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Abstract

Perception is fundamental to many robot application areas especially in service robotics.

Our aim is to perceive and model an unprepared kitchen scenario with many objects.

We start with the perception of a single target object. The modeling relies especially

on fusing and merging of weak information from the sensors of the robot in order to

localize objects. This requires the representation of various probability distributions

of pose in S3 × R3 as orientation and position have to be localized. In this thesis I

present a framework for probabilistic modeling of poses in S3 × R3 that represents a

large class of probability distributions and provides among others the operations of

the fusion and the merge of estimates. Further it o�ers the propagation of uncertain

information data. I work out why we choose to represent the orientation part of a

pose by a unit quaternion. The translation part is described either by a 3-dimensional

vector or by a purely imaginary quaternion. This depends on whether we de�ne the

probability density function or whether we want to represent a transformation which

consists of a rotation and a translation by a dual quaternion. A basic probability den-

sity function over the poses is de�ned by a tangent point on the hypersphere and a

6-dimensional Gaussian distribution. The hypersphere is embedded to the R4 which

is representing a unit quaternions whereas the Gaussian is de�ned over the product

of the tangent space of the sphere and of the space of translations. The projection of

this Gaussian to the hypersphere induces a distribution over poses in S3×R3. The set

of mixtures of projected Gaussians can approximate the probability density functions

that arise in our application. Moreover it is closed under the operations introduced in

this framework and allows for an e�cient implementation.
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1. Introduction

1.1. Motivation

Figure 1.1.: The �gure shows the robot of the DESIRE project (which stands for 'Deutsche

Servicerobotic Initiative') observing a kitchen scenario.

Imagine a robot that has the task to get a speci�ed object from a table. Several objects

are arranged on the table like in an arbitrary kitchen scenario. This kind of task is

fundamental for many applications of service robotics like mobile manipulation.

The robot knows the pose of the table and notices there is something on top of it.

Height and position of the table usually are given to the robot to receive better results

in experiments. For the algorithm it is not necessary to know the pose of the table.

It could also be estimated. That something is placed on top of it, the robot can see

through its stereo camera system. Often a 3D sensor like a laser scanner or ultra sonic

sound sensor also is part of the robot's sensor system.
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1.2 Problem Statement

Robots are not able to identify unknown objects through the process established in our

framework. They just can recognize known objects. Therefore a database of 3D models

of objects is implemented to the robot. The robot makes several independent attempts

to determine orientation and position of the target object exact enough to be able to

grasp it. These localization attempts might be with di�erent methods, from di�erent

points of view or under di�erent conditions like brightness and shadows for instance.

Thus we get plenty of more or less suitable information data which the robot needs

to handle in an appropriate way. The robot repeats making independent attempts to

localize the object until the resulting pose is determined well enough i.e. the uncer-

tainty is below a given threshold and the robot can pick up the object with a failure

probability below a resulting value ε > 0.

In this context rotation and orientation are often used synonymously as well as trans-

lation and position. This comes from the fact that the orientation of any object results

from the rotation that moves it to this alignment and likewise the position results from

the translation. Together orientation and position describe the pose of an object as a

pose is the result of any transformation consisting of rotation and translation.

Furthermore I won't handle object classes in this work. I suppose that the objects are

part of the robot's database and that it recognizes them.

1.2. Problem Statement

For the whole present work I assume that the data association problem is solved. This

means that we know which object the data describes we receive from the individual

localization attempts. I claim this to reduce the uncertainty and thus to simplify the

situation we have to deal with. We work with a single target object and its observation

data.

After having reduced the complexity of the task that far we have to estimate the state

of the target object. As in a kitchen scenario like illustrated in �gure 1.1, three di-

mensions for each, the rotation and translation can occur, we have to deal with a

6-dimensional space, namely the special Euclidean group, which will be introduced in

2.1.2. Such a state of the target object in the special Euclidean group is called object

pose and thus I will refer to pose estimation instead of state estimation.

To be able to estimate a pose at �rst the representation of the pose and parametrization

of rotation and translation have to be de�ned. In section 2.1 I introduce several can-

6



1.2 Problem Statement

didates for the pose representation and then select the most suitable one for our topic.

After analyzing the problem from an algebraic point of view some probability theory

has to be introduced. To estimate the pose of a target object, its probability distribu-

tion has to be known. Section 2.2 is concerned with some distribution functions on the

special Euclidean group which can either have a parameterized density or consist of a

particle set. Finally I justify in section 2.3 my decision to choose mixtures of projected

Gaussians as preferable distribution function to estimate the pose of the target object

and introduce the algorithms for basic operations. One of them is the fusing of two

mixtures i.e. deriving a common estimate from two independent estimates, another

one is to merge components in a mixture.

In chapter 3 which is the body of this work I handle approximations of mixtures of

projected Gaussians. In detail I give an upper bound for the approximation error that

occurs on dropping summands of a mixture in section 3.2.1. Further I explain the

di�culties that arise on applying the operations to fuse and to merge to mixtures of

projected Gaussians. If di�erent information data shall be applied at the same time a

weighting factor has to be introduced to evaluate the compatibility of the single mix-

ture elements. Section 3.2.2 is concerned with that whereas 3.2.3 is concerned with

the merge of a mixture of projected Gaussians. Merging a mixture means reducing the

number of summands through iteratively merging the two least dissimilar summands

of the mixture. Therefore a kind of dissimilarity measure basing on an appropriate

distance measure has to be de�ned.

I pull the analysis of distance and convergence measures out to the beginning of chapter

3 as I need it for severals aspects of approximations. It is desired to keep the exactness

that the robot is able to grasp the target object with a high probability despite any

approximation of the mixture. To study the accuracy of the approximation of a pose

estimation I examine the failure probability that occurs on trying to grasp an object.

Thus the introduction of a grasp criterion given in section 3.1 is required. The criterion

also base on distance measures between the pose of the gripper and the estimated pose

of the target object.

We require from the approximation of a mixture of projected Gaussians to optimize

the necessary computational e�ort with minimized loss of accuracy of the pose estima-

tion. It is known that the mixture describing the pose estimation after evaluating more

and more data from the localization attempts converges to the mixture describing the

true object's pose. I study further convergence criteria that hold for approximations of

mixtures of projected Gaussians and examine the properties that are passed on from

the original mixture to the approximated one in section 3.2.
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1.3 Related Work

The last section 3.3 of this chapter is concerned with approximation algorithms. Given

a mixture of projected Gaussian that describes the probability distribution of the pose

of a target object, but might be complicated to calculate or might contain parameters

which are unknown to us. Then a second mixture using a reduced number of base

elements should be �tted to the �rst mixture. I explain the expectation maximization

algorithm 3.3.1 and the Monte Carlo algorithm 3.3.2 which are two di�erent ways how

this �t can be done.

The practical application of the results from chapter 3 is introduced in chapter 4. As

already mentioned the robot makes several localization attempts to determine the pose

of the target object. Then it estimates the uncertainty of each of these tries and fuses

and merges the weighted measurements according to an evaluation algorithm. With

this evaluation algorithm the uncertainty shall be reduced until the distribution of the

estimated pose is peaked enough so that the grasp criterion is ful�lled with failure

probability smaller that a given threshold. In chapter 4 I explain how the robot draws

conclusions from single 3D points it detects on the surface of the object, about the

pose of the target object itself where the 3D points are so-called point features. The

only features I treat in the framework are SIFT features what stands for scale invariant

feature transform, even though the framework also would allow the handling of other

features like edge detection for instance. In section 4.1 I give a documentation of the

code I wrote to program a framework for the precise estimation of an object's pose and

in section 4.2 I demonstrate how the framework works. In the outlook 5 a picture 5.1

shows the result that can be achieved by a similar approach of pose estimation to the

one in this work even though I also have to remark that some aspects are left over to

be treated in future work.

1.3. Related Work

The representation of rigid motions and especially of orientation in three dimensions is

a central issue in various disciplines of arts, science and engineering. Rotation matrix,

Euler angles, Rodrigues vector and unit quaternions are the most popular representa-

tions of a rotation in three dimensions. Rotation matrices have many parameters, Euler

angles are not invariant under transforms and have singularities and Rodrigues vectors

do not allow for an easy composition algorithm. Stuelpnagel [29] points out that unit

quaternions are a suitable representation of rotations on the hypersphere S3 with few

parameters, but does not provide probability distributions. Choe [5] represents the

probability distribution of rotations via a projected Gaussian on a tangent space. He
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1.3 Related Work

only deals with concentrated distributions and does not take translations into account.

Goddard and Abidi [12, 11] use dual quaternions for motion tracking. In their observa-

tions the correlation between rotation and translation is captured also. The probability

distribution over the parameters of the state model is a unimodal normal distribution.

If the initial estimate is su�ciently certain and if the information that shall be fused

to the estimate is su�ciently well focused this is an appropriate model. As can be

seen in [16] from Kavan et al. dual quaternions provide a closed form for the compo-

sition of rigid motions, similar to the transform matrix in homogeneous coordinates.

Antone [30] suggests to use the Bingham distribution in order to represent weak infor-

mation even though he does not give a practical algorithm for fusion of information or

propagation of uncertain information. By now it is known that propagated uncertain

information only can be approximated by Bingham distributions. Further Love [22]

states that the renormalization of the Bingham distribution is computationally expen-

sive. Glover [13] also works with a mixture of Bingham distributions and recommends

to create a precomputed lookup table of approximations of the normalizing constant

using standard �oating point arithmetic. Mardia et al. [23] use a mixture of bivariate

von Mises distributions. They �t the mixture model to a data set using the expectation

maximization algorithm because this allows for modeling widely spread distributions.

Translations are not treated by them. To propagate the covariance matrix of a random

variable through a nonlinear function, the Jacobian matrix is used in general. Kraft et

al. [18] use therefore an unscented Kalman Filter [15]. This technique would have to

be extended to the mixture distributions.
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2. Pose Estimation

In robotic perception the six dimensional pose of the object of interest has to be es-

timated. The input information is weak as it comes from imperfect sensors. These

uncertainties arise from not exactly tuned 3D sensors or cameras and from the joints

in the robot's body. Moreover the three dimensional models which the robot uses to

recognize the objects are not perfect. Altogether one has to deal with uncertain in-

formation which is modeled by widely spread probability density functions (pdfs) to

estimate position and orientation in the six dimensional space. In order to be able to

represent and process this weak information, the density functions are formulated on

the bases of suitable parametric representations of the pose.

2.1. Pose Representation

2.1.1. Representation of Orientation

The more critical part in the pose representation is the rotation. There are several re-

quirements concerning the parametrization of the rotation which we wish to be ful�lled

the best.

• For each position there should be just one representation to avoid wrong choice

of representation.

• To minimize the computational e�ort we desire the rotation to be represented

by few parameters. If a representation uses more than the minimal number of

three parameters, some additional condition needs to be satis�ed to reduce the

number of independent parameters to three. After calculations or estimations

of parameters these conditions may have to be re-established in the intuitively

best possible way although we do not formally de�ne what this is. We call it

'renormalization' and we desire this step to be easy to perform.
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2.1 Pose Representation

• There should be an easy way to derive the parameters of the composed rotation

from the parameters of two input rotations of the composition. The composability

of rigid motions ins needed for instance if sensor data taken from two di�erent

sensor system poses shall be fused in a common coordinate system.

• We wish the rotation to be a di�erentiable function of the parameters to assure

smoothness. At least it should be continuous.

• Finally a desired characteristic of the parameterization is to be area and distance

preserving under rotation and translation. This is important when we deal with

probability density functions over rigid motions.

A short overview about the parameterizations of orientations is given in [28].

Rotation Matrices

These are the probably most wide spread representations, especially in the homoge-

neous coordinate formulation.

A rotation matrix R is constrained to be orthogonal R> · R = R · R> = I and the

restriction det(R) = 1 is to avoid it to be a re�ection.

The set of all rotation matrices forms a group, known as the rotation group or the

special orthogonal group SO(n). It is a subset of the orthogonal group O(n), which

includes re�ections and consists of all orthogonal matrices with determinant 1 or −1.

In R3 the matrix for a rotation by an angle θ about the axis v where v = (x, y, z)> a

unit vector, is given by:

R =

 cos θ + x2 (1− cos θ) xy (1− cos θ)− z sin θ xz (1− cos θ) + y sin θ

yx (1− cos θ) + z sin θ cos θ + y2 (1− cos θ) yz (1− cos θ)− x sin θ

zx (1− cos θ)− y sin θ zy (1− cos θ) + x sin θ cos θ + z2 (1− cos θ)


What characteristics do rotation matrices have?

• The representation is unique.

• It is well known and there are wide spread applications.

• It consists of too many parameters. The constraints arise from the need of nine

values for the rotation matrix to represent three independent variables of a 3D

rotation.
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2.1 Pose Representation

• The renormalization is di�cult.

• The rotation matrix is di�erentiable with resect to its parameters and preserves

area and distance.

Euler Angles

The Euler angles are three angels Ψ, Θ and Φ which describe rotations around speci�ed

axes in R3 usually. Together they de�ne a transformation between two coordinate

systems. There are di�erent possibilities to choose the rotation axes. One of the most

common ones is the following convention:

1. Rotate the coordinate system at �rst about Ψ around the z-axis. Then new

coordinate axes x′ and y′ are obtained.

2. Then rotate it about the angel Θ around the new x-axis x′. The new coordinate

axes which are obtained after the rotation are denoted with y′′ and z′′.

3. Finally rotate the system about Φ around the new z-axis z′′.

Thus the whole rotation is obtained by the rotation matrix Rzx′z′′ :

Rzx′z′′ =

cos Ψ − sin Ψ 0

sin Ψ cos Ψ 0

0 0 1


1 0 0

0 cos Θ − sin Θ

0 sin Θ cos Θ


cos Φ − sin Φ 0

sin Φ cos Φ 0

0 0 1



=

cos Ψ cos Φ− sin Ψ cos Θ sin Φ − cos Ψ sin Φ− sin Ψ cos Θ cos Φ sin Ψ sin Θ

sin Ψ cos Φ + cos Ψ cos Θ sin Φ cos Ψ cos Θ cos Φ− sin Ψ sin Φ − cos Ψ sin Θ

sin Θ sin Φ sin Θ cos Φ cos Θ



Euler angles and translation vector are natural for robotics, for instance where the an-

gles are the motor positions like in the wrist, and common for representation of small

angle ranges of the SO(3) like for cars and ships. But there are twelve di�erent choices

for the rotation axes which is much room for confusion.

Characteristics of the Euler angles:

• Minimal number of parameters, namely three.
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2.1 Pose Representation

• The composition is not straight forward and there is no easy algorithm for �nd-

ing the Euler angles of a composition given the Euler angles of two individual

rotations.

• The parameterization is periodic with 2π and dependent on the choice of axes,

moreover the Euler angles are not invariant under transformations and have sin-

gularities.

• Gimbal Lock (loss of one degree of freedom in a 3D space that occurs when the

axes of two of the three gimbals are driven into a parallel con�guration)

Rodrigues Vector

Rodrigues found the quaternions three years before Hamilton and derived the Ro-

drigues rotation formula from them. This rotation formula describes an algorithm to

rotate a vector in the 3-dimensional Euclidean space, given an axis ê and angle θ of

rotation. The paper he wrote appeared in Annales de Gergonne in 1840 [26].

De�nition 2.1.1. Let v = (v1, v2, v3)> be a vector in R3 and ê = (ex ey ez)
> the 3D

unit vector describing an axis of rotation about which we want to rotate v by the angle

θ.

The Rodrigues formula is de�ned as:

vrot = v cos θ + (ê× v) sin θ + ê(ê · v)(1− cos θ)

And in matrix notation:

vrot = v cos θ +

 0 −ez ey

ez 0 −ex
−ey ex 0


v1

v2

v3

 sin θ + ê · ê> · v(1− cos θ)

In the de�nition ê×v means the cross product of the two vectors ê and v. It is de�ned

as (|ê| · |v| sinα) · n where 0 ≤ α ≤ 180◦ is the smallest angle between the vectors and

n is the normal vector of the plane containing ê and v.

Rodrigues parameters can be expressed in terms of Euler axis and angle as u =

ê · tan(θ/2), a non-normalized 3D vector. The direction of u speci�es the axis, and its

magnitude is tan(θ/2). Thus the angle θ of rotation is given by ‖u‖ = tan(θ/2).
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2.1 Pose Representation

Since ê ∈ S3 and −ê ∈ S3 de�ne the same rotation, each orientation is uniquely deter-

mined by a point on the unit hemisphere of S3.

Characteristics of rotation by Rodrigues vectors:

• They have the minimal number of three parameters.

• There is no or at least no easy composition algorithm.

• The parametrization is periodic with 2π and computations are not e�cient.

Unit Quaternions

Quaternions are a generalization of the complex numbers to the R4 as can be seen in

[33]. Instead of one imaginary unit, they have three, i, j and k. With real coe�cients

a, b, c, d a quaternion q is de�ned as

q := a+ i · b+ j · c+ k · d

or [a, b, c, d] in vector notation.

De�nition 2.1.2. The set H := {q = a + i · b + j · c + k · d : a, b, c, d ∈ R}, named
after Hamilton, is the skew �eld of quaternions with component wise summation and

quaternionic multiplication which are de�ned in the following and the neutral elements:

0 = 0 + i · 0 + j · 0 + k · 0 and 1 = 1 + i · 0 + j · 0 + k · 0

Further it has the properties:

i · j = k

j · k = i

k · i = j

i · j · k = i2 = j2 = k2 = −1

Component wise summation of quaternions:

q1 + q2 = (a+ i · b+ j · c+ k · d) + (e+ i · f + j · g + k · h)

= a+ e+ i · (b+ f) + j · (c+ g) + k · (d+ h)

14



2.1 Pose Representation

Multiplication of a quaternion with a scalar λ ∈ R is de�ned as:

λ · q = λ · (a+ i · b+ j · c+ k · d)

= λ · a+ λ · j · b+ λ · j · c+ λ · k · d

Quaternionic multiplication follows from the properties of imaginary units:

q1 ∗ q2 = (a+ i · b+ j · c+ k · d) ∗ (e+ i · f + j · g + k · h)

= (ae− bf − cg − dh) + i · (af + be+ ch− dg)

+ j · (ag − bh+ ce+ df) + k · (ah+ bg − cf + de)

For the multiplication of quaternions the associative and the distributive law hold, but

not the commutative law. Easy calculations show that H is an associative and not

commutative algebra see [3] and 1 is the identity element of H.
Like for complex numbers, there is a conjugate quaternion: q := a− i · b− j · c− k · d
and the norm of a quaternion is the 2-norm in R4: ‖q‖ =

√
a2 + b2 + c2 + d2 =

√
q ∗ q.

Every non-zero quaternion has an inverse: q−1 = 1
(||q||)2 q and for any two quaternions

q1 and q2 we have the formula (q1 ∗ q2) = q2 ∗ q1.

We can restrict the quaternion to be imaginary what means without real part:

De�nition 2.1.3. The set HIm := {q = 0 + i · b + j · c + k · d : b, c, d ∈ R} is called
the set of imaginary quaternions.

The 3-sphere S3 ⊂ H in quaternionic calculus is similar to the unit circle S1 ⊂ C in

complex calculus. In fact:

S3 = {q ∈ H : ‖q‖ = 1}

‖q‖ = 1 de�nes exactly the unit quaternions which obey the following constraint:

a2 + b2 + c2 + d2 = 1

In terms of the Euler axis ê = [ex ey ez]
> and angle θ the elements of the quaternion

in vector notion can be expressed as follows:

a = cos(θ/2)

b = ex sin(θ/2)

c = ey sin(θ/2)

d = ez sin(θ/2)

15



2.1 Pose Representation

Thus the rotation can be represented with the quaternion q = [cos( θ
2
), ê · sin( θ

2
)]. To

rotate a point in R3 we identify it with the quaternion p = [0, b, c, d]. Then the

rotation about q can be applied as:

q ∗ p ∗ q

The composition of rotations q1 and q2 easily is the product of them:

q1 ∗ (q2 ∗ p ∗ q2) ∗ q1 = (q1 ∗ q2) ∗ p ∗ (q1 ∗ q2)

From q ∗p∗ q = (−q)∗p∗ (−q) the antipodal symmetry of the quaternions can be seen.

Comparing the performance of rotation with quaternions and matrices gives the fol-

lowing result:

Rotating a point, is easier done by matrix operation than with quaternions, but chain-

ing operations like composition of rotations is less costly with quaternions. Matrix

multiplication needs 27 operations in opposition to quaternion multiplication that just

needs 16. For summation and subtraction 18 operation for matrices and just 12 for

quaternions are needed. Thus the computation with quaternions is less expensive.

In summary the characteristics of rotation representation by unit quaternions are:

• Unit quaternions have few parameters, four instead of the minimal number three.

• They are unique except for antipodal symmetry.

• The rotation from one state to another on the great circle gives a smooth move-

ment avoiding unnatural angular moves that occur for Euler angles.

• Computations are highly e�cient.

• They are easy to deal with.

Pluecker line coordinates and Complex mapping

These are rotation representations which I just want to name for completeness. They

don't ful�ll the desired requirements and thus I won't handle them any further.
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2.1 Pose Representation

2.1.2. Pose

Pose representation is equivalent to representation of rigid motion. The group of rigid

motions in Rn is sometimes called special Euclidean group SE(n).

Euclidean Group

A transformation is said to be rigid if it preserves relative distances what means it

is angle and distance preserving.

• The composition of rigid transformations is rigid.

• The inverse of a rigid transformations is rigid.

The subgroup of rigid transformations which additionally is orientation preserving, is

called the group of rigid motions and just contains rotations and translations.

De�nition 2.1.4. E(n) := Rn × O(n) is the n-dimensional Euclidean Group, where

O(n) is the n-dimensional orthogonal group.

E(n) is the symmetry group of n-dimensional Euclidean space and consists of bijective,

distance and angle preserving a�ne transformations.

De�nition 2.1.5. SE(n) := Rn×SO(n) is the n-dimensional special Euclidean Group,

where SO(n) is the n-dimensional special orthogonal group and Sn is the n-sphere.

SE(n) is a subgroup of E(n) which just contains direct isometries. Direct means ori-

entation preserving. SE(n) is also called the subgroup of rigid motions.

The 3-dimensional special Euclidean Group SE(3) = R3 × SO(3) thus represents all

possible rotations and translations in the three dimensional Euclidean space.

Dual Quaternions

De�nition 2.1.6. The ring of the dual quaternions with the dual unit ε, which has the

property ε2 = 0, is de�ned as:

HD = {dq | dq = q1 + ε · q2 & q1, q2 ∈ H}

17



2.1 Pose Representation

This ring can also be written as {aD+i·bD+j ·cD+k·dD : aD, bD, cD, dD dual numbers}
see [3]. The dual numbers {aD, bD, cD, dD} are called components of a dual quaternion

then. Just as the quaternions, the dual quaternions have the basis {1, i, j, k} of the
4-dimensional linear space over the dual numbers.

Summation of dual quaternions is component wise:

dq1 + dq2 = (q1,1 + ε · q1,2) + (q2,1 + ε · q2,2)

= (q1,1 + q2,1) + ε · (q1,2 + q2,2)

Multiplication of a dual quaternion with a scalar λ ∈ R is de�ned as:

λ · dq = λ · (q1 + ε · q2)

= λ · q1 + λ · ε · q2

The product of two dual quaternions is de�ned as:

dq1 ∗ ∗ dq2 = (q1,1 + ε · q1,2) ∗ ∗ (q2,1 + ε · q2,2)

= (q1,1 ∗ q2,1) + ε · (q1,2 ∗ q2,1 + q1,1 ∗ q2,2)

As for quaternions the associative and the distributive law hold, but not the commu-

tative law.

For dual quaternions there are three di�erent conjugates:

• Conjugation of the quaternions: dq := q1 + ε · q2 ∀ dq ∈ HD

• Dual conjugation: dqε := q1 − ε · q2 ∀ dq ∈ HD

• Total conjugation: dq
ε

:= q1 − ε · q2 ∀ dq ∈ HD

For the quaternion conjugate, the de�nition of dual quaternion multiplication yields

dq1 and dq2 that dq1 ∗ ∗ dq2 = dq2 ∗ ∗ dq1. The 2-norm of a dual quaternion is given by

‖dq‖ :=
√
dq ∗ ∗ dq and the inverse of a dual quaternion is dq−1 = dq

‖dq‖2 . In all three

cases the quaternion conjugate is meant.

Dual quaternions can be used for the representation of pose in the three dimensional

Euclidean Group. The quaternion qr representing the rotation is chosen to lay on the

18



2.1 Pose Representation

unit sphere S3. To represent the translation (t1, t2, t3)> ∈ R3 let qt := [0, t1, t2, t3] be a

second quaternion. Thus the dual quaternion

dq := qr + ε
1

2
· qt ∗ qr

represents the transformation in S3 × R3.

Any point p = (u, v, w)> can be embedded to HD by the dual quaternion pd =

[1, 0, 0, 0]+ε·[0, u, v, w]. The transformation of this point about dq is then dq∗∗ pd∗∗ dq.
This pose representation contains the important property that the composition of mo-

tions or of a pose followed by a motion is represented easily by the product of dual

quaternions:

pnew = dq2 ∗ ∗ dq1 ∗ ∗ pold ∗ ∗ dq1 ∗ ∗ dq2

= dq2 ∗ ∗ dq1 ∗ ∗ pold ∗ ∗ dq2 ∗ ∗ dq1

The rotation and translation a dual quaternion describes can also be expressed in terms

of a rotation matrix R and a translation vector t by the formula:(
R t

0 1

)
·

(
p

1

)

which is equivalent to the transformation of the point p, corresponding to

(
p

1

)
, by the

dual quaternion dq = [qr,
1
2
qt ∗ qr] in ordinary form:

dq ∗ ∗ p ∗ ∗ dq

Remember the restriction that qr ∈ S3 and qt is an imaginary quaternion.

