
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Semi-Automatic Security Testing of Web
Applications with Fault Models and

Properties

Matthias René Büchler

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl XXII - Software Engineering

Semi-Automatic Security Testing of Web
Applications with Fault Models and

Properties

Matthias René Büchler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Tobias Nipkow, Ph.D

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Alexander Pretschner

2. Prof. Dr. Robert Hierons,

Brunel University London, United Kingdom

Die Dissertation wurde am 20/07/2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 03/11/2015 angenommen.

Acknowledgments

First, I want to express my special appreciation and thanks to my supervisor Prof. Dr.
Alexander Pretschner. I would like to thank him for his encouraging support during my
Ph.D time. I appreciate his contributions in terms of time, encouragement, and ideas,
since his comments and discussions were of tremendous help. I very much appreciated the
freedom he gave me to pursue my own interests and still experience his support at the same
time. This Ph.D thesis would not have been possible without the help of Alex.

I would also like to express a very special thanks to my 2nd supervisor Prof. Dr. Rob
Hierons at Brunel University London, his comments and suggestions for my Ph.D thesis. I
regularly met him at ICST conferences during my Ph.D time and enjoyed the discussions
with him a lot.

I would like to express a special thanks to all group members at TU München. The group
contributed not only in terms of my professional growing but it was a source of friendship
as well.

During three years of my Ph.D, I participated in the SPaCIoS EU project. All the discus-
sions and meetings have been very supportive, fruitful, and invaluable.

Finally, a special thanks goes to my family and friends who supported me all the times,
their understanding and encouragement to consequently strive for my goal.

v

Abstract

Web applications are complex and face a significant amount of complex attacks, as well.
The complexity makes manual testing of web applications for security issues hard and time
consuming, thus, automated testing is preferable. To tackle the complexity, we propose a
(semi-)automatic model-based testing approach. Using models, test cases are often gener-
ated using structural criteria. Since such test cases do not directly target security properties,
this Ph.D thesis proposes fault models for generating tests for web applications. Described
faults are known source code vulnerabilities that, by using respective mutation operators at
the model level, are injected into models of a System Under Validation. A model-checker
automatically analyses such models and potentially generates ‘interesting’ but abstract test
cases. To find attacks on real systems this Ph.D thesis uses the help of web browsers and
penetration testing techniques to operationalize abstract attack traces. Thus, we address
the gap between abstract and executable test cases. Our evaluation on several web appli-
cations shows that our approach finds non-trivial multi-step XSS and SQL vulnerabilities,
which other tools often missed. Furthermore, we evaluate the efficiency of our approach
by comparing Syntactic Mutation Operators, Semantic Mutation Operators, first-order and
higher-order mutation operators.

vii

Zusammenfassung

Web Applikationen sind heutzutage sehr komplex und sind ebenso komplexen Angrif-
fen ausgesetzt. Die Komplexität macht manuelles Testen sehr schwierig und zeitintensiv,
weshalb man automatisches Testen bevorzugt. Der Komplexität begegnen wir mit abstrak-
ten Modellen und model-basierten Testverfahren. Bei solchen Verfahren werden häufig
strukturelle Abdeckungskriterien verwendet. Solche Kriterien zielen häufig nicht auf Ver-
wundbarkeiten ab. Das Ziel dieser Dissertation ist daher, das Generieren von Testfällen
auf der Basis von Fehlermodellen. Die beschriebenen Fehler werden in Modelle der Web
Applikation injiziert. Modelchecker analysieren automatisch solche Modelle und erzeugen
daraus abstrakte Testfälle. Um Verwundbarkeiten in realen Web Applikationen zu finden
und damit das Abstraktionniveau zu überbrücken, verwenden wir Web Browser und Pene-
trationtests. Anhand von verschiedenen Web Applikationen zeigen wir, dass nicht-triviale
XSS und SQL Verwundbarkeiten mithilfe unseres Ansatzes gefunden werden, die andere
Tools oft nicht gefunden haben. Die Effizienz evaluieren wir anhand syntaktischer und
semantischer Mutationsoperatoren auf einfacher und höhere Stufe.

ix

Contents

Acknowledgements v

Abstract vii

1. Introduction and Motivation 1
1.1. Testing Web Applications . 1

1.1.1. Aiming for Automation . 3
1.1.2. Benefits of a Model-based Approach 4
1.1.3. Good Test Cases . 5
1.1.4. Gap Between Abstract Traces and Executable Test Cases 7

1.2. Problem Statement . 7
1.3. Purpose of this Ph.D Thesis . 8
1.4. Hypothesis . 10
1.5. Solution . 10
1.6. Contribution . 12
1.7. Thesis Organization . 13

2. Semi-Automatic Security Testing of Web Applications with Fault Models and
Properties 15
2.1. Terminology . 15
2.2. Overview of the SPaCiTE Workflow . 19
2.3. SPaCiTE-Conform Behavioral Descriptions 21

2.3.1. Considered Abstraction Level . 21
2.3.2. ASLan++ in 5 Minutes . 24
2.3.3. Guidelines for Modeling SPaCiTE-Conform Models of Web Applications 25

2.4. Security Properties . 32
2.4.1. General Highlevel Security Properties 32
2.4.2. Technical Security Properties . 33

2.5. Mutate Models . 36
2.6. Mutation Operators . 37

2.6.1. Semantic Mutation Operators: Concept and Example Model 39
2.6.2. SQL Vulnerabilities and Their Semantic Mutation Operators 43
2.6.3. Cross-site Scripting (XSS) Vulnerabilities and Their Semantic Muta-

tion Operators . 61
2.6.4. General Mutation Operators . 68
2.6.5. Basic Operations . 73

2.7. Mapping Abstract Attack Traces (AATs) to Operational Test Cases 75
2.7.1. Web Application Abstract Language (WAAL) 76
2.7.2. Mapping From Abstract Model Level to Browser Level 81

xi

Contents

2.7.3. Mapping from WAAL to Executable Source Code 86
2.7.4. Test Execution Engine (TEE) . 88

3. Tool Support 95
3.1. Installing and Configuring SPaCiTE . 96
3.2. Creating a SPaCiTE Project . 97
3.3. Modeling the Web Application . 99
3.4. Model Checking the Formal Specification . 100
3.5. Binding the Model to a WAAL Mapping . 100
3.6. Selecting Mutation Operators . 102
3.7. Model Checking All Mutated Specifications 103
3.8. Selenium Grid Hub . 103
3.9. Turning AAT Operational and Execution of Attack Traces 106

4. Evaluation 107
4.1. Strategy and Metrics for the Evaluation . 107
4.2. Vulnerable Web Applications . 111

4.2.1. WebGoat . 112
4.2.2. Wackopicko . 113
4.2.3. Bank Application . 115

4.3. Black-Box Vulnerability Scanners . 116
4.4. Effectiveness Evaluation . 118

4.4.1. Semantic Mutation Operators on WebGoat 119
4.4.2. Semantic Mutation Operators on Wackopicko 129
4.4.3. Semantic Mutation Operators on Bank Application 136
4.4.4. Effectiveness Conclusion . 141

4.5. Efficiency Evaluation . 142
4.5.1. Syntactic Mutation Operators . 142
4.5.2. Efficiency Conclusion . 146

5. Discussion and Future Work 149
5.1. Syntactic vs. Semantic Mutation Operators 149
5.2. Comparison of Higher-Order Semantic Mutation Operator and Higher-Order

Syntactic Mutation Operator . 150
5.3. Comparison of First-order Syntactic Mutation Operator to First-order Semantic

Mutation Operator . 152
5.4. Comparison of First-Order Semantic Mutation Operator to Higher-Order

Semantic Mutation Operator . 153
5.5. Operationalizing AATs from Syntactic Mutation Operators 154
5.6. Effectiveness and Efficiency . 156
5.7. Multiple Malicious Input Parameters . 161
5.8. Syntactically Different But Semantically Equivalent AATs 162
5.9. Penetration Tester vs. SPaCiTE User . 163
5.10.Structural Coverage Criteria . 163
5.11.Vulnerabilities that Require Authentication and Sophisticated Front End Tech-

nologies . 163

xii

Contents

5.12.Vulnerability Injection vs. Attack Injection 164
5.13.Destructiveness of Attacks . 165
5.14.Scalability . 165
5.15.Discussion on Future Larger Scale Evaluation Set-up 165
5.16.Conclusion . 167

6. Related Work 169
6.1. Papers With The Same Goal . 173
6.2. Papers about Model-Based Security Testing 176
6.3. Papers in the Context of Property- and Fault-based Test Selection 179

7. Conclusion 183

A. A Taxonomy and Systematic Classification for Model-Based Security Testing189
A.1. Existing Classifications . 189

A.1.1. Existing Classifications for Model-based Testing (MBT) 190
A.1.2. Existing Classifications for Security Testing 191
A.1.3. Existing Classifications for Model-based Security Testing (MBST) . . 192

A.2. Classification Criteria for Model-Based Security Testing 193
A.2.1. Filter Criteria . 193
A.2.2. Evidence Criteria . 196

A.3. Systematic Selection and Classification of Publications on MBST 197
A.3.1. Paper Selection . 198
A.3.2. Paper Classification . 199
A.3.3. Threat of Validity . 199

A.4. Results of the MBST Classification . 201
A.5. Discussion of the Results . 203
A.6. Conclusion . 207

B. MBST Classification 209
B.1. Abbreviations for Filter and Evidence Criteria 209
B.2. MBST Classification . 209

C. Syntax Definitions 215
C.1. Grammar WAAL Mapping . 215

D. WAAL Mappings 223
D.1. WAAL Mapping for WebGoat . 223
D.2. WAAL Mapping for Wackopicko . 227
D.3. WAAL Mapping for Bank Application . 233

E. Makefiles 239
E.1. Makefile for Selenium Grid Hub . 239
E.2. Makefile for Selenium Grid Node . 239

Bibliography 241

xiii

1. Introduction and Motivation

1.1. Testing Web Applications

Modern IT systems are very often a composition of several subsystems that handle sensitive
data. A successful attack executed on such systems may have severe consequences and
therefore, such attacks have to be addressed by appropriate means. Such systems need to be
tested before using them in a productive environment. This is not only true functional wise,
but also security wise. Functional testing is focused on verifying whether the application
behavior corresponds to the described functionality in the requirement documents. It is
often restricted to those input values that are part of the description. The System Under
Validation (SUV) is tested whether the behavior corresponds to the behavioral description
for the specified input values. What functional testing does usually not cover is testing the
SUV for input values that are not specified in the description. In most of the cases the set
of non-specified input values is infinitely large and not all values can be tested. It gets even
worse. Even not all values that are specified in the behavioral description can be tested due
to restricted resources.

The purpose of security testing is primarily the task to test the system for harmful addi-
tional behavior not directly specified in the web application description [183]. Security test-
ing is about validating given security properties against an implementation or an abstraction
of a software product. It is about generating test cases that try to drive the SUV into a state
where security related properties are violated. Typical security properties are confidential-
ity, integrity, availability, authentication, authorization, non-repudiation, robustness, safety,
or trust, but also technical goals like No Cross-site Scripting (XSS) / No Structured Query
Language (SQL) attacks. E.g., a security test tries to get access to sensitive data without a
proper authentication beforehand. Another example is executing additional functionality
that is not foreseen by the web application. If a functionality to store data in a database
can be misused to delete data, it is a task of security testing to identify such problems.
Such security properties can be classified into functional and non-functional properties. Al-
though security testing functional properties is already challenging, testing non-functional
properties is intrinsically hard because it is not only focused on functional testing of security
mechanism, but affects all execution traces of the system.

Web applications in particular are a popular attack target because they are usually avail-
able on the Internet and everyone with access to the Internet can reach these applications.
There is no physical access nor an own installation of the web application needed but the
web application can be attacked from anywhere in the world. This has an enormous con-
sequence when a web developer is designing and implementing security mechanisms since
the number of potential attackers and corresponding attacks is enormous. Writing cor-
rect and secure web application is very challenging and difficult. Scott and Sharp [190]
state, although a little bit provocative, that if we consider a web application connected to a
database, the application will always be vulnerable.

1

1. Introduction and Motivation

The problem of insecure web applications is not only a theoretical threat but a very
practical one [228]. Searching the Internet for reports about successful attacks on web
applications, one immediately gets a massive list of articles, reports, descriptions and the
like. E.g., the CERT Division at Carnegie Mellon University [2] reports a massive increase
of reported vulnerabilities between the year 2000 and 2005 by 450%. Another such report
that reports similar numbers is ‘The Imperva Web Application Attack Report 2013’ [13],
which we briefly discuss now.

The Imperva Web Application Attack Report 2013

Web application security is a huge and important area and attacks are present every
day. To get a feeling about the seriousness and wideness of web application attacks,
the Imperva Web Application Attack Report 2013 [13] provides impressive numbers
and statistics. The study reports about 70 observed web applications during six months.
The authors overall conclude that those web applications on average got attacked on
12 days during the observation period. A web application is under attack at a specific
day, if at least one attack happens at that day. In other words, each web application
got attacked every 15th day on average. Of particular interest is the web application,
among the observed ones, that was attacked the most. This web application was under
attack on 176 out of 180 days. The report also evaluated how long a typical web
application attack lasts. While the average attack duration is around 5 minutes, the
longest attack lasted 935 minutes, or 15 hours.

In addition, the report further analyses the type of attacks that occurred on the ob-
served web applications. The four most occurring attacks were SQL Injection, Directory
Traversal, Cross-Site Scripting, and HTTP Violations. They report that a web applica-
tion was attacked via an SQL injection about 10 times on average during the 6 month
period, with a maximum of 207 attacks. Directory traversal attacks were observed
on average 7 times (max=193) and cross-site scripting on average 7 times as well
(max=85). Finally, HTTP violations were observed 11 times on average (max=2898).

The survey described in [42] used a dataset of 15000+ web applications in pro-
duction and pre-production distributed over 650+ organizations, taking a variety of
brands and industries into account. The authors report on the most common vulnera-
bilities in web applications in the year 2012. From their survey they report that 86% of
all the websites that they surveyed were vulnerable to at least one attack. 55% of the
observed web applications suffer from information leakage, where Cross-site scripting
was present in 53% of the web applications. Interestingly, SQL injection was reported
in 7% of the web applications ‘only’. It is important to note that these probabilities refer
to the presence of the vulnerability and not their exploitation. Furthermore, the report
uses the term ‘Information leakage’ as a so called catch-all term. It refers to attacks that
steal sensitive data in any way.

The consequences of insecure web applications are of different nature. Starting from
loss of service where the application is responding very slowly or even not available
anymore (called Denial of Service Attacks), to identity theft where an attacker operates
in the name of someone else. An attack can also lead to a website infection such

2

1.1. Testing Web Applications

that the exploit of a vulnerability gets distributed to other web applications or client
machines. Typical vulnerabilities that lead to the afore-mentioned attacks result from
non-intentional information disclosure, predictable resource location, and missing or
inefficient authorization and access control.

After getting an impression of the seriousness of the attack situation, the necessity of
effective and preventive security mechanisms is a logical conclusion. Due to the complex
interplay of operating systems, servers, development frameworks, and web application soft-
ware, a variety of testing approaches exists together with corresponding attacker scenarios.
Such testing approaches differ in the artifact under test and the attacker model. Therefore,
web servers, development frameworks, protocols, and web applications themselves can be
tested. As an example, Guo et al. [114] describe vulnerability assessment systems that
work at the network level. They are focused on the communication channel between the
client side browser and the server side web application. In the context of security testing,
‘the’ correct artifact to be tested does not exist. The choice of the considered software and
hardware stack layer highly depends on the kind of vulnerabilities to be tested. E.g., there
are many types of exploits that cannot be prevented at the network layer by using firewalls
or intrusion detection systems. It is probably better to test for vulnerabilities dedicated to
the Domain Name System (DNS) at the protocol level. At the same time, vulnerabilities
according to XSS and SQL injections are very hard to impossible to be tested at protocol
level and are better addressed at the application level. Therefore, the sets of vulnerabilities
to be tested at specific layers differ.

In this thesis, we focus on an integral view of the web application and consider the web
application infrastructure as a whole. We consider an arbitrary person with criminal energy
somewhere in the world with the intension to attack the web application and its correspond-
ing data. The set of considered attackers does not only include external unknown people or
invited partners that collaborate together via the web application, but also internal people
of an organization that use the web application on the Intranet. The set of attackers consists
of all those people that have access to the web application over a network. The intension
of these attackers can be of any sort — ranging from criminal and organized activities to
bored individuals who attack a web application out of curiosity. Therefore, we assume that
the attacker and the web application and its infrastructure are physically separated from
the attacker so that no physical intervention or manipulation is possible. This also includes
network devices that are involved in the connection between the client side browser and
server side web application.

In the following subsections we want to target important issues when it comes to testing
web applications. We briefly motivate, why automation is desired (Section 1.1.1), why
we consider a model-based approach (Section 1.1.2), motivate the concept of a ‘good’ test
case (Section 1.1.3) and the necessity to make Abstract Attack Trace (AAT) operational
(Section 1.1.4).

1.1.1. Aiming for Automation

As in many other domains, automation is often very desirable and simplifies life. The same
is true for testing web applications against security properties. There exists several degrees

3

1. Introduction and Motivation

of automation of a testing approach. A testing approach can be categorized according to
three non-exclusive categories:

• Traditionally, the security of a web application is assessed by a penetration tester. This
concept was introduced by Farmer and Venema [101] where the authors proposed to
test a system from the viewpoint of an attacker [101, 223]. The penetration tester is
an expert that tries to break security assets based on his experience. A penetration
tester tries out things that he is aware of but does not test for vulnerabilities, that he
does not know. He injects vulnerability related malicious payloads into the SUV and
observes the response of the SUV. To build the verdict (justify whether the vulner-
ability is present) the penetration tester requires the knowledge of both the desired
and non-desired behavior. Finally, this approach is manual and automation is barely
involved.

Although manual penetration testing is very popular and widely used, it has several
disadvantages and is difficult to perform because of the following aspects:

– The overall success of penetration testing very much depends on the test ex-
pert and his knowledge. In particular, test cases are created ad-hoc instead of a
systematic way.

– Since penetration testing is not model-based, the tester must have a mental
model of the properties, security mechanisms, attacks, and the environments
of the system to be tested. Compared to a model-based approach, they never
have to be written down and documented.

– Not having an explicit specification leads very often to unstructured, not repro-
ducible test case generation. As a consequence detailed rationales for the test
design is missing.

– The tester needs to think like an attacker [158].

• A step towards automation is to manually create the test cases but store them in an
executable format. This allows a Security Analyst to repeatedly execute the test cases
and reduce manual intervention in the execution phase. Still these test cases are often
created in a non-systematic way and depend on the expertise of the Security Analyst.

• Still improving the degree of automation, not only the test execution, but the test gen-
eration procedure is automated. This has the big advantage compared to a manual
approach, that test cases are generated in a systematic way. Furthermore, the exper-
tise on which test cases are generated is structured and preserved in test generation
tools or reusable knowledge libraries that are provided by experts in the field.

1.1.2. Benefits of a Model-based Approach

When test cases are generated automatically, the test generation procedure needs input
artifacts from which test cases are generated. Such artifacts can be source code or any
abstract model of the SUV. Following a manual testing approach based on the experience
of the Security Analyst, test cases are very often created from an informal model that the
Security Analyst has in his mind. In contrast, an automatic test generation approach is based

4

1.1. Testing Web Applications

on an explicit formal model. In this Ph.D thesis, the test generation and execution approach
is a model-based approach based on formal ASLan++1 [218] models that describe the web
applications. One big advantage of using a model-based approach to generate test cases is
the availability of an oracle. Especially in the context of automatic reasoning technologies
like model checking, the tools reports a trace of the behavioral description that violates
a specified property. Following the trace leads to a state that is usually interpreted as
oracle. Therefore, the oracle does not need to be explicitly specified, but is automatically
encapsulated in the security property.

1.1.3. Good Test Cases

Considering a formal behavioral description of the SUV, a model based approach proposes
a strategy to generate a set of test cases out of the formal description. To reason whether
such a proposed strategy makes sense, we need a definition of a ‘good’ test case. In testing,
it is a challenge to select an adequate test suite for a given test purpose. The corresponding
interesting research question is how ‘good’ test suites can be generated. Before any test
generation approach can be proposed, we need to define the concept of a ‘good’ test case.
As an inspiration, we start with the definition of ‘testing‘ in the book ‘The art of software
testing‘ [168], that states: Testing is the process of executing a program with the intent of
finding errors. Pretschner [174] refines the definition as follows:

Definition 1. A good test case is a test case that reveals potential defectsa with good cost-
effectiveness.

aA defect can be a failure, an error or a fault. Detailed definitions of these terms are provided in Section 2.1.

To generate ‘good’ test cases that reveal vulnerabilities using a model-based approach,
different strategies can be applied. Literature very often proposes structural coverage cri-
teria as a strategy for generating test cases out of a formal specification. They are widely
used although valid criticism exists. Coverage is defined over a set of artifacts which are
identified by structural characteristics. Such artifacts in a state transition system can e.g.,
be nodes and edges, artifacts in source code are e.g. lines of code, branch conditions, and so
on. For illustrative purposes, let’s consider a web application and represent this application
as a state transition system, as shown in Figure 1.1. A structural coverage based approach
over nodes generates a test suite so that every node is covered. Similar, a structural cov-
erage based approach over edges generates test suites, so that every edge is contained in
at least one test case. Therefore, an edge-based strategy with the requirement that every
edge has to be covered at least once, would generate four different test cases as shown in
Figure 1.1#b.

In terms of security testing, test suites generated based on structural coverage criteria
are not necessarily ‘good’ test suites, since we are not primarily interested in the nodes and
edges per se. We are more interested in known vulnerabilities and the elements of the
specification, that are affected by them. Furthermore, structural criteria based approaches
traditionally require that the corresponding artifact is covered according to a pre-defined
finite criterion. E.g., statement coverage requires that every statement s is executed at least

1A formal security specification language for distributed systems.

5

1. Introduction and Motivation

0

6

1

3

5

8

9

2

7

4

State-Transition System

0

6

1

3

5

8

9

2

7

4

State-Transition System

0

6

1

3

5

8

9

2

7

4

State-Transition System

Testcase 1: 0 - 1
Testcase 2: 0 - 2 - 4 - 5
Testcase 3: 0 - 2 - 6 - 7 - 8
Testcase 4: 0 - 3 - 8 - 6 - 9

Testcase B: 0 - 3 - 8 - 6 - 9

SQL free Action

SQL statement involved

Model

Testing with Edge
Coverage Criteria

Security Testing with
Fault-Models and

Properties

store user provided data

display user provided data

Start Webpage

Action in the
Web application

Testcase A1: 0 - 1
Testcase A2: 0 - 3 - 8 - 6

0

6

1

3

5

8

9

2

7

4

State-Transition System

0

6

1

3

5

8

9

2

7

4

State-Transition System

a) b) c)

d) e)

Figure 1.1.: Why Structural Coverage Criteria Are Bad

once per test suite, branch coverage requires that every condition c is at least evaluated to
true and false during the execution of the test suite. Although Martin and Xie [154] show
that structural coverage correlates with faults, the correlation is not strong enough and
(security) testing should consider other criteria as well. E.g., while traditional functional
testing aims for the coverage of a statement s with ‘well-defined’ values, security testing
is the evaluation, whether input parameters for a method can be passed to the web ap-
plication, that statement s is executed and triggers a vulnerability. Following a traditional
structural coverage based test generation approach, generated test cases would have to
be combined with all possible vulnerabilities. To discover all possible vulnerabilities, one
would need to try all possible improper behaviors at every interaction point in each test
case. Since already traditional testing suffers from the problem of too big test suites, build-
ing the cross product of the same test suites with well-known vulnerabilities is not clever.
Therefore, we argue that traditional structural coverage criteria are not sufficient and will
not generate ‘good’ test suites.

6

1.2. Problem Statement

In terms of our example, let’s assume that every edge with two filled arrows represents
an action where SQL queries are involved (Figure 1.1#c). Intuitively, if the Security Ana-
lyst tests for SQL vulnerabilities, test cases that do not contain at least one edge with SQL
semantics do not make sense to be generated. To cover all SQL queries, two test cases
(Figure 1.1#d) are sufficient. As another example, test cases for stored XSS attacks should
include edges with the semantics of storing and displaying the same data. In Figure 1.1
the abstract test case B is sufficient. Therefore, we believe that structural coverage crite-
ria should be substituted with criteria based on semantics to generate ‘good’ test cases as
defined above.

1.1.4. Gap Between Abstract Traces and Executable Test Cases

A model-based approach with abstract models as input for a test generation approach has
the disadvantage that the abstraction gap between the formal specification and the SUV has
to be bridged. Verification tools that operate at the model level report counter examples
(negative test cases) at the same abstraction level as the input model. Such AATs cannot
automatically be executed on the SUV. Nevertheless, the executability of abstract AATs is
crucial and important since abstract security issues found at the model level do not imply
a security issue at the implementation level. Bridging this gap between an AAT and an
operational test case is still an open issue.

1.2. Problem Statement

Security testing is a crucial task and required for every successful web application. There-
fore, Security Analysts need effective and efficient approaches for generating security-
interesting test cases for vulnerabilities dedicated for web applications. On the one hand,
penetration testing is considered as the state-of-the-art security testing approach. It is a
manual task and highly depends on the expertise of the Security Analyst. Good penetration
testers often successfully find non-trivial vulnerabilities. On the other hand, there are many
automatic black-box vulnerability scanners that are push-button tools. They find simple
vulnerabilities but often fail finding more sophisticated and non-trivial vulnerabilities.

At the same time, model-based development is an emerging technology that is promising
in many areas. E.g., model-based approaches together with fault-injections for test case gen-
eration are daily used in hardware industry. Holling et al. [122] use fault-models together
with Simulink models. Pretschner et al. [175] propose model-based testing approaches for
access control models, Martin and Xie [154] perform mutation testing for access control
models, and Dadeau et al. [86] apply mutation-based testing for security protocols.

What has not been considered so far is the combination of model-based verification ap-
proaches with penetration testing techniques applied in the context of web applications.
In particular, there is a gap in considering model-based approaches together with fault in-
jections and security properties for web applications. In this Ph.D thesis, we address the
problem to what extent models can be used for efficiently generating security-interesting
test cases for web applications vulnerabilities. In particular, this is not trivial if the model
can be considered correct with respect to security properties. To use verification techniques
for test case generation on these correct models, faults can be injected. This can be achieved

7

1. Introduction and Motivation

by using different types of mutation operators that represent different fault models. They
either are motivated by the syntax of the model (called Syntactic Mutation Operators) or
by its semantics (called Semantic Mutation Operators). Therefore, we elaborate on the
consequences when using different types of mutation operators. The consequences will be
considered both from a practical, as well as from a scientific point of view.

Along with considering a model-based approach, the challenge of bridging the abstraction
gap is still an open issue. While Appelt et al. [59] already use an existing test suite and
therefore start from executable test cases right from the beginning, Armando et al. [60]
consider models at the protocol level and map abstract protocol messages to concrete ones.
While the first approach assumes existing test cases, the latter one requires protocol level
knowledge. Other approaches (like e.g., Dadeau et al. [86]) do not instantiate AATs. In
this Ph.D thesis we hence also want to address the problem of automating the process of
mapping abstract test cases to executable test cases without protocol level knowledge and
manual API-level coding tasks.

To address these problems and evaluate the solution, this Ph.D has the following highlevel
purposes that are refined in the following section:

1. Generate test cases for interesting, important, and non-trivial vulnerabilities in web
applications.

2. Addressing the gap between abstract test cases, generated from the abstract model,
and operationalized test cases that can be executed on the SUV.

3. Comparing the effectiveness and the efficiency of generating and operationalizing test
cases generated by different fault models.

4. Supporting the Security Analyst with a complete tool chain starting from behavioral
formal specifications and ending with executed test cases on the SUV for web appli-
cations.

1.3. Purpose of this Ph.D Thesis

This Ph.D has six major purposes.

• The first purpose of this Ph.D thesis is to generate test cases for interesting, impor-
tant, and non-trivial vulnerabilities in web applications. The Imperva Web Application
Attack Report 2013 [13] lists XSS and SQL injection vulnerabilities among the four
most occurring attacks. Furthermore these two kinds of attacks are also included in
the OWASP top 10 vulnerabilities [21]. Doupé et al. [92] demonstrate that automatic
vulnerability scanners often fail to discover non-trivial XSS and SQL vulnerabilities.

• The second purpose of this Ph.D thesis is to generate test cases based on assets and
their properties, rather than on specific functional security mechanisms. We motivate
that as follows: To protect security properties of a (web) application, there are always
security mechanisms involved. E.g., (i) Anti-virus scanners are implemented against
virus injections. To be up to date, they download the newest virus-signature database
every hour. (ii) Address Space Layout Randomization (ASLR) is a mechanisms against

8

1.3. Purpose of this Ph.D Thesis

buffer overflows. They randomly distribute the key data areas of a process (like the
stack, heap, libraries) in the memory to reduce the predictability of the addresses of
those areas. (iii) Access control mechanisms intercept requests and decide, whether a
request has to be granted and rejected respectively according to a policy to prevent
un-authorized access to confidential data. (iv) Firewalls control ports of a system to
prevent malicious data entering the system, or that intruders can access confidential
data. Firewalls restrict packages sent / received via these ports based on IP, proto-
col, application information, etc. (v) Intrusion Detection System (IDS) system analyze
network traffic and log files to detect unexpected events like break-in attempts.

When functional security testing is performed, mechanisms like the above mentioned
ones are tested whether the mechanism behaves as they should. Nevertheless such
mechanisms do not have a self-purpose. In most of the cases, it is irrelevant if a
security mechanism A or B is implemented. What matters is the purpose of these
security mechanisms. Therefore, a specific mechanisms is not added because it is ex-
plicitly desired by the product owner but because its purpose is to protect a higher
level property. A security mechanism is in place, because the developer considers the
mechanism as effective in protecting the property. More important than the mecha-
nism itself are the assets with their properties. Therefore, the second purpose of this
Ph.D thesis is to focus on assets and their properties, rather than on specific functional
security mechanisms. Although a security mechanism is always in place when a prop-
erty of an asset has to be protected, the security mechanism is not always dedicated
to one specific component in the application. Especially in the context of web appli-
cations, sanitization of user-provided input is very likely to be distributed over the
whole code basis. In contrast to a dedicated security mechanism, having it distributed
makes testing much harder. Furthermore, there is no evidence that the correct be-
havior of a specific security mechanism indeed effectively protects the property of an
asset. In a complex system, there is the risk that the security mechanism can be com-
pletely bypassed and the property of an asset can be violated following a completely
different trace of the application that is not covered by the security mechanism. In
such a situation, being focused on the functionality of a specific security mechanism
would not be effective.

• The third purpose of this Ph.D thesis is to address the usefulness of models of web ap-
plications for test case generation. We assume that such models exist and therefore,
we want to increase the benefit of model-based development approaches. Assets and
their properties are given in form of a formal specification. Considering such specifi-
cations in the domain of a model-based approach using model-checkers for test case
generation, the required input model can be classified into two categories. Either a
model-checker reports a security issue for such an input model, or it cannot identify
any issues. While an initially already ‘vulnerable’ model can directly be used for test
case generation, a model without initial security issues cannot. Therefore, the third
purpose of this Ph.D thesis is to address the usefulness of models without security
issues by proposing an approach to make use of such models for test case generation
for web applications nevertheless.

9

1. Introduction and Motivation

• The fourth purpose is an approach based on the knowledge of a web application
end user to address the gap between abstract test cases, generated from models, and
operationalized test cases that can be executed on the SUV. Due to the fact that the
abstraction lacks important information of the SUV the Security Analyst is asked to
provide a mapping to bridge the gap. How to bridge this gap is still an open issue.

• The fifth purpose is demonstrating one possibility how to meaningfully evaluate such
security testing approach. Especially in the academic world, the evaluation is an
important aspect that is very difficult and often an open issue how to do.

• Finally, this Ph.D thesis aims for tool support beyond a prototype implementation
that implements the conceptual workflow. The sixth purpose is to automate as much
as possible and to provide tutorials for those tasks that the Security Analyst has to
perform manually.

1.4. Hypothesis

A ‘security-interesting’ test case is a test case that reveals known potential vulnerabilities to
violate a security property with good cost-effectiveness. In this context, our hypothesis is:

In a model-based context, non-trivial security vulnerabilities for web applications can
be found with mutation operators and fault injections.

Mutation operators can inject faults according to different fault-models. Different kinds
of mutation operators perform differently in terms of effectiveness and efficiency due to
the level of automation and the requirement of manual tasks. While Syntactic Mutation
Operators are fully automatic, Semantic Mutation Operators operate on manually provided
semantic annotations. As a sub-hypothesis, we claim:

Using Semantic Mutation Operators is more efficient than using Syntactic Mutation
Operators.

1.5. Solution

The proposed solution for the problem formulated in Section 1.2 consists of the following:

• To generate interesting test cases for web applications where the assets and their prop-
erties are in the focus, we provide a comprehensive methodology, starting from formal
specification written in ASLan++ and ending at executable test cases. The methodol-
ogy is based on fault-models and security properties instead of specific security mech-
anisms. In correspondence with the purposes of this Ph.D thesis, the fault-models are

10

1.5. Solution

dedicated to XSS and SQL vulnerabilities. Nevertheless the proposed methodology is
not restricted to these two domains. We believe that the whole methodology is more
general and can be instantiated and applied to other fault-models as well.

• To achieve a comprehensive methodology, we provide a combination of formal veri-
fication and penetration testing for web applications because automatic penetration
tools are very effective in finding simple (reflected) vulnerabilities, but often fail with
more complex, multi-step vulnerabilities. At the same time, formal verification ap-
plied to an abstract specification of the web application can find AATs for non-trivial
security vulnerabilities. Penetration testing techniques are then applied during the
execution of operationalized test cases.

• If models are used for test case generation, the literature very often proposes struc-
tural coverage criteria either to generate a test suite or to evaluate the quality of an
existing test suite. Depending on the kind of model and the purpose of testing, there
is often no evidence whether such coverage criteria are a ‘good’ test selection criteria.
Furthermore, Martin and Xie [154] claim a weak correlation only between structural
criteria and faults. Therefore, in this Ph.D thesis, we provide a set of (higher-order)
Semantic Mutation Operators to generate interesting test cases from correct formal
specifications. They are initially not useful for test case generation because they are
correct and every trace fulfills the specified security properties. Semantic Mutation
Operators in contrast to structural criteria, generate test cases due to the semantics
of the considered model and the exploitation of the injected vulnerabilities. Such test
cases are not based on purely structural criteria.

• Considering a behavioral model, our proposed methodology in addition mitigates
weaknesses that Doupé et al. [92] claim for automatic vulnerability scanners. They
demonstrate that future research is needed for an effective web application vulnera-
bility detection since automatic vulnerability scanners miss many (8 out of 16) crucial
and well-known web vulnerabilities. In particular the paper concludes that a ‘deep’
reach into the application’s resources is crucial. We provide a mutation-based ap-
proach to combine correct formal specifications with injected vulnerabilities at the
model level, and penetration testing.

• To closing the gap between abstract test cases, generated from the model, and op-
erationalized test cases, we propose a two step mapping to bridge the level of ab-
straction between AATs and test cases that can be executed on a SUV. The mapping
is supported by an intermediate language called Web Application Abstract Language.
This language allows to instantiate AATs with the help of the browser and testing
frameworks like Selenium [26]. Furthermore, a given Web Application Abstract Lan-
guage (WAAL) mapping for a formal specification can automatically be applied to any
AAT generated from this specification. Besides the fact that this language simplifies
the instantiation of AATs, this way of addressing the gap also contributes to handle
complex and state-of-the-art web applications. Such application often make use of
sophisticated client-side techniques like Flash, Frames, and Javascript. Doupé et al.
[92] state that automatic security scanners often fail to handle them.

11

1. Introduction and Motivation

• This Ph.D thus does not only conceptually contribute to the identified issues, but pro-
vides a practical tool called SPaCiTE that supports the Security Analyst during model-
ing the web application and the generation of executable test cases in a comprehen-
sive and systematic way. Test case generation, their execution and maintenance is a
tedious task which has to be automated as much as possible. Therefore, the tool de-
velopment goes far beyond a prototype implementation, and substantial parts of the
contribution consists of technical work. We provide an update site for the Eclipse plat-
form to effortlessly integrate SPaCiTE into Eclipse, an Eclipse wizard to automatically
create and configure a SPaCiTE project, a modern IDE with code completing, code
templates, syntax highlighting, quick fixes, etc., an automatic generation of an initial
skeleton dedicated to the current formal specification, a dynamic loading procedure
to integrate and apply mutation operators to a formal ASLan++ specification, and
an automatic procedure to apply the WAAL mapping to AATs and to generate TestNG
test cases written in Java.

