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Abstract. Within the frame of the German Research Foundation project “3DTracks”, a collabora-

tion platform has been designed to enable different planers to work synchronously on a shared ge-

ometry model, thereby using Computer-Aided Design (CAD) tools they are accustomed to. The 

basis for this modelling process is a newly developed procedural model that supports the typical 

feature operations of modern CAD tools and especially the idea of geometrical and dimensional 

constraints. Since there are many situations in which these geometric and dimensional constraints 

are not sufficient to express engineering boundary conditions, there is a need for more complex 

rules in order to reflect the design intent of the modelling engineer. Thus, we investigate possibili-

ties for the integration of adequate rules into the procedural model and into the modelling process, 

respectively. In this paper, we present our strategy to integrate these collaborative rules, delineate 

how these rules are constructed, and finally give some examples of their application and the result-

ing benefit. We thus extend the well-known approaches of rule-based functionalities of CAD-

systems to interoperable models shared in a synchronous collaboration environment. 

1. Introduction 

In recent years, several researchers have intensively studied the process of collaborative geo-

metric modelling. In the course of these studies, they found that procedural geometry models 

can serve as a suitable basis for collaborative modelling scenarios. In simplified terms, these 

procedural models store the models’ individual construction steps as well as the dependencies 

between them (Pratt 2003). In particular, these dependencies comprise the idea of constraints 

to explicitly describe relations between different geometry features such as parallelism of 

lines, concentricity of circles, specific symmetries etc. (Pratt & Junhwan 2005, Ma et al. 

2008). By applying these constraints, parts of the design intent of the model creators (i.e. en-

gineers) are incorporated into the procedural geometry description (Bianconi 2006, Ma et al. 

2008) – in contrast to explicit geometry descriptions that merely account for the resulting ge-

ometry, e.g. vertices, edges, and faces.  

 The research project “3DTracks”1has brought forth new methodologies to improve collabora-

tive work in the field of synchronous geometry design and semantic modelling processes. One 

of the main fields of research in this respect focused on 3D modelling techniques to support 

the design of alignment-based infrastructure projects concerning the modelling of subway 

tunnels. This new methodology comprises two main aspects: the novel multi-scale procedural 

geometry model itself as well as the usage of this model in a collaborative synchronous mod-

elling process (Borrmann et al. 2014). In particular, a dedicated collaboration system – fol-

lowing a client and server architecture – has been developed. It enables several modelling 

experts to work on a single geometry model simultaneously, using the CAD tools they are 

accustomed to. At the same time, the collaboration server ensures the consistency of the 

shared model and its local replicas residing on the client sides (Flurl et al. 2014). 

                                                 
1 http://www.3dtracks.kit.edu/english/overview.php 
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The newly developed multi-scale procedural geometry model supports the well-established 

modelling features such as extrusions, sweeps, Boolean operations, and 2D-sketches as a 

common basis for many civil engineering constructions. A sketch itself supports the afore-

mentioned constraint mechanisms (Jubierre & Borrmann 2013). In general, geometrical con-

straints describe relations between selected geometry entities, while dimensional constraints 

allow the user to define specific dimensions of given elements, such as the length of a specific 

line or the angle between two different lines (Brüderlin & Roller 1998). 

Figure 1: Basic workflow using the new procedural model in a collaborative modelling session 

The main idea in order to use this new procedural model in a collaborative modelling process is that 

Neutral Procedural Operations (NPO) are translated into System Specific Operations (SSO) of the 

several distinguished CAD tools (Figure 1). This translation process is managed by libraries that are 

integrated into the local CAD tools via their APIs. Prototypically, we developed libraries for the three 

CAD systems Autodesk Inventor2, Siemens NX3 and the in-house geometry framework 

TUM.GeoFrame (Sorger et al. 2014). 

2. Problem Definition 

Though geometrical and dimensional constraints are able to describe many facets of engineer-

ing design intent, they do not cover all aspects. Thus, constraints appear to be insufficient 

even for rules based on simple inequalities. If we consider, for example, a simple upper limit 

of a given distance, we might encounter the following situation: A simple tunnel tube is de-

scribed by the Boolean Operation subtract using two sweep operations based on a spline de-

fining the principle track course and two sketches defining the inner and the out tunnel hull 

(Figure 2).  

Obviously, this subtract operation is only possible as long as the circle defining the outer tun-

nel hull has a radius that is larger than the radius of the circle defining the inner tunnel hull. 