The equivalence is proven by the fact that rigid motion is equivalent to the one by

rotation matrix and translation vector.

Let dq1 and dq2 be two dual quaternions with ‖qr1‖ = ‖qr2‖ = 1 and Re qt1 = Re qt2 = 0

dq1 = qr1 + εqd1 = qr1 + ε
1

2
· qt1 ∗ qr1

dq2 = qr2 + εqd2 = qr2 + ε
1

2
· qt2 ∗ qr2

which represent the following transformations:

• qr1 corresponds to the rotation matrix R1

• qr2 corresponds to R2
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2.2 Distribution Functions

• qt1 corresponds to the translation vector t1

• qt2 corresponds to t2

Then the rigid motion

(
R3 t3

0 1

)
=

(
R2 t2

0 1

)
·

(
R1 t1

0 1

)
is the same as:

dq3 = dq2 ∗ ∗dq1

= (qr2 + εqd2) ∗ ∗(qr1 + εqd1) = qr2 ∗ qr1 + ε(qr2 ∗ qd1 + qd2 ∗ qr1)

= qr2 ∗ qr1 + ε
1

2
· (qr2 ∗ qt1 ∗ qr1 + qt2 ∗ qr2 ∗ qr1)

= qr2 ∗ qr1 + ε
1

2
· (qr2 ∗ qt1 ∗ qr2 + qt2) ∗ qr2 ∗ qr1

= qr3 + εqd3

with qr3 = qr2 ∗ qr1 and qd3 = 1
2
· qt3 ∗ qr3 where qt3 = qr2 ∗ qt1 ∗ qr2 + qt2 .

By matrix multiplication we get:(
R3 t3

0 1

)
=

(
R2 ∗R1 R2t1 + t2

0 1

)
Thus R3 = R2 ∗R1 and t3 = R2t1 + t2.

2.2. Distribution Functions

To estimate the pose of an object or equivalently a feature of the object in the special

Euclidean group SE(3) we have to choose a probability density function (pdf). Most

of the pdfs depend on some parameters that describe the function but they can be

particle based as well. The case of a particle based description of the distribution will

be handled in 2.2.4. We want the pdfs to satisfy several characteristics:

• The density function has to be independent from the coordinate system. Then

a coordinate change causes just a change of the arguments of the pdf but not a

change of the structure of the parameters.

• The fusion of two probability density informations shall be supported. This is

needed for maximum likelihood estimation for instance.

• The uncertain information of an objects pose or the relation of joints in a robots

arm where each link has pose uncertainty with respect to the previous link for

instance shall be propagated.
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2.2 Distribution Functions

• The representation of the pdf shall use a reasonably small set of parameters,

much fewer parameters than needed for a particle set. Thus computations can

be done e�ciently.

In the following I will introduce some candidates for the probability distributions and

their density functions.

2.2.1. Projected Gaussian

An intuitively good choice on the translation part is the multivariate normal distribu-

tion N (µ,Σ). Now we would like to have something similar on the hypersphere S3

embedded to R4 because that would make it easy to deal with correlations between

rotation and translation.

An obvious approach for the rotation is the projection of a three dimensional Gaussian

distribution from the tangent space to the S3. We will do this by central projection

(i.e. the center of the projection is the midpoint of the 3-dimensional unit sphere in

R4 and the intersections of S3 with the straight line through any point on the tangent

space and the center of projection get the value of the normal distribution of the cor-

responding point on the three dimensional tangent space).

De�nition 2.2.1. Let S3 be the 3-sphere and q0 be an arbitrary point on S3. Further,

let TSq0 ∼ R3 be the 3-dimensional tangent space to S3 at the point q0, with a local

coordinate system that has the tangent point as origin. Now, let N (µ,Σ) be a multi-

variate normal distribution on TSq0 which has pTS as corresponding probability density

function.

Then the central projection

Πq0 : TSq0 −→ S3

provides a density function

pS3(x) :=
1

C
· pTS

(
Π−1
q0

(x)
)

on S3, with C =
∫
S3
pTS

(
Π−1
q0

(x)
)

dx.

As there are always two antipodal projected points on the sphere which represent the

same point in the tangent space, this captures correctly the topology of the quaternion

rotation space.
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2.2 Distribution Functions

Figure 2.1.: The �gure visualizes the central projection of a Gaussian distribution from the

tangential plane to a unit sphere S2.

To de�ne a base element in the special Euclidean group SE(3) a tangent point on

S3 ⊂ R4, a 6D mean vector µ and a 6× 6 covariance matrix Σ are required. In R4 the

quaternions o�er a canonical way to create a non-vanishing continuous tangential vector

�eld on the unit sphere S3. Thus we can de�ne a basis B of the 3-dimensional tangent

space TSq0 in R4 at the tangent point q0. Further we complete B to be a basis B0 of R4

by concatenating as �rst vector the tangent space normal, which is the tangent point q0.

How do we get the orthogonal vectors q1, q2 and q3 of the basis B?

Rotations in R4 can be represented by pairs of unit quaternions ql, qr, so that the

rotated quaternion is given by rot(q) = ql ∗ q ∗ qr. Selecting qr = e1 and ql = q0, the

canonical basis of R4 is rotated to the tangent point q0 = [c1, c2, c3, c4] in quaternion

writing. Thus the other vectors of the basis B can be calculated by

qi = q0 ∗ ei+1 ∗ e1 = q0 ∗ ei+1 for i = 1, 2, 3

where e1 and ei+1 are the following unit quaternions e1 = e1 = [1, 0, 0, 0], e2 = [0, 1, 0, 0],

e3 = [0, 0, 1, 0] and e4 = [0, 0, 0, 1].

Than the basis is given by the following matrix:

B0 =

q0, q1, q2, q3︸ ︷︷ ︸
=B

 =



c1

c2

c3

c4



−c2 −c3 −c4

c1 −c4 c3

c4 c1 −c2

−c3 c2 c1


 =


c1 −c2 −c3 −c4

c2 c1 −c4 c3

c3 c4 c1 −c2

c4 −c3 c2 c1


Anyway, the basis of the tangent space can be created randomly in all dimensions
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2.2 Distribution Functions

through orthogonalization by the Gram-Schmidt process followed by normalization.

Let us come back to the problem to de�ne a base element in the SE(3). I want it to

be similar to a Gaussian distribution. Thus I will refer to the distribution function

consisting of a Gaussian distribution for the rotation part which can be projected to

the S3 by central projection as introduced in 2.2.1 and another Gaussian distribution

for the translation part of the rigid motion with base element.

Subsuming the requirements, a base element with speci�ed tangent point q0 to the

hypersphere S3 and a basis B0 of the tangent space TS(q0, B0) is de�ned as:

N (TS(q0, B0), µ,Σ)

As mentioned above in case of four dimensions the basis can be skipped, as we know

then the canonical way of constructing the basis out of the tangent point.

The set of projected probability distributions with the projected density of the nor-

mal distribution as density function pS3 on the sphere S3 is called the set of projected

Gaussians (short PG). The subset of PG for which µ = 0 in the corresponding normal

distribution on the tangent space TSq0 is denoted as PG0.

Note that points r⊥ ∈ S3 that are orthogonal to q0 are not in the image of the central

projection, and by consequence not in the domain of the inverse central projection.

Since for each normal distribution the density goes to 0 as the argument goes to in�n-

ity, 0 is a continuous completion and we de�ne: pS
(
r⊥
)

:= 0

If the probability density of a given pose shall be evaluated, the vector consisting of

the �rst three entries of the mean vector, which is the mean of a Gaussian kernel

in the tangent space, has to be projected to the 3-sphere by central projection as it

represents a rotation. Thus the mean becomes a four dimensional vector with length

1 that represents the mean of the rotations on S3. The last three entries just remain

the way they are and correspond to the mean vector of the Gaussian distribution of

the translations in R3. To introduce intuitively values to the covariance matrix it can

be written in for of a block matrix:

Σ =

(
covMatRotation 0

0 covMatTranslation

)
where

covMatRotation =

 var(X1) cov(X1, X2) cov(X1, X3)

cov(X2, X1) var(X2) cov(X2, X3)

cov(X3, X1) cov(X3, X2) var(X3)


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2.2 Distribution Functions

is the covariance matrix on the tangent space that has to be projected to S3 to repre-

sent the covariance of the rotations in three dimensions and covMatTranslation is the

covariance matrix on the other three dimensions that represent the translations.

Thus mean µ and covariance matrix Σ together de�ne a six dimensional Gauss kernel

with density:

p(x) =
1√

det (2πΣ)
exp
(
−1

2
(x− µ)>Σ−1(x− µ)

)

A projected Gaussian on a 3-sphere needs to be normalized to 1 to de�ne a probability

density as mentioned already in the de�nition 2.2.1. The normal renormalization con-

stant
√

det (2πΣ) is not su�cient. Now I will explain how the correction weight for the

parameterization in the integration to obtain the renormalization factor is calculated.

The closed form of the renormalization factor 1/C itself involves con�uent hypergeo-

metric functions of a matrix argument and is quite complicated to calculate.

Figure 2.2.

To calculate the surface integral we have to

integrate in the directions of the coordinate

axes with the Jacobian matrix as a factor for

stretching the volume elements. We get this

statement from the substitution rule for mul-

tiple variables:

Theorem 2.2.2. Let U be an open set in Rn

and ϕ : U → Rn an injective di�erentiable

function with continuous partial derivatives.

The Jacobian Jϕ of ϕ is nonzero for every

u ∈ U . Then for any compactly supported,

continuous function f with values in R and

with support contained in ϕ(U) it holds that:

∫
ϕ(U)

f(q) dq =

∫
U

f(ϕ(u)) |det(Dϕ)(u)| du
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2.2 Distribution Functions

In our case U = R3, u = (u, v, w)>, f = 1 and ϕ has to be de�ned as the following

parametrization of the hemisphere around the x-axis of the hypersphere. See also �gure

2.2
ϕ : R3 → S3uv
w

 7→ 1√
1+u2+v2+w2 ·


1

u

v

w


It is su�cient to integrate over a hemisphere as the density of the projected Gaussian

is antipodally symmetric and thus the overall integral easily is twice the integral over

one half sphere.

The equation from theorem 2.2.2 reduces to:∫
S3

1 dq =

∫
R2

√
det(J>ϕ · Jϕ)(u) du

where we replace |det(Dϕ)(u)| by
√

det(Dϕ> ·Dϕ)(u) as the Jacobi matrix is not

symmetric.

For (Jϕ)(u) we get:

1

(1 + u2 + v2 + w2)
3
2

·


1 + v2 + w2 −uv −uw
−uv 1 + u2 + w2 −vw
−uw −vw 1 + u2 + v2

−u −v −w


and (Jϕ)>(u) is:

1

(1 + u2 + v2 + w2)
3
2

·

1 + v2 + w2 −uv −uw −u
−uv 1 + u2 + w2 −vw −v
−uw −vw 1 + u2 + v2 −w



Now we can calculate
√

det(J>ϕ · Jϕ)(u) = 1/(1 + u2 + v2 + w2)2 and thus obtain
1

(1+u2+v2+w2)2
as correction weight for the parameterization in the integration.

As the calculation of a closed form of the renormalization factor 1/C =
∫
S3
pS3(x)dx is

too complicated and very costly in calculation time we do this numerically with Monte

Carlo integration which I will introduce in 3.3.2.

An important property of projected Gaussians is the transformation invariance of its

pose density. That means the density is independent from the coordinate system. I
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2.2 Distribution Functions

will show that the density at a certain pose in the euclidean space equals the density

of the moved pose by dual quaternions. Every pose and motion in SE(3) can be rep-

resented by a base element and the corresponding dual quaternion can be extracted

from it. More explications are given in 4.1 and the concrete calculations are given in

the appendix A.1.

De�nition 2.2.3. De�ne the embedding EQ of the R4 into the quaternions H:

EQ : R4 → H

(a, b, c, d)> 7→ a+ ib+ jc+ kd

This function can be used to embed any 4-dimensional vector to the quaternions, but

from now on, we will just embed unit vectors on the S3 ⊂ R4 to the quaternions by

EQ.

De�nition 2.2.4. Furthermore de�ne the embedding ẼQ of the R3 into the imaginary

quaternions HIm:

ẼQ : R3 → HIm

(b, c, d)> 7→ 0 + ib+ jc+ kd

The vectors in R3 that shall be embedded are not necessarily unit vectors.

Then it follows that there is an embedding of R4 ×R3 into the dual quaternions HDQ.

De�nition 2.2.5. Let v1 = (a, b, c, d)> ∈ R4 be a vector with length one, i.e. ‖v1‖ =
√
a2 + b2 + c2 + d2 = 1 and v2 ∈ R3. Then qr = EQ(v1) and qt = ẼQ(v2). Thus we can

de�ne

EDQ : R4 × R3 → HDQ

(v1, v2) 7→ qr + qd = qr + ε
1

2
· qt ∗ qr = ε

1

2
· ẼQ(v2) ∗ EQ(v1)

Now the aim is to prove that the density at the original pose is equal to the moved

density with respect to the new pose.

Proof :

Let dq0 ∈ HD be a dual quaternion describing a starting pose in the Euclidean group.

dq0 = [qr0, qd0] = [qr0, 1/2 · qt0 ∗ qr0]
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2.2 Distribution Functions

with base B0 = [b1, b2, b3, b4] where b1 = (a0, b0, c0, d0)> has the same entries as the

tangent point qr0 = [a0, b0, c0, d0]. Then we obtain the base:

B0 =


a0 −b0 −c0 −d0

b0 a0 −d0 c0

c0 d0 a0 −b0

d0 −c0 b0 a0


De�ne dqc ∈ HD a constant rigid motion:

dqc = [qrc, qdc] = [qrc, 1/2 · qtc ∗ qrc]

Then dqc applied to dq0 de�nes the resulting pose dq1:

dq1 = dqc ∗ ∗ dq0

= [qrc, qdc] ∗ ∗ [qr0, qd0]

= [qrc ∗ qr0, qrc ∗ qd0 + qdc ∗ qr0]

= [qrc ∗ qr0, 1/2 · qrc ∗ qt0 ∗ qr0 + 1/2 · qtc ∗ qrc ∗ qr0]

= [qrc ∗ qr0, 1/2 · (qrc ∗ qt0 ∗ qrc + qtc) ∗ qrc ∗ qr0]

where the conjugate qrc = q−1
rc as qrc is a unit quaternion.

Now let rp = (u, v, w)> ∈ R3 be a point in the tangent space of the tangent point qr0.

Then qrp = EQ( 1√
1+u2+v2+w2 · B0 · (1, u, v, w)>) is the corresponding quaternion to rp

projected to the unit sphere S3. The point tp de�ned as (x, y, z)> ∈ R3 represents a

translation in the 3-dimensional space. qtp = ẼQ((x, y, z)>) = [0, x, y, z] is the embed-

ded point tp in the imaginary quaternions HIm. Then dqp = [qrp, qdp] = [qrp, 1/2·qtp∗qrp]
has a certain density in the system of the original pose dq0.

If I can show that the by dqc moved point dqc ∗ ∗ dqp corresponds to the same 6-

dimensional point in the system of the new pose dq1 than it holds that the density

remains the same under motion by dual quaternions.

dqc ∗ ∗ dqp = [qrc, qdc] ∗ ∗ [qrp, qdp]

= [qrc ∗ qrp, qrc ∗ qdp + qdc ∗ qrp]
= [qrc ∗ qrp, 1/2 · qrc ∗ qtp ∗ qrp + 1/2 · qtc ∗ qrc ∗ qrp]
= [qrc ∗ qrp, 1/2 · (qrc ∗ qtp ∗ qrc + qtc) ∗ qrc ∗ qrp]
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2.2 Distribution Functions

Name dqpNew := dqc ∗ ∗ dqp the moved point, then qrpNew = qrc ∗ qrp and qtpNew =

qrc ∗ qtp ∗ qrc + qtc.

First I will show that the back projected point E −1
Q (qrpNew) corresponds to the same

point rp = (u, v, w)> in the new tangent space with base B1 at the tangent point qr1.

This is equivalent to showing that qrpNew = EQ( 1√
1+u2+v2+w2 ·B1 · (1, u, v, w)>).

Let be qrc = [ac, bc, cc, dc] than qr1 = qrc ∗ qr0 = [a0ac − b0bc − c0cc − d0dc, acb0 + a0bc +

ccd0 − c0dc, acc0 + a0cc − bcd0 + b0dc, bcc0 − b0cc + acd0 + a0dc] and thus

B1 =


a1 −b1 −c1 −d1

b1 a1 −d1 c1

c1 d1 a1 −b1

d1 −c1 b1 a1


where a1 = aca0− bcb0− ccc0− dcd0, b1 = acb0 + bca0 + ccd0− dc1c0, c1 = acc0− bcd0 +

cca0 + dcb0 and d1 = acd0 + bcc0 − ccb0 + dca0.

Now we can calculate:

EQ(
1√

1 + u2 + v2 + w2
·B1 · (1, u, v, w)>)

= 1√
1+u2+v2+w2 · [a0ac − b0bc − c0cc − d0dc + (−acb0 − a0bc − ccd0 + c0dc)u

+ (−acc0 − a0cc + bcd0 − b0dc)v + (−bcc0 + b0cc − acd0 − a0dc)w,

acb0 + a0bc + ccd0 − c0dc + (a0ac − b0bc − c0cc − d0dc)u

+ (−bcc0 + b0cc − acd0 − a0dc)v + (acc0 + a0cc − bcd0 + b0dc)w,

acc0 + a0cc − bcd0 + b0dc + (bcc0 − b0cc + acd0 + a0dc)u

+ (a0ac − b0bc − c0cc − d0d)v + (−acb0 − a0bc − ccd0 + c0dc)w

bcc0 − b0cc + acd0 + a0dc + (−acc0 − a0cc + bcd0 − b0dc)u

+ (acb0 + a0bc + ccd0 − c0dc)v + (a0ac − b0bc − c0cc − d0dc)w]

On the other side:

qrpNew = qrc ∗ qrp
= qrc ∗ EQ( 1√

1+u2+v2+w2 ·B0 · (1, u, v, w)>)

= 1√
1+u2+v2+w2 · qrc ∗ EQ(B0 · (1, u, v, w)>)

= 1√
1+u2+v2+w2 · [ac, bc, cc, dc] ∗ [a0 − b0u− c0v − d0w, b0 + a0u− d0v + c0w,

c0 + d0u+ a0v − b0w, d0 − c0u+ b0v + a0w]

On evaluating this, we get qrpNew = EQ( 1√
1+u2+v2+w2 ·B1 · (1, u, v, w)>) as we wanted.
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For the translation part there is no such property as for the rotation because the

coordinate system remains unchanged. But we can calculate the vector vtp,t0 between

the point tp and the point corresponding to the quaternion that represents the position

of the system:

vtp,t0 = tp− Ẽ −1
Q (qt0)

Now we need to show that vtp,t0 = vtpNew,t1.

vtNew,t1 = E −1
Q (qrc ∗ qtp ∗ qrc + qtc)− E −1

Q (qrc ∗ qt0 ∗ qrc + qtc)

= Ẽ −1
Q (qrc ∗ qtp ∗ qrc + qtc − qrc ∗ qt0 ∗ qrc − qtc)

= Ẽ −1
Q (qrc ∗ qtp ∗ qrc − qrc ∗ qt0 ∗ qrc)

= Ẽ −1
Q (qrc ∗ (qtp − qt0) ∗ qrc)

= Ẽ −1
Q (qtp − qt0)

= vtp,t0

as we know that rot(q) = qrc ∗ q ∗ qrc is the rotation of q about qrc in quaternionic

writing and rotation is a length and orientation preserving operation.

�

I recapitulate that we model a distribution at some point and then know the parame-

ters of the distribution under some rigid motion. For the rotation part we just rotate

the tangent points of the mixture elements, for the translation part we just translate

the translation part of the parameter vector. Further remember that the "zero mean"

requirement of PG0 only concerns the rotation part of the parameter vector.

The projected Gaussians ful�ll all of the upper named desired requirements of the dis-

tribution function:

• This density is independent from the coordinate system.

• The fusion of two probability density informations is supported as well as prop-

agation of uncertain information. I will explain it later on in the more general

case of mixtures of projected Gaussians 2.3.

• The representation just needs the parameters TS(q0, B0), µ and Σ.

2.2.2. Bingham

The Bingham distribution is an antipodally symmetric probability distribution on a

unit hypersphere Sd.
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2.2 Distribution Functions

De�nition 2.2.6. The probability density function of a Bingham distribution is de�ned

as:

f(x,Λ, V ) =
1

F
e
∑d

i=1 λi(v
>
i x)2 =

1

F
ex
>Cx

where the �rst expression is the standard form for Bingham distributions. F is the

normalization constant of the distribution, Λ is a vector of concentration parameters,

the columns of the (d + 1) × d matrix V are orthogonal unit vectors and C is a (d +

1)× (d+ 1) orthogonal matrix.

As can be seen from the second form, the Bingham distribution is derived from a zero-

mean Gaussian on Rd+1. It is conditioned to lie on the surface of the unit hypersphere

Sd and thus models rotational probability densities the best. This property is uti-

lized by Alexander and Buxton in their work [1]. Just as the projected Gaussian, the

Bingham distribution �ts the antipodal symmetry of the quaternions, since the unit

quaternions q and −q represent the same rotation in the 3D space.

A big disadvantage of the Bingham distribution is the computationally expensive renor-

malization constant F which does not have a closed form in general. Since the distri-

bution must integrate to 1 over Sd, this constant can be written as

F (Λ) =

∫
x∈Sd

e
∑d

i=1 λi(v
T
i x)2dx

Glover [13] solved this e�ciency problem by using a precomputed lookup table to ap-

proximate F .

The main advantage of using a Bingham distribution to model the probabilities of

three dimensional orientations on the quaternion hypersphere, is to handle distribu-

tions with rotational symmetry in a compact way. In a personal communication Glover

told me that they can be used without undue linear approximations like necessary for

distributions such as projected Gaussians, which could cause distortions and require

more mixture components. The Bingham distribution is well suited to hyperspherical

distributions with high variance. However, it remains to be seen whether the bene�ts

of using the Binghams outweigh their added complexity compared to projected Gaus-

sians. Moreover, in the case of a peaked probability density, the di�erence in accuracy

are supposed to vanish.

In summary which of the desired properties does the Bingham distribution ful�ll?

The density function is independent from the coordinate system as we wanted. The

procedure to merge two Bingham kernels f1(X) and f2(X) with its weights λ and
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2.2 Distribution Functions

(1 − λ) by a single one, is described by J. Glover in his paper. The idea behind this

merge is to �nd a Bingham distribution f that �ts the joint inertia matrix Sf which is

easy to calculate:

Sf = λE1[xx>] + (1− λ)E2[xx>]

where E1[xx>] is the inertia matrix of f1(X) and E2[xx>] is the one of f2(X). The

Inertia matrices can be derived from the exponent of the Bingham density:

1

N

d∑
i=1

λi(v
>
i xi)

2 = v>j Svj

The propagation of uncertain information can't be done straight forward with this den-

sity function. The composition of Bingham kernels does not provide another Bingham

density. At least by now there is no method known to obtain another Bingham kernel.

The true distribution can just be Bingham approximated. Moreover it is di�cult to

represent correlation between rotation and translation. And �nally I want to repeat

that Bingham distributions are more complex than projected Gaussians and the little

gains in accuracy compared to projected Gaussians don't justify this ine�ciency.

2.2.3. von Mises-Fisher

The von Mises distribution can be thought of as the spherical analogue of the normal

density [20]. It is a continuous probability distribution on the (n − 1)-dimensional

sphere in Rn. For n = 2 the distribution reduces to the so called circular normal dis-

tribution found by von Mises. In the case n = 3 it is called Fisher distribution.

De�nition 2.2.7. In general the density of the von Mises-Fisher distribution for v, a

n-dimensional random unit vector, is given by:

p(v, µ, κ) =
κn/2−1

(2π)n/2In/2−1(κ)
· eκµT v

where In/2−1 denotes the modi�ed Bessel function of �rst kind and of order n
2
− 1,

‖µ‖ = 1 and κ ≥ 0. Then µ is called the mean direction and κ is the concentration

parameter.

The parameters µ and κ determine the shape of the density. As κ increases, the concen-

tration of the distribution around the mean direction becomes higher and the density

31



2.2 Distribution Functions

approaches a normal density.

Back to the case n = 2, the von Mises density reduces to:

p(v, µ, κ) =
1

2πI0(κ)
eκ cos(v−µ)

where I0 is the modi�ed Bessel function of order 0.

We want to de�ne a probability density on the special orthogonal group SO(3) from

the von Mises distribution in matrix form. Let R ∈ SO(3), then R is said to have the

von Mises-Fisher matrix density, if:

p(R) =
1

cF
etr[F ·R

>]

with respect to the uniform distribution U (SO(3)). F is a 3 × 3 parameter matrix

containing the concentration and 1/cF is the normalization constant depending on F .

