗ B) is indexed by a tuple of tuples.

43

3 Theory of Algebraic Systems

For example, for square matrices A ∈ [n]× [n] and B ∈ [m]× [m] we can view (A⊗B)
as an n-by-nmatrix ofm-by-m sub-matrices ai,j · B:

(A⊗ B) =


a1,1B · · · a1,nB

...
...

an,1B · · · an,nB


Note that according to our definition in Chapter 2, any matrix can be viewed as a

vector over the index set of pairs (I × J), which might seem unintuitive at first but is
actually very convenient. For example, given matrices A,B,C ∈ SI×I there is only a
single way we can interpret the product (A⊗B) ·C: Since (A⊗B) ∈ S(I×I)×(I×I) it must
be a matrix/vector-product and hence, C is viewed as a vector in S(I×I) here. 3

We can now state the promised generalization of axb = abx for matrices. This result
is known from linear algebra, where it is usually proved for matrices over R or C [Ber09].
We show that it also holds over any commutative semiring.

Lemma 3.26. Let S be a commutative semiring and let A,B, X ∈ S[n]×[n] then

A · X · B = (A⊗ BT) · X

Proof. First we consider the entry (i, j) of the left-hand-side:

(A · X · B)i,j =
n∑
k=1

(A · X)i,k · Bk,j

=

n∑
k=1

n∑
l=1

Ai,l · Xl,k · Bk,j

=
∑

(k,l)∈[n]×[n]

Ai,l · Bk,j · Xl,k

where the last equality holds since multiplication of elements in S is commutative.
Now consider the right-hand-side (A⊗BT) ·Xwhich has to be read as a matrix-vector

product M · X with M = (A ⊗ BT) ∈ S([n]×[n])×([n]×[n]) and X ∈ S[n]×[n]. Also recall
that the Matrix-Vector product between a matrix M ∈ SI×J and a vector X ∈ SJ is given
by

(M · X)i =
∑
j∈J

Mi,j · Xj for i ∈ I

3With this observation it becomes unnecessary to define an explicit “vectorization” function as it is com-
mon in many physics or mathematics textbooks when dealing with identities involving the Kronecker
product (cf. [Ber09]).

44

3.5 Convergence of Newton’s Method

In our case we have the index set J = [n]× [n] and thus

((A⊗ BT) · X)i,j =
∑

(l,k)∈[n]×[n]

(A⊗ BT)(i,j),(l,k) · Xl,k

=
∑

(l,k)∈[n]×[n]

Ai,l · BTj,k · Xl,k

=
∑

(l,k)∈[n]×[n]

Ai,l · Bk,j · Xl,k

=
∑

(k,l)∈[n]×[n]

Ai,l · Bk,j · Xl,k.

The last equality holds since + is commutative and hence the order of summation does
not matter.

Corollary 3.27. Let S be a commutative semiring and let X = AXB + C for A,B,C, X ∈
S[n]×[n]. Then

X = (A⊗ BT)∗ · C.

Proof. X = AXB + C ⇔ X = (A ⊗ BT) · X + C by the previous lemma and therefore
X = (A⊗ BT)∗ · C.

Consider now the (non-commutative) semiring S ′ = S[n]×[n] of square matrices over
a commutative semiring S and a linear system of equations over S ′, i.e. given c ∈ S ′[k]

and a linear function L : S ′[k] → S ′[k] defined by

Li(x) =
∑
j∈[k]

ai,j · xj · bi,j

we are looking for x ∈ S ′[k] such that

x = L(x) + c.

By Lemma 3.26, we can transform this system of linear equations successively into a
right linear system and by Corollary 3.27 we can also obtain a closed-form solution of
this system. Hence, also the Newton approximations νd of an algebraic system can be
given in closed-form.

3.5 Convergence of Newton’s Method

Since the least fixpoint of an algebraic system is obtained by evaluating all derivation
trees and since each tree has a particular dimension, we know that Newton’s method
converges to the least solution (in the limit). Moreover, since the dimension of a tree
is at most as large as its height, we know that Newton’s converges at least as fast as
fixpoint iteration.

45

3 Theory of Algebraic Systems

In this section we study the convergence behavior of Newton’s method in greater
detail. We prove bounds on the speed of convergence, and describe sufficient conditions
(on the algebraic system and on the semiring) under which Newton’s method reaches a
fixpoint in a finite number of steps.

Our main result (Theorem 3.33) concerns the convergence speed of Newton’s method
over commutative semirings. An important consequence is that Newton’s method con-
verges after n+ log logk steps for n equations over a k-collapsed semirings, which gen-
eralizes the result in [EKL07b].

3.5.1 Bounds on Convergence – General Case

A very general way to describe the convergence behavior of Newton’s method is to
study how “fast” the Newton approximation ambG<d,X converges to the true solution
ambG,X. We know that the approximation converges since it eventually enumerates
every derivation tree of G. Since both the approximation and the solution are power
series in N∞〈〈Σ∗〉〉 we have that for each w ∈ Σ∗

ambG<d,X(w) −→ ambG,X(w) for d→∞.
We can give a slightly stronger version of the previous statement by observing that

w.l.o.g. G can be assumed to be ε-free and in C2F (and C2F preserves ambiguity): For an
ε-free grammar in C2F the length of sentential forms in a derivation can not shrink and
hence a derivation tree for a wordw can have dimension at most blog|w|c. Thus for each
w ∈ Σ∗ we have

ambG<blog|w|c+1,X(w) = ambG,X(w).

Note that in this statement, the number of Newton steps needed to guarantee that a
particular coefficient of w ∈ Σ∗ has converged depends on |w|.

The best result that we can prove in the general case is for non-expansive grammars.
A grammar is called non-expansive if it does not allow for a derivation X⇒∗G αXβXγ
for any nonterminal X. Note that we can assume w.l.o.g. that every nonterminal of G
is productive and that G is ε-free. (the associated CFG of an algebraic system is always
ε-free).

Examples of non-expansive grammars include all linear CFGs but also some non-
linear CFGs:

Example 3.28. The following CFG is non-expansive

X→ YZ

Y → aYb | ε

Z→ cZd | ε

The language L(X) = {anbncmdm : n,m ∈ N} is not a linear context-free language which can
be shown using a variant of the pumping lemma for linear CFLs (cf. [HN10]).

46

3.5 Convergence of Newton’s Method

Note that we can check in polynomial time if a grammar is non-expansive. We show
that a non-expansive grammar can only produce derivation trees of finite dimension
and hence Newton’s method computes the least fixpoint for non-expansive algebraic
systems (defined analogously to CFGs) in a finite number of steps. Note that this proof
is slightly simpler than our proof in [LS15].

Theorem 3.29 ([LS15]). Let G be an ε-free CFG with n := |X| nonterminals. Newton’s method
computes amb in a finite number of iterations if and only if G is non-expansive.

Moreover, if G is non-expansive then n Newton steps suffice to compute the solution, more
specifically we have

∀w ∈ Σ∗ : ambG,X(w) = ambG<n,X(w).

Proof. First let G be expansive, witnessed by some nonterminal X (i.e. X can derive at
least two copies of itself). Since every nonterminal of G can produce a word from Σ+

we can build derivation trees t1, . . . , tn labeled with X such that |Y(ti)| < |Y(ti+1)|
and dim(ti) < dim(ti+1). Hence for each D there always exists a w ∈ Σ∗ with
ambG<D,X(w) < ambG,X(w) and thus Newton’s method cannot compute ambG,X in
a finite number of steps.

Now assume thatG is non-expansive. Consider a derivation tree t ofG and recall that
lab(t) denotes the set of labels (nonterminals from X) appearing in t.

We prove that dim(t) < |lab(t)| by structural induction on t. This proves the statement
of the theorem since |lab(t)| 6 n = |X| for every tree t and therefore ambG,X(w) =

ambG<n,X(w).

• If t is a leaf, then |lab(t)| = 1 and dim(t) = 0 by definition so the claim holds.

• Otherwise, assume that t has subtrees t1, . . . , tm and the root of t is labeled with
X ∈ X. Since the grammar G is non-expansive, there can be at most one subtree ti
of t with X ∈ lab(ti). Therefore, by induction we have dim(tj) < |lab(t)| − 1 for
j 6= i and dim(ti) < |lab(t)|. Hence, dim(t) 6 max{dim(tk) : k ∈ [m]} < |lab(t)|.

Sometimes it suffices to consider non-expansive grammars. E.g. in Chapter 7 we study
subword-closed languages which can be interpreted as elements of the (idempotent,
non-commutative) semiring of formal languages (2Σ

∗
,∪, ·, ∅, {ε}) with the additional ax-

iom 1 + x = x. Such semirings are termed lossy semirings in [EKL08]. We show in
Chapter 7 that we can transform every CFG representing a subword-closed language
into an equivalent non-expansive grammar.

If the grammar G is expansive, we cannot say much about the convergence behavior
of Newton’s method. To illustrate that consider any expansive unambiguous grammar
G, i.e. for every w ∈ Σ∗ we have ambG,X(w) ∈ {0, 1}. Then the least number d such
that ambG<d,X(w) = ambG,X(w) is simply the dimension of the unique derivation tree

47

3 Theory of Algebraic Systems

yielding w (or 0 if w /∈ L(X), i.e. there is no tree). Since G is expansive it possesses
derivation trees of arbitrarily large dimension.

3.5.2 Bounds on Convergence – Commutative Case

Over a commutative semiring, we know that the least solution of an algebraic system is
equal to the commutative ambiguity of the associated grammar. Similarly to the non-
commutative case we are interested in how fast the approximation converges to the
solution

cambG<d,X −→ cambG,X.

Using the simple observation from above in the non-commutative setting leaves us with
a pointwise result: If we want to find the coefficient cambG,X(w) ∈ N∞ for a fixed
w ∈ Σ⊕, then it suffices to compute the approximate power series cambG<log|w|+1,X and
extract the coefficient of w.

In the special case where Σ = {z} is a unary alphabet the non-commutative and com-
mutative setting coincide and the solution of the algebraic system is a generating func-
tion in z

cambG,X =

∞∑
k=0

ckz
k.

The Newton approximation cambG<d,X is a generating function in z as well

cambG<d,X =

∞∑
k=0

c ′kz
k.

Since we have cambG<log|w|+1,X(w) = cambG,X(w), the number of correct coefficients∣∣{k ∈ N : c ′k = ck}
∣∣ in the approximation cambG<d,X roughly doubles when increasing d

to d+ 1. This fact was termed “quadratic convergence” by Pivoteau, Salvy, and Soria in
[PSS12] who use Newton’s method to compute approximations to generating functions
for combinatorial structures.

In our convergence result, we want d not to depend on |w|. To get an intuition consider
the following:

Remark 3.30 (Illustration of the main result). We can explain our convergence theorem via a
game between two players Alice and Eve. The intuition is that Eve cannot distinguish numbers
that are “too big” (e.g. not representable as a 64-bit integer). Note that in the game all information
is public (i.e. players can choose their move depending on choices by the other player).

1. Eve chooses a numberM ∈ N.

2. Alice chooses a number D and computes the approximation cambG<D,X.

3. Eve chooses w ∈ Σ⊕ and requests the coefficient c = cambG,X(w) from Alice.

48

3.5 Convergence of Newton’s Method

4. Alice computes c ′ = cambG<D,X(w) and reports c ′ instead of c to Eve.

5. Alice looses if c ′ 6= c and c 6M (Eve can detect Alice’ mistake).

If Alice were to use fixpoint iteration (i.e. height-unfolding of G) to obtain an approximation on
cambG,X she could never win this game since Eve could simply ask for the coefficient of somew
which has a derivation tree of larger height than computed by Alice.

Our result shows that Alice can win by choosing D = n+ log logM+ 1 and computing the
D-th Newton approximation cambG<D,X.

In the following, let G = (X, Σ,→) be a CFG and let n := |X| denote the number of
nonterminals of G. Recall that we label each node of a derivation tree with the rule
(X,α) used to expand the node. The first component X is called the label and lab(t) ⊆ X

denotes the set of all labels appearing in the tree t. We write l(t) := |lab(t)| to denote the
number of distinct labels (i.e. nonterminals) appearing in the tree.

We call two derivation trees t, t ′ Parikh-equivalent if their root labels are the same and
they yield the same word up to commutativity, i.e. P(Y(t)) = P(Y(t ′)) with P denoting
the Parikh image. In [EKL07b] it is shown that for any derivation tree containing l(t)
different non-terminals there exists at least one Parikh-equivalent tree of dimension at
most l(t).

Lemma 3.31 ([EKL07b]). For every derivation tree t there is a Parikh-equivalent tree t ′ of
dimension at most l(t).

Our following result extends this lemma: For every derivation tree of sufficiently large
dimension there exist many different Parikh-equivalent trees of strictly smaller dimen-
sion.

Lemma 3.32 ([LS13, LS15]). For every k > 0 and every derivation tree t of G with dim(t) >
l(t) + k + 1, there exist at least 21+2

k
many Parikh-equivalent trees t ′ with lab(t) = lab(t ′)

and dim(t ′) 6 l(t) + k.

Proof. We proceed by structural induction on t. If t is a leaf then dim(t) = 0 whereas
l(t) + k+ 1 = k+ 2 > 0, so the claim trivially holds.

If t has a subtree s with dim(s) > l(t) + k + 1 we can apply the inductive hypothesis
to s, yielding at least 21+2

k
Parikh-equivalent trees s ′ of dimension at most 6 l(t) + k

for this particular subtree. Then we apply Lemma 3.31 to every other subtree r of t to
convert r to r ′ of dimension at most l(t). Altogether, the resulting tree t ′ is of dimension
at most l(t) + k (since k > 0).

Therefore, we can restrict ourselves to the case where dim(t) = l(t) + k + 1 and all
subtrees have dimension at most l(t) + k. Note that in this case t must have (at least)
two subtrees t1, t2 of dimension exactly l(t) + k. We distinguish two cases:

• Case l(t1) < l(t) or l(t2) < l(t): Suppose w.l.o.g. l(t1) < l(t). We can apply the
inductive hypothesis to t1, since dim(t1) = l(t) + k > l(t1) + k + 1 and obtain at

49

3 Theory of Algebraic Systems

least 21+2
k

Parikh-equivalent trees of dimension at most l(t1) + k. Then we apply
Lemma 3.31 to every other subtree of t producing a t ′ of dimension at most l(t)+k.

• Case l(t1) = l(t2) = l(t). See Figure 3.3 for an illustration of this case. Since t1
has dimension l(t) + k, by Lemma 3.7 t1 contains a perfect binary tree of height
l(t)+k as a minor. The set of nodes of this minor on level k define 2k (independent)
subtrees of t1. Each of these 2k subtrees has height at least l(t), and thus by the
pigeonhole principle contains a path with two variables repeating. We call the
partial derivation tree defined by these two repeating variables a pump-tree. We
relocate any subset of these 2k pump-trees to t2 which is possible since l(t2) =

l(t) = l(t1) and therefore lab(t1) = lab(t2) = lab(t). This changes the subtrees
t1, t2 into t̃1, t̃2.

See the following picture for an illustration of this relocation process (here we have
two possibilities to select a pump-tree from the left subtree, yielding four possible
“remainders”).

(X, a)

(X, a)

(X, a) (X, a)

(X, c) (X, c) (X, c) (X, c)

(X, a)

(X, c) (X, c)

;

(X, a)

(X, a)

(X, a) (X, c)

(X, c) (X, c)

(X, a)

(X, c) (X, a)

(X, c)(X, c)

Each of these 22
k

choices produces a different tree t̃—the trees differ in the subtree
t̃1. As in the previous case we now apply Lemma 3.31 to every subtree of t̃ except
t̃1 to reduce the dimension of t̃ to at most dim(t̃1) = l(t) + k. From this we get at
least 22

k
different Parikh-equivalent trees of dimension at most dim(t̃1) = l(t)+k.

As we can also choose t2 as the source and t1 as the destination of the relocation
process and apply the same reasoning again, we obtain our desired lower bound
of 21+2

k

Theorem 3.33. For all k > 0 and commutative words w ∈ Σ⊕ we have that

cambG<n+k+1,X(w) > min(cambG,X(w), 21+2
k

).

Proof. Let w ∈ Σ⊕ such that cambG<n+k+1,X(w) < cambG,X(w). Therefore, there
must exist some derivation tree t with dim(t) > n + k + 1 and P(Y(t)) = P(w).
This tree t witnesses the existence of at least 21+2

k
different, but Parikh-equivalent,

derivation trees yielding w up to commutativity by the previous Lemma 3.32. Hence,
cambG<n+k+1,X(w) > 21+2

k
.

50

3.5 Convergence of Newton’s Method

n+ k+ 1 −→ n+ k

n+ k n+ k −→ n
Lemma 3.31

X

X

X

YY

Y

height k

> 2k trees of height > n

> 22
k

choices

Figure 3.3: An illustration of the main case in the proof of Lemma 3.32: Let t be a bi-
nary derivation tree of dimension n+k+1with two children of dimension
n+ k such that every non-terminal occurs in the right subtree. Then t can
be transformed in at least 22

k

many different ways into a tree t̃ such that (1)
t̃ and t have the same yield modulo commutativity and (2) dim(t̃) = n+k.

Corollary 3.34. For k > 0, every coefficient smaller than 21+2
k

in the power series
cambG<n+k+1,X is correct, i.e. coincides with the coefficient of the true solution cambG,X.

Example 3.35. Consider the equation X = aXX + c over the free commutative semiring
N∞〈〈Σ⊕〉〉. We have already seen that its solution is given by

X =

∞∑
n=0

Cn+1a
ncn+1

= c+ ac2 + 2a2c3 + 5a3c4 + 14a4c5 + 42a5c6 + 132a6c7 + 429a7c8 +

The dimension-unfolding of the system modulo commutativity is given by

X=0 = c

X<d = X<d−1 + X=d−1

X=d = 2 · aX=dX<d + X=d−1X=d−1 comm.
= (2aX<d)∗ · X=d−1X=d−1

From this we can obtain the definition of the Newton iterates

ν0 = 0

νd+1 = νd + ∆d

∆0 = c

∆d = (2aνd)
∗ · (∆d−1)2 .

51

3 Theory of Algebraic Systems

We report the specific values up to d = 3:

ν0 = 0

ν1 = c

ν2 = c+ (2ac)∗c2

= c+ ac2 + 2a2c3 + 4a3c4 + . . .

ν3 = c+ (2a)∗c2 + (2a(c+ (2ac)∗c2))∗ · (2ac)∗c2 · (2ac)∗c2

= c+ ac2 + 2a2c3 + 5a3c4 + 14a4c5 + 42a5c6 + 132a6c7 + 428a7c8 + . . .
...

X = c+ ac2 + 2a2c3 + 5a3c4 + 14a4c5 + 42a5c6 + 132a6c7 + 429a7c8 + . . .

In each Newton iterate we have highlighted the first coefficient which differs from the true solu-
tion, i.e. all coefficients “before” are correct. Note that the first incorrect coefficient in νd is off by
exactly one in this example. This is not a coincidence since a2

d−1c2
d

encodes some binary tree
with 2d leaves and all but one such trees have dimension less than d (the one with dimension d
is the perfect binary tree of height d).

To illustrate Corollary 3.34 consider ν3 = cambG<3,X, hence we have k = 1 so the corollary
tells us that every coefficient smaller than 23 = 8 is correct. For example ν3(a3c4) = 5 < 8 is
correct, as is ν3(a23c23) = 0 < 8.

Note that this example also shows that the statement of Corollary 3.34 is far from giving tight
bounds.

Consider any word w ∈ Σ⊕. From Lemma 3.31 we immediately obtain that
cambG,X(w) = 0 if and only if cambG<n+1,X(w) = 0 (with n = |X|). Put differently,
if there is any derivation tree at all that yields w up to commutativity then there is one
with “small” dimension. Translated to the language of algebraic systems over semirings
this yields the following

Proposition 3.36 ([EKL07b]). For an algebraic system (f1, . . . , fn) over a commutative and
idempotent semiring S with solution (s1, . . . , sn) ∈ S[n] we have

νn+1(Xi) = si.

Recall that a semiring is idempotent, if the identity 1 + 1 = 1 holds (or equivalently,
x + x = x). A generalization are semirings that satisfy the identity 1 + k = k for some
fixed k ∈ N. These are called k-collapsed semirings (cf. [BÉ09]).

Example 3.37. The semiring of truncated natural numbers (Nk,+, ·, 0, 1) for k > 1 obtained
by defining k + 1 := k is k-collapsed. Note that the identity k = k + 1 implies x + k = k for
x > 0 and x · k = k for x > 1 by induction.

52

3.5 Convergence of Newton’s Method

Similarly the power series Nk〈〈Σ⊕〉〉 in commuting variables with coefficients from Nk are a
k-collapsed semiring.

A more interesting example is the k-tropical semiring Tk,N := (Nk∞,+, ·, ~∞,~0) used to com-
pute k-shortest paths [Moh02] (with +, · defined below).

For a vector x ∈ Nn∞ we define mink(x1, . . . , xn) as the sorted vector of the k smallest ele-
ments from x (w.r.t. the natural order on N∞). For example min3(1, 3, 5,∞, 2, 1) = (1, 1, 2). If
x is sorted then mink is simply given by the first k elements of the vector. With the help of mink
we can define the addition and multiplication on Tk as

• (x1, . . . , xk) + (y1, . . . , yk) := mink(x1, . . . , xk, y1, . . . , yk) and

• (x1, . . . , xk) ·(y1, . . . , yk) := mink((xi+yj) : i, j ∈ [k]) where “+” is the usual addition
on N∞.

For example we have

(1, 2,∞) + (1, 4, 5) = min3(1, 1, 2, 4, 5,∞) = (1, 1, 2)

and
(1, 2,∞) · (1, 4, 5) = min3(2, 5, 6, 3, 6, 8,∞,∞,∞) = (2, 3, 5).

Note that for k > 2 the semiring Tk is not idempotent, e.g. consider (1, 2) + (1, 2) = (1, 1)

but it is k-collapsed. This follows easily from the fact that Tk is (k − 1)-closed [Moh02], i.e. for
all x ∈ Tk

k∑
i=0

xi =

k−1∑
i=0

xi.

In particular we have 1+ k =
∑k
i=0 1 =

∑k−1
i=0 1 = k.

For k-collapsed semirings, we get the following result by Theorem 3.33. Note that our
statement is more precise than the one we gave in [LS13, LS15].

Proposition 3.38. Let (f1, . . . , fn) be an algebraic system over a commutative and k-collapsed
semiring S with solution (s1, . . . , sn) ∈ S[n]. Then

si =


νn+1(Xi) if k = 1

νn+2(Xi) if 2 6 k 6 4

νn+dlog(logk−1)e+1(Xi) if k > 4

Proof. To compute the solution over a k-collapsed commutative semiring, we have to
make sure to discover at least k derivation trees for each word modulo commutativity
(if there are that many).

From Theorem 3.33 we know cambG<n+d+1,X(w) > 21+2
d
, and thus it suffices to com-

pute νn+d+1 where d ∈ N \ {0} is the smallest positive number such that k 6 21+2
d ⇔

logk − 1 6 2d. For k 6 4 we get d = 1 and for k > 4 we obtain d > dlog(logk− 1)e as
the smallest bound.

53

3 Theory of Algebraic Systems

Example 3.39. Consider again the equation X = aXX + c over the k-collapsed semirings
Nk〈〈Σ⊕〉〉. For k = 1 the semiring is idempotent and so we know that the solution over N1〈〈Σ⊕〉〉
is given by

ν2 = c+ (2a)∗c2 = c+ a∗c2 = c(ac)∗.

For k = 5, . . . , 16 we have that 3 6 n + dlog(logk− 1)e + 1 6 3 and hence for these k
we need to compute ν3 to correctly represent the solution. In particular we obtain the slightly
stronger result that the coefficient ν3(a4c5) = 14 is correct.

Convergence of Newton’s Method over Matrix Semirings with Commutative Entries
Our results on the convergence of Newton’s method over commutative semirings can
also be transferred to a special case of non-commutative semirings: matrices with com-
mutative entries. Let S be a commutative semiring. Then the semiring of matrices
S ′ = S[n]×[n] is non-commutative in general. However, an algebraic system over S ′

comprising k equations can simply be viewed component-wise. This component-wise
system then comprises n2 · k equations over S.

Hence, all our convergence results from this section also apply to the matrices with
commutative entries. In particular, if S is a commutative and idempotent semiring we
know that Newton’s method over S ′ = S[n]×[n] applied to an algebraic system of k
equations reaches a fixpoint after at most kn2 + 1 steps (similarly for commutative k-
collapsed semirings S).

Example 3.40. Consider the single algebraic equation X = XAX + C with A,X,C ∈ S[2]×[2].
By viewing the equation component-wise we can expand this into an equivalent system of four
algebraic equations over S. To this end, let

X =

(
x11 x12

x21 x22

)
A =

(
a11 a12

a21 a22

)
C =

(
c11 c12

c21 c22

)
.

Then we can write X = XAX+ C in expanded form as(
x11 x12

x21 x22

)
=

(
x11 x12

x21 x22

)
·

(
a11 a12

a21 a22

)
· X+ C

=

(
x11a11 + x12a21 x11a12 + x12a22

x21a11 + x22a21 x21a12 + x22a22

)
· X+ C.

= . . .

The expansion of this matrix-term results in a system of four equations defining
x11, x12, x21, x22, e.g.

x11 = x11a11x11 + x12a21x11 + x11a12x21 + x12a22x21 + c11

= a11x
2
11 + a21x11x12 + a12x11x21 + a22x12x21 + c11

54

3.6 Combinatorics of Tree Dimension

We summarize our discussion in the following proposition.

Proposition 3.41. Let S be a commutative semiring. Newton’s method converges4 over S[k]×[k]

for all k ∈ N if and only if it converges over S.
If S is commutative and idempotent then Newton’s method converges after n · k2+ 1 steps for

algebraic systems over S[k]×[k].

3.6 Combinatorics of Tree Dimension

In this section we study some combinatorial parameters that are closely related to tree
dimension.

We present two new contributions:

1. In Section 3.6.2 we prove a relation between tree dimension and pathwidth, an-
swering an open question of David Eppstein.

2. In Section 3.6.3 we show how to use tree dimension to optimize the number of
registers needed to evaluate arithmetic expressions.

The first was published in [LS15], the second is new.

3.6.1 Tree Dimension and Related Notions

The notion of tree dimension has been re-discovered several times under many different
names during the last 60 years. We just mention a few combinatorial concepts equivalent
to tree dimension (see [ELS14a] for a survey):

• The (Horton-)Strahler number [Hor45, Str52] is used in hydrology to classify rivers.

• The register number [Ers58, FRV79, Kem79] is the minimal number of registers
needed to evaluate an arithmetic expression.

• A CFL is k-bounded [GS68] if it has a grammar in CNF that only generates deriva-
tion trees of dimension k− 1.

• The tree-rank of derivation trees of ET0L systems [ERV81] coincides with their di-
mension.

• The dimension (resp. Strahler number) is used as a hardness measure for proposi-
tional formulæ [ABLM08, GK14, BK14].

A re-occurring use of tree dimension is to describe the complexity of tree structures
(see also Chapter 8). As observed by Flajolet, Raoult, and Vuillemin [FRV79], dim(t) + 1

55

3 Theory of Algebraic Systems

Algorithm 1: Binary tree traversal with the “cheapest subtree first” strategy.

Function Traverse(r(t1, t2)):
Visit (r)
if dim(t1) 6 dim(t2) then

Traverse (t1)
Traverse (t2)

else
Traverse (t2)
Traverse (t1)

end
return

end

is the minimum amount of stack space needed by any top-down traversal of a binary
tree t.

Algorithm 1 traverses a binary tree by traversing the subtree with smaller dimension
first. For a binary tree t a run of the algorithm needs a stack of size dim(t) + 1 to store
the pending calls. On the other hand, given a perfect binary tree of height h, any top-
down traversal has to use a stack of height h + 1 since the order of the subtrees visited
is irrelevant.

3.6.2 Tree Dimension and Pathwidth

Many combinatorial parameters of trees are different from the dimension, but are still
closely related. Some years ago, D. Eppstein asked the question whether the pathwidth
of a tree is related to its Strahler number (or equivalently, its dimension) 5.

Intuitively, the pathwidth of a graph is a measure of how “path-like” the graph is:
It measures the minimum amount of “abstraction” one needs to apply to the graph in
order to make it a path, where “abstraction” means to form new macro-nodes containing
subsets of the nodes in the graph (note that these subsets are not necessarily disjoint).

Definition 3.42 (Path decomposition). A path decomposition of a graph G = (V, E) is an
ordered sequence (a path) V1, . . . , Vn ⊆ V such that

1. All vertices are covered by the sequence, i.e.
⋃
i∈[n] Vi = V .

2. All edges are covered, i.e. for each {u, v} ∈ E there is some j ∈ [n] such that u, v ∈ Vj.

3. If v ∈ Vi ∩ Vj then v ∈ Vk for all k with i < k < j.

4By “converges” we understand convergence in finite time.
5See https://en.wikipedia.org/wiki/Talk:Pathwidth for a discussion.

56

https://en.wikipedia.org/wiki/Talk:Pathwidth

3.6 Combinatorics of Tree Dimension

Equivalently, the third condition says that for all i 6 k 6 jwe have Vi∩Vk ⊆ Vj. Obvi-
ously every graph has a trivial path decomposition consisting just of V1 = V . However,
this “decomposition” is not really useful since it abstracts all |V | nodes into one big set.
A good measure for the granularity of a path decomposition is the notion of pathwidth:

Definition 3.43 (Pathwidth). Let G = (V, E) be a graph. The width of a path decomposition
P = (V1, . . . , Vn) of G is defined as the maximum size of any Vi minus one,

width(P) := max
i∈[n]

|Vi|− 1.

The pathwidth pw(G) of G is defined as the minimum width over all path decompositions,

pw(G) := min
P: path dec.

ofG

width(P)

The “−1” in the definition of width is to normalize the pathwidth of any path to 1.

Proposition 3.44. For Bn, the perfect binary tree Bn of height n, we have

pw(Bn) =
⌈n
2

⌉
Proof. We first prove pw(Bn) 6

⌈
n
2

⌉
by induction on n. The upper bound is obviously

true for n = 0, 1. Inductively, one can construct a path decomposition of Bn of width
w + 1 using decompositions (Xi)i∈[s] of Bn−2 of width w as follows (we identify the
nodes of Bn with the strings from {0, 1}6n):

(00Xi ∪ {0})i∈[s], (01Xi ∪ {0})i∈[s], {ε, 0}, {ε, 1}, (10Xi ∪ {1})i∈[s], (11Xi ∪ {1})i∈[s].

The lower bound pw(Bn) >
⌈
n
2

⌉
follows from a theorem on pathwidth obstructions

[CDF96].

Different from pathwidth, the dimension is defined for rooted trees only. To make
them comparable, we define mindim(T) as the minimum dimension of T w.r.t. the choice
of the root.

Example 3.45. For Bn the (rooted) perfect binary tree of height n we have dim(Bn) = n. If
we choose the leftmost leaf as a new root, the highest perfect binary tree contained as a minor is
Bn−1 (since the new root has only one child). Hence, mindim(Bn) 6 n− 1. Further, note that
Bn contains two Bn−1 as minors and any choice of a new root leaves one of these minors intact.
Thus, mindim(Bn) = n− 1.

We now present our main theorem on the relation of dimension and pathwidth.

Theorem 3.46. For every tree T it holds that

pw(T) − 1 6 mindim(T) 6 2 · pw(T)

57

3 Theory of Algebraic Systems

Proof. We first show that pw(T) 6 1+ mindim(T):
Choose any r ∈ V such that dim(T, r) = mindim(T). If dim(T, r) = 0, then (T, r) is

by definition a chain and pw(T) 6 1 immediately follows. Thus assume dim(T, r) > 0.
Let T1, . . . , Tk be the connected components of T \ {r}, and r1, . . . , rk the children of r in
(T, r). For (B

(j)
i)i∈[sj] a path decomposition of Tj, we can construct the following path

decomposition of T (to be read from left to right):

B
(1)
1 ∪ {r}, . . . , B

(1)
s1 ∪ {r}, B

(2)
1 ∪ {r}, . . . , B

(k−1)
sk−1 ∪ {r}, {r, rk}, B

(k)
1 , . . . , B

(k)
sk .

By definition of path decomposition, every rj is covered by (B
(j)
i)i∈[sj], so that by adding

r to the first k − 1 decompositions all the edges {(r, r1), . . . , (r, rk−1)} are covered. After
covering also the edge (r, rk), only edges and nodes of Tk remain to be covered, so
that the decomposition (B

(k)
i)i∈[sk] suffices. Hence, pw(T) 6 1 + maxi∈[k] pw(Ti). In

particular, if the maximum maxi∈[k] pw(Ti) is uniquely determined, wlog. by Tk, then
pw(T) 6 maxi∈[k] pw(Ti).

Now by induction pw(Ti) 6 1+mindim(Ti) 6 1+dim(Ti, ri). By definition, either (a)
dim(T, r) = maxi∈[k] dim(Ti, ri) or (b) dim(T, r) = 1 + maxi∈[k] dim(Ti, ri). In case (a)
the maximum is unique so that for at most one subtree Ti, say Tk, we have pw(Tk) = 1+

dim(T, r), while for the remaining components pw(Ti) < 1+dim(T, r). Thus pw(T) 6 1+
dim(T, r) = 1+mindim(T) by choice of r. In case (b) we have pw(Ti) 6 1+dim(Ti, ri) 6
dim(T, r), and thus pw(T) 6 1+ dim(T, r), too.

It remains to show that mindim(T) 6 2pw(t) (the proof is similar to the proof of
Lemma 9 in [Sud04]):

Set w := pw(t). If w = 0, then t consists of a single node and mindim(T) = 0.
Thus assumew > 0 and let (Bi)i∈[s] be some path decomposition of minimal widthw.

Choose any v1 ∈ B1 and vs ∈ Bs, and let π be the unique simple path connecting v1, vs
in T . As before, let r1, . . . , rk be the nodes of T which are not located on π but connected
to some node along π by an edge; then denote by (Ti, ri) the corresponding subtrees
w.r.t. (T, v1). Since every edge of π is covered by at least one Bi (Bi − {v1, . . . , vs})i∈[s] is
a path decomposition of width at most w − 1 for every tree Ti, i.e., pw(Ti) 6 w − 1. By
induction, we therefore have

dim(Ti, ri) 6 1+ mindim(Ti) 6 1+ 2pw(Ti) 6 1+ 2(w− 1).

Thus
mindim(T) 6 dim(T, v1) 6 1+ max

i∈[s]
dim(Ti, ri) 6 2w = 2pw(T).

Note that the bounds in Theorem 3.46 are sharp up to ±1: For the left inequality
consider the perfect ternary tree Tn of height n: No matter which node we pick as root
the resulting rooted tree contains two Tn−1 minors so that induction immediately yields
that mindim(Tn) = n. On the other hand we have pw(Tn) = n (see e.g. [Sud04]).

58

3.6 Combinatorics of Tree Dimension

Similarly for the right inequality we use Bn the perfect binary tree Bn of height n.
Here we have mindim(Bn) = n − 1 and pw(Bn) = n

2 : Our theorem yields the lower
bound pw(Bn) > n−1

2 = bn2 c, so it is off by 1 for perfect binary trees of odd height.

3.6.3 Application: Optimizing Arithmetic Expressions

The “cheapest subtree first” strategy used by Algorithm 1 to traverse binary trees can
also be used to evaluate arithmetic expressions given as a binary syntax tree in a register-
optimal way as first observed by Ershov [Ers58, FRV79].

Ershov only considers expressions given as a fixed syntax tree. However, using asso-
ciativity we can write arithmetic expressions in syntactically different but semantically
equivalent ways. 6

Example 3.47. The syntax tree of the expression (a + b) + (c + d) has dimension 2. The
equivalent expression (a+ (b+ (c+d))) has a syntax tree of dimension 1. Hence, evaluation of
the expression requires 3 registers in its first but only 2 in its second form.

Formally, we consider the following problem of optimizing expressions modulo asso-
ciativity.

Problem 3.48 (MINREGASSOC). Given an arithmetic expression e (as a binary syntax tree),
find an expression e ′ equivalent to e modulo associativity of multiplication and addition such
that the number of registers needed to evaluate e ′ is minimal.

In the previous example the optimal bracketing of the expression was given by a right-
most bracketing of the “flattened” expression (a + b + c + d) which corresponds to a
right-most binarization of the associated 4-ary syntax tree.

Combinatorially, a binarization of a tree t (of arbitrary arity) is a binary tree t ′ obtained
from t by contracting inner nodes of degree 2 and by introducing new inner nodes such
that t ′ has the same leaves as t in the same left-to-right order. For example, binarizing a
derivation tree of a context-free grammar is analogous to transforming a grammar into
CNF. 7

It is easy to see that the MINREGASSOC problem can be reduced to finding an optimal
binarization of the associated “flattened” syntax tree. The following example illustrates
the operation of flattening a tree by collapsing nodes of the same type. Note that we do
not assume commutativity of the operations here.

Example 3.49. Here we see a binary syntax tree for an arithmetic operation on the left and its
flattened version on the right. Note that the tree on the left has dimension 2 while the flattened
version has dimension 1.

6We do not consider commutativity of either addition or multiplication here, so we can view expressions
as terms modulo associativity.

7In the case of arithmetic expressions, contraction of unary “minus” nodes does not change the number
of registers needed for evaluation but changes the semantics. However, we can recover a semantically
equivalent expression by reverting the contractions in the binarized tree.