1.6. Contribution

We see the contribution of this Ph.D thesis as follows:

• A comprehensive and semi-automatic methodology to use correct formal specifica-
tions with security properties and fault injections to generate security-interesting test
cases for web applications. By combining formal verification techniques with pene-
tration testing, non-trivial web application vulnerabilities can be found, if present, by
executing the above generated test cases on a SUV. This contributes to the gap that
automatic vulnerability scanners often miss non-trivial vulnerabilities and penetration
testing is rarely automated.

• A set of Syntactic and Semantic Mutation Operators to mutate ASLan++ models that
allow the use of correct formal specifications for test case generation. This addresses
the gap of automatically generating test cases from ASLan++ models for web appli-
cations, after providing annotations for Semantic Mutation Operators.

• A declarative Web Application Abstract Language to automatically instantiate all gen-
erated AATs of a given formal specification. AATs consist of free-form abstract appli-
cation-dependent messages. A WAAL mapping addresses the gap that Security Ana-
lyst often require source code API or protocol level message knowledge to instantiate
abstract test cases. Using WAAL a Security Analyst that knows how to use the web
application in the browser and does not know anything about protocol level messages
can operationalize AATs.

• A tool beyond a prototype implementation for ASLan++ that allows to semi-auto-
matically combine verification techniques and penetration testing for web applica-
tions.

• Finally, this Ph.D thesis contributes with a comparison and insights of Syntactic Mu-
tation Operators (instance of a syntax-based fault model) and Semantic Mutation
Operators for web application vulnerabilities (instance of a vulnerability-based fault
model) in terms of effectiveness and efficiency.

12

1.7. Thesis Organization

1.7. Thesis Organization

In Chapter 2 describes our semi-automatic security testing approach with fault models and
properties. We present our terminology in Section 2.1, the overall overview of the approach
in Section 2.2, discuss important components like security properties (Section 2.4), correct
and mutated models (Sections 2.3 and 2.5), mutation operators (Section 2.6) and the map-
ping of AATs to operational test cases (Section 2.7). Chapter 3 then focus on SPaCiTE, the
tool that implements the approach. We provide tutorials how SPaCiTE is installed, config-
ured and used to generate and execute test cases (Sections 3.1, 3.2 and 3.4 to 3.9). In Sec-
tion 3.3 we provide guidelines for modeling SPaCiTE-conform models of web applications.
In Chapter 4, we evaluate our approach by applying it to three different web applications.
We discuss the evaluation strategy in Section 4.1 and show the effectiveness of SPaCiTE in
Sections 4.2 to 4.4. In terms of efficiency we compare syntactic, semantic, first-order and
higher-order mutation operators in Section 4.5. We discuss the results and a future large
scale evaluation set-up in Chapter 5. Finally, Chapter 6 covers related work and Chapter 7
concludes.

Notation

In this Ph.D thesis we use the following notation.

• To refer to a specific part of a figure, we use the notation of the form Figure 1#a. It
references part a of Figure 1.

• Semantic annotations have the form %@Semantics[A,B,...] where A and B are
called semantics keywords.

• Source code listings are provided in boxes as shown in Listing 1.1. Please note the
special symbol in the caption at the right side. It contains an ‘S’ that stands for ‘source
code level’.

• Model listings are provided in boxes as shown in Listing 1.2. Please note the special
symbol in the caption at the right side. It contains an ‘M’ that stands for ‘model level’.

• Abstract Attack Trace listings are provided in boxes as shown in Listing 1.3. Please
note the special symbol in the caption at the right side. It contains the character ‘A’
that stands for ‘AAT’.

• WAAL mapping listings are provided in boxes as shown in Listing 1.4. Please note the
special symbol in the caption at the right side. It contains the character ‘W’ that stands
for ‘WAAL mapping’.

• Command line inputs listings are provided in boxes as shown in Listing 1.5. Such
listings have the characters ‘CL’ in the captions that stands for ‘Command line’.

13

1. Introduction and Motivation

Listing 1.1: Source Code Example in Java S

1 public class Test {
2 public static void main(String[] args) {...}
3 }

Listing 1.2: ASLan++ Example M

1 entity {
2 body {...}
3 }

Listing 1.3: AAT Example A

1 AAT 1: MESSAGES:
2 <tom> *->* webServer : login(username(tom),INJECT(Unknown))
3 webServer *->* <tom> : VERIFY(tom)

Listing 1.4: WAAL Mapping Example in ASLan++ W

1 SIMULATED_AGENTS { "tom", "jerry" }
2 AGENTS_CONFIGURATIONS {...}

Listing 1.5: Command Line Example CL

1 cd /tmp
2 make

14

2. Semi-Automatic Security Testing of Web
Applications with Fault Models and
Properties

Chapter 2 introduces the approach of this Ph.D thesis to semi-automatically generate and
execute security test cases on the basis of formal specification, fault models, and proper-
ties. In Section 2.1, we provide the terminology of important security related terms. Then
Section 2.2 gives an overview over the whole workflow and all the components that are
involved in the approach. This approach is implemented by a tool called SPaCiTE. Sec-
tions 2.3 to 2.7 provide more details for each component and each step of the workflow,
including a guideline for modeling SPaCiTE conform models.

2.1. Terminology

This Ph.D thesis is based on the fact that software developers make mistakes during the im-
plementation phase. Therefore, it is important to clarify first what ‘make a mistake’ means.
Unfortunately there is no standard definition of the relevant terms like ‘fault, ‘vulnerability’,
etc. In addition, experts see the concept of a vulnerability at different levels of abstractions.
In this section we provide our terminology borrowed from Pretschner [174].

Valid Specification / Requirements. A valid specification of a (web) application is a men-
tal imagination of the correct application in the perfect world. It describes what the
product owner wants, and includes behavior and security considerations. In partic-
ular, the behavior fulfills the desired security properties. It is a conceptual view of
the (web) application and does not exist in written form but only in the head of the
product owner (see Figure 2.1#a).

Behavioral Description. A behavioral description is an artifact that the developer of a
(web) application creates after communicating with the product owner. Such a de-
scription can be source code, a diagram, a specification or any other artifact produced
during the software development process. In general, a developer produces formal
and informal behavioral descriptions. In our approach, we focus on formal specifica-
tions of a web application, that consists of a model M and a set of security properties
Φ. We call such a pair ‘consistent’ if every trace of M satisfies the defined security
properties Φ (M |= Φ), otherwise ‘inconsistent’.

Correct Behavioral Description. If for a behavioral description BD, consisting of a model
M and the security properties Φ both M and Φ conform to a valid specifications, we
call the pair M and Φ a ‘correct’ specification. In particular, a correct specification
fulfills M |= Φ. No trace in M violates any of the formalized security properties in

15

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

correct
informal behavioral descriptions

incorrect

valid specification

BD

BD BD

correct
formal behavioral descriptions BD

incorrect

BD

Product Owner Product Developer

produces

Fault / Vulnerability
Fault model

communicates

Mechanism

asset

propertiesasset

propertiesasset

properties

Exploit

a)

b)

c)

d)

buggy or missing
mechanism

e)

f)

Figure 2.1.: Definition Illustration

16

2.1. Terminology

Φ. A model checker will not find an attack for an intruder (attacker) that belongs to
the considered attacker model. No specified entity in M can perform an action and
no malicious input (=malicious payload) can be provided to a method so that the
defined security properties are violated. In contrast, an ‘incorrect’ formal specifica-
tion does not match with the mental imagination of the product owner. In terms of
our considered formal (web) application specifications, either M or Φ or both do not
match with the valid specification. Please note, that an ‘incorrect’ formal specification
can be consistent or inconsistent (see Figure 2.1#b).

‘Long-Running’ Behavioral Description. This definition is pragmatic and practically mo-
tivated. A ‘long-running’ behavioral description consists of a model M and a set of
security properties Φ such that the Cl-Atse model checker [213] does not find any se-
curity property violations within a time frame of length t. Therefore, M is considered
to be ‘consistent’ to Φ with respect to t. This definition is weak since t depends on
many factors — the specific version of the model checker, available time for testing,
computation power, possible parallelism, and so on. Therefore, the definition of a
‘long-running’ behavioral description is context dependent.

Asset. An asset is a data item, an artifact that has to be protected. In the security context,
such an asset has one or multiple security properties assigned. The valid specification
determines the situations in which the security property has to hold and must not
be violated. Such a property does not necessarily need to hold at all times. As an
example, a key of a VPN software like IPSec is only accepted in a specific time frame.
While the confidentiality of the key is very important during the time when the key is
accepted, it might not be important anymore when the key is not accepted anymore
(see Figure 2.1#c).

Failure. A failure is the inability of a software system or component to perform its required
function [131, 109]. Pretschner et al. [177] defines failures as follows: ‘Failures
[. . .] are observable differences between specified and actual behaviors.’ A failure is
a characteristics of a runtime system. The system needs to be executed in order to
observe a failure.

Error. Pretschner [174] defines an error as follows. ‘An error is an incorrect internal state of
the program.’ Observing a failure always implies that an error occurred in the system.
The other direction is not true. E.g., in fault tolerant systems, errors might occur, but
due to redundant components they might not lead to a failure.

Fault. Pretschner [174] defines a fault as the textual representation of what goes wrong in
a behavioral description (see Figure 2.1#d). It is the incorrect part of a behavioral
description that needs to be replaced to get a correct description. Since faults can
occur in dead code — code that is never executed —, and because faults can be
masked by further faults, a fault does not necessarily lead to an error. On the other
hand, an error is always produced by a fault. A fault is not necessarily related to
security properties but is the cause of errors and failures in general. E.g. a fault can
be the reason why an implementation of a mathematical function does not return the
correct value, or why a sorting algorithm does not sort negative values as expected.

17

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Vulnerability. A vulnerability is a special type of fault (see Figure 2.1#d). If the fault is re-
lated to security properties, it is called a vulnerability. A vulnerability is always related
to one or more assets and their corresponding security properties. An exploitation of a
vulnerability attacks an asset by violating the associated security property. In practice,
vulnerabilities have been distinguished into three categories (see Gegick and Williams
[109]) as follows:

• Implementation bug — a vulnerability at the code level, such as buffer over-
flows, not checking return codes, and unsecured Structured Query Language
(SQL) statements [159].

• Design flaw — a vulnerability that is related to the design of the system and
can occur even if the program is well-coded. Examples of design flaws include a
lack of or incorrect auditing/logging, ordering and timing faults, and improper
authentication [159, 168]. As an example, the authors of the book ‘Software
Security: Building Security In.’ [159] mention inconsistent error handling as a
design flaw.

• Operational vulnerability — a vulnerability in the configuration, environment,
or general use of the software [93].

Since vulnerabilities are always associated with the protection of an asset, the secu-
rity relevant fault is usually correlated with a mechanism that protects the asset. A
vulnerability either means that (1) the responsible security mechanism is completely
missing, or (2) the security mechanism is in place but is implemented in a faulty way
(see Figure 2.1#e).

Mistake. Gegick and Williams [109] describe a mistake as: ‘A human action that produces
an incorrect result. Note: The fault tolerance discipline distinguishes between the
human action (a mistake), its manifestation (a hardware or software fault), the result
of the fault (a failure), [. . .]. A mistake is the human action that leads to the actual
vulnerability in the software although the vulnerability may never be exploited.’

Exploit. An exploit is a concrete malicious input that makes use of the vulnerability in
the System Under Validation (SUV) and violates the property of an asset (see Fig-
ure 2.1#f). We assume that an SUV always has at least one asset and each asset has
at least one security property. In the easiest scenario, the SUV itself is the asset with
the availability property. Since a vulnerability is not bound to one asset or one secu-
rity property, it can often be exploited in different ways. One concrete exploit selects
a specific asset and a specific property, and makes use of the vulnerability to violate
the property for the selected asset. Furthermore, usually an asset (including its prop-
erties) is not protected by one single mechanism. E.g., to attack the confidentiality of
an asset, an exploit might use an Cross-site Scripting (XSS) vulnerability to steal the
asset from the client side. Another possibility is to exploit an SQL vulnerability with a
malicious query to steal the same asset from a server-side database.

Attack. An attack is a sequence of steps, that an attacker performs on a SUV. Such an
attack always contains at least one exploit.

18

2.2. Overview of the SPaCiTE Workflow

se
e

se
ct

io
n

2.
3,

 2
.4

se
e

se
ct

io
n

2.
5,

 2
.6

se
e

se
ct

io
n

2.
7

Application-dependent
Mapping

Application-independent
Mapping

Build once and for all on the basis
of existing vulnerable implementations

1
a) SPaCiTE conform

BD

Properties
Properties

M

c) Mutant BD ’1

Φ

M’

g) Instantiation Library

BD = Behavioral Description

b) Library of Semantic
Mutation Operators

d) Attack Trace

MC

public class A() {
 def f() {…}
} SUT

h) Match?

e) Concrete stimuli

Observed Output

Intermediate test case f) Expected Output

Figure 2.2.: Overall SPaCiTE Workflow

Good Test Case. In Section 1.1.3 we already discussed the concept of a ‘good’ test case.
As a reminder, a good test case is a test case that reveals potential defects with good
cost-effectiveness. This definition is now extended by the definition of an interesting
test case.

Security-Interesting Test Case. For this Ph.D thesis, we define a security-interesting test
case as a ‘good test case’ as defined by Pretschner [174] that is related to known
vulnerabilities. An ‘interesting’ test case in the context of security testing exploits a
potential vulnerability with the goal of violating a security property.

2.2. Overview of the SPaCiTE Workflow

As already motivated in Chapter 1, we propose a semi-automatic testing approach starting
from a formal specification and end with operational test cases executed on a SUV. In this
section we give an overview of the whole approach and the involved components.

Our proposed approach is a mutation-based approach that is both vulnerability-driven
and property-driven. The starting point is a SPaCiTE-conform behavioral description which
is either a ‘correct’1 or ‘long-running’ formal specification BD1

1 of the SUV written in
ASLan++, a formal security specification language for distributed systems [218] (Fig-
ure 2.2#a). Adding ‘long-running’ formal specification to the set of SPaCiTE-conform be-
havioral descriptions is motivated by practical reasons. The assumption of having access to
a correct behavioral description of the web application to be tested is very strong and not

1 According to section 2.1

19

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

always practical in daily live. Especially for bigger web applications, useful formal specifi-
cations get so big that a model checker usually cannot decide whether M |= Φ or M ̸|= Φ
holds within a practical period of time t. Therefore, we weaken the requirements for the in-
put models suitable for our approach by also including ‘long-running’ formal specifications.
Both kind of behavioral descriptions have in common, that a model checker cannot directly
be used for test case generation since they will not generate counter examples that could
be used for test case generation (e.g., by interpreting them as negative test cases). There-
fore, one of the contribution of this Ph.D thesis is to show how such behavioral descriptions
might nevertheless be used for test case generation.

Definition 2. A SPaCiTE-conform behavioral description is either a ‘correct’ or a ‘long-running’
formal specification, written in ASLan++. A ‘correct’ model, given to a model checker, does
terminate and the model checker reports the verdict: NO ATTACK FOUND. In contrast, model-
checking a ‘long-running’ behavioral description with Cl-Atse will not lead to any security prop-
erty violation within a time frame of length t.

As defined in Section 2.1, a SPaCiTE-conform behavioral description BD consists of two
parts, a model M of the web application and a set of security properties Φ (e.g., confiden-
tiality, authentication, no XSS, no SQL injection) that the SUV has to fulfill. Furthermore,
the model M of the web application contains semantic annotations provided by the Security
Analyst to incorporate the meaning of different components of the specification. Because
the behavioral description is assumed to be ‘correct’ or ‘long-running’, a model checker will
not find, in a reasonable time period, any trace in M that could be interpreted as a test case
that violates the specified security properties (and negating the properties for correct mod-
els will yield any trace as counterexample). Therefore, SPaCiTE applies Semantic Mutation
Operators to the model M . These capture vulnerabilities commonly found in web applica-
tions and represent them at the abstract model level. The mutation operators are collected
in a library that has been built once and for all by a Security Analyst (Figure 2.2#b), un-
til new vulnerabilities are found. Nevertheless the library is easily extendable with new
vulnerabilities if needed. To generate test cases using a SPaCiTE-conform behavioral de-
scription, the mutation operators are applied to the model, resulting in several mutations
BD′, where the model M but not the set of properties Φ is mutated (Figure 2.2#c). If for
a defined property φ ∈ Φ we have that M ′ ̸|= φ, automatic reasoning technologies (e.g., a
model checker) yield a trace that violates φ in M ′ (Figure 2.2#d). In the context of web
applications, such a trace consists of abstract messages that are exchanged between differ-
ent components defined in M . The reported trace exploits a vulnerability (captured by the
applied mutation operator) that yields the violation of φ. After concretization, this trace
is a useful test case for the SUV: if the SUV is vulnerable, then the concretized trace is an
exploit, otherwise the trace increases confidence that the vulnerability is not present.

A reported Abstract Attack Trace (AAT) by a model checker is expressed at the model level
and has no direct relationship to the implementation. To verify whether the implementa-
tion suffers from the reported abstract security issue, SPaCiTE provides a semi-automatic
execution engine for executing AATs. To make AATs operational, a mapping of the AAT
to executable test cases is used. To provide such a mapping, the SUV first has to be split
into simulated and non-simulated components. This splitting in turn depends on the ap-
plied Semantic Mutation Operators. Given such a splitting of the SUV, the messages of

20

2.3. SPaCiTE-Conform Behavioral Descriptions

an abstract attack trace are partitioned into messages that are generated (concrete stimuli,
Figure 2.2#e) and messages that are verified (expected output, Figure 2.2#f).

The mapping of AATs to operational test cases consists of two sub mappings. First, the Se-
curity Analyst defines a mapping from abstract messages of the AAT to abstract actions in a
web browser expressed in the Web Application Abstract Language (WAAL) (e.g., click, insert
text). The intuition is that after performing these actions in the browser, the desired con-
crete message (e.g., HTTP message), which is represented by the abstract message, is gen-
erated or verified by the browser. Using a second mapping, the abstract WAAL actions are
mapped to executable API calls of a framework that can communicate with a real browser.
The need for concrete malicious input during the execution of abstract attack traces is ad-
dressed by an instantiation library, whose elements describe concrete attack vectors and
verification steps to check if the attack could be successfully executed (Figure 2.2#g). The
selection of instantiation library elements for an attack trace is mainly driven by the applied
Semantic Mutation Operator (e.g., if an SQL related vulnerability was injected, only SQL
related malicious inputs from the instantiation library are used). Finally, applying the map-
ping results in an executable test case that generates the stimuli messages and compares
the output from the SUV with the expected output given by the AAT (Figure 2.2#h).

In the following sections we will discuss the different components of our approach in
more details.

2.3. SPaCiTE-Conform Behavioral Descriptions

As described in Section 2.2, our approach requires a SPaCiTE-conform behavioral model.
In practice, already assuming a model in itself is a very strong assumption. It is even a
stronger assumption, if the model has to be ‘consistent’ (see Section 2.1). To support the
Security Analyst to initially come up with such SPaCiTE-conform behavioral descriptions,
we provide a modern IDE for ASLan++. Furthermore, for practical purposes, we provide
guidelines to support the Security Analyst with the modeling activity.

2.3.1. Considered Abstraction Level

[The concepts of the following paragraphs was already published in the SPaCIoS
Deliverable 2.1.2 [199]].

A SPaCiTE-conform model is an abstraction of a real implementation of the SUV. Being
an abstraction means that irrelevant aspects of the implementation are ignored and left out
of the model. Since models used by verification tools might suffer from the state explosion
problem, abstraction is very desirable. At the other side, if security-related aspects are
abstracted away, the verification tool will not check for attacks based on these missing
aspects.

Considering web applications as SUV one may consider the following two abstraction
levels (Figure 2.3). At the technical level, the client side browser communicates with the
server using protocol level messages. In the majority of the cases, these messages are HTTP
messages. Modeling a web application at this level requires that the Security Analyst is fa-
miliar with the protocol and is able to express web application behavior in terms of protocol

21

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Prope
rties

HTTP
a) b)

Browser

Figure 2.3.: Modeling Level

a)

b)

Figure 2.4.: Levels of Abstraction For Modeling Web Applications

messages. At the same time, the web application behavior can be expressed more abstractly
at a conceptual level. Doing so, the behavior is formalized in terms of abstract messages
that directly capture the logical action, neglecting the details of exchanging protocol-level
messages (Figure 2.4). Since we will focus on abstract messages rather than protocol level
messages, we show how such abstract messages may look like. Assume an example web
application that allows a user to log in and view profiles of other users. Listing 2.1 shows
the corresponding abstract messages to describe the communication between the browser
and the web application. The login message requires two parameters, a username of type
‘agent’ and a password of type ‘symmetric key’, whereas the ‘viewProfileOf’ message only
requires one parameter of type ‘agent’. Compared to modeling the same functionality at
protocol level, low level details are abstracted.

22

2.3. SPaCiTE-Conform Behavioral Descriptions

Listing 2.1: Abstract Messages in ASLan++ M

1 login(agent, symmetric_key): message;
2 viewProfileOf(agent): message;

Modeling a web application in terms of abstract messages has several advantages but
also some drawbacks with regard to modeling the same functionality at the HTTP level.
The main advantages are:

• For a Security Analyst, it is more natural and easier to express the formal specification
of the web application at the same level as he is using the web application. It better
reflects the view-point of an end-user. In particular, the Security Analyst can benefit
from the knowledge he has about how to use and navigate in the browser. In par-
ticular, the Security Analyst does not have to have knowledge about low level HTTP
messages and the like. Since protocol level messages contain a lot of low level details
like protocol flags and network related information, that are irrelevant for SQL and
XSS attacks, they can be hidden or ignored because the browser will generate these
details automatically (Figure 2.4#b). In addition, if e.g., the login functionality re-
quires the exchange of several protocol level messages, they can be combined to one
highlevel abstract message so that the modeling activities get (potentially) simpler.

• Expressing the communication between the client and the server in terms of abstract
messages is sufficient for the type of vulnerabilities that we consider in this Ph.D
thesis. XSS attacks and SQL injections are all exploited at the browser level and not
at the protocol level. Therefore, it is much easier to recognize such security issues at
the browser level, rather than on the protocol level.

• Executing actions in the browser and letting the browser be responsible for protocol
level messages has the advantage that encryption and decryption is automatically han-
dled by the browser. Furthermore, SPaCiTE can be augmented with a browser plug-in
that intercepts HTTPS requests before they are encrypted and HTTPS responses after
they are decrypted. Therefore, our approach benefits from the advantage that also
encrypted communication can be easily handled.

Besides all the advantages, the disadvantages are:

• Expressing the web application’s behavior in terms of browser actions neglects low
level protocol details. Therefore, vulnerabilities that are exploited at the protocol
level are not modeled and thus, cannot be recognized at the model level. E.g., HTTP
splitting, unless modeled, cannot be automatically detected by the model-checker.

• The disadvantage of considering the browser as the abstraction level is that the map-
ping from abstract traces to executable traces (Figure 2.3#b) gets more complicated
for the Security Analyst because potentially more information is abstracted away that
the Security Analyst has to provide again. At the same time, choosing a protocol-level
close abstraction level would make the mapping specification easier for the Security
Analyst, although specifying the behavior of the web application (Figure 2.3#a) gets
more challenging at the same time.

23

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

As Figure 2.3 shows there is no win-win situation where both the modeling and the map-
ping task gets easier and simpler. These two tasks contradict each other in the sense that
making the modeling more abstract and therefore easier, the mapping task gets more com-
plicated (Figure 2.3)#a,b). Nevertheless, in the special context of testing for XSS attacks
and SQL injections, we focus on modeling closer to the browser level rather than protocol
level. Involving the browser level, the mapping can be split into two mappings to turn AATs
operational. Applying the first mapping to an AAT expresses it in terms of abstract browser
actions (e.g., click on a button, follow a link, type text in an input field). Applying the
second mapping to abstract browser actions, these actions are mapped to a framework API
that communicates with a concrete browser. The good news is that the second mapping is
tightly bound to the framework used to automate the browser and can be reused for every
SUV. Therefore, the Security Analyst needs to care for the first mapping only.

Considering the two discussed modeling levels, we follow, for this Ph.D thesis, the ap-
proach of describing the web application’s behavior in terms of abstract messages at the
browser level. To turn reported AATs from such models operational, we ask the Security
Analyst to provide a mapping from the abstract attack trace messages to abstract actions
performed in the browser (Figure 2.4#a). This step requires that the Security Analyst knows
the web application and is able to describe abstract messages in terms of browser actions
that he performs to achieve the abstract messages. As an example, to map the message
login(username, password) to abstract browser actions, the Security Analyst needs
to describe that e.g., he first selects his username from a dropdown menu, then types his
password into the textfield, and finally clicks on the button ‘Sign in’. In contrast to a model
at the protocol level, this approach does not require that the Security Analyst is familiar
with protocol level messages. The Security Analyst can concentrate on browser actions. We
believe that this is more natural and adequate not only for the Security Analyst but for the
modeler as well.

2.3.2. ASLan++ in 5 Minutes

Since we focus on formal specification written in ASLan++, we provide in this section
a brief introduction to the ASLan++ language. This language is used as foundation for
the guidelines for modeling SPaCiTE-conform models of web applications in Section 2.3.3,
as well as for the described mutation operators in Section 2.6. Listing 2.2 illustrates an
example model which shows the following basic ASLan++ concepts2:

Symbols Section. In ASLan++ every fact, variable, constant, message, etc. needs to be
declared before it can be used. SPaCiTE provides a dedicated section for these dec-
larations as part of an entity (Lines 2 to 8). Such a section starts with the keyword
symbols and contains a non-empty list of declarations.

Variable. A variable name has to start with an upper case character and has a type. E.g.,
ProcessedText in Line 5 is a variable of type text.

Actor. This is a special variable that contains a reference to the current entity. In Line 11 it
is used as the receiver of the message echo.

2The interested reader can find a comprehensive introduction to ASLan++ in the AVANTSSAR Deliverable
2.3 [62].

24

2.3. SPaCiTE-Conform Behavioral Descriptions

Messages. Different entities can exchange messages. In Line 11 the current entity Actor
is waiting for a message echo from an entity Browser. The arrow (*→*) represents
the channel between the two entities. The two stars express that the channel has the
authentication and secrecy property.

Question-marked Variables. A variable can be extended with a question mark as shown
in Line 11. Such a variable learns the actual value during model checking. In the con-
crete example given in Listing 2.2 the Browser sends a parameter with the message
echo and the server assigns that received parameter to variable A.

Assignment. A value is assigned to a variable using the assign operator (:=). In Line 12 of
our example, the value stored in variable A is mapped to the expression process(A)
of type text and this expression is stored in the variable ProcessedText.

Facts. ASLan++ allows the introduction of facts and the evaluation to their boolean val-
ues. A fact can be set to true and false by using it as a statement, or it can be evaluated
when it is part of a condition. Once a fact is introduced (Line 13) this fact is evalu-
ated to true in any state from now on. When an earlier introduced fact is retracted
(Line 14), or the fact was not introduced so far, the fact is evaluated to false in any
state from now on.

Listing 2.2: ASLan++ Example Model M

1 entity {
2 symbols
3 Browser : agent;
4 A : text;
5 ProcessedText : text;
6 process(text) : text;
7 output(text) : fact;
8 echo(text) : message;
9 body {

10 select {
11 on(Browser *->* Actor: echo(?A): {
12 ProcessedText := process(A);
13 output(ProcessedText);
14 retract output(ProcessedText);
15 }
16 }
17 }
18 }

2.3.3. Guidelines for Modeling SPaCiTE-Conform Models of Web
Applications

Equipped with a basic knowledge about ASLan++, we describe in this section a possible
way to model web applications so that the models are useful for our approach. It is im-
portant to stress that this section presents recommendations and experiences. It is neither
complete nor does it exclude other ways of modeling. Usually, the same concept can be

25

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

modeled in different ways, and still be suitable for the SPaCiTE approach. In this section
we concentrate on the important high level aspects. Low level details and a formal intro-
duction to ASLan++ is not provided as part of this Ph.D thesis. The interested reader is
advised to read the ASLan++ tutorial [62].

2.3.3.1. Modeling Different Instances of the Same Value

As we will see later in this section when we discuss how to model the client side agent
and the server side component, we repeatedly need a way to represent several copies of
the same value. E.g., when a web application stores a value V in a database, the value
is copied and stored at two different locations at the same time (e.g., in a variable at the
web application and in the database). Due to this duplication and technical details of such
store actions, one of the values may be sanitized, whereas the other is not. Since such
sanitization properties of a value are very crucial in the context of XSS and SQL injections,
we first show a way how to model such copies of the same value before we continue with
the client and server side components.

Let’s consider a message handler that receives a user-provided value. The task of the
message handler is to store this value in a database. After this step we have two copies of
the same value. In the presence of stored XSS and SQL injection vulnerabilities, different
instance of the same value should be distinguished. Although the message handler has
sanitized the value in the message handler variable, the same value stored in the database
does not necessarily be sanitized anymore due to the way how e.g., SQL stores values in the
database. As an example, to store the character sequence admin’ in the database, the quote
needs to be escaped, which can be achieved by sanitizing the character sequence. Because
the sanitization is ‘used’ during storing the value, the stored value has ‘lost’ its sanitization.
For modeling this behavior, there exists many ways how to do so; we present one possibility.
In the models that we refer to in this Ph.D thesis, we use symbolic functions to represent
different copies of a value V of type t. We use the symbolic function to bind a value to a
random variable to make it unique. The Security Analyst introduces an expression of type
t of the form instance [t](V, text) : t where [t] is substituted by the type
t and the ‘text’ parameter is a random value. E.g., whenever a message handler receives
a username V of type username t, it expects it in the form instance username t(V,
randomValue). Such an expression can now be used to store a value V in the database by
creating a new random value for value V . Modeling copies of data values happens a lot and
therefore, SPaCiTE supports the Security Analyst with a providing a skeleton as a content
assist.

2.3.3.2. Modeling the Server Component

A web application model always consists of at least two components. The first component
represents the client side browser, called ‘client’ entity. The second component represents
the web application running on the web server, called ‘server’ entity. We start with modeling
the server component. If the modeler has used SPaCiTE to create a new modeling project,
SPaCiTE already created a skeleton with two entities. Therefore, we describe the body of
the server entity in this section. A web application is usually accessible via the HTTP(S)
protocol and provides a set of requests that it can handle. For each request, the server com-

26

2.3. SPaCiTE-Conform Behavioral Descriptions

ponent implements a corresponding message handler. The web server has no control over
the client and therefore, any request can be sent to the application at any time in any or-
der. We model this behavior using the select statement inside a while loop. The select
statement with its containing on statements is used to non-deterministically choose one of
the on statements that evaluates to true (see Listing 2.3). The while loop guarantees that
multiple such choices can be made. This way of modeling guarantees that the server compo-
nent does not enforce a specific sequence of exchanged messages. For more details, we refer
the interested reader to the following AVANTSSAR Deliverable 2.3 [62]. To demonstrate
how such a message handler is modeled, assume a user needs to login first before using the
web application. Therefore, we add the login message as an on statement to the select
statement (Line 6 in Listing 2.3). The method assumes two parameters, a username of
type username t and a password of type password t. As discussed in the previous Sec-
tion 2.3.3.1, both parameters are expected in the special form inst [t](Value,Nonce)
where Nonce represents a random value.3

Listing 2.3: Modeling Messages at the Server Component M

1 entity Server(User,Actor : agent) {
2 body {
3 while(true) {
4 select {
5 on(?User *->* Actor :
6 login(inst_usr_t(?Username,?Nonce1),inst_pwd_t(?Password,?Nonce2))
7 & inSUT(?User)
8 & !auhenticated(?User)
9 & db(inst_usr_t(?Username,?),inst_pwd_t(?Password,?))

10) : {
11 // SELECT-ON-BODY
12 }
13 }
14 }
15 }
16 }

Usually, receiving the login message is bound to some constraints. We add them to
the select-on statement (Lines 7 to 9 in Listing 2.3). As an example, the server only
accepts the login message if the user is defined in the specification (expressed with the
fact inSUT()) (Line 7), if the user is not authenticated yet (Line 8), and if the provided
username and password are stored in the database db (Line 9). The actual behavior of the
server upon successfully receiving a login message is added between brackets right after
the select-on statement (Line 11). In a message handler body, we e.g., introduce new
facts, store expressions in variables, or send a message back to the client.

2.3.3.3. Modeling a Message Handler With Sanitization

A message handler usually reads parameter values, processes them and eventually sends
back a response to the client. When it comes to security issues like XSS attacks or SQL
injections, sanitizing input data plays a crucial rule. We will discuss these two types of

3Due to space limitations, we write inst [t] instead of instance [t].

27

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

vulnerabilities in details in Section 2.6, when we introduce Semantic Mutation Operators.
For now, we only provide an intuition, why sanitization is crucial and how the Security
Analyst annotates corresponding modeling blocks with semantic keywords.

In Figure 2.5 we see different activities of a message handler. param1 is a parameter
that is used at the implementation level in a database query to read param3. To do so,
user-provided data is mixed with SQL control data. To prevent a malicious input to change
the semantics of the SQL query, the user-provided data needs to be sanitized against SQL
before using it. param2 is a user-provided input that is directly reflected in the response of
the message handler. Similar to the SQL vulnerability, if such input is mixed with HTML or
Javascript code, malicious input can change the semantics of the webpage. Therefore, the
value of this parameter must be sanitized against XSS. Finally, param3 is a value that is
first stored in the database and later read and sent back to the client. Therefore, it needs to
be sanitized against SQL so that a malicious input cannot harm the system during the SQL
query. In addition, it needs to be sanitized against XSS as well, since it is sent back to the
client. The XSS sanitization can either occur before that value is stored, or after it is read
from the database but before it is sent back. Nevertheless the latter case is more advised
since an already sanitized value in the database might be overwritten by a non-sanitized
value after being stored.

Modeling the sanitization functionality can be done in different ways since ASLan++
does not have a pre-defined language construct for sanitization. In this section we present
two different approaches:

Representing Sanitization Functionality as Facts. User-provided data is either effective-
ly sanitized against XSS or SQL or it is not. To model this decision, ASLan++ provides
facts. Facts are expressions that are evaluated to true or false. Since fact names are
arbitrary, the modeler choses one specific name that he uses for sanitization. W.l.o.g.
let’s assume that the modeler uses the facts sanitize xss() to represent a func-
tion that sanitizes against XSS. Therefore, to represent a value V of any type T that
is sanitized, the fact sanitize xss(V) is introduced. Facts in ASLan++ are global
properties. Therefore, applying the fact to value V does not have to be stored in a
variable and V can be used normally. To check, whether value V is sanitized, the fact
sanitize xss(V) is evaluated to its boolean value.

Representing Sanitization Functionality as Symbolic Functions. A different approach
is based on symbolic functions. Let’s again assume a value V of any type T . This time,
the modeler represents the sanitization functionality against XSS as a symbolic func-
tion sanitize xss of type T → T . To sanitize a value V , the symbolic function
is applied and the result is stored in a new variable (V’ := sanitize xss(V)).
To check whether a variable V ′′ is sanitized, one has to check if it is of the form
sanitize xss(?) where ? is a placeholder for any matching value.

Finally, as we have seen for param1, not every parameter that is used in a SQL query is
also stored in the database. E.g., they can also be used for a selective purpose by adding
constraints to an SQL query. Those variables are affected by SQL injections in the same
way as parameter values that are stored in the database. To enable the verification tool
used by SPaCiTE to identify vulnerabilities related to SQL, we need to track which values
were involved to store or read a data d from the database. There is no single solution for

28

2.3. SPaCiTE-Conform Behavioral Descriptions

XSS sanitization

receive message(param1, param2, param3)

SQL sanitization

SQL query

XSS sanitization

send response(param2, param3)time

Figure 2.5.: SPaCiTE: Message Handler Modeling

29

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

this. The possibility we present here is one among many. It is the one that we used for our
models. We add a fact of the form4:

Listing 2.4: Keeping Track Which Values Are Stored M

1 writtenToDB(user-provided-value1,corresponding-db-value1);

We define the semantics of the parameters of the fact writtenToDB as follows. The first
element represents the user-provided input that is used to build the SQL query to store the
second parameter in the database. E.g., if the message handler receives a username tagged
with a random value Y1 and stores the same username in the database tagged with a ran-
dom value Z1, we introduce the fact writtenToDB(inst username t(username,Y1),
inst username t(username,Z1)). For another example, assume that the username
tagged with the random value Y2 is used to identify a profile. The profile contains a counter
c of type nat (tagged with the random value Z2) that is incremented by 1. In this example,
the username is used in the query to update the counter c. Therefore, we introduce the
fact writtenToDB(inst username t(username,Y2), inst nat(c,Z2)). This ex-
plicit modeling of the dependencies of different values allows the Security Analyst to specify
effective security goals that check for SQL injections.