Does the von Mises-Fisher distribution satisfy the desired characteristics?

It is independent from the coordinate system but as in matrix form the density is

dependent of the matrix R the necessary number of parameters is nine to represent a

3-dimensional density.

In de�nition 2.2.7 the distribution is de�ned for any unit sphere, so it could be used

for the unit quaternions as well and thus four parameters would be required for the

rotation. This distribution would not have the antipodal symmetry, though.

Within the limits of this work it was not feasible to check for the applicability of in-

formation fusion and propagation of uncertain information.

2.2.4. Sample Based Description

Instead of choosing a probability density function to approximate the true distribution

of the pose in SE(3), we could also work directly with samples. This has the advantage

that sampling is extremely general and �exible. Moreover there is a direct proportion-

ality between the numbers of samples and the accuracy. But to get signi�cant results,

a large number (the square of what is needed in R3) is necessary to accurately describe

a probability distribution in a six dimensional space.

Thus the desired feature of few parameters is not satis�ed and due to the number of

necessary samples, the computation gets very slow.
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2.3 Mixture of Projected Gaussians

On the other hand the value of the sample based representation as universally usable

for all distributions, with arbitrary precision should be honored. Further it can at least

be used as a vehicle to obtain experimental results at least in o� line calculations.

2.3. Mixture of Projected Gaussians

A typical application for mixtures of projected Gaussians is the following example:

Given the height of each person in a mixed group of people. As the average

height of women and men both can be modeled by a Gaussian kernel the

mixture of these two kernels models the distribution of heights of the whole

group. Now one could calculate the probability of single persons to be male

or female just from the information how tall they are.

In our framework we want to model an approximation of an unknown probability dis-

tribution instead of �nding disjoint classes. As the probability distributions that can

be represented by a single base element are limited, we want to combine several of

them to describe more complex distributions as introduced in [6]. This speci�c use of

the concept of mixtures of Gaussian distributions is not as common as the one given

in the example above.

De�nition 2.3.1. Let PGi := N (TSi, µi,Σi) be a sequence of projected Gaussians for

i ∈ {1, . . . , n} with µi a d-dimensional mean vector, Σi a d× d covariance matrix and

TSi := TS(qi, Bi) a corresponding tangent space consisting of a tangent point qi and a

basis Bi. Furthermore we require
∑n

i=1 λi = 1 and 0 ≤ λi ≤ 1 ∀ i ∈ {1, . . . , n}.
Then we de�ne a mixture of projected Gaussians MoPG as follows:

MoPG = λ1 · PG1 + λ2 · PG2 + . . .+ λn · PGn

=
∑n

i=1 λi · PGi

=
∑n

i=1 λi ·N (TSi, µi,Σi)

In four dimensions it is su�cient to specify a tangent point qi instead of a whole tan-

gent space TSi as we know the instruction to construct the canonical basis out of the
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2.3 Mixture of Projected Gaussians

tangent point.

Such a mixture of projected Gaussians is similar to the multivariate normal distribu-

tion. It behaves like a normal distribution on the tangent space and can be treated as

one. Another advantage is the low number of parameters. In the case that the tangent

point is situated on the hypersphere S3 ⊂ R4 we only have a four dimensional vector

in addition to the parameters of the normal distribution µ and Σ.

A MoPG can describe a wide range of distributions from highly peaked ones to wide

spread ones. Furthermore it can easily represent correlation between rotation and

translation, what is important to model object features properly. I conjecture that a

mixture of projected Gaussians (including mixtures with zero variance) can approxi-

mate any antipodally-symmetric density. But to approximate a uniform distribution

or step function, which doesn't coincidentally form the shape of a bell, a large number

of Gaussian kernels are required, to receive �ne results.

Of course one has to keep in mind that a MoPG is just an approximation of the true

distribution function that would be appropriate for pose estimation on the special

Euclidean group. The more base elements the mixture contains, the better the true

distribution can be approximated, what is con�icting the wish about e�cient com-

putability.

2.3.1. Probabilistic Inferences on MoPGs

From the transformation invariance of the pose density of single base elements it is

easy to deduce that a complete mixture of projected Gaussians is independent from

the coordinate system as well, because we restrict the mixture to consists of a �nite

sum of base elements.

MoPGs support data fusion. This means the component wise fusion of each element

of one mixture with every element of another mixture. Fusing two base elements PGi

and PGj means calculating a combined base elements PGij out of the original ones.

Therefore a new tangent point pij on the sphere is determined which lies in the middle

between the tangent points pi and pj of the base elements to be fused. At pij the new

tangent space is created and the base elements PGi and PGj are transformed to this
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2.3 Mixture of Projected Gaussians

new tangent space. Then the fused covariance matrix Σij has to be calculated from

the covariance matrices Σi and Σj:

Σij = Σi · (Σi + Σj)
−1 · Σj

The mean vector µij is obtained from µi and µj by the formula:

µij = Σj · (Σi + Σj)
−1 · µi + Σi · (Σi + Σj)

−1 · µj

A disadvantage of this procedure is the quickly growing number of elements of the

mixture. Therefore a reduction algorithm of the number of summands of a MoPGs

is introduced, namely the merge of similar base elements to keep the number small.

Actually to merge base elements PGi and PGj, the weights λi and λj of these projected

Gaussians in the mixture need to be known. That's why I require the input of λi and

λj to the function. Likewise in data fusion, the new tangent point pij is calculated

from pi and pj and PGi and PGj are transformed to the new tangent space TSpij at

pij. Now the new mean µij and the new covariance matrix Σij can be calculated:

µij =
λi

λi + λj
µi +

λj
λi + λj

µj

Σij =
λi

λi + λj
Σi +

λj
λi + λj

Σj +
λi · λj
λi + λj

(µi − µj)(µi − µj)>

The weight λij of the new base element PGij is the sum of the weights of the input

base elements λi + λj.

I distinguish clearly between fusing and merging base elements or mixtures as fusion of

two MoPGs means examining the information of both of them, in contrast to merging

base elements or whole mixtures what stands for joining it to a single one.

Further the composition of a certain or uncertain motion mixture and a pose modeling

mixture is supported. To compose a motion base element with another base element

describing a pose, the dual quaternions of the base elements are extracted and executed

one to the other. Thereby the new mean µij is obtained automatically. The covariance

matrix Σij is calculated by applying the Jacobian matrix J from both sides to the block

covariance matrix:

Σij = J ·

(
Σi 0

0 Σj

)
· J>

As the composition usually contains uncertainties which are included in the covariance

matrix of the composed base element, we call this instruction random pose transforma-

tion. For the case that the motion is secure, the covariance matrix of the rigid motion

35



2.3 Mixture of Projected Gaussians

can easily be set to zero.

That MoPGs consist of a reasonably small set of parameters is an advantage that al-

lows e�cient computations with this distribution function.

2.3.2. Comparison of Mixtures of Binghams with MoPG

Both kinds of mixtures are used in similar applications. Some part of the natural sci-

entists prefers mixtures of Binghams as they are the appropriate distribution to model

probabilities on sphere surfaces. The other part is persuaded that the modeling error

made by the use of mixtures of projected Gaussians is negligibly small and that the

facility of working with this kind of distribution outweighs this error by far. Further as

in our context we use the mixture of projected Gaussians to approximate the uncertain

pose of an object the accuracy that can be reached is limited.

However I want to point out the di�erences and similarities of the two mixtures.

• For the renormalization constant of both the Bingham distribution and the pro-

jected Gaussian no closed form of the integral exists and thus the factor must be

approximated. Glover suggests to transform the series expansion of the factor in

a way that an approximation of the normalizing constant of the Bingham distri-

bution can be done using standard �oating point arithmetic. As this procedure

still is very slow he uses a precomputed lookup table in his framework.

We approximate the renormalization factor of the projected Gaussian distribu-

tion via Monte Carlo integration. For the number of samples n = 1000 the error

ranges in order of magnitude 10−3 and the process time is less than half a minute

for each base element. For n = 5000 the error ranges in order of magnitude 10−4

and the process time is about one and a half minutes. We don't need more precise

results.

• In the case that a widely spread distribution similar to an uniform distribution

shall be modeled it is undoubted that a mixture of Bingham distributions requires

a lower number of elements of the mixture than a MoPG. If a distribution with

peaked shape shall be modeled, it stands out to proof whether the computation

with mixtures of Binghams or with MoPGs is more e�cient as than the number

of necessary elements of the mixture approximates.
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2.3 Mixture of Projected Gaussians

• In both distribution functions the low number of parameters is convincing. This

could just be depreciated if the number of mixture elements becomes big.

• How the merge of two single Gaussian kernels is de�ned I already introduced in

2.3.1. For a mixture of Bingham distributions consisting of two kernels f(X) =

αf1(X) + (1−α)f2(X) Glover describes an algorithm to approximate f(X) by a

single Bingham g(X) in the preprint [10]. With maximum likelihood parameter

estimation the su�cient statistic is the sample inertia matrix Ŝ = 1/N
∑N

i=1 xi·x>i
for xi from the sample set {x1, . . . , xN}. Ŝ goes to the true inertia matrix S =

E[x · x>] as N →∞. Thus the Bingham distribution g(X) which �ts the inertia

matrix Sf = αE1[x · x>] + (1 − α)E2[x · x>] is the maximum likelihood �t of

a single Bingham to the mixture f(X). By the way this Bingham distribution

g(X) has minimal KL divergence to f(X).

• Let q and r be two Bingham distributed random variables. The composition of the

Binghams p(q) and p(r) can be done by the use of the method of moments. This

yields a Bingham approximation to the true distribution, p(qr), by computing

E[qr(qr)>]. Glover plans to develop the composition algorithm for mixtures of

Binghams in a future paper. By now it is already secure that the result of

composing two Bingham distribution doesn't give a Bingham and thus better

results can be achieved by the composition of MoPGs or base elements of the

mixture like introduces in 2.3.1.

• By now there is no operation known for data fusion of mixtures of Binghams.
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The quintessence of this chapter shall be to �nd suitable approximations of mixtures of

projected Gaussians to cut down computational e�ort with minimal loss of accuracy.

At least I want to determine an upper bound for the impreciseness resulting from the

approximation.

We know that by an in�nite mixture of projected Gaussians the pose of a target ob-

ject could be described user-de�ned precisely. Of course such a mixture doesn't exist

in practice and thus the �nite mixtures we use just approximate the true pose. In

section 3.2 I introduce criteria to reduce the number of base elements of a MoPG with-

out loosing much from the preciseness of the mixture. Further the section handles a

convergence criterion that improves the approximation by fusion of information data.

Section 3.3 is concerned with two approaches how a MoPG can be �tted to another.

The expectation maximization algorithm �ts a mixture to a set of samples drawn from

the other mixture by iteratively increasing the log likelihood function of the sample set.

In the other approach the Lp norm between the densities of the mixtures is minimized.

Moreover an aim is to study the coherence between particle sets and MoPGs. There-

fore let's denote the composition, the fusion and the merge of mixture densities as

modi�cation operations.

Let p1, p2 and p3 be the density functions of the mixtures M1, M2, M3 ∈ MoPG. p3

shall be generated by one of the modi�cation operations out of p1 and p2. If we draw

a set of samples Z1 = {z1,n}n respectively Z2 = {z2,n}n from each of the densities p1

and p2 and apply the same modi�cation operation to them, we obtain the particle set

Z3 = {z3,n}n. The probability density p̃3 is obtained by �tting a mixture of projected

Gaussians to the sample set Z3.

(p1, p2)
modi�cation operation−−−−−−−−−−−−→ p3

p̃3

draw samples ↓ ↓ ↑ �t mixture

(Z1, Z2)
modi�cation operation−−−−−−−−−−−−→ Z3
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3.1 Grasp Criterion

Now we want to examine the dissimilarity between p3 and p̃3. We expect it to dis-

appear for a growing number of samples. I introduce several distance measures and

study convergence measures in section 3.1 as it is not clear by now which measure

for the dissimilarity of probability density functions is appropriate in out topic. In

the context of this work it was not possible to solve the distance problem between p3

and p̃3 completely. Hence I just introduce some considerations about convergences of

approximations in general in 3.2.

We also need to know the similarity respectively the dissimilarity of density functions

to evaluate their importance for the accuracy of the mixture and to be able to decide

whether an object is graspable for the robot. In the following section these distance

measures will be examined further.

3.1. Grasp Criterion

To decide whether an object is graspable for a robot one has to consider several aspects.

For instance the relations of the joints in a robots arm contains weak information what

has the e�ect that the pose of the gripper contains little uncertainties. Further the

imperfect sensors of the robot produce weak information data and thus the pose of

the target object is uncertain. Hence the probability for failure of any grasping task is

composed of several failure probabilities. If for an attempt to grasp a failure threshold

of ε > 0 is allowed, it has to be split up into the part ε′ > 0 for the sensor and camera

uncertainty, or the pose uncertainty of the gripper ε′′ > 0 and so on.

The part ε′′′ determines the impreciseness of the MoPG. Thus as many base elements

of the mixture M with low weight can be discarded as the remaining approximated

mixture Mapp still has a total preciseness ≥ 1− ε′′′.

Mainly I found two di�erent criteria to measure whether an object is graspable for a

robot.

The one of them is a kind of box criterion because a box B describes the size the

gripper can encompass. Thus the robots hand needs to be navigated to a pose where

the object �ts inside the box which represents the robots hand. In other words the

right box B in the set of boxes B ⊂ R6 with de�ned size has to be selected to enable

the robot to grasp the object. The box selection is done by an arg max function fp that
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3.1 Grasp Criterion

chooses the box, which contains the maximum of the probability mass to represent the

pose of the object, with respect to the probability density p of the mixture distribution.

fp := arg max
B∈B

∫
B

p(x)dµB

where p(x) is the probability density at the random point x ∈ B. Then of course the

mean of the pose of the gripper has to be navigated to the center of the box selected

by fp.

Even though this criterion is intuitively the correct one, the problem arises to �nd

an arg max function that is e�cient in practical use and determines the correct box

containing the maximum of probability mass. This can become di�cult in the case of

a non-symmetric probability distribution.

The other criterion concerns the distance between the probability density that describes

the gripper and the one that describes the objects pose. The probability that the robot

will succeed on grasping the object has its maximum at the point where the distance of

the values of the densities of the random variables is minimal, which describe the pose

of the robots hand and the estimated pose of the object. Hence the distance between

gripper and object pose needs to be small in terms of rotation and translation. Further

we require the pose density of the gripper to be focused. As a result, also the density

describing the object's pose will have to be focused.

De�nition 3.1.1. Let p be the density of the random variable describing the objects

pose and g the reasonably strong focused density of the one that estimates the pose of

the gripper. De�ne a threshold G when the distributions are close enough such that the

excepted probability for failure is smaller than ε > 0.

Then the object is called graspable with error < ε, when:

P (dist(g, p) ≤ G) > 1− ε

where dist(·, ·) is an appropriate distance measure of probability density functions.

The grasp criterion basing on distances of densities of random variables is in most cases

the preferable one for our topic.

3.1.1. Distance Measures

In this section I want to examine some distance measures and their characteristics.

This is not only necessary for the grasp criterion but also to evaluate similarity of
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Gaussian kernels in a mixture.

At �rst I want to recall some basics about metrics and topologies in general [9]:

De�nition 3.1.2. For any point x in a metric space M we de�ne the open ball of

radius r (> 0) around x as the set:

B(x, r) = {y ∈M : d(x, y) < r}

A subspace of M is a neighborhood of x if it contains an open ball about x.

Each of these neighborhoods ful�ll the axioms of a topology and therefore the union

de�nes a topology on M - the induced topology. Every metric space is a topological

space in a natural manner, i.e. all de�nitions and theorems about topological spaces

also apply to all metric spaces.

De�nition 3.1.3. A function f : M1 −→M2, from one topological spaceM1 to another

M2, is continuous if and only if the inverse image of every open set is open:

∀V open, V ⊆M2, the inverse image f
−1(V ) = {x ∈M1 | f(x) ∈ V } is open.

Theorem 3.1.4. (ε-δ)-continuity of maps:

Let (M1, d1) and (M2, d2) be metric spaces and f : M1 −→M2 a map. f is continuous

if ∀x ∈M1 and ∀ε > 0 ∃δ > 0 such that ∀y ∈M1 :

d1(x, y) < δ ⇒ d2(f(x), f(y)) < ε

In general a norm determines a metric and all metrics induce topologies, but the

inverse is not true. A metric de�nes a norm only if it is translation invariant, i.e.

d(x, y) = d(α + x, α + y) and homogeneous, i.e. d(αx, αy) = |α| · d(x, y).

Now I will check the following distance measures for satisfying the desired features:

• Does the measure de�ne a metric or at least a pre-metric?

Pre-metric means that it generates a topology on the space of probability distri-

butions.

• Is it easy to calculate analytically or is there an e�cient numerical calculation?

• Is this a measure that is appropriate to measure distances between probability

density functions?
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Lp Norm (especially L2 )

De�nition 3.1.5. The Euclidean distance between two points x and y in the n-dimensio-

nal space Rn is de�ned as:

dE(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

and dE(x, 0) = ‖x‖2 =
√
x2

1 + · · ·+ x2
n =

√
xTx is the Euclidean norm (also called

2-norm) of x.

De�nition 3.1.6. If p is a real number, p ≥ 1, de�ne the Lp norm and Lp distance of

x ∈ Rn by:

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p

dLp(x, y) = (|x1 − y1|p + |x2 − x2|p + · · ·+ |xn − yn|p)1/p

(while the L2 norm is the familiar Euclidean norm, the distance in the L1 norm is

known as the Manhattan distance or taxicab norm).

One extends this to p =∞ via

‖x‖∞ = max {|x1|, |x2|, . . . , |xn|}

which is in fact the limit of the p norms for �nite p. The L∞ norm is also known as

the maximum norm.

It turns out that for all p ≥ 1 this de�nition indeed satis�es the following characteristics

∀x, y ∈ Rn (for 0 < p < 1 the triangle inequality is violated):

• dLp(x, y) = dLp(y, x) (symmetry)

• dLp(x, y) ≤ dLp(x, z) + dLp(z, y) (triangle inequality)

• dLp(x, y) ≥ 0 and dLp(x, y) = 0 ⇐⇒ x = y (non-negativity and identity of

indiscernibles)

• The length of the vector is positive homogeneous with respect to multiplication

by a scalar.

Furthermore the Lp norm is easy to calculate analytically provided that the integrand

is easy to calculate.
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To de�ne the Lp norm of a function, in our case the density function of a random

variable, let 1 ≤ p < ∞ and (Ω,Σ, µ) be a measure space. Consider the set of all

measurable functions from Ω to R whose absolute value raised to the p-th power has

�nite integral, i.e. ‖f‖p :=
(∫
|f |p dµ

)1/p
< ∞. Thus we de�ne the Lp norm for the

di�erence of two random variables X and Y with the densities pdfX and pdfY as follows:

dLp(pdfX , pdfY ) =

(∫
Ω

|pdfX(q)− pdfY (q)|p dq

)1/p

It is well known that the Lp norm is distance preserving under rigid motions.

Mahalanobis Distance

De�nition 3.1.7. The Mahalanobis distance of a vector x ∈ Rn from a set of points

with mean µ and covariance matrix Σ is de�ned as:

dM(x) =
√

(x− µ)TΣ−1(x− µ)

The Mahalanobis distance with respect to the covariance matrix Σ between two n-

dimensional points x and y in the space Rn is de�ned as:

dM(x, y) =
√

(x− y)TΣ−1(x− y)

Moreover the Mahalanobis norm of x is dM(x, 0) = ‖x‖M :=
√
xTΣ−1x.

Characteristics of this distance are:

• dM(x, y) = dM(y, x) (symmetry)

• dM(x, y) ≤ dM(x, z) + dM(z, y) (triangle inequality)

• dM(x, y) ≥ 0 and dM(x, y) = 0 ⇐⇒ x = y (non-negativity and identity of indis-

cernibles)

This shows that the Mahalanobis distance is a metric and the analytical calculation is

easy.

De�nition 3.1.8. The Mahalanobis distance between the densities of two (multivari-

ate) normal distributed random variables X1 and X2 with distributions N (µ1,Σ1) and

N (µ2,Σ2) is de�ned as:

dM(X1, X2) =
√

(µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2)
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3.1 Grasp Criterion

In this case one has to take care that it su�ces to have µ1 = µ2 to get dM(X1, X2) = 0

even though the distributions might be di�erent with Σ1 6= Σ2.

I just de�ned the Mahalanobis distance for single Gaussian kernels. For this framework

one would need to expand the de�nition to distances of arbitrary random variables or

at least to the density function of a mixture of projected Gaussians. The problem that

arises hereby is that there is no Mahalanobis distance known by now for such a mixture.

Kullback-Leibler Divergence (or Kullback-Leibler Discrimination)

I will use the denotationKullback-Leibler divergence though Kullback and Leibler them-

selves used this term to refer to dKL(P‖Q) + dKL(Q‖P ). To me it seems that the

denotation divergence is the most common one.

An informal motivation for Kullback-Leibler (KL) divergence is given in [27]:

Imagine we can draw independent samples x1, x2, . . . which we assume to be either

from the probability density function p(x) or from q(x). Now we wish to decide which

density is the correct one. An approach might be to continue drawing samples until

the likelihood ratio
∏

i
p(xi)
q(xi)

exceeds some prede�ned threshold G := 100 : 1 in favor

on one candidate or the other. Equivalently, we could aim to achieve a sample large

enough that the logarithm of the likelihood ratio falls outside the bounds ± log(100).

We don't know where the data stream actually is coming from, but we suppose it to

be from p(x). Then the expected value of the log-likelihood-ratio for a single sample

is E[log(p(x)
q(x)

)] what de�nes the KL divergence. Thus the expected log-likelihood-ratio

for the full sample will exceed log(100) if the sample size becomes larger than log(100)

E[log(
p(x)
q(x)

)]
.

The KL divergence is a non-symmetric measure as explained in [17] of the di�erence

between two probability distributions P and Q. Typically P represents the 'true' dis-

tribution of data, Q typically represents a theory, model, description, or approximation

of P .

De�nition 3.1.9. For probability distributions P and Q of a discrete random variable

the KL divergence is de�ned to be:

dKL(P‖Q) =
∑
i

P (i) log
P (i)

Q(i)
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3.1 Grasp Criterion

(P > 0, Q > 0∀i)

De�nition 3.1.10. For distributions P and Q of a continuous random variable on R
the KL divergence is de�ned to be the integral:

dKL(P‖Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx

where p and q denote the densities of P and Q.

More generally, if P and Q are probability measures over a set X, and Q is absolutely

continuous with respect to P , then the KL divergence from P to Q is given by:

dKL(P‖Q) = −
∫
X

log
dQ

dP
dP

where dQ
dP

is the Radon-Nikodym derivative of Q with respect to P , and provided the

expression on the right-hand side exists. dP and dQ are the densities of the measures

P and Q.

A de�nition of the Radon-Nikodym derivative can be given by the following:

De�nition 3.1.11. Let ν be a σ-�nite measure on (X,Σ) that is absolutely continuous

with respect to a σ-�nite measure µ on (X,Σ). Then it holds that ∃f : X −→ (0,∞)

measurable such that:

ν(A) =

∫
A

fdµ

f is usually written as dν
dµ

and is called the Radon-Nikodym derivative.

Unfortunately the KL divergence is not a metric. It is non-symmetric, i.e. dKL(P‖Q) 6=
dKL(Q‖P ) and it does not satisfy the triangle inequality. At least it is a pre-metric:

If {Pi}ni=1 is a sequence of distributions such that limn→∞ dKL(Pn‖Q) = 0 then one says

Pn −→ Q.

In the discrete case the KL divergence further has the property to be non-negative, i.e.

dKL(P‖Q) ≥ 0 and dKL(P‖Q) = 0⇐⇒ P = Q.

Kullback and Leibler themselves de�ned a symmetric version of the divergence:

dsKL(P,Q) := dKL(P‖Q) + dKL(Q‖P )

It is symmetric and nonnegative but still does not satisfy the triangle inequality. Fur-

ther the symmetrized version of the KL divergence can be calculated without big

computational e�ort.

45



3.1 Grasp Criterion

Convergence in Measure

Let E be a set of �nite measure and En(ε) = {x ∈ X :| fn(x) − f(x) |≥ ε} a set

where the values of fn are at least ε away from f . f and fn (n ∈ N) are real valued

measurable functions on E. As almost everywhere (a.e.) convergence is the weakened

version of point wise convergence, one can say that {fn}n converges a.e. to f if and

only if

lim
n→∞

µ

(
E ∩

∞⋃
m=n

En(ε)

)
= 0

for every ε > 0.

Hence convergence in measure over a set of �nite measure is equal to a.e. convergence

over sets of �nite measure. In general this is not true.

De�nition 3.1.12. Let f, fn (n ∈ N) : X → R be measurable functions on a measure

space (X,Σ, µ). The sequence {fn} is said to converge globally in measure to f if for

every ε > 0:

lim
n→∞

µ({x ∈ X : |f(x)− fn(x)| ≥ ε}) = 0

and to converge locally in measure to f if for every ε > 0 and every F ∈ Σ with

µ(F ) <∞:

lim
n→∞

µ({x ∈ F : |f(x)− fn(x)| ≥ ε}) = 0

There is no metric which includes this sense of convergence, i.e. there are no such

properties like triangle inequality for convergence in measure. At least a kind of Cauchy

criterion can be de�ned.