59

3 Theory of Algebraic Systems

+

+

x6·

x5x4

+

+

x3x2

x1

+

x6·

x5x4

x3x2x1

For the flat expression (a + b + c + d) one optimal binarization can be obtained by
a right-most binarization. However, such a right-most binarization of the flattened tree
need not be optimal:

Example 3.50. Consider the ternary expression tree on the left of dimension 2. A right-most
binarization gives the binary tree on the right of dimension 3.

+

·

x8x7

·

x6x5

·

+

x4x3

+

x2x1

+

+

·

x8x7

·

x6x5

·

+

x4x3

+

x2x1

A different binarization gives a tree of dimension 2:

+

·

x8x7

+

·

x6x5

·

+

x4x3

+

x2x1

In this fashion we can construct more examples where a simple left-most or right-most
binarization strategy gives a suboptimal tree (i.e. a tree with higher dimension than the
flattened tree). Note that for a suboptimal syntax tree any evaluation strategy needs
more registers than actually necessary (given an optimal tree).

However, we show next in Theorem 3.51 that for any tree t (of arbitrary arity) there
always exists a binarization with the same dimension as t. Hence for any expression we
can find a binary syntax tree with the same dimension as its flattened tree. Furthermore

60

3.6 Combinatorics of Tree Dimension

note that the dimension of the flattened tree is a lower bound on the dimension of any
binarization.

Putting these results together we can solve the MINREGASSOC problem by flattening
the syntax tree of the input expression and then building an optimal binarization via
Theorem 3.51.

Theorem 3.51. For every tree t there is a binarization t ′ such that dim(t) = dim(t ′).

Proof. First note that by removing unary nodes (nodes with degree 2) from the tree we
can assume that every inner node has degree at least 2.

We proceed by induction on the number of nodesn := |V(t)|. Forn = 1, t only consists
of a leaf and already is a binary tree.

Now let n > 1, D := dim(t), and let t1, . . . , tk be the subtrees of t ordered from left to
right. If k = 2 we can binarize each subtree inductively which results in a binary tree t ′.
Hence, in the following we assume k > 3. Since dim(t) = D one of the following cases
must be true:

1) t has (exactly) one subtree ti of dimensionD and all other subtrees have dimension
at mostD− 1: Assume w.l.o.g. that i > 1, i.e. ti is not the left-most tree (otherwise
we argue symmetrically). We form two new trees, s1 = t1 and s2 a new node with
subtrees t2, . . . , tk. Since s1 and s2 have fewer nodes than t we can binarize s1
and s2 by induction yielding binary trees s ′1 and s ′2 with dim(s ′1) 6 D − 1 and
dim(s ′2) = D. Hence, we can build the binarization t ′ of t by attaching the two
subtrees s ′1, s

′
2 to a new root and dim(t ′) = D.

2) t has at least two subtrees ti and tj of dimensionD−1 (and all other subtrees have
dimension at most D − 1): We form two new trees, s1 with subtrees t1, . . . , ti and
s2 with subtrees ti+1, . . . , tk8. Note that dim(s1) = D − 1 = dim(s2) and they
both have fewer nodes than t so again by induction they can be binarized yielding
binary trees s ′1, s

′
2 with dim(s ′1) = D − 1 = dim(s ′2). Attaching s ′1 and s ′2 to a new

root, yields the binarization t ′ of t with dim(t ′) = D.

Example 3.52. Consider the flattened tree on the left from the example above. Applying the
binarization procedure from the proof of Theorem 3.51 yields the tree on the right of dimension 1.

8If i = 1 we do not add a new root, so s1 = t1, similarly for i+ 1 = k and s2.

61

3 Theory of Algebraic Systems

+

x6·

x5x4

x3x2x1

+

+

+

+

x6·

x5x4

x3

x2

x1

Corollary 3.53. The MINREGASSOC problem can be solved in polynomial time.

3.7 Conclusions

In this chapter we have extended the theoretical foundations of Newton’s method over
semirings. Specifically, we made the following contributions:

• We have shown how obtain a closed form of Newton’s method over non-
commutative semirings and in particular over matrix semirings.

• We have proved a general convergence theorem for Newton’s method over com-
mutative semirings which allows us to obtain that Newton’s method converges in
finite time over all k-collapsed semirings.

• We have proved a tight relation between tree dimension and pathwidth and shown
how tree dimension can be used to optimize arithmetic expressions w.r.t. the num-
ber of registers needed to evaluate them.

62

4
Newton’s Method: Generic Algorithms and

Implementation

As we have seen, Newton’s method is a general procedure to approximate or even solve
algebraic systems over special semirings (e.g. k-collapsed semirings). So far, we have
formulated the ideas in a theoretical and non-algorithmic way.

In this chapter we first describe the algorithmic details of Newton’s method in Section
4.1. In particular, we provide a detailed complexity analysis of different methods for
solving right-linear equations – a problem which is central to Newton’ method over
commutative semirings. Then, in Section 4.2 we present an overview of our generic
library FPSOLVE implementing these algorithms.

This chapter is based on work that has appeared in [STL13, ELS14b, ELS15].

4.1 Algorithmic Details of Newton’s Method

Here we describe the main algorithms needed to implement Newton’s method and dis-
cuss some optimizations over special semirings. In Section 4.1.1 we give the general
formulation of Newton’s method and discuss more efficient versions for idempotent
and numeric semirings. Next, in Section 4.1.2 we describe how Newton’s method We
compare several methods to solve right-linear systems and provide a detailed complex-
ity analysis in Section 4.1.3. Finally, we briefly describe two general algorithmic opti-
mization techniques: Symbolic solving (Section 4.1.4), and SCC decomposition (Section
4.1.5).

63

4 Newton’s Method: Generic Algorithms and Implementation

In the following we restrict ourselves to algebraic systems in 2NF which is (1) no real
restriction as described before, (2) makes the presentation easier, and (3) leads to more
efficient algorithms.

4.1.1 Generic Formulation of Newton’s Method

As we have seen in Section 3.4, in general we can define Newton’s method (for systems
in 2NF) as follows:

ν0 = 0

νd+1 = νd + ∆d

∆d = J
∣∣∣
X=νd−1

(∆d) + δd

(δd)i =
∑

{Y,Z}∈(X2)

∂

∂Y

∂

∂Z
(fi)

∣∣∣Ŷ=∆d−1(Y)
Ẑ=∆d−1(Z)

This suggests the general form of Newton’s method described in Algorithm 2.

Algorithm 2: Generic algorithm for computing the Newton sequence.
input : number of iterations N, vector F of polynomials, vector of variables X
output: vector of semiring values ν (the N-th Newton approximation of the

solution to X = F(X))

InitLinearSolver(F, X) ; /* Computes the Jacobian J */

δ := F(~0)

ν := ~0

∆ := ~0

for d = 1 . . .N do
∆ := SolveLinear(ν, δ) ; /* Computes ∆d */

δ := GenerateDelta(∆, F) ; /* Computes δd */

ν := ν + ∆ ; /* Computes νd */

end
return ν

To instantiate this generic algorithm we have to specify how to implement the
functions InitLinearSolver, SolveLinear, and GenerateDelta. The function
GenerateDelta computes the value δd and the function SolveLinear solves the lin-
ear system

∆d = J
∣∣∣
X=νd−1

(∆d) + δd

in every iteration. The implementation of InitLinearSolver depends on whether
we use the symbolic method of solving linear systems (cf. Section 4.1.4 below), but in

64

4.1 Algorithmic Details of Newton’s Method

any case this function computes the Jacobian of F and stores it so SolveLinear can use
it.

The definition of Newton’s method as unfolding (cf. 3.4) also suggests a general way
to define the GenerateDelta function (see Algorithm 3).

Algorithm 3: Generic delta-computation.
input : vector of semiring values ∆, vector F of n polynomials of degree 6 2
output: vector of semiring values δ

ν := ~0

∆ := ~0

for i = 1 . . . n do
for {X, Y} ∈

(
X
2

)
do

δi := δi +
∂
∂X

∂
∂Y Fi

∣∣∣X̂=∆(X)

Ŷ=∆(Y)

end
end
return δ

Note that it was shown in [EKL10] that δd can be chosen as any vector satisfying νd+
δd = F(νd). Such a δd always exists since F is monotone and furthermore the sequence
νd is independent of the choices of δd. Hence, the generic algorithm to compute δd
derived from the unfolding does not constitute the only way to obtain a suitable δd. In
fact if the semiring is idempotent or admits a well-defined subtraction operation there
are more efficient means to compute δd.

Idempotent Semirings Over idempotent semirings Newton’s method can be simpli-
fied in two ways (cf. [EKL07b, EKL10]): First, δd can be set to δd = F(0) in every iteration
and second, we can save one addition due to idempotence by setting νd = ∆d−1 (see
[EKL10]). Hence δd can be computed once (in linear time) and then be re-used in every
iteration to compute ∆d by solving a linear system (which already computes the next
νd).

Numeric Semirings We call a semiring numeric if we can define and compute the mod-
ified subtraction operation: S is a numeric semiring if for x, y ∈ S with x 6 y there is
exactly one c ∈ S such that x+c = y, with a computable c. Hence, for numeric semirings
we can then define the difference y− x := c.

In numeric semirings, we can speed up the computation of the Newton approxima-
tions by specializing the GenerateDelta function: Since νd 6 F(νd) we can simply
compute δd = F(νd) − νd as explained in Section 3.4.3.

65

4 Newton’s Method: Generic Algorithms and Implementation

Algorithm 4: Newton’s method over idempotent semirings.
input : number of iterations N, vector F of polynomials, vector of variables X
output: vector of semiring values ν, the N-th Newton approximation of the

solution to X = F(X)

InitLinearSolver(F, X) ; /* Computes the Jacobian J */

δ := F(~0)

ν := ~0

∆ := ~0

for d = 1 . . .N do
ν := SolveLinear(ν, δ) ; /* Computes νd */

end
return ν

Examples of numeric semirings are all rings like the real numbers R with ordinary
addition and multiplication or the natural numbers N. Strictly speaking, R>0∞ (the ω-
continuous extension of R>0) is not a numeric semiring since we cannot define sub-
traction for the element ∞. However, for all other elements x 6 y we can define the
subtraction and thus we can also speed up the computation of Newton’s method over
R>0∞ .

4.1.2 Specialization for Commutative Semirings

If the underlying semiring is commutative we can find more specialized and efficient
algorithms for computing δd and for solving linear equations. As a first step we can ex-
ploit commutativity to compute derivatives of polynomials more efficiently. First recall
that for n ∈ N, s ∈ S we write n · s :=

∑n
i=1 s, which can be computed using O(logn)

additions (analogous to the square-and-multiply method for fast exponentiation). Now
consider as an example the polynomial f = aX2Y + bX3 then ∂f

∂X = 2aXY + 3bX2 and
∂f
∂X2

= 2aY + 6bX. In general, let X = (X1, . . . , Xn) and let p be a commutative polyno-
mial which we can write concisely in multi-index notation as

p =
∑
i∈N[n]

aiX
i =

∑
i∈N[n]

aiX
i1
1 · X

in
n

with ai = 0 for all but finitely many i. For a multi-index d = (d1, . . . , dn) ∈ N[n] the
derivative ∂p

∂Xd
can be written as

∂p

∂Xd
=
∑
i∈N[n]

ida ′iX
i−d.

66

4.1 Algorithmic Details of Newton’s Method

where a ′i =

{
0, if i− d < 0

ai, otherwise
and the generalized falling factorial id is defined as

id := i
d1
1 · · · · i

dn
n .

Example 4.1. Let ~X = (X, Y, Z) and d = (1, 0, 2) then for p = aX3Z2+bY3+cX3Z+dX4YZ4

we have

∂p

∂~Xd
= 3 · 2 · 1 · aX2Z0 + 0+ 0+ 4 · 4 · 3 · dX3YZ2 = 6aX2 + 48dX3YZ2

As a result, we can compute derivatives (for the Jacobian matrix and the δd) in linear
time by considering each monomial once (assuming polynomials of degree at most 2).

As seen in Section 3.4.3, over a commutative semiring, the system of linear equations
defining ∆i turns into a right-linear system of the form x = Ax+ b whose least solution
is given by A∗b. For the linear system defining ∆d in Newton’s method this yields

∆d = J
∣∣∣∗X=νd−1
X̂=1

· δd

There are many choices how to implement the SolveLinear function of our generic

algorithm to compute ∆d. We have two possibilities to compute the matrix J
∣∣∣∗X=νd−1
X̂=1

:

1. Precompute J∗ as a matrix of symbolic expressions in variables X. In each iteration
evaluate this symbolic matrix at the point X = νd−1.

2. In each iteration, first evaluate the Jacobian J at X = νd−1 and then compute J∗

over the semiring S.

These two choices give rise to two different solving algorithms which we term symbolic
and concrete solving, respectively (cf. Section 4.1.4).

Remark 4.2. The third possibility to compute ∆d is to avoid computing the starred Jacobian
J∗ altogether. For comparison, consider the problem of solving linear equations encountered in
numerical linear algebra. Given an invertible matrixA ∈ Rn×n and b ∈ Rn we look for x ∈ Rn

such that A · x = b. Although the solution formally is given by x = A−1 · b, this equation
should not be read literally as an algorithm to compute x because: (1) matrix inversion is a badly
conditioned problem in general, (2) even if A is sparse, its inverse A−1 can be very dense, and
(3) if A has a special structure (e.g. A is a band or a Toeplitz matrix) there are more efficient
algorithms to solve the system. The paper by Litvinov et al. [LRSS13] surveys “universal”
algorithms that solve such linear equations over semirings.

67

4 Newton’s Method: Generic Algorithms and Implementation

4.1.3 Solving Right-Linear Systems

Here, we compare several methods to solve systems of (right-)linear equations x =

Ax+ b over a semiring S, where x ∈ S[n], A ∈ S[n]×[n]. Such systems are studied under
the name Bellman equation [LRSS13] in tropical and idempotent mathematics. The least
solution of such a linear system over an ω-continuous semiring is given by A∗b where
A∗ =

∑
n>0A

n. It is well-known that A∗ can be effectively computed over all semi-
rings for which we can compute the Kleene star of elements [DKV09]. Hence, solving
linear systems can be reduced to computing the Kleene star of matrices. However, as we
remarked above this might not be the most efficient solution as illustrated by matrices
over the real semiring (R>0∞ ,+, ·, 0, 1): If ‖A‖ < 1we have A∗ = (I−A)−1, so the Kleene
star of a matrix corresponds to inverting (I−A) which is a badly conditioned problem in
general. So over numeric domains we should avoid computing A∗ and solve the linear
system directly, e.g. via a generalizations of the well-known LU-decomposition.

General Floyd-Warshall Algorithm

The Floyd-Warshall algorithm is a well-known procedure to solve the all-pairs-shortest-
path problem in weighted directed graphs: Given the weighted adjacency matrix A of a
digraph with entries in R>0∞ , the entry (i, j) of the matrixA∗ =

∑∞
i=0A

i gives the weight
of the shortest path from node i to node j. In this special case, sum, product, and Kleene
star are interpreted over the real tropical semiring (R>0∞ ,min,+,∞, 0) and we have in
fact that A∗ =

∑n−1
i=0 A

i for an n× nmatrix A.
The Floyd-Warshall algorithm can be stated in a very general form for an arbitrary

semiring (with computable Kleene star) [DKV09]. In Algorithm 5 we describe a slightly
optimized version from [DKV09] which avoids the re-computation of certain expres-
sions.

From the description of the algorithm we can easily count the number of semiring
operations needed. The algorithm needs n Kleene star computations, n3 − n multi-
plications, and n3 − 2n2 + n additions, so the total number of operations needed is
2n3 − 2n2 + n ∈ Θ(n3).

Divide-And-Conquer Algorithm

The Kleene star of a matrix can be defined recursively (cf. [DKV09]) We assume a sub-
division of the matrix M ∈ S[n]×[n] into four matrices A ∈ S[n1]×[m1], B ∈ S[n1]×[m2],
C ∈ S[n2]×[m1], and D ∈ S[n2]×[m2], such that n1 + n2 = n andm1 +m2 = n.

M =

[
A B

C D

]

68

4.1 Algorithmic Details of Newton’s Method

Algorithm 5: Generalized Floyd-Warshall algorithm over semirings.

input : Matrix A ∈ Sn×n over a semiring S.
output: Reflexive-transitive closure A∗.

B := A

for k = 1 . . . n do
Bk,k := B∗k,k
for i = 1 . . . n, i 6= k do

Bi,k := Bi,k · Bk,k
for j = 1 . . . n, j 6= k do

Bi,j := Bi,j + Bi,k · Bk,j
end

end
for j = 1 . . . n,j 6= k do

Bk,j := Bk,k · Bk,j
end

end
return B

Then we obtain

M∗ =

[
F γ

G∗β G∗

]
with

α = A∗B

β = CA∗

G = D+ Cα

γ = αG∗

F = A∗ + γβ

An implementation in pseudo-code of this method is shown in Algorithm 6 (note that
we do not need to store the terms β and γ by using the already computed blocks of the
output-matrix).

Remark 4.3. As remarked in [LRSS13], this algorithm can also be viewed as the escalator
method for matrix inversion known from numerical linear algebra.

This algorithm performs two recursive calls (to compute A∗ and G∗), two matrix ad-
ditions, and six matrix multiplications. If we assume a division of the matrix into equal
sized submatrices, the number of operations needed by this algorithm can be expressed
via the following recurrence relation

T(n) = 2T
(n
2

)
+ 6

[
2
(n
2

)3
−
(n
2

)2]
+ 2

(n
2

)2
= 2T

(n
2

)
+
3

2
n3 − n2

69

4 Newton’s Method: Generic Algorithms and Implementation

Algorithm 6: Divide-and-conquer computation of the Kleene star of a matrix.

input : Matrix A ∈ Sn×n over a semiring S.
output: Reflexive-transitive closure A∗.

Procedure Kleene-Star(A):
if A ∈ S[1]×[1] then

return A∗;
end
A := A1:bn/2c,1:bn/2c
B := A1:bn/2c,dn/2e:n
C := Adn/2e:n,1:bn/2c
D := Adn/2e:n,dn/2e:n

S := Kleene-Star(A)

α := S · B
M4 := Kleene-Star(D+ C · α)
M3 :=M4 · C · S
M2 := α ·M4

M1 := α ·M3 + S

return

(
M1 M2

M3 M4

)
;

end

For T(n) = 1 and n = 2l we can obtain by induction that T(n) = 2n3−2n2+n ∈ Θ(n3).
We can see that this algorithm uses the same number of operations as Floyd-Warshall:
More specifically, both algorithms need n3 − 2n2 + n additions, n3 − nmultiplications,
and n Kleene stars.

In our analysis we assumed that the schoolbook method is used to multiply two n×n
matrices which needs n3 multiplications and n3 − n2 additions. Since we do not have
a difference operator, we cannot use more sophisticated methods like Strassen’s algo-
rithm. In fact, Kerr showed a lower bound of Ω(n3) operations for generic matrix
multiplication over algebraic structures without an additive inverse (e.g. semirings1)
[Ker70]. Note that this result does not preclude the existence of faster algorithms for spe-
cial semirings. For example over the tropical semiring there exist subcubic algorithms
(cf. [Zwi02]).

1More precisely, Kerr showed the lower bound for the semiring of natural numbers (N,+, ·, 0, 1) which
implies the general result.

70

4.1 Algorithmic Details of Newton’s Method

LDU-decomposition

If the matrix A in the system x = Ax + b is a lower or upper triangular matrix, we
can solve the system easily by forward or backward substitution, respectively. This is
analogous to the LU decomposition from numerical linear algebra.

In [LRSS13] it is shown how to obtain fromA three matrices (L,D,U) where L is lower
triangular, U is upper triangular, and D is a diagonal matrix, such that A∗ = U∗D∗L∗.
Such a triple (L,D,U) is called an LDU-decomposition ofA and can be computed inΘ(n3)
operations as well as we show below2. If we have an LDU-decomposition of A we can
solve the system x = Ax+ b by solving the three simple systems

z = Lz+ b y = Dy+ z x = Ux+ y.

Proposition 4.4. Let L ∈ S[n]×[n] with Li,j = 0 for i 6 j be a strictly lower triangular matrix,
D ∈ S[n]×[n] with Li,j = 0 for i 6= j be a diagonal matrix, and U ∈ S[n]×[n] with Ui,j = 0 for
j 6 i be a strictly upper triangular matrix. Then

D∗ = diag(D∗1,1, . . . , D
∗
n,n)

L∗ =

n−1∑
i=0

Li

U∗ =

n−1∑
i=0

Ui

Proof. By induction on i we obtain Di = diag(Di1,1, . . . , D
i
n,n) and hence the statement

for D follows. Strictly triangular matrices such as L and U are nilpotent of degree n,
i.e. Ln = Un = 0. It follows that L∗ =

∑
06i6n−1 L

i and U∗ =
∑
06i6n−1U

i.

The systems involving the lower and upper triangular matrices L and U can be effi-
ciently solved by forward and backward substitution, respectively. From the Algorithms
7 and 8 we see that these require n(n−1)2 additions and multiplications each. Solving the
system y = Dy+ z requires n Kleene stars and nmultiplications.

To derive the LDU decomposition, consider the matrixM subdivided into

M =

[
a b

c D

]

with a ∈ S[1]×[1], b ∈ S[1]×[n], c ∈ S[n]×[1], andD ∈ S[n−1]×[n−1]. M can be regarded as
the weighted adjacency matrix of a directed graph. If we define the weight of a path in
this graph as the product of the weights along its edges and define the total weight of a

2However, note that the constant hidden in the asymptotic is smaller than for the other algorithms.

71

4 Newton’s Method: Generic Algorithms and Implementation

Algorithm 7: Forward substitution.

input : Matrix L ∈ S[n]×[n] with Li,j = 0 for i 6 j, vector b ∈ S[n].
output: Solution of the system x = L · x+ b (written to b).

for i = 2 . . . n do
for j = 1 . . . (i− 1), do

bi := bi + Li,j · bj
end

end
return b

Algorithm 8: Backward substitution.

input : Matrix U ∈ S[n]×[n] with Ui,j = 0 for j 6 i, vector b ∈ S[n].
output: Solution of the system x = U · x+ b (written to b).

for i = (n− 1) . . . 1 do
for j = (i+ 1) . . . n do

bi := bi +Ui,j · bj
end

end
return b

72

4.1 Algorithmic Details of Newton’s Method

set of paths as their sum thenM∗i,j describes the weight of the set of all finite paths from
i to j in this graph. Dividing the matrix in blocks like above is equivalent to splitting the
graph into the single vertex 1 (with self-loop labeled a) and a rest graph with adjacency
matrix D. Every path in this reduced graph corresponds to a word over the alphabet
{a, b, c,D}. Consider for instance an arbitrary path p from 1 to itself. Either p only
involves the self-loop 1 → 1, i.e. either it is a word in a∗, or it involves some b and c
transitions 3. In the latter case consider the first occurrence of b and the last occurrence
of c in p. Thus, p ∈ a∗bwca∗ with some w ∈ Σ∗ describing a path from 2 to itself. By
partitioning w into the paths that visit 2 exactly once, we see that w ∈ (D + ca∗b)∗.
Continuing this reasoning we get the matrix M∗, where M∗i,j describes all paths from i

to j. If we let X∗ := (D + ca∗b)∗ describe all paths from the macro-vertex 2 to itself we
obtain (cf. Section 4.1.3)

M∗ =

[
a∗ + a∗bX∗ a∗bX∗

X∗ca∗ X∗

]

=

[
1 a∗b

0 1

]
·

[
a∗ 0

0 X∗

]
·

[
1 0

ca∗ 1

]

=

[
0 a∗b

0 0

]∗
︸ ︷︷ ︸

=:U∗

·

[
a∗ 0

0 X∗

]
︸ ︷︷ ︸

=:D∗

·

[
0 0

ca∗ 0

]∗
︸ ︷︷ ︸

=:L∗

.

Now we can continue the decomposition procedure inductively for the matrix X. Alto-
gether, we obtain strictly upper triangular matrices U1, . . . , Un−1, strictly lower trian-
gular matrices L1, . . . , Ln−1, and diagonal matrices D1, . . . , Dn−1 with

M∗ =

n−1∏
i=1

U∗i ·
n−1∏
i=1

D∗i ·
n−1∏
i=1

L∗i

=

(
n−1∑
i=1

Ui

)∗
·

(
n−1∑
i=1

Di

)∗
·

(
n−1∑
i=1

Li

)∗
The last equality holds since Ui and Li are nilpotent for all i, i.e. U2i = L

2
i = 0 and hence

we have (e.g. for Ui) (
n−1∑
i=1

Ui

)∗
=

n−1∏
i=1

(1+Ui) =

n−1∏
i=1

U∗i .

Finally, it is easy to see that
∏n−1
i=1 D

∗
i =

(∑n−1
i=1 Di

)∗
.

Note that the non-zero entries of all matrices are disjoint and hence they can all be
stored inM itself, making the algorithm in-place (as opposed to the divide-and-conquer
algorithm).

3Note that we abuse notation for the sake of readability and write a∗ for the set L(a∗) = {a}∗.

73

4 Newton’s Method: Generic Algorithms and Implementation

Algorithm 9: LDU-decomposition (slightly altered “Version 1” from [LRSS13]).

input : MatrixM ∈ S[n]×[n].
output: Matrices L,D∗, U such thatM∗ = U∗D∗L∗ (stored inM again).

for i = 1 . . . (n− 1) do
Mi,i :=M

∗
i,i

/* Compute b := a∗b */

Mi,(i+1):n :=Mi,i ·Mi,(i+1):n

/* Compute X = D+ ca∗b */

M(i+1):n,(i+1):n :=M(i+1):n,(i+1):n +M(i+1):n,i ·Mi,(i+1):n

/* Compute c := ca∗ */

M(i+1):n,i :=M(i+1):n,i ·Mi,i

end
Mn,n :=M∗n,n returnM

Additions n3

3 − n2

2 + n
6

Multiplications n3

3 + n2

2 − 5n
6

Kleene stars n

Table 4.1: Number of operations needed for the LDU-decomposition of an n× n ma-
trix via Algorithm 9.

Next, we count the number of additions, multiplications, and Kleene stars used by
Algorithm 9. From the description, we see that it uses (n − 1) Kleene stars. For the
number of additions, we observe that the matrixD is of size (n− i)× (n− i), and hence
there are (n − i)2 additions in each loop iteration. Altogether, the number of additions
is given by

n−1∑
i=1

(n− i)2 =

n−1∑
i=1

i2 =
(n− 1)n(2n− 1)

6
=
n3

3
−
n2

2
+
n

6
.

To count the multiplications we note that computing a∗b and ca∗ each requires (n−i)
multiplications and the outer product ca∗b requires (n − i)2 multiplications (since the
term a∗b is already computed). Thus, the number of multiplications needed is given by

n−1∑
i=1

(n− i)2 + 2(n− i) =

n−1∑
i=1

i2 + 2i =
n3

3
+
n2

2
−
5n

6
.

As observed in [LRSS13], we can reorder the steps in Algorithm 9 to make it similar to
Algorithm 4.1.1 in [GVL96]. The idea is to avoid computing the outer product and sum

74

4.1 Algorithmic Details of Newton’s Method

Additions n3

3 − n2 + 2n
3

Multiplications n3

3 − n
3

Kleene stars n

Table 4.2: Number of operations needed for the LDU-decomposition of an n× n ma-
trix via Algorithm 10.

D + ca∗b in each loop iteration which touches every entry in the lower right submatrix
and leads to bad caching behavior in practice. Instead we compute the matrix row by
row so that each entry is computed in a “lazy” fashion. This row-wise approach detailed
in Algorithm 10 is a slightly optimized variant of Algorithm 8 in [LRSS13] which oper-
ates column-wise (our version avoids the re-computation of the Kleene star M∗i,i). We
consider this row-wise version here, since matrices in FPSOLVE are also stored row-wise
and hence this approach benefits from better caching performance in practice.

Contrary to the statement in [LRSS13], Algorithm 10 actually needs less operations
than Algorithm 9. In particular it needs n Kleene stars, a number of multiplications
given by

n∑
i=1

(i− 1)(i− 2)

2
+ (i− 1) + (i− 1)(n− i) + (n− i) =

n3

3
−
n

3

and
n∑
i=1

(i− 1)(i− 2)

2
+ (i− 1)(n− i) =

n3

3
− n2 +

2n

3

many additions. To obtain the total number of operations required to solve the thee
linear systems

z = Lz+ b y = Dy+ z x = Ux+ y

note that we can solve the diagonal system y = Dy + z with n multiplications (as the
matrixD is already starred). Additionally, each of the (forward/backward) substitutions
uses n(n−1)2 additions and multiplications.

We conclude this section with a detailed summary of the complexity for solving linear
systems in Table 4.3. To assess the complexity of the methods that computeA∗ ·b directly
we have to account for the complexity of computingA∗ and an additional matrix-vector
multiplication.

It is quite remarkable that Floyd-Warshall and the recursive divide-and-conquer algo-
rithm both need roughly three times more additions and multiplications than the LDU-
decomposition.

75

4 Newton’s Method: Generic Algorithms and Implementation

Algorithm 10: LDU-decomposition (an optimized row-wise variant of “Version
2” from [LRSS13]).

input : MatrixM ∈ S[n]×[n].
output: Matrices L,D∗, U such thatM∗ = U∗D∗L∗ (stored inM again).

for i = 1 . . . n do
/* v is used to build the i-th row of L. */

v :=Mi,1:i

for k = 1 . . . (i− 1) do
for l = (k+ 1) . . . (i− 1) do

vl := vl + vk ·Mk,l

end
end
for j = 1 . . . (i− 1) do

/* The diagonal entries are already starred. */

Mi,j := vj ·Mj,j

end
Mi,i := v

∗
i

for k = 1 . . . (i− 1) do
for l = (i+ 1) . . . n do

Mi,l :=Mi,l + vk ·Mk,l

end
end
for l = (i+ 1) . . . n do

Mi,l :=Mi,i ·Mi,l

end
end
returnM

Algorithm # Additions # Multiplications # Kleene stars

Floyd-Warshall n3 − n2 n3 + n2 − n n

D & C n3 − n2 n3 + n2 − n n

LDU (Version 1) n3

3 + n2

2 − n
3

n3

3 + 3n2

2 − 5n
6 n

LDU (Version 2) n3

3 − n
3

n3

3 + n2 − n
3 n

Table 4.3: Number of operations required by different approaches to solve a system
of right-linear equations x = Ax+ b over anω-continuous semiring.

76

4.1 Algorithmic Details of Newton’s Method

4.1.4 Symbolic Solving

Consider again the following algebraic system over a commutative semiring

X = XX+ c.

As we have seen, Newton’s method applied to this equation yields

X<d = X<d−1 + X=d−1 X=d = 2 · X<d−1X=d + X=d−1X=d−1

So every iteration of Newton’s method essentially consists of solving the linear equation

X=d = 2 · X<d−1X=d + X=d−1X=d−1

for different values of X<d−1 and X=d−1 that have been computed in previous steps.
The symbolic solution of this equation (viewing X<d−1 and X=d−1 as symbolic con-

stants) is given by
X=d =

(
2 · X<d−1

)∗ · (X=d−1
)2
.

Hence, solving the system in each iteration reduces to evaluating a symbolic expression.
Technically, symbolic solving means to “un-interpret” the Jacobian of the algebraic sys-
tem as terms (or formally, as elements of the free semiring) and then solving the system
over this term-semiring.

To better illustrate the potential benefit of symbolic solving consider the generic two
dimensional equation of the form X = AX+ b:(

x

y

)
=

(
a b

c d

)
·

(
x

y

)
+

(
e

f

)
.

The solution of this system can be explicitly computed as X = A∗ · b (e.g. via the divide-
and-conquer method) which gives(

x

y

)
=

(
(a∗b(ca∗b + d)∗ca∗ + a∗)e+ a∗b(ca∗b + d)∗f

(ca∗b + d)∗ca∗e+ (ca∗b + d)∗f

)
.

Note that several subterms in this expression appear repeatedly, e.g. the highlighted
term a∗b. Over some semirings (e.g. the semilinear sets – see Chapter 5) computing
the semiring operations is costly and hence, recomputing the value of expressions leads
to unnecessary complexity. Computing a symbolic solution enables us to detect such
common subexpressions, store them in a compressed fashion, and hence avoid to re-
evaluate expressions. For example the above solution to the two-dimensional equation
can be represented as the “syntax-DAG” in Figure 4.1.

Although symbolic solving significantly reduces the number of semiring operations
needed, the overhead from computing, storing, and evaluating the symbolic solution is
not always negligible. This is particularly true for numeric semirings (like the semiring
of nonnegative reals). For these semirings the operations can be computed so fast that
the additional overhead of storing and evaluating a symbolic solution outweighs the
benefits.

77

4 Newton’s Method: Generic Algorithms and Implementation

Figure 4.1: Succinctly representing all terms of the matrix-vector product
(xy) =

(
a b
c d

)∗ · (e, f)T using BDD-like sharing of subexpressions.
The x-component corresponds to the topmost node colored in light gray.
The y-component is colored dark gray. By reversing the direction of all
edges this can be read as an arithmetic circuit with output gates colored
in gray

4.1.5 Decomposition into SCCs

Especially in large algebraic systems equations can often be solved independently of
one another and hence we can decompose the system into independent parts. More
precisely, we define a dependency relation on the set of variables X = {X1, . . . , Xn} as
follows: Xi depends on Xj if Xj occurs in the defining equation Fi. To determine the
solution of a variable X it then suffices to determine the values of all variables on which
X depends.

The depends-on-relation can be viewed as a (directed) dependency graph of the sys-
tem (with nodes X). We can decompose this graph into its strongly connected compo-
nents (SCCs) and sort the SCCs in reverse topological order. Finally, we solve the cor-
responding equations in a bottom-up fashion. This decomposition was originally pro-
posed by Etessami and Yannakakis for the analysis of recursive Markov chains [EY05].

78

4.2 FPSOLVE: A Generic Library for Algebraic Systems

4.2 FPSOLVE: A Generic Library for Algebraic Systems

In this section we present FPSOLVE, a generic library implementing the algorithms we
have described before. First, we survey its features (Section 4.2.1) and give some ex-
amples how to use the standalone solver included in FPSOLVE (Section 4.2.2). We then
describe further implementation details (Section 4.2.3) and report on the performance of
our implementation (Section 4.2.4).

4.2.1 Overview and Architecture

FPSOLVE is written in C++ and comprises roughly 9, 000 lines of code. Our code makes
heavy use of templates to enable both generic and efficient code via compile-time poly-
morphism. The drawback of this is that our library takes some time to compile. In
our code we also try to use features of the new C++11 standard (like move-semantics,
lambda-expressions) where appropriate to make the code more readable and efficient.
The FPSOLVE library consists of three main parts:

• Data structures (polynomials, matrices, BDD-like DAG-structure for free terms)

• Semirings (semilinear sets, non-negative rationals, why semiring, generic product
semiring, . . .)

• Solving algorithms (fixpoint iteration, various forms of Newton’s method using
different methods to solve linear equations)

Additionally, we have built two small applications demonstrating the use of the library:

• A solver for algebraic systems over a chosen semiring.

• A tool that tests equivalence of context-free grammars by interpreting them as
systems of equations over various idempotent semirings and comparing their so-
lutions.

FPSOLVE depends on several external libraries and frameworks. Some of these are not
essential to build the core library but offer additional features.

• CPPUNIT for unit-tests: every class of the library should be accompanied by a test-
class. We also wrote generic unit tests that should pass for any semiring. These
come very handy when developing and integrating new semirings.

• BOOST for parsing (Boost::spirit) and other I/O-tasks (like program argu-
ment handling).

• GMP for arbitrary precision numbers (e.g. used to implement the semiring Q>0 ∪
{∞}).

79

4 Newton’s Method: Generic Algorithms and Implementation

Commutative Polynomial

Non commutative Polynomial

Semiring

Real

Tuple

T1:Semiring
T2:Semiring

Free

SemilinSet

NewtonSolver

SR:Semiring
LinSolver:LSType
Poly:Polynomial

LSType

SymbolicLinSolverConcreteLinSolver

Tropical

Polynomial
SR:Semiring

Figure 4.2: A (simplified) part of FPSOLVE’s architecture.

• optional: GENEPI (using MONA or LASH) for representing semilinear sets by
NDDs.

• optional: LIBFA for representing lossy semirings (or equivalently subword-closed
languages) by finite automata (see Chapter 7).

FPSOLVE is free software (distributed under the BSD license) and can be obtained from
https://github.com/mschlund/FPsolve.

In Figure 4.2 we show the most important part of the architecture of FPSOLVE as a
simplified UML class diagram4. Many classes are templated, e.g. Polynomial depends
on a Semiring template parameter. The dashed arrows between the classes indicate the
dependency relation: An arrow from A to Bmeans that the behavior of Amight change
if B is altered. At the heart of the diagram is the NewtonSolver class which provides
a generic function solve_fixpoint that performs a desired number of Newton itera-
tions on a system of polynomials and returns a vector of approximations.

4.2.2 Using the Standalone Solver

FPSOLVE is mainly designed as a library to facilitate writing tools that make use of
Newton’s method over semirings. As an example of such a tool FPSOLVE features a
standalone solver that can solve algebraic systems over various semirings

To apply the solver, one has to describe the algebraic system as a BNF-style context-
free grammar. Variables of the system are enclosed in angle brackets, the addition x+ y
is written as x | y, and multiplication is written implicitly by juxtaposition of terms.

Consider the following system from Chapter 3 over the reals

X = 0.2XY + 0.8 Y = 0.5XYY + 0.5.

To approximate the least solution using our tool we create a text file test.g containing:

4We have omitted several other template parameters that are not relevant for the discussion. E.g. the class
of semilinear sets gets a simplifier class as parameter that is used to simplify the set after each operation.