2.3.3.4. Propagating Sanitization to Different Instances of the Same Value

When user-provided values are stored in a database, the specific sanitization method ap-
plied to the values to be stored might be propagated to the values finally stored in the
database. To model this propagation, we apply the sanitization also to the values stored
in the database. For illustrative purposes, assume that the client has sent a value v to the
server that correctly sanitized it. After the sanitization, the server component stores the
sanitized data in the variable V which is then used for the SQL query. Let VDB refer to the
corresponding value stored in the database. Because the user-provided value is correctly
sanitized, the sanitization of V is propagated to the value VDB stored in the database as
well. Following the modeling of unique values described in Section 2.3.3.1 we need to track
that the value VDB stored in the database is a copy of the user-provided value V . This link
is provided by the semantic annotation Implicit(V) in Listing 2.5.

Listing 2.5: SPaCiTE: Implicit Sanitization M

1 %@Semantics[HTML, Sanitize, Implicit(V)]
2 sanitize_xss(VDb);

2.3.3.5. Modeling the Client Side

Compared to the server side modeling, the client side modeling is much simpler. While
the server-side entity is modeled with a while-loop and a select statement, we only model
a single trace for the client-side entity, such that every message is covered at least once.
The client behavior basically consists of sending messages to the server and receiving the

4A similar fact is used when data is read from the database.

30

2.3. SPaCiTE-Conform Behavioral Descriptions

response. In terms of XSS and SQL vulnerabilities, it is important that we introduce two
different agent instantiations. We introduce an agent that is honest and plays the role of
the client by following and respecting the specified behavior. For certain vulnerabilities, this
is too restrictive. Therefore, we also introduce an agent that is dishonest. Such an agent
can arbitrarily mix the messages and therefore, it can exploit vulnerabilities, that an honest
client would not do. To declare an honest agent jerry, it is sufficient to introduce the
constant jerry of type agent. To declare an agent tom to act dishonestly, it is important
to note that each agent has access to, among other artifacts, three private keys —inv(ak),
inv(ck) and inv(pk), where inv() is the inversion function applied to the public keys. There-
fore, we declare the agent tom like an honest agent but add the fact dishonest(tom) to
the specification and provide the agent’s three private keys inv(ak) (used for authentica-
tion), inv(ck) (used for confidentiality), and (inv(pk) (used for generic purposes) to
the intruder i (see Listing 2.6). To make knowledge available to intruder i the special fact
iknows() is used.

Listing 2.6: Declaring an Agent as Dishonest M

1 dishonest(tom) ;
2 iknows(inv(ak(tom))) ;
3 iknows(inv(ck(tom))) ;
4 iknows(inv(pk(tom))) ;

Security Goals Specification for XSS and SQL Injections

Security goals in ASLan++ are specified in the goal section of any entity (see AVANTSSAR
Deliverable 2.3 [62]). As already discussed in Section 1.1, we consider any agent with
malicious and dishonest intentions an attacker. Therefore, honest server and client entities
are considered as potential victims of an attack. Since several goals section are available to
be selected by the Security Analyst for specifying the security properties he needs to decide
for each security property where to put them.

A Security Analyst might be interested in test cases for stored XSS and stored SQL in-
jections where one or multiple agents are involved. In the latter case, a dishonest agent
injects malicious code into the application that is later in time used by the honest victim
of the attack. This includes that the security goal does not have to be violated while the
dishonest user injects the malicious payload. In ASLan++, a security goal specified as part
of an entity, that is played by a dishonest agent, is never violated. Since that allows an
attack where a dishonest client entity and a victim client entity are involved, the goals
section of the client side entity is a good candidate for a security goal that captures stored
XSS / SQL injections. The security goal specified at the client side will allow the dishonest
attacker to inject the malicious payload and allows an honest agent to be attacked. In terms
of reflected SQL and XSS injections, no interplay between a dishonest and an honest agent
is needed and such security goals are advised to be specified at an honest server entity.

31

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

2.4. Security Properties

Following a model-based approach in combination with model checkers, security proper-
ties build an essential part of the formal specification. The properties themselves are not
the central part of this Ph.D thesis, although they are needed to pursue this approach.
Therefore, we briefly discuss common security properties, that often are used in the context
of web applications. The provided list of properties are not definitions, but explanations
only. The set of security properties can be partitioned into two subsets. One subset covers
highlevel, standard security properties like confidentiality, privacy, authentication, autho-
rization, integrity, accountability, or availability. The other set of properties are closer to
vulnerabilities. We call them technical security properties. E.g., such a property might state
that all user-provided data need to be sanitized before it is processed. This applies to XSS,
as well as to SQL vulnerabilities. For completeness reasons, we first give a brief overview
of highlevel security properties in Section 2.4.1. We will see that only two out of the seven
discussed security properties are directly supported by built-in features of ASLan++. All
the others need to be expressed by the Security Analyst himself. The lack of built-in detec-
tion features in ASLan++ for XSS and SQL related attacks motivates the necessity of more
vulnerability-related security properties. Therefore, after Section 2.4.1 we then focus on
technical security properties in Section 2.4.2.

2.4.1. General Highlevel Security Properties

Highlevel security properties including their formalization in ASLan++ are discussed in de-
liverable D2.1.1 [198] of the SPaCIoS project. The purpose of the following list of properties
is to provide a brief overview of different highlevel security properties and how ASLan++
supports them.

Confidentiality is one of the most important properties and one that always gets men-
tioned first when taking about security properties. Confidentiality expresses that a
given resource is only accessible to a set of subjects known in advance. It not only
means that the resource itself has to be protected from unauthorized access, but also
the credentials that can be used to access the resource. In general, encryption is
used as a security mechanism to assure the confidentiality property. In ASLan++, the
property expresses that a protected value should not be learned by an intruder. Confi-
dentiality can be expressed with ASLan++ built-in expressions. A confidential value
can be exchanged by different agents using confidential communication channels. To
guarantee confidentiality, correct authorization is necessary, and to guarantee autho-
rization, authentication is necessary. Therefore, the three concepts are closely related
to each other.

Privacy can be considered as a special form of confidentiality with the extension that pri-
vacy also talks about data ownership. ASLan++ does not offer a built-in construct
to express privacy, but it can nevertheless be expressed. The confidentiality part of
privacy can be expressed with the built-in ASLan++ construct. The ownership aspect
can be expressed using facts (e.g., isOwnerOf(agent, text) with the seman-
tics, that the ‘text’ is owned by the specified ‘agent’). Since the fact can be introduced

32

2.4. Security Properties

multiple times, each time with different parameters, this fact can be used to express
that ‘text’ is owned by multiple ‘agents’.

Authentication is closely related to the confidentiality and authorization property. Au-
thentication is usually enforced by either a PKI mechanism or on the basis of user
names and passwords. Examples how such a property can be expressed in ASLan++
can be found in the AVANTSSAR Deliverable D2.3 [62].

Integrity claims that the data generated by an entity A is not tampered with or modified
by an intruder. Sending data to entity B, B can verify that the data was not modified
after entity A has sent it. In particular, if a dishonest agent or an intruder is able to
modify a piece of data, that is still accepted by the system, the integrity property is
violated.

Authorization is very closely related to the confidentiality property. The authorization
property can only be enforced if the authentication property is enforced correctly as
well. Authorization is in contrast to confidentiality not a built-in construct at the
model level. Therefore, the Security Analyst has to formalize this property by himself.
Therefore, von Oheimb and Mödersheim [218] present an example how authoriza-
tion can be modeled using ASLan++. The formalization makes use of horn clauses
and predicates (see AVANTSSAR Deliverable 2.3 [62]). Temporal changes can be
expressed by LTL formulas.

Accountability expresses that if an agent A performs an action, A can later not deny the
fact that he triggered the action. Accountability cannot be expressed with ASLan++
built-in constructs. It has to be ‘simulated’ by using secrecy and authentication, as
well as LTL formulas.

Availability is a liveness property and in general hard to model check. ASLan++ does not
offer built-in constructs to express this property. One could try to approximate the
liveness property by a safety property, expressing that at most x requests are issued
within a given time slot.

2.4.2. Technical Security Properties

A conclusion of the discussion of highlevel properties in the previous section is that de-
tecting XSS and SQL related security issues with models following the guidelines in Sec-
tion 2.3.3 require more vulnerability-related security goals. In particular, since ASLan++
does not support the Security Analyst with built-in features for input and output sanitiza-
tion, such desired security goals need to be formalized separately. Therefore, we will discuss
such security property formalization in this section.

No XSS. Security goals for XSS attacks can be formalized in different ways. A first ap-
proach was to use security properties that expressed characteristics of the attacks and
state, that this behavior must never happen. E.g., a security goal for a stored XSS
attack expressed that it must never happen that a user-provided value is stored non-
sanitized by one message handler, read and sent back non-sanitized to the client using

33

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

a second message handler. To provide an intuition how such a security property might
look like, consider the following goal specification in Listing 2.7:

A security goal section in ASLan++ starts with the keyword goals and is followed by
a list of goal specifications. Each specification starts with a unique name. Separated
by a colon (:), the goal is formalized using LTL. The following LTL formalization
expresses that if Data is read by any User1 in a non-sanitized way, it either had to
be stored sanitized previously by any other User2, or it is a predefined value that was
not stored by any user.

Listing 2.7: Formalization of a Stored XSS Security Property
([] = globally; <->= past; =>= implies) M

1 goals
2 storedXSSDetailed1:
3 forall User1 User2 Data.
4 [](
5 (
6 read(User1, Data) &
7 notSanitizedByRead(Data)
8) => (
9 <->(stored(User2,Data) & sanitizedByStore(Data))

10 | !stored(User2, Data)
11)
12);

Such security goals are non-optimal due to several reasons. First, they easily get
complex and hard to understand. The discussed example in Listing 2.7 is non trivial
and already suffers from missing corner cases. Second, they are dedicated to one
possible attack scenario. Such a security goal can be used for a stored XSS injection,
but not for other XSS attack scenarios. Third, if a Security Analyst has to specify the
security goal in such great details, it is very likely that the Security Analyst has a very
clear understanding what he wants to test for and how the attack looks like. If so,
he most likely will not use model checking technology since revealing such attacks
(traces / sequences of behavioral steps) is the task of a model checker.

Therefore, we make use of much simpler security goals in the formal specifications
that we use for our evaluation. We express the technical security property: No XSS
as an assert statement. Whenever a client agent receives data from the webserver
and that data is supposed to be rendered by the browser, the corresponding value
needs to be sanitized against XSS. Let’s assume that a value v is sanitized, if the fact
sanitize xss(v) is evaluated to true5. The corresponding No XSS security goal
can be expressed by the following assert statement.

assert XSSSanitized: sanitize_xss(v);

The above line is then added after each message receive statement at the client entity
specification. The advantage of such a simple goal is that it covers a variety of different
attacks, ranging from reflected to (multi-step) stored XSS attacks. Furthermore, it is
much easier to specify and understand. In contrast to the previous security goal in

5This semantics of the fact sanitize xss is given by the Security Analyst, not the ASLan++ language.

34

2.4. Security Properties

Listing 2.7, it focuses on the final end result of an attack, and not on the attack steps
to violate the No XSS security property.

No SQL Injection. For the No SQL injection security property, we provide two differ-
ent goals. The choice which one is selected in a specific formal specification depends
on how ‘sanitizing against SQL’ is formalized. For the first example, we assume that
‘facts’ are used to model the sanitization functionality (see Section 2.3.3.3). There-
fore, whenever a data element data is used as part of an SQL query, it has to be
sanitized against SQL. To illustrate the formalization of such a security goal, let’s as-
sume a fact writtenToDB(A,B) with the following semantics. In order to store data
element B in the database, the user-provided value A is used to construct the corre-
sponding SQL query. Furthermore, the fact sanitize sql(data) represents the
property whether data is sanitized. In our specific models, the modeler distinguishes
between queries used to store and read data from the database. Therefore, we specify
the No SQL injection security property twice, both for reading and writing. The
security goals are expressed as LTL goals that globally have to hold. For every data
element data, whenever the fact writtenToDB is evaluated to true, data has to be
sanitized against SQL, i.e., sanitize sql(Data) needs to be evaluated to true as
well.

goals
sql1: forall Data. [](
writtenToDB(Data,?) => sanitize_sql(Data)

);

sql2: forall Data. [](
readFromDB(Data,?) => sanitize_sql(Data)

);

Using facts to express the sanitization functionality is not the only possibility. As al-
ready discussed in the Section 2.3.3.3 sanitization functionality can also be expressed
with symbolic functions. As an example, a value v is sanitized against SQL, if it ap-
pears in the form sanitize(v). Note that the expression sanitize is not a fact,
but a symbolic function. Furthermore, the semantics of this symbolic function is given
by the Security Analyst, and not by ASLan++. A non-sanitized value v is represented
by v only, i.e., the symbolic function sanitize is not applied. If symbolic functions
are used, the No SQL injection security goal is expressed as the following LTL for-
mula. It expresses that the symbolic function sanitize() must be applied to every
data element Data that is part of an SQL query (captured by the fact writtenToDB).
In more details, if the fact writtenToDB is true for an element Data and an arbitrary
second argument, then the element Data must be of the form sanitize(?), where ? is
an arbitrary value.

goals
noSQL: forall Data. [](
writtenToDB(Data,?) => (Data = sanitize(?))

);

35

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

2.5. Mutate Models

[The following section was already published in the paper ‘Security Testing with
Fault-Models and Properties’ [81]]

In the previous sections, we have discussed SPaCiTE-conform models and how a Security
Analyst can come up with such models. For this section we assume to have access to
such models. According to the overall SPaCiTE workflow in Figure 2.2, such SPaCiTE-
conform models are not directly usable for test case generation. Therefore, we discuss in
this section how to use SPaCiTE-conform models for test case generation and introduce the
corresponding mutation operators in Section 2.6. These steps correspond to Figure 2.2#b-c.

As we have seen in Section 2.3, SPaCiTE-conform models (correct or long-running mod-
els) do not generate counter example that can be used for test case generation. Literature
in the context of model-based testing often propose structural criteria on models for test
case generation. They are on a syntactic level and with a few exceptions (e.g., Fraser and
Wotawa [107]) are not related to security properties due to the lack of an obvious link
between structural criteria and security properties. Therefore, we discuss in this section the
problem how ‘interesting’ test cases can be generated that test a SUV for violations of se-
curity properties, under the assumption that such a violation is indeed present in the SUV.
As defined in Section 2.1, an ‘interesting’ test case is a good test case that exploits a po-
tential vulnerability to violate a security property. At the model level, model checking can
verify security properties Φ and reported counter examples can be considered as abstract
test cases. To make use of models that do not generate AATs for test case generation, either
the specified security properties Φ or the model M needs to be mutated. If the underlying
model M is correct, and therefore, M |= Φ, mutating properties is not immediately useful
for test case generation since all traces of the correct model M satisfy all original properties
(∀φ ∈ Φ : M |= φ). If the security properties are mutated, the model checker can only re-
port traces from the correct model that all satisfy the initial security properties. Therefore,
the model M itself needs to be mutated to M ′ so that a trace in M ′ exists that violates at
least one specified property (∃φ ∈ Φ : M ′ ̸|= φ). Model checking tools might now report
traces of the mutated model that violate an initial security property φ ∈ Φ (➀ in Figure 2.6).

By mutating correct formal specification and model checking them, we combine penetra-
tion testing and model checking techniques. Penetration testing techniques provide know-
ledge about security properties and source code vulnerabilities that could be exploited by
an attack to violate a security property. Source code vulnerabilities are captured by model-
level mutation operators and are injected into a correct model. Model checking techniques
are used to report AATs that violate the security property due to the injected vulnerability
(see Figure 2.6). The advantage of using model checker for finding counter example is, that
these tool are fully automatic and they don’t require any user intervention. Since a single
syntactic change might not be powerful enough to represent a source code vulnerability at
the model level, they are aggregated into Semantic Mutation Operators. They are hence
higher-order mutation operators that consider the semantics of the model as well. E.g. for
access control policies, Martin and Xie [154] show evidence that structural coverage for
test selection is far from optimal for fault-detection effectiveness (see Chapter 6). Using
our approach, generated test cases are ‘interesting’ (➀ in Figure 2.6) because they test for

36

2.6. Mutation Operators

Figure 2.6.: Characteristics of Interesting Test Cases

specific vulnerabilities, acknowledge the presence if the vulnerability indeed exists, or raise
confidence that the vulnerability would have been found if present.

The purpose of injecting vulnerabilities and generating test cases for the mutated model
is to show conformance of the implementation to the mutated model. Furthermore a test
case generated from a mutated model that could successfully be reproduced on the SUV
concludes the non-conformance to the original model. Since vulnerabilities are injected to
the behavioral model but not into the security properties, a successfully reproduced AAT
also shows non-conformance to the security property. What remains unclear is the relation
between syntactic mutations and generating test cases in the context of security testing. We
believe that the set of test cases generated from Syntactic Mutation Operators is too large to
represent a good and meaningful test suite. Therefore, one contribution of this Ph.D thesis
is a set of mutation operators that are dedicated to vulnerabilities.

2.6. Mutation Operators

In this section we describe the mutation operators for mutating formal models written in
ASLan++. Figure 2.8 shows the general hierarchy of the defined mutation operations and
Figure 2.7 shows a graphical overview over all defined mutation operators including the
dependencies between them and how they are categorized.

Definition 3. Whenever a mutation m is performed on an element e of a model, e must match
the requirements of the mutation. E.g., a mutation operating on statements is only applicable
on elements that are statements or inherit from statements. Otherwise the mutation cannot be
performed. We call an element e a mutation candidate for m, if it is type correct with respect
to the mutation m.

At the top of the hierarchy are the Syntactic and Semantic Mutation Operators.
A Syntactic Mutation Operator takes a General Mutation Operator m and
considers every possible mutation candidate for m of the specification. This is different for
Semantic Mutation Operators. They only apply a General Mutation Operator

37

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Basic
Operations

General
Mutation

Operators

Syntactic
Mutation

Operators

Semantic
Mutation

Operators

Ad
dF

ac
tS
ym

bo
l

De
cl
ar
at
io
n

Ad
dS

ym
bo

ls
Se

ct
io
n

Ch
an
ge
Fa
ct

Na
m
e

Ch
an
ge
Ke

y
w
or
d

In
tro

du
ce

Fa
ct

De
ta
ch

Va
ria
bl
e

Re
na
m
eV
ai
ra
bl
e

Re
m
ov
eE
O
bj
ec
t

Ad
dV
ar
ia
bl
eT
oC

la
us
e

Ar
gu
m
en
tL
is
t

In
va
lid
at
e

In
tro

du
ce
Fa
ct

In
va
lid
at
e

Re
tra

ct
Fa
ct

In
tro

du
ce
2R

et
ra
ct

Fa
ct

Re
tra

ct
2I
nt
ro
du
ce

Fa
ct

De
ta
ch
Va
ria
bl
e

Re
pl
ac
eV
ar
ia
bl
e

By
Ra

nd
om

Va
lu
e

Re
m
ov
eF
un
ct
io
nF
ro
m

As
si
gn
m
en
t

In
va
lid
at
e

In
tro

du
ce
Fa
ct

Re
m
ov
eF
un
ct
io
nF
ro
m

As
si
gn
m
en
t

Se
tT
oR

an
do

m
Va
lu
e

De
ta
ch
Va
ria
bl
e

SQ
LR

em
ov
eS

an
iti
za
tio
n

SQ
LR

em
ov
eS

an
iti
za
tio
n[
x]
[y
]

XS
SR

em
ov
eS

an
iti
za
tio
n

XS
SR

em
ov
eS

an
iti
za
tio
n[
x]
[y
]

In
va
lid
at
eS

Q
LC

on
di
tio
nC

he
ck
By

Se
tti
ng

Ra
nd
om

Va
lu
e

In
va
lid
at
eS

Q
LC

on
di
tio
nC

he
ck
By

Se
tti
ng

Ra
nd
om

Va
lu
e[
x]
[y
]

In
va
lid
at
eS

Q
LC

on
di
tio
nC

he
ck
By

De
ta
ch
in
gV
ar
ia
bl
e

In
va
lid
at
eS

Q
LC

on
di
tio
nC

he
ck
By

De
ta
ch
in
gV
ar
ia
bl
e[
x]
[y
]

In
tro

du
ce
Fa
ct

In
tro

du
ce
2R

et
ra
ct

Fa
ct

In
va
lid
at
e

Re
tra

ct
Fa
ct

Re
tra

ct
2I
nt
ro
du
ce

Fa
ct

Figure 2.7.: Mutation Operators Overview

38

2.6. Mutation Operators

Basic Operations

General Mutation Operators

Syntactic Mutation
Operators

Semantic Mutation
Operators

uses…

Figure 2.8.: Mutation Operators Hierarchy

m at semantically annotated mutation candidates for m. After collecting all mutation candi-
dates, the configuration of the Syntactic and Semantic mutation operators determines
how many candidates are mutated in the same mutated model. E.g., for first-order muta-
tion operators, only one mutation candidate is mutated per mutated model, whereas for
a higher-order mutation operators several candidates are mutated. The set of General
Mutation Operators provides the required mutation operations that the Syntactic
and Semantic mutation operators perform. Since the General Mutation Operators are
composed of several basic operations, the Basic Operations provide the operations from
which the General Mutation Operators are constructed. Basic Operations perform a single,
atomic operation on the specification. They are simple and easy to understand. One special
characteristics is that upon applying such Basic Operations to a specification, the mutated
specification might be type incorrect. E.g., if we add a new fact statement in the body of
an agent, the mutated model is type incorrect since ASLan++ requires that every used fact
has to be declared. Therefore, an additional Basic Operation to add a fact declaration has
to be applied as well. This characteristic is different for the General Mutation Operators. If
such a mutation operator is applied to an input specification, the mutated specification is
guaranteed to be type correct.

To discuss the different mutation operators, we follow a top-down approach. We start the
discussion with source code level vulnerabilities and their corresponding Semantic Mutation
Operators (Section 2.6.1). For each Semantic Mutation Operator we discuss which lower
level operations they require. They themselves are then discussed in the following sections.
Therefore, General Mutation Operators are discussed in Section 2.6.4, and Basic Operations
in Section 2.6.5. Since Syntactic Mutation Operators are used for the evaluation only, we
postpone that discussion to Section 4.5.1.

2.6.1. Semantic Mutation Operators: Concept and Example Model

In this section we describe the set of Semantic Mutation Operators that SPaCiTE supports.
Semantic Mutation Operators capture source code vulnerabilities and represent them at the
abstract ASLan++ level. A Semantic Mutation Operator at the model level is an abstraction
of vulnerabilities and abstracts away irrelevant low-level implementation details. Since in
such a situation a 1:1 mapping of a Semantic Mutation Operator and a specific source code

39

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

vulnerability is in general not possible, a Semantic Mutation Operator represents a specific
class (commonalities) of vulnerabilities. Mutation operators in general are functions that
take a formal specification and output a set of mutated specifications. Let S be the set of all
ASLan++ specifications, and M the set of all mutation operators. Therefore, a mutation
operator is a function m ∈ M : S → 2S . We call these operators ‘Semantic Mutation Op-
erators’ since each mutation operator is based on at least one intuition what can go wrong
at the implementation level. Arbitrary mutations without any understanding or relation to
source code vulnerabilities are not considered as Semantic Mutation Operators. Semantic
Mutation Operators are based on semantic annotations. Such annotations are manually in-
serted by the Security Analyst and are used to provide semantics to model level statements
in terms of functionality, as well as the technology used to implement the functionality. An
annotation always starts with %@Semantics and contains a list of semantics keywords.
E.g., the annotation %@Semantics[SQL, Sanitize] contains the two semantics key-
words SQL and Sanitize. The annotations used in our models consist of up to three se-
mantics keywords. The first one is from the set HTML,SQL, JAV ASCRIPT , the second
optional keyword is Sanitize, and the third one from the set Input, Internal, Implicit(X).
The semantics of these keywords is explained later when they are used. An annotation can
be a single expression annotation (see Line 17 in Listing 2.8) or a block annotation (see
annotation at Line 8 in Listing 2.8). A single line annotation just annotates the next expres-
sion, whereas a block annotation annotates all expressions between %@Semantics[...]{
and %@}.

In addition to the injection of a vulnerability, mutation operators add facts to keep track
of the changes they perform. This is crucial because the mutated elements usually appear
in combination with variables. If the mutated model generates an AAT, the value of the
mutated element plays a crucial rule. In addition, the value of the variable is determined
during model checking. Such information is needed when a Test Execution Engine (TEE)
generates executable test cases out of AATs. To keep track of such values, all mutation
operators described in this thesis make use of ASLan++ facts. Therefore, we call such facts
‘value-tracking facts’.

For each Semantic Mutation Operator, we first discuss the corresponding source code
level vulnerabilities, that motivate the Semantic Mutation Operator. The considered vul-
nerabilities themselves (SQL vulnerabilities in Section 2.6.2 and XSS vulnerabilities in Sec-
tion 2.6.3) are motivated by several surveys that claim, that SQL and XSS belong to the
most reported issues in web applications. They are only a subset of security related issues
for web applications but a subset that is relevant in practice [13, 21].

To illustrate the Semantic Mutation Operators and their corresponding annotations, we
introduce a simple and partial example model given in Listing 2.8. The model is not com-
plete and irrelevant parts are missing. The model describes a web application that allows
users to login, store, and view profiles like Facebook or Google+ profiles. We discuss these
three different methods and show how they are modeled, annotated, and mutated.

Listing 2.8: ASLan++ Model of Simple Web Application to Store Profiles M

1 symbols
2 Username, Password: text ;
3 sanitizeTextSQL(text): fact ;

40

2.6. Mutation Operators

4 credentials(text, text): fact ;
5 ...
6 select {
7 on(?Client *->* Actor: login(?Username, ?Password) &
8 %@Semantics[SQL] {
9 credentials(?Username, ?Password, ?AdditionalData)

10 %@}
11 & additionalCheck(?AdditionalData) :{
12 authenticated(Client) ;
13 }
14 }
15 on(?Client *->* Actor: store(?A, ?D) & authenticated(?Client)):{
16

17 %@Semantics[SQL, Sanitize, Input]
18 sanitizeAgentSQL(A) ;
19

20 %@Semantics[SQL, Sanitize, Input]
21 sanitizeTextSQL(D) ;
22

23 %@Semantics[HTML, Sanitize, Input]
24 sanitizeTextHTML(D) ;
25

26 D2 := new copy of D
27 retract stored(A, ?) ;
28 stored(A, D2) ;
29

30 %@Semantics[SQL, Sanitize, Implicit(D)]
31 sanitizeTextSQL(D2) ;
32

33 %@Semantics[HTML, Sanitize, Implicit(D)]
34 sanitizeTextHTML(D2) ;
35 }
36 on(?Client *->* Actor: view(?A)):{
37 %@Semantics[SQL, Sanitize, Input]
38 sanitizeAgentSQL(A) ;
39

40 select{ on(stored(Agent, ?D)):{} }
41

42 %@Semantics[HTML, Sanitize, Internal]
43 sanitizeTextHTML(D) ;
44

45 Actor *->* Client : response(D) ;
46 }
47 }

Login. To login, the user has to specify his username (parameter Username) and password
(parameter Password) (Line 7). The loginmethod checks if the tuple (Username,
Password) is stored in the credential database. This is modeled using fact of the
form credentials(u,p) (Line 9). If the fact credentials(u,p) is evaluated
to true for a username u and a password p, that means that the username u and
the password p are registered in the credential database (Line 9). To get access to
the credentials in the database, the credential check is implemented with an SQL
query. Therefore, we annotate the credentials fact using the annotation keywords
SQL (see Line 8). Using SQL for checking user credentials is an implementation de-

41

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

cision. Many other alternatives are available. If e.g., a third-party login procedure
is used that the Security Analyst does not have the permission to test for SQL injec-
tions, or the third-party solution does not even depend on SQL, the credentials
check is not annotated and therefore, SPaCiTE will not generate corresponding test
cases. This provides a very dynamic and easy way to exclude certain parts of the
SUV from being tested. If the user has provided the correct credentials, we introduce
the fact authenticated in Line 12 to authenticate a user. This statement is not
annotated since the framework to implement a web application usually provides this
functionality and performs it automatically.

Store. The method to store a profile takes two parameters: a user ID A of an agent whose
profile should be stored/modified, and the data D that represents the data to be stored
in the profile. Such a message sent by agent Client is only accepted by the server if
Client is authenticated (Line 15). If he is, the server sanitizes the user-provided user
ID A against SQL (Line 18) because A is used in an SQL query to store/update the
profile (Line 28). We annotate Line 18 with the semantics keywords SQL, Sanitize,
and Input since the value is directly provided by the client in this message handler.
Furthermore, the data to be stored is sanitized against SQL and HTML since the data
is part of an SQL query and data is later supposed to be embedded into HTML and
displayed in the browser later (Lines 21 and 24). We represent storing the data D in
profile of agent A by using facts. We define the fact stored(a,d) with the meaning
that the profile of agent a stores data element d. To delete the data in the profile
of agent a, we simply retract the fact stored(a,d). Therefore, the store method
first deletes a potentially already existing profile in Line 27 and stores the new profile
afterwards in Line 28. Depending on the concrete specific sanitization function that is
used, the stored profile data D2 in the database is or is not sanitized against SQL and
HTML. For the positive case, where D2 is sanitized as well, we add the following se-
mantics keywords to the fact that sanitizes D2: SQL, Sanitize, and Implicit(D)
(see Line 31). The Implicit annotation expresses that the sanitization property of
D2 is inherited from data D. If the database value also keeps the HTML sanitization,
we add the semantics keywords HTML, Sanitize, and Implicit(D) (Line 34). In
the negative case, where the data in the database does not inherit the sanitization, we
simply omit Lines 31 and 34, including their annotations.

View. Finally, the message view models the functionality to request and display a profile.
This method takes the agent whose profile is requested as a single parameter A. Since
this data is user-provided and used in an SQL query to retrieve the profile, the input
is sanitized against SQL (Line 38). We annotate that statement with the semantics
keywords SQL, Sanitize, and Input. This SQL query is modeled as a selectOn
statement where the data parameter D is appended to a question mark (Line 40). This
means that the model checker tries to find a data element for D of type type of(D) so
that the fact can be evaluated to true. Before the retrieved profile data D is sent back
to the agent that requested the profile, D is sanitized against HTML in Line 43. This
is required since the profile data is supposed to be rendered in the browser (Line 45).
Therefore, we annotate Line 43 with the semantics keywords HTML, Sanitize, and
Internal since the data is not directly provided by the user.

42

2.6. Mutation Operators

2.6.2. SQL Vulnerabilities and Their Semantic Mutation Operators

In this section we propose Semantic Mutation Operators that represent SQL vulnerabilities.
SQL vulnerabilities both occur and are exploited at the server-side. Since Semantic Muta-
tion Operators are motivated by underlying source code vulnerabilities, we present typical
vulnerabilities and then discuss corresponding mutation operators.

Those parts of the formal specification that are annotated with the semantic keywords
SQL and Sanitize represent functionality that sanitizes user-provided input against SQL.
Security-related vulnerabilities in this context are of different types — either the sanitization
functionality is completely missing, or the sanitization functionality is present but faulty. A
faulty sanitization function is effective for some inputs, whereas it is not for others. In
the following, we list some real world vulnerabilities, that have been published at CVE
websites [11].

Vulnerability: Completely Missing any Sanitization Against SQL

The vulnerability example in Listing 2.9 is based on the example provided by the PHP
documentation [16] but slightly adapted for simplicity. The code listing is given in diff
format, that means that the lines starting with the minus sign (-) are the vulnerable parts
that need to be fixed. The lines starting with the plus sign (+) are the lines that fix the bug.
The malicious version of the given code (the (-) lines instead of the (+) lines) allows an
attacker to provide a malicious payload for the variable name so that it affects the semantics
of the SQL query.

Listing 2.9: Missing MySQL Real Escape String S

1 <?php
2 // create connection
3 $link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')
4 OR die(mysql_error());
5

6 // create query
7 - $query=sprintf("SELECT * FROM profiles WHERE name='%s'",
8 - $_POST['name']);
9

10 + $query=sprintf("SELECT * FROM profiles WHERE name='%s'",
11 + mysql_real_escape_string($_POST['name']));
12

13 mysql_query($query);
14 ?>

To illustrate the danger of the missing user-provided input sanitization, we show two
malicious payloads to modify the semantics of the SQL query.

• Changing the Condition: The original query (Lines 7 to 8) is supposed to return
profiles which match in terms of the name with the user-provided input value. If the
content of the variable name is not sanitized, an attacker can provide ’ OR ’1=’1 as
input. The complete SQL query then looks as follows: SELECT * FROM profiles
WHERE name=’’ OR ’1=’1’. This input changes the semantics of the query so

43

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

that every profile is returned, independent of the attribute name. Thinking of the
example web application in Listing 2.8 this kind of issue might have the following
consequences. When the web application is checking the password using an SQL
query, the password check might be manipulated so that the check is passed although
it should fail. In addition, when the web application uses SQL queries for storing
or retrieving profiles, the corresponding semantics of the queries might be changed
so that a different profile is retrieved or the data is stored in a different profile than
expected.

• Appending New SQL Command: The attacker cannot only modify the existing query,
but append an additional, arbitrary SQL queries as well. E.g., the resulting query
after providing the malicious payload ’; DROP * FROM profiles; -- is as follows:
SELECT * FROM profiles WHERE name=’’; DROP * FROM profiles; --’. This
query not only performs the original SELECT query, but also deletes all profiles. Due
to possible subsequent SQL query fragments, the malicious payload finishes with the
comment out symbols (--) to increase the possibility of ending up with a syntactically
correct SQL query.

Vulnerability: Using the Wrong Sanitization Method in the Betster Project

An example of a missing SQL sanitization was present in the Betster project [9]. The project
web page describes the software as follows:

Betster is an OpenSource Software to create a online bet office based on PHP and MySQL.
The system works with variable Quotes and a totalisator. You bet not for money but with
credits. The initial amount of credits which a user gets at the registration you can choose. The
admin can manage the bets, he is the bookmaker of the bet office, he manages the categories
and administrate the users.

For this project, an SQL injection vulnerability was found and published [3, 8]. Concep-
tually, the client queries for a profile by sending an ID to the showprofile.php webpage.
The value is sanitized against XSS attacks using the PHP function htmlspecialchars.
The sanitized value is then forwarded to the getUserById method in the class class/
DbMapper.class.php, where it is used to construct an SQL query. Since the user-
provided parameter (ID) is not sanitized against SQL, it can be used for an SQL injection.
The corresponding code example is shown in Listing 2.10.

CVE ID CVE-2015-2237
http://www.cvedetails.com/cve/CVE-2015-2237/

Vulnerability Type Execute Code Sql Injection
Description Multiple SQL injection vulnerabilities in Betster (aka PHP

Betoffice) 1.0.4 allow remote attackers to execute arbitrary SQL
commands via the id parameter to (1) showprofile.php or (2)
categoryedit.php or (3) username parameter in a login to
index.php.

Location showprofile.php, categoryedit.php, index.php

44

2.6. Mutation Operators

Listing 2.10: CVE-2015-2237 S

1 in file: showprofile.php
2 -------
3 $id = htmlspecialchars($_GET['id']);
4 $xuser = $db_mapper->getUserById($id);
5

6 in file: class/DbMapper.class.php
7 -------
8 function getUserById($id){
9 $query = "SELECT id,username,email,firstname,lastname,balance,status

10 FROM user WHERE id = '".$id."'";
11 $result = mysql_query ($query) or error_catcher();

Vulnerability: Faulty Sanitization

An easy to understand but still complex example of a faulty sanitization method is provided
in a paper published by Fu et al. [108]. The purpose of this sanitization method is to
sanitize every user-provided input. Therefore, it is invoked every time the server receives
data from the user, that is intended to be used part of an SQL query. The implementation
of the sanitization method sanSQL is given in Listing 2.11. In a first step, the sanitization
method checks if the user-provided string contains either the comment string (--) (Line 4),
the SQL keyword OR (Line 5), or the SQL keyword drop (Line 6). If the user-provided
input contains at least one of the above mentioned options, an application that uses the
sanitization method given in Listing 2.11 is rejecting the input and it can not be used for an
SQL injection on that application. Therefore, let’s consider an input that does not fulfill the
above mentioned criteria. It passes the check and therefore, every occurrence of a single
quote is replaced by two single quotes (’’) (Line 11). While a single quote is used to
start and terminate strings in SQL, a double single quote is needed to represent a single
quote in the string. Therefore, a user-provided single quote cannot be used to terminate
the SQL string. In turn, terminating an SQL string is necessary to provide SQL keywords
that the SQL server interprets. Finally, to reduce the risk of a successful SQL injection, the
user-provided input is restricted to a maximal length of 16 chars in Line 12.