A sequence of functions is called Cauchy in measure if for every ε > 0:

µ ({x ∈ X : |fm(x)− fn(x)| ≥ ε}) −→ 0

for n,m −→∞, n,m ∈ N.

Mutual Information

What does mutual information mean intuitively?

It measures the information that the random variable X and Y share. Suppose I know

something about one of these variables. How much reduces this the uncertainty about

the other?
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3.1 Grasp Criterion

For example, if X and Y are independent, then knowing X does not give any infor-

mation about Y and vice versa. That means their mutual information is zero. On the

other extreme, if X and Y are identical then all information known about X is shared

with Y completely. In this case the mutual information is the same as the entropy of

any of the random variables.

De�nition 3.1.13. The entropy H of a discrete random variable X is de�ned by:

H(X) = E[I(X)]

with E the expected value, and I(X) the information content or self-information of X.

The information content of an event x with probability P(x) is given by I(x) =

− log(P(x)) and hence I(X) is a random variable. If p denotes the probability mass

function of X then the entropy can explicitly be written as:

H(X) =
n∑
i=1

p(xi)I(xi) = −
n∑
i=1

p(xi) log p(xi)

De�nition 3.1.14. The mutual information, also transinformation, of two discrete

random variables X and Y can be de�ned as:

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p1(x)p2(y)

)
where p(x, y) is the joint probability distribution function of X and Y , and p1(x) and

p2(y) are the marginal probability distribution functions of X and Y respectively.

De�nition 3.1.15. In the continuous case, the mutual information of X and Y can

be de�ned as:

I(X, Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p1(x)p2(y)

)
dxdy

where p(x, y) is the joint probability density function of X and Y , and p1(x) and p2(y)

are the marginal probability density functions of X and Y respectively.

As the base of the log function is not speci�ed, these de�nitions are ambiguous. To

change these functions to become unique, the function I could be parameterized as

I(X, Y, b) with b the base. An alternative would be to specify the base to be 2, since

one bit is the most common unit of measure of mutual information.

Characteristics of the mutual information:
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3.1 Grasp Criterion

• Mutual information can be expressed as a Kullback-Leibler divergence:

I(X, Y ) = dKL(p(x, y)‖p(x)p(y))

where p(x, y) is the joint distribution of the random variables X and Y .

• It is a measure of dependence in the following sense:

I(X, Y ) = 0 if and only if X and Y are independent random variables.

• The measure is non-negative, i.e. I(X, Y ) ≥ 0 for all random variables X and Y

and symmetric, i.e. I(X, Y ) = I(Y,X).

• Even though mutual information does not de�ne a metric, d(X, Y ) = H(X, Y )−
I(X, Y ) does, where H(X, Y ) is the joint entropy of X and Y .

In this framework we will need to evaluate distances between more than two random

variables. Thus one of the various extensions of mutual information has to be chosen.

The most established extensions are the conditional mutual information and interac-

tion information.

But instead of going more to detail, I want to mention, that this measure doesn't �t

the problem properly about the ability to grasp.

Imagine a robot estimates the pose of a target object at least two times and receives

the random variable X1 and X2 with the probability distributions of the base elements

N (TS1, µ1,Σ1) and N (TS2, µ2,Σ2) with densities p1 and p2. In the case that these

Gaussians are far away from each other and thus have a small overlap, the mutual

information I(X1, X2) =
∫
X2

∫
X1
p(x1, x2) log

(
p(x1,x2)

p1(x1)p2(x2)

)
dx1dx2 gives the right indi-

cation on becoming very small that at least one of the measures is unusable and another

measure is required to receive a proper pose estimation.

For the case that the Gaussian kernels are close enough for the gripper being able to

encompass a high percentage of both of them, we would like the distance measure to

show this. For instance in �gure 3.1(a) 84% of the probability mass of both of the

distributions is inside the box, the robots hand can grasp. Now recall that the more

peaked the kernels are, the higher the proportion of the distribution, that is enclosed in

the box. This means in case of strongly peaked density functions like an approximation

of the Dirac delta function δε(x) = 1√
2πε

e−x
2/(2ε) where ε > 0, one can be almost sure

that the object has its pose somewhere in the box, that contains the probability mass

of both of the Gaussians. In the �gure 3.1(b) below 97, 8% of the probability mass is

inside the box.
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3.1 Grasp Criterion

(a) I(X1, X2) = k (b) I(X1, X2) = n < k

Figure 3.1.

Unfortunately the mutual information just shows whether the kernels have big or small

overlap, and thus in the case of peaked Gaussian kernels it gives a small value. That's

why I arrived at the conclusion that this distance measure is not suitable for our prob-

lem.

3.1.2. Convergence Measures

This is an attempt to grade the di�erent convergences in order of strength.

The properties of sequences of functions (or random variables) can vary a lot for grow-

ing indices. Hence one needs quite di�erent kinds of convergences, which usually are

with respect to various norms or topologies even though there are sometimes other

kinds of convergences like convergence in measure as well.

The classical types of convergence are the

• pointwise convergence:
Let fn be a sequence of functions on the same domain D. One says fn converges

pointwise to the limit f if f(x) = limn→∞ fn(x)

• and the uniform convergence:

A sequence fn converges uniform to f if maximal di�erences between fn and f

converge to zero. This is a kind of convergence in terms of the maximum norm.

The limit function f has the property that if the sequence is continuous, then the

uniform limit also is continuous. Furthermore it holds that the integral of the

uniform limit is the limit of the integral of the sequence, i.e. limn→∞
∫ b
a
fndx =
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3.1 Grasp Criterion

∫ b
a
fdx and the derivative of the uniform limit is the limit of the derivative of the

sequence, i.e. limn→∞ f
′
n = f ′.

In measure theory these types of convergence usually are unambiguous and thus one

can only de�ne the convergence almost everywhere.

• pointwise convergence almost everywhere (a.e.)

The convergence is not true at the most on a set with zero measure.

• convergence in measure

If a sequence converges almost everywhere in a space with �nite measure µ(Ω) <

∞ then it converges in measure. Thus convergence in measure is weaker than

convergence a.e.

• Lp convergence
A sequence converges in Lp if

limn→∞ ‖fn − f‖p = limn→∞
(∫

Ω
‖fn(x)− f(x)‖p dµ(x)

)1/p
= 0. Hence from Lp

convergence follows convergence in measure.

• almost uniform convergence

A sequence converges almost uniform if ∀ ε > 0 ∃A ∈ Σ : µ(A) < ε and the

sequence converges uniformly on Σ\A.

• convergence in probability (weak convergence)

It is related to convergence in measure. There are several equivalent de�nitions

of weak convergence of a sequence of measures (see Portmanteau).

There are two hierarchies of convergences fn → f in spaces with �nite measure

µ(Σ) <∞:

uniform convergence

⇒ pointwise convergence

⇒ pointwise convergence almost everywhere ⇔ almost uniform convergence

⇒ convergence in measure

uniform convergence

⇒ L∞ convergence

⇒ Lp convergence, for all real 0 < p <∞
⇒ convergence in measure

⇒ convergence in probability
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3.2 Behavior and Properties of Approximations of MoPGs

3.2. Behavior and Properties of Approximations of

MoPGs

On approximating mixtures of projected Gaussians one surely wants to know what

properties remain. There are various theoretical questions to answer:

• What kinds of properties are passed on from the original MoPGs to the new

MoPG, one obtains after applying one of modi�cation operations fusing, merging

or composing to it?

• What do we know about the accuracy of the approximation?

Let's assume to have the pdf of a known MoPG that ful�lls the grasp criterion

with a certain level for failure ε > 0. On approximating the pdf we want to

preserve that the resulting pdf still ful�lls the criterion.

About the approximation and simpli�cation step of the mixture:

• Which kernels can be omitted? Can an upper bound be given for the error that

arises from dropping kernels? Which threshold for the weights is appropriate to

discard the ones below?

• Can various kernels be replaced by a single one, if they have similar mean and

covariance? And what means 'similar'? Is there a kind of pdf that might replace

kernels with equal mean, but di�erent covariances?

• How many kernels are required and are reasonable to model di�erent kinds of

distributions like an identical distribution for instance with a mixture of projected

Gaussians?

3.2.1. Error Estimation on Dropping Base Elements of a

Mixture

LetM ∈ MoPG be a mixture of projected Gaussians with the density pM(x) =
∑n

i=1 λi·
p(µi,Σi, x). Lets denote pi = p(µi,Σi, x). Now we want to approximate M by the

mixture Mapp ∈ MoPG. This approximated mixture Mapp can easily be achieved by

discarding the less relevant base element with smallest weight λi0 . For easier notation

renumber the weights λi and densities pi such that λi0 becomes the last one. As we
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3.2 Behavior and Properties of Approximations of MoPGs

know that the λi have to sum to 1 =
∑n

i=1 λi, we can renormalize the remaining weights

by:

λ′i := λi +
λiλn

1− λn
=

λi
1− λn

for all i ∈ {1, . . . , n− 1}.

Now an upper bound for the error of the approximation can be given. I will calculate

the total variance which is the maximal error that can occur on trying to grasp an

object by using the box criterion. Remember that this uses the arg max of an integral

over the probability density enclosed in any box B of the set of boxes B.

|P(B)− Papp(B)| =

∣∣∣∣∣∣
∫
B

n∑
i=1

λipi dµB −
∫
B

n−1∑
i=1

λ′ipi dµB

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
B

n−1∑
i=1

(λi − λ′i)pi + λnpn dµB

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
B

n−1∑
i=1

(
− λ′iλn

1− λn

)
pi dµB

∣∣∣∣∣∣+ λn

∫
B

pn dµB︸ ︷︷ ︸
≤1

≤
∫
B

(
λn

1− λn

) n−1∑
i=1

λ′ipi dµB + λn

=
λn

1− λn

n−1∑
i=1

λ′i︸ ︷︷ ︸
1−λn

∫
B

pi dµB︸ ︷︷ ︸
≤1 ∀ i

+λn

≤ 2λn ∀B ∈ B

Of course the approximation

∣∣∣∣∫
B

pi dµB

∣∣∣∣ ≤ 1 is very rough but it su�ces to show that

the di�erence between the approximated and the original probability at most is 2λi0 .

3.2.2. Fusing MoPGs

Robots commonly have a stereo system of cameras and make several localization at-

tempts of the target object from di�erent points of view. Thus in general a couple of

mixtures are obtained that seem to be reliable and all describe the same object. If we
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believe in these observations, we need to think of a solution to join the information we

get from the single mixtures.

Our approach to utilize all the information, is to fuse the mixtures in order to receive

the best possible probability distribution for the pose.

Let M1, M2 ∈ MoPG be two mixtures of projected Gaussians with densities pM1 and

pM2 . To obtain the base elements of the fused mixture pM3 = fuse(pM1 , pM2) each of

the base elements of M1 has to be fused with all of the base elements of M2. How this

fusion works is brie�y introduced in [8] and I explained it in section 2.3.1.

It doesn't make sense to fuse widely separated base elements as then a systematic

overestimation of the concentration of the covariance matrix results. Thus we require

all covariance matrices of the mixtures to be su�ciently well peaked. There are further

things that shall be payed attention to:

• The tangent points qi and qj of the the base elements PGi ∈M1 and PGj ∈M2 to

be fused need to be su�ciently close. In practice it turned out to make no sense

to allow a bigger angle than 15◦ between the point qi and qj on the hypersphere

S3. To assure that the base elements are compatible a weighting factor

αij = e−5·arccos((qi·qj)2)

is introduced. The angle θ between qi and qj can be calculated with θ = arccos(qi ·
qj). By taking the square of the scalar product of the tangent points (qi · qj)2 it is

secured that the exponent of the function and thus also the function is antipodal

symmetric on the sphere. The factor −5 was obtained by heuristics and has the

e�ect that the whole function goes to 0 reasonably quick.

• If both base elements PGi and PGj shall be applied at the same moment, the

dissimilarity of the distribution functions has to be small as well. Note that I

require the base elements to be projected to the same tangent space already. We

use the Mahalanobis distance to weight the fused base element PGi,j:

δij = e−1/2·(µi−µj)(Σi+Σj)−1(µi−µj)>

This expresses that even if the base elements share the same tangent space,

they could be incompatible because the distributions might be too di�erent. A

disadvantage of this weighting function is that for base elements that by accident

have the same mean µi = µj the maximal weight is returned.
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All together each of the summands of the fused mixture has the form:

C · λiλjαijδij · PGij

where C = 1/(
∑n1

i=1

∑n2

j=1 λiλjαijδij) is the normalizing constant for pM3 to be a prob-

ability density function, λi and λj are the weights of the base elements in their original

mixtures and PGij is the fused base element with density pM3 .

The problem that arises with this approach to fuse mixtures is that the resulting mix-

ture M3 consists of n1 · n2 summands for M1 consisting of n1 and M2 consisting of n2

elements. To reduce this rapidly increasing number of base elements, kernels with low

weight can be omitted as I mentioned already in 3.2.1. Another strategy is to merge

similar kernels what I will explain in the following.

3.2.3. Merging MoPGs

The moment-preserving merge [7] is a common procedure to substitute two elements

of a MoPG by a new one, matching the zeroth, �rst and second-order moments of the

original mixture. I described this merge already in section 2.3.1.

The more interesting point of merging elements of a mixture is the best choice of the

projected Gaussians. The Mahalanobis distance of two Gaussian kernels, I introduced

in de�nition 3.1.8 might match the problem to check the compatibility of single kernels,

but for this topic I have to chose another dissimilarity measure that �ts whole mixtures

of projected Gaussians. Actually I don't need to know which kernels of the mixture are

the most similar, I want to �nd the kernels such that after merging them, the whole

approximated mixture is the least dissimilar from the mixture before the merge.

Williams searches in his master's thesis [34] for a scalar cost function which measures

the di�erence between the density of the original mixture and the approximated mixture

in order to evaluate whether one merge is 'better' than another. He proposes to use

the square of the L2 norm

dISD(f1, f2) =

∫
(f1(x)− f2(x))2 dx

which he refers to as integral square di�erence measure (ISD).

Further he introduces the Kolmogorov variational distance dK(f1, f2) =
∫
|f1(x) −

f2(x)| dx which has an intuitively appealing probability mass interpretation and the
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Maximum Likelihood measure dML(f1, f2) =
∫
f1(x)log(f2(x)) dx which would �t the

requirements of a cost function the best. But only the ISD measure provides the

advantage to be computable in closed form. Anyway the Williams criterion is disad-

vantageous for the reason that the optimization often �nds local minima and Runnalls

constructed an example that showed the scale-dependency of the ISD cost measure

which also can lead to anomalies.

Salmond with his criterion reduces the number of components by repeatedly choosing

the two most similar components and merging them. The similarity is derived from a

statistical analysis of the variance. For any two mixture elements Gi = λi ·N (µi,Σi)

and Gj = λj ·N (µj,Σj) the dissimilarity measure proposed by Salmond is de�ned as:

dS(Gi, Gj) = tr(Σ−1 λiλj
λi + λj

(µi − µj)(µi − µj)>)

where Σ is the 'overall variance' of the mixture, Σ =
∑n

i=1 λiΣi+
∑n

i=1 λi(µi−µ)(µi−µ)>

and µ =
∑n

i=1 λiµi is the 'overall mean' of the mixture.

Major drawbacks are that the measure just depends on the means of the components,

not on their individual covariances and that adding a new component might alter the

merge order of existing components. Thus in various cases unfavored behavior of the

merging algorithm arises.

A more promising criterion is the dissimilarity measure based on Kullback-Leibler (KL)

divergence. I developed a variant based on the symmetrized version of the Kl diver-

gence which I will refer to as sKL divergence.

From Runnalls [27] paper we know that the following holds:

Theorem 3.2.1. Let p1(x) be the density of a d-dimensional Gaussian distribution

N (µ1,Σ1) and p2(x) be the density of a d-dimensional distribution N (µ2,Σ2).

Then:

2dKL(p1, p2) = tr
(
Σ−1

2 (Σ1 − Σ2 + (µ1 − µ2)(µ1 − µ2)>)
)

+ log
det(Σ2)

det(Σ1)

This implies:

dsKL(p1, p2) = 1
2
tr
(
Σ−1

2 (Σ1 − Σ2 + (µ1 − µ2)(µ1 − µ2)>)
)

+ 1
2
tr
(
Σ−1

1 (Σ2 − Σ1 + (µ2 − µ1)(µ2 − µ1)>)
)

= 1
2
tr
(
Σ−1

2 Σ1 + Σ−1
1 Σ2 + (Σ−1

1 + Σ−1
2 )(µ1 − µ2)(µ1 − µ2)>

)
− d

which can be calculated much faster as the logarithm cancels out.
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Regrettably there is no closed form expression neither for the KL divergence of two

mixtures of projected Gaussians, nor for the sKL divergence of two mixtures of pro-

jected Gaussians, as the mixture density pM =
∑n

i=1 λi pi consists of a sum, where the

pis are the densities of the single projected Gaussian kernels.

For this reason Runnalls thought of an upper bound of the KL divergence between

the mixture before the merge and the mixture after the merge of two similar Gaussian

kernels. He denominated this upper bound B(i, j). Analogously I will refer to my

upper bound of the symmetrized KL divergence as Bs(i, j), which I will derive now.

Theorem 3.2.2. If f1(x), f2(x) and h(x) are any pdfs over d dimensions, 0 ≤ ω ≤ 1

and writing ω for 1− ω, then:

dsKL(ωf1 + ωh, ωf2 + ωh) ≤ ω dsKL(f1, f2)

Proof :

ωdsKL(f1, f2)− dsKL(ωf1 + ωh, ωf2 + ωh) =

= ω

∫
Rd

f1 log
f1

f2

dx+ ω

∫
Rd

f2 log
f2

f1

dx

−
∫
Rd

(ωf1 + ωh) log
ωf1 + ωh

ωf2 + ωh
dx−

∫
Rd

(ωf2 + ωh) log
ωf2 + ωh

ωf1 + ωh
dx

= ω

∫
Rd

f1 log
f1(ωf2 + ωh)

f2(ωf1 + ωh)
dx+ ω

∫
Rd

f2 log
f2(ωf1 + ωh)

f1(ωf2 + ωh)
dx− 0

∗
≥ ω

∫
Rd

f1

(
1− f2(ωf1 + ωh)

f1(ωf2 + ωh)

)
dx+ ω

∫
Rd

f2

(
1− f1(ωf2 + ωh)

f2(ωf1 + ωh)

)
dx

=

∫
Rd

(
(ωf1 − ωf2)ωh)

ωf2 + ωh
+

(ωf2 − ωf1)ωh)

ωf1 + ωh

)
dx

=

∫
Rd

(ωf1 − ωf2)2ωh

(ωf1 + ωh)(ωf2 + ωh)
dx

≥ 0

�

That ∗ holds can be seen from the following:

Lemma 3.2.3. For all a, b ∈ Z it holds that:

log
a

b
≥ 1− b

a

56



3.2 Behavior and Properties of Approximations of MoPGs

Proof :

log
a

b
≥ 1− b

a
⇐⇒ a

b
log

a

b
≥ a

b
− 1

Substitute x := a
b

x log x ≥ x− 1 ⇐⇒ 1− x+ x log x ≥ 0

De�ne f : Q→ Q:

f(x) = 1− x+ x log x

f ′(x) = −1 + log x+ 1 = log x

Now it can be seen that f(x) has its global minimum at x = 1 and f(1) = 0. Thus

1− x+ x log x ≥ 0 is true.

�

Let f1 be the density of the normalized mixture Mi+j consisting of the two base ele-

ments PGi and PGj, i 6= j, that shall be merged. If the base elements do not share

the same tangent space anyway I project them to a common one TSij at the tangent

point pij =
pi+pj
‖pi+pj‖ by the double projection: Central projection

∏
pi
respectively

∏
pj

to the sphere followed by the inverse of the central projection
∏−1

pij
to the common tan-

gent space. For easier notation I name these new base elements with PGi and PGj as

well, as the postulation that they have the same tangent space, doesn't involve further

changes. Hence from now on it can be assumed for the whole remainder of this section

that the rotation part of PGi and PGj live in the same tangent space.

Let f2 be the density of the mixture Mij consisting of the single kernel PGij that is

obtained by merging the elements PGi and PGj with the moment-preserving merge.

Note that PGij also has the same tangent space as PGi and PGj. Further let h be the

remaining mixture except the two particular kernels of f1.

Then we get from theorem 3.2.2 that the divergence of the whole mixture after merg-

ing the components PGi and PGj from the mixture before the merge will not exceed

ω · dsKL(f1, f2), where ω = λi + λj and dsKL(f1, f2) is the divergence of the normalized

mixture Mi+j and the mixture of the merged single Gaussian Mij.

Theorem 3.2.4. If f(x), h1(x) and h2(x) are any pdfs over d dimensions, 0 ≤ ω ≤ 1

and writing ω for 1− ω, then:

dsKL(ωh1 + ωh2, f) ≤ ω dsKL(h1, f) + ω dsKL(h2, f)
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Proof :

ωdsKL(ωh1 + ωh2, f) =

∫
Rd

(ωh1 + ωh2) log
ωh1 + ωh2

f
dx+

∫
Rd

f log
f

ωh1 + ωh2

dx

= ω

∫
Rd

h1 log
ωh1 + ωh2

f
dx+ ω

∫
Rd

h2 log
ωh1 + ωh2

f
dx

+

∫
Rd

f log
f

ωh1 + ωh2

dx

ω dsKL(h1, f) + ω dsKL(h2, f) = ω

∫
Rd

h1 log
h1

f
dx+ ω

∫
Rd

f log
f

h1

dx

+ ω

∫
Rd

h2 log
h2

f
dx+ ω

∫
Rd

f log
f

h2

dx

If we can show that:

ω

∫
Rd

h1 log
ωh1 + ωh2

f
dx ≤ ω

∫
Rd

h1 log
h1

f
dx

it follows directly:

ω

∫
Rd

h2 log
ωh1 + ωh2

f
dx ≤ ω

∫
Rd

h2 log
h2

f
dx

and just remains to check whether:∫
Rd

f log
f

ωh1 + ωh2

dx ≤ ω

∫
Rd

f log
f

h1

dx+ ω

∫
Rd

f log
f

h2

dx

Now calculate:

ω

∫
Rd

h1 log
h1

f
dx− ω

∫
Rd

h1 log
ωh1 + ωh2

f
dx = ω

∫
Rd

h1

(
log

h1

f
− log

ωh1 + ωh2

f

)
dx

= ω

∫
Rd

h1

(
log

h1

ωh1 + ωh2

)
dx

3.2.3

≥ ω

∫
Rd

h1

(
1− ωh1 + ωh2

h1

)
dx

= ω

∫
Rd

h1 − (ωh1 + ωh2) dx

= ω

∫
Rd

h1 dx︸ ︷︷ ︸
=1

−ω
∫
Rd

ωh1 + ωh2 dx︸ ︷︷ ︸
=1

= 0
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∫
Rd

f log
f

ωh1 + ωh2

dx− ω
∫
Rd

f log
f

h1

dx− ω
∫
Rd

f log
f

h2

dx

≤
∫
Rd

f

(
1− ωh1 + ωh2

f

)
dx− ω

∫
Rd

f

(
1− h1

f

)
dx− ω

∫
Rd

f

(
1− h2

f

)
dx

=

∫
Rd

(f − (ωh1 + ωh2)− ωf + ωh1 − ωf + ωh2) dx

=

∫
Rd

(f − (ω + ω)f) dx

= 0

�

Now let h1 be the density of PGi and h2 the one of PGj. Thus we have the normalized

mixture:

Mi+j =
λi

λi + λj
PGi +

λj
λi + λj

PGj

and Mij := 1 · PGij.

Then we get from theorem 3.2.4 that dsKL(f1, f2) will never raise above:

1

λi + λj
(λi dsKL(h1, f) + λj dsKL(h2, f))

What can equivalently be written in terms of mixtures and base elements:

dsKL(Mi+j,Mij) ≤
1

λi + λj
(λi dsKL(PGi,PGij) + λj dsKL(PGj,PGij))

Putting this together with the upper result, from theorem 3.2.2, it follows:

Theorem 3.2.5. The sKL divergence of the whole mixture of projected Gaussians

MoPG before the merge from the mixture MoPGapp after the merge of the components

PGi and PGj of the mixture MoPG, i 6= j, will not exceed:

Bs(i, j) := λi dsKL(PGi,PGij) + λj dsKL(PGj,PGij)
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3.2 Behavior and Properties of Approximations of MoPGs

This formula can still be simpli�ed using the result from theorem 3.2.1. Further sub-

stitute λij := λi + λj and µij := λi
λij
µi +

λj
λij
µj.

Then the upper bound for the sKL divergence can be written as:

Bs(i, j) = λi dsKL(PGi,PGij) + λj dsKL(PGj,PGij)

=
1

2
λi tr

(
Σ−1
ij Σi + Σ−1

i Σij + (Σ−1
i + Σ−1

ij )(µi − µij)(µi − µij)>
)
− d λi

+
1

2
λj tr

(
Σ−1
ij Σj + Σ−1

j Σij + (Σ−1
j + Σ−1

ij )(µj − µij)(µj − µij)>
)
− d λj

=
1

2
λi tr

(
Σ−1
i Σij +

(
λj
λij

)2

(Σ−1
i + Σ−1

ij )(µi − µj)(µi − µj)> +
(
Σ−1
i Σij

)−1

)

+
1

2
λj tr

(
Σ−1
j Σij +

(
λi
λij

)2

(Σ−1
j + Σ−1

ij )(µi − µj)(µi − µj)> +
(
Σ−1
j Σij

)−1

)
− d λij

where Σij := 1
λij
·
(
λiΣi + λjΣj + λi λj(µi − µj)(µi − µj)>

)
and d is the dimension of

the base elements.