80

https://github.com/mschlund/FPsolve

4.2 FPSOLVE: A Generic Library for Algebraic Systems

<X> ::= 0.2 <X> <Y> | 0.8;

<Y> ::= 0.5 <X> <Y> <Y> | 0.5 <X>;

The simplest invocation of the tool is

$./fpsolve -f test.g --float

This minimal set of parameters specifies

• the input file (-f test.g)

• the semiring over which to interpret the system. Here we use the (extended) reals
R>0∞ represented via machine precision floating point numbers (--float).

The solver produces the following output

Solver: Newton Concrete

Iterations: 3

Solving time: 0 ms (185us)

X == 0.949488

Y == 0.789919

The output reports

• The solving algorithm used: the default used is Newton’s method with concrete
solving of the linear system, i.e. we invert the evaluated Jacobian in every iteration.

• The number of iterations. The default for n equations is n+ 1 iterations since over
commutative and idempotent semirings this is sufficient to compute the solution
[EKL07b].

• The time in milliseconds (and microseconds) needed to run the stated number of
iterations.

• The value of the approximation computed.

We can also manually set the number of iterations (using the switch -i) and the solv-
ing algorithm (via the switch -s). Current choices for the solving algorithms are:

• Fixpoint iteration: kleene

• Newton’s method using concrete or symbolic solving for the linear system:

– newtonConc or newtonSymb computes the Kleene star of via the divide-
and-conquer method (concrete or symbolic)

– newtonCLDU or newtonSLDU solves the linear system using the LDU de-
composition (concrete or symbolic)

81

4 Newton’s Method: Generic Algorithms and Implementation

• Newton’s method for “numeric” semirings (newtonNumeric) which provide a
subtraction operation (currently only --float and --rat). This method uses the
LDU decomposition for solving linear equations and computes δd = F(νd) − νd
as explained in Section 3.4.3.

For example we can call the tool like

$./fpsolve -f test.g --float -s newtonNumeric -i 6

which produces the output

Solver: Newton Numeric (Float)

Iterations: 6

Solving time: 0 ms (139us)

X == 0.96

Y == 0.833333

As we can see, with 6 iterations we already obtain a very good approximation to the
true solution (X, Y) = (0.96, 0.833). Note that the X-component seems exact because of
rounding errors.

To get the exact value of the Newton iterates (without rounding errors) we can solve
the same system over the rational numbers which are implemented using the GMP li-
brary for arbitrary precision arithmetic. To this end we create a file test2.g containing

<X> ::= 1/5 <X> <Y> | 4/5;

<Y> ::= 1/2 <X> <Y> <Y> | 1/2;

and we call our tool with

$./fpsolve -f test.g --rat -s newtonNumeric -i 3

which produces

Solver: Newton Numeric (Rat)

Iterations: 3

Solving time: 0 ms (207us)

X == 1391/1465

Y == 15044/19045

Note that the tool outputs fractions with very large denominators for 6 iterations so we
do not show them here.

For decomposing the system into SCCs as explained in Section 4.1.5, the tool offers
the option --scc.

4.2.3 Implementation Details

Here we briefly survey the main data structures used by FPSOLVE and describe how to
extend FPSOLVE with new semirings.

82

4.2 FPSOLVE: A Generic Library for Algebraic Systems

Data Structures

Variables FPSOLVE does not distinguish between variables and constants. All vari-
ables are maintained by a “variable pool” (which is essentially a factory class) that as-
signs a unique id to every variable and keeps the string representation of the variable
separate. This way we can also generate new fresh variables which is needed e.g. for
“un-interpreting” a polynomial when computing its symbolic unfolding.

Matrices Matrices are stored row-wise as a dense vector in a single contiguous block
in memory. Currently, FPSOLVE does not use sparse matrices but this could easily be
changed without affecting the rest of the library and could lead to performance gains,
especially for larger systems.

Our implementation provides different algorithms to compute the Kleene star of a ma-
trix (Floyd-Warshall, recursive divide-and-conquer method), and to compute the LDU-
decomposition for solving systems of linear equations (cf. Section 4.1.3).

Polynomials Polynomials come in two flavors in FPSOLVE, commutative
and non-commutative ones. Both are derived from Semiring (but not from
StarableSemiring, since the Kleene star is not defined on polynomials in gen-
eral). As such they both offer addition and multiplication functions together with other
ones like taking derivatives etc.

A commutative polynomial is implemented as a map from monomials to semiring
elements and a (commutative) monomial is essentially a map from variables to their
multiplicity (i.e. their exponent in the monomial).

Non-commutative polynomials are implemented as maps from (non-commutative)
monomials to their multiplicity in N. A non-commutative monomial is simply a term
of the form a0X1a1 · · ·anXnan+1 where X ∈ X and ai ∈ S \ {0}. Note that we cannot
simply store such words in a list (since list elements have to have the same type). To
get around this problem, we use three lists to store a monomial: The first and second list
consecutively store the semiring values and variables occurring. Since we never store
values ai = 1 explicitly, we cannot uniquely reconstruct the term a0X1a1 · · ·anXnan+1
from these two lists alone (we just know that the term is a shuffle of the two se-
quences such that no two semiring values are adjacent). To reconstruct the word
a0X1a1 · · ·anXnan+1, we use the third list that stores for each position whether the
element is a variable or a semiring value together with a pointer to the index in the first
or second lists, respectively.

Example 4.5. Consider the monomials m1 = aXYb and m2 = cYdYd represented as three
lists. The first list describes a word over {S, V}∗ indicating for each position of the monomial
whether it is a semiring element or a variable. Note that the factor SS does not appear in this list
since adjacent semiring elements are always reduced to one by multiplying them.

83

4 Newton’s Method: Generic Algorithms and Implementation

a b

X Y

S V V S

c d d

Y Y

S V S V S

Their product is given by m1 ·m2 = aXY(bc)YdYd which is represented by the lists depicted
below:

a bc d d

X Y Y Y

S V V S V S V S

This encoding of monomials seems a bit complicated at first, but has the advantage
that multiplication of two monomials is reduced to simple list concatenation together
with a reduction step to merge two semiring elements at the border. Altogether, this
approach allows to multiply two non-commutative monomials using at most one mul-
tiplication of semiring elements.

Shared Structure for Terms Using the symbolic solving method described in Section
4.1.4 for solving linear systems we have to be able to compute with free terms (compris-
ing uninterpreted constants, addition, multiplication, and Kleene star) and store them
efficiently. Formally, the set of “free terms” constitutes the free semiring which is also
implemented in FPSOLVE.

The free semiring over an alphabet Σ consists of all terms TΣ (built from +, ·,∗), induc-
tively defined via

• Basic terms are 0, 1, and a for every a ∈ Σ.

• If t1, t2 are terms then (t1 + t2), (t1 · t2), and (t1)
∗ are terms.

To turn this term algebra into a semiring, we define equivalence on terms t1 ≡ t2 if
the identity t1 = t2 holds in all semirings (cf. Section 2.2). Hence the semiring can be
defined as TΣ/ ≡, the set of terms modulo the equivalence ≡.

Example 4.6. For Σ = {a, b, c} valid terms are a+ a, 0+ (1+ 0) + 1 ≡ 1+ 1, or

• (a+ b) · (c+ 0) ≡ ac+ bc by distributivity and definition of the neutral element 0.

84

4.2 FPSOLVE: A Generic Library for Algebraic Systems

• (a+ b)∗ ≡ (a∗b)∗a∗ since this holds in any (inductive) semiring (cf. Section 2.2).

Since any term in TΣ can be viewed as a rational expression we can identify the free
semiring over Σ with NRat∞ 〈〈Σ∗〉〉, the rational power series with coefficients in N∞. Note
that NRat∞ 〈〈Σ∗〉〉 is not ω-continuous but is embedded into the ω-continuous semiring
N∞〈〈Σ∗〉〉. Hence, systems of polynomial equations over NRat∞ 〈〈Σ∗〉〉 do not necessarily
have solutions in NRat∞ 〈〈Σ∗〉〉 but only in N∞〈〈Σ∗〉〉. However, the elements of N∞〈〈Σ∗〉〉 are
not finitely representable.

There are many possibilities to represent elements from NRat∞ 〈〈Σ∗〉〉, such as rational
expressions or weighted finite automata [DKV09]. In FPSOLVE we choose the represen-
tation as rational expressions but store them concisely as a directed acyclic graph (DAG)
similar to BDDs [Bry86, And98] as described before in Section 4.1.4. Technically, we keep
a global map of (sub-)expressions and create new ones only when needed. We do not
reduce expressions once they have been generated, but we apply the obvious reductions
at generation time, e.g. x+ 0 = x or 1 · x = x.

Extending FPSOLVE

An important requirement in the design of FPSOLVE was to make additions to the library
easy to implement (e.g. new semirings or new methods to solve linear equations). All
algorithms work out of the box with new semirings.

All new semirings should be derived from the abstract class StarableSemiring
and are required to provide (at least) the following functions:

• Operators += and *= used to add and multiply semiring values.

• A function star() to compute the Kleene star of elements.

• A constructor taking a string argument. This constructor is used to parse string
representations of semiring values (e.g. when using the standalone solver).

The operators + and * are implemented in the abstract class StarableSemiring using
the (virtual) operators += and *=.

4.2.4 Performance of FPSOLVE

Here, we briefly study the performance of FPSOLVE, its scalability and show that FP-
SOLVE implements Newton’s method with a running time that matches the theoretical
analysis.

To this end, it is important to actually measure the performance of the core system
instead of the performance w.r.t. a particular semiring implementation. One possibility
to eliminate any semiring-specific bias is to simply report the number of semiring opera-
tions executed. However, this measure would only reflect the complexity of the general
algorithms and not quantify the overhead of the implementation at all.

85

4 Newton’s Method: Generic Algorithms and Implementation

Hence, we study the performance of FPSOLVE for systems over the nonnegative re-
als R>0 that are implemented using machine-precision floating point numbers. This
way, every semiring operation roughly takes constant time and thus, this experiment
provides a way to assess the performance of FPSOLVE.

We randomly generated quadratic equations over [0, 1] and record the running time
needed to approximate the solution using variants of Newton’s method. 5 As we are
only interested in how the performance varies with the size of the system we fixed the
number of Newton iterations to 10. Each equation has ε

(
n
2

)
monomials and we vary the

“density” ε from 0.1 to 0.5. Note that these systems are rather dense and large, e.g. the
textual description of the system with 100 variables and density 0.5 needs 7.6 MB. We
compiled FPSOLVE using gcc 4.8 with optimizations (-O2) and ran it on a machine with
an Intel I7 CPU with 2.5 GHz and 16 GB of memory. During the experiments memory
usage never exceeded a few megabytes.

We recorded the time needed to execute 10 Newton iterations with FPSOLVE’s stan-
dalone solver (options --float -i 10) using three different algorithms. The results
are shown in Figure 4.3: On the top, we show the performance of the default con-
crete solving method which inverts the evaluated Jacobian in every iteration (option
-s newtonConc). In the middle row, we solve the concrete system via LDU decom-
position (option -s newtonCLDU). On the bottom, we use LDU decomposition and
additionally compute δd by subtraction (option -s newtonNumeric).

As expected from our theoretical analysis, LDU decomposition is (slightly) faster than
computing the Kleene star of the matrix but surprisingly does not lead to large perfor-
mance gains. However, the improved computation of δd over R>0 via δd = F(νd) − νd
leads to a significant speedup. This suggests that there is still some room for improving
the computation of δd in the general case.

For quadratic systems we expect an asymptotically cubic running time (since the num-
ber of Newton steps is constant). Thus, if we normalize the runtime data byn3 we expect
the to see a constant trend (at least for larger n). The right column in Figure 4.3 seems to
support this hypothesis since at about n = 60 the curves level off.

4.3 Conclusions

In this chapter we have described general algorithmic techniques used to implement
Newton’s method over semirings. Furthermore, we have presented FPSOLVE, a generic
and efficient C++ implementation of these algorithms for solving fixpoint equations.
FPSOLVE constitutes the first implementation of Newton’s method generalized to ω-
continuous semirings. Our implementation is parametric in the semiring and can be
easily extended with new semirings and solving algorithms. Our work can be seen as an

5These benchmarks are available at https://github.com/mschlund/newton/tree/master/c/
test/grammars/float-random.

86

https://github.com/mschlund/newton/tree/master/c/test/grammars/float-random
https://github.com/mschlund/newton/tree/master/c/test/grammars/float-random

4.3 Conclusions

20 40 60 80 100

0

500

1,000

1,500

2,000

2,500

of equations n

ru
nt

im
e

in
m

s
NewtonConc

ε = 0.1 ε = 0.2

ε = 0.3 ε = 0.4

ε = 0.5

20 40 60 80 100

0

1

2

3
·10−3

of equations n

ti
m

e
n
3

Runtime divided by n3

20 40 60 80 100

0

500

1,000

1,500

2,000

2,500

of equations n

ru
nt

im
e

in
m

s

NewtonCLDU

ε = 0.1 ε = 0.2

ε = 0.3 ε = 0.4

ε = 0.5

20 40 60 80 100

0

1

2

3
·10−3

of equations n

ti
m

e
n
3

Runtime divided by n3

20 40 60 80 100

0

500

1,000

1,500

2,000

2,500

of equations n

ru
nt

im
e

in
m

s

NewtonNumeric

ε = 0.1 ε = 0.2

ε = 0.3 ε = 0.4

ε = 0.5

20 40 60 80 100

0

1

2

3
·10−3

of equations n

ti
m

e
n
3

Runtime divided by n3

Figure 4.3: Approximating the solution (using 10 Newton iterations) of random sys-
tems of n quadratic equations over R>0. Each equation comprises

⌊
ε
(
n
2

)⌋
monomials. Left: average solving time (taken over 5 runs) in milliseconds.
Right: numbers from the left normalized by n3.

87

4 Newton’s Method: Generic Algorithms and Implementation

independent contribution to the research program outlined by Litvinov et al. [LRSS13]
who advocate the use of generic algorithms for solving problems in tropical and idem-
potent mathematics and suggest to implement a generic library of such algorithms 6.

Related Work PREMO (Probabilistic Recursive Model analyzer) is a tool (written in
Java) for analyzing recursive Markov chains, probabilistic context-free grammars, and
polynomial equations over the nonnegative reals [WE07]. PREMO is only applicable to
systems over the real numbers but offers several choices for solving linear equations (di-
rect methods like Gaussian elimination or iterative methods like the CG-algorithm) and
efficient data structures (e.g. sparse matrices) for handling large systems. Preliminary
experimentation with PREMO suggests that its performance is worse than FPSOLVE for
dense equations (maybe due to the use of Java) but better for sparse systems (due to data
structures for sparse matrices). However, since PREMO is not open source and only of-
fers a graphical user interface (which makes experiments cumbersome to perform) we
cannot present a reliable comparison with FPSOLVE here.

The Weighted Pushdown Systems Library and Weighted Automata Library
(cf. [RSJM05, SRJ, DTR]) offer algorithms for the analysis of semiring-weighted push-
down systems and weighted finite automata. However, algorithms for weighted
pushdown systems are usually based on fixpoint iteration and are thus restricted to
semirings that satisfy the ascending chain condition.

GOBLINT [ASV13, VV] is a static analyzer for multi-threaded C programs, specifically
for detecting data races. For the analysis it uses variants of fixpoint iteration, thus the
abstract domains either have to satisfy the ascending chain condition or widening must
be employed to ensure termination.

Future Work We have several ideas for improvements to FPSOLVE that we want to
implement in future work (besides adding more semirings and tweaking the generic
algorithms):

• Large algebraic systems occurring in practical applications are often sparse. To
enable efficient solving of such systems we want to incorporate data structures for
sparse matrices into FPSOLVE which should be straightforward to incorporate.

• One idea to improve the efficiency in practice is to make FPSOLVE multi-threaded
so we can take advantage of modern multicore processors. For example this would
allow us to solve independent SCCs of an equation system efficiently using multi-
ple threads.

• Computing the Kleene star of matrices is a problem well suited for parallelization
[BGB10], but a generic parallel implementation (for arbitrary semirings) does not
yet exist to the best of our knowledge.

6We thank Folkmar Bornemann for recently pointing us to their work.

88

5
Algorithms and Data Structures for

Semilinear Sets

In this chapter we focus on algorithms and data structures for the semiring of semilinear
sets. More specifically, we present two different representations for the elements of this
semiring, discuss the properties of these representations and describe some optimization
techniques we use in FPSOLVE.

After presenting some theoretical background on semilinear sets, we describe in Sec-
tion 5.2 an explicit vector representation of semilinear sets implemented in FPSOLVE.

Then in Section 5.3 we present a symbolic representation of semilinear sets using num-
ber decision diagrams (NDDs) which we also implemented in FPSOLVE. In Section 5.4
we present a grammar testing tool implemented using the FPSOLVE library which makes
use of these representations to check in-equivalence of context-free grammars modulo
commutativity.

The results presented in this chapter have appeared in [STL13, ELS14b, ELS15]. The
implementation of the symbolic NDD representation constitute the Master’s thesis of
Kerscher [Ker14].

5.1 Theoretical Background

Since Newton’s method converges in n + 1 steps over any commutative idempotent
semiring [EKL07b] it is highly desirable to study data structures for representing those
semirings and algorithms to compute with them. The most general commutative idem-
potent semiring is B〈〈Σ⊕〉〉, i.e. for any commutative idempotent semiring S any ω-

89

5 Algorithms and Data Structures for Semilinear Sets

continuous homomorphism h : Σ → S extends uniquely to an ω-continuous homo-
morphism h̃ : B〈〈Σ⊕〉〉 → S.

In the same way as B〈〈Σ∗〉〉 is isomorphic to the (ω-continuous) language semiring
(2Σ

∗
,∪, ·, ∅, {ε}) its commutative image B〈〈Σ⊕〉〉 is isomorphic to the (ω-continuous) semi-

ring of Parikh-images of languages (2N
|Σ|
,+, ·, ∅, {~0}) with the semiring operations on

X, Y ∈ 2N|Σ|
defined as

X+ Y := X ∪ Y
X · Y := {x+ y : x ∈ X, y ∈ Y}

These definitions are inherited from the semiring of formal languages via the Parikh-
image-homomorphism: For A,B ⊆ Σ∗ let X := P(A), Y := P(B), then P(A · B) = {P(u) +
P(v) : u ∈ A, v ∈ B} = P(A) · P(B).

Since elements in B〈〈Σ⊕〉〉 can be seen as the commutative images of arbitrary (e.g. also
non-recursive) languages in Σ∗, we cannot hope to represent each element of B〈〈Σ⊕〉〉
finitely. However, since the Newton approximations of an algebraic system over B〈〈Σ⊕〉〉
are rational, it suffices for us to consider the sub-semiring Brat〈〈Σ⊕〉〉 of rational subsets.
These can be represented finitely by rational expressions, i.e. terms built from atomic
expressions a ∈ Σ using addition, multiplication, and Kleene star. We call a term p =∏
i∈[n] ai for ai ∈ Σ a product. An expression l is called linear if it is of the form l =

c ·
∏
i∈[n] p

∗
i where pi are products. A semilinear expression s =

∑
i∈[m] li is a finite sum

of linear expressions li.
As observed by [Pil73] we can use the following identities to transform each rational

expression over an ω-continuous commutative idempotent semiring into a semilinear
expression by “pushing Kleene stars down in the term structure”.

Proposition 5.1 ([Pil73, Koz96]). Let S be a commutative and idempotentω-continuous semi-
ring. Then the following identities hold:

1. (x∗)n = x∗ for all n ∈ N \ {0}

2. (x+ y)∗ = x∗ · y∗

3. (xy∗)∗ = 1+ xx∗y∗

Proof.

1. The case n = 1 is trivial and for n = 2 we get by means of the Cauchy product

(x∗) · (x∗) =

∑
k>0

xk

 ·
∑
k>0

xk

 =
∑
k>0

(
k∑
i=0

1

)
· xk id.

=
∑
k>0

xk = x∗.

The case n > 2 then follows by induction.

90

5.1 Theoretical Background

2. For the second identity, we first use Lemma 2.3 and obtain

(x+ y)∗ = (x∗y)∗y∗ =
∑
n>0

(x∗y)n · y∗ comm.
=
∑
n>0

(x∗)nynx∗
comm.+id.

= x∗ · y∗.

3. The third identity follows by unrolling the Kleene star (cf. again Lemma 2.3):

(xy∗)∗ = 1+ (xy∗)(xy∗)∗ = 1+
∑
n>0

xy∗(xy∗)n = 1+ xy∗
∑
n>0

xn = 1+ xx∗y∗.

Example 5.2.

(ab∗c+ (ac∗)∗)∗ = (acb∗ + 1+ aa∗c∗)∗

= (acb∗)∗ · 1∗ · (aa∗c∗)∗

= (1+ ac(ac)∗b∗) · (1+ aa∗c∗)
= 1+ ac(ac)∗b∗ + aa∗c∗ + a2c(ac)∗a∗c∗

= 1+ ac(ac)∗b∗ + aa∗c∗

where the last equality holds since a2c(ac)∗a∗c∗ is included in aa∗c∗.

Remark 5.3 (Notation for Linear Expressions). Let P = {p1, . . . , pn} ⊆ Σ⊕ be a finite set of
(commutative) words. Then we set P∗ =

∏
i∈[n] p

∗
i which is justified by interpreting P as the

expression P =
∑
i pi. This allows us to simplify the notation for linear expressions, so instead

of L = c
∏
i∈[n] p

∗
i we write L = cP∗.

In the following we write JrK to denote the set of vectors represented by a represen-
tation r (e.g. a rational expression). The linear (resp. semilinear) expressions over Σ
(modulo commutativity) describe exactly the so called linear (resp. semilinear) subsets
of vectors of N|Σ|:

Definition 5.4 (Linear and Semilinear Sets). A subset L ⊆ Nk is called a linear set if L can
be written as

L = c+

n∑
i=1

N · pi

where c ∈ Nk and pi ∈ Nk are called the constant and the periods of L, respectively.
A subset S ⊆ Nk is called semilinear if it can be written as a finite union of linear sets, i.e.

S =

m⋃
i=1

Li

where each Li is a linear set.

91

5 Algorithms and Data Structures for Semilinear Sets

Note that the representation of semilinear sets by expressions is often convenient to
prove identities (such as (x + y)∗ = x∗y∗). On the other hand, viewing semilinear sets
as subsets of Nk gives us access to the tools from linear algebra, geometry, and discrete
optimization.

Example 5.5. For k = 2, let

L1 = (1, 2) + N(1, 2) + N(2, 1)
L2 = (2, 3) + N(1, 1) + N(0, 2) + N(2, 0)

and let S = L1 ∪ L2 denote a semilinear set. A part of the set S is shown in the following picture.
Points p ∈ L1 \ L2 are colored orange, p ∈ L2 \ L1 are colored blue, and p ∈ L1 ∩ L2 are colored
dark-gray.

2 4 6 8 10

2

4

6

8

10

x

y

If we let Σ = {a, b} and define the Parikh image (as the homomorphism induced) by P(a) =
(1, 0) and P(b) = (0, 1) then the linear sets L1, L2 can be described as the Parikh images of
regular languages (given by regular expressions):

L1 = P(ab2 · (ab2)∗ · (a2b)∗)
L2 = P(ab · (b2)∗ · (a2)∗)

Hence we obtain the representation of the semilinear set S as (the Parikh-image of the language
of) the expression:

S = P(ab2 · (ab2)∗ · (a2b)∗ + ab · (b2)∗ · (a2)∗).

5.2 Explicit Vector Representation

A straight-forward data structure to represent a linear set L is the pair (c, P) comprising
the vector c ∈ Nk (the constant) and the set of periods P = {p1, . . . , pn} such that L = c +

92

5.2 Explicit Vector Representation

∑n
i=1Npi. This is equivalent to representing L by the expression cP∗, but the geometric

interpretation gives us more insight here.
At first sight, this representation is by no means unique, e.g. the set L = (1, 2) +

N(1, 2) + N(2, 1) can be represented as the pair

((1, 2), {(1, 2), (2, 1)})

or as

((1, 2), {(1, 2), (2, 1), (4, 5)}).

However, note that the vector (4, 5) in the second set is redundant, since it can be com-
bined from the other two vectors as (4, 5) = 2 · (1, 2) + (2, 1). We now show that redun-
dancies like these are the only obstruction to uniqueness.

To this end, recall the partial order 6 on Nk defined as

x 6 y :⇔ ∀i ∈ [k]xi 6 yi.

Dickson’s lemma [Dic13] states that 6 is a well-founded partial order on Nk, i.e. every
set of vectors in Nk has a finite set of 6-minimal elements. Linear sets are particularly
simple in this regard:

Lemma 5.6. A linear set L ⊆ Nk has a unique 6-minimal element.

Proof. Let L = c+
∑n
i=1Npi. Then every x ∈ L can be represented as

x = c+

n∑
i=1

λipi

with λi ∈ N. Hence c 6 x for all x ∈ L.

This means that it is possible to talk about the constant c of a linear set L.

Definition 5.7 (Cone, Basis). Given a finite set P = {p1, . . . , pn} ⊆ Nk, we define its cone as

cone(P) :=

{
n∑
i=1

λipi : λi ∈ N

}

A finite set P = {p1, . . . , pn} is called a basis (of cone(P)) if there is no p ∈ P such that
p ∈ cone(P \ {p}).

Thus, P is a basis if the vectors in P are “linearly independent” (if only coefficients
from N are allowed), in particular we have 0 /∈ P. It is now easy to show that the pair
(c, P) is a unique representation of the linear set c+ cone(P) if P is a basis.

93

5 Algorithms and Data Structures for Semilinear Sets

Proposition 5.8. Let P = {p1, . . . , pn} and Q = {q1, . . . , qm} be bases (of cone(P) and
cone(Q), respectively) and let c, c ′ ∈ Nk such that (c, P) and (c ′, Q) represent the same linear
set L, i.e.

L = c+ cone(P) = c ′ + cone(Q).

Then c = c ′ and P = Q.

Proof. The assertion c = c ′ follows from the previous lemma.
Assume P 6= Q, so w.l.o.g. there is some pi ∈ P but pi /∈ Q. For every qj ∈ Q we have

c+ qj ∈ L, so qj ∈ cone(P) which means there is an index set Ij ⊆ [n] such that

qj =
∑
k∈Ij

λj,kpk

with positive λj,k ∈ N \ {0}.
Now again since c + pi ∈ L we have pi ∈ cone(Q), i.e. there is an index set Ji ⊆ [m]

and positive coefficients µj ∈ N \ {0} with

pi =

m∑
j∈Ji

µjqj =

m∑
j∈Ji

µj

n∑
k∈Ij

λj,kpk.

Since all coefficients in this sum are positive we must have i /∈
⋃
j∈Ji Ij and hence p ∈

cone(P \ {pi}) which contradicts the assumption that P is a basis.

Remark 5.9 (Complexity). The equivalence problem for linear sets is NP-complete since given
two finite sets P, P ′ to decide whether cone(P) = cone(P ′) is NP-complete: If cone(P) =

cone(P ′) then every p ∈ P can be combined (with coefficients in N) from vectors in P ′ and
conversely. Each membership p ∈ cone(P ′) is witnessed by a vector λp ∈ N|P ′| and the size
of λp is bounded by the size of p. All λp’s taken together provide a polynomial sized witness
(w.r.t the size of P and P ′) for cone(P) = cone(P ′).

On the other hand if we could decide cone(P) = cone(P ′) efficiently, we could solve the
NP-complete SUBSETSUM problem efficiently. An instance of SUBSETSUM is given by a set
A = {a1, . . . , an} ⊆ N and a number b ∈ N. By calling our procedure for deciding cone(P) =
cone(P ′) at most O(n2) times starting with P = A and P ′ = A \ {ai} we first reduce A to a
basisA ′ for cone(A). Then we check if cone(A ′) = cone(A ′∪ {b}) which is the case if and only
if b ∈ cone(A ′).

As a result, there is no polynomial algorithm to compute the unique minimal representation
for a linear set (unless P = NP).

The explicit vector representation of semilinear sets S is as straightforward as for
linear sets: S can be represented as a finite set of representations of linear sets
{(c1, P1), . . . , (cm, Pm)}. However, unlike in the case of linear sets this does not give
us an easy canonical representation.

94

5.2 Explicit Vector Representation

Example 5.10. Consider the semilinear set S = L1 ∪ L2 ∪ L3

L1 = (1, 2) + N(1, 1) + N(0, 1)
L2 = (2, 1) + N(1, 1) + N(1, 0)
L3 = (2, 2) + N(1, 1).

Each linear set is uniquely represented by its constants and periods. Moreover the linear sets are
disjoint. However, a “simpler” representation of S can be given by S = L ′1 ∪ L ′2

L ′1 = (1, 2) + N(0, 1)
L ′2 = (2, 1) + N(1, 0) + N(0, 1).

Remark 5.11 (Complexity). For semilinear sets (in our explicit vector representation), the
equivalence problem is complete for Π2p (the second level of the polynomial hierarchy) as shown
by Huynh in [Huy80]. The proof of membership in Π2p uses bounds for solutions of linear dio-
phantine equations (similar to the proof of the fact that integer linear programming is in NP).

5.2.1 Defining the Semiring Operations

We now define the semiring of semilinear sets in our explicit vector representation
(S,⊕,⊗, 0, 1). To derive the definitions it is useful to consider the representations of
semilinear sets as expressions first.

Let S1 =
∑
i∈[n] Li, S2 =

∑
j∈[m]Mj with linear expressions Li,Mj. Then

S1 + S2 =
∑
i∈[n]

Li +
∑
j∈[m]

Mj

S1 · S2 =
∑

(i,j)∈[n]×[m]

Li · Lj

The product of two linear expressions cp∗1 · · ·p∗n and c ′p ′∗1 · · ·p ′∗m is given by the lin-
ear expression (cc ′)p∗1 · · ·p∗np ′∗1 · · ·p ′∗m (using commutativity to move the constants to-
gether).

The Kleene star of the expression S1 can be computed using the identities (x + y)∗ =

x∗y∗ and (xy∗)∗ = 1+ xx∗y∗ from Proposition 5.1.

S∗1 =
∏
i∈[n]

L∗i with

c∏
i∈[l]

p∗i

∗ = 1+ cc∗∏
i∈[l]

p∗i for linear expressions

These simple observations can be translated to our vector representation as follows:
Let S1 = {L1, . . . , Ln} and S2 = {M1, . . . ,Mm} be two semilinear set representations,
then we define

• S1 ⊕ S2 := S1 ∪ S2

95

5 Algorithms and Data Structures for Semilinear Sets

• S1 ⊗ S2 := {Li ·Mj : i ∈ [n], j ∈ [m]}, where the product between two linear sets
is defined as (c, P) · (c ′, P ′) := (c+ c ′, P ∪ P ′) (with + the usual vector addition on
Nk).

• 0 := ∅

• 1 := {(0, ∅)}

• The Kleene star of a linear set (c, P) is the semilinear set (c, P)∗ := 1 + {(c, P ∪ {c})}.

• Finally, the Kleene star of a semilinear set is defined as S∗1 :=
∏
i∈[n] L

∗
i .

Complexity Since the product of two linear sets (c, P), (c ′, P ′) is given by (c+c ′, P∪P ′)
it can be computed in time O(|P| + |P ′|) (assuming constant-length vectors). The sum of
two semilinear sets requires a single set union operation and thus takes linear time as
well. Multiplication of semilinear sets requires us to perform all pairwise multiplication
of linear sets and thus takes quadratic time

The computation of the Kleene star of a semilinear set S is more complex: if S contains
n linear sets, computing S∗ requires n multiplications of semilinear sets of the form
(1 + L). More precisely, let S = L1 + · · · + Ln with linear sets Li = (ci, Pi). Then
S∗ =

∏n
i=1(1+ L

′
i) with L ′i = (ci, Pi ∪ {ci}) which we can compute as

S∗ = 1+
∑
i∈[n]

L ′i +
∑

{i,j}∈([n]2)

L ′i · L ′j + . . .+ L ′1 · · ·L ′n

=

n∑
k=0

∑
I∈([n]k)

∏
i∈I

L ′i

So in the worst-case computing S∗ requires
∑n
k=0

(
n
k

)
− 1 = 2n − 1 additions and

n∑
k=2

(
n

k

)
(k− 1) = (n− 2) · 2n−1 + 1

multiplications of linear sets (for n > 2)1. Hence, the computation of the Kleene star
takes exponential time in the size of the input.

5.2.2 Optimizations

Some drawbacks of our explicit vector representation are

• The representation is very space consuming if implemented in a straightforward
way.

1Recall that
∑n
i=1 i

(
n
i

)
= n2n−1.

96

5.2 Explicit Vector Representation

• The complexity of the multiplication and Kleene star operations is high (see
above).

During experimentation with Newton’s method instantiated for semilinear sets in FP-
SOLVE we noted that the semilinear sets occurring as Newton iterates carry a lot of re-
dundancy, e.g. linear sets are not in their minimal form (i.e. there are period vectors that
can be linearly combined from others). Furthermore, linear sets are often redundant
since they are subsumed by others.

To address these issues, we reduce linear sets to their (unique) minimal representa-
tion (see above). Although this minimization of a linear set requires us to solve an NP-
complete subset-sum problem (for vectors of dimension k) it is tractable in practice via
dynamic programming since the entries in the vectors are typically small.

For semilinear sets our minimization procedure checks if any linear set is included in
any other and hence is redundant. Note that we do not detect redundancies where some
linear set is covered by two (or more) sets as in L1 ⊆ L2 ∪ L3 but L1 6⊆ L2 and L1 6⊆ L3.

To reduce the space consumption of our representation, we use a sparse vector repre-
sentation and store each vector only once in memory. This is realized by a “vector pool”
object. If we obtain a vector as a result of an operation this “pool” either allocates a new
vector or returns the pointer to an already existing one. We also use the same technique
to keep at most one copy of each linear set in memory.

Note that with these optimizations the space requirements of the semilinear sets are
reduced significantly. Nonetheless, the concise representation does not help to reduce
the time complexity of the operations. For instance, if we multiply two semilinear sets
we still have to multiply all pairs of linear sets. As a result the memory requirements
of our representation is almost negligible compared to the time complexity of the oper-
ations.

5.2.3 Over-Approximations

In several cases it can be sufficient to compute a sound over-approximation of a semilin-
ear set. Consider for instance the problem to decide whether the set of runs of a system
(given as a CFG) intersects a set of “bad” runs (e.g. specified by a CFG as well). The
problem of testing the non-emptiness of an intersection of CFLs is a classical undecid-
able problem.

We can approach the problem by computing the commutative images of the runs of
the system (as a semilinear set R) and the commutative image of the bad runs (as a
semilinear set B). Then we check whether B ∩ R = ∅. If the intersection is empty then
our system is guaranteed to be safe. Otherwise we may have discovered a spurious bad
run, i.e. a run of the system that is equal to a bad run only modulo commutativity. In
this case we could refine our approximation, e.g. by excluding the spurious run from B

and R.

97

5 Algorithms and Data Structures for Semilinear Sets

However, the representation of R could be prohibitively large and hence we can-
not even compute it in reasonable time. As a remedy we can compute a sound over-
approximation, i.e. R̃ ⊇ R which has a smaller representation and might be sufficient to
show safety, i.e. R̃∩B = ∅. We have implemented two different over-approximations for
semilinear sets.

GCD-Approximation For every linear set (c, P) we replace every vector v ∈ P by 1
d · v

where d = gcd(v1, . . . , vk) is the greatest common divisor of all entries in v. It is easy to
see that this approximation preserves the direction of the period vectors: For a period
v ∈ P the set Nv ⊆ Nk describes a one dimensional discrete “line with gaps”. The
approximation fills these gaps with more integer points but does not change its slope,
i.e. Nv ⊆ Nv ′ ⊆ Qv ∩ Nk.

A similar but more imprecise approximation would compute the convex hull of each
linear set and intersect it with Nk.

Example 5.12. Consider the semilinear set S = L1 ∪ L2 represented as

L1 = (2, 1) + N(4, 2) + N(1, 0)
L2 = (4, 2) + N(2, 1)

The GCD-Approximation replaces the period (4, 2) in L1 by (2, 1) to obtain the over-
approximation L ′1 ⊇ L1.

L ′1 = (2, 1) + N(2, 1) + N(1, 0)

This in turn allows us to simplify the semilinear set further, since now L2 ⊆ L ′1 so L2 can be
omitted from S.

Remark 5.13. The result of the GCD-Approximation depends on the (syntactic) representation
of a semilinear set.

As a simple example consider the following two representations S1, S2 of the same set of vectors
JS1K = JS2K:

S1 = {(0, 0) + N(1, 0)} ∪ {(2, 2) + N(2, 2) + N(1, 0)}
S2 = {(0, 0) + N(2, 2) + N(1, 0)}

The corresponding GCD-approximations are

S ′1 = {(0, 0) + N(1, 0)} ∪ {(2, 2) + N(1, 1) + N(1, 0)}
S ′2 = {(0, 0) + N(1, 1) + N(1, 0)}

which represent different sets of vectors since (1, 1) /∈ S ′1.

98

5.2 Explicit Vector Representation

Multi-Linear Sets For a given semilinear set S = {(c1, P1), . . . , (cn, Pn)} we define its
multi-linear representation as the pair M = ({c1, . . . , cn},

⋃
i∈[n] Pi). A multi-linear set

M = (C, P) represents the set of vectors

JMK := {c+
∑
p∈P

λpp : c ∈ C, λp ∈ N}

The intuition behind it is that we can choose any of the constants and then use any
periods as in the case of linear sets. This approximation is precise if the period sets
attached at different constants are the same. Otherwise this approximation still keeps
“asymptotic upper/lower” bounds on the relationship of different components. Con-
sider a semilinear set consisting of two linear sets with a single period vector: (c1, {p1})
and (c2, {p2}). The corresponding multi-linear abstraction would be ({c1, c2}, {p1, p2}).
Clearly (unless c1 = c2) we add some “spurious” points by additionally admitting the
line c1 + Np2.