                                                 
2 http://www.autodesk.de/products/inventor/overview 
3 http://www.plm.automation.siemens.com/de_de/products/nx/ 
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Although this problem seems to be quite simple, it is not possible to describe the condition 

𝑟2 + 0.2 < 𝑟1 in common CAD tools, since these usually only support equations. 

 

 

Figure 2: Simple tunnel tube based on two sketches defining the tunnel profile 

Rule-based systems, on the other hand, are well known for capturing and considering com-

plex design rules (Reijnders, A.W. 2012). Today, modern commercial CAD tools integrate 

proprietary rule-based engineering systems, since these systems are still single-user applica-

tions or – in the best case – provide active collaborative features solely for CAD tools of the 

same product line. Hence, users in a collaborative modelling process are not free to use the 

modelling tool of their choice. Moreover, the capturing, processing and reuse of engineering 

intent is still dependent on proprietary CAD systems.  

 

Figure 3: Simple bridge model, where the number of pillars  

depends on the bottom width of the superstructure. 

As an example for a more complex rule, the number of pillars used in the construction of a 

bridge may depend on the width, given by a specific parameter of the superstructure (Figure 

3). In the geometric modelling process, a sketch defines this superstructure, while a dimen-

sional constraint referencing a specific parameter determines the width. As soon as this pa-

rameter exceeds a specific length, the numbers of pillars should change from two to three or 

three to four, and vice versa if the parameter falls below a certain length. In a modelling sys-

tem, the sketch defining the basis for the pillars should be adapted to the new situation auto-

matically. 
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Though this situation seems quite simple, it is not possible to define this kind of rules in a 

collaborative workflow, in particular in a collaborative workflow using different CAD model-

ling tools. 

3. Rule-based Systems 

Rule-based systems originate from the field of Artificial Intelligence in the 1970s (Hayes-

Roth & Jacobstein, N. 1994; Dym 1985). Nowadays, rule-based systems are applied in many 

different areas and knowledge domains such as diagnostics systems, production systems, 

business rules management systems, decision support systems, and knowledge-based engi-

neering. As a matter of principle, a rule-based system consists of the components of a 

knowledge base, a rule (or inference) engine, and a user interface. Via the user interface, 

which could also be embedded in a CAD system, a user can either add rules or query the sys-

tem. (Griffin, Lewis 1989). The rule engine (see Figure 4) matches the rules stored in the 

knowledge base against some facts, in our case the procedural model (Pattern Matching). All 

rules that need to be processed are called conflicts. Before execution, these conflicts are listed 

and ordered into an agenda using a conflict solving strategy. It is also possible to include 

some forward or backward chaining techniques. The main advantage of using a rule engine is 

the separation of rule definition (declarative) and the execution of consequences. 

 

Figure 4: Rule engine 

Today, most proprietary CAD software tools feature a rule-based system, such as the modules 

iLogic or Engineer-To-Order (ETO) for Autodesk Inventor and the software product 

Knowledge Fusion that provides rule-based functionalities for Siemens NX. However, these 

tools are still supposed to be used in interaction with their proprietary parent software systems 

such as Inventor or Siemens NX. In the scope of this work, we want to overcome those 

boundaries by merging rule-based services into a manufacturer-independent collaboration 

platform. We thus extend the well-known approaches of rule-based functionality of CAD-

systems to interoperable models shared in a synchronous collaboration environment.  

4. Solution 

To resolve issues outlined above, we present a strategy to integrate complex rules into the 

“3DTracks” collaboration platform. In addition to the possibility of using the well-known 

constraints, we allow the user to define rules that determine relations between different geo-

metrical elements in a more general way than it can be done drawing on constraints. The user 
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uploads and stores these rules in the collaboration platform in order to incorporate them into 

the shared procedural model. Once the rule is activated and one of the users modifies a specif-

ic procedural element that affects this specific rule, a rule engine evaluates the change and 

induces the execution of predefined steps according to the rules definition and the outcome of 

the evaluation process.  

Form of Collaborative Rules 

In general, the simplest form of a rule is  

IF antecedent THEN consequent,  

where antecedent represents a condition and consequent defines steps that one has to under-

take if the evaluation of the antecedent results in the value true (Reijnders 2012). The first 

simple extension in this definition is to allow an alternative, i.e.  

IF antecedent THEN consequent_1 ELSE consequent_2, 

additionally allowing the definition of steps to be executed if the evaluation of the antecedent 

process results in the value false. The next extension is to allow the usage of conditional “IF 

… THEN … ELSE” statements in the consequents statement. This leads to a recursive defini-

tion of a rule in a very general form. This form of rule is supported in our approach. Before 

we provide a strictly formal definition at the end of this section, we would like to focus on the 

connection between rule definition and the geometry elements as well as the definition of pos-

sible consequences. 