Fu et al. [108] provide the following SQL query for which the above discussed SQL sani-
tization method is used

query = "SELECT uname, pass FROM users WHERE
uname='" + sanSQL(username) + "' AND
pass='" + sanSQL(sPwd) + "'"

Although this specific sanitization method is effective for certain SQL injections like
admin’ -- for the username and the empty string for the password, it is not effective e.g.,
for the username 123456789012345’ and the malicious password O/**/R uname<>’6

6 represents a space

45

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

because of the following argumentation. Providing these two values, the implementation
constructs the following SQL query:

query = "SELECT uname, pass FROM users WHERE
uname='123456789012345'' AND pass=' OR uname<>''"

Because of the escaped single quote in the username, the where condition checks if the
username is equal to 123456789012345’’ AND pass= or if the username is different
from the empty string. The probability that a username has length ≥ 1 is quite high and
therefore, the probability of being able to exploit the sanSQL method with the above mali-
cious input as well.

Listing 2.11: Faulty SQL Sanitization S

1 String sanSQL(String strInput) {
2 //1. SQL keyword search
3 if(
4 strInput.IndexOf("--")!=-1
5 || strInput.IndexOf("OR")!=-1
6 || strInput.IndexOf("drop")!=-1
7)
8 throw new Exception("Possible SQL Injection);
9

10 //2. massage the data for single quote
11 String sOut = strInput.Replace("'","''");
12 sOut = sOut.Substring(0,16);
13 return sOut;
14 }

2.6.2.1. Semantic Mutation Operator: SQLRemoveSanitization

Since ASLan++ does not provide dedicated language constructs to sanitize user-provided
input against SQL, the Security Analyst has some freedom to model that functionality. We
focus here on two different ways of modeling it, following the guideline presented in Sec-
tion 2.3.3.3.

Modeling Sanitization with Facts. If the Security Analyst follows a fact-based approach
to represent sanitization functionality at the model level, he models the sanitization of
a data value v by introducing the fact similar to sanitize sql(v). If v is sanitized,
he introduces the fact, and he retracts the fact if v is not sanitized anymore. Therefore,
the same syntactical representation of value v is used before and after the sanitization.
To check whether a data value v is sanitized, the fact sqlSanitized(v) is evaluated
to its boolean value. Since sanitization does not change the syntactical representation of
value v, the SQLRemoveSanitization Semantic Mutation Operator is invalidating the

46

2.6. Mutation Operators

introduction of the fact sqlSanitized(v) by applying the General Mutation Operator
InvalidateIntroduceFact.

In Section 2.6.4 we have already seen that the dual view of introducing a fact is retracting
it. Following this approach, the Security Analyst retracts a fact when the data is not sanitized
instead of introducing a fact when data is sanitized. In this situation, the General Mutation
Operator InvalidateRetractFact is applied.

Modeling Sanitization with Variable Assignments. If the Security Analyst follows a
symbolic function-based approach (see Section 2.3.3.3) the Security Analyst introduces a
symbol function similar to sanitize sql(T) : T. To sanitize a value v of type T ,
sanitized() is applied to v and the complete expression is assigned to a new variable. In
a formal specification that makes use of this approach of sanitization, removing the whole
assignment is very likely to break the described functionality in the model. Because the
sanitized value is assigned to a new variable, it is very likely that other parts of the model
operate on that variable from now on. Therefore, the variable assignment should not be
eliminated during invalidating the sanitization. Therefore, the SQLRemoveSanitization
Semantic Mutation Operator makes use of the RemoveFactFromAssignment General
Mutation Operator. It basically mutates an assignment of the form V’:= sanitized T(V)
to V’:= V if type restrictions and the number of parameters allow it (see Section 2.6.4).

As we will see in Section 2.6.4, applying a General Mutation Operator will automatically
introduce a general value-tracking fact without vulnerability correlation, since no relation
to vulnerabilities or the semantics of the mutation is known. If the Semantic Mutation
Operator applies a General Mutation Operator the underlying fault and semantic informa-
tion is available. This information is therefore used to overwrite the general value-tracking
fact with a vulnerability specific one. Thanks to the semantics annotation keywords SQL,
Sanitize, and the type of data (Input, Internal, and Implicit), the General Mu-
tation Operator is configured to add the specific value-tracking fact of the following form:
The fact name start with the prefix removed, followed by the type of technology involved
(SQL), the type of data (Input, Internal, and Implicit), and the semantics of the
action (Sanitize). Since sanitizing can be performed on different types of values, and
because ASLan++ requires every fact to be unique in terms of the fact name only, the sig-
nature (types) of the fact parameters is appended to the fact name as well. All these pieces
of information is separated by the underscore symbol (). To demonstrate the mutation
operator we apply it to the annotated Lines 18, 21 and 38 in Listing 2.8. Listing 2.12 shows
the effect of applying the mutation operator on Lines 18 and 38, and Listing 2.13 shows the
mutation on Line 21.

Listing 2.12: Applying SQLRemoveSanitization M

1 %@Semantics[SQL, Sanitize, Input]
2 - sqlSanitizeAgentSQL(A);
3 + removed_SQL_Input_Sanitize_agent(A);

47

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Listing 2.13: Applying SQLRemoveSanitization M

1 %@Semantics[SQL, Sanitize, Input]
2 - sanitizeTextSQL(D);
3 + removed_SQL_Input_Sanitize_text(D);

According to the above description, the SQLRemoveSanitization Semantic Mutation
Operator is also applicable to the annotated Line 31. Since that Line is annotated with the
semantics keyword Implicit, we postpone the discussion of that line to Section 2.6.2.2.

SQLRemoveSanitization in 10 Seconds

The Semantic Mutation Operator looks for annotations that contain both the la-
bels SQL and Sanitize. If the formal specification contains such an annotation,
the mutation operator performs the following actions, depending on the annotated
expression.

• If the sanitization is modeled by introducing a fact, the General Mutation Oper-
ator InvalidateIntroduceFact is applied.

• If the sanitization is modeled by retracting a fact, the General Mutation Operator
InvalidateRetractFact is applied.

• If the sanitization is modeled by applying a symbolic function to a vari-
able and assign the application to a variable, the General Mutation Operator
RemoveFunctionFromAssignment is applied.

In all three situation, the mutation operators add the fact removed SQL [type of
value] Sanitized [parameter signature](value) to the specification.

Multiple Applicability of the SQLRemoveSanitization Semantic Mutation Operator
Depending on the modeling and the complexity of vulnerabilities that are considered, gen-
erating mutated models by applying the Semantic Mutation Operators only once is poten-
tially not enough. To let the model checker find AAT related to more complex vulnerabilities,
we need to apply the Semantic Mutation Operators multiple times. Therefore, the above de-
scribed mutation operators SQLRemoveSanitization collects all semantic annotations
that contain the semantics keywords SQL and Sanitize and generates mutated models
with all possible combinations. In practice this easily leads to an enormous number of mu-
tated models that are impractical to model check and execute. Therefore, we introduce the
Semantic Mutation Operator SQLRemoveSanitizationUpToLimit with the additional
capability to limit the minimal and the maximal number of sanitizing annotations that are
mutated for the same mutated model. If at least x but at most y mutations dedicated to
SQL sanitization should be applied to mutate a model, the Semantic Mutation Operator
SQLRemoveSanitizationUpToLimit[x][y] is used.

48

2.6. Mutation Operators

2.6.2.2. Vulnerability: Inappropriate SQL Sanitization in the Context of 2nd Order
SQL Injections

The previously introduced SQLRemoveSanitization Semantic Mutation Operator is very
powerful and configurable by using different semantics keywords in the annotation7. In this
section we show that the same Semantic Mutation Operator is also useful in the context of
2nd order SQL injections. To demonstrate this vulnerability we extend the example appli-
cation given in Listing 2.8 with the feature to create user accounts. Since users sometimes
forget their password, the web application offers in addition a registered user the func-
tionality to change its own password. For the 2nd order SQL vulnerability, it is a crucial
requirement that both functionalities (creating user accounts, changing passwords) make
use of SQL sanitization and SQL statements respectively. Listing 2.14 shows the extension
at the model level. Because the web application now offers two new features, it accepts two
new requests, modeled with selectOn statements.

Listing 2.14: Message Handler For The createNewUser Message M

1 on(?Us *->* Actor : createNewUser(
2 inst_username_t(?UsernameMessage,?UNounceMessage),
3 inst_password_t(?PasswordMessage,?PNounceMessage)
4) &
5 %@Semantics[SQL] {
6 !credentials(inst_username_t(?UsernameMessage,?)
7 %@}
8) : {
9 UsernameMsg := inst_username_t(UsernameMessage,UNounceMessage);

10 PasswordMsg := inst_password_t(PasswordMessage,PNounceMessage);
11

12 %@Semantics[SQL, Sanitize, Input]
13 UsernameMsgSan := sanitize_SQL_username_t(UsernameMsg) ;
14

15 %@Semantics[SQL, Sanitize, Input]
16 PasswordMsgSan := sanitize_SQL_password_t(PasswordMsg) ;
17

18 Nounce_toStore := fresh();
19 UsernameDB := inst_username_t(UsernameMessage, Nounce_toStore);
20 PasswordDB := inst_password_t(PasswordMessage, Nounce_toStore);
21

22 %@Semantics[SQL, Sanitize, Implicit(UsernameMsg)]
23 UsernameDBSan := sanitize_SQL_username_t(UsernameDB) ;
24

25 %@Semantics[SQL, Sanitize, Implicit(PasswordMsg)]
26 PasswordDBSan := sanitize_SQL_password_t(PasswordDB) ;
27

28 credentials(UsernameDBSan, PasswordDBSan);
29 writtenToDB(UsernameDB,UsernameDBSan);
30 writtenToDB(PasswordDB,PasswordDBSan);
31 }
32

33

7%@Semantics[keyword1, keyword2, . . .] is a semantic annotation consisting of the two semantics keywords
keyword1 and keyword2

49

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

34 on(?Us *->* Actor : changePassword(
35 inst_username_t(?UsernameMessage, ?Nonce1),
36 inst_username_t(?OldPwdMessage, ?Nonce2),
37 inst_username_t(?NewPwdMessage, ?Nonce3)
38) : {
39 UsernameMsg := inst_username_t(UsernameMessage,Nonce1);
40 OldPwdMsg := inst_password_t(OldPwdMessage,Nonce2);
41 NewPwdMsg := inst_password_t(NewPwdMessage,Nonce3);
42

43 %@Semantics[SQL, Sanitize, Input]
44 UsernameMsgSan := sanitize_SQL_username_t(UsernameMsg) ;
45

46 %@Semantics[SQL, Sanitize, Input]
47 OldPwdMsgSan := sanitize_SQL_password_t(OldPwdMsg) ;
48

49 %@Semantics[SQL, Sanitize, Input]
50 NewPwdMsgSan := sanitize_SQL_password_t(NewPwdMsg) ;
51

52

53 select{ on(credentials(inst_username_t(UsernameMessage,?Nonce4),
54 inst_password_t(?PasswordDB,?Nonce5))):{} }
55 readFromDb(UsernameMsgSan, inst_username_t(UsernameMessage,Nonce4));
56

57 if(OldPwdMessage == PasswordDB) {
58 retract credentials(inst_username_t(UsernameMessage,?),?);
59 credentials(inst_username_t(UsernameMessage,Nonce4),NewPwdMsgSan);
60 }
61 }

To create a new user, the web application accepts the message createNewUser. It
requires two arguments — the username and the password. Both arguments are stored
in variables in Lines 9 and 10 and are sanitized in Lines 13 and 16. Because both user-
provided inputs are stored in the database (Lines 28 to 30), the Security Analyst first creates
two unique instances of these two values (Lines 18 to 20).

To change the password, the web application accepts the message changePassword
which requires three arguments — the username, the old and the new password. After the
user-provided inputs are stored in variables in Lines 39 to 41, they are sanitized against
SQL in Lines 44 to 50. In Lines 53 to 55 the web application gets the corresponding record
from the database, based on the provided username. If the password retrieved from the
database matches with the old password provided as argument of the changePassword
message, the new password is stored in the database in Line 59.

A possible implementation of the methods createNewUser and changePassword is
given in Listing 2.15. The createNewUser request handler (Lines 2 to 14 in Listing 2.15)
accepts two parameters username (Line 3) and password (Line 4). The content of both
parameters is sanitized using the implementation level method sanitizeImpl in Line 6
and Line 7. The method represents any sanitization method that is motivated by the special
characters in SQL strings [31] and sanitizes them by escaping. E.g., one could use the PHP
method mysql real escape string [16] or the method escape provided at stackover-
flow.com [30]. In the SQL context, characters like single (’) and double (") quotes and
the like have a special meaning. The SQL server recognizes and interprets them. If user-
provided data and SQL control data is mixed — by embedding user-provided data into a

50

2.6. Mutation Operators

predefined string SQL query skeleton (see Line 11) —, special characters as part of the user-
provided data may change the semantics of the SQL query. Therefore, the sanitizeImpl
method escapes special characters by prepending the backslash symbol so that they are not
interpreted anymore (see Figure 2.9#➊). It is important to note that the sanitizeImpl
method encodes/escapes rather than removes the special characters. Because of that, the
stored value in the database still contains all information including the special values. As an
example, let’s assume an attacker provides the string admin’ or ’1’=’1 as a username.
Since this value gets sanitized against SQL, it gets transformed to admin\’or \’1\’=\’1
and does not change the semantics of the insert query since the quotes are not inter-
preted. At the same time, sanitizing has another effect that is crucial in this context. In
order to store e.g., a quote in the database, it needs to be escaped. Therefore, the sanitiza-
tion not only makes sure that special values do not change the semantics of the query, but
also that the special value without being escaped is stored in the database. In our example,
the sanitized string admin\’ or \’1\’=\’1 is finally stored as admin’ or ’1’=’1 in
the database (see Figure 2.9#➋ and ➌).

Listing 2.15: Example: Creating User Account and Updating Password S

1 // createNewUser request handler
2 public String execute(HttpServletRequest req, HttpServletResponse resp){
3 String username = req.getParameter("username");
4 String password = req.getParameter("password");
5

6 String usr_escaped = sanitizeImpl(username);
7 String pwd_escaped = sanitizeImpl(password);
8

9 Connection con = ...;
10 Statement st = con.createStatement();
11 st.executeUpdate(
12 "insert into credentials(usr_field, pwd_field) " +
13 "values('" + usr_escaped + "', '" + pwd_escaped + "')");
14 }
15

16 // changePassword request handler
17 public String execute(HttpServletRequest req, HttpServletResponse resp) {
18 String username = request.getParameter("username");
19 String old_pwd = request.getParameter("old_password");
20 String new_pwd = request.getParameter("new_password");
21

22 String usr_escaped = sanitizeImpl(username);
23 String new_pwd_escaped = sanitizeImpl(new_pwd);
24 String old_pwd_escaped = sanitizeImpl(old_pwd);
25

26 Connection con = JDBCUtil.getConnection();
27 Statement st = con.createStatement();
28

29 ResultSet rs = st.executeQuery(
30 "select * from users where name='" + usr_escaped + "'");
31 if (rs.next()) {
32 String usr_db = rs.getString("name");
33 String old_pwd_db = rs.getString("pass");
34 String old_pwd_db_escaped = sanitizeImpl(old_pwd_db);

51

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

changePassword(admin’ or ‘1’=‘1, secret, newsecret)

insert into credentials(usr_field, pwd_field)
values(‘admin\’ or \‘1\’=\‘1’, ‘secret’)

admin’ or ‘1’=‘1

pwd_field

secret

usr_field
credentials

secretpwdadmin

select * from users where name='admin\’ or \‘1\’=\‘1'

createNewUser(admin’ or ‘1’=‘1, secret)

update users set pass = ’newsecret’
where name='admin’ or (‘1’=‘1’ and pass=‘secret’)

admin’ or ‘1’=‘1

pwd_field

newsecret

usr_field

newsecretadmin

credentials

1

2

3

4

5

6

Figure 2.9.: 2nd Order SQL Injection

35

36 if(old_pwd_db_escaped == old_pwd_escaped) {
37 String query = "update users set pass = '" + new_pwd_escaped + "' " +
38 " where name='" + usr_db + "' and pass='" + old_pwd_db_escaped + "'";
39

40 st.executeUpdate(query);
41 con.close();
42 }
43 }
44 }

The second functionality allows a user to change his password. For this purpose, the
method ChangePassword (Lines 17 to 44 in Listing 2.15) requires three parameters; the
username (Line 18), the old password (Line 19), and the new password (Line 20). As shown
in lines 22 to 24, all three inputs to this method invocation are sanitized so that special char-
acters in these parameters cannot change the semantics of the SQL query in Line 30. The
query is used in order to check, if the user is allowed to change the password. Therefore,
the username and the old password are retrieved from the database in Lines 32 and 33. Im-
portant for the 2nd order SQL injection is that the software developer correctly sanitized all
user-provided method parameters during the createNewUser and the ChangePassword

52

2.6. Mutation Operators

functionality. The username provided to the ChangePassword method needs to be sani-
tized to retrieve the correct row from the database (see Figure 2.9#➍) and therefore to pass
the password check. The vulnerability that allows the 2nd order SQL injection is present
because the retrieved username from the database is not sanitized against SQL anymore
(Line 32) and because the modeler decided to use the non-sanitized username retrieved
from the database for changing the password instead of the sanitized username provided
at the changePassword method invocation. The database value still contains all special
characters during the construction of the SQL query in Line 38 and therefore, it can change
the semantics of the query (see Figure 2.9#➎). In our concrete example, the username is
used for the condition to update the password. Since it is not sanitized, the original condi-
tion where name=’...’ and pass=’...’ changes to where name=’admin’ or
’1’=’1’ and pass=.... Due to the precedence order in SQL8, the new password is
changed for any user with user name admin (independent of the password), and for users
where the password matches the old password. Therefore, this attack allows to change the
password of the user admin without knowing the password (see Figure 2.9#➏).

2.6.2.3. Semantic Mutation Operator for 2nd Order SQL Vulnerabilities

Due to the generality and the possibility to configure the SQLRemoveSanitization
Semantic Mutation Operator, we do not need a new Semantic Mutation Operator but
SQLRemoveSanitization can be re-used to represent the vulnerabilities related to 2nd
order SQL injections. In Figure 2.9#➊, user-provided data is sanitized against SQL. The
corresponding blocks in the formal specification (Lines 13 and 16 in Listing 2.14) are an-
notated with the semantics keywords SQL, Sanitize, and Input. The same annotation
is used when the provided username and the two passwords of the changePassword
message are sanitized (Lines 44 to 50). To start with a correct model that does not suffer
from a 2nd order vulnerability, the Security Analyst is using a sanitization method with the
property that also the stored data in the database is sanitized. This semantics is given in
Line 23. The fact that the value stored in the database ‘stays’ sanitized is not because a sep-
arate sanitization method is applied to that value, but rather because it is a property of the
sanitization method applied to the user-provided input value at Line 13. Therefore, the san-
itization block at Line 23 is annotated with the semantics keywords SQL, Sanitize, and
Implicit(UsernameMsg) since the value UsernameDB ‘inherits’ the sanitization prop-
erty from the value UsernameMsg. Applying the SQLRemoveSanitization Semantic
Mutation Operator to the statement at Line 23 represents the vulnerability, that the data
value stored in the database is not sanitized against SQL anymore.

Applying the SQLRemoveSanitization Semantic Mutation Operator to Lines 13, 16
and 44 leads to the same mutation as described e.g., in Listing 2.12 or Listing 2.13. To
represent 2nd order SQL vulnerabilities, the same SQLRemoveSanitization Semantic
Mutation Operator is applied to Lines 23 and 26 as well. Since these two annotated Line
are annotated with the semantics keyword Implicit, the mutation looks as follows (List-
ings 2.16 and 2.17):

8and binds stronger than or

53

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

employees bosses

SELECT * FROM `employees` WHERE dept=$DEPT and cleared=1 and country=$COUNTRY
UNION
SELECT * FROM `bosses` WHERE dept=$DEPT and cleared=1 and country=$COUNTRY

Figure 2.10.: Split SQL Vulnerability Example

Listing 2.16: Applying SQLRemoveSanitization M

1 %@Semantics[SQL, Sanitize, Implicit(UsernameMsg)]
2 - UsernameDBSan := sanitize_SQL_username_t(UsernameDB) ;
3 + UsernameDBSan := UsernameDB ;
4 + removed_SQL_Implicit_Sanitize_username_t(UsernameMsg);

Listing 2.17: Applying SQLRemoveSanitization M

1 %@Semantics[SQL, Sanitize, Implicit(PasswordMsg)]
2 - PasswordDBSan := sanitize_SQL_password_t(PasswordDB) ;
3 + PasswordDBSan := PasswordDB ;
4 + removed_SQL_Implicit_Sanitize_password_t(D);

2.6.2.4. Vulnerability Leading to Split SQL Injection.

For the discussion of the split SQL injection, we do not extend the web application anymore,
since it would not introduce any new concepts at the model level. Therefore, we focus on
the implementation level vulnerabilities only. In our example in Listing 2.8, profiles were
represented as a single string due to simplicity. For the discussion of the split SQL injections,
we refine these profiles. A profile provides salary information of employees and bosses to
the HR department. Data stored in profiles is split into two separate tables. The first table
is called ‘employees’ and stores employee’s salaries. The second table is called ‘bosses’
and stores boss’ salaries. The webpage getSalaries.php accesses these two tables with
the query shown in Figure 2.10. An HR employee can query the salaries of a specific
department in a country by providing the department and the country ID. E.g., to get the
salaries of people working for department ‘1’ in the country ‘1’, the HR employee sends

54

2.6. Mutation Operators

the query getSalaries.php=1&COUNTRY=1. This creates the following SQL query and
returns the first record of the table ‘employees’ and the second record of the table ‘bosses’:

SELECT * FROM `employees` WHERE dept=1 and cleared=1 and country=1
UNION
SELECT * FROM `bosses` WHERE dept=1 and cleared=1 and country=1

As Figure 2.10 shows, the tables also contains salaries that are not ‘cleared’, meaning they
are secret and should never be revealed. In particular, let’s assume not-cleared employee’s
salaries are secret, and not-cleared boss’ salaries are top secret and therefore should not be
accessible by the HR department.

To attack this security property and reveal top-secret salaries, an attacker considers to
inject e.g., 1/* as a department ID and */ as the country ID. Providing these two inputs,
the query:

SELECT * FROM `employees` WHERE dept=1/* and cleared=1 and country=*/
UNION
SELECT * FROM `bosses` WHERE dept=1/* and cleared=1 and country=*/

is constructed. Since all text between * and *\ is interpreted as a comment, this split
injection leads to the condition:

Select * FROM `employees` WHERE dept=1
UNION
Select * from `bosses` WHERE dept=1

Therefore, the query returns all salaries of employees and bosses in the department ‘1’,
independent if the salaries are cleared or not. By injecting opening and closing comment
characters, parts of the query are commented out without losing the second query appended
as a ‘UNION’. In contrast, injecting the malicious payload 1 -- for the department ID
is commenting out everything after the department ID. The query with such an injection
returns all salaries of the employees but not the bosses’ ones. We want to stress that the
above vulnerability is even present if all user-provided inputs are sanitized against SQL with
the PHP method mysql real escape string because the slash (/) and the star (*) do
not get sanitized. This is an example where a SQL sanitization mechanism is present but
not effective.

This examples demonstrates that sophisticated SQL attacks might require to inject the
malicious payload via different parameters to attack the web application. To find such a vul-
nerability in a formal specification, the Semantic Mutation Operator SQLRemoveSaniti

55

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Sanitization statements
are part of the same
message handler?

Annotation
contains…

Annotation
contains…

generate mutated model (multi-
parameter SQL injection)

yes no

Ignore this
mutation

only INPUT
only IMPLICIT

only INTERNAL
INPUT & IMPLICIT

generate mutated model (multi-
message stored SQL injection)

INPUT & INTERNAL
IMPLICIT & INTERNAL

otherwise

Figure 2.11.: Decision Diagram for SQLRemoveSanitization

zation needs to be applied to both the department and the country ID at the same time.
Collecting every possible mutation candidate and considering any possible combinations
of candidates for a mutated formal specification do not always represent a real-world vul-
nerability. Not every possible combination makes sense from a semantic point of view.
Therefore, the SQLRemoveSanitization mutation operator generates only dedicated
combinations. Figure 2.11 presents an overview of the decision diagram. It shows which
combinations lead to a useful mutated model. For instance, if an implicit sanitization and
an internal sanitization block is mutated, that are not part of the same message handler, a
mutated model is generated. This combination leads to a mutated model since it is the typ-
ical situation where a 2nd order SQL injection happens. At the other side, if a sanitization
operation on an input value and a sanitization operation on an internal value are mutated,
there is no well-known vulnerability and no clear understanding how this vulnerability can
be exploited. Therefore, such mutated models are not generated.

Unfortunately, SQL queries are not only represented by introducing facts or symbolic
functions assigned to a variable, but could also be represented as a condition check. Espe-
cially in the context of using model checkers, combining the receipt of a message with a
condition check is very popular since it helps to reduce the state-space explosion problem.
If the Security Analyst has chosen this way of modeling an SQL query, the above mentioned
Semantic Mutation Operator(s) cannot be applied and therefore, also no SQL vulnerabil-
ity can be injected. Therefore, we define two more Semantic Mutation Operators, called
BindVariableToRandomValue and DetachVariableForSQL. They are both applica-
ble, if the SQL query is modeled as a condition check. Please note that the following two
Semantic Mutation Operators do not represent additional source code vulnerabilities, but
define two additional ways to inject SQL vulnerabilities into the model.

56

2.6. Mutation Operators

2.6.2.5. Semantic Mutation Operator: DetachVariableForSQL

A formal specification usually contains conditions or guards that are used for permission
checks or retrieving matching values from a data store. In our example in Listing 2.8, the
server entity only accepts a username and a password during the login if they are avail-
able in the credentials database. At implementation level, this check is implemented with
an SQL query. At the model level the Security Analyst models the same functionality as part
of a selectOn statement by checking the boolean value of the fact credentials. There-
fore, the Security Analyst annotates the credentials check with the semantic keyword
SQL as shown at Line 9 in Listing 2.8.

Having an SQL vulnerability in this functionality, the username could e.g. be used to
bypass the credential checks. This means that the credentials check may return true in many
more cases than it actually should. To inject such a vulnerability, the DetachVariable
ForSQL Semantic Mutation Operator is applied on conditions that represent SQL queries.
It replaces concrete values with an existence quantifier. In ASLan++, the question mark
(?) represents a placeholder for any value of correct type. Therefore, the mutation operator
performs the following mutations:

1. The mutation operator choses a question-marked variable that is used in an SQL an-
notated guard.

2. To determine whether the variable is an input or an internal variable, the mutation
operator follows the following heuristics:

• If the question-marked variable is part of a receiving message, it is considered
as an input variable. The question-marked variable in the SQL annotated guard
is mutated by the General Mutation Operator DetachVariable which in a
nutshell, replaces the question-marked variable by a question mark only.

• If the question-marked variable is not part of a receiving message, it is considered
as an internal variable. Such a variable is used to retrieve values from other
sources than the message. Therefore, it is ignored by this Semantic Mutation
Operator.

Applying the mutation operator to Line 9 in Listing 2.8 will generate three mutated mod-
els, as shown in Listings 2.18 to 2.20. In the first one, the variable Username in Line 9
is detached. In the second one, the variable Password in Line 9 is detached, and in the
third one, both variables are detached at the same time. Both of these variables are input
variables, since they are parameters of the login message. All the other question-marked
variables are ignored by the Semantic Mutation Operator. The AdditionalData vari-
able is e.g. used to retrieve data that is stored alongside with the username and password
in the credentials database. The content of that variable cannot be provided by an input
parameter of the login message.

57

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Listing 2.18: Applying DetachVariableForSQL M

1 on(?Client -> Actor : login(?Username, ?Password) &
2 %@Semantics[SQL] {
3 credentials(?, ?Password, ?AdditionalData)
4 %@} & ...
5): {
6 maliciousValue_SQL_input_text(Username) ; ...

Listing 2.19: Applying DetachVariableForSQL M

1 on(?Client -> Actor : login(?Username, ?Password) &
2 %@Semantics[SQL] {
3 credentials(?Username, ?, ?AdditionalData)
4 %@} & ...
5): {
6 maliciousValue_SQL_input_text(Password) ; ...

Listing 2.20: Applying DetachVariableForSQL M

1 on(?Client -> Actor : login(?Username, ?Password) &
2 %@Semantics[SQL] {
3 credentials(?, ?, ?AdditionalData)
4 %@} & ...
5): {
6 maliciousValue_SQL_input_text(Password) ;
7 maliciousValue_SQL_input_text(Username) ;
8 ...

Detaching a variable by replacing it with a question mark is a very powerful mutation
operator. Without any semantic annotation, it is so powerful that it represents a set of
vulnerability classes. Therefore, it is important to bind them to a specific vulnerability
class. Like for any other mutation operator, we provide the semantics with the semantic
keywords in the annotation of the condition. Therefore, by changing the keywords, we
are able to bind the DetachVariableForSQL to a different semantics and therefore to a
different source code vulnerability. We consider this as a feature of this Semantic Mutation
Operator.

58

2.6. Mutation Operators

DetachVariableForSQL in 10 Seconds

The Semantic Mutation Operator looks for annotations that contain the label
SQL, and are part of a condition. If such an annotation is found, the mutation
operator performs the following actions:

• A question-marked variable in the annotated guard expression is replaced by a
question mark only.

• The detached variable is tracked using the special fact
maliciousValue SQL {Internal,Input} [type of variable](
[Variablename]).

While DetachVariableForSQL considers every possible combi-
nation of mutation candidates for generating mutated models,
DetachVariableForSQLUpToLimit[x][y] creates mutants where the mu-
tation is applied at least x times and at most y times.

2.6.2.6. Semantic Mutation Operator: BindVariableToRandomValue

As discussed in Section 2.6.2.5, the underlying source code vulnerability of the Detach
VariableForSQL Semantic Mutation Operator is that a malicious user-provided data can
be used to bypass the condition check. This kind of mutation is usually effective when the
condition occurs in positive form and has to be evaluated to true for violating a security
property (Line 9 in Listing 2.8). For the case, where the condition occurs in negative form
and has to be evaluated to true to violate a security property (Line 6 in Listing 2.14),
applying the DetachVariableForSQL Semantic Mutation Operator does not lead to the
desired result in most cases.

The model expresses that the check !database() is implemented as an SQL query. If
the user-provided data is not sanitized correctly against SQL, a malicious input can be used
to bypass the database check and allows to create a profile with the same username as an
existing profile. If e.g., security-relevant properties are inferred from the username, the
newly created profile inherits the security properties as well and therefore, it might violate
the security property.

If we would apply the DetachVariableForSQL Semantic Mutation Operator to rep-
resent this vulnerability, the condition !database(inst username t(?),?) in Line 6
of Listing 2.14 would always be evaluated to false if at least one username is stored in the
database. Since the existence of at least one account is very likely to be true, applying the
DetachVariableForSQL Semantic Mutation Operator does not inject the SQL vulnerabil-
ity as desired. Therefore, we need the dual mutation operator of DetachVariableForSQL
which we call BindVariableToRandomValue.

The Semantic Mutation Operator BindVariableToRandomValue in the above situ-
ation represents the incomplete or missing sanitization check against SQL by replacing

59

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

the variable ?UsernameMessage in Line 6 by a random value. It does so by declaring
a new non-initialized variable of the correct type. The question-marked variable is then
substituted by the new variable name. The resulting part of mutated model is given in
Listing 2.21 where [randomID] is a randomly generated string for every mutated model.
Now the probability that the database credentials already contains a username equal
to the random generated value is usually very small and therefore, the mutation represents
the SQL vulnerability to bypass the security check.

Listing 2.21: Message Handler for Creating a New Profile M

1 symbols
2 credentials(username_t, password_t) : fact;
3 RandomValue_[randomID] : username_t;
4

5 body {
6 select{
7 on(?Us *->* Actor : createNewUser(
8 inst_username_t(?UsernameMessage,?UNounceMessage),
9 inst_password_t(?PasswordMessage,?PNounceMessage)

10) &
11 %@Semantics[SQL] {
12 !credentials(inst_username_t(?RandomValue_[randomID],?))
13 %@}
14) : {
15 maliciousValue_SQL_input_text(UsernameMessage) ;
16 ...

60

2.6. Mutation Operators

BindVariableToRandomValue in 10 Seconds

The Semantic Mutation Operatoris looking for annotations that contain the la-
bel SQL, and are part of a condition. If such an annotation is found, the mutation
operator performs the following actions:

• A question-marked variable in the annotated guard expression is replaced by a
dummy value. The mutation operator achieves this by using an uninitialized
variable.

• The newly introduced variable is declared in the symbols section of the entity
where the mutation operator is applied.

• The replaced variable is tracked using the special fact
maliciousValue SQL {Internal,Input} [type of variable](
[Variablename]).

As for the DetachVariableForSQL Semantic Mutation Operator, BindVariable
ToRandomValue considers every possible combination of mutation candidates for
generating mutated models. To specify a lower bound x and an upper bound y
of applying mutations, the BindVariableToRandomValueUpToLimit[x][y]
Semantic Mutation Operator can be used.

2.6.3. XSS Vulnerabilities and Their Semantic Mutation Operators

The problem of interpreting user-provided data without first sanitizing the data is not only
a problem in the context of SQL. It is the underlying fundamental problem of other vulner-
abilities like XSS injections, buffer overflow, and the like as well. In this section we focus
on XSS attacks. Although the vulnerability occurs at the server side, the exploit is executed
at the client side, compared to a server-side exploitation of e.g, an SQL injection. Since
we already discussed the problem of sanitizing user-provided input data in the previous
sections, we will keep the sections about XSS vulnerabilities shorter.

Input validation vulnerabilities are very typical and widely observable in practice. A web
application requires user-provided input for its functionality. Since the user is a non-trusted
agent in the web application model, such input needs to be sanitized to exclude malicious
parts. If the sanitization is not done properly, user-provided input can be crafted that gets
interpreted by the browser and therefore can change the behavior of the web application.
Such vulnerabilities can occur because the complete sanitization functionality is missing,
or because there exists at least one specific input for which the sanitization functionality is
inefficient. At a conceptual level, these issues also apply for SQL vulnerabilities, as already
discussed in Section 2.6.2.

A common classification of XSS attacks is reflexive, stored, and DOM-based XSS. In this
Ph.D thesis, we will focus on the first two types of XSS. Semantic Mutation Operators for
DOM-based XSS vulnerabilities are not covered since the malicious input will never be sent

61

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

to the server-side component of the web application but stays in the browser all the time.
Therefore, to discover DOM-based XSS attacks, the client-side browser needs to be modeled
in greater details than our considered formal specifications do. Therefore, we focus on
reflexive and stored XSS vulnerabilities and provide a very short description of these two
kinds of vulnerabilities in this section. A more comprehensive one is available e.g. at
OWASP [45, 46].

Reflected XSS. This is an attack where the server accepts user-provided data that it sends
back to the client. Figure 2.12 illustrates the conceptual information flow. In the first
step the attacker prepares a special link that contains malicious parts, represented by
link[malicious data]. It sends this link to the victim e.g. by email or instant
message services. In the second step he waits until the victim clicks on the link so that
the victim’s browser will transform the link into a corresponding HTTP request. Send-
ing this request to the server, the malicious part contained in the link is transmitted
to the server as part of the HTTP request (http-request[malicious data]). A
web application vulnerable to XSS does not sanitize data provided by the user; and
therefore, the server sends back a response for the HTTP request that contains the ma-
licious data as well (http-response[malicious data]). Because user-provided
data is immediately sent back in the response of an HTTP request, such an attack is
called reflected XSS. The victim’s browser trusts all data from the server, therefore, it
will process and render the malicious data.