Like semilinear sets, multi-linear sets form a commutative semiring and the opera-
tions can be defined directly on their representation (C, P). As an invariant we require
that the set C is always nonempty and add a special element ⊥ to represent the empty
set of vectors.

Let (C1, P1) and (C2, P2) be multi-linear sets, then we define

• (C1, P1)⊕ (C2, P2) := (C1 ∪ C2, P1 ∪ P2) (and (C, P)⊕⊥ = (C, P))

• (C1, P1)⊗ (C2, P2) := (C1 · C2, P1 ∪ P2) (and (C, P)⊗⊥ = ⊥)

• 0 := ⊥

• 1 := ({~0}, ∅)

From these definitions we obtain that the Kleene star of a multi-linear set (C, P) can be
computed in a very simple way:

(C, P)∗ =

∞∑
n=0

(Cn, P) = (C∗, P) = ({~0}, C ∪ P)

We analyze the complexity of the operations on multi-linear sets:

• The addition (C1, P1)⊕ (C2, P2) is computable in time O(|C1|+ |C2|+ |P1|+ |P1|).

• The multiplication (C1, P1)⊗(C2, P2) is computable in time O(|C1|·|C2|+|P1|+|P1|).

• The Kleene star (C, P)∗ is computable in time O(|C|+ |P|).

Thus, the Kleene star of multi-linear sets is much cheaper to compute than for semi-
linear sets in explicit vector representation. As a further optimization, we reduce P to
a minimal basis which prevents the set P from growing too large and we remove any
vectors c ∈ C which can be combined from the others as c = c ′ +

∑
p∈P λpp with a

c ′ ∈ C \ {c}.

99

5 Algorithms and Data Structures for Semilinear Sets

Remark 5.14. Similar to the GCD-approximation, multi-linear representations depend on the
(syntactic) presentation of the semilinear set although finding an example is not trivial. Consider
the following two representations S1, S2 of the same set JS1K = JS2K ⊆ N2:

S1 =

{(
0

0

)
+ N ·

(
0

1

)}
∪

{(
0

1

)
+ N ·

(
2

0

)}
∪

{(
1

1

)
+ N ·

(
2

0

)}

S2 =

{(
0

0

)
+ N ·

(
0

1

)}
∪

{(
0

1

)
+ N ·

(
1

0

)}

The corresponding multi-linear overapproximations are2

M1 =

((
0

0

)
,

(
0

1

)
,

(
1

1

)
;

(
0

1

)
,

(
2

0

))

M2 =

((
0

0

)
,

(
0

1

)
;

(
0

1

)
,

(
1

0

))

which represent different sets of vectors since JM2K = N2 6= JM1K. Thus, multi-linear sets are
not a “semantic” over-approximation.

5.3 Symbolic Representation via NDDs

The explicit vector representation of semilinear sets introduced in the last section suffers
from several drawbacks that prevail even under the mentioned optimizations.

• There is no (easy, small) canonical representation (although [KT10] describe a cer-
tain normal form for semilinear sets).

• The membership problem is NP-complete, i.e. given a semilinear set S and a vector
v ∈ Nk determine whether v ∈ S.

• The equivalence and inclusion problems S1
?
= S2, S1

?
⊆ S2 are Π2p complete

[Huy80].

It is well-known that semilinear sets are exactly the Presburger definable subsets of
Nk, i.e. for every semilinear set S there exists a formula ϕ in Presburger arithmetic with
free variables x1, . . . , xk such that

S = {x ∈ Nk : ϕ(x1, . . . , xk) ≡ true}

and vice versa. Note that the interesting direction is that every set that is definable in
Presburger arithmetic is semilinear.

2We have omitted some parenthesis for readability.

100

5.3 Symbolic Representation via NDDs

Example 5.15. Consider the set from Example 5.5.

L1 = (1, 2) + N(1, 2) + N(2, 1)
L2 = (2, 3) + N(1, 1) + N(0, 2) + N(2, 0)

It is straightforward to build a Presburger formula ϕ defining S = L1 ∪ L2

ϕ(x, y) := ∃λ, µ (x = 1+ λ · 1+ µ · 2∧ y = 2+ λ · 2+ µ · 1)
∨ ∃λ, µ, τ (x = 1+ λ · 1+ τ · 2∧ y = 2+ λ · 1+ µ · 2)

There are well-known decision procedures for Presburger arithmetic based on (deter-
ministic) finite automata. The idea is that natural numbers can be represented in binary,
i.e. as words in {0, 1}∗. This representation depends upon the bit-order (most/least sig-
nificant bit first – msbf/lsbf) which is globally fixed (for example the tool MONA uses
the lsbf encoding). Note that the representation is not unique, e.g. the number 6 = 21+22

is 011 in binary (lsbf encoding) and is thus represented by every word in 011(0)∗.
Analogously, one can represent vectors in Nk as words over the alphabet {0, 1}k of k-

dimensional binary vectors. Subsets of Nk then correspond to languages over {0, 1}k and
it can be shown that semilinear sets can be represented by regular languages over {0, 1}k.
However, note that not every regular language over {0, 1}k represents a semilinear set
[Ler05]. This means that we can represent semilinear sets in a canonical way by mini-
mal DFAs over the alphabet {0, 1}k. These minimal automata are usually called number
decision diagrams (NDDs) [BC96, WB95].

Even if NDDs can be as space-consuming as our explicit vector representation, in
practice they are usually small. In this sense they behave like BDDs [Bry86, And98] for
representing boolean sets or relations. Moreover all operations that are rather complex
for explicitly represented sets (e.g. membership/inclusion/equivalence testing or inter-
section) are computable in polynomial time for NDDs using the standard algorithms for
DFAs.

There are several libraries (MONA, LASH) supporting the efficient computation with
NDDs [HJJ+95, FL02]. In FPSOLVE we use the GENEPI framework3 to handle NDDs.
GENEPI was developed by Leroux and Point and is part of a larger collection of libraries
called TAPAS [LP09]. The GENEPI framework is an abstraction layer that provides
generic constructions and operations on Presburger definable sets, e.g.

• Creation of a set recognizing the solutions of a linear equation,

• Intersection and union of two sets,

• Projection of a Presburger set in Nk onto the subspace Nk−1,

• Testing inclusion between sets.

3See http://tapas.labri.fr/trac/wiki/GENEPI.

101

http://tapas.labri.fr/trac/wiki/GENEPI

5 Algorithms and Data Structures for Semilinear Sets

GENEPI can be used with different representations of Presburger definable sets such
as NDDs (MONA, LASH, LIRA) or Presburger formulæ (OMEGA). Each of these
representations is implemented as a plugin that can be loaded dynamically. The benefit
of using the generic interface provided by GENEPI is that we have the flexibility to swap
the underlying representation of Presburger sets and to experiment with them. In our
experiments, the most efficient representation of Presburger sets was provided by the
MONA backend which we use as a default in FPSOLVE.

5.3.1 Representing Semilinear Sets via NDDs

Although it is straightforward to represent semilinear sets by NDDs, we also have to be
able to compute the semiring operations (+, ·,∗) directly on our representation.

First note that this is clearly possible (at least in theory): there are algorithms to re-
cover the explicit vector representation from an NDD (given that the NDD represents a
semilinear set, as NDDs can represent a larger class of sets) [Ler05]. However, these al-
gorithms are rather complex and it would defy the use of the compact NDD structure if
we had to “unpack” it for each semiring operation, so we define the semiring operations
on NDDs directly.

Let A1 and A2 be NDDs for the semilinear sets S1, S2 ⊆ Nk. Computing the addition
of the two NDDs translates to taking the union of the two NDDs, which is commonly
implemented by means of the standard union construction on DFAs (followed by mini-
mization).

A1 ⊕A2 := A1 ∪A2.

To define the multiplication, note that the ⊗ operation on two NDDs must satisfy

JA1 ⊗A2K = S1 ⊗ S2 = {x+ y : x ∈ S1, y ∈ S2}.

It is easy to see that the latter set can be defined by means of a Presburger formula as

{z : ∃x, y (z = x+ y∧ x ∈ S1 ∧ y ∈ S2)}.

This translates directly to an algorithm for multiplying two NDDs:

1. Compute the NDD A+ recognizing the set {(x, y, z) ∈ N3k : z = x+ y}.

2. Compute the NDDs A ′1 recognizing {(x1, x2, x3) ∈ N3k : x1 ∈ S1} by adding new
components to the vectors in A1. Analogously, compute the NDD A ′2 for the set
{(x1, x2, x3) ∈ N3k : x2 ∈ S2}.

3. Compute the intersection A∩ = A+ ∩ A ′1 ∩ A ′2 recognizing {(x, y, z) ∈ N3k : z =

x+ y∧ x ∈ S1 ∧ y ∈ S2}.

4. Obtain the final result A by projecting the alphabet of the NDD A∩ (vectors of
length 3k) to its last k components.

102

5.3 Symbolic Representation via NDDs

All required operations (intersection, projection, adding components to vectors) are
readily available in the GENEPI framework. Note that the projection in the last step
makes the underlying automaton (temporarily) nondeterministic. This triggers a deter-
minization step followed by minimization and thus is usually expensive. Computing
the “generic sum” NDD A+ is also expensive since its size is exponential in k. A simple
remedy is to reorder the steps in the above procedure to interleave the intersection and
projection operations. For this we only compute an NDD for the three-dimensional set
{(x, y, z) ∈ N3 : z = x+ y} and then carry out the above operations on each such triple of
coordinates separately.

Further note that we could also define the ⊗ operation more directly if we had access
to the underlying “low-level” automaton representation of the NDDs. However this
would prevent us from using the GENEPI library for the implementation. Note that we
use GENEPI to be able to easily switch out the underlying low-level implementations of
NDDs.

Computing the Kleene star is more challenging since it is not obvious how to define
the resulting set by means of a Presburger formula. To explain our algorithm, consider
a semilinear set comprising two linear sets S = c1P

∗
1 + c2P

∗
2. We have

S∗ = (1+ c1c
∗
1P
∗
1) · (1+ c2c∗2P∗2)

= 1+ c1c
∗
1P
∗
1 + c2c

∗
2P
∗
2 + (c1c2)c

∗
1c
∗
2P
∗
1P
∗
2

= 1+ S(c∗1c
∗
2) + S

2(c∗1c
∗
2),

where the last equality holds because of idempotence and since x ∈ S implies that x∗ ⊆
S∗. For a semilinear set comprising n linear sets with constants {c1, . . . , cn} =: C, we
obtain by induction that

S∗ = 1+

(
n∑
i=1

Si

)
· C∗.

Exploiting idempotence, this term can be efficiently computed by iterating

sk+1 = (1+ sk)
2

until sk+1 · C∗ = sk · C∗ = S∗, starting with s0 = S. It is easy to see that 6 dlogne
iterations suffice and hence the computation requires O(logn) multiplications of NDDs.

The above procedure allows us to compute the Kleene star of a semilinear set repre-
sented as an NDD if we know the set C of constants. We can easily achieve this by keeping
track of the set of constants C in the course of computing with the NDDs.

Thus, formally our representation turns into a pair (C,A) and addition and multipli-
cation are defined by

(C1,A1)⊕ (C2,A2) := (C1 ∪ C2,A1 ∪A2)

(C1,A1)⊗ (C2,A2) := (C1 · C2,A1 ⊗A2)

103

5 Algorithms and Data Structures for Semilinear Sets

where the product between the NDDs A1 ⊗ A2 is computed as before and C1 · C2 =

{c1 + c2 : c1 ∈ C1, c2 ∈ C2}.
Further, we regard two representations (C1,A1) and (C2,A2) as equal if A1 = A2 (as

NDDs, which are unique minimal DFAs). By disregarding the sets Ci in this equality
check, our data structure yields a unique representation of semilinear sets.

5.3.2 Optimizations

At first sight, the “hybrid” representation of a semilinear set as a pair (C,A) seems too
space-consuming since the set of constants C can grow very large. However, since the
set C is only used via C∗ when computing the Kleene star we can instead store a much
smaller set B which satisfies B∗ = C∗. A straightforward idea would be to choose B as
the minimal basis of cone(C). However, since C may contain the 0-vector which would
be eliminated when computing a basis Bwe have to be more careful. Hence we compute
a reduced B that is “almost” a basis but we keep any potential 0-vector.

Definition 5.16. A finite set B = {b1, . . . , bn} ⊆ Nk. is called reduced, if no b ∈ B is a
combination of vectors in B \ {b} with positive coefficients, i.e. there is no b ∈ B such that for
some I ⊆ [n] and λi ∈ N \ {0} we have b =

∑
i∈I λi · bi.

We denote by Cred the (unique) reduced subset of a finite set C.

In our optimized NDD representation, a semilinear set S =
∑
i(ci · P∗i) is represented

as the pair (Cred,A) with the reduced Cred ⊆ C = {ci : i ∈ [n]} and an NDD A represent-
ing the set of vectors JSK ⊆ Nk.

The operations on this representation are defined as before, using an additional re-
duction step to minimize the set B. Let (B1,A1) and (B2,A2) be representations for
semilinear sets S1, S2 ⊆ Nk. Addition is defined as before, followed by reduction

(B1,A1)⊕ (B2,A2) := ((B1 ∪ B2)red,A1 ∪A2).

Multiplication is defined analogously:

(B1,A1)⊗ (B2,A2) := ((B1 · B2)red,A1 ⊗A2).

Note that if ~0 ∈ B1 then B2 ⊆ B1 · B2 and also B2 ⊆ (Bred
1 · Bred

2) which would not hold
if the reduction would eliminate the 0-vector from B1.

It is easy to show that computing the addition and multiplication using reduced sets
of constants preserves the invariant that B∗ = C∗ for C the set of constants of the set,
i.e. formally, we have

cone((B1 ∪ B2)red) = cone(B1 ∪ B2)
cone((B1 · B2)red) = cone(B1 · B2)

104

5.4 Application: A Tool for Grammar Testing

With this optimization, the NDD representation is quite useful for checking member-
ship or inclusion between semilinear sets. To this end, we implemented a translation
from the explicit vector representation to the NDD representation in FPSOLVE, which
we use whenever equivalence or inclusion must be checked.

5.4 Application: A Tool for Grammar Testing

A common approach for the verification of recursive programs is to model them as push-
down systems. The set of runs of such a pushdown system is a context-free language
L1 (given e.g. as a CFG G1). Now suppose we are given a context-free specification
L2 = L(G2) and want to check whether all runs of the system conform to the speci-
fication. Note that it is a classical undecidable problem to check if L1 = L2 (or more
generally, if L1 ⊆ L2) for CFLs L1, L2.

We can view the CFGs G1, G2 as algebraic systems over the language semiring
(2Σ

∗
,∪, ·, ∅, {ε}), i.e. we interpret every a ∈ Σ by the singleton language ι(a) = {a}.

The least solutions of these systems are then the CFLs L1, L2.
We now use the observation that if L1 ⊆ L2 then for every idempotent ω-continuous

semiring S and every ι : Σ → S the least solutions s1, s2 of the corresponding algebraic
systems over S satisfy s1 6 s2. In particular, if L1 = L2, then s1 = s2.

We can use this fact to test the in-equivalence of CFGs: to show L1 6= L2 it suffices to
exhibit an idempotent semiring S and an interpretation ι : Σ → S such that s1 6= s2 for
the solutions of the associated algebraic systems.

Example 5.17. As a very simple example consider the two grammars G1

S1 → a · S1 · B1 | B1
B1 → b · B1 · X1 | ε
X1 → a | b

and G2 (taken from the examples shipped with the tool CFGANALYZER)

S2 → a ·A2 | b · B2
A2 → a · C2 | b ·A2
B2 → a ·A2 | b · B2
C2 → b ·D2 | ε
D2 → b ·D2 | ε

We can read the grammars as equations over the (idempotent) tropical semiring T =

(N∞,min,+,∞, 0) by fixing some interpretation ι of the constants a and b, e.g. ι(a) := 1

and ι(b) := 2. Syntactically, we also replace “|” by the addition operation “min” on T and “·”

105

5 Algorithms and Data Structures for Semilinear Sets

by the multiplication operator “+”. Finally, ε is mapped to the one-element, which is 0. Now
these equations can be solved over T in a bottom-up fashion:

X1 = min(1, 2) = 1

B1 = min(2+ B1 + X1, 0) = 0

S1 = min(1+ S1 + B1, B1) = 0

C2 = min(2+D2, 0) = 0

D2 = min(2+D2, 0) = 0

A2 = min(1+ C2, 2+A2) = min(1, 2+A) = 1

B2 = min(1+A2, 2+ B2) = min(1+ 1, 2+ B) = 2

S2 = min(1+A2, 2+ B2) = 2

We can easily see that S1 6= S2 over T and hence we can conclude that L(S1) 6= L(S2). In
fact it is easy to see here that ε ∈ L(S1) but ε /∈ L(S2) which is also indicated by the fact that
S2 = 2 6= 0 over T.

In this example, we interpreted the alphabet symbols with concrete values from the
(commutative) tropical semiring. In general, it depends on the chosen interpretation
whether we can distinguish two grammars using this method. The “most powerful
commutative distinguisher” in this sense are the commutative languages, i.e. the semi-
ring B〈〈Σ⊕〉〉 (with the identity function on Σ as “interpretation”). More precisely, if two
grammars are equivalent w.r.t. B〈〈Σ⊕〉〉 then they are equivalent w.r.t. any commutative
and idempotent semiring.

We have developed a small tool that uses the above methodology to test CFGs for
equivalence. The tool also constitutes a simple case study on how to use the FPSOLVE

library. Currently, the tool tests CFGs by comparing the solutions to the associated al-
gebraic system over two different idempotent semirings, one commutative the other
non-commutative:

• Semilinear sets (commutative) as described in this chapter.

• Subword closures of formal languages (non-commutative), see Chapter 7.

Using the infrastructure provided by the FPSOLVE library, our implementation com-
prises merely 200 lines of C++. To illustrate the usefulness of the semilinear set imple-
mentations described in this chapter, we only consider this commutative abstraction in
the following.

106

5.5 Conclusions

As input our tool gets two grammars and interprets them as algebraic systems over
semilinear sets. It computes the solution of both systems using our explicit vector repre-
sentation. The two solutions are then checked for equivalence by converting the vector
representation to the unique NDD representation.

We ran the testing tool on a benchmark shipped with the tool CFGANALYZER which
implements semi-decision procedures for grammar problems via SAT-solving [AHL08].
The benchmark comprises 1, 892 student solutions to problems from an introductory
course on formal languages together with 40 sample solutions. Note that these gram-
mars are rather simple with at most 3 terminal symbols (over alphabets {a}, {a, b},
{a, b, c}, and {0, 1}, respectively) and 7 non-terminals on average (the maximum being
39). We compared all student solutions with all sample answers for a particular alphabet,
giving rise to 35, 910 pairs of grammars to be tested.

Our tool took below 20milliseconds for each check on average while hitting the given
timeout of 15 seconds for only 32 pairs. Altogether, we found that 35, 031 pairs of
grammars generate different, and 841 generate equivalent languages modulo commutativ-
ity. For comparison, the SAT-based tool CFGANALYZER finds 35, 388 differences, which
shows that the commutative approximation via semilinear sets is rather precise and a
suitable tool to check (in)-equivalence of CFGs in many cases.

5.5 Conclusions

In this chapter we have presented two different representations for semilinear sets of
vectors in N|Σ|: An explicit vector representation and a symbolic representation based
on automata (NDDs).

We have described how to implement the explicit vector representation in a space
efficient way and have described over-approximations that can be used to further reduce
their size.

Semilinear sets are (isomorphic to) the rational elements of the semiring B〈〈Σ⊕〉〉. Since
Newton’s method converges in n+ 1 steps over all commutative and idempotent semi-
rings [EKL07b], semilinear sets can be used to represent solutions of algebraic systems
over the “most general” commutative and idempotent semiring B〈〈Σ⊕〉〉. Equivalently,
such a solution describes the Parikh image of the associated context-free grammar and
we have described how to use this fact to test CFGs for (in-)equivalence modulo com-
mutativity.

Parikh Image Although our explicit vector representation of semilinear sets is useful
for computing Parikh images of small grammars this representation does not scale to
larger grammars. In some sense this is inevitable for this representation since the Parikh
image of a CFG can contain exponentially many linear sets (see the seminal paper [KT10]
of Kopczyński and To for a detailed analysis).

107

5 Algorithms and Data Structures for Semilinear Sets

Despite the optimizations described in Section 5.3.2, the practical performance of our
NDD representation is still rather poor as well. Currently, the main bottleneck is the
multiplication of two NDDs (and hence the Kleene star as well). Thus, future work on
this representation should mainly focus on improving the complexity of the multiplica-
tion operation.

Verma, Seidl, and Schwentick present an efficient (linear-time) construction of a Pres-
burger formula defining the Parikh image of a CFG [VSS05]. Recently, Brugger studied
in his Bachelor’s thesis [Bru14] whether this can be used to check CFGs for equivalence
by means of an SMT-solver but found that the resulting (quantified) formula is usually
too challenging to solve for current solvers, even for small grammars.

108

6
Application I: Provenance for Datalog

Roughly speaking, database provenance is additional information attached to base facts in
a database that is propagated through query evaluation. The provenance of the query
result then describes how a particular fact was derived from the base facts.

In this chapter we show how to efficiently represent and compute provenance infor-
mation for Datalog programs. We start by introducing the basics of Datalog and the
semiring framework proposed by Green et al. [GKT07] in Section 6.1.

In Section 6.2 we present an application of our results for Newton’s method to Datalog
provenance. In particular, we propose to view recursive Datalog programs directly as
algebraic systems which separates the problems of defining and computing provenance
more clearly (cf. Section 6.2.1). We also show that the results of [DMRT14] on absorptive
semirings are already implied by [EKL08] since this class coincides with the 1-bounded
semirings defined there.

Next, in Section 6.2.2 we propose Nk〈〈Σ⊕〉〉 as a general semiring for representing Dat-
alog provenance and show how to represent its elements concisely by shared regular
expressions. We also show that we can compute these expressions in polynomial time
via Newton’s method (cf. Theorem 6.8).

Finally, we present our main result in Section 6.2.4 where we describe how to special-
ize our shared regular expressions efficiently over the so called why-semiring to yield
concise expressions without Kleene stars. This refutes a claim made in [DMRT14] and
demonstrates that a special treatment of the why-semiring as in [DMRT14] is not neces-
sary.

109

6 Application I: Provenance for Datalog

6.1 Introduction to Datalog and Provenance

The term provenance, meaning “origin” or “linage”, has become a buzzword in the field
of data and systems research during the last 10 years. The rather fuzzy nature of the
term is evident from its use for various problems in different areas of computer science:

• Authorship: Identifying the author of a piece of text or program code. This author
can be a human or (e.g. in the case of machine code) a program like a compiler
[Ros11].

• Reproducibility and Traceability: Tracing the steps executed during a scientific
workflow, e.g. in a computational experiment. Record all facts about the environ-
ment needed to reproduce the results, e.g. machine or operating system configu-
rations, the origin of the data used, the nature of any data cleaning processes, etc.
[FKSS08, FBS12].

• Databases: Explaining/Tracing how the results of a database query were derived.
Such information is helpful for

1. the database user to find flaws in her queries,

2. the database engineer to debug the design, and

3. the database system to improve its efficiency, e.g. by enabling efficient prop-
agation of deletions or updates without needing to recompute all views or
query results.

Here, we only consider data provenance for Datalog programs and focus on the formally
well-defined semiring framework proposed by Green et. al [GKT07, CCT09].

6.1.1 Datalog

Datalog is a deductive programming language (a strict subset of Prolog) and is often
used as a query language in deductive databases. Datalog has experienced a remark-
able revival in the last 10 years [HGL11], with many applications, most prominently in
program analysis [WACL05, SB11]. We refer to [AHV95] for a thorough introduction to
Datalog and only give a brief overview here.

A Datalog program P consists of a finite set of rules of the form

R0(x0) : -R1(x1), . . . , Rk(xk).

where Ri denote relation symbols and if Ri is of arity n then xi is a vector of n variables.
From a logical point of view, these rules are Horn-clauses

R1(x1)∧ · · ·∧ Rk(xk)→ R0(x0),

with R0 the head and R1, . . . , Rk the body of the clause.

110

6.1 Introduction to Datalog and Provenance

A relation symbol R is called extensional if it never occurs as a head. The set of all
extensional symbols is called the extensional data base (EDB). Relation symbols that
occur as heads of rules are called intensional and taken together they form the intensional
data base (IDB).

An instance I of the EDB of a Datalog program is a finite set of ground formulæ of
the form R(a1, . . . , an) with an extensional relation symbol R and constants ai. In logic
programming, the elements of the instance are also called (base) facts and viewed as part
of the program.

Example 6.1. The following Datalog program defines the intensional ancestor relation Anc us-
ing the extensional parent relation Par:

Anc(x, y) : - Par(x, y).

Anc(x, y) : - Anc(x, z),Anc(z, y).

A possible instance over {Par} is

Par(Lindemann,Hilbert) Par(Lindemann,Minkowski)

Par(Lindemann,Perron) Par(Minkowski,Caratheodory)

Par(Hilbert,Curry) Par(Hilbert,Courant)

from which we could conclude that Lindemann is an ancestor of Courant, or

Anc(Lindemann,Courant)

In this example we have relied on intuition to give a semantics to a Datalog pro-
gram. A formal semantics has to specify how to interpret the relation symbols in the
IDB (i.e. the relation they should define) given a concrete instance over the EDB. There
are several possibilities to give a semantics to a Datalog program which are all equiva-
lent for our setting1 (see [AHV95]):

• Least-model-semantics: given an instance I, the semantics of the program P is the
minimum (w.r.t. inclusion) model of the set of clauses in P that contains I.

• Least-fixpoint semantics: viewing the program P as a (monotone) operator FP
mapping instances to instances (the immediate consequence operator). The se-
mantics of P is the least fixpoint of FP obtained by computing the sequence
I, FP(I), F

2
P(I), . . . until it stabilizes.

1If we consider an extension of Datalog with logical negation, it is more difficult to assign a well-defined
meaning to programs.

111

6 Application I: Provenance for Datalog

• Proof-theoretic semantics: A relation R(x) holds, if there exists a proof-tree for the
fact R(x) using the program as inference rules and the facts in I as axioms.

Example 6.2. As a more general (and abstract) version of the previous example we consider the
problem of computing the transitive closure T of a (directed) graph specified by an extensional
edge relation E. T can be specified by means of the following Datalog program P

T(x, y) : -E(x, y).

T(x, y) : - T(x, z), T(z, y).

A possible instance is given by a set of edges, describing the graph below.

I = {E(a, b), E(b, c), E(c, d), E(d, d)}.

a

b

c d

The resulting transitive closure is then given by

C = {T(a, b), T(b, c), T(c, d), T(d, d), T(a, c), T(a, d), T(b, d)}.

and the unique minimal model of the program P (viewed as clauses) is M = I ∪ C. Note that

M ′ = I ∪ C ∪ {T(b, a), T(a, a), T(b, b)}

also constitutes a valid model of P, but is not minimal. We can compute the minimal model M
by iterating the immediate consequence operator FP associated with our program until we reach
a fixpoint:

F1P(I) = I ∪ {T(a, b), T(b, c), T(c, d), T(d, d)}

F2P(I) = F
1
P(I) ∪ {T(a, c), T(b, d)}

F3P(I) = F
2
P(I) ∪ {T(a, d)}

F4P(I) = F
3
P(I)

Under the proof-theoretic view, the semantics of the program comprises all derivable facts.
These can be obtained by considering the set of all proof trees. Since we are interested in sets of
facts we can discard proof trees of facts that are already known. We can systematically enumerate
all proof trees by increasing height, obtaining in each “level” exactly the facts that are discovered
by fixpoint iteration.

112

6.1 Introduction to Datalog and Provenance

Height Proof Trees

0 E(a, b) E(b, c) E(c, d) E(d, d)

1

T(a, b)

E(a, b)

T(b, c)

E(a, b)

T(c, d)

E(a, b)

T(d, d)

E(a, b)

2

T(a, c)

T(a, b)

E(a, b)

T(b, c)

E(b, c)

T(b, d)

T(b, c)

E(b, c)

T(c, d)

E(c, d)

T(c, d)

T(c, d)

E(c, d)

T(d, d)

E(d, d)

Discarded by idempotence.

3

T(a, d)

T(a, c)

T(a, b)

E(a, b)

T(b, c)

E(b, c)

T(c, d)

E(c, d)
· · ·

6.1.2 Green’s Semiring Framework for Provenance

Here we review the semiring framework for provenance proposed by Green et
al. [GKT07] by means of examples. We also give a survey of the provenance hierarchy
defined by Green [Gre09b, Gre09a].

Consider the Datalog program below computing the relation x using a base relation
r depicted as the table on the left (the underscores “ ” represent “don’t care” variables).
The result relation x (depicted on the right) is obtained by the following procedure:

1. Join two tuples t1, t2 from r if

a) the second component of t1 is “b” and

b) the first (A) or the last (C) component of t1 and t2 are equal,

2. then the respective other components, i.e. t1(A), t2(C) or t1(C), t2(A) form the
result.

A B C

a b a

a b c

b c c

b a a

x(X, Y) : - r(X, b, Z), r(Y, , Z).

x(X, Y) : - r(Z, b, X), r(Z, , Y).

X Y

a a

a b

a c

c a

c c

113

6 Application I: Provenance for Datalog

To explain the existence of the result x(a, c) we can annotate the original data with ab-
stract variables p, q, r, s representing boolean values. The annotation of result obtained
by joining t1 and t2 is then obtained by performing the “And” of the two annotations.
Similarly if a result can be obtained via an alternative derivation we take the “Or” of the
annotations. Hence, our annotations are positive (i.e. negation-free) Boolean formulæ.

A B C Tag

a b a p

a b c q

b c c r

b a a s

X Y Tag

a a (p∧ p)∨ (q∧ q) = p∨ q

a b (p∧ s)∨ (q∧ r)

a c p∧ q

c a p∧ q

c c s∧ s = s

We can then verify that x(a, c) is a result since it can be derived using the tuples tagged
by p and q

x(a, c) : - r(a, b, a), r(a, b, c).

Furthermore, we can study the effect of a deletion in r on the result x: For example
deleting the tuple (a, b, c) from r corresponds to setting q = FALSE in our annotation
which tells us that the tuples (a, c) and (c, a) would be missing in x after the deletion.

In contrast to Datalog’s set-semantics, other systems (employing SQL as query lan-
guage) usually exhibit bag-semantics, i.e. the result of a query is a multiset of facts. We
can model bag-semantics in Datalog as provenance by tagging facts with multiplicities
in N, multiplying tags when performing a join and adding tags of equal tuples in the
result.

Assuming multiplicities of 1 for all facts in r we obtain the relation x with respective
multiplicities:

X Y Mult.

a a 3

a b 2

a c 1

c a 1

c c 1

The Boolean annotations from above do not explain the multiplicity 3 of the tuple (a, a).
To get a more detailed trace of the derivations we interpret p, q, r, s as elements of some
alphabet Σ and view the provenance annotations as elements of the semiring of polyno-
mials N〈Σ⊕〉 in commuting variables Σ. Again, we multiply annotations when a tuple is
obtained as result of a join and add annotations when a tuple is the result of a union or

114

6.1 Introduction to Datalog and Provenance

projection operation. Computing the annotated relation x in this way we obtain:

A C Tag

a a 2p2 + q2

a b ps+ qr

a c pq

c a pq

c c s2

These annotations tell us that the fact x(a, a) can be derived in three different ways and
records the input tuples participating in the derivation. More precisely, we can obtain
x(a, a) as follows:

1. Using the fact r(a, b, c) twice in the first rule with the unification X = Y = a and
Z = c.

x(a, a) : - r(X, b, Z), r(Y, , Z)

2. Using the fact r(a, b, a) twice in the first rule with the unification X = Y = Z = a.

x(a, a) : - r(X, b, Z), r(Y, , Z)

3. Using the fact r(a, b, a) twice in the second rule with the unification X = Y = Z =

a.
x(a, a) : - r(Z, b, X), r(Z, , Y)

Furthermore, we can use the provenance polynomials from N〈Σ⊕〉 to explore the effect
of different multiplicities in our input relation r:

A B C Mult.

a b a p = 1

a b c q = 2

b c c r = 5

b a a s = 3

x
;

A C Mult.

a a 2+ 4 = 6

a b 3+ 10 = 13

a c 2

c a 2

c c 9

For recursive Datalog programs like the transitive closure program

T(x, y) : -E(x, y).

T(x, y) : - T(x, z), T(z, y).

115

6 Application I: Provenance for Datalog

the provenance of a result tuple can be an infinite expression (i.e. a power series in
N∞〈〈Σ⊕〉〉):

X Y Tag

a b p

c c r

b c q

T
;

X Y Tag

a b p

c c r+ r2 + 2r3 + 5r4 + . . .

b c q+ qr+ qr2 + 2qr3 + . . .

a c pq+ pqr+ pqr2 + 2pqr3 + . . .

We can observe that the power series representing the provenance of (c, c) is (almost2)
the generating function of the binary trees. Every proof tree of our transitive closure
program is a binary tree and the fact (c, c) can be derived using the base fact (c, c) ex-
actly k times for any k ∈ N \ {0} giving rise to a binary proof tree with k leaves. As a
result there are Ck−1 = 1

k

(2(k−1)
(k−1)

)
different proof trees for every k > 1. Since the prove-

nance information is infinite, evaluating the query under the fixpoint semantics does not
terminate.

Green et al. [GKT07] notice that provenance can be abstractly specified as the least
solution of an algebraic system (over N∞〈〈Σ⊕〉〉). For example the provenance of the
tuple (c, c) in the above example is given by the least solution of

x = x2 + r.

They only solve these algebraic systems if the solution is a polynomial in N∞〈Σ⊕〉 (i.e. a
finite sum) and their algorithm enumerates derivation trees by height and hence is
equivalent to standard fixpoint iteration. If the procedure detects a “pumpable” subtree
(i.e. a fact that occurs twice along a path from the root) it aborts the evaluation (since the
solution is an infinite sum in this case).

Survey of the Provenance Hierarchy As observed by Green [Gre09b] the different
semirings used to encode provenance information can be organized in a hierarchy (i.e. a
lattice) where the relation A→ B between semirings A and B holds if there exists a sur-
jective homomorphism h : A → B. A dashed arrow from A to B indicates that every
interpretation ι : Σ → B extends uniquely to a homomorphism h : A → B. Note that all
semirings describing provenance are commutative ω-continuous semirings since joins
in Datalog (and relational algebra) are commutative.

We visualize this lattice below as follows. The identities labeling an edge from semi-
ring A to B denote how to obtain B from A by assuming the respective axiom. As a
convention we assume a, b to be alphabet symbols in Σ and x to be semiring elements.
For example the idempotence axiom for addition (1 + 1 = 1) could be equivalently ex-
pressed as x + x = x, but a · a = a does not specify the idempotence of multiplication.

2The first term of the generating function C(r) is r0, so the provenance is given by r · C(r).

116

6.1 Introduction to Datalog and Provenance

Indeed, we obtain (p+q) · (p+q) = p+pq+q assuming a ·a = a (for all a ∈ Σ) which
is different from (p+ q) · (p+ q) = p+ q assuming idempotent multiplication.

N∞〈〈Σ⊕〉〉

Trio(Σ)B〈〈Σ⊕〉〉

Why(Σ)

Lin(Σ)PosBool(Σ)

Sorp(Σ)TN

B

TQ

N∞
a · a = a1+ 1 = 1

1+ x = 1 a · a = a
1+ 1 = 1

a · a = a
1+ x = 1 ab = a+ b

Green et al. [GKT07, Gre09b] specify several semirings that describe interesting prove-
nance information.

• N∞,B: The extended natural numbers and the Boolean semiring, modeling bag-
and set-semantics, respectively.

• TQ,TN: The tropical (min-plus) semirings over Q and N.

• The semiring N∞〈〈Σ⊕〉〉 of formal power series in commuting variables Σ is the
commutative ω-continuous semiring freely generated by the elements of Σ. As
such it is the “most general” commutativeω-continuous semiring.

• The semiring B〈〈Σ⊕〉〉 is obtained from N∞〈〈Σ⊕〉〉 modulo the idempotence axiom
1 + 1 = 1. Intuitively, this means we “collapse (non-zero) coefficients to 1”. As
remarked in Section 5.1 the elements of B〈〈Σ⊕〉〉 can be viewed as the commutative
images of arbitrary formal languages.

• The Why(Σ) semiring is B〈〈Σ⊕〉〉 modulo the identity a · a = a for all a ∈ Σ, hence
the monomials in a power series in Why(Σ) can be identified with subsets of Σ and
power series in Why(Σ) are polynomials. Therefore Why(Σ) is (isomorphic to) the
semiring (22

Σ
,∪,d, ∅, {∅}) with A dB := {A ∪ B : A ∈ A, B ∈ B} for A,B ⊆ Σ. This

notion of Why-provenance was originally introduced by [BKWC01].

• The linage semiring Lin(Σ) (after [CWW00]) is obtained from Why(Σ) modulo the
identity ab = a + b for a, b ∈ Σ. Intuitively we obtain an element of Lin(Σ) from
an element of Why(Σ) (represented as a set-of-sets) by “flattening” the set-of-sets

117

6 Application I: Provenance for Datalog

representation, e.g. {{p, q}, {p}} = {p, q, p} = {p, q}. Lin(Σ) is isomorphic to the
semiring (2Σ ∪ {⊥},∪,∪, ∅,⊥) with A ∪ ⊥ := A. An annotation in Lin(Σ) describes
the set of base facts contributing to the derivation of a result tuple.