The Conditions in the Antecedents Part 

In our case, a condition included in the antecedent part of a rule consists of algebraic relations 

between parameters defining the shape of geometrical elements or construction steps resulting 

in geometry elements, respectively. In modern modelling tools, the parametric definition of 

certain values is of fundamental relevance. Mostly, these tools are feature-based, whereby 

features are usually defined as construction steps representing a high-level geometry opera-

tion that makes it possible for a shape designer to avoid having to work from the low level or 

individual curve and surface elements (Mun 2003). In particular, these high-level construction 

steps as well as the basic sketch operations are driven by the aforementioned parameters that 

define certain sizes – the height of an extrusion, the length of a line, or the diameter of a circle 

in a sketch definition, for example (see Figure 5).  

In our definition of rules, the antecedent comprises arbitrary algebraic combinations of di-

mensions or parameters, respectively, that result in a valid equation or inequality. The syntac-

tic validity is verified by a parser during the definition, while the semantic validity lies in the 

engineer’s responsibility.  

The procedural model schema determines which parameters are allowed to be combined, e.g. 

the radius of a circle is defined as “RuleUsable”. The specific parameter in a rule definition is 

given by a description in the manner of an object-oriented programming language, e.g. 

𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑠["SketchId_02"]. 𝐶𝑖𝑟𝑐𝑙𝑒𝑠["CircleId_01"]. 𝑅𝑎𝑑𝑖𝑢𝑠 describes the radius of the circle 

with the id "𝐶𝑖𝑟𝑐𝑙𝑒𝐼𝑑_01" from the sketch with the id "𝑆𝑘𝑒𝑡𝑐ℎ𝐼𝑑_02". For example, the ante-

cedent of the rule mentioned in the introduction can be delineated for a specific application  

𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑠["𝑆𝑘𝑒𝑡𝑐ℎ𝐼𝑑_02"]. 𝐶𝑖𝑟𝑐𝑙𝑒𝑠["𝐶𝑖𝑟𝑐𝑙𝑒𝐼𝑑_01"]. 𝑅𝑎𝑑𝑖𝑢𝑠 + 0.2
< 𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑠["𝑆𝑘𝑒𝑡𝑐ℎ𝐼𝑑_03"]. 𝐶𝑖𝑟𝑐𝑙𝑒𝑠["𝐶𝑖𝑟𝑐𝑙𝑒𝐼𝑑_01"]. 𝑅𝑎𝑑𝑖𝑢𝑠  
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Figure 5: A parametrical sketch describing the cross section of a subway tunnel 

For the users, the definition concerning the procedural model schema is transparent, since the 

editor for the defining rules (see chapter 5) only offers parameters of which the property 

“RuleUsable” is set to true. 

The Execution Steps in the Consequents Part 

The consequent statement defines steps to be executed after the antecedent of the rule has 

been evaluated to true. In a collaborative system, this statement has to be interpreted by the 

collaboration server, initiating specific geometric operations to be performed by the affected 

clients. The statements themselves may contain other conditions (resulting from the recursive 

rule definition) that have to be evaluated. We distinguish three different types of possible exe-

cution steps: warnings given to the user, rejection of a model modification step, and finally, a 

modifying mechanism in order to manipulate the shared model or to resolve a problem state. 

To fully understand this, one has to reconsider the process of a modification step in the given 

collaborative scenario. 

As soon as a modelling expert starts the modification of an element, the collaboration server – 

automatically notified by the client application – locks this element for the other participating 

users (Flurl et al. 2014). The user finishes his modification and sends the modified operation 

to the collaboration server, which then incorporates the modified operation into the central 

shared model and forwards the modification to the other participating clients, implicitly forc-

ing them to integrate this modification immediately. The collaboration server unlocks the spe-

cific operation and finally notifies the editing user about the success of his modification step. 

In the rule-based collaborative system, before incorporating the modified operation into the 

shared model, all rules referencing this modified operation are re-evaluated. To facilitate this, 

after adding a rule, a reference to this rule is automatically added to the “ReferencedRule”-

collection of all operations concerned. This collection is also used if an element is deleted: 
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referenced rules are deactivated and the user has to redefine the obviously incorrect rule ver-

sion. 