This means Bs(i, j) can be calculated directly from the densities of the base elements

PGi and PGj.

3.2.4. Formulation of Conjectures

For the whole section let g be the density of the mixture of projected Gaussians that

describes the pose of the robots gripper in the SE(3). Further let p, p∞ respectively

papp be the densities of the mixtures of projected Gaussians M ∈ MoPG, M∞ ∈
MoPG respectively Mapp ∈ MoPG. M is any mixture that estimates the pose of the

target object. M∞ is the in�nitely long mixture that just exists in theory and which

would determine the pose of the target object precisely. Finally Mapp is a mixture

approximating M that consists of less summands than M and can be achieved by

merging or dropping base elements of M .

Coherence of the Introduced Grasp Criteria

For an appropriate distance measure dist there is always a threshold G ≥ 0 for which it

holds that if dist(g−p) ≤ G the box the gripper can encompass at its pose close to the

estimated pose of the object is the one which contains the maximum of the probability

mass.

60



3.2 Behavior and Properties of Approximations of MoPGs

Of course one aims to �nd a strictly positive thresholds G 	 0 to have a bigger range

of tolerance for the action of grasping. Further I suppose that in this case the Lp norm

should be chosen as distance measure instead of the KL divergence, as it determines

the absolute di�erence of the densities.

Convergence of Approximation

Theorem 3.2.6. Let p and papp be mixture densities like de�ned above. De�ne a small

threshold G ≥ 0. If we know that through the uncertainty of the approximation we just

get a small error δ ≥ 0 i.e. P(‖p− papp‖ > G) ≤ δ, then it holds:

P(‖g − p‖ ≤ G) > 1− ε =⇒ P(‖g − papp‖ ≤ 2G) > 1− ε̃

where ε̃ := ε+ δ.

Proof:

P (‖g − papp‖ > 2G) = P (‖g − p+ p− papp‖ > 2G)

≤ P (‖g − p‖+ ‖p− papp‖ > 2G)

≤ P (‖g − p‖ > G)︸ ︷︷ ︸
≤ε

+ P (‖p− papp‖ > G)︸ ︷︷ ︸
≤δ

≤ ε̃

This is equivalent to: P (‖g − papp‖ ≤ 2G) > 1− ε̃

�

Theorem 3.2.7. Cauchy convergence

Let {pn}n be a family of densities of mixtures of projected Gaussians consisting of n

summands. The �rst mixture density p1 just consists of the density of a single base

element. The other mixture densities are achieved by recursively concatenating another

projected Gaussian density to the existing mixture density pn in each step n → n + 1.

The weights need to be renormalized each time.

On repeating the recursion in�nitely long concatenating base elements that estimate the

pose of a target object, one would determine the pose of the target by p∞.

We assume that ∀ε > 0 ∃N1 ∈ N such that ∀n > N1:

P (‖g − pn‖ ≤ G) > 1− ε
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3.3 Algorithms for Approximation

Further we know that we have a Cauchy sequence {pn}n, i.e.: ∀δ > 0 ∃N2 ∈ N
∀m0,m1 > N2 : ‖pm0 , pm1‖ < δ. Allow δ to be big enough for that N2 + 1 < N1.

Then choose an arbitrary m with N2 < m < N1 and it holds:

P (‖g − pm‖ ≤ G+ δ) > 1− ε

Proof: Let be n > N1 > N2 + 1 and N2 < m < N1 like above.

P(‖g − pm‖ > G+ δ) = P(‖g − pn + pn − pm‖ > G+ δ)

≤ P(‖g − pn‖+ ‖pn − pm‖︸ ︷︷ ︸
<δ

> G+ δ)

≤ P(‖g − pn‖ > G+ δ − δ)

= P(‖p− pn‖ > G)

≤ ε

�

3.3. Algorithms for Approximation

Let M0, Mapp ∈ MoPG be two mixtures of projected Gaussians. M0 is a mixture

that describes the probability distribution of the pose of a target object, but might be

complicated to calculate or might contain parameters which are unknown to us. The

second mixture Mapp using a reduced number of base elements should be �tted to the

�rst mixture. This can be done in a number of di�erent ways. One is the �t of a set

of samples drawn from the �rst distribution by use of the expectation maximization

algorithm. Another possibility is the numerical minimization of the Euclidean norm

of the di�erence of the two probability density functions pdfs, as a function of the pa-

rameters λi, µi and Σi. In this case the 2-norm is chosen as it is easy to deal with and

the absolute di�erence between the mixtures shall be minimized. In a next step these

approaches to reduce the number of elements of a mixture would have to be compared.

This stands out to be done in future work.

3.3.1. Expectation Maximization

In the following I will explain how a mixture of projected Gaussians can be �tted to

a set of samples drawn from another mixture. This algorithm is well known for mix-
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tures of Gaussians and can be applied to the projected Gaussians in the same manner

because we can easily switch between tangent spaces by the double projection, central

projection to the sphere and back to another tangent space which is reasonably close

to the original one.

A mixtureM0 ∈ MoPG is de�ned as
∑n

i=1 λi·N (TSi, µi,Σi) as we know from de�nition

2.3.1 and has the density

p(x) =
n∑
i=1

λi · ϕ(x|TSi, µi,Σi)

where ϕ(x|TSi, µi,Σi) = ϕTSi,µi,Σi
(x) is the density of the i-th base element.

Let us introduce now the latent variable z. In this context latent means to be hidden.

z is a n-dimensional binary random variable consisting of a 1-of-n representation what

means a certain element zi = 1 and all the other n− 1 elements equal 0. Together the

values of zi thus satisfy
∑n

i=1 zi = 1 and there are n possible states which element of

the vector z is nonzero. We de�ne the marginal distribution P(z) over z in terms of

the weighting coe�cients λi corresponding to the weights of the mixture M :

P(zi = 1) := λi for i = 1, . . . , n

As z has a 1-of-n representation we can write the probability distribution of z in the

form

P(z) =
n∏
i=1

λzii

In the same way the conditional probability of x given a particular value for z is the

distribution function of the corresponding base element

P(x|zi = 1) = N (x|TSi, µi,Σi)

which can also be written in the form

P(x|z) =
n∏
i=1

N (x|TSi, µi,Σi)
zi

Then the joint distribution P(x, z) is given by P(z) · P(x|z) and thus the distribution

of the whole mixture of projected Gaussians is obtained by summing over all possible

states of z:

P(x) =
n∑
i=1

P(z) · P(x|z) =
n∑
i=1

λi ·N (x|TSi, µi,Σi)
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3.3 Algorithms for Approximation

This means MoPGs can be interpreted in terms of discrete latent variables. And a

general technique for �nding maximum likelihood estimators in latent variable models

is the expectation maximization (EM) algorithm which is an algorithm that has

brought applicability [14]. At �rst I will give a more informal motivation of the EM

algorithm and describe explicitly the steps of this algorithm afterwards.

The log likelihood function for a data set X = {x1, . . . xN} of independently drawn

samples from a distribution P(X) is given by:

ln P(X|TS, µ,Σ, λ) =
N∑
j=1

ln

(
n∑
i=1

λiN (xj|TSi, µi,Σi)

)

It expresses how probable the observed data set is for di�erent settings of the parame-

ters TS, µ, Σ and λ. Note that the likelihood function is not a probability distribution.

Theorem 3.3.1. Bayes' theorem

For two events A and B with positive probability P(B) > 0 it holds:

P(A|B) =
P(B|A)P(A)

P(B)

For a segmentation of the sample space Ω into a �nite number of disjunct events Ai,

i = 1, . . . , N and an event B with P(B) > 0 it holds:

P(Ai|B) =
P(B|Ai)P(Ai)∑
i P(B|Ai)P(Ai)

=
P(B|Ai)P(Ai)

P(B)

Set the posterior probability which is also called responsibility :

γ(zi) ≡ P(zi = 1|x) =
λiN (x|TSi, µi,Σi)∑n

k=1 λkN (x|TSk, µk,Σk)

where the values can be found using the Bayes' theorem.

Thus we obtain:

γ(zj,i) :=
λiN (xj|TSi, µi,Σi)∑n

k=1 λkN (xj|TSk, µk,Σk)

Note that the samples xi ∈ S3 × R3 ∀i ∈ {1, . . . , N} are drawn from the special Eu-

clidean group such that the rotation part lies on the 3-sphere. To assign the appropriate
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responsibilities to these samples they have to be reprojected by
∏−1

pk
(xi) to the tangent

space of the Gaussian kernel with tangent point pk for k = 1, . . . , n.

Maximizing the log likelihood function for a projected Gaussian mixture model turns

out to be a more complex problem than for the case of a single projected Gaussian.

Fortunately the EM algorithm is an elegant and powerful method for �nding maximum

likelihood solutions for models with latent variables. It consists of the two following

steps between which we alternate until the algorithm converged as stated in [4]. Initially

there are arbitrary values chosen for the means, covariances and weighting coe�cients.

• Expectation step (E step):

The current values are used for the parameters to evaluate the posterior proba-

bilities or responsibilities.

• Maximization step (M step):

The probabilities obtained in the E step are used to reestimate the means, covari-

ances and mixing coe�cients. Then the tangent spaces are changed by double

projection so that we obtain Gaussian kernels with zero mean for the rotation.

It can be shown that each update to the parameters resulting from an E step followed

by an M step is guaranteed to increase the log likelihood function ln P(X|TS, µ,Σ, λ).

In practice, one expects the algorithm to have converged when the change in the log

likelihood function, or alternatively in the parameters, falls below some �xed threshold.

It is well known that the EM algorithm needs comparatively many iteration steps and

that each cycle is computationally expensive. Thus it is common to run other algo-

rithms like the n-means algorithm �rst to achieve better initial values than randomly

chosen ones. Further I want to mention that another disadvantage of the EM algorithm

arises from the fact that it might get stuck in some local maxima of the log likelihood

function instead of �nding the global maximum. This is a second indication for the

need to choose the initial values carefully.

Summary of the EM algorithm

1. Set the initial value for the means µi, covariance matrices Σi and weighting

coe�cients λi and evaluate the log likelihood with these values.

2. E step:

Evaluate the responsibilities γ(xn,i) using the current parameter values

γ(zj,i) :=
λiN (xj|TSi, µi,Σi)∑
k λkN (xj|TSk, µk,Σk)
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3. M step:

Reestimate the parameters using the current responsibilities

µnewi =
1

Ni

N∑
j=1

γ(zj,i) · xj

Σnew
i =

1

Ni

N∑
j=1

γ(zj,i)(xj − µnewi )(xj − µnewi )>

λnewi =
Ni

N

where Ni =
∑N

j=1 γ(zj,i)

4. Evaluate the log likelihood:

ln P(X|TS, µ,Σ, λ) =
N∑
j=1

ln

(
n∑
i=1

λiN (xj|TSi, µi,Σi)

)

and check for convergence of either the parameters or the log likelihood. If the

convergence criterion is not satis�ed return to the E step.

3.3.2. Monte Carlo

Let p0 be the density of the mixture of projected Gaussians M0 ∈ MoPG and papp be

the density of Mapp ∈ MoPG. The square of the L2 norm of these probability density

functions p0 and papp is de�ned as:

‖p0 − papp‖2
2 :=

∫
S3×R3

(p0(q)− papp(q))2 dq

The minimization of this integral is equivalent to the minimization of the Euclidean

norm. The calculation of it can be done using the Monte Carlo algorithm which relies

on summation instead of the costly integration.

What is Monte Carlo (MC) integration in general?

MC integration is a numerical integration that randomly chooses the points at which

the integrand is evaluated. First I will specify the region A to integrate over. To

estimate the area of interest D, pick a simple area A which is easy to calculate and

which contains D. Then pick a sequence of random points that fall within A. Some

fraction of these points will also fall within D. The area of D is then estimated as this

66



3.3 Algorithms for Approximation

fraction multiplied by the area of A.

As we handle a mixture of projected Gaussians, we know for each kernel PGi the center

of mass Di and thus easily can deduce an approximation of the center of mass of the

mixture. Of course we require the area A ⊂ S3 × R4 to contain Di ∀i.
Now the algorithm has to be de�ned:

• {an}n, n ∈ N is a random sequence of identically distributed points in the inte-

gration area A.

• g is the integrand. For a function of one variable the average value of g(x) can

be estimated by:

g̃N ≈
1

N

N∑
n=1

g(an), N ≥ 1

• MA is the mass of the whole integration area.

• Iteration:

1. V1 = g(a1) is the value of the �rst point

2. Vn+1 = n
n+1
· Vn + 1

n+1
· g(an+1) de�nes the steps from n (≥ 1) to n+ 1

• V := limn→∞ Vn

• The value of the integral I is then:∫
A

g(x) dMA = V ·MA

and an approximation of the integral can be given by I ≈MA · g̃N

An estimate for the error is given by:

err = MA ·

√
g̃2
N − g̃N 2

N

where g̃2
N := 1

N

∑N
n=1 g

2(an).

On integrating with this algorithm the values converge with order o( 1√
N

) regardless

of the smoothness of the integrand. MC integration is not competitive in one or two

dimensions, but in higher dimensions. Further keep in mind that each time the MC

algorithm is implemented using the same sample size N , it will come up with a slightly

di�erent value as the integration points are picked randomly. Obviously larger values

of N produce more accurate approximations.
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I suppose the iteration can be stopped when the di�erence |Vn+1 − Vn| remained suf-

�ciently long under a majorant with su�ciently small sum. Then we assume the

algorithm to converge signi�cantly to the true value of the integral I.

The most important advantage of this approximation of the integral is that the algo-

rithm is easy and fast.

The traditional Monte Carlo algorithm distributes the evaluation points uniformly over

the integration region like mentioned above. But there are also adaptive algorithms

such as VEGAS and MISER:

• MISER Monte Carlo

This algorithm of Press and Farrar [25] is based on recursive strati�ed sampling.

This technique aims to reduce the overall integration error by concentrating in-

tegration points in the regions of highest variance.

• VEGAS Monte Carlo

The algorithm of G. P. Lepage [21] is based on importance sampling. It samples

points from the probability distribution described by the absolute value of the

function |g|, so that the points are concentrated in the regions that make the

largest contribution to the integral.

We would like to approximate ‖p0 − papp‖2
2 by:

1

N

N∑
i=1

(p0(ai)− papp(ai))2 ·MA

where ai ∈ A are the elements of the sample set {a1, . . . , aN} and A ⊂ S3 × R4 is the

region to integrate. It turned out that the speci�cation of the region A lacks an easy

solution but we found a possibility to elegantly eludes this speci�cation which I will

introduce in the following.

Importance Sampling

We know that the Monte Carlo estimator of E[g(X)] is g̃n(X) = 1
n

∑n
i=1 g(xi) for X

being a uniformly distributed continuous random variable. Furthermore this estimator

is unbiased, what means E[g̃n(X)] = E[g(X)].
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An important thing to note is that there is no restriction that says that the random

variables must be uniformly distributed. It is obvious that the choice of distribution

from which to draw the random variables will a�ect the quality of their Monte Carlo

estimator. This implies importance sampling [2] is choosing a good distribution from

which to simulate the random variables.

Now consider X to be a continuous random variable with any probability density

function fX(x) > 0 ∀x ∈ R. Then the expected value of a function g of X is:

EfX [g(X)] =

∫
x∈R

g(x)fX(x) dx

This is deduced from the following:

If X is a continuous random variable de�ned on a probability space (Ω,Σ, P ), then the

expected value of X is de�ned as:

EfX [X] =

∫
Ω

X dP

When this integral converges absolutely, it is called the expectation of X. If the

probability distribution of X admits a probability density function fX(x) on Ω, then

the expected value can be computed as:

EfX [X] =

∫ ∞
−∞

xfX(x) dx

And the expected value of an arbitrary function of X, g(X), with respect to the prob-

ability density function fX(x) is given by the inner product of fX and g.

Then we can estimate the value of EfX [ g(x)
fX(x)

] by generating a number of random sam-

ples according to fX , computing g
fX

for each sample, and �nding the average of these

values. As more and more samples are taken, this average is guaranteed to converge

to the expected value, which is also the value of the integral I.

De�nition and Theorem 3.3.2. Let fX(x) be a density for a continuous random

variable X which this time only takes values in A so that
∫
x∈A fX(x) dx = 1 and EfX

denotes the expectation with respect to the density fX :∫
x∈A

g(x) dx =

∫
x∈A

g(x) · fX(x)

fX(x)
dx =

∫
x∈A

g(x)

fX(x)
· fX(x) dx = EfX

[
g(x)

fX(x)

]
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3.3 Algorithms for Approximation

so long as fX(x) 6= 0 for any x ∈ A for which g(x) 6= 0.

From this follows that the Monte Carlo estimator is:

g̃n,fX (X) :=
1

n

n∑
i=1

g(xi)

fX(xi)

where xi ∼ fX(x).

Proof:

EfX [g̃n,fX (X)] =
1

n

n∑
i=1

EfX

[
g(xi)

fX(xi)

]
=

1

n

n∑
i=1

∫
A

g(x)

fX(x)
fX(x)dx

=
n

n

∫
A

g(x)
fX(x)

fX(x)
dx

=

∫
A

g(x)dx

= I

given that g(x)
fX(x)

is �nite ∀x.

�

Finding a MC estimator that provides good estimates in a reasonable amount of com-

puting time is not a trivial task.

An assessment for MC estimators can be given by the variance [31] which is de�ned

by:

Var[g̃n,fX (X)] =
1

n

∫
x∈R

(g(x)− E[g(X)])2 fX(x)dx

The smaller the variance for the same amount of computational e�ort the better the

estimator in comparison to its competitors. Thus we are looking for an importance

sampling function fX(x) that has the following properties:

• fX(x) > 0 whenever g(x) = 0

• fX(x) should be close to being proportional to |g(x)|

• It should be easy to simulate values from fX(x).

• It should be easy to compute the density fX(x) for any value x one might realize.

70



3.3 Algorithms for Approximation

I want to point out that serious di�culties arise if fX(x) gets small much faster than

g(x) out in the tails. Though drawing a sample from the tail of the distribution is

unlikely the MC estimator will give a big error if it occurs. g(xi)
fX(xi)

for such an unlikely

xi may be orders of magnitude larger than the typical values of g(xi)
fX(xi)

.

To estimate the absolute error of the MC integration with importance sampling the

central limit theorem can be used. It states that g̃n,fX (X) converges to the normal

distribution as n → ∞. Let's denote Yi := g(xi)
fX(xi)

and Y := Y1. In particular the

central limit theorem gives for t ∈ R and σ(Y ) the standard deviation of Y :

lim
n→∞

P

[
1

n

n∑
i=1

Yi − E[Y ] ≤ t · σ(Y )√
n

]
=

1√
2π

∫ t

−∞
e−x

2/2 dx

Hence we receive the following equation for the error:

P [|g̃n,fX − I| ≥ t · σ(g̃n,fX )] =

√
2

π

∫ ∞
t

e−x
2/2 dx

where the standard deviation of g̃n,fX is σ(g̃n,fX ) = 1√
n
σ(Y ).

By the way I want to bring up that the treatment of higher order error estimation is

not just an academic point. Lazopoulos deals in his paper [19] with �rst-order errors

of MC integration that is the error directly on the integral estimate and second-order

errors that is the error on the error estimate of the integration. A mis-estimate of the

integration error can lead to a serious under and over estimate of the con�dence level

and thus it's estimation should be done carefully.

Finally I want to explain why for Monte Carlo integration with importance sampling

over mixtures of Gaussians as distribution function no limits of integration are needed.

Let's calculate the MC estimator g̃n,fX (X) for n samples of a mixture of projected

Gaussians with length d with a set of normally distributed samples {x1, . . . , xn}. We

de�ne the fraction

g(x)

fX(x)
: =

d∑
i=1

gi(x)

fX,i(x)

=
d∑
i=1

λi · 1/C(x) · 1/
√

det(2πΣi) · exp(−1
2
(x− µi)>Σ−1

i (x− µi))
1/
√

det(2πΣi) · exp(−1
2
(x− µi)>Σ−1

i (x− µi))

=
d∑
i=1

λi · 1/C(x)
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3.3 Algorithms for Approximation

where 1/C(x) is the correction weight for the parameterization in the integration. This

means for x = (x1, x2, x3, x4, x5, x6)> ∈ R6 it is de�ned as 1/C(x) = 1/(1+x2
1 +x2

2 +x2
3)

as I already showed at the end of section 2.2.1. For all i = 1, . . . , d we know that fX,i(x)

will never be smaller than gi(x) as λi ≤ 1 and 1/C(x) ≤ 1 ∀x ∈ R6. Thus there is no risk

for abnormal behavior in the tails of the probability density. As we know from theorem

3.3.2 it holds that I = EfX [g̃n,fX (X)]. Hence we can calculate an approximation of the

integral by the following formula:

I ≈
d∑
i=1

λi
1

n

(
n∑
j=1

1

C(xij)

)

where xij is the jth element of the ϕ(µi,Σi) distributed sample set with ϕ(µi,Σi) :=

1/
√

det(2πΣi) · exp(−1
2
(x− µi)>Σ−1

i (x− µi)).

Formally we would have to pick the samples xij out of a box shaped integration area

A including the area of interest D and than let the side length of the box go to in�nity

always normalizing with the density of the underlying sample distribution. But it can

be seen directly that each of the summands of the mixture and thus the whole mixture

itself does not contain signi�cant mass in the tails as we just work with �nite mixtures

of projected Gaussians.

What stands out to be done in future work is the minimization of the square of the L2

norm of the densities of the mixtures M0 and Mapp:

h(λi, TSi, µi,Σi) := min ‖p0 − papp‖2
2

By now the Monte Carlo integration can at least be used to validate the �t of a mixture

achieved with the expectation maximization algorithm.
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4. Implementation and

Experimental Veri�cation

Recall that a robot makes several localization attempts to estimate the pose of a

target object. In the following I will explain how the robot draws conclusions from

the separated 3D SIFT features it detects to the object pose. This procedure is called

sensor model.

• Every object of the robots data base of 3D models is given a Cartesian coordinate

system CSO. To systematize the arbitrary choice of origin and axis, we postulate

the origin of the coordinate system to be the midpoint of the bottom of the object.

Then we de�ne the x- and y-axes to be the main axes in the basement of the

object the way that together with the z-axis, which is straight up, they produce

a right-handed coordinate system. Now any point feature on the objects surface

can be described by a 3-dimensional position and an orientation in 2 dimensions

similar to the description in [24].

• Each camera or 3D sensor of the robot has a normalized coordinate system CSC

which we de�ne the way that the viewing direction equals the z-axis. As we want

the coordinate system to be a right-handed Cartesian one, the other axes are

determined on claiming the x-axis to point to the right from viewing direction

and thus the y-axis points down.

• If the robot detects a feature with its camera, a new Cartesian coordinate sys-

tem CSF for the feature has to be de�ned. CSF has its origin at the mean of

the estimation for the features pose. To take into account that the most likely

hypothesis is frontal perspective to the feature we de�ne the z-axis to point to

the origin of CSC . As features have an orientation on the locally planar objects

surface, the x- and y-axes are prede�ned through the 3D object model and the

orthogonality to the z-axis.
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Chapter 4. Implementation and Experimental Veri�cation

Figure 4.1.

Let FTC : CSC → CSF be the transforma-

tion from the camera coordinate system to

the feature coordinate system. As I create

the mixture that models the distribution of

the feature in camera coordinates, I have to

change the coordinate system to represent the

feature at its true pose. As mentioned already

we have the 3D model of the object and can

describe any feature on the object by the func-

tion TO. But to grasp the object, we need to

model the object pose by knowing the feature.

The inverse of the function TO is the transfor-

mation TF = (TO)−1 that lets us draw con-

clusions from the feature pose on the object's

surface about the object pose.

As we represent any rigid motion by a rota-

tion matrix and a translation vector or equiv-

alently by a dual quaternions, the inverse of

the dual quaternion represents exactly the inverse rigid motion.

Features have a prede�ned orientation and thus the possible rotation around the z-axis

is very small, in contrary around the x- and y-axis I allowed as uncertainty rotations in

the interval [−15◦, 15◦]. We know about the translation that there can be little shifting

in the x-y-plane, but as the scale of the feature also is uncertain, the dislocation in

direction of the z-axis can be fairly big. Hence we need a mixture of 6D projected

Gaussians MoPG0 to model the pose of the feature the robots camera detected. This

model now has to be shifted to the pose, where the feature was detected by the base

element PG1 = FTC .

As the 3D models of the objects are imperfect, one has to calculate with little uncer-

tainties in position and orientation of the feature on the objects surface. Thus another

6D projected Gaussian PG2 = TF is required.

Now the distribution of the object's pose can be estimated in camera coordinates by:

PG1 ◦MoPG0 ◦ PG2
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4.1 Python Code

Of course a single feature is not su�cient to determine the pose of an object. In reality

about 50 features on one taget object are needed to estimate the pose precisely enough.