• The PosBool(Σ) semiring of positive Boolean formulæ can be either defined as
Why(Σ) modulo 1+x = 1 or as the set of negation-free Boolean expressions (terms
using variables and the operators “∧” and “∨”) where two expressions are identi-
fied if they yield the same truth value (cf. [Gre09a]). This is a consequence of the
fact that the axiom 1 + x = 1 is equivalent to the absorption axiom x + xy = x

from Boolean algebra. More explicitly, PosBool(Σ) is (isomorphic to) the semiring
(22

Σ
,∪,d, ∅, {∅}) such that for each S ∈ (22

Σ
we have A,B ∈ S⇒ A 6⊆ B∧ B 6⊆ A.

• The Trio(Σ) semiring is modeled after [STW08] and comprises the power series
from N∞〈〈Σ⊕〉〉 modulo the identities a · a = a for all a ∈ Σ. Informally, these
series are obtained by “dropping exponents” from series in N∞〈〈Σ⊕〉〉. As a result,
all series in Trio(Σ) are polynomials. However, Trio(Σ) itself is infinite and also
contains infinite ascending chains since we can embed N into it, e.g. 1 · ε 6 2 ·
ε 6 3 · ε 6 [STW08] use the Trio(Σ) provenance for evaluating queries in
probabilistic databases, specifically the Trio-system (hence the name).

• The absorptive semiring (freely generated byΣ) Sorp(Σ) [DMRT14] is obtained from
N∞〈〈Σ⊕〉〉modulo the absorption axiom x+ xy = x for all x, y ∈ N∞〈〈Σ⊕〉〉.

6.2 Regular Expressions for Provenance

Note that although Green et al. [GKT07] mention the semirings N∞〈〈Σ⊕〉〉 and B〈〈Σ⊕〉〉
they do not use them to represent the provenance of recursive queries if it is an infinite
sum. More recently, Deutch et al. [DMRT14] argue that there is no general finite repre-
sentation that can be specialized to Why(Σ) and therefore propose different methods for
the semirings Sorp(Σ) and Why(Σ). More precisely, Theorem 3 in [DMRT14] claims that
it is not possible to represent the most general provenance s ∈ N∞〈〈Σ⊕〉〉 of some IDB-
fact as a finite expression (i.e. a polynomial p ∈ N〈Σ⊕〉) such that for any interpretation
ι : Σ→Why(Σ) we have

h(s) = h(p)

for the unique extension h : N∞〈〈Σ⊕〉〉 →Why(Σ).
In this section we show that a special treatment of semirings such as Why(Σ) or

Sorp(Σ) is not necessary and that we can effectively use B〈〈Σ⊕〉〉 or even the more gen-
eral k-collapsed semiring Nk〈〈Σ⊕〉〉 as provenance representations. More precisely, we
make the following contributions:

118

6.2 Regular Expressions for Provenance

• Given a Datalog program, we show how to compute shared regular expressions
representing the provenance of IDB facts over Nk〈〈Σ⊕〉〉 in polynomial time in the
number of IDB facts (Theorem 6.8).

• We show that the semiring Sorp(Σ) is 1-bounded and hence well-known solution
methods for algebraic systems can be applied [EKL08].

• We show how to eliminate the Kleene stars from the representation over the semi-
ring Why(Σ). The resulting shared expressions only involve addition and multi-
plication and grow at most by a factor of log|Σ| in size. This shows that the claim
in [DMRT14] can only be true for infinite alphabets Σ. Note that since the number
of EDB facts in a database is finite, it suffices to consider finite Σ for provenance
analyses.

6.2.1 Datalog Programs as Algebraic Systems

Here we propose a less operational view on Datalog provenance that does not mix the
issues of specification and computation of provenance: In our view, Datalog programs
are algebraic systems and their unique least solution in N∞〈〈Σ⊕〉〉 can be interpreted over
different semirings, yielding different notions of provenance. This least solution can
be computed or approximated using different algorithms, of which fixpoint iteration is
only one possible choice. Depending on the semiring, other algorithms (e.g. based on
Newton’s method) can be a better choice.

We view a Datalog program over a concrete instance I directly as a (very large) alge-
braic system over N∞〈〈Σ⊕〉〉:

• The alphabet Σ is given by Σ := I.

• The set of variables X of the system comprises all the intensional relation symbols
R(x) with the vector x instantiated by all combination of constants appearing in I.

• The defining equation of a variable R0(x0) is obtained by summing over all rules
in the program P having R0 as the head:

R0(x0) =
∑
r∈P

r=R0(x0) :-R1(x1),...,Rk(xk)

∏
i∈[k]

Ri(xi)

Example 6.3. The transitive closure program

T(x, y) : -E(x, y).

T(x, y) : - T(x, z), T(z, y).

119

6 Application I: Provenance for Datalog

on the instance I = {E(a, b), E(b, c), E(c, c)} gives rise to the following algebraic system of 9
equations in the variables X = {T(x, y) : x, y ∈ {a, b, c}} with Σ = {E(a, b), E(b, c), E(c, c)}.

T(a, a) = E(a, a) + T(a, a) · T(a, a) + T(a, b) · T(b, a) + T(a, c) · T(c, a)
T(a, b) = E(a, b) + T(a, a) · T(a, b) + T(a, b) · T(b, b) + T(a, c) · T(c, b)
T(a, c) = E(a, c) + T(a, a) · T(a, c) + T(a, b) · T(b, c) + T(a, c) · T(c, c)

...

T(c, c) = E(c, c) + T(c, a) · T(a, c) + T(c, b) · T(b, c) + T(c, c) · T(c, c)

Note that we do not advise to write out this algebraic system explicitly for actually
computing the solution. We only argue that it is helpful to view a Datalog program
implicitly as such a system.

With this interpretation, the set-semantics of a Datalog program corresponds to in-
terpreting the associated algebraic system over the Boolean semiring (B,∨,∧, 0, 1) by
setting R(c) = TRUE for all R(c) ∈ I. The semantics of the Datalog program is then
given by all facts R(c) such that R(c) = TRUE in the least solution of the system. Analo-
gously, we obtain bag-semantics by interpreting the system over the (extended) natural
numbers (N∞,+, ·, 0, 1).
Example 6.4 (continued). The previous system can be simplified by removing all variables
which are zero in the solution. This corresponds to determining the productive nonterminals
in the associated CFG which are given by {T(a, b), T(a, c), T(b, c), T(c, c)}. Thus the system
simplifies to

T(a, b) = E(a, b) + T(a, c) · T(c, b)
T(a, c) = T(a, b) · T(b, c) + T(a, c) · T(c, c)
T(b, c) = E(b, c) + T(b, c) · T(c, c)
T(c, c) = E(c, c) + T(c, c) · T(c, c)

Over the Boolean semiring with E(a, b) = E(b, c) = E(c, c) = TRUE we would get T(a, b) =
T(a, c) = T(b, c) = T(c, c) = TRUE as the least solution which gives us the set-semantics of
the Datalog program.

Similarly, over (N∞,+, ·, 0, 1) with E(a, b) = E(b, c) = E(c, c) = 1 we obtain T(a, b) =

T(a, c) = T(b, c) = T(c, c) =∞ which corresponds to the bag-semantics of the program.

6.2.2 Extending the Provenance Hierarchy

Consider again the application of provenance to deletion propagation mentioned in Sec-
tion 6.1.2. There, we want to decide if a previously computed fact is still derivable after

120

6.2 Regular Expressions for Provenance

certain base facts have been deleted from the EDB. This amounts to evaluating the com-
puted provenance annotation by interpreting every variable in Σ by a Boolean value
ι : Σ→ B denoting its presence or absence.

Another application mentioned in [Gre09a] arises when integrating data from differ-
ent sources. In the simplest case one can model trust as binary values, yielding the
Boolean semiring. [Gre09a] also briefly mentions a more refined trust model based on
distrust scores (e.g. numbers in N) assigned to facts. In the course of a derivation dis-
trust then adds up when joining facts. The total distrust assigned to a result is given by
the minimum distrust over all derivations yielding it. This model of trust corresponds
exactly to using the tropical semiring as provenance annotations.

Yet a different notion of trust can be formalized as follows: A user may assign trust
values (e.g. numbers in Q) to different sources and query results are tagged with the
maximum trust of any derivation, where the trust of a particular derivation is the min-
imum trust over all facts involved. Formally, this amounts to provenance interpreted
over the semiring (Q ∪ {±∞},max,min,−∞,+∞). A similar approach to model the
confidentiality of facts is the (finite) security semiring introduced by [ADT11a] .

In all of these applications we eventually interpret the abstract provenance tags in
Σ by values from an idempotent semiring. Recomputing provenance even for “simple”
semirings (like the Boolean semiring) may be costly if it has to be done often. Instead it
can be beneficial to compute provenance information only once over the “most-general”
commutative idempotent semiring B〈〈Σ⊕〉〉, store it in a space-efficient way, and later
evaluate the stored representation over different specialized semirings.

Besides the motivation from applications there are also theoretical reasons for consid-
ering some form of idempotence as the following proposition shows. Note that a similar
observation was made by Petre [Pet99].

Proposition 6.5 (Algebraic 6= rational over N∞〈〈Σ⊕〉〉). Let r be a solution to an algebraic
system over N∞〈〈Σ⊕〉〉. Then r is not (in general) a rational series, i.e. we cannot describe r by a
regular expression.

Proof. Consider the algebraic system X = X2 + c. If we could represent its least solution
via a regular expression r then under the homomorphism h(c) = 1

8 we would obtain
a rational number h(r). However, the least solution to X = X2 + 1

8 over R can also be

calculated directly as X = 4 ·
(
1−

√
1
2

)
which is not rational since

√
2 is irrational.

In Chapter 5 we have already discussed the representation of rational sets in B〈〈Σ⊕〉〉
as semilinear sets using either an explicit vector representation or a symbolic NDD rep-
resentation. However, if we are only interested in specializing the provenance informa-
tion by means of an evaluation induced by ι : Σ → S into some idempotent semiring S,
these representations of B〈〈Σ⊕〉〉 are too space-consuming. Instead we can represent the
elements in B〈〈Σ⊕〉〉 via regular expressions that can be concisely represented by shar-

121

6 Application I: Provenance for Datalog

ing common subexpressions. This is the same shared-term representation we use in
FPSOLVE as described in Section 4.2.3.

Example 6.6. The following picture shows the shared representation of the expression
a∗b(ca∗b+ d)∗:

c a b d

∗

·

·

+

∗

·

Recall our result that Newton’s method over commutative k-collapsed semirings con-
verges in finite time (Proposition 3.38). Since all Newton approximations are rational in
Nk〈〈Σ⊕〉〉we can also represent elements from this general semiring finitely by means of
regular expressions. We therefore extend Green’s provenance hierarchy by the semiring
Nk〈〈Σ⊕〉〉 which can be obtained from N∞〈〈Σ⊕〉〉 modulo the generalized idempotence
axiom 1 + k = k (informally, we “collapse all coefficients larger than k to k”). The so
extended hierarchy is shown in Figure 6.1.

Every element of B〈〈Σ⊕〉〉 can be specialized to a value in the (idempotent) tropical
semiring (Q ∪ {±∞},min,+,∞, 0) by interpreting the alphabet symbols in Σ. Similarly,
we can specialize Nk〈〈Σ⊕〉〉 to the non-idempotent k-tropical semiring Tk,N (cf. Example
3.37) that is used to model k-shortest path analyses. Note that B〈〈Σ⊕〉〉 is not general
enough to allow such specialization.

To further illuminate the provenance hierarchy, we show that the class of “absorptive”
semirings (e.g. Sorp(Σ)) introduced in [DMRT14] is already well-known from [EKL08]
as the 1-bounded semirings.

A semiring is called 1-bounded, if x 6 1 holds (or equivalently, x+1 = 1). In [DMRT14]
absorptive semirings are defined as semirings3 which satisfy the identity

x+ xy = x for allx, y ∈ S

Every absorptive semiring is idempotent, since it satisfies x + x · 1 = x. We can further
prove that the notions of 1-bounded and absorptive semirings coincide.

Proposition 6.7. A semiring S is 1-bounded if and only if it is absorptive.

3In [DMRT14] also commutativity is assumed. This is not necessary to show Proposition 6.7.

122

6.2 Regular Expressions for Provenance

N∞〈〈Σ⊕〉〉

Nk〈〈Σ⊕〉〉 Trio(Σ)

B〈〈Σ⊕〉〉

Why(Σ)

Lin(Σ)PosBool(Σ)

Sorp(Σ)TN

B

Tk,N

TQ

N∞
a · a = a1+ k = k

1+ 1 = 1

1+ x = 1 a · a = a

1+ 1 = 1

a · a = a
1+ x = 1 ab = a+ b

Figure 6.1: Provenance hierarchy extended with the commutative k-collapsed semi-
ring Nk〈〈Σ⊕〉〉 that can be specialized to the k-tropical semiring Tk,N.

Proof. Assume S is 1-bounded, then we have

x+ xy = x · (1+ y) 6 x · (1+ 1) = x.

Since x 6 x + xy trivially holds, we have x + xy = x. Conversely, assume that S is
absorptive. Then we have

x+ 1 = 1+ x = 1+ x · 1 = 1

and hence, S is 1-bounded.

This means that one can use the algorithms from [EKL08] to compute provenance
over the Sorp(Σ) semiring. More specifically, it is shown in [EKL08] that over 1-bounded
semirings, n fixpoint iterations are sufficient to compute the solution ofn algebraic equa-
tions.

6.2.3 Computing Provenance Expressions

Computing the set-semantics of a Datalog program corresponds to computing the so-
lution of the associated algebraic system over the Boolean semiring (B,∨,∧, 0, 1) or
equivalently, identifying all productive non-terminals of the corresponding context-free
grammar.

123

6 Application I: Provenance for Datalog

To compute the shared expression representing the Nk〈〈Σ⊕〉〉-provenance of all result
facts we need to solve the algebraic system corresponding to the Datalog program over
Nk〈〈Σ⊕〉〉. Note that we do not need to write out the full algebraic system, but can re-
strict ourselves to the non-zero variables which correspond to the IDB facts under the
standard set-semantics of the program. Then as a second step we compute the Nk〈〈Σ⊕〉〉-
provenance of all results via Newton’s method applied to the algebraic system induced
by the result facts.

Applying our convergence result for Newton’s method over k-collapsed semirings in
Proposition 3.38, we obtain the following bound on the size of the Nk〈〈Σ⊕〉〉-provenance
represented by shared expressions:

Theorem 6.8. Given a Datalog program defining an IDB with n facts, the Nk〈〈Σ⊕〉〉-provenance
of all IDB-facts can be represented by a shared expression s of size

|s| ∈ O
(
n3 · (n+ log logk)

)
Proof. By Proposition 3.38 we need O(n + log logk) Newton iterations to compute the
solution of an algebraic system comprising n equations over a k-collapsed semirings.
Furthermore, every Newton iteration requires O(n3) operations to solve the linearized
system of n equations.

6.2.4 Eliminating Kleene Stars from Shared Expressions

So far, we have shown how to compute shared regular expressions that compactly rep-
resent provenance information. These expressions may contain (possibly nested) Kleene
stars, e.g.

b(ab∗ + c)∗.

The elements of semirings like Why(Σ), Lin(Σ), or Sorp(Σ) are polynomials, and hence
can be expressed without a Kleene star operation. Hence, for such semirings we may
want to eliminate the Kleene star nodes from our representation to obtain “polynomial
expressions” (i.e. involving only addition and multiplication nodes). Such structures
have also been called “provenance circuits” recently in [DMRT14] where it was claimed
that it is not possible to find polynomial sized circuits representing Why(Σ) provenance.
Our main result in Theorem 6.12 refutes this claim.

Over Sorp(Σ) it is trivial to eliminate Kleene stars, since x∗ = 1 holds by 1-
boundedness. Consequently, the same is true for PosBool(Σ) which is more special than
Sorp(Σ). Note that after eliminating the Kleene star over these semirings, the prove-
nance expression only becomes smaller.

We now show that we can also eliminate the Kleene star from expressions over Why(Σ)
in a space-efficient way. Since the semiring Why(Σ) is finite with |Why(Σ)| = 2|Σ| we can
trivially truncate the Kleene star of every element to a finite sum and using idempotence

124

6.2 Regular Expressions for Provenance

we obtain

x∗ =

2|Σ|∑
k=0

xk = (1+ x)2
|Σ|

.

Our main result in Theorem 6.10 improves this significantly and shows that the even
simpler identity

x∗ = 1+ x|Σ|

holds over Why(Σ).
To this end, recall that Why(Σ) is the semiring N∞〈〈Σ⊕〉〉 modulo idempotence of ad-

dition and a · a = a∀a ∈ Σ. Assume Σ = {a1, a2, . . . , ad}. Then modulo these additional
identities a power-series

x =
∑

(k1,...,kd)∈Nd
c(k1,...,kd) · a

k1
1 · · ·a

kd
d ∈Why(Σ)

reduces to a polynomial

x =
∑

(k1,...,kd)∈{0,1}d
c(k1,...,kd) · a

k1
1 · · ·a

kd
d

with c(k1,...,kd) ∈ {0, 1}. We write L(x) for the language of all monomials whose coeffi-
cent is 1 in x. For two power-series x, y ∈ Why(Σ) we write x 6 y if L(x) ⊆ L(y). Note
that we have x = y if and only if L(x) = L(y). For twom,m ′ ∈ Σ⊕ withm = ak11 · · ·a

kd
d

andm ′ = ak
′
1

1 · · ·a
k ′d
d we writem 6 m ′ if (k1, . . . , kd) 6 (k ′1, . . . , k

′
d).

As mentioned before, the Why(Σ) semiring is also isomorphic to

(22
Σ

,∪,d, ∅, {∅})

with X d Y = {A ∪ B : A ∈ X,B ∈ Y} for X, Y ∈ 22Σ .
For x ∈ 22Σ , letN(x) denote the number of different alphabet symbols appearing in x,

i.e. formally

N(x) :=

∣∣∣∣∣ ⋃
xi∈x

xi

∣∣∣∣∣.
The following lemma contributes the main ingredient for our Theorem:

Lemma 6.9. Let x, y ∈Why(Σ) with N = N(xy). Then

(xy)∗ 6 1+ (x+ y)N

Proof. We first show
(xy)∗ =

∑
k∈N

(xy)k 6 1+ (xy)N

Because of idempotence it suffices to show that for any k ∈ N we have (xy)k 6 1+(xy)N.
If k = 0, we obviously have (xy)0 = 1 6 1 + (xy)N. So, assume k > 0 in the following

125

6 Application I: Provenance for Datalog

and pick any m ∈ L((xy)k). Then there exist u1, . . . , uk ∈ L(x) and v1, . . . , vk ∈ L(y)

such that
m = u1v1 · · ·ukvk = u1 . . . ukv1 · · · vk

If k < N, we have

m = u1 · · ·uN−k+1
k v1 · · · vN−k+1

k ∈ L((xy)N).

as x2 = x for all x ∈ Σ∗. If k > N, we note that the longest strictly 6-increasing sequence
of monomials

m0 < m1 < m2 < . . . < ml

can consist of at mostN+ 1 elements: starting from the empty word,mi andmi+1 have
to differ in at least one symbol. Hence, the products

u1 . . . uk and v1 · · · vk

can be reduced to products consisting of at most N non-zero monomials, i.e. we again
have L((xy)k) ⊆ L((xy)N). For the same reason, the combined product

u1 . . . uk · · · v1 · · · vk

can also be reduced to a product consisting of at mostN non-zero monomials. From this
observation the second inequality follows.

Using the previous lemma, we can inductively eliminate Kleene stars over Why(Σ):

Theorem 6.10. For any x ∈Why(Σ) containingN = N(x) different alphabet symbols we have

x∗ = 1+ xN.

Proof. The inequality 1+ xN(x) 6 x∗ is immediate. We prove the converse inequality by
structural induction on x:

• Case x = a ∈ Σ or x = 1: trivial.

• Case x = u + v: x∗ = u∗v∗
IH
= (1 + uN)(1 + vN) = 1 + uN + vN + uNvN 6

1+ (u+ v)N = 1+ xN

• Case x = u · v: shown by Lemma 6.9.

• Case x = u∗: (u∗)∗ = u∗ = 1+ uN 6 1+ xN by the inductive hypothesis.

Corollary 6.11. The semiring Why(Σ) is |Σ|-closed, i.e. x∗ =
∑|Σ|
i=0 x

i for all x ∈Why(X).

126

6.3 Related Work and Conclusions

Using Theorem 6.10 we can eliminate any Kleene star from an expression x by re-
placing it with N = N(x) multiplications. Using the idea of repeated squaring for fast
exponentiation we can encode any expression xN by introducing O(log(N)) new mul-
tiplication nodes. Hence, every Kleene star appearing in the expression gives rise to at
most O(log(N)) additional nodes. The following theorem sums up our discussion:

Theorem 6.12. Every shared expression r encoding provenance over Why(Σ) can be trans-
formed into an equivalent expression r ′ without Kleene star nodes having size |r ′| ∈ O(|r| ·
log|Σ|).

Example 6.13. Consider the following expression with nested Kleene stars

r = (ab∗ + c)∗.

Over Why(Σ) this expression is equivalent to

r = (1+ a(1+ b) + c)3.

The following pictures show the representation of the term r as shared expressions with Kleene
star nodes (left) and the result after eliminating the stars (right). The topmost (boxed) node in
each structure corresponds to the expression r.

b a c

∗

·

+

∗ elim. stars−→

1 b a c

+

·

+

+

·

·

6.3 Related Work and Conclusions

The philosophy of solving different analysis problems over graphs in a uniform way by
first computing a general abstract expression and then obtaining the specific results by
applying a homomorphism to this expression goes back (at least) to Tarjan [Tar81]. He
considers “path problems” over (finite) directed graphs (shortest paths, solving linear

127

6 Application I: Provenance for Datalog

equations, dataflow analysis problems) and proposes to represent the set of all paths via
regular expressions which can then be evaluated by problem specific homomorphisms.

In [STL13] we described the concise shared expression data structure that is used by
FPSOLVE to represent terms involving the semiring operations of addition, multipli-
cation, and Kleene star. Deutch et al. [DMRT14] also propose such shared structures
(termed “circuits”) to represent provenance information. However, since their circuits
only comprise addition and multiplication nodes they cannot finitely represent elements
from the more general semiring B〈〈Σ⊕〉〉.

In this chapter we have shown that our theoretical results on Newton’s method can be
fruitfully applied to provenance analyses for recursive Datalog programs. In particular
we make the following contributions:

1. Extending the work of [GKT07] we propose to separate the issues of specifying
and computing provenance: Provenance is specified by an algebraic system over a
semiring that arises directly from the Datalog program. For computing provenance
we can choose between different algorithms (e.g. fixpoint iteration or Newton’s
method).

2. We identify the semiring Nk〈〈Σ⊕〉〉 as a very general semiring that can be special-
ized to various provenance semirings used in applications.

3. We show how to represent provenance information over Nk〈〈Σ⊕〉〉 concisely via
shared expressions and how to compute them via Newton’s method.

4. Our main result is that over semirings such as Why(Σ) we can specialize the shared
expressions to eliminate Kleene star nodes without sacrificing the succinctness of
the representation.

Note that these results have (briefly) appeared in [LS13, LS14, LS15].

128

7
Application II: Subword and Superword

Closure of Context-Free Languages

In this chapter we study the subword (and superword) closure of context-free languages,
especially the problem of succinctly representing these closures. The connection to alge-
braic systems is detailed in [EKL07a]: The subword closure of a CFL is the solution of
an algebraic system over a “lossy” semiring (a semiring where x = 1 + x holds). Since
algebraic systems and grammars are two sides of the same coin we mostly assume the
view of formal language theory.

First, we review Courcelle’s construction and present it in a more structured way as
grammar transformation of CFGs into simple C2F in Section 7.2. We then study three
different representations of the subword closure of CFGs in Section 7.3: NFAs, DFAs,
and regular expressions. We present asymptotically tight bounds on the descriptional
complexity for all three formalisms. In Section 7.4 we present an application to CFG
equivalence testing and prove that NFA equivalence modulo subword closure is (only)
NP-complete. This is a surprising result, since NFA equivalence is PSPACE-complete
even for languages that are prefix, suffix, or factor-closed [KRS09, RSX12].

All results of this chapter have appeared in [BLS15], except for the extension to regular
expressions in Section 7.3.3 which constitutes original work.

129

7 Application II: Subword and Superword Closure of Context-Free Languages

7.1 Introduction

We call a word w = a1 · · ·ak ∈ Σk a subword (also: scattered subword or subsequence) of
u ∈ Σ∗ if we can write u as u = u0a1u1a2 · · ·uk−1akuk with ui ∈ Σ∗. Accordingly, we
say that u is a superword of w. We write w4u if w is a subword of u.

For a language L ⊆ Σ∗ we define its subword closure ∇L as the set of all subwords of
words in L, i.e. ∇L := {w ∈ Σ∗ : ∃u ∈ L w4u}. Analogously, the superword closure ∆L
is defined as ∆L := {u ∈ Σ∗ : ∃w ∈ L w4u}. For a single word w = a1 · · ·ak ∈ Σk we
define its superword closure as the language ∆w := Σ∗a1Σ

∗ · · ·Σ∗akΣ∗.
It is a well-known fact (Higman’s lemma) that the subword order4 is a well-quasi or-

der, i.e. every set of elements has only finitely many minimal elements [Hig52]. Hence,
the superword closure of any language L has a finite set of minimal elementsw1, . . . , wn
and we can represent ∆L as

⋃
i∈[n]∆wi. In particular, the superword closure of any lan-

guage is a regular language. This might seem surprising, however since L = ∅ ⇔ ∆L = ∅
the superword closure is in general not computable given a description of a language
(e.g. as a grammar): Consider for instance the class of context-sensitive languages for
which emptiness is undecidable.

Note that the complement of a subword-closed language is a superword-closed lan-
guage (but in general Σ∗ \ ∇L 6= ∆L \ L) and hence, also the subword-closure ∇L is
regular for any language L. As for the superword closure, it is not possible in gen-
eral to compute a finite automaton representing the subword closure of an arbitrary
language. However, for special classes of languages like the context-free languages or
Petri net languages there are effective procedures for computing the subword closure
[vL78, Cou91, HMW10]. More recently, Zetsche has discovered a very general method
to compute subword closures, in particular it is shown in his seminal paper [Zet15] that
the subword closure of indexed languages [Aho68] is effectively computable.

7.2 An Optimized Variant of Courcelle’s Construction

We describe a variation of Courcelle’s construction for computing the subword closure
of a context-free languages [Cou91]. Given a CFG G = (X, Σ,→) and a nonterminal
X ∈ X, we simply write ∇X for ∇L(X). Note that in this chapter we assume that every
grammar has a designated start symbol S such that we can define L(G) := L(S). We write
the grammar as G = (X, Σ,→, S) if we need to refer to the start symbol explicitly. We
assume w.l.o.g. that G does not contain any unproductive nonterminals, i.e. L(X) 6= ∅
for all X ∈ X. By ΣX ⊆ Σ we denote the portion of the alphabet that is reachable from X,
i.e. a ∈ ΣX if and only if X⇒∗G uav for some u, v ∈ Σ∗.

The dependency graph associated with a CFG G is the finite directed graph with nodes
X and an edge from X to Y if there is a production of the form X→G αYβ in G We write
X . Y (“X depends directly on Y”) if X 6= Y and there is an edge from X to Y in the

130

7.2 An Optimized Variant of Courcelle’s Construction

dependency graph. If X and Y are located in the same strongly connected component of
the dependency graph we write X ≡ Y, i.e X ≡ Y if and only if XD∗ Y ∧ YD∗ X.

Courcelle’s construction rests on the following properties of the subword closure:

Lemma 7.1 ([Cou91]). Given a context-free grammar G = (X, Σ,→) and nonterminals X, Y ∈
X, the following hold:

1. If X⇒∗G αXβXγ for α,β, γ ∈ (X ∪ Σ)∗ then ∇X = Σ∗X.

2. If X ≡ Y then ∇X = ∇Y.

3. The∇-operation distributes over union and concatenation: ∇ (L(X) ∪ L(Y)) = ∇X∪∇Y
and ∇ (L(X) · L(Y)) = ∇X · ∇Y.

Example 7.2 ([BLS15]). Consider the CFG in Figure 7.1 over the alphabet Σ = {a, b, c}. First,

S → XaU | VaU | X X → ZbY | ε

Y → XYa | b U → VZ | acb

V → ZU | ε Z → cZ | bc

S

XY

Z

U V

Figure 7.1: Example grammar with dependency graph.

note that Y can derive two copies of itself via Y⇒XYa⇒ZbYYa so its subword closure is given
by ∇Y = Σ∗Y , where ΣY = {a, b, c}. Considering that X and Y are mutually reachable we get
∇X = ∇Y. Next, since the∇-operation distributes over union and concatenation we obtain from
the language-defining equation Z = {c}Z ∪ {bc} that ∇Z is the solution to

∇Z = ∇(c)∇Z+∇(bc) = (c+ ε)∇Z+ (bc+ b+ c+ ε)

⇒ ∇Z = c∗(bc+ b+ c+ ε)

As U and V reside in the same SCC of the dependency graph we have∇U = ∇V and hence∇U
is the solution of the equation

∇U = ∇U∇Z+∇Z∇U+∇(acb) + ε
⇒ ∇U = Σ∗Z∇(acb)Σ∗Z

= c∗(acb+ ac+ ab+ cb+ a+ b+ c+ ε)c∗

131

7 Application II: Subword and Superword Closure of Context-Free Languages

From these results we can finally obtain ∇S (for which the expression is so large that we refrain
from expanding it):

∇Z = c∗(bc+ b+ c+ ε)

∇X = ∇Y = (a+ b+ c)∗

∇U = ∇V = c∗(acb+ ac+ ab+ cb+ a+ b+ c+ ε)c∗

∇S = ∇X(a+ ε)∇U+∇V(a+ ε)∇U+∇X.

As one can see from this example, the descriptions of the subword closure can grow
quite large and it is not immediately obvious how to derive good upper bounds for
them. Next, we present a special normal form for CFGs that allows us to derive optimal
bounds on the sizes of different representations (NFAs, DFAs, regular expressions) for
the subword closure of a CFG in a systematic way.

7.2.1 Preprocessing the Grammar

As noted in Section 2.3.2 we can transform every grammar into canonical two form (C2F)
with at most a linear blowup in size and without changing its language. The next step
is to transform the grammar into simple C2F, which changes G’s language but not its
subword closure.

Definition 7.3 (Simple C2F). We call a grammar in C2F simple if it satisfies the following:

• For each x ∈ Σ ∪ {ε} there is a unique nonterminal Ax with the only production Ax → x.

• Every other production is in one of the following forms:

– X→XY with Y 6≡ X, or

– X→ Y with Y 6≡ X, or

– X→ YZ with Y 6≡ X∧ Z 6≡ X.

First, we need a small lemma that allows us to eliminate all linear rules “within” some
SCC, i.e. rules of the form X → αYβ such that X 6= Y but YD∗ X. We call a grammar
strongly connected if its dependency graph is strongly connected.

Lemma 7.4. Let G be a strongly connected linear CFG with nonterminals X = {X1, . . . , Xn} so
that every rule is either of the form X → αYβ or X → α for α,β ∈ Σ∗. Consider the grammar
G ′ which we obtain from G by replacing in every rule of G every occurrence of a nonterminal Xi
by Z. We then have that∇L(Z) = ∇L(Xi) for all i ∈ [n].

Proof. Since G is strongly connected, ∇Xi = ∇Xj for all i, j ∈ [n], hence it suffices to
show the statement for X1. Clearly, L(Z) ⊇ L(X1) hence also ∇Z ⊇ ∇X1. For the
other inclusion let w ∈ ∇Z, i.e. we have a word w ′ with w4w ′ ∈ L(Z) possessing
some derivation Z ⇒ u0Zv0 ⇒ u0u1Zv1v0 ⇒ · · · ⇒ w ′. Since G is strongly connected

132

7.2 An Optimized Variant of Courcelle’s Construction

there must be an Xj1 reachable from X1 with Xj1 → u0Xk1v0 for some Y. Continuing this
reasoning we generate a superword ofw ′ (with some “junk”-strings αl, βl) by following
the derivation of w ′:

X1 ⇒∗ α0Xj1β0 ⇒ α0u0Xk1v0β0 ⇒
∗ α0u0α1u1Xk2v1β1v0β0 ⇒ · · · ⇒ w ′′

with w ′4w ′′. Since, w4w ′ we have w ∈ ∇X1.

Lemma 7.5. For every CFG G there is a CFG G ′ in simple C2F such that |G ′| ∈ O(|G|) and
∇L(G) = ∇L(G ′).

Proof. The following steps achieve the desired result:

1. For every x ∈ Σ ∪ {ε} replace every occurrence of x in a rule by Ax and finally add
the rule Ax → x.

2. For every rule X → αYβZγ with Y, Z ≡ X replace all rules with left-hand-side Y
such that Y ≡ X (i.e. from the same SCC as X) by the rules X→ AxX for all x ∈ ΣX
and add X→ Aε.

3. Binarize the grammar by introducing fresh nonterminals, such that every rule is of
the form X→ αwith |α| 6 2.

4. Contract every strongly connected component of the grammar into a univariate
subgrammar via Lemma 7.4 1.

It is easy to check that G ′ is indeed in simple C2F, moreover steps (1) and (3) do not
change the language of the grammar. In step (2) we ensure that L(X) = Σ∗X if X ⇒∗

αXβXγ (see Lemma 7.1). Step (4) also preserves the subword closure (by Lemma 7.4),
thus altogether∇L(G) = ∇L(G ′). Step (2) reduces the size of G, steps (1) and (3) lead to
a linear growth, and step (4) does not change the size so together there exists a constant
c (independent of G) such that |G ′| 6 c · |G|.

Example 7.6. Consider again the grammar from the previous example

S → XaU | VaU | X X → ZbY | ε

Y → XYa | b U → VZ | acb

V → ZU | ε Z → cZ | bc

S

XY

Z

U V

1Here we implicitly treat nonterminals from lower SCCs as terminals, since CFLs are closed under substi-
tution this is fine.

133

7 Application II: Subword and Superword Closure of Context-Free Languages

As in the previous example, we use the fact ∇X = ∇Y = {a, b, c}∗ to eliminate Y from the
grammar and to change the rules for X to X → aX | bX | cX | ε – this clearly preserves
∇X. Then since U and V are in the same SCC, we can rename V to U and collect all their
defining rules. Finally, we introduce fresh nonterminals W (for aU) and T (for cb) to binarize
the grammar and replace every terminal x by a fresh nonterminalAx. The transformed grammar
and its dependency graph now look like this:

S → XW | UW | X W → AaU

X → AaX | AbX | AcX | Aε U → UZ | ZU | AaT | Aε

T → AcAb Z → AcZ | AbAc

Aa → a Ab → b

Ac → c Aε → ε

S

X W

Z

U

T

Aε Aa AbAc

Note that the dependency graph is a directed acyclic graph (DAG) apart from the self-loops.

7.3 Representations for the Subword Closure of CFLs

Since the subword closure of a CFL is a regular language, any standard representations
for regular languages such as finite automata or regular expressions can be used to repre-
sent it. In [GHK09] Gruber, Holzer, and Kutrib have studied the size of finite automata
representations for the subword closure of CFLs and proved an upper bound on the
size of the NFA-representation of 22

O(|G|)
(together with a well-known lower bound of

2Ω(|G|)). In the same article they posed the open problems (1) to tighten this bound
further, and (2) to study the size of the (minimal) DFA representation of the subword
closure. Our results give answers to both questions and provide asymptotically tight
bounds on the size of finite automata representations for the subword closure of CFLs,
thereby completing the study in [GHK09]. We further show that our results can be ex-
tended to regular expressions using a slightly different construction (cf. Section 7.3.3).

In [ABT08] it is remarked that a straightforward implementation of Courcelle’s con-
struction yields an NFA of “single exponential” size w.r.t. |G|. However, no detailed
complexity analysis is given. Unfortunately, a straightforward implementation of Cour-
celle’s construction yields a suboptimal bound of 2Ω(|G| log|G|) for the size of an NFA
recognizing ∇G. To illustrate this, consider the CFG of size O(n) with start-symbol An

134

7.3 Representations for the Subword Closure of CFLs

comprising the rules

A0 → a

A1 → A0A0

A2 → A0A0 | A0A1 | A1A0 | A1A1

...

An → AiAj ∀0 6 i, j 6 (n− 1).

If we compute an NFA for ∇An via the straight-forward bottom-up construction it is of
size an := |A∇An | with a0 = 2 and

an = 2+
∑

06i,j6(n−1)

(ai + aj) = 2+ 2n

n−1∑
i=0

ai.

Setting sn :=
∑n
i=0 ai we obtain

sn − sn−1 = an = 2+ 2nsn−1

⇒ sn = 2+ (2n+ 1)sn−1.

As si > 2 we can bound sn by 2nsn−1 6 sn 6 2(n + 1)sn−1 and by induction on n we
get

2n+1n! 6 sn 6 2n+1(n+ 1)!

From this we obtain the lower bound on an = |A∇An |:

an = sn − sn−1 > 2
n+1n! − 2nn! = 2nn! ∈ 2Ω(n logn).

Hence, the crucial part to achieve the optimal bound of 2O(|G|) for NFAs is to reuse
already computed automata.

7.3.1 NFAs

Here we describe a space efficient version of Courcelle’s construction that exploits the
simple C2F and re-uses already computed automata in order to achieve an asymptoti-
cally tight bound on the size of the NFA.

Theorem 7.7. For any CFG G in simple C2F with n nonterminals there is an NFA A with at
most 2 · 3n−1 states which recognizes the subword closure of G, i.e.∇L(G) = L(A).