 

Figure 6: Collaboration Server and rule engine interaction 

In the following paragraphs, we will briefly discuss the three fundamental cases of conse-

quents that were mentioned before. Since no action is required if the evaluation of a rule re-

sults in the value false, our focus here lies on cases resulting in the value true. Then, the sim-

plest option is that the consequent part of a rule is set to “Reject” (Figure 6). In this case, the 

modified operation is not incorporated into the shared model, while the user is forced to undo 

the modification in his local copy of the shared model. A similarly simple option is that the 

consequent part of a rule is set to “Warning” (Figure 6). In this case, the operation is modified 

as described above (see also Figure 1), but a warning message is sent to the user, relying on 

the user’s ability to resolve possible inconsistencies or emerging problems, respectively. This 

is a typical strategy in collaborative systems (Munson 1998). 

The last case “ModifyModel” is more complex. Here, one can deposit “any possible” set of 

operations to be executed onto the shared procedural model on the server side. This set of 

operations comprises three different types of operations: Existing construction steps or geo-

metrical elements can be modified by (1) changing specific parameters, (2) adding new con-

struction steps and (3) by removing existing ones. These three types of operations are execut-

ed using the existing interface provided by the collaboration server, including the ability to 

automatically lock a set of elements in order to avoid inconsistencies. In particular, if at least 

one of the referenced elements cannot be locked – indicating that another user is working on 

the element in question – the modification is rejected, as in the first case described above. In 

addition, the server automatically forces all the other participating users to include the various 

modifications steps locally. A simple example for this type of rule in the context of the previ-

ous example might be  

DEFINE param_ref1:= 𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑠[SketchId_02]. 𝐶𝑖𝑟𝑐𝑙𝑒𝑠[CircleId_01]. 𝑅𝑎𝑑𝑖𝑢𝑠; 

DEFINE param_ref2:= 𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑠[SketchId_03]. 𝐶𝑖𝑟𝑐𝑙𝑒𝑠[CircleId_01]. 𝑅𝑎𝑑𝑖𝑢𝑠; 

IF 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓1 > 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓2 THEN 

MODIFYELEMENT("SketchId_02", 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓1, 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓2 − 0.5)  (4.1) 
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Within this example, the radius of the sketch “SketchId_02” is automatically adapted when it 

exceeds a valid upper limit given in the antecedent. Defining param_ref1 and param_ref2 

strongly simplifies the readability of the rule. 

 

Following these first explanatory examples, we now formally define a rule in the following 

according to Figure 7. 

 

Figure 7: Formal definition of a rule 

 

Combining Different Rules and Conflicting Situations 

In general, different rules may lead to conflicting situations – for example, if a second rule to 

the rule is added to the rule above (4.1):  

 IF 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓1 < 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓2 THEN 

MODIFYELEMENT("SketchId_02", 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓1, 𝑝𝑎𝑟𝑎𝑚_𝑟𝑒𝑓2 − 1.5) 

the final result of the evaluation of the different rules depends on the order in which the given 

rules are processed. There are several strategies to resolve conflicts – in particular strategies 

that are automatically provided by the rule engines (Chan et. al. 1985, Hicks 2007). In the 

current version of our approach, we follow the very simple idea of processing the rules by 

their given order of definition, thus relying on the users’ ability to resolve conflicts. In future 

work, we will incorporate more elaborate conflict-resolving-strategies. 
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5. Implementation 

In order to simplify the process of defining rules, we prototypically implemented a simple 

rule editor (see Figure 8), giving the user a possibility to select the involved geometrical ele-

ments by simply picking them from the GUI while defining the rules.  

 

Figure 8: The rule editor supports the user during the task of defining rules 

Thereby, a feature tree allows the user to choose the operations that are referenced by a spe-

cific rule. After selecting an operation, the associated parameters are presented in a popup 

selection panel and can thus be defined easily. This way, operations and parameters are grad-

ually combined to an equation or inequality representing the antecedent of the specified rule.  

6. Conclusion and Outlook 

In the field of procedural geometric modelling, the concept of constraints is well established, 

yet often not fully sufficient to represent the designers’ intent. We presented an approach to 

mitigate this problem in the field of collaborative CAD modelling. It could be shown that our 

approach is suitable for integrating more complex rules into a collaborative modelling pro-

cess. The implementation is accomplished by a collaboration platform developed within the 

German Research Foundation project “3DTracks”. We delineated the formal syntax of a set of 

rules to determine structure of antecedent and consequent. While these rules can be defined 

dynamically in our software prototype, we validated the usability of the collaborative rule-

based system using a simple and intuitive example that is nonetheless representative for an 

extensive field of similar problems. 

In future work, we will investigate and integrate more elaborate conflict-solving strategies 

and, in particular, revise our role system for users. Additionally, we are planning to extend 

our modelling environment in order to enable the integration of actual knowledge-based engi-

neering functionalities and techniques. 
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