Stored XSS. Figure 2.13 shows the information flow for a stored XSS attack. The attacker
communicates with the web application directly instead of contacting the victim. He
interacts with the application and exploits a vulnerability to store malicious data on
the server (http-request[malicious data]). After storing the malicious data
on the server, the attacker has to wait until the victim visits the web application. In
particular the victim has to send a request to the server that triggers a response that
contains the malicious data. In contrast to the reflected XSS attack, a stored attack
targets victims without the need of contacting each of them individually.

In both kinds of attacks, the malicious data consists of script data, that is interpreted
by the victim’s browser. The XSS attack misuses the trust the browser has in the web
application. The web browser considers anything that the web application sends as trusted
and therefore executes/interprets it.

2.6.3.1. Vulnerability: Sanitization in the Context of Stored XSS Attacks

Compared to reflected XSS, (multi-step) stored XSS is more difficult to discover. There-
fore, we skip a more detailed discussion of reflected XSS attacks but focus on stored ones.
OwnCloud [24] is an open source implementation of a cloud service. It primarily allows
file sharing but is extensible with a variety of plug-ins. In the past, OwnCloud suffered
from many vulnerabilities. According to the CVE Details website [23], 80 vulnerabilities for
the OwnCloud web application were reported between 2012 and July 8 2014. 35% of all
reported vulnerabilities are related to XSS, but only 3.8% to SQL Injection (SQLI).

In this web application a missing input XSS sanitization that leads to a stored XSS vulner-
ability can be found. The web application provides a functionality to create a calendar based

62

2.6. Mutation Operators

Attacker

Victim Web App

1. link[malicious data]

2. http-request[malicious data]

3. http-response[malicious data]

Figure 2.12.: Reflected XSS: Conceptual Information Flow

AttackerVictim Web App

1. http-request[malicious data]3. http-request

4. http-response[malicious data] 2. http-response

Figure 2.13.: Stored XSS: Conceptual Information Flow

63

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

on data that is sent by the user as part of an HTTP request (Line 3 in Listing 2.22). None
of the parameters title (Line 18), location (Line 19), and description (Line 31) is
sanitized against XSS. The vulnerability is part of the updateVCalendarFromRequest
method, that is called from within the createVCalendarFromRequest method (Line 7).
After the calendar has been created, it is added to the database by invoking the method add
of the object OC Calendar Object (Line 41). This method parses the data (Line 42), se-
rializes it (Line 46), and finally stores the non-sanitized user-provided data using an SQL
query in Lines 53 to 55. Upon reading this data later and render it in the browser, the
missing sanitization against XSS allows an attacker to inject malicious code. The developer
of OwnCloud fixed this concrete vulnerability by invoking the strip tags function call
for each parameter (Lines 20, 21 and 32 in Listing 2.22).

Product Owncloud 4.0.1
CVE ID CVE-2012-4396

http://www.cvedetails.com/cve/CVE-2012-4396/
Vulnerability Type Cross Site Scripting

Location apps/calendar/lib/object.php

Listing 2.22: CVE-2012-4396 S

1 %% owncloud-4.0.1/apps/calendar/ajax/event/new.php
2 $cal = $_POST['calendar'];
3 $vcalendar = OC_Calendar_Object::createVCalendarFromRequest($_POST);
4 $result = OC_Calendar_Object::add($cal, $vcalendar->serialize());
5

6 %% owncloud-4.0.1/apps/calendar/lib/object.php
7 public static function createVCalendarFromRequest($request)
8 {
9 ...

10 return self::updateVCalendarFromRequest($request, $vcalendar);
11 }
12

13

14 %% owncloud-4.0.1/apps/calendar/lib/object.php
15 @@ -600,8 +600,8 @@ public static function createVCalendarFromRequest($request)
16 public static function updateVCalendarFromRequest($request,$vcalendar)
17 {
18 - $title = $request["title"];
19 - $location = $request["location"];
20 + $title = strip_tags($request["title"]);
21 + $location = strip_tags($request["location"]);
22 $categories = $request["categories"];
23 $allday = isset($request["allday"]);
24 $from = $request["from"];
25

26 @@ -611,7 +611,7
27 @@ public static function updateVCalendarFromRequest($request, $vcalendar)
28 $totime = $request['totime'];
29 }
30 $vevent = $vcalendar->VEVENT;
31 - $description = $request["description"];
32 + $description = strip_tags($request["description"]);

64

2.6. Mutation Operators

33 $repeat = $request["repeat"];
34 if($repeat != 'doesnotrepeat'){
35 $rrule = '';
36

37

38 %% owncloud-4.0.1/apps/calendar/lib/object.php
39 class OC_Calendar_Object{
40 ...
41 public static function add($id,$data){
42 $object = OC_VObject::parse($data);
43

44 ...
45

46 $data = $object->serialize();
47

48 ...
49

50 $stmt = OCP\DB::prepare('INSERT INTO *PREFIX*calendar_objects (
51 calendarid,objecttype,startdate,enddate,repeating,
52 summary,calendardata,uri,lastmodified)
53 VALUES(?,?,?,?,?,?,?,?,?)');
54

55 $stmt->execute(array(
56 $id,$type,$startdate,$enddate,$repeating,$summary,$data,$uri,time()
57));
58 ...
59 }
60 }

2.6.3.2. Semantic Mutation Operator: XSSRemoveSanitization and
XSSRemoveSanitizationUpToLimit

The same kind of problems occur in our example in Listing 2.8. In Line 15, the web ap-
plication accepts the store message that is used to write profile data into the database.
Later, these profile data can be requested using the view message (Line 36). To prevent
XSS attacks where the malicious data first is sent to the web application before returned to
the victim’s browser, the web application needs to sanitize the user-provided data. In the
same way as the Security Analyst annotates an ASLan++ block for SQL sanitization, he
annotates a block that represents the sanitization of data against XSS using the semantics
keyword Sanitize. Depending on the semantics of the sanitization the Security Analyst
further provides one of the following semantics keywords HTML, or Javascript, depen-
dent on in which context the user-provided data is used and which kind of sanitization
function is used.

• If the user-provided data is suppose to be inserted into an HTML code fragment,
sanitization functions like strip tags, htmlspecialchars, or htmlentities are used. In this
situation, the Security Analyst uses the HTML semantics keyword for the annotation.

• Sometimes, a user-provided value is assigned to a JavaScript variable, like e.g.,
<script>var myVar = '<?php echo $variable; ?>';</script>. In this
situation, the developer needs to use JavaScript dedicated sanitization function. E.g.,

65

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

WordPress [43] offers the function wp_localize_script() to perform this kind
of sanitization. Since the user-provided input is embedded into JavaScript code the
Security Analyst uses the JAVASCRIPT semantics keyword.

This context information is later used for selecting appropriate malicious input. Fi-
nally, the Security Analyst annotates a sanitization block with either the semantic keyword
Input, Implicit or Internal. Sanitizing Input data is performed by the web ap-
plication before it further processes user-provided data. E.g, in Line 24 in Listing 2.8
the user-provided input profile data is sanitized against HTML. Applying the XSSRemove
Sanitization Semantic Mutation Operator leads to the mutated partial model shown in
Listing 2.23. Implicit is used to express that the sanitization property is propagated to
copies of the data value (Line 34). Such an annotation leads to the mutated partial model
given in Listing 2.25. Finally, sanitizing Internal data is performed on data that the web
application processes from a location other than a request directly, e.g., data read from a
database. This functionality is used as part of the view message handler in Line 43. Apply-
ing XSSRemoveSanitization leads to the mutated partial model given in Listing 2.24.

Vulnerabilities that refer to reflected and (multi-step) stored XSS attacks can be rep-
resented using the two Semantic Mutation Operators XSSRemoveSanitization and
XSSRemoveSanitizationUpToLimit. Interestingly, these two mutation operators in-
ternally operate exactly in the same way as the Semantic Mutation Operators SQLRemove
Sanitization and SQLRemoveSanitizationUpToLimit respectively. The semantics
upon applying them to a formal specification is given by the semantics keywords as de-
scribed in the previous paragraph.

Listing 2.23: Applying XSSRemoveSanitization M

1 %@Semantics[HTML, Sanitize, Input]
2 - sanitizeTextHTML(D) ;
3 + removedXSSSanitization_HTML_Sanitize_Input_text(D) ;

Listing 2.24: Applying XSSRemoveSanitization M

1 %@Semantics[HTML, SanitizeByEscaping, Implicit(D)]
2 - sanitizeTextHTML(D2) ;
3 + removedXSSSanitization_HTML_Sanitize_Implicit_text(D2) ;
4 + removedXSSSanitization_HTML_Sanitize_Implicit_text(D) ;

Listing 2.25: Applying XSSRemoveSanitization M

1 %@Semantics[HTML, SanitizeByEscaping, Internal]
2 - sanitizeTextHTML(D) ;
3 + removedXSSSanitization_HTML_Sanitize_Internal_text(D) ;

66

2.6. Mutation Operators

XSSRemoveSanitization in 10 Seconds

The Semantic Mutation Operator is looking for annotations that contain one of
the language labels HTML, or Javascript and the label Sanitize. If the formal
specification contains such an annotation, the mutation operator performs the
following actions, depending on the annotated expression.

• If the sanitization is modeled by introducing a fact, the General Mutation Oper-
ator InvalidateIntroduceFact is applied.

• If the sanitization is modeled by retracting a fact, the General Mutation Operator
InvalidateRetractFact is applied.

• If the sanitization is modeled by applying a symbolic function to a vari-
able and assign the application to a variable, the General Mutation Operator
RemoveFunctionFromAssignment is applied.

In all three situation, the mutation operators add the fact removed [language
label] [type of value] Sanitized [parameter signature](value) to
the specification.

Depending on the modeling and the complexity of vulnerabilities that are considered,
generating mutated models by applying the Semantic Mutation Operators only once is po-
tentially not enough. To let the model checker find AATs related to more complex vulner-
abilities, we need to apply the Semantic Mutation Operators multiple times. Therefore,
the above described mutation operators XSSRemoveSanitization considers any combi-
nation of sanitization blocks against XSS. Furthermore, the Semantic Mutation Operator
XSSRemoveSanitizationUpToLimit[x][y] can be configured by specifying the min-
imal x and maximal number y of considered sanitization block per mutated model. The
semantics is equivalent as for the SQLRemoveSanitization mutation operator. There-
fore, more details can be found in Section 2.6.2.1.

2.6.3.3. Vulnerability in the Context of Split XSS

An example of a split XSS vulnerability is given in a blog post called ‘Bypassing Chrome’s
Anti-XSS filter’ [29]. The author created a minimal example application that demonstrates
the essence of the vulnerability. The webpage reads two parameters a and b, that are part
of the HTTP request http://securitee.tk/files/chrome_xss.php?a=INPUT1&
b=INPUT2. If malicious XSS code like <script>alert(1);</script> is injected solely
using parameter a, the anti XSS filter will recognize the malicious input and filter it out.
The same behavior can be observed using parameter b for the injection. Although the filter
mechanism is effective on each parameter separately, it is not effective if the injection is
using both parameters at the same time. Therefore, the malicious input is split into two
parts. Such a partial input is not recognized by Chrome’s anti XSS filter and therefore,
the content of the parameter is sent back to the client in a non-sanitized form. Using two

67

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

different parameters for the injection, it is very likely that the content of the parameters
are displayed in different parts of the webpage. At the same time, the content of both
parameters must be glued together in order to represent valid code that can be executed.
A concrete pair of inputs that eliminates the ‘gluing’ problem is presented in the blog post.
The first part of the malicious input terminates with the HTML comment sign /* for starting
a multi-line comment. Similar the second part start with the HTML comment sign */ to
end a multi-line comment. This attack behavior is very similar to the split SQL injection
described in section 2.6.2.4.

2.6.4. General Mutation Operators

In the previous sections we have introduced the Semantic Mutation Operators for two im-
portant and in practice relevant security vulnerabilities. To implement them several General
Mutation Operators are needed that we discuss in this section. The set of General Mutation
Operators is not complete in general, but is sufficient to realize the Syntactic and Semantic
Mutation Operators considered in this Ph.D thesis. In a nutshell, General Mutation Opera-
tors take a set of Basic Operations and apply them all to the same specification. Applying
a General Mutation Operator to a formal specification preserves the type correctness of the
model. In particular, a model checker can process such a mutated model without syntactic
and validation errors. E.g., a formal specification that is syntactically correct but contains
a variable that is not declared, generates a validation error. Similar to Semantic Mutation
Operators, General Mutation Operators keep track of the changes that they perform on the
formal specification.

InvalidateIntroduceFact, InvalidateRetractFact. In order to mutate facts appearing as
statements, SPaCiTE introduces two different General Mutation Operators. The muta-
tion operator InvalidateIntroduceFact invalidates a fact that was introduced.
Similar, the mutation operator InvalidateRetractFact invalidates a statement
that retracts a fact9. The two mutation operators work as follows: Both of them
require the following Basic Operations: ChangeFactName, RemoveEObject, AddSym-
bolsSection, and AddFactSymbolDeclaration. We will discuss them in more details in
Section 2.6.5.

The InvalidateIntroduceFact General Mutation Operator is applicable on state-
ments that introduce a fact, whereas the mutation operator InvalidateRetract-
Fact is applicable on statements that retract a fact. Conceptually, both mutation
operators remove the statement from the specification and add a value-tracking fact
instead. For the InvalidateIntroduceFact mutation operator, SPaCiTE com-
bines these two actions by changing the fact name instead of removing and adding a
new fact. This optimization is not implemented for the InvalidateRetractFact
since ‘the optimization’ already requires two actions, — the removal of the keyword
retract, and changing the fact name. The new fact name is the concatenation of the
word ‘removed’ and the initial fact name. To keep the specification model verifiable,
both General Mutation Operators add the corresponding new fact declaration to the

9Please note that retract is an operation and not a fact. Therefore, one cannot check whether the action
retract was indeed performed. In particular, if a fact is evaluated to false, it does not imply that it was
retracted. It could also be the case that it has never been introduced so far.

68

2.6. Mutation Operators

symbols section. In terms of finding attack traces in the specification, in the vast
majority of cases renaming a fact name and removing a fact are equivalent under the
assumption that the renamed fact is not used for any further operations during model
checking. Intuitively, since facts cannot be stored in variables, the new fact would in-
fluence other parts of the specification if the new fact name is referenced directly ‘by
name’. Even if a security goal does not depend on fact names directly but indirectly,
e.g., via the number of elements in a set, adding the new fact to a set would require
to reference the new fact ‘by name’. The above assumption excludes such operations.

Introduce2RetractFact10. There are traces in which removing/renaming a fact-introduc-
ing statement is not sufficient. If a fact is introduced several times, the correspond-
ing fact is evaluated to true, independent on how many times it is introduced (but
introduced at least once). If the evaluation of the fact needs to be set to false, apply-
ing InvalidateIntroduceFact to any subset of the fact-introducing statements
is not sufficient. It would require to apply it to every fact-introducing statement.
More conveniently is the action retract. Since introducing the fact with the same
data element d several times is semantically equivalent to introducing the fact only
once, the multiple times introduced fact can be invalidated at once by retracting it
rather than ‘not introducing’ it. Therefore, applying the General Mutation Operator
Introduce2RetractFact to a fact introducing statement s performs the following
operation.

• The statement s that introduces a fact F is replaced by a statement that retracts
the same fact F .

In contrast e.g., to the InvalidateIntroduceFact mutation operator, the fact is
already declared in the symbol section. Otherwise, the provided input specification
would not be model-checkable. Therefore, the Introduce2RetractFact mutation
operator does not need to modify the symbols section. In terms of the value-tracking
fact, this mutation operator performs exactly the same operations as the mutation
operators InvalidateIntroduceFact and InvalidateRetractFact.

Retract2IntroduceFact10. For the Retract2IntroduceFact General Mutation Opera-
tor the same argumentation as for the Introduce2RetractFact can also be ap-
plied. It is considered as the complement of the Introduce2RetractFact muta-
tion operator. It operates on statements that retract a fact. When a fact F is retracted,
evaluation F returns false from now on, independent how many times the same fact
was introduced before. The mutation operator Retract2IntroduceFact performs
the following operation.

• A statement that retracts a fact F is replaced by a statement that introduces the
same fact F .

The RetractFact2IntroduceFact mutation operator takes as input a statement
that retracts a fact. In contrast e.g., to the InvalidateIntroduceFact muta-
tion operator, the fact is already declared in the symbol section. Otherwise, the

10The two General Mutation Operators Introduce2Retract and Retract2Introduce are listed here for complete-
ness reasons. For the models used in our evaluation, these two General Mutation Operators are not needed
and therefore, they are disabled for the evaluation.

69

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

provided input specification would not have been model-checkable. Therefore, the
Retract2IntroduceFact mutation operator does not need to modify the sym-
bols section. In terms of the value-tracking fact, it inherits the behavior from the
InvalidateIntroduceFact General Mutation Operator.

RemoveFunctionFromAssignment. In ASLan++, values and symbolic functions can be
assigned to variables. To apply a symbolic function with the name mySymbolic
Function to a variable V of any type T , the Security Analyst declares the function as
mySymbolicFunction(T) : T;. To apply this function to value V and assigning
it to a variable V ′, the Security Analyst writes:

V' := mySymbolicFunction(V);

Applying the General Mutation Operator RemoveFunctionFromAssignment re-
moves the symbolic function mySymbolicFunction and directly assigns the value
of V to variable V ′. Since V and V ′ do not necessarily have to have the same type,
and the symbolic function might require more than one argument, the mutation op-
erator is only applied if V has the same type or is a subtype of the type of V , and if
the function only requires one argument. In addition to removing the symbolic func-
tion, an additional value-tracking fact is added. In the above context, the mutation
operator adds the specific fact removedmySymbolicFunction T(V) to tell the
TEE, that the content of V potentially contains malicious data.

DetachVariable. The general DetachVariable mutation operator takes as parameter a
question-marked variable and removes the variable name. To illustrate the function-
ality of the mutation operator, let’s have a look at the example given in Listing 2.26:
The condition fact0(?A, ?B) & fact1(?A) & fact2(?B) is used in
three different contexts — as part of a while-condition (Line 2), if-condition (Line 3),
and selectOn- condition (Line 5). We assume that variable A is of type text. The
General Mutation Operator requires a reference to a question-marked variable as a
parameter. For this example, we provide a reference to the variable A that is part of
the fact fact0 to the General Mutation Operator.

Since variables A and B are question-marked, the model checker tries to find values
for A and B to violate any of the defined security goals in the same specification.
Because both variables A and B are part of different facts in the condition, different
restrictions for possible values for A and B have to be fulfilled. E.g., A is affected
by fact0 and fact1, whereas B is affected by fact1 and fact2. To make the
overall evaluation of the guard independent of the variable A in fact0, one idea is
to remove fact0 from the overall guard. Since fact0 has multiple parameters, it
not only restricts possible values for variable A, but for others as well. Therefore,
removing fact0 is not advisable. To avoid such side effects, we detach variable A
in fact0 by replacing it with a pure question mark. Please note, that the value the
model checker assigns to the question mark in an AAT is not accessible in the model
anymore, since it represents a so called don’t care placeholder or an anonymous
variable.

70

2.6. Mutation Operators

Listing 2.26: DetachVariable Example M

1 body {
2 while(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
3 if(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
4 Select{
5 on(fact0(?A, ?B) & fact(?A) & fact2(?B)) : {}
6 }
7 }
8 }
9 }

In addition detaching the variable, the General Mutation Operator DetachVariable
keeps track which variable was mutated. It inserts the value-tracking fact at different
locations, depending on the guard type.

In the following listings we show the effect of applying the General Mutation Opera-
tor. The listings are given in diff format, that means that the lines starting with the
minus sign (-) correspond to the original formal specification. Lines starting with the
plus sign (+) show the result after applying the mutation operator(s).

In Listing 2.27 we show the effect of applying the General Mutation Operator to
the first parameter of the fact fact0 in Line 1. The mutated variable is part of a
while guard, therefore, the value-tracking fact is inserted as the first statement of
the while-body (Line 3) and as the first statement after the complete while-body
(Line 10). The General Mutation Operator inserts both value-tracking facts because
it is not guaranteed that the while-body is indeed entered and if it is, if the trace
continues after the while. It might be the case that the trace is blocked inside the
while-body so that the statement right after the while-body is never reached. There-
fore, both value-tracking facts are added.

Listing 2.28 shows the application of the mutation operator to the first parameter of
fact0 in Line 2. The mutated variable is part of a branch guard, the value-tracking
fact is inserted as the first statement of the if-statement block (Line 4) and as
the first statement after the else-statement block (Line 10). The second one is
even added if the else branch is missing. In this case, the mutation operator adds
the complete else branch to the model. The value-tracking fact is not added after the
complete if-then-else block because it is not guaranteed that the complete block
is always part of a reported AAT. Due to the mutation, a specified security property
might be violated at any statement inside the if or else branch. To have the value-
tracking fact part of the AAT in any case, it is added to both the if and the else
branch.

Finally in Listing 2.26 the mutation operator is applied to the first parameter of the
fact fact0 in Line 4. The mutated variable is part of a selectOn guard, the value-
tracking fact is inserted as the first statement of the selectOn body (Line 6). Since
a selectOn guard does not have a similar concept like the else branch for an
if-then-else branch, the mutation operator adds the value-tracking fact to the
corresponding selectOn block only.

71

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Listing 2.27: DetachVariable Example 1 M

1 - while(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
2 + while(fact0(?, ?B) & fact1(?A) & fact2(?B)) {
3 + maliciousValue_Unknown_text (A) ;
4 if(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
5 Select{
6 on(fact0(?A, ?B) & fact(?A) & fact2(?B)) : {}
7 }
8 }
9 }

10 + maliciousValue_Unknown_text (A) ;

Listing 2.28: DetachVariable Example 2 M

1 while(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
2 - if(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
3 + if(fact0(?, ?B) & fact1(?A) & fact2(?B)) {
4 + maliciousValue_Unknown_text (A) ;
5 Select{
6 on(fact0(?A, ?B) & fact(?A) & fact2(?B)) : {}
7 }
8 }
9 + else {

10 + maliciousValue_Unknown_text (A) ;
11 + }
12 }

Listing 2.29: DetachVariable Example 3 M

1 while(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
2 if(fact0(?A, ?B) & fact1(?A) & fact2(?B)) {
3 Select{
4 - on(fact0(?A, ?B) & fact(?A) & fact2(?B)) : {
5 + on(fact0(?, ?B) & fact(?A) & fact2(?B)) : {
6 + maliciousValue_Unknown_text (A) ;
7 }
8 }
9 }

10 }

Besides the location of the value-tracking statement, the mutation operator automat-
ically determines the specially crafted fact name of the form maliciousValue
[vulnerability type] [type]([variable name]). The variable name is
the name of the question-marked variable that the mutation operator removes and
[type] is its type. Since a General Mutation Operator is not motivated by security
related vulnerabilities, the mutation operator does not know the underlying source
code fault and therefore, it sets the vulnerability type to Unknown.

72

2.6. Mutation Operators

ReplaceVariableByRandomValue. This General Mutation Operator is the dual view of
the previous mutation operator. Where DetachVariable gives the model checker
more freedom to choose a value for a parameter, the ReplaceVariableByRandom
Value sets it to a fixed random value. Internally, the mutation operator makes use
of the RenameVariable basic operations because a variable is not substituted by
the random value directly, but with a variable whose value is random. Since both
the DetachVariable and ReplaceVariableByRandomValue mutation operator
operate on the same artifact of the model, adding the value-tracking fact works exactly
the same for both of them.

To fulfill the requirement that the mutated model is still model-checkable without
errors after applying a General Mutation Operator, this General Mutation Operator
handles a special case — an anonymous variable that appears in a clause. A clause
has the form clausename(argument list) : head :- body. If an anony-
mous variable in the body is replaced by a random value as described above, the
random value variable must either appear in the head or the argument list of the
clause. Since anonymous variables do not appear in the head, and changing the head
signature requires multiple changes in the specification (declaration and every use
of the head), the ReplaceVariableByRandomValue General Mutation Operator
adds the random-value variable to the argument list. As a short illustration, List-
ing 2.30 shows the application of the mutation operator to the second argument of
the instance username t expression.

Listing 2.30: ReplaceVariableByRandomValue in Clauses M

1 clauses
2 - label_listStaffParameterData(Response, ListStaffData) :
3 - getUsername(Response, ListStaffData) :-
4 - Response = instance_username_t(ListStaffData, ?);
5

6 + label_listStaffParameterData(RandomValue, Response, ListStaffData):
7 + getUsername(Response, ListStaffData) :-
8 + Response = instance_username_t(ListStaffData, RandomValue);

IntroduceFact. Finally, this General Mutation Operator introduces a fact to the model and
makes sure that the fact name is correctly declared. As input parameters, it takes the
fact to be introduced, the signature of the fact, and the position where the new fact
has to be added.

2.6.5. Basic Operations

In the previous section we have presented a set of General Mutation Operators that are
sufficient to realize the Syntactic and Semantic Mutation Operators considered in this Ph.D
thesis. In this section we present a set of Basic Operations. This set is not complete in
the sense that it represents every possible operation that can be performed on ASLan++
neither. Nevertheless the set of Basic Operations is sufficient to implement the discussed
General Mutation Operators.

73

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

AddFactSymbolDeclaration. Each fact, variable, constant, etc. needs to be declared.
AddFactSymbolDeclaration is an operation that adds a new fact declaration
to the symbol section of an entity. This Basic Operation needs two parameters —
the signature of the fact symbol and the entity that declares this new symbol. Since
AddFactSymbolDeclaration is a basic action it requires that the specified entity
which should declare this new symbol, already contains a symbol section.11 There-
fore, trying to add a new symbol declaration (using the AddFactSymbolDeclara-
tion Basic Operation) to an entity that does not already have a symbol section will
fail. Nevertheless a dedicated Basic Operation is available to create such a symbol
section (see AddSymbolsSection).

AddSymbolsSection. To add new symbol declarations to a model a symbols section
must be present. Since this section is optional in an entity (not every entity needs its
own symbols section), the Basic Operation AddSymbolsSection will add such a
section.

ChangeFactName. An instance of the fact myFact(...) is renamed to ‘newName’ by
applying the Basic Operation changeFactName(‘‘newName’’) on the fact my-
Fact. Please note that this Basic Operation is designed to work on a per-usage level.
This means that changing the name of a fact does not influence the declaration of the
original fact name, nor the use of the fact name at other places in the specification.

ChangeKeyword. This Basic Operation takes an arbitrary keyword in the specification and
replaces it by a given string. As a special use case, this operation can e.g., be used to
overwrite the keyword retract (see Line 14 in Listing 2.2) by the empty string.

IntroduceFact. A mutation operator uses the IntroduceFact Basic Operation to add a
new fact statement to the model. In addition to the pure new fact expression, the
location where this fact is introduced is identified by two parameters: an element e
of the Abstract Syntax Tree (AST) of the original model and a position information
consisting of either add before, add after (relative to the element e), or re-
place element.

DetachVariable. The Basic Operation DetachVariable considers variables prepended
with a question mark (?), typically used in guards (conditions, horn clauses, security
goals, etc. (see AVANTSSAR Deliverable 2.3 [62])). The semantics of such a variable
is that the model checker is trying to find a value for that variable to finally violate a
specified security goal. Since a question-marked variable has a name12 it can be used
in several expressions of the same guard at the same time. The more often a question-
marked variable appears, the more constraints have to be fulfilled by a value for
that variable. The Basic Operation DetachVariable substitutes a question-marked
variable by a question mark only. That means that the number of constraints for
possible values of the question-marked variable is decreased.

11See the ASLan++ grammar for syntactic details of a symbol section in an ASLan++ specification.
12In particular, it is not an anonymous variable.

74

2.7. Mapping AATs to Operational Test Cases

Listing 2.31: Example AAT A

1 <client> *->* server : register(INJECT(SQL),firstname1,lastname1,password1)
2 server *->* <client> : ack_register
3 <client> *->* server : loginAdmin(username_admin,password_admin)
4 server *->* <client> : listPendingAccounts(username1,firstname1,lastname1)
5 <client> *->* server : activateClient(username1)
6 server *->* <client> : VERIFY(client)

RenameVariable. This Basic Operation renames a variable to a given name. E.g., mutation
operators use this Basic Operation to rename a variable to a variable name that is
declared but not initialized. Such a variable gets a random/dummy value assigned.

RemoveEObject. The RemoveEObject Basic Operation removes the referenced node of
the AST from the specification. Other related artifacts like possible declarations of the
object to be removed are not deleted.

AddVariableToClauseArgumentList. Variable names that appear in the body of a clause
have to appear in the head or the argument list. This Basic Operation adds a variable
to the argument list.

2.7. Mapping AATs to Operational Test Cases

[The basic underlying concepts of the following section has already been published
by Büchler et al. [83], but has been extended.]

In the previous section we have shown what SPaCiTE-conform models are and how dif-
ferent Semantic Mutation Operators modify such models. In this section we assume that
SPaCiTE was used to model check mutated formal specifications and that the model checker
reports a set of AATs. Therefore, we discuss how such reported AATs are transformed to
executable attack traces. These steps correspond to Figure 2.2#d-h.

Listing 2.31 shows an example of an AAT. An Abstract Attack Trace (AAT) consists of a
sequence of abstract messages exchanged between different entities. These messages may
contain parameters where some of them are used for malicious inputs. Such parameters
are indicated with the special keyword INJECT(SQL), INJECT(HTML), etc. to know
what type of malicious payload has to be injected. Similar, the AAT can contain the special
message VERIFY to indicate after which sequence of messages the victim is attacked.

To operationalize such AATs they need to be instantiated. Since web applications are
usually accessed with the help of a browser, we consider the browser level in between the
AAT and the SUV. Executing test cases requires the help of the Security Analyst since the
abstraction gap has to be bridged between the AAT and the SUV. We believe that ask-
ing the Security Analyst for a mapping of an AAT to a sequence of actions performed in
the browser is easier and more convenient than providing a mapping directly to protocol
level messages. In addition the mapping of AATs to executable source code consists of
application-dependent and application-independent information. Therefore, we split the

75

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

process of making AATs operational into two different steps by adding an additional in-
termediate level (➋ in Figure 2.14) in between the AAT layer (➊ in Figure 2.14) and the
implementation layer (➌ in Figure 2.14). These three layers have different purposes. Layer
➊ describes the AAT as a sequence of abstract messages as given by the output of the model
checker. Therefore, the first mapping takes as input an AAT and maps it to a sequence of
abstract browser actions, expressed in the WAAL language. WAAL is a language that we
developed for this Ph.D thesis to describe how exchanged messages between agents can be
generated and verified in terms of actions a user performs in a web browser (Layer ➋). Pro-
viding this mapping is a manual task but supported with a Domain Specific Language (DSL).
The second step is mapping WAAL actions to executable API calls using a specific frame-
work. In our case we make use of the Selenium framework [26] and provide a mapping
from WAAL to selenium API calls. Once such a mapping is defined, it can be automatically
applied and reused for any test case. Therefore, layer ➌ describes the instantiated attack
trace in terms of source code.

In the following sections, we first describe WAAL in Section 2.7.1. In Section 2.7.2 we
present the first mapping from application-dependent messages to the intermediate level.
In Section 2.7.3, we present the second mapping, from the intermediate level to executable
test cases. Both mappings are illustrated with concrete examples. Finally, the TEE is de-
scribed in Section 2.7.4.

2.7.1. Web Application Abstract Language (WAAL)

The discussed vulnerabilities in Section 2.6 are vulnerabilities that are conveniently ex-
ploited via the browser. The operationalization of the reported AATs can benefit from the
fact that the browser automatically generates protocol level messages based on actions per-
formed in the browser (click, type, select, etc.). To benefit from these advantages, we
contribute with an abstract language that expresses actions an end user performs in the
browser, called Web Application Abstract Language (WAAL). It is an abstract language for
web application actions at the browser level. The purpose of this language is to define
browser actions that an end user can perform to either send messages to a web server or
check its responses. Thus, WAAL actions are split into two sets: Generation Actions (GAs)
and Verification Actions (VAs).

WAAL actions operate on objects which we summarize in Table 2.1. The first column
shows the elements expressed in WAAL, the second column the same element in HTML, if
available. These elements are used by both GAs and VAs. Most of the elements are self
explanatory, for the others, a short description is given.

Generation Actions (listed in Figure 2.15) represent a set of atomic actions that a user
can perform when he uses a web application (e.g., follow a link, click on a button, type
text into a text field). More complex actions can be described by a combination of such
atomic actions. For example, log in via a form may correspond to the sequence: select
the name from a menu, type the password into a text field, and click on the login button.
Since it works at the browser level, GAs are similar to API methods from Selenium, a Web
application testing framework. However, GAs are not API methods at source code level
but abstract browser actions and therefore, they are technology independent. Because the
EBNF of the GAs and VAs is provided in Appendix C.1, and the different WAAL actions are
quite intuitive, we only briefly describe the actions:

76

2.7. Mapping AATs to Operational Test Cases

Figure 2.14.: Instantiation and Execution Methodology

77

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

WAAL Element HTML Element Remarks

Browser This element represents the browser itself and is e.g.,
used for the action goToURL.

WebpageContent The webpage content refers to the content that the
browserWindow displays.

Button <button>
InputButton <input>
Textfield <input>
Dropdown <select>
Link <a>
SelectableList <select>
Div <div>
Span
Image
TextArea <textarea>
GenericElement This element can be used to reference elements not

listed above. In this situation, the complete XPath /
CSS selector expression [27] has to be provided to
uniquely identify the element.

Table 2.1.: Browser Elements Available in WAAL

Generation Actions

Click Type Select SwitchTo GoToURL

WaitForElement

Follow

SelectFile Cancel AlertAcknowledge
Alert Inject

Figure 2.15.: Generation Actions (GAs)

78

2.7. Mapping AATs to Operational Test Cases

GAs always start with the keyword Generate::, followed by the keyword Element:
and the {element} on which the action is performed (see Table 2.1). The action is specified
with the keyword Action: followed by the {action} to be executed and the required
parameters.

Generate::
Element: {element}
Action: {action} [additional parameters]

Click. The click action takes an element identifier and performs a click action on this el-
ement. If the click action programmatically reads values from other elements, they
can be specified with the optional parameters ImplicitElement, ImplicitAt-
tribute, and ImplicitValue.

Type. The type actions takes two arguments. The first one identifies the textbox and is
given by the {element} parameter. The second argument specifies the text to be
typed into that textbox.

Select. The select action is used to select an item from a dropdown or list element. It takes
two arguments — the identifier of the dropdown or list element (Element), and the
identifier of the element to be selected.

SwitchTo. Depending on the used Selenium version, one needs first to switch to the correct
frame before an action on an element in that frame can be executed. Such a switch is
performed by the switchTo action. The frame to switch to is specified as the Element
parameter.

GoToURL. To start using a web application, the GoToURL action is used to navigate to
the homepage of the web application. The element this cation operates on is the
{Browser}. The single additional argument of that action is the URL.

Follow. Before the web application is displayed in the browser, the user usually navigates
to different pages by following links. This action is performed by the follow action
which takes as a single argument the link identifier, given as the Element parameter.

SelectFile. To upload a file to the web application, the user usually opens a file selection
dialog provided by the Operating System. Since this workflow temporarily leaves the
browser context, WAAL specifies the action SelectFile. It expects two arguments — the
element on the webpage to select the file (usually a button) (Element), and the file
location on the filesystem as an additional parameter.

Acknowledge Alert / Cancel Alert. Upon executing a browser action, the web application
might display alert windows that have to be acknowledged or canceled. Such an alert
window is usually disrupting the workflow, i.e., it first has to be acknowledged or
canceled before any further action can be performed. Therefore, the corresponding
actions do not require an argument and acts on the currently displayed alert window.

79

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Verification Actions

IsDisplayed IsPresent IsNotPresent IsContained IsNotContained

ValueHasChanged PageIsLoaded VerifyMaliciousEffect

Figure 2.16.: Verification Actions (VAs)

WaitForElement. After performing an action, the next element for performing the next ac-
tion might not immediately be available. To increase the robustness of a test case, the
waitForElement action can be used to pause the execution until the desired element
is available. The argument of that action is the identifier of the element (Element
parameter) to wait for.

Inject. Finally, a security test case depends on malicious inputs that are injected to the
web application. The argument of that action is the type of input (SQL, HTML,
JAVASCRIPT), and optionally an integer to specify the order of injections in the con-
text of a split attack. It is used to select corresponding malicious inputs from the
instantiation library.