Before we describe the proof, we collect some definitions used:

Definition 7.8. Given a nonterminal X in a grammarG = (X, Σ,→G) in simple C2F, we define
the following sets of nonterminals and terminals:

135

7 Application II: Subword and Superword Closure of Context-Free Languages

• Q(X) := {YZ ∈ X · X : X→G YZ} (“quadratic monomials”)

• L(X) := {Y ∈ X : X→G Y} (“linear monomials”)

• Cl(X) := {Y ∈ X : X→G YX} (“left coefficients”)

• Cr(X) := {Y ∈ X : X→G XY} (“right coefficients”)

• Σl(X) := Σ ∩
⋃
{∇L(Y) : Y ∈ Cl(X)} (“left alphabet”)

• Σr(X) := Σ ∩
⋃
{∇L(Y) : Y ∈ Cr(X)} (“right alphabet”)

Note that Σl(X) (resp. Σr(X)) is simply the set of terminals reachable from any element
of Cl(X) (resp. Cr(X)), and can therefore be easily computed.

Proof. We prove the statement by induction on n. Each NFA representing the subword
closure of a nonterminal has two designated states, called the entry and exit state, re-
spectively. Furthermore, all states are final. For n = 1 the grammar comprises only one
nonterminal Aa and the rule Aa→a, its subword closure is therefore {ε, a} which can
be recognized by the following 2-state NFA:

qenstart qex
ε, a

Let now n > 1. Consider the start symbol S of the grammar. The language of the
grammar is the least solution of

L(S) =
⋃

X∈Cl(S)

L(X) · L(S) ∪
⋃

XY∈Q(S)

L(X) · L(Y) ∪
⋃

Y∈L(S)

L(Y) ∪
⋃

Y∈Cr(S)

L(S) · L(Y).

Using Lemma 7.1, the subword closure of S is obtained as

∇S =
⋃

X∈Cl(S)

∇X · ∇S ∪
⋃

XY∈Q(S)

∇X · ∇Y ∪
⋃

Y∈L(S)

∇Y ∪
⋃

Y∈Cr(S)

∇S · ∇Y.

The solution of this equation is

∇S = Σl(S)
∗ ·

 ⋃
XY∈Q(S)

∇X · ∇Y ∪
⋃

Y∈L(S)

∇Y

Σr(S)∗.
As the dependency graph of a grammar in simple C2F is acyclic apart from self-loops,

we can topologically order the set X of nonterminals w.r.t. the dependency graph. Let
the nonterminals be indexed with their position in the reverse ordering, i.e. X1, . . . , Xn
such that S = Xn. Then the number of nonterminals reachable from each Xi is bounded
by i.

Since the grammar is in simple C2F, we know that S is not reachable from any Xi ∈
Q(S) ∪ L(S) and therefore, the subgrammar of G induced by any Xi ∈ Q(S) ∪ L(S)

136

7.3 Representations for the Subword Closure of CFLs

contains at most i < n nonterminals2. Hence by induction we can compute for each
Xi ∈ Q(S) ∪ L(S) an NFA recognizing∇Xi of size at most 2 · 3i−1.

Now the construction of the NFA AS for∇Sworks as follows:

• For each X in the set {X : XY ∈ Q(S)} compute the NFA for∇X and call it A(1)
X .

• For each Y in the set {Y : XY ∈ Q(S)∨ Y ∈ L(S)} compute the NFA for ∇Y and call
it A(2)

Y .

Initially we let AS be the disjoint union of all A(1)
X ,A

(2)
X (suitably renaming all entry/exit

states of the automata). Furthermore, we create two new final states qen, qex and set qen

as the initial state of AS. Finally, we add the following transitions to the automaton:

• For each XY ∈ Q(S): Add ε-transitions (1) from qen to the entry state of A(1)
X , (2)

from the exit state of A(1)
X to the entry state of A(1)

Y , and (3) from the exit state of
A

(2)
Y to qex.

• For each X ∈ L(S): Add ε-transitions (1) from qen to the entry state of A(2)
X , and (2)

from the exit state of A(2)
X to qex.

• For each a ∈ Σl(S) add a self-loop qen
a−→ qen.

• For each a ∈ Σr(S) add a self-loop qex
a−→ qex.

Note that in our construction we create at most two copies A(1)
X ,A

(2)
X of each NFA for

X ∈ Q(S) ∪ L(S). Since S = Xn we have Q(S) ∪ L(S) ⊆ {X1, . . . , Xn−1} and by induction
|AXi | 6 2 · 3i−1. Hence the size of AS is bounded by

|AS| 6 2+
∑

X∈Q(S)∪L(S)

2 · |AX|

6 2+
∑

X∈{X1,...,Xn−1}

2 · |AX|

6 2+
n−1∑
i=1

2 ·
(
2 · 3i−1

)
= 2+ 4 ·

n−2∑
i=0

3i

= 2+ 4

(
·3
n−1 − 1

2

)
= 2 · 3n−1

2By “subgrammar induced by X” we mean the subgrammar ofG that contains all nonterminals that reach-
able from X in the dependency graph of G.

137

7 Application II: Subword and Superword Closure of Context-Free Languages

Example 7.9. Consider the following grammar in simple C2F together with its dependency
graph.

S → XS | SB | XA | AB | AX | XB | B

X → CX | XA | C | A

A → a

B → b

C → c

S

X

A BC

The automaton for ∇S is depicted in the top, the automaton for ∇A in the lower left, and the
automaton for ∇X in the lower right picture. We obtain the NFA for ∇S by “wiring” together
(with ε-edges) the corresponding automata representing the “lower” nonterminals. For example,
the rule S → AX gives rise to the connections qen

ε−→ A
(1)
∇A

ε−→ A
(2)
∇X

ε−→ qex. Moreover, the rule
S→ XS leads to a self-loop labeled with ΣX = {a, c} at the entry state qen of A∇S.

qenstart qex

A∇A

a, ε

qenstart

A
(2)
∇C

A
(2)
∇A

qex

A∇X

ε

ε

c
ε

ε

a

qenstart

A
(1)
∇X

A
(1)
∇A

A
(2)
∇X

A
(2)
∇A

A
(2)
∇B

qex

a, c b

7.3.2 DFAs

As the size of an NFA recognizing∇L(G) is bounded by 2O(|G|) we immediately obtain
an upper bound of 22

O(|G|)
for the size of the minimal DFA recognizing∇L(G). Next we

show that this bound is essentially tight. To this end consider the following family of
finite languages Lk of words w ∈ {0, 1}2k+1 such that w = x0y0z for y ∈ {0, 1}k, x, z ∈
{0, 1}∗. These are all words of length 2k + 1 which contain two zeros that are exactly k

138

7.3 Representations for the Subword Closure of CFLs

letters apart. We can write Lk as

Lk =

k⋃
j=1

{0, 1}j−1 · {0} · {0, 1}k · {0} · {0, 1}k−j.

We are particularly interested in Lk for k = 2n. The following CFG Gn of size O(n) with
start symbol X ′n provides a succinct representation of L2n , i.e. L(X ′n) = L2n :

X ′n → X ′n−1Xn−1 | Xn−1X
′
n−1

X ′n−1 → X ′n−2Xn−2 | Xn−2X
′
n−2 Xn−1 → Xn−2Xn−2

...
...

X ′1 → X ′0X0 | X0X
′
0 X1 → X0X0

X ′0 → 0Yn0 X0 → 0 | 1

Yn → Yn−1Yn−1

Yn−1 → Yn−2Yn−2
...

Y1 → Y0Y0

Y0 → 0 | 1

The grammar uses repeated squaring to achieve the required compression while a
derivation uses the “primed” nonterminals X ′i to choose where to insert a word from
the set {0}{0, 1}2

n
{0} into a word from {0, 1}2

n
. The two alternative rules for a primed

nonterminal allow the derivation to choose whether the left or the right child becomes
the new primed nonterminal.

Example 7.10. We want to illustrate that each word from {0, 1}j−1{0}{0, 1}2
n
{0}{0, 1}2

n−j can
be derived by the above grammar. The idea is that the n-bit binary expansion of j− 1 encodes the
path to the node labeled X ′0 in a derivation tree of the grammar.

The picture shows a partial derivation tree for n = 3 and j = 4. Since j − 1 is 011 in binary,
the derivation uses the first defining rule for X ′3, then the second rule for X ′2, and then again the
second rule for X ′1 to derive a sentential form containing X ′0. The corresponding derivation is

X ′3⇒X ′2X2⇒X1X ′1X2⇒X1X0X
′
0X2⇒X0X0X0X ′0X2⇒ . . .

139

7 Application II: Subword and Superword Closure of Context-Free Languages

j− 1 2n − j

X ′3

X ′2

X1

X0 X0

X ′1

X0 X ′0

0 Yn 0

1

1

0

X2

X1

X0 X0

X1

X0 X0

The language L2n is finite and therefore regular. We show that any two words
w1, w2 ∈ {0, 1}2

n
with w1 6= w2 are inequivalent w.r.t. the Myhill-Nerode relation of

L2n which implies that the minimal DFA for L2n must have at least 22
n

states. The same
argument then shows that the minimal DFA for∇L2n must also have at least 22

n
states.

Consider the first position from the right where w1 and w2 differ, so w.l.o.g. we have
w1 = α0β and w2 = α ′1β for some α,α ′, β ∈ {0, 1}∗. As a distinguishing word set
v := 12

n−|β|012
n−|α|−1. Note that

w1v = α0β1
2n−|β|012

n−|α|−1 ∈ L2n ,

but
w2v = α

′1β12
n−|β|012

n−|α|−1 /∈ L2n ,

and hence any two words w1 and w2 in {0, 1}2
n

are inequivalent.
The crucial observation is that from |w1v| = |w2v| = 2 · 2n + 1 it also follows that

w1v ∈ ∇L2n and w2v /∈ ∇L2n since the subword closure can only add new words of
length at most 2 · 2n. This shows that also the minimal DFA for∇L2n must have at least
22
n

states. Again, the very same argument works for ∆L2n since the superword closure
can only add words longer than 2 · 2n + 1. Hence, also the size of the minimal DFA for
∆L2n is at least doubly-exponential in the size of Gn. The following theorem sums up
our discussion.

Theorem 7.11. There exists a family of CFGs Gn of size O(n) (generating finite languages)
such that the minimal DFAs accepting either L(Gn), or∇L(Gn), or ∆L(Gn), each have at least
22
n

states.

7.3.3 Regular Expressions

Regular Expressions are another classical representation of regular languages. It is well-
known that regular expressions can be exponentially more succinct than DFAs but un-
fortunately, they can also be exponentially “wasteful” compared to NFAs. More specif-
ically, there are regular languages representable by an NFA of size O(n) that require a

140

7.3 Representations for the Subword Closure of CFLs

regular expression of size 2Ω(n) [GH08, GH14]. Therefore our results for representing
the subword closure via NFAs only yield a very crude doubly exponential upper bound
on the size of a regular expression describing the subword closure of a CFG. In this
section we show that this can be improved to also yield an upper bound of 2O(|G|) for
the size of a regular expression. Note that this new result implies our previous upper
bound of 2O(|G|) for the size of an NFA from Section 7.3.1 but this is mainly of theoretical
interest since the constant hidden in the O is larger.

In the following, we view grammars as a system of equations over the idempotent
semiring of formal languages (2Σ

∗
,∪, ·, ∅, {ε}) augmented with the identity x + 1 = x.

Such idempotent semirings satisfying x = x + 1 are called lossy semirings in [EKL08].
This identity enforces the languages in our semiring to be subword-closed, for example
we have

{ab, bc} = {a} · {b}+ {b} · {c} = {a, ε} · {b, ε}+ {b, ε} · {c, ε} = {ab, bc, a, b, c, ε}.

Consider now a grammar in simple C2F and the defining equation for some nonter-
minal Xi

Xi =
∑

XY∈Q(Xi)

XY +
∑

X∈L(Xi)

X+
∑

C∈Cl(Xi)

CXi +
∑

C∈Cr(Xi)

XiC

We can write the solution to this equation succinctly with coefficients µk, λk,l ∈ {0, 1}

indicating whether the respective monomial is present in the original equation:

Xi = Σl(Xi)
∗ ·

 ∑
16k,l6(i−1)

λk,lXkXl +

i−1∑
k=1

µkXk


︸ ︷︷ ︸

=:X̃i

·Σr(Xi)∗. (7.1)

In X̃i we can factor out each Xk to get

X̃i =

i−1∑
k=1

Xk ·

(
k∑
l=1

λk,lXl + µk

)
+

i−1∑
k=1

(
k−1∑
l=1

λk,lXl

)
· Xk. (7.2)

Now we can use this factorization to compute a regular expression for ∇Xi in a
bottom-up fashion as before. As a measure of the size of a regular expression r, we
use its alphabetic width alph(r), i.e. the total number of occurrences of elements of Σ in
r. Despite the simplicity of alph(r), all other well-known complexity measures for reg-
ular expressions (e.g. number of symbols needed to write down r) can be bounded by a
constant times alph(r) [EKSW04].

141

7 Application II: Subword and Superword Closure of Context-Free Languages

Theorem 7.12. For a grammar G in simple C2F with n nonterminals, we can find a regular
expression r representing∇L(G) such that alph(r) 6 4 · 5n−1

Proof. Like in the proof of Theorem 7.7 for NFAs, assume a reverse topological ordering
on the nonterminals X1, . . . , Xn with Xn being the start symbol. We write r∇X for the
regular expression representing the subword closure of the nonterminal X.

The proof is by induction on n. For n = 1 we only have a single rule in the grammar
of the form Aa → a and the regular expression r∇Aa = (a+ ε) has size alph(a+ ε) = 1.
Let ai := alph(r∇Xi). By induction, we obtain that ai 6 4 · 5i−1 for i < n.

By 7.1 and our factorization of the equation for Xn shown in 7.2 we can obtain the
upper bound

an = alph(Σl(Xn)∗) + alph(Σr(Xn)∗) + alph(X̃n)

6 2(n− 1) +

n−1∑
k=1

(
ak +

k∑
l=1

al

)
+

n−1∑
k=1

(
ak +

k−1∑
l=1

al

)
IH
6 2(n− 1) +

n−1∑
k=1

(
4 · 5k−1 + 4 ·

k∑
l=1

5l−1

)
+

n−1∑
k=1

(
4 · 5k−1 + 4 ·

k−1∑
l=1

5l−1

)

= 2(n− 1) +

n−1∑
k=1

(
4 · 5k−1 + 5k − 1

)
+

n−1∑
k=1

(
4 · 5k−1 + 5k−1 − 1

)
= 2(n− 1) + 9 ·

(
n−1∑
k=1

5k−1

)
− (n− 1) + 5 ·

(
n−1∑
k=1

5k−1

)
− (n− 1)

=
9

4

(
5n−1 − 1

)
+
5

4

(
5n−1 − 1

)
6 4 · 5n−1

Corollary 7.13. For any CFG G there is a regular expression r of size |r| ∈ 2O(|G|) representing
the subword closure of G.

Note that the factorization we use above is by no means optimal. Indeed, consider
again our example from the beginning of Section 7.3 to illustrate that a straightforward
construction produces a representation (NFA or regular expression) of size 2|G| log|G|.

A0 = a

A1 = A0A0

A2 = A0A0 +A0A1 +A1A0 +A1A1

A3 = A0A0 +A0A1 +A0A2 +A1A0 +A1A1 +A1A2 +A2A2

...

An =
∑

06i,j6(n−1)

AiAj.

142

7.3 Representations for the Subword Closure of CFLs

This system can be presented more succinctly if we factor the right-hand-sides com-
pletely as

A0 = a

A1 = A0A0

A2 = A0(A0 +A1) +A1(A0 +A1) = (A0 +A1) · (A0 +A1)
...

An =
∑

06i,j6(n−1)

AiAj =

(
n−1∑
i=0

Ai

)
·

(
n−1∑
i=0

Ai

)
.

We can view the quadratic monomials of an equation in C2F as a bipartite graph on two
disjoint copies of X and an edge between Xi and Xj if the monomial XiXj appears in the
equation. In our special case above, the right-hand-sides of the equations form complete
bipartite graphs and can thus be factored easily. It is easy to see that the optimal factoring
problem reduces to finding a cover of this bipartite graph by a collection of complete
bipartite graphs (also called a biclique cover). Unfortunately, the minimum biclique cover
problem is NP-complete even for chordal bipartite graphs [Orl77, Mü96].

Simple Regular Expressions The restricted class of simple regular expressions (SREs)
was propsed in [ACBJ04] as efficient representation for state spaces of lossy channel
systems.

Definition 7.14 ([ACBJ04]). An atomic expression is a regular expression over Σ of the form

• (a+ ε), or

• (a1 + · · ·+ ak)∗

with a, ai ∈ Σ. A product is a finite product p = A1 · · ·An where Ai are atomic expressions.
A simple regular expression (SRE) s is a finite sum of products Pi, i.e. s = P1 + · · ·+ Pm.

It is straightforward to see that the language represented by an SRE is subword-closed.
Conversely, it is shown in [ACBJ04] that every subword-closed language can be repre-
sented by an SRE.

Example 7.15. s = a∗(b+ ε) + (c+ ε) · (d+ ε) is an SRE while r = (a+ b)c∗ is not.
The expression p = (a+b)∗ · (b+ c+ ε) is not an SRE but can be turned into the equivalent

SRE p ′ = (a+ b)∗ · (c+ ε) + (a+ b)∗ · (b+ ε) at the expense of increasing its size.

SREs are an attractive representation since they enjoy good algorithmic propertiese.
For example they have a canonical representation and inclusion testing between two
SREs is solvable in quadratic time. However, general regular expressions can be expo-
nentially more succinct than SREs:

143

7 Application II: Subword and Superword Closure of Context-Free Languages

Remark 7.16. For Σ = {a, b} consider the subword-closed language Ln = Σ6n. |L| = 2n+1−1

L = L((a+ b+ ε)n)

So L can be represented by a regular expression of size O(n). An SRE cannot contain a Kleene
star since L is a finite language, and hence it has to enumerate the elements of L using products
of the atomic expressions (a+ ε) and (b+ ε) so its size is 2n.

Going further, we see that L2n can be generated by a CFG of size O(n), again using the idea
of repeated squaring:

An → An−1An−1

An−1 → An−2An−2

...

A1 → A0A0

A0 → a | b | ε

As remarked, the language can be described by a regular expression (and by an NFA) of size
O(2n): L2n = L((a+ b+ ε)2

n
) whereas its representation as an SRE has size 22

n
. This shows

that SREs can be as “wasteful” as DFAs for describing the subword closure of a CFG.

7.4 Application: Approximate Answers to Undecidable
Grammar Problems

Suppose we can describe the behaviors of a system (e.g. a recursive program modeled
as a pushdown system) using a context-free grammar G1 and are given a context-free
specification G2 describing e.g. all safe executions. Then the system is safe, if L(G1) ⊆
L(G2), or the system conforms exactly to its specification, if L(G1) = L(G2). More
generally, linear-time model-checking corresponds to language inclusion problems as
remarked in [KPV02].

It is well-known that inclusion or equivalence checking of context-free grammars are
undecidable problems, and hence, we want to develop approximation methods to tackle
these problems and to obtain practically efficient semi-decision procedures.

Given context-free grammars G1, G2 let L1 = L(G1) and L2 = L(G2). Since L1 =

L2 implies that ∇L1 = ∇L2 we can use the subword (or superword) closure to obtain
counterexamples to equivalence: ∇L1 6= ∇L2 =⇒ L1 6= L2. Accordingly, L1 ⊆ L2 implies
∇L1 ⊆ ∇L2 so we can also use the approach for checking non-inclusion between CFLs.

It is important to note that this approach is only justified since the subword closure
only depends on the language and not on its presentation (i.e. the grammar). Other

144

7.4 Application: Approximate Answers to Undecidable Grammar Problems

methods, like the Mohri-Nederhof approximation [MN01] compute a regular over-
approximation of L that depends on the grammar. We still can use such approxima-
tions to check inequivalence between L1 and L2 in a two step approach: First over-
approximate L1 and L2 by regular languages R1 and R2, respectively. Then check
whether both inclusions L1 ⊆ R2 and L2 ⊆ R1 hold (note that these are decidable prob-
lems). If one of them does not hold then surely L1 6= L2.

First, we only consider the approach based on sub-/superword closure approximation
and focus on language inequality checking. Our approach is shown in Algorithm 11.

Algorithm 11: High-level outline of inequivalence checking via subword closure
approximation.

input : CFGs G1, G2
output: Witness w ∈ L(G1)⊕ L(G2) or “maybe equal”.

while timeout not reached do
R1 ← ∇L(G1) ; /* Ri: any representation (DFA,NFA,SRE) */

R2 ← ∇L(G2)
if L(R1) 6= L(R2) then

return generateWitness(G1,G2,R1,R2)
else

G1, G2 ←refine(G1,G2)
end

end
return “maybe equal”

A refined implementation of the above outlined algorithm has to state explicitly how
to

• represent the subword closures Ri = ∇L(Gi),

• solve the equivalence problem L(R1)
?
= L(R2),

• generate witnesses if L(R1) 6= L(R2), and

• refine the problem if L(R1) = L(R2.

7.4.1 Equivalence Checking of NFAs Modulo Closure

It is well-known that the universality and equivalence problem for NFAs is PSPACE-
complete. Even more, the problem stays PSPACE-complete for prefix-, or suffix-, or
factor-closed languages as shown in [KRS09, RSX12]. In all cases, PSPACE hardness is
established via reduction from the PSPACE-complete universality problem, i.e. to de-
cide whether L(A) = Σ∗ for an NFA A [Hun73, MS72].

145

7 Application II: Subword and Superword Closure of Context-Free Languages

However, for both subword and superword closed languages the universality prob-
lem is solvable in linear time:

• For subword-closed L, L = Σ∗ if and only if there is an SCC in the NFA such that
all letters from Σ occur in it [RSX12].

• For superword-closed L, L = Σ∗ if and only if ε ∈ L.

This means we can check universality for both types of languages in linear time in the
size of the NFA and hence, the usual hardness proof for equivalence is not applica-
ble to neither subword- nor superword-closed languages. A natural question is there-
fore whether the equivalence problem for NFAs is easier for sub-/superword-closed
languages, and indeed we prove that equivalence testing of such NFAs is only coNP-
complete.

Let cl : 2Σ
∗ → 2Σ

∗
be a (computable) function on languages. We call two NFAs A1,A2

equivalent modulo cl, written as A1 ≡cl A2, if cl(L(A1)) = cl(L(A2)). Let us write A1
?≡cl

A2 for the corresponding decision problem: given two NFAs A1,A2, decide whether

A1 ≡cl A2. Phrased in this language, the results in [KRS09, RSX12] state that A1
?≡cl A2

is PSPACE-complete for cl being the prefix, suffix, or factor closure operation.

To prove that A1
?≡cl A2 is solvable in coNP for cl = ∇, we show that if A1 6≡∇ A2

then there exists a word w of polynomial length in the size of |A1| + |A2| such that w ∈
L(A1)⊕ L(A2), where ⊕ denotes the symmetric difference of sets.

The next lemma allows us to assume (w.l.o.g.) that an NFA for a sub-/superword-
closed language has a particular structure.

Lemma 7.17. Let A be an NFA. Define A∇ as the NFA we obtain from A by adding for every
transition q a−→ q ′ of A the ε-transition q ε−→ q ′.

Similarly, define A∆ as the NFA we obtain by adding the self-loops q a−→ q for every state q
and every terminal a ∈ Σ to A. Then∇L(A) = L(A∇) and ∆L(A) = L(A∆).

Proof. We start with ∇L(A) = L(A∇): Pick any w ∈ ∇L(A). Then there is some w ′<w
such that w ′ ∈ L(A), and thus by construction also w ′ ∈ L(A∇). That is there is an
accepting run q0

x0−→ q1
x1−→ . . .

xl−→ ql+1 with ql+1 ∈ F and w ′ = x0x1 . . . xl (with
potentially xi = ε for some i). Using the additional ε-transitions of A∇ we therefore
can turn this sequence into an accepting sequence forw by simply replacing those xi by
ε which do not occur in w. For the other direction, one can reverse this argument by
recalling that for any ε-transition q ε−→ q ′ added to A∇ there is some a ∈ Σ such that
q
a−→ q ′ is a transition of A.
Consider now the second claim ∆L(A) = L(A∆): Choose some w ∈ ∆L(A). Then

there is some w ′4w such that w ′ ∈ L(A) ⊆ L(A∆). Any accepting run q0
x0−→ q1

x1−→
. . .

xl−→ ql+1 (with ql+1 ∈ F and w ′ = x0x1 . . . xl) of A∆ can then be extended to an
accepting run of A∆ for w by using the additional loops of A∆ to consume any letters

146

7.4 Application: Approximate Answers to Undecidable Grammar Problems

occurring exclusively in w. In the other direction given an accepting run of A∆ we
simply strip it by any loops which is guaranteed to yield an accepting run (for a scattered
subword) of A as the transition relations of A and A∆ only differ in loops.

Note that the DFA resulting from the powerset construction applied to such an NFA
can be of superpolynomial size as shown by Okhotin [Okh10], but is has a particularly
simple structure (which has also been observed in [Okh10]):

Lemma 7.18. Let A be an NFA. Let D∇A (resp. D∆A) be the DFA we obtain from A∇ (resp. A∆)
via the powerset construction. For any transition S a−→ T of D∇A (D∆A) it holds that S ⊇ T (resp.
S ⊆ T).

Proof. Recall that the state (sets) of D∇A are closed w.r.t. taking ε-successors in A∇. As A∇

was obtained from A by introducing for every transition q a−→ q ′ (a ∈ Σ) the ε-transition
q
ε−→ q ′, this means that, if q ∈ S, then every state reachable from q in the directed graph

underlying A has to be included in S, too. As for any transition S a−→ T in D∇A, T is a
subset of the states reachable from S, the claim follows.

In case of the superword closure, pick any transition S a−→ T of D∆A and any state q ∈ S.
Then by construction of A∆ there is the loop q a−→ q in A∆ which implies that also q ∈ T
by definition of the powerset construction.

By this result, the transition relation of D∇A (disregarding self-loops) can be “embed-
ded” into the lattice of subsets of the states of A, which has height |A|.

Corollary 7.19. With the assumptions of the preceding lemma: The length of the longest simple
path in D∇A (resp. D∆A) is at most |A|.

It now immediately follows that a shortest separating word for sub- resp. superword
closed NFAs – if one exists – has at most length linear in the size of the two NFAs.

Lemma 7.20. Let A and B be two NFAs. If A 6≡∇ B (resp. A 6≡∆ B), then there exists a word
w ∈ ∇L(A)⊕∇L(B) (resp. w ∈ ∆L(A)⊕ ∆L(B)) of length at most |A|+ |B|.

Proof. Assume A 6≡∇ B, and let w be a shortest separating word. Consider the unique
run of the product DFA D∇A ×D∇B on w = w0w1 . . . wl:

(L0, R0)
w0−−→ (L1, R1)

w1−−→ . . .
wl−−→ (Ll, Rl).

By the preceding lemma we then have Li ⊇ Li+1 and Ri ⊇ Ri+1 along the run. As w is
assumed to be a shortest separating word, it has to hold that ¬(Li = Li+1 ∧ Ri = Ri+1)
for all i = 1, . . . , l− 1. In other words, we have

|A|+ |B| > |L0|+ |R0| > |L1|+ |R1| > . . . > |Ll|+ |Rl| > 1

from which the claim immediately follows.

147

7 Application II: Subword and Superword Closure of Context-Free Languages

In the case of the superword closure one deduces in the same way that the accepting
run for a shortest separating word has to satisfy:

1 6 |L0|+ |R0| < |L1|+ |R1| < . . . < |Ll|+ |Rl| 6 |A|+ |B|

Theorem 7.21. The decision problems A
?≡∇ B and A

?≡∆ B are in coNP.

Proof. By the preceding lemma, if A 6≡∇ B there exists a witness w in the symmetric
difference of the two closures, w ∈ ∇L(A) ⊕ ∇L(B) such that |w| 6 |A| + |B|. Now we
can guessw in nondeterministic polynomial time and hence the in-equivalence problem

A 6 ?≡∇ B is in NP. The reasoning for A
?≡∆ B is exactly the same.

To show coNP-hardness of the equivalence problem we use a standard reduction from
the coNP-complete problem TAUT (to decide validity for formulæ in propositional cal-
culus). The strategy is essentially the same as the well-known coNP-hardness proof for
the equivalence problem of regular expressions without Kleene stars.

Theorem 7.22. The decision problems A1
?≡∇ A2 and A1

?≡∆ A2 are coNP-hard.

Proof. Letϕ be a formula of propositional calculus, (w.l.o.g.) in disjunctive normal form.
We construct a regular expression which encodes all satisfying assignments of ϕ:

Let x1, x2, . . . , xn be the propositional variables occurring in ϕ, and assume that
ϕ =

∨
i∈[k]Ci with Ci =

∧
j∈[li Li,j and Li,j literals. Further, we may assume that in

every conjunction Ci is contradiction free. We associate with every Ci a simple regular
expression ρi enumerating all satisfying assignments of Di: Initially, set ρi = ∅. Going
from j = 1 to j = n, if xj occurs in Ci, then set ρi := ρi1; if ¬xj occurs in Ci, set ρi := ρi0;
otherwise set ρi := ρi(0 + 1). Finally, set ρ := ρ1 + ρ2 + . . . + ρk. Obviously, the size
of ρ is polynomial in the size of ϕ. Further, we can compute an NFA A from ρ in time
polynomial in |ρ|, such that L(ρ) = L(A). Note that L(A) = L(ρ) ⊆ Σn by construction.
In particular, L(A) = L(ρ) = Σn if and only if ϕ is a tautology.

It therefore suffices to show that ∇L(A) = Σ6n (resp. ∆L(A) = Σ>n) if and only if
L(A) = Σn. But this is easy as the subword closure resp. superword closure can only
add words of length less resp. greater than n.

7.4.2 Witness Generation

In case Algorithm 11 discovers that L(G1) 6≡∇ L(G2) is has found a word in the sym-
metric difference of the approximations w ∈ ∇L(G1) ⊕ ∇L(G2) which is an indirect
witness that L(G1) 6= L(G2). However, w is not suitable to verify directly that the two
languages are different. It would be much more convincing if the algorithm outputted
a word w ′ ∈ L(G1) ⊕ L(G2). Here we show several ways to do this. For simplicity we
assume in the following (w.l.o.g.) that w ∈ ∇L(G1) and w /∈ ∇L(G2).

148

7.4 Application: Approximate Answers to Undecidable Grammar Problems

One way to find a suitable witness w ′ ∈ L(G1) \ L(G2) given a word w ∈ ∇L(G1) \
∇L(G2) is the following: Assuming (w.l.o.g.) that G1 and G2 contain no ε-productions
produce a grammar G ′1 that generates ∇L(G1) by adding for each nonterminal A the
productionA→ ε. Then parse the wordw using the grammars G ′1. For each (previously
added) rule A → ε that is used in the parse, replace the corresponding ε-part in w by
the shortest word derivable fromA inG1. This whole procedure yields a (possibly long)
superword w ′ of w for which we cannot derive a good upper bound on its length.

In practice we use a different approach that has the potential to produce shorter wit-
nesses w ′ is to generate a shortest word in L(G1) \ ∇L(G2): compute the DFA Dc for
L(G2), intersect it with G1 and produce a shortest word in the resulting CFG. Since

|Dc| ∈ 22
O(|G2|) , the size of the intersection grammar is polynomial in the size of Dc and

|G1|, and since a shortest word of a grammar G is at most exponential in |G|, we get in
total a (very crude) triple exponential bound on the length of w ′ (in |G1| + |G2|). How-
ever, according to our experiments (cf. Section 7.4.4) this worst-case behavior does not
seem to occur in practice.

7.4.3 Refinement

If Algorithm 11 discovers that L(R1) = L(R2), then we can neither conclude that G1 ≡
G2 nor that G1 6≡ G2. To turn our algorithm into an abstraction-refinement scheme
we need means to refine our subword-approximations. A strategy we considered is
refinement by language covering: We cover L(R1) (which is equal to L(R2)) by a finite
collection of regular languages L(R1) ⊆ L ′ := L0 ∪ L1 ∪ · · · ∪ Lk and branch our search

for counterexamples to L(G1)
?
= L(G2) into k+ 1 subproblems of the form L(G1)∩Li

?
=

L(G2) ∩ Li. Since L ′ covers L(R1), we do not cut off potential counterexamples. The
problem of this search tree method is to find the right balance between breadth and
depth: avoiding to generate too many subproblems or having to refine too many times.
For the subword-approximation to be useful on the subproblems, we want the languages
Li to be infinite (except maybe for L0 which can then be checked via enumeration).

One instance of this covering strategy is prefix-refinement. Here we consider all the
words p1, . . . , pk ∈ Σd ∩ L(R1) with some small length d called the depth of the refine-
ment and define the languages Li by L0 := ∇{p1, . . . , pk}, and Li := piΣ∗ for i ∈ [k]. Note

that L0 is a finite set and hence we could solve the problem L(G1) ∩ L0
?
= L(G2) ∩ L0

by enumeration. For all other subproblems we simply iterate our abstraction loop. Note
that considering prefixes of length d of words in L(R1) is usually much more efficient
than just using all words in Σd. Furthermore, the words pi can easily be generated by
inspecting the finite automaton for L(R1).

It is easy to see that using the prefix refinement, we obtain a semi-decision procedure
for CFG inequivalence, i.e. if there exists a w ∈ L(G1) ⊕ L(G2), then our method even-
tually reports some counterexample w ′ ∈ L(G1) ⊕ L(G2). Note that this is not a strong
result – exhaustive enumeration of words in Σ∗ also yields a semi-decision procedure,

149

7 Application II: Subword and Superword Closure of Context-Free Languages

but as our experiments show our method has the potential to find even long counterex-
amples quickly (which can be infeasible to find using enumeration).

7.4.4 Experiments

To evaluate the power of our approximation alone we disregard the finite subproblem

L(G1) ∩ L0
?
= L(G2) ∩ L0 in our experiments. With this change our method no longer

is a semi-decision procedure but this can be easily repaired by combining it with an
enumeration approach for equivalence testing, like [AHL08].

The paper [AHL08] presents CFGANALYZER, a tool that uses SAT-solving to attack
several undecidable grammar problems by exhaustive enumeration. We demonstrate
the feasibility of our approximation approach on several slightly altered grammars
(cf. [VT13]) for the PASCAL programming language3. The altered grammars were ob-
tained by adding, deleting, or mutating a single rule from the original grammar [VT13].
We used FPSOLVE and CFGANALYZER to check equivalence of the altered grammar with
the original. Both tools were given a timeout of 30 seconds.

Note that our method is not designed to replace enumeration-based tools like CFG-
ANALYZER, we rather envision a combined approach: Use overapproximations like the
subword closure (with small refinement depth) as a quick check and resort to more com-
putationally demanding techniques like SAT-solving for a thorough test. Also note that
it is not too hard to find examples where enumeration-based tools cannot detect inequiv-
alence anymore, e.g. by considering grammars with large alphabet (like C# or Java) for
which the shortest word in the language is already longer than 20 tokens. Here we just
present a case study where both approaches can be fruitfully combined.

Table 7.1 demonstrates that even if our tool uses the very simple prefix-refinement
(which is the main bottleneck in terms of speed), we can successfully solve 100 cases
where CFGANALYZER has to give up after 30 seconds and even in cases where both tools
find a difference, FPSOLVE does so much faster.

7.5 Related Work and Conclusions

The subword closure has been studied previously as an abstraction in verification.
In [ACBJ04] the authors present a symbolic method for reachability analysis of lossy
channel systems, where the set of states of the system is a subword-closed language.
[ACBJ04] proposed simple regular expressions (SREs) to represent subword-closed lan-
guages since SREs enjoy several good algorithmic properties (e.g. equivalence testing
in quadratic time). Our example from Section 7.3.3 suggests that finite languages are
a particular challenge to represent via SREs, similar as for DFAs. We have only briefly

3Available from https://github.com/nvasudevan/experiment/tree/master/grammars/

mutlang/acc .

150

https://github.com/nvasudevan/experiment/tree/master/grammars/mutlang/acc
https://github.com/nvasudevan/experiment/tree/master/grammars/mutlang/acc

7.5 Related Work and Conclusions

scenario # instances # CA tCA #FP tFP #(CF∧ FP) t∧CA t∧FP

add 700 190 17.9 18 2.43 8 10.7 4.97

delete 284 61 17.8 34 0.424 10 14.4 0.464

empty 69 32 18.7 1 1.35 1 5.62 1.35

mutate 700 167 19.1 100 1.3 36 15.8 2.87

switchadj 187 16 20.5 2 5.46 1 9.68 0.34

switchany 328 35 18 9 3.72 8 9.09 2.84∑
2268 501 – 164 – 64 – –

Table 7.1: Numbers of solved instances for different scenarios and respective average
times: #CA: solved by CFGANALYZER, #FP: solved by FPSOLVE, #(CA∧FP):
solved by both tools, t∧tool: time needed by tool on instances from (CA∧ FP).

touched the descriptional complexity of the subword closure using SREs. It would be in-
teresting to compare their succinctness to DFAs. We leave open to study whether SREs
are a suitable representation for the subword closure of CFGs in practice – their per-
formance in verification problems suggests that they are more suitable than e.g. DFAs
[ACBJ04].

Recently, Karandikar, Niewerth, and Schnoebelen have used and extended our results
to study the state complexity of the subword interior of regular languages [KS14, KNS14].
The subword interior of a language L ⊆ Σ∗ is defined as

subint(L) := {w ∈ Σ∗ : ∇w ⊆ L},

or equivalently, as the complement of the superword closure of the complement of L, i.e.

subint(L) = Σ∗ \ ∆(Σ∗ \ L).