4.1. Python Code

Now I want to give a brief documentation about the code I wrote to create the frame-

work. As Python is a object oriented programming language I structured the system

in mainly �ve object classes. These are:

• MoPG_tangentSpace

• MoPG_baseElement

• MoPG_mixture

• Quaternion

• DualQuaternion

A tangent space consists of the tangent point p on the (hyper-)sphere surface and a

basis B of the tangent space in world coordinates. That means if the point p ∈ Rd, the
basis is a d × (d − 1) matrix, that is completed to a basis of the d-dimensional space

by concatenating the vector p as �rst column.

The class MoPG_tangentSpace contains several functions. _init_ always is the

�rst method of a class and creates a representative. Furthermore equal tests whether

two tangent spaces are equal and display changes the tangent space to a printable

formate on the display.

The method tangentSpaceToSphereCentralProjection projects a 3-dimensional vector in

the tangent space by central projection to the sphere whereas sphereToTangentSpace-

CentralProjection projects any point on the sphere surface to any given tangent space

except for the case that the tangent point and the point on the sphere to be projected

have an angle of π/2 between themselves. With transformFromSelfToTS the tangent

space can be changed. Therefore a vector v in the �rst tangent space with tangent point

p1 is projected to the sphere and then is back projected to the second tangent space

with tangent point p2. In these methods the translational part remains unchanged and

can be inputted to the function also.
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4.1 Python Code

Finally this class has the method poseTransformationTS which transforms a 6-dimensio-

nal vector consisting of a rotation and a translation part with a given tangent space by a

vector with its appropriate tangent space to another 6D vector in a third tangent space.

A base element is a projected Gaussian consisting of a tangent space, like de�ned above,

the mean value of the gauss kernel and the appropriate covariance matrix. The mean

value is a vector with dimension d− 1 for the rotation part if the tangent point on the

sphere is d-dimensional.

The classMoPG_baseElement also contains the methods _init_, equal and display.

Moreover I wrote a function dimensions to determine the dimensions of the rotation

and the translation part. computeMassMonteCarlo6D computes the mass of the base

element by using Monte Carlo integration with importance sampling. It is needed for

renormalization.

Any base element contains information about orientation and position in the special

Euclidean group which can also be represented by a dual quaternion. This pose is

calculated by extractDualQuaternion. changeTS changes the tangent space of a base

element by falling back on the tangent space method transformFromSelfToTS. The

method mahalanobisDistance determines the Mahalanobis distance between two base

elements. Furthermore I implemented the functions fuse, merge and randomPoseTrans-

formation which fuse, merge and compose base elements respectively.

If it is desired to obtain the mean vector µ3 = 0 for the fused respectively merged base

element, the 'modeFlag' has to be set to 1.

density is a method that returns the density of a point which has a 4D rotation part

already projected to the sphere and a 3D translation part. If the point is close to the

equator (for the tangent point being a pole) the back projected point to the tangent

space gets to in�nity at least in one dimension. Then we set the density to be 0.

Finally the methods draw1Sample, draw1SampleMat, drawNSamples and paintCS all

sample from the distribution of the base element and are needed for visualization.

MoPG_mixture denotes the class of mixtures of projected Gaussians. Each mixture

consists of a list of base elements, each with its weight i.e. it is an array with two

columns:

Mixture = [[PG1, λ1], [PG2, λ2], . . . , [PGn, λn]]

The methods of this class are _init_ and equal like in the other classes, but instead of

display, this class has the function toList what changes the mixture into a list which
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4.1 Python Code

is printable and has all list features implemented in Python, but does not give a rea-

sonable output on the display.

The method density calculates the mixture density of a point by using the base element

method of same name. The other methods computeMassMonteCarlo6D, fuseMoPG

and randomMoPGTransformation also just fall back to the corresponding methods for

base elements and apply them on each entry of the mixture. Furthermore I want to

mention that the renormalization constant C of the function randomMoPGTransfor-

mation just consists of the weights λi and λj. That means C = 1/(
∑

i,j λi∗λj) as there
is no question of whether two base elements can be applied at the same time, because

the probability distributions are assumed to be independent.

drawNSamples, drawNSamplesV and paint are used for visualization of the mixture

and sample from each of its base elements.

The class of quaternions is well known in algebra, but the implemented module

in Python is not structured well. Therefore I wrote the code for my own class of

quaternions with the following methods:

• _init_() makes a quaternion out of a list with four entries [a,b,c,d].

• norm() calculates the norm of a quaternion whereas norm2() gives the square of

the norm

• normalize() and normalizeD() normalize the quaternion. The �rst method has a

copy as output, the second one is destructive on the input quaternion

• conj() and conjD() conjugate the input quaternion and give it back in copy or

destructive.

• toList() prints the quaternion to a list to receive a readable output.

• inv() and invD() calculate the inverse of a quaternion (copy and destructive

version)

• equal() tests whether two quaternions are equal.

• copy() creates a copy of the input quaternion.

• plus() adds two quaternions: Quat1 +Quat2 = Quat1.plus(Quat2)

• scalar() multiplies a scalar λ ∈ R to a quaternion: λ ∗Quat = Quat.scalar(λ)
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• times() multiplies one quaternion Quat1 with another quaternion Quat2: Quat1∗
Quat2 = Quat1.times(Quat2)

• toMatrix() returns the 3× 3 rotation matrix of a quaternion.

• randomUnit() creates a unit quaternion randomly from an equal distribution on

S3 whereas randomImaginary() creates an imaginary quaternion randomly.

• radAxis() returns a unit quaternion corresponding to a rotation by radian mea-

sure around a given axis, degreeAxis() does the same with degree.

The dualQuaternions are the last class I created to complete the framework. They

have the corresponding methods:

_init_(), plus(), equal(), copy() and toList().

times() multiplies two dual quaternions by the multiplication de�ned in 2.1.2 whereas

conjQuat() returns the quaternion conjugate, conjDual() returns the dual conjugation

and conjTotal() the total conjugation. These conjugations are also de�ned in 2.1.2.

Because every dual quaternion describes a rigid motion it contains a rotation and a

translation which can also be written as rotation matrix and translation vector. That

does the method transformationMatrix(). Finally inv() calculates the inverse of the

input dual quaternion.

Furthermore there exist the following functions which are not related to any class:

• computeJacobian calculates the Jacobian from the tangent space method trans-

formFromSelfToTS at the point given as input to the function.

• rottransVector6D returns a 6D vector that contains the information about rota-

tion and translation, not in quaternion style, but in a quite normal 6D vector.

• makeSamples creates a given number of samples which ful�ll special requirements

like the distribution where they are drawn from.

• makeInitMixture makes a mixture out of a list of samples.

• rotToQuat is a function that returns the quaternion which represents the same

rotation like a given rotation matrix.

• transformationToDQ changes the input of a tuple of quaternions qr and qt to a

dual quaternion with dual part qd = 1/2 · qt ∗ qr.
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• DQToTransformation makes the inverse transformation from a dual quaternion

to a tuple of quaternions.

• The function transformPose returns a dual quaternion which is obtained after

applying a transformation dual quaternion to a pose dual quaternion.

4.2. Visualization

We have a range of options introduced to improve the pose estimation like weighting

the measurement results, fusing, merging, dropping base elements and making another

localization attempt. An algorithm shall evaluate what to apply to the distribution

function describing the object pose to improve it and when the distribution is peaked

enough for that a grasp criterion is ful�lled. For this framework it stands out to de-

�ne such an evaluation algorithm. A possible approach is the further development of

the MC-SOPE algorithm Glover introduced in [13]. This algorithm to solve the single

object pose estimation uses importance sampling to generate a weighted set of pose

samples of the target distribution and then returns the top n samples ranked by weight.

We would need to sample from the target distribution that is achieved after applying

di�erent options like the modi�cation operations and then compare the distributions

�tted to the resulting sample sets.

Figure 4.2.

In the following I describe a simulated ex-

periment how such an algorithm might pro-

ceed. The programming language Python

o�ers a Coin binding to enable visualiza-

tions like the ones I made. [32] explains

how to write applications using the Open

Inventor toolkit in this Coin binding.

Imagine a robot that has the task to grasp

the salt box of �gure 4.2. Let's assume

that the robot detects the features 'B' of

the word Bad and 'l' of Salz. Later on I

will also work with the mountain top as a

third feature.
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4.2 Visualization

Figure 4.3.

Figure 4.4.

Figure 4.5.

The �ags represent samples out of the

mixture describing the pose of the fea-

tures in S3 × R3. The most likely hy-

pothesis is that the robot detects fea-

tures which are frontal to the cam-

era and thus we model the probabil-

ity distribution as represented in �g-

ure 4.3. The green �ags represent

the 'B' and the blue �ags the 'l'.

Further the coordinate system on the

left is the camera coordinate system

CSC .

As mentioned already I assume that the

the robot will detect the feature moun-

tain top on the salt box as well. This

feature will be modeled by the pink sam-

ples drawn from the mixture of projected

Gaussians describing the probability dis-

tribution of the pose of the mountain

top.

The �gure 4.4 shows the sample sets in a

view from above the salt box.

In �gure 4.5 the green and blue sam-

ples are drawn from the mixture distri-

bution describing the pose of the ob-

ject. The result is what we get

on drawing conclusions from the fea-

ture pose to the pose of the ob-

ject.

For easier orientation again the coordi-

nate system of the camera can be seen in

the the lower left corner of the �gure as

well.

80



4.2 Visualization

Figure 4.6.

Figure 4.7.

Figure 4.8.

The coordinate systems which are lo-

cated at the position of the mean

vectors of the distribution describing

the poses of the features 'B' and 'l'

are rotated the way that the z-axes

point to the camera. Further �gure

4.6 shows the big variance in direc-

tion of the z-axis of the camera which

equals the viewing direction of the cam-

era.

Now we apply the modi�cation opera-

tion fusion to the green and the blue

mixture. As both distribution functions

provide reasonable sample sets this is

an ordinary step of the evaluation algo-

rithm. Figure 4.7 shows the new red

sample set which is obtained after fus-

ing the other mixtures. The adjust-

ment of the weights which are used in

the operation of fusing might be im-

proved to avoid scattering of the red sam-

ples.

Through this operation the number of

elements of the mixture grew to 49 as

the blue and the green mixture con-

sisted of 7 kernels each. Many sum-

mands of the mixture have low weight

but scatter and thus disturb the evalua-

tion algorithm. This is the reason why

I decided to drop 10 kernels with low

weight. Figure 4.8 shows that as re-

sult the red samples become more concen-

trated.
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4.2 Visualization

Figure 4.9.

Figure 4.10.

Figure 4.11.

In �gure 4.9 the red samples still rep-

resent the fused and reduced mixture

which is obtained already in the �g-

ure before. The yellow sample set

are drawn from the mixture after merg-

ing the mixture down until the num-

ber of base elements that remain is

10. This smaller mixture is compu-

tationally e�cient and doesn't seem to

lack any information. That the �ags

are slightly di�erent comes from the fact

that the sample points are chosen ran-

domly.

As the results we got by now seem re-

liable we will go on with the yellow

mixture we obtained after the modi�ca-

tion operation of mering. An appro-

priate next step for the evaluating al-

gorithm would be to make a new lo-

calization attempt to get more infor-

mation data. Figure 4.10 shows the

pink samples which are drawn from

the mixture one obtains from draw-

ing conclusion from the feature pose

of the mountain top to the object

pose.

Figure 4.11 shows the turquoise sample

set of the mixture which is obtained af-

ter fusing the pink and the yellow mix-

tures and further dropping the irrelevant

base elements with low weights as well.

This mixture still consists of 36 base ele-

ments.
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Figure 4.12.

Figure 4.13.

Figure 4.14.

A remarkable e�ect of making the new lo-

calization attempt is that the fused sam-

ple set is way better ordered in orien-

tation than before. It is seen in �g-

ure 4.12 that from merging the turquoise

mixture down to the new purple mix-

ture consisting of 10 summands no loss

of information arises. The mixture is

strongly peaked already and estimates

the true pose of the salt box in S3 ×
R3.

Finally the last two �gures 4.13 and

4.14 show the distribution of the ob-

ject pose that is estimated directly from

the three features represented by the

green, blue and pink sample set and the

distribution after simulating an evalua-

tion algorithm. The purple sample set

containing all information data �ts the

center of mass of the other mixtures

and furthermore provides a peaked dis-

tribution function for the pose estima-

tion.

From this example one gets a sense of

how the evaluation algorithm should work.

The steps I introduced need to be re-

peated until a stop criterion is reached,

like i.e. that a grasp criterion is ful-

�lled. If no information gain can be reg-

istered any more possible further steps

might be to involve other kinds of fea-

tures like edge extraction or to try a

new localization attempt from another

side.
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5. Outlook

5.1. Result

Figure 5.1.: The picture shows the robot of the DESIRE project succeeding to grasp the target

object after having identi�ed it on the CeBIT in March 2009.

5.2. Improvements

• In 2.2.1 Projected Gaussian I explain how a basis B0 of the R4 can be calculated

in a canonical way. I guess that there is also a canonical way to construct a basis

over any odd dimension. This stands out to be proven.

• It would be nice to implement a variation of our framework using the Bingham

distribution to compare the performance and the time needed for the computa-
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tions. Further the accuracy of the modeling by Binghams and projected Gaus-

sians stands out to be compared. The composition of Bingham distributions

doesn't give another Bingham but can be approximated by one. The result of

this approximation should be compared with a composed projected Gaussian

distribution, as well.

• By now I can't constitute which dissimilarity measure is appropriate for speci�c

applications. Experiments are necessary to get informations about what grasp

criterion and which distance measure should be applied.

• It remains to check whether the KL divergence or the sKL divergence is faster to

calculate. As in

B(i, j) =
1

2
((λi + λj) log det(Σij)− log det(Σi)− log det(Σj))

one has to calculate three logarithms the computing time is very slow. For that

reason I assume that the much longer expression Bs(i, j) might be slightly faster.

To verify this the number of necessary operations need to be determined for each

formula.

• The studies of the coherence between particle sets and MoPGs should be �nished.

This means the comparison of the results one achieves by applying a modi�cation

operation to a mixture and to a particle set.

• The approaches to reduce the number of elements of a mixture introduced in

3.3 need to be developed and a check for the accuracy of the results has to be

implemented.

• In future work experimental results would be desirable. Therefore the evaluation

algorithm has to be developed. Then further simulated experiments are necessary

as well as real world experiments to validate the truth of the algorithm.

• The implemented framework was planned to be open to any dimensions but in

the course of the work I realized that this requires too many case-by-case analysis.

Thus I decided to implement a part of the functions just for the 4-dimensional

case. This could be universalized.
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A. Appendix

In A.1 the complete Python code is appended usually including the input and output

format for each function. Except in the obvious case.

A.1.

For the code the following conventions were made:

• (·, . . . , ·) denotes vectors

• [·, ·, ·, ·, ] stands for quaternions and lists

• [·, ·] = [[·, ·, ·, ·, ], [·, ·, ·, ·, ]] denotes a dual quaternion and

• [[·, ·], . . . , [·, ·]] is a mixture of base elements or equivalently a double list

Further the following modules need to be installed and imported:

• numpy

• numpy.linalg

• numpy.random

• scipy

• math

• pyviblib.calc.common

• scipy.integrate.quadpack

The following code consists of auxiliary functions that don't belong to any speci�c

class. These are basic rules that are needed for the methods of the classes I introduce

already in 4.1.
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def makeVector(list):

"the input is a d dimensional list"

pt = matrix(list)

return pt.T

def makeBase(tangentPoint):

"""tangentPoint is a d dimensional vector (so if you have a list do

makeVector(tangentPoint))."""

"A point on the sphere surface."

pl = tangentPoint.tolist()

dim = len(tangentPoint)

if dim == 4: #make a canonical tangent space

c = list(flatten(pl))

B = matrix([[-c[1], -c[2], -c[3]],

[c[0], -c[3], c[2]],

[c[3], c[0], -c[1]],

[-c[2], c[1], c[0]]])

return B

else: #create a random base

n = 1

B = tangentPoint

while (n < dim):

arr = random_integers(-99, 99, (dim, 1))

B_test = concatenate((B, arr), axis = 1)

#join the array to the matrix T = [B,arr]

rk = matrixrank(B_test) #calculate the new rank of B

if rk == n+1:

B = B_test

n = n+1

basis = array(B)

basis_orthogonal = orthogonalize_set_my_version(basis,

make_orthonormal

= True)

mat = matrix(basis_orthogonal)

#der erste vektor wird weggelassen

z = zeros((dim, dim-1), float)
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for i in range(dim):

for j in range(dim-1):

z[i][j] = mat[i, j+1]

base = matrix(z)

return base

def flatten(lst):

for elem in lst:

if type(elem) in (tuple, list):

for i in flatten(elem):

yield i

else:

yield elem

def drange(start, stop, step):

r = start

ret = []

while r < stop:

ret.append(r)

r += step

return ret

def matrixrank(A):

tol=1e-8

s = svd(A,compute_uv=0)

#print sum(where(s>tol,1,0))

return sum(where(s>tol,1,0))

def orthogonalize_set_my_version(set_in, make_orthonormal=True):

"""As the original function couldn't write in the 'set_out',

I modified the function.

Orthogonalize a set of vectors using the Gram-Schmidt algorithm.

Positional arguments :

set_in: vectors to be orthogonalized (threes-dimensional ndarray)

their base is given by the keyword argument of the same name
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Keyword arguments :

set_out: where the result is to be placed (default None) unless

given, use set_in

the caller is responsible for memory allocation

make_orthonormal: whether the result set is to be normalized

base: base index (default 1)"""

base = 0

if not isinstance(set_in, ndarray) or 2 > len(set_in.shape):

raise InvalidArgumentError('Invalid set_in argument')

set_u = zeros(set_in.shape , 'd')

sum_ = zeros(set_in.shape[1:], 'd')

# u1 = v1

set_u[base] = set_in[base].copy()

for i in xrange(1 + base, set_in.shape[0]) :

sum_ *= 0.

for j in xrange(base, i) :

ujvi = contract(set_u[j], set_in[i])

ujuj = contract(set_u[j], set_u[j])

if 0. != ujuj :

sum_ += (ujvi / ujuj) * set_u[j]

set_u[i] = set_in[i] - sum_

# orthonormalize if necessary

if make_orthonormal :

normalize_set(set_u, set_out=None, base=0)

return set_u

def func(x1,x2):

"Weightening function"

"The input has to be two vectors x1 and x2."

#Funktion, die sicherstellen soll, dass die Gaussverteilungen

#wirklich die gleiche versteckte Variable beschreiben.

prod = (x1.T)*x2

prodList = prod.tolist()

if prod > 1+1e-4:

print 'The scalar product is bigger than 1'

elif prod > 1:
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return 1.0

else:

valueAcos = math.acos(prodList[0][0])

valueExp = -5*(valueAcos)**2

valueTotal = math.exp(valueExp)

return valueTotal

def id(x1,x2,x3,x4,x5,x6):

return [x1,x2,x3,x4,x5,x6]

def makeMatTransInput(rotMat, transVec):

"""Input has to be a matrix and a vector.

The rotation matrix is 3x3 and also the vector is a 3x1 matrix.

The output of the function is a matrix: [[R,t],[0,1]]"""

#Needed as the format known by INVENTOR.

vec = transVec

vec = concatenate((vec,array([[1]])),axis = 0)

vec = array(vec)

vec = list(flatten(vec))

vecarr = array(vec)

arr = array([[0,0,0]])

#rotMat = rotMat.T

value = concatenate((rotMat,arr),axis = 0)

value = concatenate((value,vecarr),axis = 1)

value = matrix(value)

#value = value.T

#value = value.tolist()

#value = list(flatten(value))

return value

def removeEl(li, numelem):

assert(numelem < len(li))

li1 = li[:numelem]

li2 = li[numelem+1:]

li1.extend(li2)

return li1
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def rottransVector6D(value, theta, axis, transpoint):

"""This function creates a 6D vector that contains the information

about rotation and translation not in quaternion style, but in a

quite normal 6D vector s. The tangent space point is a 4D point on

the unit sphere: value, a vector.

Theta is the angle to rotate, axis is the axis to rotate around and

transpoint is the translation part."""

a = math.cos(theta/2)

th = math.sin(theta/2)

axis = axis/sqrt(axis[0]**2 + axis[1]**2 + axis[2]**2)

b = th*axis[0]

c = th*axis[1]

d = th*axis[2]

p1 = transpoint[0]

p2 = transpoint[1]

p3 = transpoint[2]

point = [a, b, c, d, p1, p2, p3]

TS = tangentSpace(value)

rottrans = TS.sphereToTangentSpaceCentralProjection(point)

rottrans = list(flatten(rottrans.tolist()))

return rottrans

def computeJacobian(point,tangentSpace1,tangentSpace2):

"Input point has to be a list."

if isinstance(tangentSpace1,tangentSpace) == True:

if isinstance(tangentSpace2,tangentSpace) == True:

T1 = tangentSpace1

T2 = tangentSpace2

dim = len(point)

J = zeros((dim,dim), float)

h = 0.1e-6

I = eye(dim) #Einheitsmatix

# i Zeilen und j Spalten der Matrix

for j in range(dim):

z = I[j]

91



A.1

z = z*h

pointplus = point+z

lpp = list(flatten(pointplus))

pointminus = point-z

lpm = list(flatten(pointminus))

transformpointplus = T1.transformFromSelfToTS(lpp, T2)

transformpointminus = T1.transformFromSelfToTS(lpm, T2)

difference = transformpointplus - transformpointminus

qj = difference/(2*h)

qjlist = qj.tolist()

qjlist = list(flatten(qjlist))

for i in range(dim):

qij = qj[i]

J[i][j] = qij

#print type(J)

return J

else:

print 'Second argument is not a tangentSpace.'

else:

print 'First argument is not a tangentSpace.'

def makeInitMixture(samples):

""" make a mixture with a kernel for each sample

"""

nElem = len(samples)

mixlist = []

for sampleCol in samples:

sample = sampleCol[0]

col = sampleCol[1] # will not be used here

tanpt = makeVector(sample[:4])

# cov = 0.00001*matrix(eye(6))

cov = matrix([[ 0.01, 0.0, 0.0, 0.0, 0.0, 0.0],

[ 0.0, 0.02, 0.0, 0.0, 0.00, 0.0],

[ 0.0, 0.00, 0.04, 0.00, 0.0, 0.0],

[ 0.0, 0.0, 0.0, 0.000001, 0.0, 0.0],

[ 0.0, 0.00, 0.0, 0.0, 0.000001, 0.0],
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[0.0, 0.0, 0.0, 0.0, 0.0, 0.000001]])

comp = [baseElement(tangentSpace(tanpt),

makeVector([0,0,0]+sample[4:7]),cov ,2000),

1.0/float(nElem)]

mixlist.append(comp)

return mixture(mixlist)

def makeSamples(numberOfSamples, spec, params):

"""spec is a string that specifies which kind of samples should be

created. This is kind of open ended. The first one could be just

equally distributed over the unit quaternions and a box of

translations"""

samples = []

# make a quaternion to derive samples from

rootquat = quaternion(0,0,0,0)

for sampleIdx in range(numberOfSamples):

if spec == 'equalOnQuatAndBox':

'The box is given as [[lowx,hix],[lowy,hiy],[lowz,hiz]].'

rotparams = [random.uniform(-1,1) for idx in range(4)]

norm = sqrt(sum([rotparams[idx]*rotparams[idx] for

idx in range(4)]))

rotparams = [1/norm*rotparams[idx] for idx in range(4)]

transparams = [random.uniform(params[idx][0], params[idx][1])

for idx in range(3)]

sample = rotparams + transparams

# samples.append(sample)

elif spec == 'equalRotationXYNormalRotationZ':

"""a normally distributed rotation around Z ,sigma=params[0],

followed by an equally distributed rotation around an axis in

the x-y plane, combined with translation in the new direction

of z (i.e. first translate, then rotate)"""

zrad = random.normal(0.0,params[0])

rqz = rootquat.radAxis(zrad, [0,0,1])

rvecrad = random.uniform(0.0,2*pi)

rvec = [cos(rvecrad),sin(rvecrad),0]

xyrad = random.uniform(0.0,params[1])
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rqxy = rootquat.radAxis(xyrad, rvec)

rq = rqxy.times(rqz)

sample = rq.toList() + [0,0,0]

elif spec == 'siftReferredToObject':

"""the distribution of object pose derived from one SIFT

feature:

params[0] sigma of normal distribution around z axis

params[1] visibility angle

params[2] sigma of x-y-offset

params[3] mean value of z-offset

params[4] sigma of z-offset

params[5:9] rotation quat for feature in object cs

params[9:12] translation for feature in object cs

a normally distributed rotation around Z ,sigma=params[0],

followed by an equally distributed rotation around an axis in

the x-y plane, combined with translation in the new direction

of z (i.e. first translate, then rotate)"""

zrad = random.normal(0.0,params[0])

rqz = rootquat.radAxis(zrad, [0,0,1])

rvecrad = random.uniform(0.0,2*pi)

rvec = [cos(rvecrad),sin(rvecrad),0]

xyrad = random.uniform(0.0,params[1])

rqxy = rootquat.radAxis(xyrad, rvec)

rqf = rqxy.times(rqz)

tx = random.normal(0.0,params[2])

ty = random.normal(0.0,params[2])

tz = random.normal(params[3],params[4])

tqf = quaternion(0.0, tx, ty, tz)

# sample = rqf.toList() + [tx, ty, tz, 2]

# samples.append(sample)

dqf = transformationToDQ([rqf,tqf])

dqfi = dqf.inv()