Verification Actions (listed in Figure 2.16) are used to verify whether an observed re-
sponse matches with an expected one. The verification is performed according to a user
provided criterion. WAAL supports the following criteria:

VAs always start with the keyword Verify::, followed by the keyword Element: and
the {element} on which the verification action is performed. The condition to be checked
is specified with the keyword Condition: followed by one of the below described condi-
tions and the necessary parameters.

Verify::
Element: {element}
Condition: {condition} [additional parameters]

IsDisplayed/IsNotDisplayed. An element on a webpage is either displayed or not. To
check this property of an element, WAAL offers the actions IsDisplayed and IsNot-
Displayed. As an argument, they expect the identifier of the corresponding element
(Element parameter).

IsPresent/IsNotPresent. An element might not be displayed, but it can still be present
in a webpage. This property is checked using the WAAL actions IsPresent and IsNot
Present.

80

2.7. Mapping AATs to Operational Test Cases

TextIsContained/TextIsNotContained. Whereas the previous two criteria are applied to
elements of the webpage, the actions TextIsContained and TextisNotContained checks
the availability of a text string inside a web page displayed in the browser. Therefore,
this action operates on the WebpageContent element.

ValueHasChanged. A lot of web applications are programmed in an asynchronous way.
That means that values of web page elements can change without reloading the page.
WAAL offers the action ValueHasChanged to verify if a specific value has changed
according to a reference value provided as an additional parameter.

PageIsLoaded. To check whether a requested page has already been loaded, WAAL pro-
vides the corresponding action PageIsLoaded. It does not require any additional pa-
rameters, since the check is performed in the single active tab of the browser, given
by the Browser element.

VerifyMaliciousEffect. This verification action corresponds to the inject action. As de-
scribed above, the inject action requests an object from the instantiation library and
asks that object for the malicious input. The action VerifyMaliciousEffect executes the
verification action on the same object as used for the injection and checks the condi-
tion using the browser object (Element parameter). Therefore, it does not require
any additional parameters.

The above described GA and VA sets define the foundations for WAAL:

WAAL = (GA∗ × VA∗)∗

A valid word in WAAL is a sequence of actions that either produce (GA∗) or verify (VA∗)
exchanged messages. Note that we consider sequences only (and not trees) because this
language is intended to represent the AAT at the browser level. In particular, WAAL does not
support branches and the like. Since a trace from a model-checker is an abstract message
sequence, a sequence of actions at browser level is sufficient to represent such traces.

2.7.2. Mapping From Abstract Model Level to Browser Level

2.7.2.1. General Principle

The output of the model checker is an AAT that consists of a sequence of exchanged mes-
sages. Each message m has a sender agent S, a receiver agent R and a channel C. Thus,
the input L1 for the mapping to WAAL is defined as follows:

L1 = (A× C ×A×M)∗

where A is the set of agents, C is the type of channels used (confidential, authentic, or
both), and M is the set of abstract messages exchanged between two agents. The mapping
τ1 maps each message m (together with its sender, receiver and channel) to a pair of se-
quences such that the first component of the pair generates m and the second component
of the pair verifies m:

τ1 : (A× C ×A×M) → (GA∗ × V A∗)

81

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

The actual mapping depends on the sender and the receiver. Each agent described in
the model is either part of the SUV — the TEE can observe his behavior — or is simulated
(stubbed) by the TEE. The former kind of agent is denoted by the set Ao, for observed
agents, while the latter is denoted by the set As, for simulated agents. Partitioning the
agent set A into Ao and As is the responsibility of the Security Analyst.

Given these two sets, the sequence of GAs (≡ τ1()|G where |G returns the first component
of the output pair of τ1) for a sender S, a channel C, a receiver R and a message M is
constructed as follows:

τ1(S, C,R,M)|G :=

{
(ga1, ga2, . . . , gan), if S ∈ As

(), if S ∈ Ao

where n ∈ N and gai ∈ GA for all 1 ≤ i ≤ n. Thus, if the sender S is a simulated agent,
the message m is mapped to a sequence of GAs such that the message m is generated by
a web browser after executing this sequence. If the sender is an observed agent, the TEE
does not need to generate anything.

The sequence of VAs not only depends on Ao and As, but also on an assumption about the
channel, namely whether sent messages can be assumed to be delivered unmodified. This
assumption is called integrity assumption. If a channel C is integer, we write integrity(C).
The integrity of a channel C is helpful if such a channel is used by a simulated agent. Due to
the integrity property the receipts of the message does not have to be verified. Therefore,
the sequence of VAs (≡ τ1()|V where |V returns the second component of the output pair of
τ1) for a sender S, a channel C, a receiver R and a message M is constructed as follows:

τ1(S, C,R,M)|V :=

{
(), if S ∈ As ∧ integrity(C)
(va1, va2, . . . , van), otherwise

where n ∈ N and vai ∈ V A for all 1 ≤ i ≤ n. Thus, a message m is mapped to a sequence
of VAs such that a browser can verify the received message m by executing this sequence.
The only case where the TEE does not need to verify m is when m has been sent over an
integrity channel by a simulated agent.

In addition to mapping every message from the attack trace to sequences of actions in
WAAL, the Security Analyst must also provide an initialization block (GA 0 in Figure 2.14)
to prepare the execution of the attack trace. This initialization block is also expressed as ac-
tions in WAAL. The syntax definition of such an initialization block is given in Appendix C.1
and examples can be found at the end of Section 2.7.2.2 and in Appendices D.1 and D.2.
Let us now give a concrete example of this mapping, by using WebGoat.

2.7.2.2. Example: Application to WebGoat

To illustrate the mapping τ1 we consider the WebGoat application [39]. The application is
explained in detail in Section 4.2. For now, the following information about WebGoat is
sufficient. WebGoat is a simple web application to store and view user profiles13. A user
can send a login message to authenticate and gets back the response listStaffOf from
the web application. This message contains an ID of a profile the authenticated user is

13like a Google+ or Facebook profile

82

2.7. Mapping AATs to Operational Test Cases

authorized to view. To request the profile, the user sends the message viewProfileOf to
the web application and gets back the response profile.

For our example, let’s consider an agent named webServer in Ao and an agent named
jerry in As that must be controlled by the TEE. Furthermore, we assume the integrity
of messages sent over the channels. Thus, messages generated by simulated agents do not
have to be verified.

Applying our mutation-based approach to the formal specification of the WebGoat appli-
cation leads to an AAT given in Listing 2.32. The AAT consists of four messages (login,
listStaffOf, viewProfileOf, profile). login and viewProfileOf represent re-
quests that are sent to the web application. listStaffOf represents the response sent
to the client upon the login message. Finally, profile is the response sent to the client
upon the viewProfileOf request. Listing 2.33 shows the mapping τ1 of these four mes-
sages to sequences of actions in WAAL; Only the GAs and VAs relevant to the attack trace
are shown. Left out is e.g., an initialization block (GA 0) that provides a way to put the
system into a state suitable to run the attack trace.

Listing 2.32: Example AAT
(wS:=webServer) A

1 <jerry> *->* wS : login(username(jerry),password(jerry))
2 wS *->* <jerry> : listStaff(username(tom))
3 <jerry> *->* wS : viewProfile(username(tom))
4 wS *->* <jerry> : profile(username(tom),tom_profile)

Definition 4. During the specification of the WAAL mapping, the Security Analyst can use the
special variables $1, $2, $3, etc. They refer to the following information:

$1 refers to the actual sender of the message.

$2 refers to the actual channel used to send/receive the message.

$3 refers to the actual receiver of the message.

$4, $5, etc. refer to the actual first, second, etc. parameter values of the message.

These special variables allow that the WAAL mapping can be reused for multiple AATs.

The mapping provided in Listing 2.33 translates to the following description:

login(usr,pwd). Whenever the abstract message login is exchanged, the TEE executes the
following three generating actions (Lines 1 to 13 in Listing 2.33). In the considered
testing environment, the integrity assumption for the channel *->* holds and there-
fore, the generated protocol level messages do not have to be verified. Therefore, the
abstract message is only mapped to GAs (see Section 2.7.2).

1. In the browser that is used by jerry to communicate with the webServer, the
TEE selects the element given by the first parameter of the ‘login’ message in the
dropdown list with the name ‘employee id’. Note that the first parameter of the
message is referenced by $4 (see Definition 4).

83

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

2. Using the same browser, the TEE types the password given by the second param-
eter of the ‘login’ message into the textfield with the name ‘password’. Note that
the second parameter of the message is referenced by $5 (see Definition 4).

3. Finally, the TEE clicks on the button with the attribute ‘value=Login’.

listStaffOf. Whenever the client (jerry) receives a ‘listStaffOf’ message from the server,
the TEE performs the following verification action (Lines 15 to 19 in Listing 2.33).
Note, that no GA is required.

1. In the browser that receives responses for user jerry sent by the webServer, the
TEE checks the webpage content if the text string ‘Credit Card’ is contained.

viewProfileOf. To make the abstract message ‘viewProfileOf’ operational, the TEE per-
forms two generating actions. In the considered testing environment, the integrity
assumption holds and therefore, the generated protocol level messages do not have
to be verified:

1. The TEE chooses the browser used by jerry to communicate with the webServer
and selects the element provided by the argument of the ‘viewProfileOf’ message
in the list with the name ‘employee id’. Note that the first parameter of the
message is referenced by $4.

2. After selecting the profile, the TEE performs a click on the button with the at-
tribute ‘value=ViewPofile’.

profileOf. Finally, the ‘profileOf’ message is mapped to one action that the TEE performs
in the browser where the webServer’s response for user jerry is sent to.

1. The TEE checks the webpage content if the text string ‘View Profile Page’

Listing 2.33: Mapping of WebGoat Abstract Actions to WAAL W

1 τ1(login(usr, pwd)) = ((
2 Generate:: "jerry" -> "webServer"
3 Element: Dropdown: ByName("employee_id")
4 Action: Select "$4" // $4 = user name of login message
5

6 Generate:: "jerry" -> "webServer"
7 Element: Textfield: ByName("password")
8 Action: Type "$5" DefaultValue "Default" // $5 = password of login message
9

10 Generate:: "jerry" -> "webServer"
11 Element: InputButton: ByAttribute(Attribute: "value", Value: "Login")
12 Action: Click
13), ())
14

15 τ1(listStaffOf(usr)) = ((), (
16 Verify:: "webServer" -> "jerry"
17 Element: WebpageContent
18 Condition: TextIsContained:"Staff Listing Page"
19)

84

2.7. Mapping AATs to Operational Test Cases

20

21 τ1(viewProfileOf(usr)) = ((
22 Generate:: "jerry" -> "webServer"
23 Element: SelectableList: ByName("employee_id")
24 Action: Select "$4" // $4 = profile ID of viewProfileOf message
25

26 Generate:: "jerry" -> "webServer"
27 Element: InputButton: ByAttribute(Attribute: "value", Value: "ViewProfile")
28 Action: Click
29), ())
30

31 τ1(profileOf(usr)) = ((), (
32 Verify:: "webServer" -> "jerry"
33 Element: WebpageContent
34 Condition: TextIsContained: "Credit Card"
35)

Finally, WAAL allows the specification of mapping functions. As we have seen in List-
ing 2.33, the WAAL mapping of e.g., the login message takes the first argument of the
login message to select the username form the dropdown menu, and the second ar-
gument is typed into the password textfield. Considering the AAT in Listing 2.32, the
first argument is the abstract expression username(jerry) and the second argument
is password(jerry). For an executable test case, we need to map this abstract expres-
sions to concrete ones. Such mappings of abstract values to concrete values are specified in
the MAPPINGS section of the WAAL mapping specification. In Listing 2.34, we define two
functions — username and password. The expression username(tom) is mapped to the
value Tom Cat (employee), whereas the expression username(jerry) is mapped to
the value Jerry Mouse (hr) (Lines 2 to 4). The second function password is defined
accordingly (Lines 6 to 8).

Listing 2.34: WAAL Mapping: Function Definition W

1 MAPPINGS {
2 username:
3 abstract:" tom " concrete:"\"Tom Cat (employee)\""
4 abstract:" jerry " concrete:"\"Jerry Mouse (hr)\""
5

6 password:
7 abstract:" tom " concrete:"\"tom\""
8 abstract:" jerry " concrete:"\"jerry\""
9 }

Initialization Block

As mentioned before, an executable test case needs to start with an initialization block. Its
structure is given in Listing 2.35 and consists of the following components:

Simulated agents. Using this keyword, a list of agents is specified that need to be simu-
lated by the TEE.

85

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Listing 2.35: WAAL Mapping: Initialization W

1 SIMULATED_AGENTS { "jerry" }
2

3 AGENTS_CONFIGURATIONS {
4 Agent: "webBrowser" {
5 httpBasicAuthentication_Username: ""
6 httpBasicAuthentication_Password: ""
7 BrowserIP: "127.0.0.1"
8 BrowserPort: 4444
9 Sessions: { {"webServer"} } // e.g., { {"user1"}, {"user2"} }

10 Driver: REMOTEWEBDRIVER
11 Platform: LINUX
12 Browser: firefox
13 Browser Version: ANY
14 Init: {
15 Generate::
16 Element: Browser
17 Action: GoToURL "http://172.16.1.21"
18 }
19 }
20 }

Agents configurations. This keyword is used to provide the configuration of each agent.
Such a configuration consists of the following information.

• Username and password for a potential basic authentication.

• The IP (browserIP) and port (browserPort) of the Selenium Hub.

• Agents, with which the current agent shares a session.

• The driver used to access the web application (For now, RemoteWebDriver is the
only supported driver).

• The platform on which the browser for accessing the web application should be
executed (Linux, Mac OS X, Windows, Android, etc.) 14.

• The type of browser and the version that should be used (Firefox, Chrome).

• Finally, the Init block specifies initial actions to bring the browser into the start
state.

2.7.3. Mapping from WAAL to Executable Source Code

Once the attack trace is translated into WAAL actions, the remaining step to be able to ex-
ecute the test case is to map these WAAL actions into executable statements. In contrast to
the first mapping τ1 (from abstract messages to WAAL actions) that is application depen-
dent, the second mapping τ2 (from WAAL to source code) is done once and for all, unless
the technologies used by the TEE changes.
14Whether the platform, browser, and browser version requirements can be met depends on the configuration

of the TEE (see Section 2.7.4.1).

86

2.7. Mapping AATs to Operational Test Cases

2.7.3.1. General Principle

In this section, we discuss the general principle of how abstract browser actions are mapped
to executable API calls. Conceptually, two API interfaces are used in cooperation, even
though they operate on different abstraction levels. The first API works at the browser level
and is thus close to WAAL, which makes the translation of WAAL actions to this API easier.
The second API works directly at the protocol level and is thus close to the Web application
communication protocol. The second API is needed only if an action cannot be performed
by the first API. In that case, the TEE may request the help of a test expert for providing the
corresponding protocol-level message.

In Figure 2.14, there are two kinds of blocks at the source code level: Browser Actions
(BA), and Recovery Actions (RA). A BA corresponds to an action performed in a browser. A
RA corresponds to a recovery action performed after a failure from a BA. A failure in a BA
is either a runtime exception (e.g. a browser element (link, button, dropdown menu, etc.)
where an action should be invoked does not exist) or the response of the BA corresponds
to a runtime exception triggered at the server side. Depending on the failure that triggers
those exceptions, a RA either belongs to the browser or to the protocol level. Furthermore,
such a RA may ask a Security Analyst to provide additional information and therefore, it
interrupts the automatic execution.

The mapping τ2 : GA ∪ VA → (BA× RA)∗ maps each WAAL action a ∈ GA ∪ V A to a
sequence of BA and RA with τ2 (a) ∈ (BA× RA)∗.

If the TEE can successfully execute every BA, which is done in a fully automatic way,
then the verdict is determined as follows: if the actual reactions of the SUV conform to the
expected reactions of the test cases — this verification is done by the BA blocks related to
VA actions —, the attack has been reproduced and therefore, the test has failed; otherwise,
the test has passed.

Runtime Failures During Browser Actions. A BA may fail due to several reasons of
different nature. For example, an input element may be disabled, in read only mode, or
its maxLength attribute may be set to a value smaller than the size of the text to type in.
Another example is a button that is disabled or totally missing, and therefore, the BA cannot
click on it. For some failures of this kind, it might be possible to execute a recovering action
and continue the test execution.

If an error occurs when executing a BA, the TEE changes its operational mode and a RA
is executed in order to recover from this error. There are three different ways of recovering
after a BA has failed: (i) prepend missing information to the BA and execute it again;
(ii) find an alternative way to execute the BA and resume just after it; (iii) move to the
protocol level, provide the corresponding message, and resume after the next protocol-
level message (which may be after several BA blocks). For the following examples of such
recovering methods, the browser level represents HTML elements including their actions,
and the protocol level is HTTP.

As an example for the prepend case, let BA be an action to check the content of a web-
page. This action may fail because the user is not authenticated and first has to provide
credentials. In the case of basic access authentication, this request for credentials can be
automatically detected and therefore, it is not necessary to provide this step as WAAL ac-
tions. Thus, a possible action in RA could be that the TEE asks the test expert for the

87

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

credentials or that they are read from a configuration file. Then, the TEE reconfigures the
used component by adding the credentials and requests the website again. Requesting a
website and adding credentials can both be performed at the browser level.

For the alternative case, let us consider an HTML button element that triggers an event
if the user clicks on it and this event is the execution of a defined JavaScript function.
If the HTML button is disabled, the click event can not be triggered by the BA. A possible
alternative action, performed by the corresponding RA, is to execute the JavaScript function
directly, by using a different API call. Another example is submitting a form to the server.
Usually, the end user clicks on the button Submit. Therefore, the Security Analyst can
specify exactly that action in WAAL. If the specified Submit button is missing, Selenium
allows to call the submit() method on any element in the form. Therefore, there are
alternative ways to submit the form data to the server even if the initial Submit button is
missing.

A conceptual example where the TEE has to switch to the protocol (HTTP) level is the
following one. Assume that a BA tries to select an element from a list and sends this value to
the server by clicking on a button. This action may fail because the element is not present in
the list. In that case, the TEE presents some sample HTTP messages to the test expert (e.g.,
by generating the HTTP messages corresponding to choosing another element from the
list). Then, the TEE asks the test expert to provide the correct HTTP message. This message
is sent and the BA that follows this HTTP message is executed afterwards. It is worth noting
that the underlying assumption when a RA creates some HTTP samples is that the agent
state may be restored afterwards. Thus, as soon as the TEE intercepts and drops the HTTP
requests, the RA can generate as many samples as possible. During the SPaCIoS EU project,
we implemented this functionality as a prototype. In this Ph.D. thesis, we do not further
elaborate on that feature since it is not needed for our evaluation examples.

2.7.4. Test Execution Engine (TEE)

The Test Execution Engine is responsible for executing test cases on the SUV. As a reminder,
a test case consists of inputs and expected outputs (Figure 2.17). Inputs correspond to
stimuli, represented by abstract messages part of the AAT. Therefore, the TEE needs to
make stimuli operational, called controlled messages. At the same time, the TEE needs to
observe the reaction of the SUV, called observed messages, and compare them to the expected
reaction, represented by expected messages in the AAT. Building a verdict means to compare
the observed messages to the expected reactions.

Passing / Failing a Test. In the literature, a test passes if the expected output of the test
case can be observed at the SUV. It means that the SUV behaves as the test case specifies the
behavior. Contrary, a test case fails if the observed output of the SUV does not conform with
the expected reaction. To follow the notation in the literature, we assume the following
notation:

When the TEE observes that the abstraction of the observed messages conforms with the
expected reaction we say that this test case fails. Stimuli and expected reactions repre-
sent counter examples (negative test cases) since they violate a security property. If such
a negative test case can be reproduced on the SUV it means that the SUV does not defend

88

2.7. Mapping AATs to Operational Test Cases

Client

Web Server

Implementation Level

Stimuli

Expected Reaction

Controlled Message

Observed Message
Client Web Server

Model Level

Figure 2.17.: Stimuli and Reactions

against this attack and therefore, the SUV is vulnerable. A failed test case usually attracts
the attention of the Security Analyst which is desirable in this situation since the SUV needs
to be fixed. Contrary, when the TEE observes that the observed messages does not conform
with the expected reaction we say that this test case passes. Unfortunately the value of such
passed test cases is limited because the Security Analyst cannot learn anything from such
test cases. It is unclear why such test case could not successfully be reproduced and the
reasons can be manifold. Since testing can only prove the existence but never the absence
of a vulnerability the notation conforms with the fact that a passed test case usually does
not attract the Security Analyst’s attention too much.

2.7.4.1. TestNG and Selenium Grid

The TEE is implemented with TestNG [32] and the Selenium framework [26]. TestNG is a
testing framework inspired by JUnit [14] and NUnit [19] and introduces some new func-
tionalities that make it more powerful and easier to use. To make stimuli operational and
get access to observed messages sent back by the web application, SPaCiTE makes use of
the selenium framework [26]. Selenium is a collection of tools to automate browsers. It
consists of Selenium IDE, Selenium Server, Selenium WebDriver, and Selenium Grid. Sele-
nium IDE is a Firefox Browser plugin that allows an end user to record and replay browser
actions. It is a complete IDE and therefore, the scriptability is very limited. Selenium IDE
is not appropriate for the integration in a automated testing tool. The selenium remote
control consists of two parts — the selenium-server and the client. The selenium-server is
responsible for automatically launching and stopping browsers. The client libraries are used
to control the server. The libraries are available for many different programming languages,

89

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

like Java, Ruby, Python, Perl, PHP, and so on. Selenium WebDriver integrates the WebDriver
API into Selenium. According to the website, WebDriver is designed to provide a simpler, more
concise programming interface in addressing some limitations in the selenium-RC API [28]. In
contrast to Selenium RC, WebDrivers make use of the browser’s own native support for au-
tomation. Selenium RC uses the same functionality for each supported browser. It achieves
this by injecting Javascript into the browser. An advantage of WebDrivers is that they can be
used with a local browser, or it communicates via a Selenium Server to a remote browser.
Finally Selenium Grid brings Selenium RC to the next level. It is focused on executing test
cases in parallel on multiple browsers, by managing multiple environments from a central
point. To keep the test case execution environment as flexible and scalable as possible, we
make use of the Grid 2 feature of Selenium. This decision is supported by the following
arguments:

• In the context of security testing, it is desirable to execute an abstract test case multi-
ple times. This is the case when there exists multiple possibilities to make the abstract
test case operational. In addition, an abstract test case describes the logical steps that
have to be performed on the SUV but the concrete payload to be used is not part of the
abstract test case. The payload consists of the malicious part of the test case. There-
fore, the same abstract test case should be executable multiple times with different
concrete malicious payloads. Selenium Grid 2 supports parallel execution of test cases
by letting clients register with the Selenium Grid Server and act as worker threads.
Such clients fetch and execute test cases that are waiting at the Selenium Grid Server.
TestNG supports this situation by providing the concept of Data Providers15 and the
possibility to execute test cases in parallel16.

• Web applications are accessed from many different devices and browsers. Selenium
Grid offers the possibility to attach different browsers executed on different operating
systems very easily. Therefore, the effort to add a browser of a new vendor, a different
browser version, or adding browsers executed on mobile devices is very low. The op-
erational test cases need to be parameterized by three options that specify the desired
browser, browser version, and the operating system the browser should be executed.

Therefore, the test execution engine of SPaCiTE integrates Selenium Grid as an underly-
ing execution framework and offers the necessary configuration possibilities to administer
Selenium Grid.

A typical Selenium Grid 2.0 architecture is given in Figure 2.18. The Selenium hub is
at the center of the architecture and brings test case generation and text case execution
together. It orchestrates the test execution on all the available Selenium nodes. Each node
can have separate characteristics. On a high level, a node registers itself at the hub with
information about the operating system, browser vendor, and browser version. Using Sele-
nium Grid, a test case specifies on which platform it has to be executed. Thus, the selenium
hub is responsible for forwarding the test case to a matching selenium node and collecting
the verdict.

15http://testng.org/doc/documentation-main.html#parameters-dataproviders
16http://testng.org/doc/documentation-main.html#parallel-running

90

2.7. Mapping AATs to Operational Test Cases

Test Case Generation

Test Case Distribution

Test Case Execution
Selenium Hub

Web Application

Web Server

Injection Database

Execution
Node

Execution
Node

Execution
Node

Figure 2.18.: Selenium Grid 2.0 Architecture

2.7.4.2. Instantiation Library

To execute operational test cases, we need concrete malicious inputs and verification mech-
anisms. Since these low level details are not present in the abstract model, SPaCiTE makes
use of an instantiation library that provides such low level information. Abstractly speaking,
the instantiation library is a set of objects, where each object provides malicious inputs and
a verification method.

The elements of the instantiation library are implemented as Java Class files stored on a
filesystem and belong to the package instantiationObjects (see Figure 2.19). Each
such object needs to inherit from the abstract class Injection that requires the presence
of two methods getInputValues() and verify(), given in Listing 2.36. To query the
element for the concrete malicious input, the method getInputValues is invoked. Simi-
lar, to check if the injected malicious code is successfully executed by the web application,
the method verify is invoked on the same instantiation element as used to retrieve the
malicious input.

The Semantic Mutation Operator that was used to generate an AAT represents a class of
source code vulnerabilities and therefore, it determines which instantiation elements have
to be used during the execution of the attack trace. To allow SPaCiTE to automatically
determine the semantics of the malicious input, several semantic keywords are defined in
the package semantics. Technically, they represent interfaces so that an element can
implement several of them. E.g., if a malicious input is dedicated to a split XSS attack, the
corresponding instantiation element implements the interfaces Split and XSS.

Whenever SPaCiTE executes a test case, the AAT indicates the type of concrete mali-
cious input that are needed. Since the instantiation library follows a flat structure, all
instantiation elements are stored in the same package instantionObjects. Therefore,
SPaCiTE filters the available elements with respect to the interfaces that they implement.

91

2. Semi-Automatic Security Testing of Web Applications with Fault Models and Properties

Figure 2.19.: Instantiation Library: Filesystem Layout

SPaCiTE implements this filter functionality dynamically with the help of Java reflection
mechanisms. This decision allows the Security Analyst to easily and dynamically add new
instantiation elements to the library without changing the implementation of SPaCiTE.

After SPaCiTE identified all matching instantiation elements for a given AAT, SPaCiTE
automatically adds them to a TestNG data provider15. If a test case is executed together
with a data provider, TestNG executes the corresponding test case with each data element
of the data provider.

Listing 2.36: Instantiation Object Interface S

1 package interfaces
2

3 abstract class IInjection {
4 // This method returns the malicious inputs
5 public def Object[] getInputValues();
6

7 // This method verifies if the effect of the malicious input is observe
8 public def boolean verify();
9 }

Concrete Malicious Input Values. Concrete malicious input values can be collected from
different sources. OWASP published a XSS Filter Evasion Cheat Sheet [22] that consists
of a massive list of malicious XSS inputs. Conceptually, every entry in this list needs to be
converted into an instantiation library element once and for all. The transformation requires
two steps — (1) implementing the getInputValues method with the malicious input
from the list, and (2) the verification method verify that checks the effect of a successful
injection. While the first part can be automated, the second step is manual. The elements in

92

2.7. Mapping Abstract Attack Traces (AATs) to Operational Test Cases

such an instantiation library are motivated by the vulnerabilities discussed in Sections 2.6.2
and 2.6.3. In the following we show an exemplary element in our instantiation library.
Listing 2.37 represents an instantiation element that is used whenever SPaCiTE needs to
inject malicious XSS code. This semantics is provided to SPaCiTE by the two interfaces
that this Java class implements. SPaCiTE calls the method getInputValues.get(0)
to get the malicious code at Lines 5 to 10 in Listing 2.37. Whenever this malicious code
is executed, it creates a new div element that contains the text THISISANXSSATTACK.
Furthermore, this new div element is appended to the body element of the webpage.
SPaCiTE verifies the success of the attack by invoking the method verify on the same
object as used for the injection. Line 15 verifies if indeed such a div element exists on the
webpage.

Listing 2.37: XSS Instantiation Library Element S

1 class HTML_test0 extends Injection implements XSS, HTML {
2

3 override getInputValues() {
4 #[
5 "<SCRIPT>
6 var el=document.createElement('div');
7 el.setAttribute('id', 'THISISANXSSATTACK');
8 el.innerHTML='THISISANXSSATTACK';
9 document.getElementsByTagName('body')[0].parentNode.appendChild(el);

10 </script>"
11]
12 }
13

14 override verify(Connection conn) {
15 return conn.elementIsPresentByXPath("//div[@id='THISISANXSSATTACK']")
16 }
17 }

93

3. Tool Support

SPaCiTE is the tool that implements the conceptual work. During the SPaCIoS EU project
we developed a first version of SPaCiTE and significantly improved it after the project.
SPaCiTE goes far beyond a prototype implementation and therefore, this Ph.D thesis not
only contributes in terms of conceptual work but also with a tool usable in practice. Besides
Selenium and TestNG, it is mainly based on the Xtext [48] framework, a modern way for
implementing Domain Specific Languages (DSLs). For both the ASLan++ mutation opera-
tors, as well as for the Web Application Abstract Language (WAAL) mapping language, we
used Xtext to develop a modern IDE for these languages. For the code generation part, we
used the tightly integrated Xtend [47] language. It provides template expressions [44] that
make code / model generation very straight forward.

To put our tool in context, we will discuss related tools in Chapter 6 and provide a
high level summary here. At the ASLan++ level, we are not aware of any other tool
that mutates ASLan++ formal specifications. For the High Level Protocol Specification
Language (HLPSL), Dadeau et al. [86] developed a tool that focuses on mutating such
specification but lacks a Test Execution Engine (TEE) component including the possibil-
ity to map AATs to executable test cases. Lebeau et al. [144] provide a tool chain based
on UML diagrams based on an existing MBT software of the company Smartesting called
CertifyIt [66, 73]. Blome et al. [70] developed VERA, a flexible model-based vulnerability
testing tool. It is based on attacker models and abstracts from low-level implementation
details like HTTP requests. At the same time, there exists a huge list of both black-box and
white-box vulnerability scanners for web applications. While white-box scanners operate
on source- or byte code, black-box scanner contain a crawler to discover the System Under
Validation (SUV). As examples, tools in this category are SAGE: Whitebox Fuzzing for Secu-
rity Testing [112], the Ardilla tool [141], the Apollo tool [61], Acunetix [5], AppScan [6],
Burp [10], Grendel-Scan [12], Milescan [15], N-Stalker [17], NTOSpider [18], Paros [25],
W3af [34], etc. SPaCiTE differs to SAGE, Ardilla, and Apollo because they all need access to
source code of the web application, whereas SPaCiTE does not. Furthermore, source-code
based tools are often dedicated to specific programming languages, like Ardilla is to PHP
applications. SPaCiTE in contrast, is programming language independent. SPaCiTE differs
to black-box vulnerability tools because the behavioral description of the web application
is provided to SPaCiTE in form of a formal specification, whereas black-box scanners need
to learn the behavior by crawling the web application. While black-box scanners only test
parts of the web application that are discovered by the crawler, SPaCiTE only tests those
parts that are modeled. Thus, extending a formal specification to cover missed parts is
probably easier than bug fixing and extending a web crawler.

In this section, we focus on the use of SPaCiTE and do not discuss implementation details.
We describe a step-by-step tutorial, how a Security Analyst uses SPaCiTE in practice to
generate and execute security test cases for web applications. SPaCiTE supports the Security
Analyst with the following tasks:

95

3. Tool Support

Easy Installation and Configuration Procedure. We contribute with an update site for
the Eclipse platform to effortlessly integrate SPaCiTE into Eclipse. SPaCiTE prefer-
ences are integrated into the standard Eclipse preference framework.

Creating SPaCiTE Projects. SPaCiTE contributes with an Eclipse wizard to automatically
create and configure a SPaCiTE project. All dependencies to external libraries e.g., for
test case execution are automatically resolved.

Modeling Web Application. To support the Security Analyst during the modeling phase,
SPaCiTE contributes with a modern IDE with code completing, code templates, syntax
highlighting, quick fixes, and so on. In particular, the IDE helps the Security Analyst
during semantically annotating a specification.

Model Checking. Instead of switching the context to model check an ASLan++ specifica-
tion, the model checker can be started using a single click in SPaCiTE.

WAAL Mappings. Since the WAAL mapping is tightly bound to a formal specification,
SPaCiTE contributes with an automatic generation of an initial skeleton dedicated
to the current formal specification.

Applying Mutation Operators. Although we do not provide a dedicated language to de-
velop mutation operators, SPaCiTE contributes with a dynamic loading procedure to
integrate and apply mutation operators to a formal specification. Newly created mu-
tation operators are automatically recognized by SPaCiTE and can be applied without
changing or recompiling SPaCiTE.

Instantiation and Executing Test Cases. SPaCiTE contributes with an automatic proce-
dure to apply the WAAL mapping to AATs and generate TestNG test cases written in
Java. In a SPaCiTE project, such test cases can easily be executed with one click.

3.1. Installing and Configuring SPaCiTE

Before a Security Analyst can use SPaCiTE it needs to be installed an configured. SPaCiTE
is provided as an Eclipse 4.4 plug-in and can easily be installed using an update site. The
installation is straight forward by performing the following steps:

1. Start Eclipse Luna (Version 4.4), click on Help −→ Install New Software... → Add...
and add the following updateSites:

• TestNG framework, available at http://beust.com/eclipse

• SPaCiTE, available at http://updatesite.spacite.matt-buechler.com

2. After restarting Eclipse, you need to configure SPaCiTE first. Therefore, perform the
following actions:

• Select SPaCiTE Editor → Install external tools to install external dependen-
cies. It will download the latest version of the Cl-Atse model checker and the
ASLan++ Connector Binary1.

1For this Ph.D thesis, we used Cl-Atse in version 2.5-21 and the ASLan++ Connector Binary in version 1.4.9.

96

3.2. Creating a SPaCiTE Project

• Select Eclipse → Preferences → SPaCiTE → SPaCiTE preferences and specify
the following values:

Java Location. Usually, the Java binary is located in /usr/bin. For this Ph.D
thesis, we used Java version 1.8.

M4 Executable. Usually, the m4 executable is available at /usr/bin/m4.

Directory for Custom Mutation Operators. This refers to the directory where
custom mutation operators are stored. If the Security Analyst does not de-
velop own mutation operators, the entry may point to any directory.

ASLan++ Connector Binary. This Java Jar file was downloaded during the
command Install external tools and is available at the directory where the
external tools are installed. The needed binary has the a filename of the
form aslanpp-connector-[version].jar.

Cl-Atse Binary. This executable is available at the directory where the external
tools are installed. For the Mac OS X, the binary is called cl-atse x86
64-mac.

Cl-Atse Options. For the models we consider in this Ph.D thesis, the following
options are used: --nb 2 --not hc --free --lvl 2 --short.

Directory Name for Mutated Models. This directory name is used by SPaCiTE
to store the mutated models. In general, there is no need to change the
default value.

Delete Intermediate Files. During the process of model checking, intermediate
files are created. If this option is enabled, they are deleted afterwards.

Debug. If enabled, SPaCiTE outputs debug information in the log view.

Max Number of Threads. Certain tasks are parallelized. The maximum num-
ber of threads is an upper limit of concurrent threads used by SPaCiTE.

Modelchecking Timeout in Seconds. A mutated model might be a long-run-
ning model. To stop the model checking after a certain amount of time, the
length of the model checking time is specified here.

3.2. Creating a SPaCiTE Project

As a first step after the installation and configuration of SPaCiTE (see Section 3.1) the
Security Analyst needs to create a SPaCiTE project. It is created by the command File
→ New → Other... → SPaCiTE Wizards → New SPaCiTE Project. After providing a
name and a location for the new project, SPaCiTE automatically creates and configures the
project, including a skeleton template for the formal specification (see Figure 3.1).

The newly created model is incomplete and therefore, several error messages are shown.
We address two of them as follows. The formal specification has a name which follows after
the keyword specification in line 1 in Figure 3.2. For the channel model2, we have several
options available. By placing the cursor after the keyword channel model and pressing the

2See Avantssar Deliverable D2.3 (update) [62] for details.

97

3. Tool Support

Figure 3.1.: SPaCiTE: Create a New Project

98

3.3. Modeling the Web Application

Figure 3.2.: SPaCiTE: Select a Channel Model

autocompletion shortcut (usually ctrl-space), we get a list of alternative values. For all
models considered in this Ph.D thesis, we choose CCM (see Figure 3.2).