The subword interior is the largest subword-closed set that is included in a language
and can be viewed as an underapproximation. However, for CFGs the subword interior
is not effectively computable: If it were we could decide universality of a CFL L using

L = Σ∗ ⇔ Σ∗ \ L = ∅ ⇔ ∆(Σ∗ \ L) = ∅ ⇔ subint(L) = Σ∗.

151

8
Application III: Computational Linguistics

and Natural Language Processing

In this chapter we present an application of the notion of tree dimension (aka. Strahler
number) to the field of computational linguistics and natural language processing. In
particular we make two contributions which are published in [SLE14].

1. We argue that tree dimension is a reasonable measure of sentence complexity and
investigate empirically the dimension-distribution of several natural languages.

2. We outline an application to natural language processing . Specifically, we propose
to use dimension as annotation to improve statistical parsing and compare it to
other annotation methods.

In Section 8.1 we study the dimension of parse trees of natural language in detail. Us-
ing the combinatorial properties of tree dimension, we argue that dimension is a mean-
ingful measure of sentence complexity and we empirically investigate the dimension
distributions for several treebanks (databases of human generated parse trees for natu-
ral language texts).

In Section 8.2 we first recall some basics of grammar-based parsing. We then review
well-known techniques for improving parsing accuracy by refining grammars through
annotation.

We investigate in Section 8.3 how to incorporate dimension information into parsers
trained from treebanks. As a case study we use the Tübingen treebank of written Ger-
man (TüBa-D/Z) and experimentally demonstrate that our annotation significantly im-

153

8 Application III: Computational Linguistics and Natural Language Processing

proves both parsing accuracy and parsing speed. Moreover, we show that our heuristic
can be fruitfully combined with previous techniques.

We conclude and outline some promising paths for future work in Section 8.4
All results of this chapter have appeared in [SLE14]. Here we supplement our results

with some more context, explanations, and examples.

8.1 Tree Dimension as a Measure of Sentence Complexity

A classical theory in experimental psychology on the capacity of human memory was
proposed by George A. Miller [Mil56] and is now called “Miller’s Law”. Miller proposes
that human working memory can only retain a handful of items at the same time. In his
work he stressed that it is the number of items that is important not the amount of in-
formation in bits. In psycholinguistics, his work has stimulated the search for models
of human sentence processing that only require bounded memory. For an introductory
survey and a comparison of several parsing algorithms w.r.t. their psychological plausi-
bility see [Cro99].

Recall from Section 3.6.3 that dim(t)+1 is the minimum amount of stack-space needed
by any top-down traversal of a binary tree t. Hence, tree dimension can be regarded as
a (very rough) measure for the structural complexity of a sentence which disregards
the order in which subtrees of a parse tree are visited (resp. generated or parsed). In
this sense, dimension might be more adequate for describing the complexity of written
rather than spoken language.

We propose tree dimension as a new measure of syntactic complexity and empirically
show that parse trees have dimension at most 4 for a variety of natural languages.

Example 8.1. The following are two examples of sentences from natural language that have a
(human-generated) parse tree of dimension 4 (not shown due to its size):

“That commercial – which said Mr. Coleman wanted to take away the right of abortion
“even in cases of rape and incest”, a charge Mr. Coleman denies – changed the dynamics
of the campaign, transforming it, at least in part, into a referendum on abortion.” — 58
tokens, from: The Wall Street Journal, Penn Treebank (sample shipped with NLTK).

“Aber anstatt anzuerkennen, wie genau die Nato bislang die Ziele traf, die sie auch treffen
wollte, wie stark, verglichen mit dem Irak-Krieg, die Bemühungen sind, die Zivilisten zu
schonen, breitet sich nun Entsetzen aus.” — 42 tokens, from: German newspaper “taz”,
TüBa-D/Z treebank.

154

8.1 Tree Dimension as a Measure of Sentence Complexity

The next sentence is of similar length as the first one, but has a parse tree of dimension 2.

“According to reports carried by various news services, the Brazilian government told its
sugar producers that they won’t be allowed to export sugar during the current 1989-90
season, which began May 1, and the 1990-91 season so that it can be used to produce alcohol
for automobile fuel.” — 58 tokens, from: The Wall Street Journal, Penn Treebank (sample
shipped with NLTK).

The previous examples suggest that a sentence with a parse tree of high dimension is
complex because it comprises many dependent sub-clauses that have to be remembered
while reading it. Miller’s Law suggests that parse trees for naturally occurring sentences
of human language have small dimension.

We confirm this hypothesis experimentally for several publicly available treebanks
(datasets of parse trees generated by human linguists). For comparison we computed
the average and maximum dimension and height of all parse trees in a treebank as re-
ported in Table 8.1.

Language Source Avg. Dim. Max. Dim. Avg. Height Max. Height

Basque SPMRL‡ 2.12 3 6.57 13

English Penn♣ 2.38 4 10.13 29

French SPMRL 2.29 4 8.5 34

German SPMRL 1.94 4 5.26 12

German TüBa-D/Z♠ 2.13 4 7.97 24

Hebrew SPMRL 2.44 4 11.67 31

Hungarian SPMRL 2.11 4 6.93 16

Korean SPMRL 2.18 4 9.9 19

Polish SPMRL 1.68 3 8.97 22

Swedish SPMRL 1.83 4 6.7 24

Table 8.1: Average and maximum dimension and height of parse trees for several tree-
banks of natural languages. ‡: SPMRL dataset [STK+13], ♣: 10% sam-
ple from the Penn treebank shipped with NLTK, ♠: TüBa-D/Z treebank
[THK+03].

The average dimension of parse trees ranges from 1.68 to 2.44 and the largest dimen-
sion we ever encountered was 4. By contrast, the distribution of the height shows a
much larger variability. Note that nothing prevents us in principle from generating sen-
tences that have parse trees of dimension 5 or 6 (even larger dimensions would enforce
quite long sentences). However, such sentences do not seem to occur in commonly used
language and even sentences of dimension 4 are rare.

155

8 Application III: Computational Linguistics and Natural Language Processing

0 5 10 15 20
0

1

2

3

·104

k

N
um

be
r

of
tr

ee
s

Dimension Height

Figure 8.1: Distribution of the dimension and height of all parse trees from the TüBa-
D/Z treebank.

To illustrate the distribution of the dimension and height we show a histogram for
the TüBa-D/Z treebank in Figure 8.1. These distributions look fairly similar for all lan-
guages.

8.2 Introduction to PCFG Parsing

Here, we briefly review standard techniques for parsing with probabilistic context-free
grammars (PCFGs). For a more detailed introduction we refer to [MS99].

8.2.1 Motivation

The goal of parsing is to produce a syntactic analysis of an input sentence given as a
sequence of words. Parsing is often used as a sub-procedure in more complex NLP
tasks like machine translation or document summarization [YK01, KM02, UNMT06].

Modern machine translation systems do not translate sentences word-by-word but try
to model the translation as a transformation of syntax trees (formally, as a probabilistic
tree transducer or a tree-to-string transducer). To train statistical models one uses a
parallel corpus of sentences, e.g. speeches given in the European Parliament translated
into different languages by human translators. Such a corpus usually comprises raw
sentences not annotated with a parse tree structure. Hence the sentences first have to be
parsed into trees to train a statistical model of tree transformations

Document summarization is the task of producing a fixed-length summary of a text
which comprises the gist of the content and is grammatically correct. One general ap-

156

8.2 Introduction to PCFG Parsing

proach (text compression), tries to extract a summary by dropping “unimportant” parts
of the original text. In order to obtain a grammatically correct summary one cannot just
drop arbitrary words. Thus one possibility is to cut “unimportant” subtrees from a parse
tree of a sentence. This requires an accurate descriptions of the syntactic structure of a
sentence to obtain good results.

8.2.2 PCFGs

To define the parsing task formally, we assume a (usually infinite) set S of sentences
and a (likewise infinite) set of syntactic analyses T . Furthermore, we assume a (possibly
partial) “yield” function, mapping t ∈ T to S (if t does not correspond to a sentence this
function is undefined). In a formal setting we might have S ⊆ Σ∗ and T being the set of
all derivation trees of a fixed context-free grammar.

To quantify the notion of a “best” parse, we usually assign probabilities to syntactic
analyses. There are two possibilities:

• A generative model defines a joint probability distribution Pr[s, t] over the set of all
sentences s and syntactic analyses t.

• A discriminative model only defines a family of conditional distributions Pr[t | s] on
the set of all parses t, given a sentence s.

The advantage of discriminative models is that they need not model the distribution
Pr[s] which can be complicated. The advantage of generative models is that we can also
use them to generate random analyses t (and hence also random sentences). Moreover,
we can turn any generative model into a discriminative one by marginalizing over t
(which can be an expensive calculation)

Pr[t | s] =
Pr[t, s]
Pr[s]

=
Pr[t, s]∑
t∈T Pr[t, s]

.

A probabilistic context-free grammar (PCFG) is a CFG (X, Σ,→, S) with a designated
start symbol Swhere each rule r = (X,α) ∈ → is assigned a probability p(r) ∈ [0, 1] such
that for each nonterminal X we obtain a discrete probability distribution over the rules
with left hand side X: ∑

α:X→α
p(X,α) = 1 for all X ∈ X

The probability of any leftmost derivation using the rules of the grammar

S⇒α1⇒ . . .⇒αk⇒w ∈ Σ∗

is defined as the product of the probabilities of all rules used. The probability of a deriva-
tion tree t is defined as the probability of the unique leftmost derivation described by
t.

157

8 Application III: Computational Linguistics and Natural Language Processing

A PCFGG is called consistent if it defines a probability distribution over the set T := TGS
of all its derivation trees, i.e. ∑

t∈T
Pr[t] = 1.

Consistent PCFGs are generative models that define a joint distribution over T and S in
the obvious way: If t yields the sentence s then Pr[t, s] = Pr[t], otherwise Pr[t, s] = 0.
More precisely, we define for t ∈ T and s ∈ Σ∗

Pr[t, s] =

{
Pr[t], if Y(t) = s

0, otherwise

This joint distribution also induces a probability distribution on sentences s ∈ Σ∗ via

Pr[s] =
∑
t∈T

Pr[s, t] =
∑

t∈T :Y(t)=s

Pr[t].

Given a probabilistic model, parsing is the task of finding the most probable syntactic
structure t for a given input sentence s:

arg max{Pr[t | s] : t ∈ T }.

For a PCFG, this optimization problem can be efficiently solved via the Viterbi algo-
rithm which is a “weighted” version of the well-known CYK algorithm for parsing with
a CFG. In fact, one can generalize the CYK algorithm (and other parsing algorithms) to
a semiring-weighted setting (see [Goo98] for an extensive treatment). In this framework
the Viterbi algorithm can be seen as the CYK algorithm instantiated over the “Viterbi
semiring” ([0, 1],max, ·, 0, 1). For simplicity, we assume the PCFG to be in Chomsky nor-
mal form (CNF). We note that the CYK algorithm can also be generalized to grammars
in 2NF [LL09]. The basic version, shown in Algorithm 12, only computes the probability
of a most-probable parse. However, we can reconstruct the parse-tree by additionally
storing back-pointers and performing a singe traceback after filling the chart. From the
description, we can see that the algorithm requires O(n3 · |G|) operations and needs
O(n2 · |G|) space.

8.2.3 Inducing Grammars from Treebanks

Treebanks A treebank consists of a set of sentences and their parse trees, which are
produced by humans (with tool support). Popular treebanks often comprise newspaper
texts, such as the

1. Penn Treebank (English, ∼ 40.000 sentences from the “Wall Street Journal”).

2. TIGER treebank (German, ∼ 50.000 sentences from the “Frankfurter Rundschau”).

3. TüBa-D/Z treebank of written German (> 80.000 sentences from the “taz”).

158

8.2 Introduction to PCFG Parsing

Algorithm 12: Viterbi algorithm for PCFG parsing – a generalization of CYK.
input : PCFG G, sentence s ∈ Σn.
output: Probability of the most-probable parse tree, max{Pr[t | s] : t ∈ T }

/* Assume initialization Xi,j(A) = 0 for all i, j ∈ [n], A ∈ X */

for i = 1 . . . n do
foreach rule A→ si do

Xi,1(A) := Pr[A→ si]

end
end
for j = 2 . . . n do

for i = 1 . . . (n− j+ 1) do
for k = 1 . . . (j− 1) do

foreach rule r = (A,BC) s.t. Xi,k(B) > 0 and Xk,j(C) > 0 do
Xi,j(A) = max(Xi,j(A), Xi,k(B) · Xi+k,j−k(C) · p(r))

end
end

end
end
return X1,n(S)

The Penn Treebank is still frequently used in NLP research despite its age (> 20 years)
and the disadvantage that it is not freely available. A sample of around 4000 trees is
available with the python NLTK tool [LB02]. The TüBa-D/Z treebank on the other hand
is still actively maintained and extended, free to use for academic purposes, and consti-
tutes one of the largest parsed corpora available.

Example 8.2. The following is an example parse tree from the Penn Treebank:

(S

(NP-SBJ

(NP (NNP Pierre) (NNP Vinken))

(, ,)

(ADJP (NP (CD 61) (NNS years)) (JJ old))

(, ,))

(VP

(MD will)

(VP

(VB join)

(NP (DT the) (NN board))

(PP-CLR (IN as) (NP (DT a) (JJ nonexecutive) (NN director)))

159

8 Application III: Computational Linguistics and Natural Language Processing

(NP-TMP (NNP Nov.) (CD 29))))

(. .))

The nonterminals that occur right before terminal words are called part-of-speech (POS)
tags, e.g. “Dt” (determiner), “NN” (proper noun), or “JJ” (adjective).

The inner nonterminals of a parse tree, such as “NP” (noun phrase) or “PP” (preposi-
tional phrase) are called constituents and represent categories that give a syntactic struc-
ture to the sentence.

Training a PCFG from a Treebank Given a treebank, we can build a CFG by collecting
all rules that appear in the trees. To obtain a PCFG we estimate the rule probabilities by
counting: Let c(A → α) denote the number of times a rule A → α appears in the tree-
bank and analogously let c(A) be the number of times that the nonterminal A appears.
Then the maximum-likelihood estimator for the probability of a rule p(A→ α) is given
by the relative frequency of that rule, i.e.

p̂(A→ α) =
c(A→ α)

c(A)
.

Chi and Geman show that PCFGs induced in this fashion are always consistent [CG98].
Note that the parse trees in a treebank are not necessarily binary trees and hence,

the resulting PCFG would not be in CNF. Instead of transforming the PCFG into CNF
(which is not always possible 1), we first binarize the trees in the treebank before deriving
the grammar.

Example 8.3. Suppose we have a (very) small treebank consisting of the two parse trees below:

S

VP

NP

N

dog

Det

the

V

chased

NP

N

cat

Det

The

S

VP

NP

N

fish

V

eats

NP

N

dog

Adj

lazy

Det

The

The first tree is already binary so we only binarize the second tree by introducing a new nonter-
minal “[AdjN]”:

1The transformation into CNF still yields an R>0-weighted grammar but it can happen that the weights
do not define a probability distribution over the rules involving some nonterminal.

160

8.2 Introduction to PCFG Parsing

S

VP

NP

N

dog

Det

the

V

chased

NP

N

cat

Det

The

S

VP

NP

N

fish

V

eats

NP

[AdjN]

N

dog

Adj

lazy

Det

The

We finally obtain the following PCFG in CNF, estimating the rule probabilities by relative fre-
quencies:

S 1−→ NP VP Det 1−→ the

NP 0.5−−→ Det N V 0.5−−→ chased

NP 0.25−−−→ Det [AdjN] V 0.5−−→ eats

NP 0.25−−−→ N [AdjN] 1−→ Adj N

N 0.5−−→ dog Adj 1−→ lazy

N 0.25−−−→ cat

N 0.25−−−→ fish

8.2.4 Refining PCFGs

Naively inducing a PCFG from a treebank does are not yield a good parsing model.
One problem is that the nonterminal categories are too coarse, e.g. a nounphrase (NP)
which is a subject NP is much more likely to expand to a pronoun than an object NP
[KM03]. Hence it can be beneficial to distinguish between subject and object NPs. A
general method to correct the “context-freeness” of the PCFG model is to re-introduce
context to PCFGs by splitting nonterminals into subcategories.

One popular method proposed by Johnson [Joh98] is parent annotation. There every
nonterminal in the training treebank is annotated with its parent nonterminal. Thus
every nonterminal is split into at most |X| nonterminals, although in practice the size
of the grammar grows much less. There are many other annotations that are usually
applied to derive practical parsers (e.g. marking temporal or possessive nounphrases),
see [KM03]. Petrov et al. propose to learn subcategories for nonterminals automatically
[PBTK06]. In their approach, nonterminals in the grammar are repeatedly split and
the rule probabilities of the PCFG are re-estimated using the Inside-Outside-algorithm

161

8 Application III: Computational Linguistics and Natural Language Processing

(an EM-algorithm for unsupervised training of PCFGs). If splits lead to better parsing
performance (on separate validation set) they are kept otherwise discarded.

8.2.5 Evaluating Parsers

To evaluate statistical parsing methods, one usually applies the standard procedure used
in statistics, data mining, or machine learning: The treebank is randomly partitioned
into two (disjoint!) parts, a (large) training set (e.g. 90% of the data) and a smaller test set
(e.g. 10% of the data). The training set is used to estimate the statistical model, and the
test set is used for evaluation. We usually repeat this process several times to avoid any
potential bias induced by the selection of the test set.

For the evaluation we run the parser on the test sentences and compare the parse tree
produced by the parser to the “correct” parse tree found in the treebank (referred to as
the “gold tree”). To compare two parse trees, several metrics are commonly used. We
recall them briefly in the following.

PARSEVAL Metrics: Precision, Recall, F1 The PARSEVAL metrics were proposed in
[AFG+91] to evaluate statistical parsers. They are still the most popular way to evaluate
parsing accuracy.

For a nonterminal X and natural numbers i 6 j we call X(i, j) a bracket of a parse tree
if the nonterminal X is the root of the subtree spanning the sub-sentence si . . . sj.

Example 8.4. Consider the sentence from before

S

VP

NP

N

dog

Det

the

V

chased

NP

N

cat

Det

The

The set of all brackets of this sentence is given by

{S(1, 5),NP(1, 2),Det(1, 1),N(2, 2),VP(3, 5),V(3, 3),NP(4, 5),Det(4, 4),N(5, 5)}

The precision of a parse tree tguess produced by a parser w.r.t. the “correct” parse tree
tgold is defined as the number of correct brackets divided by the total number of brackets
produced by the parser. More precisely, let Bguess denote the set of brackets appearing

162

8.2 Introduction to PCFG Parsing

in the tree tguess and analogously define Bgold, then

Prec(tguess, tgold) :=

∣∣Bguess ∩ Bgold
∣∣∣∣Bguess

∣∣
Note that a parser could achieve precision of 100% on a sentence s1 · · · sn by simply

outputting a tree with the single bracket S(1, n). Hence, precision should always be
reported together with recall, which measures the proportion of correct brackets w.r.t. the
total number of brackets in the gold tree:

Rec(tguess, tgold) :=

∣∣Bguess ∩ Bgold
∣∣∣∣Bgold

∣∣
A nearly perfect recall could be produced by a parser that simply outputs a tree com-
prising lots of brackets.

Precision and recall are often condensed into a single number, the F-measure or F1-
score which is the harmonic mean of precision and recall:

F1 := 2 ·
Prec · Rec
Prec + Rec

Example 8.5. Consider a parser that outputs the parse tree below for the sentence “The cat
chased the dog”. For some reason, the parser produces the wrong POS tag for “chased” and
decides to parse the last three words as a VP with three children.

S

VP

N

dog

Det

the

JJ

chased

NP

N

cat

Det

The

The set of brackets for this tree is given by

{S(1, 5),NP(1, 2),Det(1, 1),N(2, 2),VP(3, 5), JJ(3, 3),Det(4, 4),N(5, 5)}

Hence, the precision, recall and F1 measure on this sentence are

Prec =
6

8
= 0.75

Rec =
6

9
= 0.66

F1 =
12

17
≈ 0.7059

Note that the F1-score “punishes” large differences between precision and recall.

To evaluate the parser on a set of trees, the precision, recall, and F1-score are averaged
over all trees.

163

8 Application III: Computational Linguistics and Natural Language Processing

Crossing Brackets A crossing bracket is an error produced by a parser witnessed by a
bracket X(i, j) in the output tree and a bracket Y(k, l) in the gold tree such that neither
span contains the other, i.e. [i, j] 6⊆ [k, l] ∧ [k, l] 6⊆ [i, j]. Intuitively, this means that
the parser does not even detect the rough syntactic structure and assigns a part of the
sentence to the wrong subtree. According to [MS99] a high number of crossing brackets
is considered “particularly dire”.

Example 8.6. Consider again the gold tree on the left and an output tree on the right.

S

VP

NP

N

dog

Det

the

V

chased

NP

N

cat

Det

The

S

VP

NP

N

dog

Det

the

V

chased

N

cat

NP

Det

The

Here the bracket VP(2, 5) in the second tree crosses the bracket NP(1, 2) from the first tree.

Leaf-Ancestor Metric The leaf-ancestor (LA) metric was proposed by [Sam00] who
argues that it better describes the informal notion of a “good” parse than the above
PARSEVAL measures. This is especially relevant for comparing parsing performance
over different treebanks as shown by [RVG07a, RvG07b].

The LA metric is computed for each leaf (i.e. terminal word) of a parse tree: Given a
parse tree for a sentence and a particular leaf, we consider the path from the leaf to the
root (the “lineage”) as a word over the nonterminals X∗. 2

For a particular word in the sentence, the gold and guess tree induce the lineages l1
and l2. The LA score for this word is calculated using the Levenshtein distance (also
called the edit distance) dE between the two lineages l1 and l2:

LA = 1−
dE(l1, l2)

|l1|+ |l2|
.

Note that the LA score is defined for a single word of a sentence. To obtain a score for a
set of sentences there are two possibilities for averaging the scores:

• Compute the average LA score of each sentence and then take the average of these
over the whole set. This number is called the sentence-average score.

2More precisely, [Sam00] considers trees encoded as parenthesized words and lineages are represented
as words over (X ∪ {[,]})

∗ in a more complicated way such that the set of lineages determines a tree
uniquely.

164

8.3 Structural Annotations for Improved Parsing

• Average the LA score for each word over the whole set and then average these
over all words. This number is called the corpus-average score.

8.3 Structural Annotations for Improved Parsing

Previously proposed methods to improve the parsing accuracy of PCFGs mainly have
focused on linguistically motivated annotations of the training trees.

Here, we propose a new annotation method which only depends on the graph-
theoretic structure of the parse tree: We annotate each node by the dimension of the
subtree rooted at it. Since it could be argued that any such graph-theoretic parameter
can be used as annotation, we also consider annotating nodes by their height which is
arguably the simplest measure of the structural complexity of trees.

We experimentally evaluate the impact of different annotation methods on parsing
performance using the freely available TüBa-D/Z treebank of written German. More
specifically, we study the dimension annotation (DA), height annotation (HA), and par-
ent annotation (PA) and their combinations (DA+PA and HA+PA).

Our results in Section 8.3.2 show that the dimension annotation substantially im-
proves both parsing accuracy and parsing speed. Accuracy can be further increased
by combining dimension and parent annotation.

Example 8.7. We illustrate the different annotation methods using the following example from
the TüBa-D/Z treebank (where we have provided a literal translation below each word):

SIMPX

FKOORD

FKONJ

MF

NX

NN

Kosten
costs

ADJX

ADJA

hohe
high

LK

VXFIN

VVFIN

bedeutet
means

KON

und
and

FKONJ

MF

NX

NN

Arbeit
work

PIAT

viel
much

LK

VXFIN

VAFIN

ist
is

VF

NX

PDS

das
this

KOORD

KON

Aber
But

165

8 Application III: Computational Linguistics and Natural Language Processing

The parts of the tree involving the nonterminal “NX” are highlighted in red. As a result we
obtain the following rules for “NX” if we derive a PCFG from this single tree:

NX
1
3−→ PDS

NX
1
3−→ PIAT NN

NX
1
3−→ ADJX NN

With parent annotation, the respective parts of the tree look as follows

VF

NXVF

PDSNX

das

MF

NXMF

NNNX

Arbeit

PIATNX

viel

MF

NXMF

NNNX

Kosten

ADJXNX

ADJA

hohe

Hence, we extract a different set of rules from this tree:

NXVF 1−→ PDSNX

NXMF 0.5−→ PIATNX NNNX

NXMF 0.5−→ ADJXNX NNNX

Dimension annotation attaches to each nonterminal the dimension D of the subtree rooted at
it by appending the string “-D” to its name (note that we could skip the annotation for POS tags
which is always “-0”):

VF

NX-0

PDS-0

das

MF

NX-1

NN-0

Arbeit

PIAT-0

viel

MF

NX-1

NN-0

Kosten

ADJX-0

ADJA

hohe

166

8.3 Structural Annotations for Improved Parsing

Dimension annotation leads to the following set of rules:

NX-0 1−→ PDS-0

NX-1 0.5−→ PIAT-0 NN-0

NX-1 0.5−→ ADJX-0 NN-0

Annotating the training trees with their dimension is similar to unfolding the (un-
weighted) CFG derived from the treebank w.r.t. dimension and then estimating the rule
probabilities by relative frequencies. However, this unfolding approach does not pro-
vide a direct correspondence between the nonterminals in the unfolding and the non-
terminals in the training data, which complicates training. Hence, annotating training
trees is simpler and also allows us to use an existing parser as a black box and feeding it
the annotated training data.

8.3.1 Experimental Setup and Methods

In this section we briefly describe our experimental procedures and setup.

Data and Tools As dataset we use the TüBa-D/Z treebank of written German
[THK+03] version 8.0, comprising 75, 408 parse trees of sentences from the German
newspaper “taz”.

For the annotation of the training trees (with dimension or height) we use python
NLTK [LB02]. We use the Stanford parser [KM03] to train a PCFG and parse the test
data. Since the dimension of a tree is not invariant w.r.t. binarizations (see Section 3.6.3),
we first annotate nodes with their dimension before using the parser to binarize the trees
and derive a PCFG. We use the metrics described in Section 8.2.5 which are implemented
in the Stanford parser to evaluate the parser on the test sentences.

It is important to note that we do not feed raw sentences to the parser but rather
tag words with their “correct” POS tags from the treebank. Hence we start the parse
of each sentence with the pre-terminals (i.e. the nodes of height 1). While it is slightly
unrealistic to assume perfect POS tags this is a common assumption and makes our
work comparable to others like [RM08]. Furthermore, this avoids any parse failures due
to unknown words. In practice, one would smooth the PCFG to account for unknown
words (i.e. set aside a small probability for unseen rules).

We ran our experiments on a machine with an Intel i7 2.7 GHz CPU and 8 GB of
memory. The experiments took about one week to complete (using a single core since
memory turned out to be the main bottleneck). All our scripts and output data can be
obtained from https://github.com/mschlund/nlp-newton.

167

https://github.com/mschlund/nlp-newton

8 Application III: Computational Linguistics and Natural Language Processing

Randomization We sample our training- and test-data 10 times randomly from the
treebank for each of the six annotation methods (none, PA, HA, DA, HA+PA, DA+PA).
This enables us to study the relation between accuracy and the amount of training data
available and to assess the variance of the performance of the PCFG (cf. Figure 8.2).

For each sample size N from {5k, 10k, 20k, . . . , 70k} we draw a random sample of size
N from the set of all 75408 trees in the treebank. The first 90% of this sample was used
as training set and the remaining 10% as test set. We then evaluated each of our annota-
tion methods on this same training/test set. The whole process was repeated ten times
each, yielding 480 experiments altogether. For each experiment we evaluated parsing
performance according to the evaluation measures described before, as well as the pars-
ing speed and the size of the derived grammar. Each of these numbers is then averaged
over the 10 independent random trials. To ensure perfect reproducibility we recorded
the seeds that we used to seed the random generator.

8.3.2 Experimental Results

Our main results are collected in Table 8.2.

Parsing Accuracy As a baseline we use the un-annotated PCFG which gives an F1-
score of 84.8% in our experiments. Rafferty and Manning [RM08] report an F1-score of
88% on a previous release of the TüBa-D/Z treebank (comprising only 20k sentences
of length at most 40). However, the absolute improvements in F1 we observe using
parent annotation are consistent with their work, e.g. our experiments show an absolute
increase of 3.4% with parent annotation while [RM08] report a 3.1% increase. We suspect
the different datasets are the main reason for this difference, especially since their data
only contained sentences of length at most 40 which are easier to parse. Considering
only sentences up to length 40, our experiments yield scores that are about 1% higher
(e.g. 91.2F1 for the DA+PA annotation).

The DA, PA, and HA annotation methods alone lead to comparable improvements
w.r.t. constituency measures with small advantages for the two structural annotations
(DA,HA). Considering the LA metric shows that HA and DA have a clear advantage of
3% over PA.

Both structural annoation methods can be fruitfully combined with parent annotation,
leading to further improvements in the metrics. However, the HA+PA combination
seems to suffer from the large blowup in grammar size and the resulting data-sparseness
problem: Considering the learning curves in Figure 8.2 we see that the HA+PA method
needs a lot of training data to reach acceptable performance and that the performance of
the HA+PA combination does not reach a plateau yet at a sample size of 70k.

Altogether, the DA+PA combination is the most precise one w.r.t. all metrics. It pro-
vides absolute increases of 5.6% F1 and 7.4–8.4% LA-score and offers a relative reduction

168

8.3 Structural Annotations for Improved Parsing

of crossing brackets by 27%. Most importantly, the DA+PA method yields a relative in-
crease of 60% in the number of exactly parsed sentences compared to the PCFG baseline.

Parsing Speed The most surprising result of our experiments is that the dimension
annotation significantly increases the parsing speed despite the growth of the induced
grammar. For common parsing algorithms (such as CYK or Earley), parsing speed is
inversely proportional to the size of the grammar G. The decrease in parsing speed for
parent annotation follows this hypothesis almost exactly: |G| grows by a factor of 1.6
and parsing speed drops by a factor of roughly 1/(1.6).

However, despite the fact that DA and HA increase the size of the grammar by a
factor of 2.4 and 3.6, respectively, parsing speed under these annotations also increases
by a factor of almost 3.5 and 1.8, respectively.

A possible explanation for this phenomenon is the fact that (for a grammar in CNF)
a nonterminal of dimension d can only be produced either by combining one of dimen-
sion d with one of dimension strictly less than d or by two of dimension exactly d − 1.
Since the dimensions involved are typically very small this restricts the search space
significantly.

PARSEVAL Leaf-Ancestor Crossing brackets
Annotation |G| Speed ± stderr F1 exact LA (s) LA (c) # CB zero CB

None 21009 1.74± 0.04 84.8 24.4 84.0 79.7 1.17 58.5

PA 34192 1.07± 0.01 88.2 31.8 86.6 82.9 1.07 61.8

HA 76096 3.06± 0.03 88.7 33.7 89.8 86.2 0.93 65.2

HA+PA 130827 2.20± 0.04 89.2 36.8 90.8 87.0 0.95 65.4

DA 49798 6.02± 0.10 88.5 31.8 89.7 86.1 0.90 64.9

DA+PA 84947 4.04± 0.07 90.4 39.1 91.4 88.1 0.85 67.2

Table 8.2: Average grammar size, parsing speed, and parsing accuracies according to
various metrics for random samples of 70k trees (split into 63k training and
7k test trees) for six different annotation methods, including parent anno-
tation (PA), height annotation (HA), dimension annotation (DA), and their
respective combinations. All numbers are averaged over 10 independent
runs. |G| denotes the number of rules in the grammar, parsing speed is
measured in sentences per second. LA scores are reported as sentence-level
(s) and corpus-level (c) averages, respectively. All accuracies reported in %
(except # CB – the average number of crossing brackets per sentence).

169

8 Application III: Computational Linguistics and Natural Language Processing

0 2 4 6

·104

82

84

86

88

90

Sample size

La
be

le
d
F
1

sc
or

e
in

%

plain PCFG Parent

Dim Dim+Parent

Height Height+Parent

Figure 8.2: Learning curves for different annotation methods. Average F1 with stan-
dard deviation for random samples of various sizes (10 independent runs
each).

8.4 Conclusions, Related, and Future Work

In this chapter we have demonstrated that tree dimension has interesting applications
in the field of computational linguistics and natural language processing. In particular,
we have given evidence that tree dimension is a plausible (albeit very rough) measure
of syntactic complexity of natural language. Furthermore, we have demonstrated that
statistical parsing can benefit from considering dimension information of parse trees.

The experiments reported here have only scratched the surface and suggest many
promising venues for future work:

• Investigate the combination of dimension with more features, also for other prob-
abilistic parsing models (e.g. CRFs instead of PCFGs).

• Experiment with more languages and parsing methods (like Earley or left-corner
parsing) to pinpoint the exact reason why dimension annotation is beneficial. In
the long run it would be desirable to have a thorough theoretic understanding of
why e.g. the parsing speed improves by dimension annotation.

• Study whether complexity features (such as dimension or pathwidth) can also im-
prove dependency parsing – see below.

• Provide a thorough theoretical analysis of the speedup effect for parsing when
using dimension annotation. Note that in principle, this effect might be confined to

170

8.4 Conclusions, Related, and Future Work

CYK-style parsers or be specific to the German treebank we considered. (although
preliminary experimentation suggests that the speedup effect does not depend on
the treebank).

Dependency Grammar, Parsing, and Pathwidth In the framework of dependency gram-
mar, introduced by Tesnière [Tes53], the set T of syntactic analyses is the set of di-
rected graphs with words as nodes and edges encoding syntactic dependencies between
words. A classical formal treatment of dependency grammar was developed by Hays
[Hay64] and Gaifman [Gai65]. More recent work in statistical NLP usually does not use
such descriptive formal models but approaches the parsing problem by training proba-
bilistic models (either generative or discriminative) from a large set of human-generated
dependency structures. For a comprehensive introduction to dependency parsing we
recommend the report by Nivre [Niv05].

Kornai and Tuza [KT92] propose a memory-restricted machine model for processing
sentence structures given as dependency graphs. Their model has access to a small set
(“at most 6 or 7”) of memory cells that may hold vertices of the dependency graph. A
dependency graph is processed by moving its vertices from the input graph to an output
via the internal memory. The restriction is that a vertex can only be output if all its de-
pendents have been output. Kornai and Tuza introduce the narrowness of a graph as the
minimum amount of memory required to process it in this fashion and prove that the
narrowness of a graph is exactly its pathwidth plus one. This establishes pathwidth as
a natural measure for the complexity of dependency structures. Our theoretical results
from Section 3.6.2 which connect tree dimension and pathwidth, provide an important
link to this work and suggest that dependency parsing can be improved as well by con-
sidering structural complexity features like tree dimension.

171

9
Conclusions

Here we briefly review our results and outline some ideas for future work.

9.1 Contributions

9.1.1 Theoretical Foundations (Chapter 3)

We have described Newton’s method as an unfolding of context-free grammars w.r.t. di-
mension (note that this idea already appeared in [EL11]). From the unfolding we have
extracted the definition of Newton’s method via derivatives which is more suitable for
an algorithmic treatment than the unfolding. In particular, the unfolding scheme gives
an effective definition of the value δd which represents the difference F(νd) − νd over
semirings. In [EKL10] it was shown that such a δd always exists and that the sequence
of Newton approximations is independent of the choice of δd.

Exploiting the combinatorial properties of tree dimension, we have proved a general
theorem on the convergence speed of Newton’s method over commutative semirings
(Theorem 3.33). Our result implies that Newton’s method computes the solution of al-
gebraic systems over commutative k-collapsed semirings in O(n+ log logk) steps.

A theoretical application of the convergence result that we have not mentioned
so far is the generalization of Parikh’s theorem to bounded multiplicities shown in
[LS13, LS15]. We show that modulo k = k+ 1we can transform the rational expressions
computed by Newton’s method into “weighted” semilinear expressions (cf. Chapter 5),
i.e. finite sums of “weighted” linear expressions of the form k ′ · cP∗ with k ′ ∈ [k]. Note
that Petre [Pet99] showed that Parikh’s theorem does not hold for multiplicities in N.

173

9 Conclusions

More specifically he defined the hierarchy of “semilinear”, “rational”, and “algebraic”
power series over N〈〈Σ⊕〉〉 and proved its strictness. Our results in [LS13, LS15] comple-
ment this work and show that the hierarchy collapses over Nk〈〈Σ⊕〉〉.

The convergence theorem is also central to our application for Datalog provenance
(cf. Chapter 6) since it allows us to efficiently compute regular expressions representing
provenance over the general semiring Nk〈〈Σ⊕〉〉.

Regarding the combinatorial theory of tree dimension, we have proved a tight relation
between the dimension (aka. Strahler number) and the pathwidth of trees in Section
3.6.2. This settles an open question of David Eppstein1.

9.1.2 Algorithms and Implementation (Chapters 4 and 5)

We have described generic algorithms and data structures for Newton’s method, both
for general semirings and for the special semiring of semilinear sets. Our implementa-
tion FPSOLVE provides a generic and efficient C++ library which is easy to extend. Cur-
rently we are the primary user of FPSOLVE which was helpful for experimenting with
Newton’s method. We hope that we can continue to extend and maintain FPSOLVE.

9.1.3 Applications

A large part of this thesis is concerned with the applications of the theoretical results in
various areas.

Datalog Provenance (Chapter 6) Using our results on Newton’s method we have
shown that the general k-collapsed semirings Nk〈〈Σ⊕〉〉 can be used to represent the
provenance of recursive Datalog programs. Our representation via shared regular ex-
pression is of polynomial size (in the EDB) and is efficiently computable via Newton’s
method. We have described how to specialize these expressions to the Why(Σ) semiring
with a limited increase in size (at most by a factor of O(log|Σ|)). This shows that a special
treatment of semirings such as Why(Σ) as proposed in [DMRT14] is not necessary.