#turn the description of the feature pose in object CS

#into a dq

qrfo = quaternion(params[5],params[6],params[7],params[8])

qtfo = quaternion(0.0,params[9],params[10],params[11])
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dqfo = dualQuaternion(qrfo,qtfo)

dqof = dqfo.inv()

dqr = dqf.times(dqof)

rottr = DQToTransformation(dqr)

qrr = rottr[0]

rrlst = qrr.toList()

qrt = rottr[1]

rtlst = qrt.toList()

rtlst = rtlst[1:]

elif spec == 'MoPG':

# params[0] has the weights - they're renormalized, so don't

# worry about the sum

weights = params[0]

# params[1] gives the range for cov and mean of rot and

# trans this implicitly tells us the number of elements

else:

print 'this sample specification is not supported'

break

samples.append([sample, 1])

return samples

def rotToQuat(r):

"""returns a unit quaternion that represents the rotation given by

the rotation matrix r. The input matrix has to be a 3x3 rotation

matrix."""

diff = flatten((r*r.T-eye(3)).tolist())

if max([abs(el) for el in diff]) > 10**(-4):

print r

else:

a2 = (1 + r[0, 0] + r[1, 1] + r[2, 2])/4.0

min = 0.25

if(a2 >= min):

a = sqrt(a2)

b = 1/4.0*(r[2, 1] - r[1, 2])/a

c = 1/4.0*(r[0, 2] - r[2, 0])/a

d = 1/4.0*(-r[0, 1] + r[1, 0])/a
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else:

b2 = a2 - 1/2.0*(r[1, 1] + r[2, 2])

if(b2 >= min):

b = sqrt(b2)

a = 1/4.0*(r[2, 1] - r[1, 2])/b

c = 1/4.0*(r[0, 1] + r[1, 0])/b

d = 1/4.0*(r[0, 2] + r[2, 0])/b

else:

c2 = a2 - 1/2.0*(r[0, 0] + r[2, 2])

if(c2 >= min):

c = sqrt(c2)

a = 1/4.0*(r[0, 2] - r[2, 0])/c

b = 1/4.0*(r[0, 1] + r[1, 0])/c

d = 1/4.0*(r[1, 2] + r[2, 1])/c

else:

# If we arrive here, d2 is big enough

d2 = a2 - 1/2.0*(r[0, 0] + r[1, 1])

d = sqrt(d2)

a = 1/4.0*(r[1, 0] - r[0, 1])/d

b = 1/4.0*(r[0, 2] + r[2, 0])/d

c = 1/4.0*(r[1, 2] + r[2, 1])/d

return quaternion(a, b, c, d)

def transformationToDQ(RotTrans):

"""RotTrans = [qr,qt] is a tuple of quaternions that describe a

transformation in 6D; the first quaternion describes the rotation,

the second one describes the translation recall that the first entry

of the translation quaternion is zero: qt = [0,t1,t2,t3]"""

if isinstance(RotTrans[0],quaternion) == True:

if isinstance(RotTrans[1],quaternion) == True:

quat1 = RotTrans[0] #rotationsteil q_r des dualen Quaternions

quat2 = RotTrans[1] #q_t

quatresdu = quat2.scalar(0.5)

quatresdu = quatresdu.times(quat1)

value = dualQuaternion(quat1,quatresdu)

#q = q_rot+0.5*e*q_trans*q_rot
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#print value

return value

else:

print 'translation of the dual quaternion is no quaternion'

else:

print 'rotation of the dual quaternion is no quaternion'

def DQToTransformation(dualQuat):

if isinstance(dualQuat,dualQuaternion):

re = dualQuat.Real

du = dualQuat.Dual

dqlist = dualQuat.toList()

rot = quaternion(dqlist[0][0],dqlist[0][1],dqlist[0][2],

dqlist[0][3])

dubbledu = du.scalar(2)

trans = dubbledu.times(re.conj())

#warum conj und nicht inv? - weil einheitsquaternion!

#print [rot,trans]

return [rot,trans]

else:

print 'input is not a dual Quaternion'

def transformPose(pose, transformation):

"""input pose and transformation have to be two dual quaternions"""

if isinstance(pose,dualQuaternion) == True:

if isinstance(transformation,dualQuaternion) == True:

pose_new = transformation.times(pose)

#print pose_new

return pose_new

else:

print 'second input is not a dual quaternion'

else:

print 'first input is not a dual quaternion'

The class de�ning the tangent space contains the following methods.
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class tangentSpace:

"""tangentSpace is of the from [point, basis]. point is a vector and

has the dimension d and basis is a d x (d-1)-matrix. Basis consists

of column vectors but as the input in Python in line wise one has to

make a vector in the common sense out of the input list."""

def __init__(self, tangentPoint):

assert isinstance(tangentPoint, matrix)

pl = tangentPoint

one = sqrt(pl[0]**2 + pl[1]**2 + pl[2]**2 + pl[3]**2)

assert abs(1-one) < 10**(-4)

self.p = pl

basis = makeBase(tangentPoint)

self.b = basis

def equal(self, newTS):

sp = self.p

sb = self.b

n = len(sp)

k = 0

for i in range(n):

if sp[i][0] == (newTS.p)[i][0]:

for j in range(n-1):

sl = sb.tolist()

nb = newTS.b

nl = nb.tolist()

if sl[i][j] == nl[i][j]:

k = k+1

if k == n*(n-1):

print True

return True

else:

print False

return False

def display(self):

"""Attention: THE OUTPUT HERE IS LINE WISE!
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Thus the first row of the matrix is the first column vector

of the basis."""

sp = self.p

listp = sp.tolist()

sb = self.b

listb = sb.tolist()

#print [list(flatten(listp)),listb]

return [list(flatten(listp)), listb]

#Achtung: Es wird eine ORTHONORMALBASIS benoetigt!

def tangentSpaceToSphereCentralProjection(self, tangentSpacePoint):

"""tangentSpacePoint = [x1,x2,...,x(n-1)] is the point in the

tangential (hyper-) plane whose value shall be projected on the

(p-1)sphere. The first r entries of tangentSpacePoint are the

ones to describe the rotation, the last ones t = n-1-r describe

the translation and stay unchanged. tangentSpace = [p,B] is the

tangential (hyper-) plane with p the tangent point and B the

basis of the tangential (hyper-) plane. p has n dimensions.

The input of tangentSpacePoint has to be a list and tangentSpace

really has to be a tangentSpace!

The output is the wanted vector."""

p = self.p

B = self.b

k = len(p)-1

rvec = tangentSpacePoint[:k]

rtvec = matrix(rvec).T

rtWorldCoord = B*rtvec + p

normalizationFactor = linalg.norm(rtWorldCoord)

svec = rtWorldCoord/normalizationFactor

lsvec = svec.tolist()

tvec = tangentSpacePoint[k:]

value = [lsvec, tvec]

value = list(flatten(value))

#print value

value = makeVector(value)

return value
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def sphereToTangentSpaceCentralProjection(self, pointOnSphere):

"""pointOnSphere = [q1,q2,...,qn] is the point to be projected

consisting of rotation and translation part.

tangentSpace = [p,B] is the tangential (hyper-) plane with p the

tangent point and B the basis of the tangential (hyper-) plane.

The input of pointOnSphere has to be a list and tangentSpace

really has to be a tangentSpace! The output is a vector in the

tangent space (including translation)."""

p = self.p

B = self.b

Bt = B.T

n = len(p)

qr = pointOnSphere[:n]

qrT = matrix([qr]).T

scalar1 = qr*p

scalar2 = scalar1.tolist()

scalar3 = scalar2[0][0]

#um aus der 1x1 matrix wirklich ein skalar zu machen....

qrInTangentSpace = Bt*(1.0/(scalar3)*qrT-p)

qt = pointOnSphere[n:]

lqr = qrInTangentSpace.tolist()

value = [lqr, qt]

value = list(flatten(value))

#print value

value = makeVector(value)

return value

def transformFromSelfToTS(self, point, tangentSpace_new):

"""point = [x1,x2,...,xn] is the point in the old tangentSpace1

that shall be projected to a new tangentSpace.

self = [p1,B1] is the old tangent space.

tangentSpace_new = [p2,B2] is the new tangent space.

In the input 'point' has to be of the type list but the output
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it is a vector."""

assert isinstance(tangentSpace_new, tangentSpace)

Tn = tangentSpace_new

pointOnSphere = self.tangentSpaceToSphereCentralProjection(point)

listpoint = pointOnSphere.tolist()

lp = list(flatten(listpoint))

value =tangentSpace_new.sphereToTangentSpaceCentralProjection(lp)

#print value

return value

def poseTransformationTS(self, pointold, transpoint,

tangentSpace_transform, tangentSpace_new):

"""Input shall be vectors and tangent spaces.

I want the output to consist of vectors."""

assert isinstance(tangentSpace_transform, tangentSpace)

assert isinstance(tangentSpace_new, tangentSpace)

assert isinstance(pointold, matrix)

assert isinstance(transpoint, matrix)

T_trans = tangentSpace_transform

T_new = tangentSpace_new

pt_list = list(flatten(pointold.tolist()))

tp_list = list(flatten(transpoint.tolist()))

pointsphere = self.tangentSpaceToSphereCentralProjection(pt_list)

tpsphere = T_trans.tangentSpaceToSphereCentralProjection(tp_list)

l = list(flatten(pointsphere.tolist()))

rot = quaternion(l[0], l[1], l[2], l[3])

trans = quaternion(0, l[4], l[5], l[6])

rotTrans = [rot, trans] #entsteht aus pointold

pointquat = transformationToDQ(rotTrans)

li = list(flatten(tpsphere.tolist()))

trot = quaternion(li[0], li[1], li[2], li[3])

ttrans = quaternion(0, li[4], li[5], li[6])

trotTrans = [trot, ttrans] #entsteht aus transpoint

transpointquat = transformationToDQ(trotTrans)

pointquat_new = transformPose(pointquat, transpointquat)
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ps_new = DQToTransformation(pointquat_new)

rot = pointsphere_new[0].toList()

trans = pointsphere_new[1].toList()

pointsphere_new = [rot[0],rot[1],rot[2],rot[3],trans[1],trans[2],

trans[3]]

point_new = T_new.sphereToTangentSpaceCentralProjection(ps_new)

#print point_new

return point_new

The next section is the code describing the base element.

class baseElement:

"""baseElement consists of a tangent space, the mean value and the

covariance matrix of a Gaussian. The tangent space has to be of the

class tangentSpace, the mean value is a vector and the covariance

matrix is of the type matrix."""

def __init__(self, tanSpace, mean, covMatr, n = 2000):

#n is the rate of exactness for the calculation of the mass

#by default n = 2000 samples

assert isinstance(mean,matrix)

assert isinstance(covMatr,matrix)

assert all(linalg.eigvals(covMatr)>0),"not all eigenvalues positive"

assert isinstance(tanSpace,tangentSpace)

dm = len(mean)

"usually the mean is 6 dimensional"

listcovMat = covMatr.tolist()

dcMr = len(listcovMat)

dcMc = len(listcovMat[0])

assert dcMr == dcMc

assert dm == dcMr

self.tanSp = tanSpace

self.mean = mean

self.covMat = covMatr

#Calculation of the mass of the base element:

sigma = 0

X = zeros((n,6))

def f(u,v,w,x,y,z):

102



A.1

den = (1 + u*u + v*v + w*w) #denominator

psi = 1.0 / (den*den)

return psi

mu = self.mean

cov = self.covMat

mulist = list(flatten(mu.tolist()))

for j in range(n):

X[j] = multivariate_normal(mulist,cov)

sigma = sigma + f(X[j][0],X[j][1],X[j][2],X[j][3],X[j][4],

X[j][5])

self.mass = sigma/n

self.maDist = 1

def computeMassMonteCarlo6D(self,n = 2000):

#n = 1000 streuung ab 3ter stelle hinterm komma

#n = 5000 streuung ab 4ter stelle

Sum = 0

sigma = 0

X = zeros((n,6))

def f(u,v,w,x,y,z):

den = (1 + u*u + v*v + w*w) #denominator

psi = 1.0 / (den*den)

return psi

mu = self.mean

cov = self.covMat

mulist = list(flatten(mu.tolist()))

weight = 1

for j in range(n):

X[j] = multivariate_normal(mulist,cov)

sigma = sigma + f(X[j][0],X[j][1],X[j][2],X[j][3],X[j][4],

X[j][5])

Sum += weight * sigma

#print Sum/n

return Sum/n

def equal(self,newBE):
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st = self.tanSp

sm = self.mean

sc = self.covMat

nt = newBE.tanSp

nm = newBE.mean

nc = newBE.covMat

k = 0

if st.equal(nt):

k = k+1

else:

print 'TangentSpace not equal.'

km = 0

if len(sm) == len(nm):

sml = sm.tolist()

nml = nm.tolist()

for i in range(len(sml)):

if sml[i] == nml[i]:

km = km+1

if km == len(sm):

k = k+1

else:

print 'Mean not equal.'

kc = 0

scl = sc.tolist()

ncl = nc.tolist()

if (len(scl) == len(ncl)) & (len(scl[0]) == len(ncl[0])):

for i in range(len(scl)):

for j in range(len(scl[0])):

if scl[i][j] == ncl[i][j]:

kc = kc+1

if kc == (len(scl)*len(scl[0])):

k = k+1

else:

print 'CovMat not equal.'

if k == 3:

return True
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else:

return False

def display(self):

#st = self.tanSp

stl = self.tanSp.display()

sm = self.mean

sml = sm.tolist()

sml = list(flatten(sml))

sc = self.covMat

scl = sc.tolist()

#print [stl,sml,scl]

return [stl,sml,scl]

def dimensions(self):

sm = self.mean

st = self.tanSp

point = st.p

dimRot = len(point)-1

dimTrans = len(sm)-dimRot

print 'The dimension of the rotation is', dimRot,

print ', and of the translation', dimTrans, '.'

return dimRot and dimTrans

def extractDualQuaternion(self):

mean = self.mean

meanlist = list(flatten(mean.tolist()))

TS = self.tanSp

pointonsphere = TS.tangentSpaceToSphereCentralProjection(meanlist)

l = list(flatten(pointonsphere.tolist()))

rot = quaternion(l[0],l[1],l[2],l[3])

trans = quaternion(0,l[4],l[5],l[6])

rotTrans = [rot,trans]

dualQuat = transformationToDQ(rotTrans)

return dualQuat
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def changeTS(self,newTanSpace):

"""baseElement consists of a tangent space (=[[point],[matrix]]),

the mean value of the Gaissian kernel (=[point]) and the

covariance matrix (=[matrix]).

The output is a base element."""

assert isinstance(newTanSpace, tangentSpace)

TS_old = self.tanSp #Tangentenraum

Mean_old = self.mean

Mean_oldlist = Mean_old.tolist()

Mean_oldlist = list(flatten(Mean_oldlist))

CovMat_old = self.covMat

TS_new = newTanSpace #in der Form: [[point],[matrix]]

Mean_new = TS_old.transformFromSelfToTS(Mean_oldlist,TS_new)

Jac = computeJacobian(Mean_oldlist,TS_old,TS_new)

JacT = Jac.T

CovMat_new = Jac*CovMat_old*JacT

baseElem = baseElement(TS_new,Mean_new,CovMat_new)

return baseElem

def mahalanobisDistance(self,bE):

mu1 = self.mean

mu2 = bE.mean

cm1 = self.covMat

cm2 = bE.covMat

value = math.exp((-0.5)*(mu1-mu2).T*inv(cm1+cm2)*(mu1-mu2))

return value

def fuse(self,baseElement_new,modeFlag):

"""modeFlag == 0 or modeFlag ==1.

In case 0 no adjustment of the tangent space necessary.

In case 1 the tangent space is transformed to another tangent

space that is centered in 'mean_new'."""

assert isinstance(baseElement_new,baseElement)

sp = self.tanSp.p

np = baseElement_new.tanSp.p

angle1 = math.acos(sp.T*np / (sqrt(sp.T*sp) * sqrt(np.T*np)))
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angle2 = math.acos(sp.T*(-np) / (sqrt(sp.T*sp) * sqrt(np.T*np)))

if angle1 <= angle2:

np = -np

else:

np = np

tp = (sp + np)/(linalg.norm(sp + np))

T3 = tangentSpace(tp)

baseElem1T3 = self.changeTS(T3)

baseElem2T3 = baseElement_new.changeTS(T3)

CovMat1 = baseElem1T3.covMat

CovMat2 = baseElem2T3.covMat

#less matrix inversions: CovMat3 = inv(inv(CovMat1) + inv(CovMat2))

CovMat3 = CovMat1*inv(CovMat1 + CovMat2)*CovMat2

mean1 = baseElem1T3.mean

mean2 = baseElem2T3.mean

mean3 = CovMat2*inv((CovMat1+CovMat2))*mean1

mean3 = mean3+CovMat1*inv((CovMat1+CovMat2))*mean2

baseElem3 = baseElement(T3,mean3, CovMat3)

MaDi2 = baseElem2T3.mahalanobisDistance(baseElem1T3)

baseElem3.maDist = baseElem3.maDist*MaDi2

#print baseElem3.maDist

if modeFlag == 1:

mean3list = mean3.tolist()

mean3list = list(flatten(mean3list))

mean3center = T3.tangentSpaceToSphereCentralProjection(mean3list)

l = len(sp)

list3 = mean3center.tolist()

list3 = list(flatten(list3))

mean3center_rot = list3[:l]

mean3center_rot = makeVector(mean3center_rot)

T3center = tangentSpace(mean3center_rot)

baseElem3 = baseElem3.changeTS(T3center)

return baseElem3

elif modeFlag == 0:

return baseElem3

else:
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print 'wrong modeFlag'

return NONE

def merge(self,baseElem,lam1,lam2,modeFlag):

assert isinstance(baseElem,baseElement)

sp = self.tanSp.p

np = baseElem.tanSp.p

if sp.T*np<0:

np = -np

tp = (sp + np)/(linalg.norm(sp + np))

#print tp

T3 = tangentSpace(tp)

baseElem1T3 = self.changeTS(T3)

baseElem2T3 = baseElem.changeTS(T3)

mean1 = baseElem1T3.mean

mean2 = baseElem2T3.mean

l12 = lam1/(lam1+lam2)

l21 = lam2/(lam1+lam2)

mean3 = l12*mean1 + l21*mean2

CovMat1 = baseElem1T3.covMat

CovMat2 = baseElem2T3.covMat

CovMat3 = l12*CovMat1+l21*CovMat2

CovMat3 = CpvMat3 + l12*l21*(mean1-mean2)*(mean1-mean2).T

baseElem3 = baseElement(T3,mean3, CovMat3)

if modeFlag == 1:

mean3list = mean3.tolist()

mean3li = list(flatten(mean3list))

mean3center = T3.tangentSpaceToSphereCentralProjection(mean3li)

l = len(sp)

list3 = mean3center.tolist()

list3 = list(flatten(list3))

mean3center_rot = list3[:l]

mean3center_rot = makeVector(mean3center_rot)

T3center = tangentSpace(mean3center_rot)

baseElem3 = baseElem3.changeTS(T3center)

return baseElem3
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elif modeFlag == 0:

return baseElem3

else:

print 'wrong modeFlag'

return NONE

def density(self,point):

"""If the point is close to the equator the projected point

value gets to infinity and thus has the density = 0.

point has to be type list 7D (4 dimensions for the rotation on

the sphere and 3 dimensions for the translation).

The output is a scalar."""

TS = self.tanSp

n = len(TS.p)

rotpoint = matrix(point[:n])

h = 0.1e-6

print (rotpoint)*TS.p

if (abs(math.acos((rotpoint)*TS.p))>=math.pi*0.5-h)&

(abs(math.acos((rotpoint)*TS.p))<=math.pi*0.5+h):

density = 0

else:

mean = self.mean

lmean = mean.tolist()

lmean = list(flatten(lmean))

dim = len(lmean)

V = self.covMat

VT = V.T

CM = 0.5*(V+VT)

value = TS.sphereToTangentSpaceCentralProjection(point)

exponent = -0.5*(value-mean).T*inv(CM)*(value-mean)

exponent = exponent.tolist()

exponent = exponent[0][0]

#normalize = 1/math.sqrt(det(2*math.pi*CM))

density = math.exp(exponent)/self.mass

#print density
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return density

def randomPoseTransformation(self, baseElement2):

"""Composition of two base elements. If the covariance matrix is

chosen to be zero, the pose transformation is secure, without

random part."""

if isinstance(baseElement2,baseElement) == True:

smean = self.mean

smeanlist = list(flatten(smean.tolist()))

sT = self.tanSp

spoint = sT.tangentSpaceToSphereCentralProjection(smeanlist)

l = list(flatten(spoint.tolist()))

srot = quaternion(l[0],l[1],l[2],l[3])

strans = quaternion(0,l[4],l[5],l[6])

rotTrans = [srot,strans]

spoint = transformationToDQ(rotTrans)

#PROBLEM:

#for the transformation matrix q_t is needed not 1/2 q_t*q_r!

#assert isinstance(spoint,dualQuaternion)

nmean = baseElement2.mean

nmeanlist = list(flatten(nmean.tolist()))

nT = baseElement2.tanSp

npoint = nT.tangentSpaceToSphereCentralProjection(nmeanlist)

li = list(flatten(npoint.tolist()))

nrot = quaternion(li[0],li[1],li[2],li[3])

ntrans = quaternion(0,li[4],li[5],li[6])

nrotTrans = [nrot,ntrans]

npoint = transformationToDQ(nrotTrans)

new_point = transformPose(spoint, npoint)

new_point = DQToTransformation(new_point)#tupel of quaternions

new_point_rot = new_point[0] #new_point_rot is quaternion

point3list = new_point_rot.toList()

point3trans = new_point[1].toList()

point3 = makeVector(point3list)

T3 = tangentSpace(point3)

#print T3.display()
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input = [point3list[0],point3list[1],point3list[2],

point3list[3],point3trans[1],point3trans[2],

point3trans[3]]

mean3 = T3.sphereToTangentSpaceCentralProjection(input)

J = zeros((6,12),float)

#see 3.5.2. in wends paper:

#\Sigma_c is a 12x12 matrix and thus J is a 6x12 matrix to

#receive a 6x6 matrix for \Sigma_3

h = 0.1e-3

I = eye(6)

# i Zeilen und j Spalten der Matrix

for j in range(6):

z = I[j].T

z = z*h

pt = smean

tp = nmean

pointplus = pt+z #vector

pointminus = pt-z #vector

transformpointplus = sT.poseTransformationTS(pointplus,

tp,nT,T3)

transformpointminus = sT.poseTransformationTS(pointminus,

tp,nT,T3)

difference = transformpointplus - transformpointminus

qj = difference/(2*h)

qjlist = list(flatten(qj.tolist()))

for i in range(6):

qij = qjlist[i]

J[i][j] = qij

for j in range(6):

z = I[j].T

z = z*h

pt = smean

tp = nmean

transplus = tp+z #vector

transminus = tp-z #vector

transpluspoint = sT.poseTransformationTS(pt,transplus,
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nT,T3)

transminuspoint = sT.poseTransformationTS(pt,transminus,

nT,T3)

difference = transpluspoint - transminuspoint

qj = difference/(2*h)

qjlist = list(flatten(qj.tolist()))

for i in range(6):

qij = qjlist[i]

J[i][j+6] = qij

J = matrix(J)

#print J.round()

VT = zeros((12,12),float)

for i in range(6):

for j in range(6):

cMat1 = self.covMat

cMat2 = baseElement2.covMat

VT[i][j] = cMat1[i,j]

VT[i+6][j+6] = cMat2[i,j]

VT = matrix(VT)

CV3 = J*VT*J.T

baseElement3 = baseElement(T3,mean3,CV3)

return baseElement3

def sKLDivBound(self, otherBE, slam, olam):

smu = self.mean

lensmu = len(smu)

omu = otherBE.mean

lenomu = len(omu)

assert(lensmu == lenomu)

scm = self.covMat

ocm = otherBE.covMat

G = (smu-omu)*(smu-omu).T

solam = slam+olam

somu = slam/solam*smu + olam/solam*omu

socm = 1/solam*(slam*scm + olam*ocm + slam*olam*G)

ssocm = inv(scm)*socm
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ssocminv = inv(ssocm)

osocm = inv(ocm)*socm

osocminv = inv(osocm)

value = 0.5*slam*trace(ssocm+ssocminv+(slam/solam)**2

*(inv(scm)+inv(socm))*G)

+0.5*olam*trace(osocm+osocminv+(olam/solam)**2

*(inv(ocm)+inv(socm))*G)-lensmu*solam

return value

def draw1Sample(self):

"""the output of this function isn't the image, but the matrix,

needed for drawing it in pivy."""

mu = self.mean

mulist = list(flatten(mu.tolist()))

sigma = self.covMat

sample = multivariate_normal(mulist,sigma)

samplelist = sample.tolist()

TS = self.tanSp

value = TS.tangentSpaceToSphereCentralProjection(samplelist)

value = list(flatten(value.tolist()))

rot = quaternion(value[0],value[1],value[2],value[3])

trans = quaternion(0,value[4],value[5],value[6])

rotTrans = [rot,trans]

dualQuat = transformationToDQ(rotTrans)

transform = dualQuaternion.transformationMatrix(dualQuat)

matrix = makeMatTransInput(transform[0],transform[1])

matrix = matrix.T

limat = matrix.tolist()

limat = list(flatten(limat))

return limat

def draw1SampleMat(self):

"""the output of this function isn't the image, but the matrix,

needed for drawing it in pivy."""

mu = self.mean

mulist = list(flatten(mu.tolist()))
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sigma = self.covMat

sample = multivariate_normal(mulist,sigma)

samplelist = sample.tolist()

TS = self.tanSp

value = TS.tangentSpaceToSphereCentralProjection(samplelist)

value = list(flatten(value.tolist()))

rot = quaternion(value[0],value[1],value[2],value[3])

trans = quaternion(0,value[4],value[5],value[6])

rotTrans = [rot,trans]

dualQuat = transformationToDQ(rotTrans)

transform = dualQuaternion.transformationMatrix(dualQuat)

matrix = makeMatTransInput(transform[0],transform[1])

return matrix

def drawNSamples(self,N):

"""the output of this function isn't the image, but the matrix,

needed for drawing it in pivy."""

mu = self.mean

mulist = list(flatten(mu.tolist()))

sigma = self.covMat

sample = multivariate_normal(mulist,sigma,N)

sampleli = sample.tolist()

L = []

for i in range(N):

TS = self.tanSp

value = TS.tangentSpaceToSphereCentralProjection(sampleli[i])

value = list(flatten(value.tolist()))

rot = quaternion(value[0],value[1],value[2],value[3])

trans = quaternion(0,value[4],value[5],value[6])

rotTrans = [rot,trans]

dualQuat = transformationToDQ(rotTrans)

transform = dualQuaternion.transformationMatrix(dualQuat)

matrix = makeMatTransInput(transform[0],transform[1])

matrix = matrix.T

limat = matrix.tolist()

limat = list(flatten(limat))
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L.append(limat)

return L

def paintCS(self):

mu = self.mean

mulist = list(flatten(mu.tolist()))

TS = self.tanSp

value = TS.tangentSpaceToSphereCentralProjection(mulist)

value = list(flatten(value.tolist()))

rot = quaternion(value[0],value[1],value[2],value[3])

trans = quaternion(0,value[4],value[5],value[6])

rotTrans = [rot,trans]

dualQuat = transformationToDQ(rotTrans)

transform = dualQuaternion.transformationMatrix(dualQuat)

matrix = makeMatTransInput(transform[0],transform[1])

matrix = matrix.T

limat = matrix.tolist()

limat = list(flatten(limat))

return limat

In the following section mixtures of projected Gaussians are introduced.

class mixture:

"""Mixture is a double array. Consisting of a list of baseElements

with a weight for each one. Mixture is an array with two columns.