3.3. Modeling the Web Application

Upon creating a SPaCiTE project, an empty ASLan++ model is created and opened. In the
newly created file the Security Analyst specifies the formal specification of the web applica-
tion using the ASLan++ language. This language was developed during the AVANTSSAR
project and von Oheimb and Mödersheim [218] published the formal specification. An ex-
tended description and a ASLan++ tutorial can be found in the AVANTSSAR deliverable
2.3 [62].

SPaCiTE has a built-in ASLan++ editor that supports the Security Analyst modeling the
web application. As described in Section 3.2 a basic skeleton is automatically created when
a new SPaCiTE project is created. Furthermore, SPaCiTE provides the following specific
features:

Auto-Completion. SPaCiTE provides the usual auto-completion feature, known for many
other language.

Code-templates. Since modeling web applications very often requires the same code frag-
ments, basic skeletons for these language constructs can be added by using the auto-
completion feature. SPaCiTE provides templates for so called SelectOn statements,
and a fact called instance [type] that is used to uniquely create data elements
(see Section 2.3.3). Both of these templates consist of parts that the Security Analyst
needs to adapt. Using TAB, the Security Analyst automatically navigates through the
missing variables in the code template.

99

3. Tool Support

Semantic Highlighting. Since transmitted messages are core elements when modeling a
web application, Transmissions are highlighted so that they are better identifiable
for the Security Analyst.

For modeling details, please refer to Section 2.3.3, where we provided a tutorial how to
model web applications so that the models are useful in terms of SPaCiTE.

3.4. Model Checking the Formal Specification

When the Security Analyst has finished the formal specification of the web application, he
has to make sure that the model is ‘consistent’. This step can be performed with SPaCiTE
by selecting SPaCiTE Editor → Model check specification.

3.5. Binding the Model to a WAAL Mapping

Upon having a SPaCiTE-conform model, the Security Analyst has to provide a mapping
of the abstract messages to abstract browser actions. If this link is missing in a formal
specification, the SPaCiTE editor will issue a warning, as shown in Figure 3.3. To resolve
the issued warning, the SPaCiTE editor provides quickfixes. The Security Analyst therefore
clicks on the warning sign at the beginning of the line (see red circle in Figure 3.4) and
the SPaCiTE editor suggest context specific actions as quickfixes. In Figure 3.3 several
warnings are issued and therefore, also several quickfixes are suggested. In order to address
the warning that the specification is not bound to a WAAL mapping, the Security Analyst
selects the quickfix3 Add WAAL mapping annotation. The consequence of this step is
that a link is added to the formal specification (see Figure 3.5).

In addition, a skeleton of a WAAL mapping file is created and opened. An example of a
WAAL mapping skeleton file is shown in Figure 3.6. The skeleton consists of several parts.
The first one specifies the simulated agents and is automatically specified according to the
%@Semantics[Test] annotation in the SPaCiTE-conform model. The second part is the
configuration of the different agents. The skeleton is syntactically incomplete and the editor
marks the locations that have to be completed by the Security Analyst. In particular, the
Security Analyst has to provide the following information:

• The IP and the port of the browser, SPaCiTE can use to execute the test cases.

• The sessions a particular agent is involved with.

The other specifications are default values and might be updated by the Security Analyst
if needed.

The third part consists of the mappings of abstract messages to browser actions. This
block consists of a set of Message@Actions specifications (see Figure 3.6). Each such
specification is a triple, consisting of the abstract action, the generation block, and
the verification block. The skeleton of such a triple is automatically generated by

3Alternatively the Security Analyst makes sure that the specification he wants to provide a mapping for, is
currently opened. He then selects SPaCiTE Editor → Link model to waalmapping

100

3.5. Binding the Model to a WAAL Mapping

Figure 3.3.: SPaCiTE Editor: Validation That Linking to a WAAL Mapping File Is Present

Figure 3.4.: SPaCiTE Editor: Quickfixes For Issued Warnings

Figure 3.5.: SPaCiTE Editor: Linking Model to a WAAL Mapping File

101

3. Tool Support

Figure 3.6.: SPaCiTE Editor: WAAL Mapping Skeleton

the SPaCiTE editor based on the available messages in the SPaCiTE-conform model. If the
particular message has to be generated, the Security Analyst specifies the corresponding
abstract browser actions within the waal(generation) block. If the particular message
has to be verified, the Security Analyst specifies the corresponding abstract browser actions
within the waal(verification) block.

3.6. Selecting Mutation Operators

For every formal specification, the Security Analyst needs to specify which mutation opera-
tors SPaCiTE should apply. If the mutation operators are not specified, the SPaCiTE editor
issues a warning, as shown in Figure 3.7. To specify which mutation operators are used,
the Security Analyst clicks on the warning sign to let the SPaCiTE editor suggest quick-
fixes. To address the warning, the Security Analyst selects the quickfix Add Mutation
Operators (see Figure 3.7). Alternatively, the Security Analyst selects the command

102

3.7. Model Checking All Mutated Specifications

Figure 3.7.: SPaCiTE Editor: Quickfix to Add Mutation Operators

SPaCiTE Editor → Select mutation operators in the menu. Upon this com-
mand, a dialog window with all available mutation operators are displayed. Each entry in
this dialog can be selected or deselected (see Figure 3.8). Upon clicking on OK the selected
mutation operators are added to the formal specification, as shown in Figure 3.9.

3.7. Model Checking All Mutated Specifications

After the mutation operators are selected, the selection is added as the first line to the formal
specification. Upon saving the specification, SPaCiTE automatically applies the mutation
operators and generates the mutated models. Therefore, there is no dedicated action to
apply the mutation operators4. In general, applying the mutation operators finishes in
seconds. In exceptional cases, where the formal specification and the applied mutation
operator lead to a huge combinatorial number of mutated models, this process might take
several minutes. SPaCiTE has created a directory where all the mutated specifications are
stored. The exact location was specified during the configuration of SPaCiTE in Section 3.1.
All specifications in this directory can be model checked at once. The Security Analyst opens
the SPaCiTE-conform model from which all the mutated specifications were generated and
clicks on SPaCiTE Editor → Model Check All Mutated Models (see Figure 3.10). In case
some mutated specifications cannot be model checked, the SPaCiTE editor automatically
opens the Error Log view and logs the corresponding errors (see Figure 3.11).

3.8. Selenium Grid Hub

As discussed in Section 2.7.4 we make use of the Selenium framework [26] for the underly-
ing testing infrastructure. The central server is operated by the selenium hub, a component
that is responsible for managing different selenium nodes and distributing operational test
cases to them. To install and start the hub, the following commands (see Listing 3.1) are
provided. The corresponding makefile is shown in Appendix E.1.

4Nevertheless, to enforce it the application of the mutation operator, one might modify the file and store it.
This action will trigger the generation of mutated models.

103

3. Tool Support

Figure 3.8.: SPaCiTE Editor: List of Available Mutation Operators

Figure 3.9.: SPaCiTE Editor: Selected Mutation Operators to be Applied

104

3.8. Selenium Grid Hub

Figure 3.10.: SPaCiTE Editor: Model Check All Mutated Models

Figure 3.11.: SPaCiTE Editor: Error Log View

Listing 3.1: Installing and Executing Selenium Grid Hub CL

1 cd selenium-grid-hub
2 make install
3 make run

The Selenium hub provides the infrastructure so that several nodes can be registered.
Each node tells the hub which operating system it runs, the browser vendor and version it
has installed, and how many parallel instances the node manages to execute.

The configuration of such a node is given as a JSON file. An example is shown in List-
ing 3.2. It expresses that it provides a firefox browser (Line 4) version 31 (Line 5), running
on a Linux (Line 6). Furthermore the node is powerful enough to execute 5 parallel in-
stances of the browser (Line 7). The protocol to manage the browser is WebDriver (Line 3).
The corresponding Selenium hub that manages this node is available on host localhost
(Line 14) at the port 4444 (Line 13).

Listing 3.2: JSON configuration of Selenium Grid Node S

1 { "capabilities": [
2 {
3 "seleniumProtocol": "WebDriver"
4 "browserName": "firefox",
5 "version": "31",
6 "platform": "LINUX",
7 "maxInstances": 5
8 },
9],

10 "configuration": {
11 "nodeTimeout":120,
12 "port":5555,

105

3. Tool Support

Figure 3.12.: SPaCiTE Editor: Generate Java Code

13 "hubPort":4444,
14 "hubHost":"localhost",
15 "nodePolling":2000,
16 "registerCycle":10000,
17 "register":true,
18 "cleanUpCycle":2000,
19 "timeout":30000,
20 "maxSession":1,
21 }
22 }

Listing 3.3: Registering a New Selenium Grid Node CL

1 cd selenium-grid-node
2 make install
3 make register

These configuration options can directly be provided at the command line as well. An
example is given in Appendix E.2. A new node can be registered by typing the commands
given in Listing 3.3. At any time, the current state of the hub and the currently registered
nodes can be inspected by going to the URL http://[selenium-hub]:4444/grid/
console5.

3.9. Turning AAT Operational and Execution of Attack Traces

The translation of AATs to operational test cases and their execution is straight forward.
The Security Analyst opens the SPaCiTE-conform model from which the mutated models
were generated and selects SPaCiTE Editor → Translate all Abstract Attack Traces and
afterwards Generate Java code... (Figure 3.12). Issuing these commands, SPaCiTE applies
the linked WAAL mapping described in Section 3.5 to all AATs and generates executable
attack traces in form of Java classes. The Security Analyst executes the general TestNG test
classes by right clicking on them and selecting Run as → TestNG Test.

5Substitute the expression [selenium-hub]with the corresponding IP address or DNS name of the Selenium
Grid Hub.

106

4. Evaluation

4.1. Strategy and Metrics for the Evaluation

In the previous chapters, we have introduced the overall methodology to generate security-
interesting test cases. In this chapter, we discuss and evaluate our approach. Our evaluation
is motivated not only from a Security Analyst’s but from a scientific point of view as well.

For clarity’s sake, the hypothesis of this Ph.D thesis is:

In a model-based context, non-trivial security vulnerabilities for web applications can
be found with mutation operators and fault injections.

Sub-hypothesis:

Using Semantic Mutation Operators is more efficient than using Syntactic Mutation
Operators.

The hypothesis claims that in a model-based context, non-trivial security vulnerabilities
for web applications can be found with mutation operators and fault injections. To evaluate
this hypothesis, we consider both theoretical and practical aspects. To demonstrate that
SPaCiTE indeed finds non-trivial security vulnerabilities, it can be compared to different
types of tools. Table 4.1 presents a possible classification and corresponding characteristics.
Discussed aspects are:

(i) the input artifact the approach generates test cases from, (ii) the message parame-
ters that are used for malicious injections, (iii) the source from which concrete malicious
payloads are taken or generated, (iv) filter criteria that further select concrete malicious
payloads, and (v) whether the approach is programming language dependent.

• The first column represents SPaCiTE that uses Semantic Mutation Operators. This
approach generates test cases based on abstract behavioral descriptions written in
ASLan++. Reported Abstract Attack Traces (AATs) contain the special keywords inject
and verify (see Section 2.7). They indicate which message parameters have to be
used for which kind of malicious injection. A pre-defined library contains concrete
malicious payloads, from which SPaCiTE selects elements. SPaCiTE uses the applied
Semantic Mutation Operators as a filter criterion to only get those elements from the
library, that match with the injected vulnerability. Finally, SPaCiTE does not depend
on the programming language the web application is implemented with.

• The second column represents tools that are based on Syntactic Mutation Operators.
We consider the SPaCiTE approach again, but apply Syntactic Mutation Operators

107

4. Evaluation

SPaC
iTE

(Sem
antic

M
.O

.)
Syntactic

M
uta-

tion
O

perators
Black-box

Scanner
+

Injection
library

Black-box
Fuzzer

+
Input

G
ram

m
ar

for
Injection

W
hite-box

Fuzzer
G

uided
W

hite-box
A

pproach

M
odel

abstractbehavioral
description

abstract
behavioral

description
no

m
odel

m
ultiple

input
gram

m
ars

source
code

source
code

+
line(s)

you
w

ant
to

reach

Param
eters

used
for

m
alicious

injection

input
param

e-
ters

affected
by

injected
vulnera-

bility

input
param

eters
affected

by
m

uta-
tion;allparam

eters
if

affected
input

param
eter

cannot
be

determ
ined

every
input

param
-

eter
only

those
input

param
eters

are
tested

that
follow

the
gram

m
ars.

input
param

eters
those

values
reach

a
specific

location
in

the
source

code

selected
according

to
the

line(s)
to

be
reached

Source
of

m
alicious

inputs

pre-defined
library

pre-defined
library

pre-defined
library

dynam
ically

gener-
ated

dynam
ically

gen-
erated

path
con-

straint
filters

pre-defined
library

dynam
ically

gen-
erated

path
con-

straint
filters

pre-defined
library

G
eneration

/
Selectionof
m

alicious
inputs

selected
according

to
the

injected
vul-

nerability

all
elem

ents
in

the
library

all
elem

ents
in

the
library

generated
based

on
the

gram
m

ar(type)
,butnotim

plem
en-

tation
dependent

im
plem

entation
de-

pendent
m

alicious
injections

need
to

be
com

-
bined

w
ith

addi-
tionaltechniques.

Program
-

m
ing

language
dependent

no
no

no
no

yes
yes

Table
4.1.:ToolC

ategories
for

Effectiveness
C

om
parison

108

4.1. Strategy and Metrics for the Evaluation

instead of semantic ones. Thus, this ‘configuration’ differs in two aspects to the first
column. When Syntactic Mutation Operators are used, not every AAT contains the
special keywords inject and verify. For traces that miss them, the Test Execution Engine
(TEE) does not know when to inject which type of malicious payloads. Therefore,
every parameter is used for the injection. The second difference is, that the type of
underlying vulnerability is not known and therefore, every element in the malicious
payload library is used.

• The third column represents black-box scanners that rely on a pre-defined library con-
taining malicious payloads. Black-box scanners for web applications do not operate
on a model, but typically use crawlers to learn the different requests and parame-
ters the web application accepts. Since they operate on the API level, they have very
limited knowledge about the internal behavior beyond the API. In particular, they
do not know with which technology a message parameter value is processed. As a
consequence, such tools do not know possible vulnerabilities that a message param-
eter value can exploit. Therefore, such tools iterate over a pre-defined library with
malicious payloads and inject them using every discovered message parameter. Like
SPaCiTE, such tools work independent of the programming language the web appli-
cation is implemented with.

• Pre-defined malicious payloads have the disadvantage of being a random collection of
payloads. To consider more structured malicious payloads, black-box scanners can be
extended with input grammars for the malicious payload injection (fourth column).
The purpose of such input grammars is to increase the chance of ending up with
malicious payloads that are syntactically correct and therefore executable by the web
application. Instead of taking malicious payloads from a pre-defined library, they fuzz
the parameter values according to grammars (SQL, HTML, etc.). Like for black-box
scanners, they do not depend on the programming language the web application is
implemented with.

• White-box approaches generate test cases considering the source code of a web appli-
cation. They can only be applied if the source code is available. While the Security An-
alyst needs to understand and select the vulnerability related source code lines when
a guided white-box approach is considered (sixth column), this is not necessary for
non-guided white-box fuzzers (fifth column). White-box testing tools exploit source
code characteristics like path constraints or specific method invocations to construct
implementation dependent test cases. To use such approaches in the context of secu-
rity testing they need to be combined with pre-defined malicious payload libraries, or
any other malicious payload generation approaches.

In general, SPaCiTE can be compared to tools of any of the above described categories to
highlight different aspects. For our evaluation, we make the decision to compare SPaCiTE
with black-box scanners and compare SPaCiTE with Syntactic and Semantic Mutation Op-
erators because of the following reasons:

• We exclude white-box approaches because such approaches can only be applied if the
source code is available. Such access might not always be given. Whether source

109

4. Evaluation

code is available is often an external decision made by the product owner, and not by
the Security Analyst. Both black-box approaches and SPaCiTE do not depend on the
availability of source code and therefore, they can test web application even if source
code is not available.

• Both black-box approaches and SPaCiTE can be applied to web applications indepen-
dent of the programming languages used to implement the applications. Therefore,
for web applications implemented with different programming languages, SPaCiTE
can be compared to the same black-box tools.

• Both approaches use pre-defined libraries for malicious payloads and do not dynami-
cally generate them either from the source code or input grammars. Both approaches
more focus on finding an injection and verification point using pre-defined and gen-
eral malicious payloads than constructing a specific, application dependent malicious
payload for a given input parameter.

• Black-box scanners and SPaCiTE differ in terms of required models. While black-
box scanners are point-and-click tools that learn the behavior of the web application,
SPaCiTE requires a formal behavioral specification. Such a comparison elaborates
whether formal specifications are suitable for being more effective in finding non-
trivial vulnerabilities.

• SPaCiTE with Syntactic and Semantic Mutation Operators differ in terms of manu-
ally annotating the formal specification. Besides that, both approaches operate on
the same formal specification, both use pre-defined libraries for malicious payloads
and are not source-code dependent. Therefore, comparing Syntactic vs. Semantic
Mutation Operators elaborates on the consequences of manual annotations.

In sum, we consider black-box scanners for a comparison with SPaCiTE, since a compari-
son with white-box approaches is more costly. Source code needs to be available, and tools
that handle the corresponding programming languages need to be found. In this respect,
black-box scanners and SPaCiTE are more convenient, since either no model is required at
all, or an abstraction of the System Under Validation (SUV) is sufficient.

To evaluate the hypothesis of this Ph.D thesis, we first compare our approach, that uses
vulnerability-based fault models at ASLan++ model level, with black-box vulnerability
scanners. Since vulnerability scanners might not find vulnerabilities due to bugs in the
scanners themselves, we also compare the test generation with Syntactic and Semantic
Mutation Operators at the ASLan++ model-level.

The evaluation answers the following research questions:

• If non-trivial security vulnerabilities are present, does SPaCiTE, that uses vulnerability-
based fault models, find in practice a higher number of these vulnerabilities than black-
box vulnerability scanners?

• Are vulnerability-based fault models at ASLan++ model level more efficient in generating
‘security-interesting’ test cases than syntax-based fault models at the same model level?

As part of the evaluation, we consider a third research question:

110

4.2. Vulnerable Web Applications

• How much does a Domain Specific Language (DSL) contribute to the efficiency of map-
ping abstract test cases to executable test cases?

To answer the above questions we consider the following metrics.

• To answer the first research question, we consider Cross-site Scripting (XSS) and
Structured Query Language (SQL) related non-trivial vulnerabilities and count the
number of found vulnerabilities in case studies.

• To answer the second research question, the metrics are: (1) the number of mutated
models, since model checking is very resource-intensive (2) the fraction of mutated
models that generate an AAT, since only AATs are useful for test case generation, and
(3) the number of executable test cases. Efficiency is better: (1) the smaller the set
size of mutated models, (2) the higher the AAT generating ratio (mutated models that
violate a security property), and (3) the smaller the number of test cases while still
finding the potential vulnerability.

• Finally, to answer the third question, we consider the number of code lines the Se-
curity Analyst has to provide with our DSL compared to using a general purpose
language. When we discuss this metrics later, we will see that these numbers have to
be taken with care.

4.2. Vulnerable Web Applications

In this section, we select and describe vulnerable web applications that we consider for
the evaluation. We use the OWASP Broken Web Applications Project version 1.1.1 virtual
machine [20] (WebGoat and Wackopicko) and a bank application developed by students.
The set of applications is split into two categories — training and realistic applications, in-
tentionally and non-intentionally vulnerable applications. WebGoat was known and used
already from the beginning of the development of SPaCiTE and initially inspired our work.
Therefore, it is considered as a training and intentionally vulnerable application. Wack-
opicko and the bank application at the other side, were not considered during the devel-
opment but used during the evaluation only. Furthermore, Wackopicko is intensionally
vulnerable while the bank application is not. In the following, we give a short summary of
the applications.

WebGoat. This web application [39] is an J2EE application developed for teaching pur-
poses and is therefore made insecure on purpose. It consists of many different lessons,
each dedicated to a specific vulnerability. For this effectiveness evaluation, we con-
sider the application ‘Goat Hills Financial - Human resources’ inside WebGoat. The
purpose of this web application is to manage user profiles. Different users can login
to the system, view user profiles and edit them. According to security aspects, this
application is in particular vulnerable against a stored XSS attack.

WackoPicko. This application is written in PHP. This application was developed as part of
the paper published by Doupé et al. [92]. It represents a realistic application where
new users can register with an account, upload and comment pictures. In addition,

111

4. Evaluation

it provides a functionality to find other users with a similar name. The implementa-
tion contains many well-known vulnerabilities. Among other vulnerabilities, it suffer
from stored XSS, multi-step stored XSS, and stored SQL injection vulnerabilities —
vulnerabilities, that are hard to find by automatic tools.

Bank Application. The bank application was developed as part of the class ‘Secure Cod-
ing’ offered by the chair of Prof. Dr. A. Pretschner, taught at Technische Universität
München during the winter semester 2014/2015. Master students had to implement
a banking web application according to the following functional and non-functional
requirements:1. The functionality is quite big and we only consider a subpart of the
whole application for applying our approach. The covered functionality is:

• Register a new customer with a registration form.

• Log in and logout as client.

• Log in and logout as admin.

• Approval of client registration requests.

To test these applications, SPaCiTE requires a formal specification as input. In the follow-
ing sections, we briefly describe them. When we model check these formal specifications,
we use a virtual machine with 4 vCPUs @ 2.6 GHz, 8GB of RAM, and Ubuntu 14.04.1 as
Operating System.

4.2.1. WebGoat

A formal specification of the WebGoat application is given online at [38]. It describes
a session between a user (tom or jerry) and the WebGoat application. The application
allows a user to login, view and edit profiles. The login request requires two parameters, a
username and a password. The credentials are checked if they match with an entry in the
database, represented by the fact db. After a successful login, WebGoat replies with an ID
of a user profile, that the currently logged in user is authorized to view.2 The viewProfile
message accepts one parameter — the username of the agent, whose profile is requested.
The matching profile is then retrieved from the database and the result is sent back to
the client. Please note that the initial request parameter is contained in the response, as
well as data from the database. Finally WebGoat allows to modify a profile by sending an
editProfile message. This request requires two different parameters — the username of
the agent whose profile should be edited, and the data that should be stored as a profile.
The model describes that the user-provided input is first sanitized against HTML-based XSS
attacks and SQL injections. The sanitized data is then stored in the database. Since we
assume that the used sanitization method has completely removed dangerous characters
from the user-provided input, also the corresponding values stored in the database are still
sanitized against XSS. Finally the user-provided values are sent back as a response to the
client. Important to note here is the fact, that for the editProfile request, the response
contains the user-provided values, and not the values from the database. After editing a

1A full description can be found at https://www22.in.tum.de/fileadmin/teaching/ws2014/
seccoding/Phase1Desc-merged.pdf

2Please note that neither the username nor the password is contained in that reply.

112

4.2. Vulnerable Web Applications

profile, the message retE2L allows to return to the welcome webpage that shows the list
of profiles that the logged in user is authorized to view.

In terms of security goals, the WebGoat models specifies, that every value involved in an
SQL query needs to be sanitized against SQL (see goal1 and goal2). Furthermore, every
data element sent back to an honest user needs to be sanitized against XSS.

SPaCiTE model-checks the specification described in this section using Cl-Atse Version
2.5-21 with the parameters --nb 2 --free --not hc --lvl 2 --short. After 37
hours, SPaCiTE terminated the model checker. Therefore, no verdict is present for this
model and it is considered as a ‘long-running’ specification according to Section 2.1. In
particular, there is no trace found by the model checker during the model-checking phase
that violates the specified security properties. Therefore, also no AATs are generated.

4.2.2. Wackopicko

Wackopicko is an application known from the paper: Why Johnny Can’t Pentest: An Analysis
of Black-box Web Vulnerability Scanners [92] and represents a real-world web application.
In particular, it implements sophisticated features that are often found in modern web ap-
plication but are difficult to test. Doupé et al. [92] show that many automatic web crawlers
fail to find well-known vulnerabilities. Therefore, we apply SPaCiTE to that application and
show that it finds vulnerabilities that are missed by other approaches.

A summary of the functionality that we consider for this case study is given in Figure 4.1.
We consider the following four functionalities:

Register. A new user has the possibility to open an account with Wackopicko following
the Register link. He is asked to provide the following information: username,
first name, last name, and a password.

Welcome page. After successfully registering with the web application, the user is for-
warded to the welcome page that shows his username as part of the page.

Similar users. The web application provides the functionality to find users with similar
first names as the logged-in user’s own first name. Implementation-wise, the user’s
first name is used to construct a corresponding SQL query.

Uploading pictures. To upload a picture to the Wackopicko platform, the user is asked to
provide a tag, a filename, a title and a price. Since a picture can be augmented
by a comment, the user is forwarded to a page that reflects the title, his username,
and a form to enter the desired comment. As a special functionality, the provided
comment is not directly published but the user is again forwarded to a preview page
that reflects the provided comment together with his username and the title of
the picture. Only after confirming the preview, the entered information is displayed
and stored.

Recent. Finally to display the recently uploaded pictures, Wackopicko provides a link to
display the title, filename, comment, and username of the commenter.

A possible formal specification of the above described Wackopicko functionality is given
online at [35]. Since Wackopicko represents a real-world application in terms of function-
ality, the model is rather large. We model checking the specification with SPaCiTE (Cl-Atse

113

4. Evaluation

Welcome

username

Uploadpage

tag

filename

title

price

Comment

comment

title

username

Preview

title

comment

username of
commenter

UploadFinal

title

comment

username of
commenter

Recent pictures

Register

Upload File

Preview

Create

Upload

Recent

title

comment

username of
commenter

filename

Register

username

firstname

lastname

password1

password2

SimilarNames

username

Similar Names

Startpage

Create

Page

Webpage

Register

Input Field

Display

Action

Figure 4.1.: Functionality of Wackopicko

114

4.2. Vulnerable Web Applications

Version 2.5-21 with the parameters --nb 2 --free --not hc --lvl 2 --short).
Since the model checker did not find any issues withing 66 hours, the Wackopicko specifi-
cation is a long-running specification (see Section 2.1).

4.2.3. Bank Application

A formal specification of the Bank application is given online [7]. The model describes five
different functionalities of the banking application — registering a new client, login of the
client, login of an admin, activating a client, and logout.

LoginAdmin. The bank application allows an administrator to login by sending the ab-
stract message loginAdmin. This message requires two arguments — the username
and the password. Upon successful login, the web application selects a newly created
user account that is not activated yet, and sends back a webpage to the administrator
which contains the username, first name, last name, and email address.

Logout. The purpose of the logout message is to de-authenticate a user. The message
does not require any arguments.

ActivateClient. After the administrator has received a non-activated user account, he acti-
vates it by sending the activateClient message. This message requires one argu-
ment only, namely the username of the account to be activated. Using this argument,
the corresponding record from the database is retrieved. To activate the user account,
the retrieved username from the database is used to update the database record. Fi-
nally the action is acknowledged by sending a static value (ack activateClient)
back to the administrator.

LoginClient. Similar to an administrator, a client can login to the bank application by
providing his username and his password. A successful login by a client requires
that his account is activated. The bank application acknowledges a successful login
with the message ack login which contains the client’s first name, last name,
and his email address.

Register. Before a client can login to the bank application, he has to register an account us-
ing the register message. This message requires five arguments — the username,
first name, last name, the email address, and the password. After the
bank application has stored this information in a database, it acknowledges the regis-
tration with the message ack register.

The model checker we use in SPaCiTE (Cl-Atse Version 2.5-21 with the parameters --nb
2 --free --not hc --lvl 2 --short) needs 2800 seconds to check 228 states and
3096 transitions. The model checker terminates with the verdict NO ATTACK FOUND.

SUMMARY:
NO_ATTACK_FOUND

DETAILS:
TYPED_MODEL

115

4. Evaluation

BACKEND:
CL-ATSE 2.5-21_(2012-dÃ©cembre-13)

STATISTICS:
TIME 2801989 ms
TESTED 3096 transitions
REACHED 228 states
READING 12.96 seconds
ANALYSE 2789.03 seconds

4.3. Black-Box Vulnerability Scanners

WebGoat

[The following section was partially published in the SPaCIoS Deliverable 5.5 [200]]

In order to security test WebGoat and to compare it with SPaCiTE, we use the following
scanner.

OWASP Zed Attack Proxy (ZAP) [49]. This vulnerability scanner is a penetration testing
tool to find vulnerabilities in web applications. At the time of writing, version 2.3.1
was the most recent version. Among other vulnerabilities, it checks for reflected and
stored XSS, as well as SQL injections.

To demonstrate the effectiveness of the scanner, we applied ZAP in two different ways.
First of all, we manually explored the complete WebGoat application (including the lessons
with the Goat Hills Financial app but also other lessons) and run ZAP afterward. In this
setting (i.e., manual+ZAP), ZAP finds simple vulnerabilities: 20 reflexive XSSs (CWE-79),
1 path traversal (CWE-22), and 3 SQL injections (CWE-89). Several reported XSS by ZAP
are not real. Indeed, ZAP tests for XSS vulnerabilities by entering HTML code into potential
vulnerable spots and check whether or not the HTML that was injected is present on the
page. However, if the injected HTML is present in an input box, the tool will count it as
an XSS vulnerability even though code inside such a box will never be executed. So, even
though the injected HTML is present in the page, it can not be exploited. Note that none
of the reported vulnerabilities are related to the Goal Hills Financial app. The reason is
that this lesson requires authentication. Even though we authenticate ourselves during the
manual exploration, ZAP does not handle the WebGoat session properly and therefore, it
is unable to find the XSS vulnerabilities in the Goat Hill Financial lesson. Exploring the
application thanks to the SPaCiTE-conform model, and therefore guiding ZAP, and running
ZAP after each test case execution (i.e., BFS+ZAP), ZAP is able to find 8 reflexive XSSs in
the Goat Hill Financial. However, it does not find any of the authentication flaws nor the
stored XSS. The results are shown in Table 4.2.

116

4.3. Black-Box Vulnerability Scanners

Vulnerabilities (TP/FP)

Method # tests Overall rXSS sXSS PathT SQLi Logical

manual + ZAP 16886 24 / 9 20 / 9 0 / 0 1 / 0 3 / 0 0 / 0
BFS +ZAP 1113 8 / 0 8 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Table 4.2.: Results For ZAP Applied to WebGoat (BFS=Breadth First Search)

Wackopicko

Wackopicko was developed to show that vulnerability scanners have great difficulties to
find interesting and important vulnerabilities in this web application. The web application
suffers from the following types of vulnerabilities. We group the vulnerabilities according
to their detectability by the vulnerability scanners: Vulnerabilities 1. - 8. are not discovered
by any scanner. The remaining vulnerabilities were discovered by at least one scanner.

(1.) Stored SQL Injection., (2.) Multi-Step Stored XSS., (3.) SessionID vulnerability.,
(4.) Weak username/password., (5.) Parameter manipulation., (6.) Directory Traversal., (7.)
Forceful Browsing., (8.) Logic Flaw.

(9.) Reflected XSS Behind a Flash Form. After a failed login, Wackopicko shows the error
page using flash. That means that the TEE needs to handle Flash correctly to build
the verdict when the login page is involved.

(10.) Stored XSS. Usually the stored XSS vulnerability is challenging for automatic vulner-
ability scanners. For the specific vulnerability in the guestbook of Wackopicko, 10 out
of 11 scanners found the vulnerability, although 4 scanners needed manual configu-
rations. We believe that the reason that 10 scanners found the vulnerability is two
fold — (1.) The vulnerability is not multi-step, that means the guestbook is accessible
following one link only, and (2.) no authentication/login step is required both for the
exploitation of the vulnerability and the suffering from the attack by the victim.

(11.) Reflected XSS Behind JavaScript. On the index page of the Wackopicko application,
a user enters the name of a file into the textfield with the name ‘name’. The web
application adds this textfield by Javascript code. That means that the TEE needs to
interpret Javascript code to correctly use the web application.

(12.) Unauthorized File Exposure, (13.) Reflected XSS, (14.) Reflected SQL Injection, (15.)
Command-line injection, (16.) File Inclusion.

Doupé et al. [92] tested the web application using eleven different vulnerability scanners
(Acunetix, AppScan, Burp, Grendel-Scan, Hailstorm, Milescan, N-Stalker, NTOSpider, Paros,
W3af, and Webinspect). The authors report that 8 out of 16 vulnerabilities (1. - 8. of the
above enumeration) were not detected by any of the used scanners. The rest of the vulnera-
bilities were discovered by at least one scanner. Bold vulnerabilities are vulnerabilities that
SPaCiTE focuses on in the current version. In particular, we will see later that SPaCiTE’s
strength are stored SQL injection and the multi-step stored XSS vulnerability, both vulner-
abilities, that were not discovered by any scanners. SPaCiTE will generate AATs for these

117

4. Evaluation

kind of vulnerabilities and find them by executing the corresponding test cases. Further-
more the vulnerability ‘Reflected XSS Behind a Flash Form.’ was not detected by 5 out of
11 scanners, and the remaining 6 scanners require manual configuration to discover the
vulnerability. Even more complicated seems the Reflected XSS Behind JavaScript vulnera-
bility. Only 3 out of 11 scanners discover this vulnerability. These kind of vulnerabilities
do not offer an additional burden for SPaCiTE since the TEE executes attack cases with the
help of the browser and therefore, Flash and Javascript are automatically handled. The ‘re-
flected’ vulnerabilities (i.e., reflected XSS, reflected SQL) are found by SPaCiTE as well due
to the systematic generation of attack traces but since they are also discovered by automatic
vulnerability scanners, they are not in the focus of SPaCiTE.

Bank Application

Students were asked to implement the application and the application used for this evalu-
ation was manually and automatically tested. The students used ZAP, w3af, Nikto, Burp,
Grendel, and InjectMe to test the application for known vulnerabilities. For the manual
task, they followed the OWASP Guide. All students that assessed this application reported
two vulnerabilities, — a transaction data validation flaw and a click jacking vulnerability.
Both of these vulnerabilities are not covered by our approach, since no mutation operators
for these kind of vulnerabilities are developed so far. According to XSS and SQL vulnerabil-
ities, neither the manual nor the automatic approach applied by the students disclosed any
vulnerability.

4.4. Effectiveness Evaluation

To show that the proposed Semantic Mutation Operators are powerful enough to generate
test cases for non-trivial vulnerabilities, we apply Semantic Mutation Operators to the three
discussed formal specifications of WebGoat, Wackopicko, and the bank application. For
this evaluation, SPaCiTE was configured to use the Cl-Atse parameters --nb 2 --not hc
--free --lvl 2 --short, four concurrent threads, and a model checking timeout of
2400 seconds. This configuration stays the same for all three models.

In the first part, we will discuss the kind of AATs that are generated with different
Semantic Mutation Operators. In particular we are interested whether Semantic Mutation
Operators lead to test cases that discover non-trivial vulnerabilities. Then, we will show
that selected AATs can be instantiated to successfully confirm a potential non-trivial vulner-
ability. We are aware that no comprehensive and excessive test case execution is possible
due to several reasons. It turns out that automation starting from abstract specifications
and ending at executable test cases is complex and faces many technical challenges. Never-
theless executing those AATs that are dedicated to non-trivial vulnerabilities is sufficient to
show the effectiveness.

To not be repetitive, we will focus on different aspects for each available formal specifi-
cation. We use the WebGoat model to discuss in detail the application of different mutation
operators and their corresponding generated attacks. Using the Wackopicko model, we fo-
cus more on the overall set of generated mutation operators and compare the generated
AATs in terms of first-order vs. higher-order, and Syntactic vs. Semantic Mutation Opera-

118

4.4. Effectiveness Evaluation

tors. Finally, we use the bank application formal specification to focus on the false positive
evaluation.

For a compact representation of the generated AATs, we use classification tables like
Table 4.3. They have to be read in the following way:

• On the x-axis we show different messages that are exchanged between the browser
and the web application. If such a message consists of several parameters, we list them
below the message name, separated with a short horizontal line. E.g., in Table 4.3,
the Edit message consists of the parameters ID and data. Furthermore, we use the
label check after X to specify, after which message the victim gets attacked. E.g., in
row 1 of Table 4.3, the victim gets attacked after sending the view message.

• On the y-axis we list different AATs. We use labels like XSS and SQL to indicate what
kind of malicious code is injected. A check mark (!) is used to indicate after which
message the victim is attacked. If multiple agents are involved in the test case, they
are added in parenthesis. E.g., AAT 7 in Table 4.3 expresses that the agent tom injects
XSS malicious code using the data parameter of the edit message and that the
agent jerry gets attacked after sending the view message.