Sub-/Superword Closure of CFGs (Chapter 7) We have answered two open questions
of Gruber, Holzer, and Kutrib [GHK09]: Our work improves the upper bound on the size
of an NFA recognizing the subword closure from 22

O(|G|)
to 2O(|G|) which is asymptot-

ically “tight”. Note however, that there is still some gap between our upper bound of
O(3|G|) for grammars in C2F and the straightforward lower bound of Ω(2|G|). Further-
more, we have shown that the trivial upper bound of 22

O(|G|)
for the size of the DFA

representing the sub- or superword closure of a CFG is essentially tight. A simple but
surprising result is that equivalence of NFAs modulo sub-/superword closure is (only!)
coNP-complete (note that general NFA equivalence is PSPACE-complete). The result

1See https://en.wikipedia.org/wiki/Talk:Pathwidth for a discussion.

174

https://en.wikipedia.org/wiki/Talk:Pathwidth

9.2 Open Problems and Ideas for Future Work

is surprising since the seemingly related problem of NFA equivalence modulo prefix,
suffix, or factor closure stays PSPACE-complete [RSX12].

Our work on the subword closure of CFGs has already been used and extended by
Karandikar, Niewerth, and Schnoebelen who studied the descriptional and computa-
tional complexity of subword interiors of regular languages in [KNS14, KS14].

Natural Language Processing (Chapter 8) Motivated by the combinatorial properties
of tree dimension, we have suggested that dimension is a rough but useful measure of
syntactic complexity. We have successfully used tree dimension as annotation to im-
prove probabilistic parsing (evaluated for the TüBa-D/Z treebank using the Stanford
parser). Besides improving the accuracy of a PCFG trained on the annotated treebank
the dimension annotation significantly speeds up parsing in our experiments. Our an-
notation heuristic was implemented as a feature in the current version of the Stanford
parser by Christopher Manning 2.

9.2 Open Problems and Ideas for Future Work

Theory An interesting theoretical problem is to investigate the distribution of the di-
mension for CFGs with multiple nonterminals. For the derivation trees of the grammar
X → aXX | c (the proper binary trees), Flajolet, Raoult, and Vuillemin [FRV79] give a
closed form for the number of trees with n leaves and dimension less than d, i.e. for
cambG<d,X(an−1cn). They show that the expected dimension of a random binary tree
with n leaves is 1/2 log2 n and that the distribution is tightly concentrated around this
mean. This result implies a much faster convergence of Newton’s method for this special
grammar. It would be highly interesting to derive a similar result for arbitrary context-
free grammars.

Language-Based Testing We would like to extend the grammar testing tool we de-
scribed in Section 5.4 to incorporate more semirings. Specifically, it could be useful to
study more specialized commutative semirings for which the semiring operations are
cheaper to compute than for semilinear sets (e.g. the tropical semiring as shown in Ex-
ample 5.17). We also want to apply the method using non-commutative semirings for
which we can effectively compute Newton’s method, like the matrix semirings over a
commutative semiring as described in Section 3.4.4.

Especially the matrix semirings over a commutative semiring could be useful for a re-
finement strategy: If h(L1) = h(L2) for a homomorphism h : Σ∗ → S into a commutative
semiring S we would try to find a refinement that distinguishes the languages, e.g. an
interpretation ι ′ → S[2]×[2] such that h ′(L1) 6= h ′(L2). The intuition behind this is that

2See https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/nlp/

parser/lexparser/TrainOptions.java

175

https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/nlp/parser/lexparser/TrainOptions.java
https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/nlp/parser/lexparser/TrainOptions.java

9 Conclusions

since matrix semirings are non-commutative they can distinguish the ordering of letters
in Σ to some degree (depending on the dimensionality of the matrix).

To make this more precise, we pose the following question (we have not yet experi-
mented with it sufficiently to call it a conjecture):

Question 9.1. Is the following statement true?
For any two CFGs G1, G2 with L(G1) 6= L(G2) there exists a k ∈ N and an interpre-

tation ι : Σ → (B〈〈Σ⊕〉〉)[k]×[k] into the semiring of k × k matrices over B〈〈Σ⊕〉〉 such that
s1 6= s2 for the least solutions s1, s2 ∈ (B〈〈Σ⊕〉〉)[k]×[k] of the associated algebraic systems over
(B〈〈Σ⊕〉〉)[k]×[k].

Hence our question is, if the semiring of k×k-matrices over the semilinear sets is pow-
erful enough to distinguish two in-equivalent context-free languages (note that k may
depend on the grammars). A related morphism that could prove useful to distinguish
languages is the generalization of the Parikh-image to matrices introduced by Mateescu,
Salomaa, Salomaa, and Yu in [MSSY01].

Our current work only discussed methods to show the in-equivalence of grammars.
Although equivalence of CFGs is not even semi-decidable, it would be useful in practice
to explore (necessarily incomplete) methods that can certify the equivalence of CFGs,
e.g. by exhibiting a suitable bisimulation.

Datalog We have considered standard Datalog without negation or aggregation op-
erations. A logical next step is to extend our provenance representation to (potentially
recursive) queries with aggregation. Amsterdamer et al. [ADT11b] claim that the semi-
ring framework is insufficient to capture provenance even for non-recursive queries and
suggest semi-modules for representing provenance. Hence, we want to investigate their
framework in greater detail and possibly adapt our provenance representation to semi-
modules.

Provenance has recently been used by Deutch et al. [DMT14] for the analysis of so
called data-dependent-processes (DDPs). According to their framework DDPs are finite
automata with some optional transitions whose existence depends on the results of a
database query. Deutch et al. consider finite state DDPs, specifications over finite runs,
and provenance for non-recursive queries (albeit with aggregation). We believe that our
results on provenance and Newton’s method can be used to generalize the approach of
Deutch et al. in several directions, i.e. we want to (1) consider recursive Datalog queries,
(2) specification over infinite runs, and (3) infinite state DDPs, e.g. given as pushdown
automata. Note that in the model investigated by Deutch et al., the “data-dependency-
analysis” can be run as a preprocessing step and does not add expressive power to the
automata model.

176

Bibliography

[ABLM08] Carlos Ansótegui, Marı́a Luisa Bonet, Jordi Levy, and Felip Manyà. Mea-
suring the Hardness of SAT Instances. In Proceedings of the 23rd National
Conference on Artificial Intelligence - Volume 1, AAAI’08, pages 222–228. AAAI
Press, 2008.

[ABT08] Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. On the Reach-
ability Analysis of Acyclic Networks of Pushdown Systems. In CONCUR
2008, pages 356–371, 2008.

[ACBJ04] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and
Bengt Jonsson. Using Forward Reachability Analysis for Verification of
Lossy Channel Systems. Formal Methods in System Design, 25(1):39–65, 2004.

[ADT11a] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for Aggre-
gate Queries. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens,
Greece, pages 153–164, 2011.

[ADT11b] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for Aggre-
gate Queries. In Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’11, pages 153–164, New
York, NY, USA, 2011. ACM.

[AFG+91] S. Abney, S. Flickenger, C. Gdaniec, C. Grishman, P. Harrison, D. Hindle,
R. Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. San-
torini, and T. Strzalkowski. Procedure for Quantitatively Comparing the
Syntactic Coverage of English Grammars. In E. Black, editor, Proceedings
of the Workshop on Speech and Natural Language, HLT ’91, pages 306–311,
Stroudsburg, PA, USA, 1991. Association for Computational Linguistics.

[AHL08] Roland Axelsson, Keijo Heljanko, and Martin Lange. Analyzing Context-
Free Grammars Using an Incremental SAT Solver. In ICALP (2), pages 410–
422, 2008.

[Aho68] Alfred V. Aho. Indexed Grammars – An Extension of Context-Free Gram-
mars. J. ACM, 15(4):647–671, October 1968.

177

Bibliography

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[And98] H. R. Andersen. An Introduction to Binary Decision Diagrams. Technical
report, IT University of Copenhagen, April 1998. Lecture notes.

[ASV13] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. How to Combine Widen-
ing and Narrowing for Non-Monotonic Systems of Equations. In Hans-
Juergen Boehm and Cormac Flanagan, editors, PLDI, pages 377–386. ACM,
2013.

[BC96] Alexandre Boudet and Hubert Comon. Diophantine Equations, Presburger
Arithmetic and Finite Automata. In Proceedings of CAAP ’96, volume 1059 of
LNCS, pages 30–43. Springer, 1996.

[BÉ09] Stephen L. Bloom and Zoltán Ésik. Axiomatizing rational power series over
natural numbers. Inf. Comput., 207(7):793–811, 2009.

[Ben77] David B. Benson. Some Preservation Properties of Normal Form Grammars.
SIAM Journal on Computing, 6(2):381–402, 1977.

[Ber09] Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2009.

[BGB10] Aydın Buluç, John R. Gilbert, and Ceren Budak. Solving Path Problems on
the GPU. Parallel Comput., 36(5-6):241–253, 2010.

[BK14] Olaf Beyersdorff and Oliver Kullmann. Unified Characterisations of Resolu-
tion Hardness Measures. In Carsten Sinz and Uwe Egly, editors, Theory and
Applications of Satisfiability Testing – SAT 2014, volume 8561 of Lecture Notes
in Computer Science, pages 170–187. Springer International Publishing, 2014.

[BKWC01] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and Where:
A Characterization of Data Provenance. In Database Theory — ICDT 2001,
volume 1973 of Lecture Notes in Computer Science, pages 316–330. Springer
Berlin Heidelberg, 2001.

[BLS15] Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite
Automata for the Sub- and Superword Closure of CFLs: Descriptional and
Computational Complexity. In Language and Automata Theory and Applica-
tions - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015,
Proceedings, pages 473–485, 2015.

[Boz99] S. Bozapalidis. Equational Elements in Additive Algebras. Theory Comput.
Syst., 32(1):1–33, 1999.

178

Bibliography

[Bru14] Matthias Brugger. Analyse von kontextfreien Grammatiken mit Hilfe eines
SMT-Solvers. Bachelor’s thesis, TU München, 2014.

[Bry86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
Computers, IEEE Transactions on, C-35(8):677–691, Aug 1986.

[CCT09] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in
Databases: Why, How, and Where. Found. Trends databases, 1(4):379–474,
April 2009.

[CDF96] Kevin Cattell, Michael J. Dinneen, and Michael R. Fellows. A Simple Linear-
Time Algorithm for Finding Path-Decompositions of Small Width. Informa-
tion Processing Letters, 57(4):197 – 203, 1996.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
Available on: http://www.grappa.univ-lille3.fr/tata, 2007. re-
lease October, 12th 2007.

[CG98] Zhiyi Chi and Stuart Geman. Estimation of Probabilistic Context-free Gram-
mars. Comput. Linguist., 24(2):299–305, June 1998.

[Cou91] B. Courcelle. On Constructing Obstruction Sets of Words. EATCS Bulletin,
44:178–185, 1991.

[Cro99] Matthew Crocker. Mechanisms for Sentence Processing. In Language Pro-
cessing, pages 191–232. Psychology Press, London, UK, 1999.

[CS63] N. Chomsky and M.P. Schützenberger. Computer Programming and Formal
Systems, chapter The Algebraic Theory of Context-Free Languages, pages
118 – 161. North Holland, 1963.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the Lineage
of View Data in a Warehousing Environment. ACM Trans. Database Syst.,
25(2):179–227, June 2000.

[Dic13] Leonard Eugene Dickson. Finiteness of the Odd Perfect and Primitive Abun-
dant Numbers with n Distinct Prime Factors. American Journal of Mathemat-
ics, 35(4):pp. 413–422, 1913.

[DKV09] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer,
2009.

[DMRT14] Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for Dat-
alog Provenance. In Proc. 17th International Conference on Database Theory
(ICDT), Athens, Greece, March 24-28, 2014., pages 201–212, 2014.

179

http://www.grappa.univ-lille3.fr/tata

Bibliography

[DMT14] Daniel Deutch, Yuval Moskovitch, and Val Tannen. A Provenance Frame-
work for Data-dependent Process Analysis. Proc. VLDB Endow., 7(6):457–
468, February 2014.

[DTR] Evan Driscoll, Aditya Thakur, and Thomas Reps. WALi: the Weighted Au-
tomata Library. https://research.cs.wisc.edu/wpis/wpds/.

[ÉK04] Zoltán Ésik and Werner Kuich. Inductive ∗-Semirings. Theor. Comput. Sci.,
324(1):3–33, 2004.

[EKL07a] J. Esparza, S. Kiefer, and M. Luttenberger. An Extension of Newton’s
Method toω-Continuous Semirings. In DLT, pages 157–168, 2007.

[EKL07b] J. Esparza, S. Kiefer, and M. Luttenberger. On Fixed Point Equations over
Commutative Semirings. In STACS, pages 296–307, 2007.

[EKL08] J. Esparza, S. Kiefer, and M. Luttenberger. Derivation Tree Analysis for Ac-
celerated Fixed-Point Computation. In DLT, pages 301–313, 2008.

[EKL10] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian Program Analysis. J.
ACM, 57(6):33, 2010.

[EKSW04] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-wei Wang. Regular
Expressions: New Results and Open Problems. J. Autom. Lang. Comb., 9(2-
3):233–256, September 2004.

[EL11] Javier Esparza and Michael Luttenberger. Solving Fixed-Point Equations by
Derivation Tree Analysis. In CALCO, pages 19–35, 2011.

[ELS14a] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A Brief His-
tory of Strahler Numbers. In Language and Automata Theory and Applications
- 8th International Conference, LATA 2014, Madrid, Spain, March 10-14, 2014.
Proceedings, pages 1–13, 2014.

[ELS14b] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. FPsolve:
A Generic Solver for Fixpoint Equations over Semirings. In Implementation
and Application of Automata - 19th International Conference, CIAA 2014, Giessen,
Germany, July 30 - August 2, 2014. Proceedings, pages 1–15, 2014.

[ELS15] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. FPsolve: A
Generic Solver for Fixpoint Equations over Semirings. International Journal
of Foundations of Computer Science, 2015.

[Ers58] A. P. Ershov. On Programming of Arithmetic Operations. Commun. ACM,
1(8):3–9, 1958.

180

https://research.cs.wisc.edu/wpis/wpds/

Bibliography

[ERV81] Andrzej Ehrenfeucht, Grzegorz Rozenberg, and Dirk Vermeir. On ET0L Sys-
tems with Finite Tree-Rank. SIAM J. Comput., 10(1):40–58, 1981.

[Ési08] Z. Ésik. Iteration Semirings. In Developments in Language Theory, pages 1–20,
2008.

[EY05] Kousha Etessami and Mihalis Yannakakis. Recursive Markov Chains,
Stochastic Grammars, and Monotone Systems of Nonlinear Equations. In
STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Stuttgart, Germany, February 24-26, 2005, Proceedings, pages 340–352,
2005.

[EY09] Kousha Etessami and Mihalis Yannakakis. Recursive Markov Chains,
Stochastic Grammars, and Monotone Systems of Nonlinear Equations. J.
ACM, 56(1), 2009.

[FBS12] Juliana Freire, Philippe Bonnet, and Dennis Shasha. Computational Repro-
ducibility: State-of-the-art, Challenges, and Database Research Opportuni-
ties. In Proceedings of the 2012 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’12, pages 593–596, New York, NY, USA, 2012.
ACM.

[FKSS08] J. Freire, D. Koop, E. Santos, and C.T. Silva. Provenance for Computational
Tasks: A Survey. Computing in Science Engineering, 10(3):11–21, May 2008.

[FL02] Alain Finkel and Jérôme Leroux. How to Compose Presburger-
Accelerations: Applications to Broadcast Protocols. In Proceedings of FST
TCS 2002, pages 145–156, 2002.

[FRV79] P. Flajolet, J.-C. Raoult, and J. Vuillemin. The Number of Registers Required
for Evaluating Arithmetic Expressions. Theor. Comput. Sci., 9:99–125, 1979.

[Gai65] Haim Gaifman. Dependency Systems and Phrase-Structure Systems. Infor-
mation and Control, 8(3):304 – 337, 1965.

[GH08] Hermann Gruber and Markus Holzer. Finite Automata, Digraph Connectiv-
ity, and Regular Expression Size. In Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming &
Track C: Security and Cryptography Foundations, pages 39–50, 2008.

[GH14] Hermann Gruber and Markus Holzer. From finite automata to regular ex-
pressions and back-a summary on descriptional complexity. In Proceedings
14th International Conference on Automata and Formal Languages, AFL 2014,
Szeged, Hungary, May 27-29, 2014., pages 25–48, 2014.

181

Bibliography

[GHK09] Hermann Gruber, Markus Holzer, and Martin Kutrib. More on the Size of
Higman-Haines Sets: Effective Constructions. Fundam. Inf., 91(1):105–121,
January 2009.

[GK14] Matthew Gwynne and Oliver Kullmann. A Framework for Good SAT
Translations, with Applications to CNF Representations of XOR Constraints.
arXiv preprint arXiv:1406.7398, 2014.

[GKP89] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-
matics - A Foundation for Computer Science. Addison-Wesley, 1989.

[GKT07] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings. In
PODS, pages 31–40, 2007.

[Goo98] Joshua T. Goodman. Parsing Inside-Out. PhD thesis, Cambridge, MA, USA,
1998. AAI9832377.

[GR14] Carlos Gómez-Rodrı́guez. Finding the Smallest Binarization of a {CFG} is
NP-Hard. Journal of Computer and System Sciences, 80(4):796 – 805, 2014.

[Gre09a] Todd J. Green. Collaborative Data Sharing with Mappings and Provenance. PhD
thesis, University of Pennsylvania, 2009. Rubinoff Dissertation Award; hon-
orable mention for Jim Gray Dissertation Award.

[Gre09b] Todd J. Green. Containment of Conjunctive Queries on Annotated Relations.
In Proceedings of the 12th International Conference on Database Theory, ICDT ’09,
pages 296–309, New York, NY, USA, 2009. ACM.

[GS68] S. Ginsburg and E. Spanier. Derivation-Bounded Languages. Journal of Com-
puter and System Sciences, 2:228–250, 1968.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[Har02] Theodore E. Harris. The Theory of Branching Processes. Courier Corporation,
2002.

[Hay64] David G. Hays. Dependency Theory: A Formalism and Some Observations.
Language, pages 511–525, 1964.

[HGL11] Shan Shan Huang, Todd J. Green, and Boon Thau Loo. Datalog and Emerg-
ing Applications: An Interactive Tutorial. In SIGMOD, 2011.

[Hig52] Graham Higman. Ordering by Divisibility in Abstract Algebras. Proceedings
of the London Mathematical Society, s3-2(1):326–336, 1952.

182

Bibliography

[HJJ+95] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic Second-Order Logic in Practice. In Proceed-
ings of TACAS ’95, volume 1019 of LNCS, 1995.

[HMW10] Peter Habermehl, Roland Meyer, and Harro Wimmel. The Downward-
Closure of Petri Net Languages. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and PaulG. Spirakis, ed-
itors, Automata, Languages and Programming, volume 6199 of Lecture Notes in
Computer Science, pages 466–477. Springer Berlin Heidelberg, 2010.

[HN10] Géza Horváth and Benedek Nagy. Pumping Lemmas for Linear and Non-
linear Context-Free Languages. CoRR, abs/1012.0023, 2010.

[Hor45] R. E. Horton. Erosional development of streams and their drainage basins:
hydro-physical approach to quantitative morphology. Geological Society of
America Bulletin, 56(3):275–370, 1945.

[Hun73] H. B. Hunt, III. On the Time and Tape Complexity of Languages I. In Pro-
ceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC
’73, pages 10–19, New York, NY, USA, 1973. ACM.

[Huy80] Thiet-Dung Huynh. The Complexity of Semilinear Sets. In Automata, Lan-
guages and Programming, volume 85 of LNCS, pages 324–337. Springer, 1980.

[Joh98] Mark Johnson. PCFG Models of Linguistic Tree Representations. Computa-
tional Linguistics, 24(4):613–632, 1998.

[Kem79] R. Kemp. The Average Number of Registers Needed to Evaluate a Binary
Tree Optimally. Acta Informatica, 11:363–372, 1979.

[Ker70] Leslie R. Kerr. The Effect of Algebraic Structure on the Computational Complexity
of Matrix Multiplication. PhD thesis, Cornell University, Ithaca, NY, USA,
1970.

[Ker14] Michael Kerscher. Symbolic Representations of Semilinear Sets. Master’s
thesis, TU München, 2014.

[KM02] Kevin Knight and Daniel Marcu. Summarization Beyond Sentence Ex-
traction: A Probabilistic Approach to Sentence Compression. Artif. Intell.,
139(1):91–107, July 2002.

[KM03] Dan Klein and Christopher D. Manning. Accurate Unlexicalized Parsing.
In Proceedings of the 41st Annual Meeting on Association for Computational Lin-
guistics - Volume 1, ACL ’03, pages 423–430, Stroudsburg, PA, USA, 2003.
Association for Computational Linguistics.

183

Bibliography

[KNS14] Prateek Karandikar, Matthias Niewerth, and Philippe Schnoebelen. On the
State Complexity of Closures and Interiors of Regular Languages with Sub-
words. CoRR, abs/1406.0690, 2014.

[Koz96] Dexter Kozen. Kleene Algebra with Tests and Commutativity Conditions.
In Tools and Algorithms for the Construction and Analysis of Systems, volume
1055 of LNCS, pages 14–33. Springer Berlin Heidelberg, 1996.

[KPV02] Orna Kupferman, Nir Piterman, and MosheY. Vardi. Pushdown Specifica-
tions. In Matthias Baaz and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 2514 of Lecture Notes in Computer
Science, pages 262–277. Springer Berlin Heidelberg, 2002.

[KRS09] Jui-Yi Kao, Narad Rampersad, and Jeffrey Shallit. On NFAs Where All States
are Final, Initial, or Both. Theoretical Computer Science, 410(47-49):5010 – 5021,
2009.

[KS14] Prateek Karandikar and Philippe Schnoebelen. On the State Complexity of
Closures and Interiors of Regular Languages with Subwords. In Descrip-
tional Complexity of Formal Systems - 16th International Workshop, DCFS 2014,
Turku, Finland, August 5-8, 2014. Proceedings, pages 234–245, 2014.

[KT92] András Kornai and Zsolt Tuza. Narrowness, Pathwidth, and their Applica-
tion in Natural Language Processing. Discrete Applied Mathematics, 36(1):87
– 92, 1992.

[KT10] Eryk Kopczynski and Anthony Widjaja To. Parikh images of grammars:
Complexity and applications. In Proceedings of the 25th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,
United Kingdom, pages 80–89, 2010.

[Kui97] W. Kuich. Handbook of Formal Languages, volume 1, chapter 9: Semirings and
Formal Power Series: Their Relevance to Formal Languages and Automata,
pages 609 – 677. Springer, 1997.

[LB02] Edward Loper and Steven Bird. NLTK: The Natural Language Toolkit. In
Proceedings of the ACL-02 Workshop on Effective tools and methodologies for teach-
ing natural language processing and computational linguistics-Volume 1, pages
63–70. Association for Computational Linguistics, 2002.

[Ler05] Jérôme Leroux. A Polynomial Time Presburger Criterion and Synthesis for
Number Decision Diagrams. In Proceedings of LICS 2005, pages 147–156,
2005.

184

Bibliography

[LL09] Martin Lange and Hans Leiß. To CNF or not to CNF? An Efficient Yet Pre-
sentable Version of the CYK Algorithm. Informatica Didactica, 8, 2009.

[LP09] Jérôme Leroux and Gérald Point. TaPAS: The Talence Presburger Arithmetic
Suite. In Tools and Algorithms for the Construction and Analysis of Systems,
15th International Conference, TACAS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March
22-29, 2009. Proceedings, pages 182–185, 2009.

[LRSS13] G.L. Litvinov, A.Ya. Rodionov, S.N. Sergeev, and A.N. Sobolevski. Universal
Algorithms for Solving the Matrix Bellman Equations over Semirings. Soft
Computing, 17(10):1767–1785, 2013.

[LS13] M. Luttenberger and M. Schlund. Convergence of Newton’s Method over
Commutative Semirings. In LATA, volume 7810 of LNCS, pages 407–418,
2013.

[LS14] Michael Luttenberger and Maximilian Schlund. Regular Expressions for
Provenance. In 6th Workshop on the Theory and Practice of Provenance, TaPP’14,
Cologne, Germany, June 12-13, 2014, 2014.

[LS15] Michael Luttenberger and Maximilian Schlund. Convergence of Newton’s
Method over Commutative Semirings. Information and Computation, 2015.

[Lut10] Michael Luttenberger. Solving Systems of Polynomial Equations: A Generaliza-
tion of Newton’s Method. PhD thesis, Technische Universität München, 2010.

[Mil56] George A Miller. The Magical Number Seven, Plus or Minus Two: Some
Limits on our Capacity for Processing Information. Psychological Review,
63(2):81, 1956.

[MN01] Mehryar Mohri and Mark-Jan Nederhof. Regular Approximation of
Context-Free Grammars through Transformation. In Robustness in Language
and Speech Technology, volume 17 of Text, Speech and Language Technology,
pages 153–163. 2001.

[Moh02] M. Mohri. Semiring Frameworks and Algorithms for Shortest-Distance
Problems. J. Autom. Lang. Comb., 7(3):321–350, 2002.

[MS72] A. R. Meyer and L. J. Stockmeyer. The Equivalence Problem for Regular
Expressions with Squaring Requires Exponential Space. In Proceedings of the
13th Annual Symposium on Switching and Automata Theory (Swat 1972), SWAT
’72, pages 125–129, Washington, DC, USA, 1972. IEEE Computer Society.

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of statistical natu-
ral language processing, volume 999. MIT Press, 1999.

185

Bibliography

[MSSY01] Alexandru Mateescu, Arto Salomaa, Kai Salomaa, and Sheng Yu. A Sharpen-
ing of the Parikh Mapping. RAIRO - Theoretical Informatics and Applications,
35:551–564, 11 2001.

[MW67] J. Mezei and J.B. Wright. Algebraic Automata and Context-Free Sets. Infor-
mation and Control, 11(1):3 – 29, 1967.

[Mü96] Haiko Müller. On Edge Perfectness and Classes of Bipartite Graphs. Discrete
Mathematics, 149(1–3):159 – 187, 1996.

[Niv05] Joakim Nivre. Dependency grammar and dependency parsing. Technical
report, 2005.

[Okh10] Alexander Okhotin. On the State Complexity of Scattered Substrings and
Superstrings. Fundam. Inform., 99(3):325–338, 2010.

[Orl77] James Orlin. Contentment in Graph Theory: Covering Graphs with Cliques.
Indagationes Mathematicae (Proceedings), 80(5):406 – 424, 1977.

[PBTK06] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accu-
rate, Compact, and Interpretable Tree Annotation. In Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual meet-
ing of the Association for Computational Linguistics, pages 433–440. Association
for Computational Linguistics, 2006.

[Pet99] I. Petre. Parikh’s Theorem Does not Hold for Multiplicities. J. Autom. Lang.
Comb., 4(1):17–30, 1999.

[Pil73] D. L. Pilling. Commutative regular equations and Parikh’s theorem. Journal
of the London Mathematical Society, pages 663–666, 1973.

[PSS12] C. Pivoteau, B. Salvy, and M. Soria. Algorithms for Combinatorial Struc-
tures: Well-Founded Systems and Newton Iterations. J. Comb. Theory, Ser. A,
119(8):1711–1773, 2012.

[RM08] Anna N. Rafferty and Christopher D. Manning. Parsing Three German Tree-
banks: Lexicalized and Unlexicalized Baselines. In Proceedings of the Work-
shop on Parsing German, PaGe ’08, pages 40–46, Stroudsburg, PA, USA, 2008.
Association for Computational Linguistics.

[Ros11] Nathan E. Rosenblum. The Provenance Hierarchy of Computer Programs. PhD
thesis, Madison, WI, USA, 2011. AAI3488666.

[RSJM05] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Science of Com-
puter Programming, 58(1–2):206–263, October 2005. Special Issue on the Static
Analysis Symposium 2003.

186

Bibliography

[RSX12] Narad Rampersad, Jeffrey Shallit, and Zhi Xu. The Computational Complex-
ity of Universality Problems for Prefixes, Suffixes, Factors, and Subwords of
Regular Languages. Fundam. Inform., 116(1-4):223–236, 2012.

[RVG07a] Ines Rehbein and Josef Van Genabith. Evaluating Evaluation Measures. In
NODALIDA, pages 372–379, 2007.

[RvG07b] Ines Rehbein and Josef van Genabith. Treebank Annotation Schemes and
Parser Evaluation for German. In EMNLP-CoNLL, pages 630–639, 2007.

[Sal90] A. Salomaa. Formal Languages and Power Series. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science: Volume B: Formal Models and
Semantics, pages 103–132. Elsevier, Amsterdam, 1990.

[Sam00] Geoffrey Sampson. A Proposal for Improving the Measurement of Parse
Accuracy. International Journal of Corpus Linguistics, 5(1):53–68, 2000.

[SB11] Yannis Smaragdakis and Martin Bravenboer. Using datalog for fast and easy
program analysis. In Oege de Moor, Georg Gottlob, Tim Furche, and An-
drew Sellers, editors, Datalog Reloaded, volume 6702 of Lecture Notes in Com-
puter Science, pages 245–251. Springer Berlin Heidelberg, 2011.

[SLE14] Maximilian Schlund, Michael Luttenberger, and Javier Esparza. Fast and
Accurate Unlexicalized Parsing via Structural Annotations. In Proceedings of
the 14th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2014, April 26-30, 2014, Gothenburg, Sweden, pages 164–168,
2014.

[SP81] M. Sharir and A. Pnueli. Program Flow Analysis: Theory and Applications,
chapter 7: Two Approaches to Interprocedural Data Flow Analysis, pages
189–233. Prentice-Hall, 1981.

[SRJ] Stefan Schwoon, Thomas Reps, and Somesh Jha. Weighted Pushdown Sys-
tems Library. http://www2.informatik.uni-stuttgart.de/fmi/

szs/tools/wpds/.

[STK+13] Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi,
Richárd Farkas, Jennifer Foster, Iakes Goenaga, Koldo Gojenola, Yoav Gold-
berg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang Maier,
Joakim Nivre, Adam Przepiorkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński, Alina Wróblewska, and Eric
Villemonte de la Clérgerie. Overview of the SPMRL 2013 Shared Task: A
Cross-Framework Evaluation of Parsing Morphologically Rich Languages.
In Proceedings of the 4th Workshop on Statistical Parsing of Morphologically Rich
Languages: Shared Task, Seattle, WA, 2013.

187

http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/wpds/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/wpds/

Bibliography

[STL13] Maximilian Schlund, Michal Terepeta, and Michael Luttenberger. Putting
Newton into Practice: A Solver for Polynomial Equations over Semirings.
In LPAR, pages 727–734, 2013.

[Str52] A. N. Strahler. Hypsometric (area-altitude) analysis of erosional topology.
Geological Society of America Bulletin, 63(11):1117–1142, 1952.

[STW08] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting Lin-
eage for Confidence Computation in Uncertain and Probabilistic Databases.
In Proceedings of the 24th International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, México, pages 1023–1032, 2008.

[Sud04] M. Suderman. Pathwidth And Layered Drawings Of Trees. Int. J. Comput.
Geometry Appl., 14(3):203–225, 2004.

[Tar81] Robert Endre Tarjan. A Unified Approach to Path Problems. J. ACM,
28(3):577–593, 1981.

[Tes53] L. Tesnière. Esquisse d’une syntaxe structurale. C. Klincksieck, 1953.

[THK+03] Heike Telljohann, Erhard W. Hinrichs, Sandra Kübler, Heike Zinsmeister,
and Kathrin Beck. Stylebook for the Tübingen Treebank of Written German
(TüBa-D/Z). Seminar für Sprachwissenschaft, Universität Tübingen, Ger-
many, 2003.

[UNMT06] Yuya Unno, Takashi Ninomiya, Yusuke Miyao, and Jun’ichi Tsujii. Trim-
ming CFG Parse Trees for Sentence Compression Using Machine Learning
Approaches. In Proceedings of the COLING/ACL on Main Conference Poster
Sessions, COLING-ACL ’06, pages 850–857, Stroudsburg, PA, USA, 2006. As-
sociation for Computational Linguistics.

[vL78] Jan van Leeuwen. Effective Constructions in Well-Partially-Ordered Free
Monoids. Discrete Mathematics, 21(3):237 – 252, 1978.

[VSS05] K. N. Verma, H. Seidl, and T. Schwentick. On the Complexity of Equational
Horn Clauses. In CADE, volume 3632 of LNCS, pages 337–352, 2005.

[VT13] Naveneetha Vasudevan and Laurence Tratt. Detecting Ambiguity in Pro-
gramming Language Grammars. In Software Language Engineering, volume
8225 of LNCS, pages 157–176. 2013.

[VV] Vesal Vojdani and Varmo Vene. Goblint. http://goblint.in.tum.de/.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Us-
ing Datalog with Binary Decision Diagrams for Program Analysis. In Pro-
ceedings of the Third Asian Conference on Programming Languages and Systems,
APLAS’05, pages 97–118, Berlin, Heidelberg, 2005. Springer-Verlag.

188

http://goblint.in.tum.de/

Bibliography

[WB95] Pierre Wolper and Bernard Boigelot. An Automata-Theoretic Approach to
Presburger Arithmetic Constraints (Extended Abstract). In Proceedings of
SAS ’95, pages 21–32, London, UK, UK, 1995. Springer-Verlag.

[WE07] Dominik Wojtczak and Kousha Etessami. PReMo : An Analyzer for Prob-
abilistic Recursive Models. In Tools and Algorithms for the Construction and
Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007, Proceedings, pages 66–71, 2007.

[YK01] Kenji Yamada and Kevin Knight. A syntax-based statistical translation
model. In Proceedings of the 39th Annual Meeting on Association for Compu-
tational Linguistics, ACL ’01, pages 523–530, Stroudsburg, PA, USA, 2001.
Association for Computational Linguistics.

[Zet15] Georg Zetzsche. An Approach to Computing Downward Closures. In Au-
tomata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pages 440–451, 2015.

[Zwi02] Uri Zwick. All Pairs Shortest Paths Using Bridging Sets and Rectangular
Matrix Multiplication. J. ACM, 49(3):289–317, 2002.

189

	Abstract
	Acknowledgements
	Contents
	Introduction
	Modeling via Algebraic Systems
	Fixpoint iteration
	Algebraic Systems, Context-Free Grammars, and Newton's Method
	Applications of Algebraic Systems
	Contributions and Outline

	Preliminaries
	Basics: Numbers, Languages, Orders, Fixpoints
	Semirings, Formal Power Series, Polynomials, Matrices, Vectors
	Automata and Formal Language Theory
	Regular Languages
	Context-Free Languages

	Theory of Algebraic Systems
	Polynomial Systems
	From Equations to Grammars and Back
	Fixpoint Iteration
	Newton's Method
	Definition of Newton's Method as Dimension-Unfolding
	Newton's Method via Derivatives
	Commutative Semirings and Newton's Method over the Reals
	Closed Form for Non-Commutative Semirings

	Convergence of Newton's Method
	Bounds on Convergence – General Case
	Bounds on Convergence – Commutative Case

	Combinatorics of Tree Dimension
	Tree Dimension and Related Notions
	Tree Dimension and Pathwidth
	Application: Optimizing Arithmetic Expressions

	Conclusions

	Newton's Method: Generic Algorithms and Implementation
	Algorithmic Details of Newton's Method
	Generic Formulation of Newton's Method
	Specialization for Commutative Semirings
	Solving Right-Linear Systems
	Symbolic Solving
	Decomposition into SCCs

	FPsolve: A Generic Library for Algebraic Systems
	Overview and Architecture
	Using the Standalone Solver
	Implementation Details
	Performance of FPsolve

	Conclusions

	Algorithms and Data Structures for Semilinear Sets
	Theoretical Background
	Explicit Vector Representation
	Defining the Semiring Operations
	Optimizations
	Over-Approximations

	Symbolic Representation via NDDs
	Representing Semilinear Sets via NDDs
	Optimizations

	Application: A Tool for Grammar Testing
	Conclusions

	Application I: Provenance for Datalog
	Introduction to Datalog and Provenance
	Datalog
	Green's Semiring Framework for Provenance

	Regular Expressions for Provenance
	Datalog Programs as Algebraic Systems
	Extending the Provenance Hierarchy
	Computing Provenance Expressions
	Eliminating Kleene Stars from Shared Expressions

	Related Work and Conclusions

	Application II: Subword and Superword Closure of Context-Free Languages
	Introduction
	An Optimized Variant of Courcelle's Construction
	Preprocessing the Grammar

	Representations for the Subword Closure of CFLs
	NFAs
	DFAs
	Regular Expressions

	Application: Approximate Answers to Undecidable Grammar Problems
	Equivalence Checking of NFAs Modulo Closure
	Witness Generation
	Refinement
	Experiments

	Related Work and Conclusions

	Application III: Computational Linguistics and Natural Language Processing
	Tree Dimension as a Measure of Sentence Complexity
	Introduction to PCFG Parsing
	Motivation
	PCFGs
	Inducing Grammars from Treebanks
	Refining PCFGs
	Evaluating Parsers

	Structural Annotations for Improved Parsing
	Experimental Setup and Methods
	Experimental Results

	Conclusions, Related, and Future Work

	Conclusions
	Contributions
	Theoretical Foundations (Chapter 3)
	Algorithms and Implementation (Chapters 4 and 5)
	Applications

	Open Problems and Ideas for Future Work