One for the baseElements and one for the weights."""

def __init__(self, liste):

assert isinstance(liste,list)

n = len(liste)

k = 0

for j in range(n):

baseElem = liste[j][0]

weight = liste[j][1]

assert isinstance(baseElem,baseElement)

k = k+weight

assert round(k, 2) == 1.00, 'the weights do not sum to 1'

self.l = liste
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self.nBaseElem = len(liste)

self.CSum = 1e-30

self.CSumOld = 1e-30

self.CSumVect = []

self.logCSumVect = []

self.iteration = 0

def toList(self):

sl = self.l

return sl

def equal(self,new_mixture):

n = len(self.l)

sl = self.l

ml = new_mixture.l

k = 0

for i in range(n):

bE = sl[i][0]

nbE = ml[i][0]

sweight = sl[i][1]

mweight = ml[i][1]

bE.equal(nbE)

if (sweight == mweight) & (bE.equal(nbE) == True):

k = k+1

if (k-n) == 0:

print 'mixtures are equal'

return True

else:

print 'mixtures are NOT equal'

return False

# def display(self):

# l = self.l

# n = len(l)

# z = zeros((n,1))

# lis = [l[i][0].display() for i in range(len(self.l))]
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# for i in range(len(self.l)):

# weight = l[i][1]

# z[i][0] = weight

# print lis

# print z

# return z

def mixedDensity(self,point):

"Input is a list, output a scalar."

sl = self.l

n = len(sl)

z = zeros((1,n),float)

for i in range(n):

bE = sl[i][0]

density = bE.baseDensity(point)

weight = sl[i][1]

z[0][i] = weight*density

s = z.sum()

print 'the mixed density is:', s

return s

def computeMassMonteCarlo6D(self,n):

Sum = 0

sigma = 0

liste = self.l

d = len(self.l)

X = zeros((n,6))

def f(u,v,w,x,y,z):

den = (1 + u*u + v*v + w*w) #denominator

psi = 1.0 / (den*den)

return psi

for i in range(d): #fuer jedes baseElement:

baseElem = liste[i][0]

mu = baseElem.mean

cov = baseElem.covMat

mulist = list(flatten(mu.tolist()))
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weight = liste[i][1]

for j in range(n):

X[j] = multivariate_normal(mulist,cov)

sigma = sigma + f(X[j][0],X[j][1],X[j][2],X[j][3],

X[j][4],X[j][5])

Sum += weight * sigma

#print Sum/n

return Sum/n

def fuseMoPG(self,other_mixture):

"""Mixture consists of a list of base elements, each with its

weight. That means:

Mixture1=[[PG_1,lambda_1],[PG_2, lambda_2],...,[PG_n,lambda_n]]"""

assert isinstance(other_mixture,mixture)

sl = self.l

ml = other_mixture.l

#n = samples

n1 = len(sl) #Laenge der Mixture

n2 = len(ml)

n3 = n1*n2

#Dimension der zusammengefuegten Mixture aus self u. other_mixture

"a = 5" #willkuerliche Festlegung basierend auf Erfahrungswerten

#Eintraege fuer Mixture3 berechnen.

#an die jeweils erste Stelle der Tupel kommt:

fused_bE = [[sl[i][0].fuse(ml[j][0],1) for j in range(n2)]

for i in range(n1)]

fbE = array(list(flatten(fused_bE)))

z = zeros(n3)

fm = column_stack((fbE,z))

for i in range(n1):

for j in range(n2):

#Laufindex laeuft durch von 0 bis n3-1.

#an die jeweils zweite Stelle der Tupel kommt:

weight = sl[i][1]*ml[j][1]

#Produkt der einzelnen Gewichte in der entsprechenden
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#Reihenfolge

PGi = sl[i][0]

t1 = PGi.tanSp

q1 = t1.p

PGj = ml[j][0]

t2 = PGj.tanSp

q2 = t2.p

f = func(q1,q2)

m = fbE[i*n2+j].mass

madist = fbE[i*n2+j].maDist

fm[i*n2+j][1] = 1/m*weight*f*madist -

"Achtung: fm ist im moment ein ndarray."

s = 0

for k in range(n3):

s = s + fm[k][1]

for l in range(n3):

fm[l][1] = fm[l][1]/s

fused_mixture = mixture(list(fm))

# print fm

# mass = fused_mixture.computeMassMonteCarlo6D(n)

# print mass

mix = mixture(list(fm))

#print mix.l[4][0].display()

return mix

def randomMoPGTransformation(self,other_mixture):

#NICHT GETESTET

assert isinstance(other_mixture,mixture)

sm = self.l

om = other_mixture.l

n1 = len(sm)

n2 = len(om)

n3 = n1*n2

composed_mixture = []

for i in range(n1):

PGi = sm[i][0]
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for j in range(n2):

PGj = om[j][0]

PG = PGi.randomPoseTransformation(PGj)

composed_mixture.append([PG,sm[i][1]*om[j][1]])

s = 0

for k in range(n3):

s = s + composed_mixture[k][1]

for l in range(n3):

composed_mixture[l][1] = composed_mixture[l][1]/s

return mixture(composed_mixture)

def sKLDivBound(self,other_mixture):

"""This function calculates the symmetrized KL divergence between

each base element of one mixture and each base element of the

other mixture."""

sml = self.l

oml = other_mixture.l

k = 1000

for i in range(len(sml)):

PGi = sml[i][0]

smlam = sml[i][1]

for j in range(len(oml)):

PGj = oml[j][0]

omlam = oml[j][1]

div = PGi.sKLDivBound(PGj,smlam,omlam)

if div < k:

k = div

selfmix = i

othermix = j

print 'k = ', k, ', i = ',selfmix,', j = ', othermix

return [selfmix, othermix]

def merge(self, nummixelem):

sml = self.l

nself = len(sml)

num = nself-nummixelem
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if num<=0:

print 'mixture has less elements'

return self

else:

for l in range(num):

bound = 1000

for i in range(len(sml)):

PGi = sml[i][0]

lam1 = sml[i][1]

for j in range(len(sml)-(i+1)):

PGj = sml[j+i+1][0]

lam2 = sml[j+i+1][1]

div = PGi.sKLDivBound(PGj,lam1,lam2)

if div < bound:

bound = div

selfmix = i

othermix = j+i+1

print 'divergence = ',bound,',i=',selfmix,',j=',othermix

lamself = sml[selfmix][1]

lamother = sml[othermix][1]

baseElem = sml[selfmix][0].merge(sml[othermix][0],

lamself,lamother,0)

sml = removeEl(sml,othermix)

sml = removeEl(sml,selfmix)

sml.append([baseElem,lamself+lamother])

return mixture(sml)

def paint(self,N):

samples = self.drawNSamplesV(N)

# showSamplesThread(samples)

return samples

def drawNSamples(self,N):

"""the output of this function isn't the image, but the matrix,

needed for drawing it in pivy."""
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sl = self.l

L = []

for n in range(N):

lam = 0

i = 0

rn = random_sample((1,1))[0][0]

while lam<rn:

weight = sl[i][1]

lam = lam + weight

i = i+1

#print i-1

baseElem = sl[i-1][0]

mu = baseElem.mean

mulist = list(flatten(mu.tolist()))

sigma = baseElem.covMat

sample = multivariate_normal(mulist,sigma)

samli = sample.tolist()

v=baseElem.tanSp.tangentSpaceToSphereCentralProjection(samli)

value = list(flatten(v.tolist()))

rot = quaternion(value[0],value[1],value[2],value[3])

trans = quaternion(0,value[4],value[5],value[6])

rotTrans = [rot,trans]

dualQuat = transformationToDQ(rotTrans)

transform = dualQuaternion.transformationMatrix(dualQuat)

matrix = makeMatTransInput(transform[0],transform[1])

L.append(matrix)

L.append(i-1)

return L

def drawNSamplesV(self,N):

"""the output of this function isn't the image, but the matrix,

needed for drawing it in pivy."""

sl = self.l

L = []

for n in range(N):

lam = 0
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i = 0

rn = random_sample((1,1))[0][0]

while lam<rn:

weight = sl[i][1]

lam = lam + weight

i = i+1

#print i-1

baseElem = sl[i-1][0]

mu = baseElem.mean

mulist = list(flatten(mu.tolist()))

sigma = baseElem.covMat

sample = multivariate_normal(mulist,sigma)

samli = sample.tolist()

v = baseElem.tanSp.tangentSpaceToSphereCentralProjection(samli)

value = list(flatten(v.tolist()))

L.append([value, i-1])

return L

def fitMixture(self, sampleSet, maxIterations, minIncrement, eps):

# This implementation follows the one in Mathematica

""" @1: the table of samples (size of table: 7xN)

@2: number of MAG kernels

@3: translation range

@4: the maximim number of iterations the algorithm is allows

to make the relative improvement of total likelihood that

is sufficient to stop the algoithm

@6: the number that will be added to all eigenvalues of all

the estimated covariance matrices (prevents them from

becoming singular)

@r: resulting Mag"""

numberOfSamples = len(sampleSet)

increment = float('infinity')

for idx in [1]:

# E Step

# unnormalizedC collects for each sample the densities of
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# the base elements multiplied by weight

# numberOfSamples x nBaseElements

# the rows contain the base elements

# the columns contain the samples

unnormalizedC = [[self.l[elementIdx][1]

*(self.l[elementIdx][0]).

density(sampleSet[sampleIdx][:7])

for elementIdx in range(self.nBaseElem)]

for sampleIdx in range(numberOfSamples)]

# get the sums of the rows

CWeights = [sum(row) for row in unnormalizedC]

# these sums of the row are actually the likelyhoods of a

#sample given the mixture

self.CSum = sum(CWeights)

logCWeights = [log(weight) for weight in CWeights]

logCSum = sum(logCWeights)

# up to the log this is the log likelihood from page 439,

#(9.28), in Bishop

self.CSumVect.append(self.CSum)

self.logCSumVect.append(logCSum)

increment = abs(self.CSum/self.CSumOld - 1.0)

self.CSumOld = self.CSum

# when CSum becomes stationary, assume the algorithm has

# converged

# normalizedC collects the 'responsibilities' gamma(znk)

normalizedC = [[unnormalizedC[sampleIdx][elementIdx] /

CWeights[sampleIdx]

for elementIdx in range(self.nBaseElem)]

for sampleIdx in range(numberOfSamples)]

# M step

# now we work on the columns of normalizedC, so we use a

#transposed version

nCmat = matrix(normalizedC)

nCmatT = nCmat.T

normalizedCT = nCmatT.tolist()

nCTSampleSum = [sum(row) for row in normalizedCT]
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# the Nk from the book

# re-project each sample to each tangent space

reproSamples=[[self.l[elementIdx][0].tanSp.

sphereToTangentSpaceCentralProjection

(sampleSet[sampleIdx])

for elementIdx in range(self.nBaseElem)]

for sampleIdx in range(numberOfSamples)]

weightedRS=[[normalizedC[sampleIdx][elementIdx]

*reproSamples[sampleIdx][elementIdx]

for elementIdx in range(self.nBaseElem)]

for sampleIdx in range(numberOfSamples)]

# the mean is the normalized sum over the weighted

# reprojected samples, one for each base element

meanValues=[matrix([[0],[0],[0],[0],[0],[0]])

for elementIdx in range(self.nBaseElem)]

for sampleIdx in range(numberOfSamples):

meanValues=[meanValues[elementIdx]

+weightedRS[sampleIdx][elementIdx]

for elementIdx in range(self.nBaseElem)]

meanValues=[1/nCTSampleSum[elementIdx]*meanValues[elementIdx]

for elementIdx in range(self.nBaseElem)]

# the covariance is estimated as the weighted sample covariance

covMatrices = [matrix(eye(6)) for elementIdx in

range(self.nBaseElem)]

for elementIdx in range(self.nBaseElem):

for sampleIdx in range(numberOfSamples):

covMatrices[elementIdx] =

(normalizedC[sampleIdx][elementIdx]*

(reproSamples[sampleIdx][elementIdx]

-meanValues[elementIdx])*

(reproSamples[sampleIdx][elementIdx]

-meanValues[elementIdx]).T)

covMatrices=[1/nCTSampleSum[elementIdx]

*covMatrices[elementIdx]

for elementIdx in range(self.nBaseElem)]

newWeights=[nCTSampleSum[elementIdx]
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/numberOfSamples for elementIdx in

range(self.nBaseElem)]

# write the results back to the mixture

for elementIdx in range(self.nBaseElem):

self.l[elementIdx][1] = newWeights[elementIdx]

self.l[elementIdx][0].tanSp.mean

=meanValues[elementIdx]

self.l[elementIdx][0].tanSp.covMat

=covMatrices[elementIdx]

# and finally, shift the tangent spaces towards PG0,

# i.e. zero mean

for elementIdx in range(self.nBaseElem):

tanSpPt = meanValues[elementIdx].T.tolist()[0]

newTanPt = self.l[elementIdx][0].tanSp.

tangentSpaceToSphereCentralProjection(tanSpPt)[:4]

newTanSp = tangentSpace(newTanPt)

self.l[elementIdx][0].changeTS(newTanSp)

print self.iteration

self.iteration = self.iteration + 1

def resetFitting(self):

self.CSumOld = 1e-30

self.CSumVect = []

self.logCSumVect = []

self.iteration = 0

From here on the quaternions and their methods are de�ned.

class quaternion:

""" definition of the quaternion and its properties

"""

def __init__(self, a, b, c, d):

self.R = float(a) # real part

self.I = float(b) # first imaginary part

self.J = float(c) # second imaginary part

self.K = float(d) # third imaginary part
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def norm(self):

return sqrt(self.R*self.R + self.I*self.I + self.J*self.J +

self.K*self.K)

def norm2(self):

return self.R*self.R+self.I*self.I+self.J*self.J+self.K*self.K

def normalizeD(self): # destructively normalizes the quaternion

n = self.norm()

if n == 0:

print 'cant normalize, is 0'

else:

self.R = self.R/n # real part

self.I = self.I/n # first imaginary part

self.J = self.J/n # second imaginary part

self.K = self.K/n # third imaginary part

def normalize(self):

# non-destructively returns the normalized quaternion

n = self.norm()

qret = quaternion(self.R, self.I, self.J, self.K)

if n == 0:

print 'cant normalize, is 0'

else:

qret.R = self.R/n # real part

qret.I = self.I/n # first imaginary part

qret.J = self.J/n # second imaginary part

qret.K = self.K/n # third imaginary part

return qret

def conjD(self):

# destructively turns the quaternion into its conjugate

self.R = self.R # real part

self.I = - self.I # first imaginary part

self.J = - self.J # second imaginary part

self.K = - self.K # third imaginary part
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return self

def conj(self): # non-destructively returns the conjugate quaternion

qret = quaternion(self.R, self.I, self.J, self.K)

qret.R = self.R # real part

qret.I = - self.I # first imaginary part

qret.J = - self.J # second imaginary part

qret.K = - self.K # third imaginary part

return qret

def times(self,factor): # multiplication with another quaternion

qret = quaternion(0, 0, 0, 0)

qret.R = self.R*factor.R - self.I*factor.I - self.J*factor.J

- self.K*factor.K

qret.I = self.I*factor.R + self.R*factor.I - self.K*factor.J

+ self.J*factor.K

qret.J = self.J*factor.R + self.K*factor.I + self.R*factor.J

- self.I*factor.K

qret.K = self.K*factor.R - self.J*factor.I + self.I*factor.J

+ self.R*factor.K # third imaginary part

return qret

def toList(self):

return([self.R, self.I, self.J, self.K])

def invD(self):

n2 = self.norm2()

if n2 == 0:

print 'cant invert, is 0'

else:

self.R = self.R/n2 # real part

self.I = - self.I/n2 # first imaginary part

self.J = - self.J/n2 # second imaginary part

self.K = - self.K/n2 # third imaginary part

def inv(self):
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qret = quaternion(0,0,0,0)

n2 = self.norm2()

if n2 == 0:

print 'cant invert, is 0'

else:

qret.R = self.R/n2 # real part

qret.I = - self.I/n2 # first imaginary part

qret.J = - self.J/n2 # second imaginary part

qret.K = - self.K/n2 # third imaginary part

#print qret

return qret

def equal(self,same): #tests whether is equal to another quaternion

if (self.R == same.R) & (self.I == same.I) & (self.J == same.J)

& (self.K == same.K):

return True

else:

return False

def copy(self):

qret = quaternion(0,0,0,0)

qret.R = self.R # real part

qret.I = self.I # first imaginary part

qret.J = self.J # second imaginary part

qret.K = self.K # third imaginary part

return qret

def plus(self,otherq):

qret = quaternion(0,0,0,0)

qret.R = self.R + otherq.R

qret.I = self.I + otherq.I

qret.J = self.J + otherq.J

qret.K = self.K + otherq.K

return qret

def scalar(self,num):
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qret = quaternion(0,0,0,0)

qret.R = num*self.R

qret.I = num*self.I

qret.J = num*self.J

qret.K = num*self.K

return qret

def toMatrix(self):

a = self.R

b = self.I

c = self.J

d = self.K

mat=matrix([[1 - 2*c*c - 2*d*d, 2*b*c - 2*a*d, 2*(a*c + b*d)], \

[2*(b*c + a*d), 1 - 2*b*b - 2*d*d, -2*a*b + 2*c*d],\

[-2*a*c + 2*b*d, 2*(a*b + c*d), 1 - 2*b*b - 2*c*c]])

return mat

def randomUnit(self):

"""this method returns a random unit quaternion from an equal

distribution on S3"""

qret = quaternion(1,1,1,1)

while qret.norm() > 1.0:

qret.R = random.uniform(-1.0, 1.0)

qret.I = random.uniform(-1.0, 1.0)

qret.J = random.uniform(-1.0, 1.0)

qret.K = random.uniform(-1.0, 1.0)

qret = qret.normalize()

return qret

def randomImaginary(self,min = [-5,-5,-5],max = [5,5,5]):

"""this method returns a random imaginary quaternion from an

equal distribution on S3"""

qret = quaternion(0,0,0,0)

qret.I = random.uniform(min[0],max[0])

qret.J = random.uniform(min[1],max[1])

qret.K = random.uniform(min[2],max[2])

130



A.1

return qret

def radAxis(self, rad, axis):

"""

this method returns a unit quaternion corresponding to a

rotation by rad around axis

"""

# axis need not be normalized, we'll take care of that

qret = quaternion(1,0,0,0)

a1 = float(axis[0])

a2 = float(axis[1])

a3 = float(axis[2])

axisnorm = sqrt(a1*a1 + a2*a2 + a3*a3)

if axisnorm > 0:

qret.R = cos(rad/2.)

sr2 = sin(rad/2.)/axisnorm

qret.I = sr2*a1

qret.J = sr2*a2

qret.K = sr2*a3

return qret

def degreeAxis(self, deg, axis):

"""this method returns a unit quaternion corresponding to a

rotation by deg around axis"""

# axis need not be normalized, we'll take care of that

rad = deg * pi/180.

qret = self.radAxis(rad, axis)

return qret

def display(self):

print [self.R, self.I, self.J, self.K]

The �nal section is concerned with dual quaternions.

class dualQuaternion:

"""Quaternions have 4 entries. Quat = [q1,q2,q3,q4] the first one is

real, the others are imaginary."""
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def __init__(self,Quat1,Quat2):

assert isinstance(Quat1,quaternion), '1st argument no quaterion'

assert isinstance(Quat2,quaternion), '2nd argument no quaternion'

self.Real = Quat1.copy() #Realteil des dualen Quaternions

self.Dual = Quat2.copy() #Dualteil des dualen Quaternions

#ein duales Quaternion hat dann die Form: Quat1 + E*Quat2

def plus(self,otherDuQu):

dqret = dualQuaternion(quaternion(0,0,0,0),quaternion(0,0,0,0))

sR = self.Real

oR = otherDuQu.Real

sD = self.Dual

oD = otherDuQu.Dual

dqret.Real = sR.plus(oR)

dqret.Dual = sD.plus(oD)

return dqret

def equal(self,otherDuQu):

#tests whether is equal to another quaternion

sR = self.Real

oR = otherDuQu.Real

sD = self.Dual

oD = otherDuQu.Dual

if (sR.equal(oR)) & (sD.equal(oD)):

return True

else:

return False

def copy(self):

dqret = dualQuaternion(quaternion(0,0,0,0),quaternion(0,0,0,0))

dqret.Real = self.Real # real part

dqret.Dual = self.Dual # dual part

return dqret

def toList(self):

Q1 = self.Real
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Q2 = self.Dual

return [[Q1.R, Q1.I, Q1.J, Q1.K],[Q2.R, Q2.I, Q2.J, Q2.K]]

def times(self,otherDuQu): # multiplication with another quaternion

dqret = dualQuaternion(quaternion(0,0,0,0),quaternion(0,0,0,0))

qR1 = self.Real

qR2 = otherDuQu.Real

qD1 = self.Dual

qD2 = otherDuQu.Dual

qu1 = qR1.times(qD2)

qu2 = qD1.times(qR2)

dqret.Real = qR1.times(qR2)

dqret.Dual = qu1.plus(qu2)

return dqret

def conjTotal(self):

dqret = dualQuaternion(quaternion(0,0,0,0),quaternion(0,0,0,0))

sR = self.Real

sD = self.Dual

dqret.Real = sR.conj()

cD = sD.conj()

dqret.Dual = cD.scalar(-1)

return dqret

def conjQuat(self):

dqret = dualQuaternion(quaternion(0,0,0,0),quaternion(0,0,0,0))

sR = self.Real

sD = self.Dual

dqret.Real = sR.conj()

dqret.Dual = sD.conj()

return dqret

def conjDual(self):

dqret = dualQuaternion(quaternion(0,0,0,0),quaternion(0,0,0,0))

sR = self.Real

du = self.Dual

dqret.Real = sR

dqret.Dual = du.scalar(-1)
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return dqret

def transformationMatrix(self):

R = self.Real

D = self.Dual

rotmat = R.toMatrix() #matrix

DD = D.scalar(2)

DD = DD.times(R.conj())

DDlist = DD.toList()

transvec = DDlist[1:]

transvec = makeVector(transvec)

#print rotmat

#print transvec

return [rotmat,transvec]

def inv(self):

ret = dualQuaternion(quaternion(0,0,0,0),quaternion(0,0,0,0))

real = self.Real

realc = real.conj()

ret.Real= realc

dual = self.Dual

retd = dual.times(realc)

retd = realc.times(retd)

retd = retd.scalar(-1.0)

ret.Dual= retd

return ret

def display(self):

print self.Real.toList() + self.Dual.toList()
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A.2.

Figure A.1.: The picture shows the DESIRE robot on picking up two objects of a simple scenario

at the same time.
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Figure A.2.: The picture shows an older model of the DESIRE robot. This one was presented

on the CeBIT 2009.

Figure A.3.: The picture shows the DESIRE robot sorting trash. The robot picks the objects

up and throws them into one of the bags on the back side of the table. Which bag

is chosen depends on whether the object is empty or not.
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