4.4.1. Semantic Mutation Operators on WebGoat

4.4.1.1. XSSRemoveSanitization

XSSRemoveSanitizationUpToLimit[1][1]. We first apply the XSSRemoveSanitizat
ionUpToLimit[1][1] mutation operator that represents a first-order mutation operator.
It only invalidates one single sanitization block per mutated model. In this configuration,
a total of eight mutated models are generated. Three mutated models generate an AAT,
all representing reflected XSS attacks (AATs 1 to 3 in Table 4.3). They exploit the single
parameter of the view message and both parameters of the edit message. Intuitively, the
fact that only reflected XSS attacks are reported makes sense since for a reflected attack,
the input is received by the server, must not be sanitized, and is sent back to the client all
happening in the same message handler.

XSSRemoveSanitizationUpToLimit[1][2]. To detect more difficult vulnerabilities like
stored XSS, higher-order Semantic Mutation Operators are required since XSS sanitiza-
tion must not happen when the data is stored and also when the same data is read again
and sent back to the client. Since in this situation multiple sanitization blocks are involved,
we apply the XSSRemoveSanitizationUpToLimit[1][2] higher-order Semantic Mu-
tation Operator to the model. It mutates up to two mutation candidates to generate a
mutated model. We end up with a total of 36 mutated models. Model checking all of them,
24 mutated models generate AATs. These attacks include all AATs reported by XSSRemove
SanitizationUpToLimit[1][1], and include in addition split reflected XSS attacks
and multi-step stored XSS attacks using one parameter. For (multi-step) stored XSS attacks
performed with one parameter, two mutated sanitization blocks are required, namely a san-
itization block when the data is stored, and a sanitization block when the data is retrieved
later.

119

4. Evaluation

AAT edit login view check after

ID data uname pwd login edit view std.page

1 XSS !

2 XSS !

3 XSS !

4 XSS XSS !

5 XSS(tom) !(jerry)

6 XSS !

7 XSS(tom) !(jerry)

8(*) XSS(tom) XSS(tom) !(jerry)

9 XSS(tom) XSS(tom) !(jerry)

10(*) XSS XSS !

Table 4.3.: XSSRemoveSanitization Application on WebGoat (!=Agent Gets Attacked)

AAT 4 represents a split reflected XSS attack where the profile ID and the profile data
parameter of the edit requests are not sanitized against XSS. AAT 5 represents a stored XSS
attack where a dishonest user injects a malicious XSS payload using the profile ID of the
edit message. To be attacked, a victim logs in and is forwarded to the welcome/standard
page. Since that page shows available profiles, the malicious payload might be executed.
AAT 6 represents a multi-step stored XSS attack where a user injects a malicious XSS pay-
load using the profile ID of the edit message. In contrast to AAT 5, the malicious input
gets executed upon navigating to the standard page. Finally, AAT 7 represents a multi-step
stored XSS attack where a dishonest user injects a malicious XSS payload using the data
parameter of the edit message. To be attacked, a victim logs in and requests the profile
with the malicious content. This AAT exploits the vulnerability that leads to the stored
XSS attack. Therefore, the proposed Semantic Mutation Operators are powerful enough to
find the vulnerability at the abstract model level. In Section 4.4.1.6 we will further see that
SPaCiTE is also powerful enough to find the vulnerability in the implementation of the SUV.

XSSRemoveSanitization. Finally, we apply the XSSRemoveSanitization Semantic
Mutation Operator which considers every possible combination of mutation candidates.
Applying it generates a total of 255 mutated models. Model checking all of them results
in 241 models that generate an AAT. This set contains three new AATs (AAT 8 to 10 in

120

4.4. Effectiveness Evaluation

Table 4.3) that are not generated so far with the above mutation operators. All of them
represent split multi-step XSS attacks. The injected vulnerability can be exploited by a user
who edits his own profile. The edit request contains malicious XSS code in the profile
ID and profile data field. To get attacked, a victim user logs into the web application and
receives a malicious profile ID for AAT 8, views the malicious profile for AAT 9, and requests
the standard page for AAT 10.

In Table 4.3 we marked AAT 8 and 10 with a star because we will discuss the rationales
why they are generated in Section 5.7. Carefully analyzing them, it sounds counter-intuitive
why using the data parameter of the edit message should be used for an injection in the
situation where the victim gets attacked after the login message.

4.4.1.2. XSSRemoveSanitization on Adapted WebGoat

In Section 4.2 we described the WebGoat application. In particular, we discussed that
the WebGoat application accepts the messages login, view, edit, and retE2L. Analyzing the
reported AATs in Table 4.3, one observes that not all possible combinations on injection and
verification location for XSS are reported so far. For instance, test cases for the following
situations are missing:

X1. No AAT exploits the parameters of the login request for an XSS attack.
X2. No AAT exploits the retE2L request for an XSS attack.
X3. No AAT represents a multi-step stored XSS attack using the ID parameter of the edit

message and being attacked while viewing the profile.

In this paragraph we will argue about the reasons for the missing AATs. The above
three mentioned AATs are missing due to modeling characteristics. Neither of the two
login request parameters are contained in any response the web application sends to the
client. Therefore, the first attack behavior cannot be induced at the model level. Test cases
for X2 are not generated because the request for the standard page does not contain any
parameters at all and therefore, there is also no possibility to inject XSS malicious code
using that request at the model level. Finally, the view message expects a profile ID as
one of the parameters that is used to select the profile to be shown. In the response, the
user-provided ID is reflected instead of the profile ID stored in the database. Therefore, no
test case for X3 is generated.

For illustration purposes, we modify the formal specification to demonstrate the power
of the different XSSRemoveSanitization Semantic Mutation Operators. We want to
show that X1 and X3 are missed not because of weaknesses of the mutation operators, but
because of the formal specification. Listing 4.1 shows the crucial server-side changes in
the formal specification in diff format. Client-side changes and declarations are ignored.
Listing 4.1 shows the following changes: For the login request, we will add a parameter
to reflect the username. For the view message, we return the stored profile ID rather than
the user-provided value part of the view message. Finally, please note that the standard
webpage was not adapted and still does not require any parameters.

Applying the mutation operator to the mutated formal specification shows that two miss-
ing AATs for X1 and X3 are generated, that exploit the username parameter of the login
message and the ID parameter of the edit message (see Table 4.4).

121

4. Evaluation

AAT edit login check after

ID data uname pwd view login

X1 XSS !

X3 XSS(tom) !(jerry)

Table 4.4.: XSSRemoveSanitization Application on Adapted WebGoat (Syntax: XSS(y) =
Agent y Performs an XSS Attack); ![y] = Agent y Is Attacked

Listing 4.1: Adaptation to the login Message of the WebGoat Model M

1 Symbols Declarations:
2 - listStaff(username_t) : message ;
3 + listStaff(username_t, username_t) : message ;
4

5 Login Request Handler
6 + LoginUsername_Received:=instance_username_t(LoginUsername,RandomValue1Login);
7 + %@Semantics[HTML, Sanitize, Input]
8 + xss_sanitize_username_t(LoginUsername_Received) ;
9

10 - Actor *->* Us : listStaff(ReceivedID_login) ;
11 + Actor *->* Us : listStaff(LoginUsername_Received, ReceivedID_login) ;
12

13

14 View Request Handler: sending back database value
15 - Actor *->* Us : profile(ReceivedIDParameter_view, ReadData_view) ;
16 + Actor *->* Us : profile(DBIDParameter_view, ReadData_view) ;

4.4.1.3. SQLRemoveSanitization

So far we were focused on XSS vulnerabilities and their corresponding Semantic Mutation
Operators. In this section we consider vulnerabilities related to SQL injections.

SQLRemoveSanitizationUpToLimit[1][1]. We first apply the SQLRemoveSanitiza-
tionUpToLimit[1][1] mutation operator that represents a first-order mutation oper-
ator. In this configuration, a total of three mutated models are generated where all of them
generate an AAT (AAT 1 to 3 in Table 4.5). All three AATs generate reflected attacks. While
an attacker uses the profile ID and the data parameter respectively of the edit message to
inject malicious SQL code in AAT 1 and AAT 2 respectively, he makes use of the single view
parameter to inject malicious SQL code in AAT 3.

SQLRemoveSanitizationUpToLimit[1][2]. The results of applying the previous SQL re-
lated Semantic Mutation Operators show that so far, no test cases for split or stored SQL
attacks were generated. For a split or a stored SQL injection we need higher-order mu-
tation operators. Therefore, we apply SQLRemoveSanitizationUpToLimit[1][2]

122

4.4. Effectiveness Evaluation

AAT edit login view check after

ID data uname pwd view edit login

1 SQL !

2 SQL !

3 SQL !

4 SQL SQL !

5 SQL !

6 SQL !

7 SQL SQL !

Table 4.5.: SQLRemoveSanitization and InvalidateSQLConditionCheck* on WebGoat

which generates four mutated models in total. All of them generate AATs. Compared to
the application of SQLRemoveSanitizationUpToLimit[1][1], only one new AAT is
generated (AAT 4 in Table 4.5). It describes a split reflected SQL injection using the profile
ID and the data parameter of the edit message.

SQLRemoveSanitization. Finally, we apply the SQLRemoveSanitization Semantic
Mutation Operators to the formal specification. It turns out that no new AATs are gener-
ated. Intuitively this makes sense since there is no message that consumes more than two
parameters that could be exploited for a split SQL injection. Considering the formal speci-
fication [38], there is also no stored SQL attack possible, since no SQL value is read from
the database that is later used as part of another SQL query. Therefore, AATs related to
(multi-step) stored SQL injections are not generated.

4.4.1.4. InvalidateSQLConditions

InvalidateSQLConditionCheckBy{ DetachingVariable, SettingRandomValue }[1][1].
The modeling of the login message handler in Listing 4.2 shows that the receiving of the
message and the SQL operation are combined in one single condition. Therefore, the muta-
tion operators SQLRemoveSanitization and SQLRemoveSanitizationUpToLimit
do not generate mutated models, since they do not operate on ASLan++ conditions. To
inject SQL vulnerabilities in this situation, we apply the mutation operators Invali-
dateSQLConditionCheckByDetachingVariable and InvalidateSQLCondition-
CheckBySettingRandomValue. Applying InvalidateSQLConditionCheckByDe-
tachingVariable[1][1] to the WebGoat formal specification generates in total four
mutated specifications. Upon model checking, all of them generate AATs. The AATs cor-
respond to AATs 1, 3, 5, and 6 in Table 4.5. The first two AATs are also reported by the

123

4. Evaluation

SQLRemoveSanitization mutation operator. The reason is that the ID parameter of the
view message handler is involved in two different SQL queries. The first query is used to
check if the user is authorized to view the profile (Line 22 in Listing 4.2). The Invali-
dateSQLConditionCheckByDetachingVariable mutation operator is applied to this
condition check and generates AAT 3. Since the same ID parameter is used for updating
the profile (Lines 31 to 38) as well, and therefore sanitized in Line 29, the same AAT is
also generated by the SQLRemoveSanitization mutation operator. Exactly the same
argumentation is applicable to the ID parameter of the view message handler and is there-
fore not discussed separately. The latter two traces (AAT 5 and 6) have not been generated
before. They are reflected SQL injections using the username and the password parameter
of the login message.

Although the InvalidateSQLConditionCheckBySettingRandomValue [1][1]
mutation operator generates four mutated models as well, it does not generate any AATs.
The reason for this is the annotated condition that involves an SQL query. It occurs in
positive form3 and has to be evaluated to true to violate the corresponding security property.

Listing 4.2: Extract of WebGoat Model
(inst u t=instance username t) M

1 on(?Us *->* Actor : login(
2 inst_u_t(?LoginUsername,?RandomValue1Login),
3 instance_password_t(?LoginPassword,?RandomValue2Login))
4 & inSUT(?Us) & !authenticatedAsClient(?Us)
5 &
6 %@Semantics[SQL, PermissionCheck] {
7 db(instance_username_t(?LoginUsername,?),
8 instance_password_t(?LoginPassword,?),
9 ?

10)
11 %@}
12): { ... }
13

14 on(Us *->* Actor : editProf(
15 inst_u_t(?ReceivedID_edit,?RandomValue1_edit_Server),
16 instance_text(?ReceivedData_edit,?RandomValue2_edit_Server)
17) &
18 inSUT(Us) &
19 inSUT_text(?ReceivedData_edit) &
20 authenticate(Us) &
21 %@Semantics[SQL, PermissionCheck] {
22 Us->canEdit(?ReceivedID_edit)
23 %@}
24 & db(inst_u_t(?ReceivedID_edit,?),?,?)
25):{
26 ReceivedID_edit2:=inst_u_t(ReceivedID_edit,RandomValue1_edit_Server);
27

28 %@Semantics[SQL, Sanitize, Input]
29 sql_sanitize_username_t(ReceivedID_edit2);
30

31 %@Semantics[SQL] {
32 select{ on(

3In particular, it does not have the form !condition.

124

4.4. Effectiveness Evaluation

33 db(inst_u_t(ReceivedID_edit,?RandomValue4_edit_Server),?Password_edit,?)):{}
34 }
35 retract db(...) ;
36 db(StoreID,Password_edit,StoreData) ;
37 writtenToDB(ReceivedID_edit2, StoreID,ReceivedData_edit2,StoreData);
38 %@}
39 ...

InvalidateSQLConditionCheckBy{ DetachingVariable, SettingRandomValue } [1][2].
Applying these two mutation operators, there is one additional AAT that is generated
(AAT 7 in Table 4.5). It represents a split reflected SQL injection using both the user-
name and the password parameter of the login message. Since this kind of attack re-
quires at least two injections — invalidating the sanitization of both login message pa-
rameters — it is only generated with a higher-order mutation operator. In addition, the
InvalidateSQLConditionCheckBySettingRandomValue[1][2] generates no AAT
with the same rationales as mentioned for InvalidateSQLConditionCheckBySet-
tingRandomValue[1][1].

InvalidateSQLConditionCheckBy{ DetachingVariable, SettingRandomValue }. We
finally check whether we miss AATs that have not been generated so far. We apply both the
InvalidateSQLConditionCheckByDetachingVariable and InvalidateSQLCon
ditionCheckBySettingRandomValue mutation operator. For the WebGoat model, no
new AATs are generated.

4.4.1.5. Conclusion

In sum, we have seen that the presence of a message parameter is no guarantee that it is
used for an exploit. A message parameter is only part of a test case, if the mutation operator
injected a vulnerability that affects that parameter. This is a characteristic of Semantic
Mutation Operators since they allow to ask the Security Analyst enough information so
that the injection parameter can be determined. This is different for Syntactic Mutation
Operators since no additional information can be provided by the Security Analyst. We
will see later that heuristics are needed to operationalize some AATs generated by Syntactic
Mutation Operators. Such heuristics have the consequence that more parameters are tested
compared to AATs generated by Semantic Mutation Operators. When automatic black-box
scanners are used, even more blindly is tested since they often apply a brute force approach
to inject vulnerabilities wherever they can.

Furthermore, no test cases for XSS attacks are generated for messages that do not have
parameters. This is important for the Security Analyst that generates the initial model. E.g.,
one has to be careful while modeling a state transition performed by a click in the browser.
Since one might think that no input data is required for that transition, a click event can
propagate data in the background. If such a ‘hidden’ data flow can be security relevant, it
needs to be modeled. Otherwise, the model checker will not be able to properly verify the
security properties.

Finally, subtle details like e.g., returning the user-provided message parameter rather
than the parameter stored in the database determine, whether a specific test case is gener-

125

4. Evaluation

ated or not. This is in particular crucial for stored attacks. Due to the fact that the Semantic
Mutation Operators represent vulnerabilities and not attacks, test cases for stored attacks
(e.g., stored XSS or stored SQL attacks) are only generated if corresponding traces are
possible in the model due to the vulnerability injection. Therefore, an exact and accurate
modeling of the data flow is a crucial quality aspect, especially if several copies of the same
data element are introduced at the model level, as motivated in the guidelines for modeling
web applications (see Section 2.3.3.1).

When it comes to applying the mutation operators to the formal specification, one has to
be aware that the same concept can be modeled differently. In particular, if expected AATs
are not generated, one has to be aware that several mutation operators might exist that
represent the same source code level vulnerability. As an example, we have demonstrated
in Section 4.4.1.3 that depending on whether ASLan++ conditions or facts are used for
modeling SQL queries, different Semantic Mutation Operators need to be applied to gen-
erate corresponding AATs. Finally, the same AAT might be generated by different mutation
operators since the same message parameters can be involved in vulnerabilities at different
locations in the specification. This has a consequence e.g., for fault localization. If a test
case finds a vulnerability and this test case can be generated by a vulnerability injection at
different locations, it is not easily known which vulnerability is actually present in the SUV.

4.4.1.6. Instantiation of AATs

Multi-step Stored XSS Attack

One of the more interesting and more difficult exploitation of an XSS vulnerability is the
multi-step, stored XSS attack. We have seen in Section 4.3 that ZAP [49] does not find
this vulnerability. In contrast, model checking the mutated WebGoat models reveals this
AAT (AAT 7 in Table 4.3 generated by the XSSRemoveSanitization Semantic Mutation
Operator). Therefore, SPaCiTE finds this vulnerability and generates a corresponding ab-
stract AAT at the model level. Since an AAT at model level does not tell anything about the
SUV, we operationalize and execute the AAT in this section. We show that SPaCiTE also
successfully reveals the vulnerability at the implementation level.

The complete AAT 7 is shown in Listing 4.3. The logical steps described by the AAT are:

1. Login as user tom by providing the corresponding credentials.
2. The web application will return the welcome page that lists that the user tom is

authorized to view its own profile.
3. tom request his profile.
4. The web application returns tom’s profile.
5. tom then edits and stores his own profile using malicious data, indicated by the key-

word INJECT(HTML) in Line 6 in Listing 4.3.
6. The web application displays the modified profile.
7. tom returns to the welcome page.
8. After the injection, jerry logs in with her credentials.
9. Since he is authorized to view tom’s profile, the web application responses with the

welcome page that contains a link to tom’s profile.

126

4.4. Effectiveness Evaluation

10. jerry queries tom’s profile and gets attacked, indicated by the keyword VERIFY in
Line 13.

Listing 4.3: Multi-step Stored XSS Attack in WebGoat A

1 MESSAGES:
2 <tom> *->* webServer : login(username(tom),pwd(tom))
3 webServer *->* <tom> : listStaff(username(tom))
4 <tom> *->* webServer : viewProf(username(tom))
5 webServer *->* <tom> : profile(username(tom),tom_profile)
6 <tom> *->* webServer : editProf(username(tom),INJECT(HTML))
7 webServer *->* <tom> : profile(username(tom),tom_profile)
8 <tom> *->* webServer : retE2L
9 webServer *->* <tom> : listStaff(username(tom))

10 <jerry> *->* webServer : login(username(jerry),pwd(jerry))
11 webServer *->* <jerry> : listStaff(username(tom))
12 <jerry> *->* webServer : viewProf(username(tom))
13 webServer *->* <jerry> : VERIFY(jerry)

To instantiate and make this AAT operational, the Security Analyst is asked to provide
a Web Application Abstract Language (WAAL) mapping from abstract messages to abstract
browser actions. This mapping is given in the Appendix D.1. It starts with the declaration of
the simulated agents and the configuration of the agents tom and jerry. In the Mapping
section, abstract values like username and the password are specified. Finally, in the
MESSAGES TO ACTIONS section, the mappings from abstract messages to abstract browser
actions are expressed.

When initially the WAAL mapping file is linked to the formal specification using the menu
SPaCiTE Editor → Link model to WAAL mapping, SPaCiTE generates a basic skeleton
adapted to the specification. The Security Analyst needs to complete it by adding additional
74 lines (1 line for the simulated agents, 21 lines for the agent configuration, 7 lines for
the mapping of abstract to concrete values, 3 lines for the profile message, 9 lines for
the editProf message, 6 lines for the viewProf message, 21 lines for the login message,
3 lines for the retE2L message, and 3 lines for the listStaff message). Out of this WAAL
mapping file and the reported AAT, SPaCiTE fully automatically generates a TestNG test
case that consists of 188 lines of code. By making use of the WAAL DSL, the Security
Analyst has to write approximately 40% of the lines compared to specifying the AAT directly
as a TestNG test case. This number has to be taken with care since the actual lines of
codes depend on multiple parameters — the version of Selenium, the specific source code
language (Java, Python, etc.), the robustness of the implementation (error handling), the
set size of unique methods involved, and so on. In addition the complexity of a code line
might differ significantly. Therefore, not the exact number is important but the rough level
of magnitude. In addition to writing less code, the Security Analyst can use a declarative
language instead of an imperative one. That means that technical details like the exact
Selenium API calls, timing errors, and raised exceptions can be encapsulated by the WAAL
DSL.

Executing the corresponding TestNG test case for the AAT given in Listing 4.3 discovers
the stored XSS vulnerability. The first part of Figure 4.2 shows the injection of malicious
XSS input, the second part of Figure 4.2 the attack. The third part of Figure 4.2 shows that

127

4. Evaluation

Figure 4.2.: WebGoat: Stored XSS Vulnerability Disclosure

128

4.4. Effectiveness Evaluation

the same AAT is instantiated multiple times (see the instantiation library in Section 2.7.4.2).
Since every element in the instantiation library tries to exploit the vulnerability in a different
way, not all instantiation succeed. As long as there is at least one element that succeeds,
the vulnerability is exploitable. For the WebGoat example, SPaCiTE successfully exploited
the vulnerability since e.g., the instantiation element HTML text0 succeeded.

4.4.2. Semantic Mutation Operators on Wackopicko

4.4.2.1. Wackopicko.aslanpp

In the previous section we discussed in details the application of the different mutation
operators for the WebGoat formal specification. In this section we focus on the Wackopicko
web application. To not be repetitive, we summarize the application of the Semantic Mu-
tation Operators. Applying the standard Semantic Mutation Operators leads to a total of
310 mutated models. Model checking all of them, 136 mutated models also lead to an AAT,
where 60 traces are unique.

Note 1.
The formal specification makes use of the fact instance [type]([Value],[Nonce]) to
differentiate instances of the same value. To simplify the discussion of the reported AATs, we
get rid of the constant instance [type] and the [Nonce] and only present the corre-
sponding value. E.g., if an AAT contains the fact instance text(username1, n134(
RandomValue)) we simply write username1.

4.4.2.2. SQLRemoveSanitization

The Wackopicko formal specification contains in total 15 annotated sanitization blocks
against SQL injections. Applying the SQLRemoveSanitization Semantic Mutation Oper-
ator considers every possible combination but respecting the decision diagram (Figure 2.11
on page 56). Therefore, 16’702 different mutated models are created that all need to be
model checked. Model checking this amount of models is not feasible in practice. To provide
a feeling about how time consuming the model-checking process can be, we model-checked,
as part of Section 4.5.1, 3851 mutated models generated from the Wackopicko formal spec-
ification. That process lasts almost 312 hours. Since it is not possible to generalize and
interpolate the result to 16’702 models (it is hard to predict how long the model checker
needs for a specific mutated model), the number provides an intuition of the level of mag-
nitude only about the resource intensiveness. To limit the number of generated mutated
models, we apply SQLRemoveSanitizationUpToLimit[1][2].

4.4.2.3. SQLRemoveSanitizationUpToLimit

Applying the SQLRemoveSanitizationUpToLimit[1][2] Semantic Mutation Opera-
tor generates in total 72 mutated models, where 58 generate an AAT. Filtering out syn-
tactically equivalent AATs, we end up with a total of 32 unique AATs. Table 4.6 shows a
manual classification of them. A cross (x) marks the parameters that are used for injecting
malicious payloads, whereas a tick (!) tells where the victim is attacked.

129

4. Evaluation

AAT register upload preview attack after
un fn ln pw un tag file title price reg. rec. sim. pre. cr.

1 x !
2 x !
3 x !
4 x !
5 x x !
6 x x !
7 x x !
8 x x !
9 x x !
10 x x !
11 x !
12 x !
13 x !
14 x !
15 x !
16 x !
17 x x !
18 x x !
19 x x !
20 x x !
21 x x !
22 x x !
23 x x !
24 x x !
25 x x !
26 x x !
27 x !
28 x x !
29 x x !
30 x x !
31 x x !
32 x x !

Table 4.6.: SQLRemoveSanitization[1][2] Application on Wackopicko (un=username;
fn=firstname; ln=lastname; pw=password; reg.=register; rec.=recent;
sim.=similarName; pre.=preview; cr.=create; x=injection; !=verification)

130

4.4. Effectiveness Evaluation

Table 4.6 demonstrates that all inputs that are part of an SQL query are covered in
a systematic way. The reported AATs for the SQLRemoveSanitization[1][2] cover
both reflected SQL injections (see AAT 1 to 10), as well as multi-step SQL injections (see
AAT 11 to 32). It is known that Wackopicko suffers from Reflected- and a Stored-SQL-
Vulnerability [37]. The related paper [92] reports that the stored SQL vulnerability was not
discovered by any vulnerability scanner. In contrast, SPaCiTE does generate a corresponding
AAT (see gray row in Table 4.6). The reflected SQL injection is not reported by SPaCiTE, not
because it is too difficult for finding it, but because the login message, where the reflected
SQL vulnerability is located, is not modeled.

Considering Table 4.6, one might argue that SPaCiTE blindly generates an AAT for ev-
ery possible combination, because Table 4.6 looks very regularly and systematic. To argue
against this doubt, we remove the SQL annotations from the register message and let
SPaCiTE again generate AATs. Using such a model, 21 mutated models are generated,
where all of them generate an AAT. Even more, all 21 AATs are syntactically unique. Com-
paring the results with Table 4.6, one observes, that the first eleven AATs in Table 4.6 are
not generated anymore. Another argument is that e.g., no split SQL injection is gener-
ated where both the register and the upload message is involved. This highlights, that
SPaCiTE indeed operates on the security annotations and is vulnerability-based, compared
to pure syntactical coverage criteria.

4.4.2.4. InvalidateSQLConditionCheckBy{DetachingVariable,SettingRandomValue}

Both of these Semantic Mutation Operators do not generate mutated models, and conse-
quently, also no AATs are generated. Considering the formal specification given online [35],
no condition was annotated with the semantics keyword SQL. Therefore, the above two
Semantic Mutation Operators cannot be applied.

4.4.2.5. XSSRemoveSanitization

The Wackopicko formal specification contains in total 23 annotated sanitization blocks
against XSS injections. Applying the XSSRemoveSanitization Semantic Mutation Oper-
ator considers every possible combination. Therefore, 8’388’607 different mutated models
are created that all need to be model checked. This goes far beyond what is possible in
practice. To limit the number of generated mutated models, we apply the XSSRemove
SanitizationUpToLimit[2][2] Semantic Mutation Operator, that mutates two anno-
tated blocks per mutated model.

4.4.2.6. XSSRemoveSanitizationUpToLimit[2][2]

We directly focus on more difficult vulnerabilities like (multi-step) stored XSS attacks that
require more than one mutation. Therefore, we apply the higher-order XSSRemoveSaniti
zationUpToLimit[2][2] Semantic Mutation Operator to the Wackopicko specification.
In total 253 mutated models are generated, where 88 generate an AAT. Pairwise comparing
them, 28 unique AATs are identified that are classified in Table 4.7. A cross (x) marks the
parameters that are used for injecting malicious payloads, whereas a tick (!) tells where
the victim is attacked. Table 4.7 shows that, for good reasons, not all possible combinations

131

4. Evaluation

of injections and verification location is considered while generating AATs. E.g., no AAT
is generated for injecting malicious XSS code using the first name parameter of the
register message, because according to the formal specification, the first name is not
displayed anymore.

An interesting AAT is highlighted in Table 4.7. It represents the attack for the multi-
step XSS attack described in the paper by Doupé et al. [92], which was not found by any
vulnerability scanner. The vulnerability can be exploited by injecting malicious XSS code
using the comment parameter of the preview message. Upon going to the most recently
uploaded picture, the victim gets attacked. This AAT shows that the proposed Semantic
Mutation Operators are powerful enough to discover vulnerabilities for Wackopicko that
other tools often miss. In Section 4.4.2.7 we further show that the same vulnerabilities are
also found on the implementation of the SUV.

4.4.2.7. Instantiation of AATs

Multi-step Stored XSS Attack

To demonstrate that SPaCiTE not only reports this issue at the model level, we let SPaCiTE
operationalize and execute the highlighted AAT, given in Listing 4.4. The logical steps
described by the AAT are as follows:

1. A new user registers an account on Wackopicko.

2. The webServer shows the welcome page.

3. The user checks if someone has a similar name.

4. Then the user uploads a new picture to the system.

5. After he gets asked for a comment, he provides it using the preview message. In this
step, the user injects malicious XSS code, indicated by the keyword INJECT(HTML)
in Line 8 in Listing 4.4.

6. Since the attack is a stored injection, the webServer shows a preview page, where the
user has to click on the create button.

7. To be attacked by the injected malicious payload, the user needs to visit the page with
the recently uploaded pictures and select the most recent one.

8. After the server has replied with the most recent uploaded picture, the user gets at-
tacked, indicated by the keyword VERIFY in Line 12.

Listing 4.4: Multi-step Stored XSS Attack in Wackopicko
(cl=client; wS=webServer; upl=upload) A

1 <cl> *->* wS : register(cl,username_cl,firstname_cl,lastname_cl,password_cl)
2 wS *->* <cl> : welcome(username_cl)
3 <cl> *->* wS : similarName
4 wS *->* <cl> : similarName_response(sanitize_SQL_username_t(username_cl))
5 <cl> *->* wS : upload(Username_upload(156),Tag_upload(156),Filename_upload(156),

132

4.4. Effectiveness Evaluation

AAT register upload preview attack after
un fn ln pw un tag file title price reg. rec. sim. pre. cr.

1 x !
2 x !
3 x !
4 x !
5 x x !
6 x x !
7 x x !
8 x x !
9 x x !
10 x x !
11 x x !
12 x x !
13 x !
14 x !
15 x x !
16 x x !
17 x x !
18 x x !
19 x !
20 x !
21 x x !
22 x x !
23 x x !
24 x x !
25 x x !
26 x x !
27 x !
28 x !

Table 4.7.: XSSRemoveSanitization[2][2] Application on Wackopicko (un=username;
fn=firstname; ln=lastname; pw=password; reg.=register; rec.=recent;
sim.=similarName; pre.=preview; cr.=create; x=injection; !=verification)

133

4. Evaluation

6 Title_upload(156),Price_upload(156))
7 wS *->* <cl> : askForComment(Username_upload(156),Title_upload(156))
8 <cl> *->* wS : preview(INJECT(HTML))
9 wS *->* <cl> : show_preview(Username_upl(156),Title_upl(156),Comment_upl(156))

10 <cl> *->* wS : create
11 <cl> *->* wS : recent
12 wS *->* <cl> : VERIFY(cl)

To instantiate and making this AAT operational, the Security Analyst is asked to provide a
WAAL mapping from abstract messages to abstract browser actions. This mapping is given
in the Listing D.2. It starts with the declaration of the simulated agents and the configura-
tion of the agent ‘client’. In the Mapping section, abstract values like username client,
password client are specified. Finally, in the MESSAGES TO ACTIONS section, the map-
pings from abstract messages to abstract browser actions are expressed.

When initially the WAAL mapping file is linked to the formal specification, SPaCiTE gen-
erates a basic skeleton adapted to the specification. E.g., SPaCiTE parses the specification
and creates a skeleton for each defined agent and messages. The Security Analyst needs
to complete the skeleton for the Wackopicko specification by adding additional 83 lines (1
line for the simulated agents, 7 lines for the agent configuration, 9 lines for the mapping of
abstract to concrete values, 6 lines each for the preview and recent message, 24 lines for
the register message, 21 lines for the upload message, and 3 lines each for the create and
verify message). Out of this WAAL mapping file and the reported AAT, SPaCiTE fully auto-
matically generates a TestNG test case that consists of 183 lines of code. By making use of
the WAAL DSL, the Security Analyst has to write approximately half of the lines compared
to specifying the AAT directly as a TestNG test case. As already mentioned for the WebGoat
model the purpose of this number is to provide an intuition.

Executing the corresponding TestNG test case for the AAT given in Listing 4.4 discov-
ers the stored XSS vulnerability. The injected malicious XSS payload gets executed upon
displaying the most recent uploaded picture (see Figure 4.3).

Stored SQL Attack

Applying the SQLRemoveSanitization[1][2] Semantic Mutation Operator, the multi-
step stored SQL attack reported by Doupé et al. [92] is found by SPaCiTE. The correspond-
ing AAT is shown in Listing 4.5. The logical steps described by the AAT are:

1. A new user registers an account on Wackopicko. During the registration, the attacker
injects malicious SQL code into the first name field. This step is indicated by the
expression INJECT(SQL) in Line 2.

2. The webServer shows the welcome page.

3. The user checks if someone has a similar name.

4. Upon showing users with similar names, the injected SQL code gets executed, indi-
cated by the keyword VERIFY in Line 7.

134

4.4. Effectiveness Evaluation

Figure 4.3.: Wackopicko: Stored XSS Vulnerability Disclosure

135

4. Evaluation

Listing 4.5: Multi-step Stored SQL Attack in Wackopicko
(cl=client; wS=webServer) A

1 <client> *->* webServer : register(client,username_client,
2 INJECT(SQL),
3 lastname_client,
4 password_client)
5 webServer *->* <client> : welcome(username_client)
6 <client> *->* webServer : similarName
7 webServer *->* <client> : VERIFY(client)

To instantiate the reported multi-step stored SQL AAT, the minimal needed WAAL map-
ping file consists of 47 lines. E.g., the mapping for the upload message is not needed in
this example. Applying the provided WAAL mapping (see Appendix D.2) to the reported
multi-step stored SQL AAT, SPaCiTE generates a TestNG test case that consists of 129 lines
of code. In this example, the manually written WAAL mapping file is about 37% of the size
of the TestNG file.

The WAAL mapping is specified in a reusable way because actual parameter values for a
message are referenced instead of hard-coded (see Definition 4 on page 83). That allows
to reuse the same mapping for different AATs. Since we have already provided a WAAL
mapping for the stored XSS AAT we can just reuse the same mapping instead of creating a
new one.

Executing the corresponding TestNG test case for the AAT given in Listing 4.5 discov-
ers the stored SQL vulnerability. The injected malicious SQL payload gets executed upon
displaying users with similar names. The purpose of the used malicious SQL payload is to
make the executed SQL query syntactically wrong, so that the intended functionality cannot
be executed anymore. The output of Wackopicko is shown in Figure 4.4.

4.4.2.8. Conclusion

In this section we have seen that applying Semantic Mutation Operators without a limit
of possible combinations very quickly leads to an amount of mutated models that is not
model-checkable anymore in practice. Higher-order Semantic Mutation Operators generate
abstract AATs that represent non-trivial vulnerabilities that are not found by any black-box
vulnerability scanner studied by Doupé et al. [92]. Finally, the TEE and the WAAL language
are powerful enough to successfully execute the non-trivial XSS and SQL injections on the
SUV.

4.4.3. Semantic Mutation Operators on Bank Application

4.4.3.1. XSSRemoveSanitizationUpToLimit

Finally, we apply all standard Semantic Mutation Operators, that consider up to two mu-
tation candidates per mutated model, to the Bank application formal specification, given
online [7]. Applying them leads to a total of 248 mutated models. Model-checking of all
mutated models is quite time consuming and last approximately 29 hours. Table 4.8 shows
all reported AATs. In total, 62 mutated models lead to an AAT. Syntactically comparing
them, 33 AATs are unique.

136

4.4. Effectiveness Evaluation

AAT loginClient loginAdmin actC register check after

un pwd un pwd id un fn ln em pwd logA logC reg. actC

1 XSS !
2 XSS !
3 XSS !
4 XSS !
5 SQL !
6 SQL !
7 SQL SQL !
8 SQL !
9 SQL !
10 SQL SQL !
11 SQL !
12 SQL !
13 SQL !
14 SQL !
15 SQL !
16 SQL SQL !
17 SQL SQL !
18 SQL SQL !
19 SQL SQL !
20 SQL SQL !
21 SQL SQL !
22 SQL SQL !
23 SQL SQL !
24 SQL SQL !
25 SQL SQL !
26 SQL !
27 SQL !

Table 4.8.: Semantic Mutation Operator on Bank Application
(logC=loginClient; logA=loginAdmin; actC=activateClient; un=username;
pwd=password; fn=first name; ln=last name; em=email;)

137

4. Evaluation

Figure 4.4.: Wackopicko: Stored SQL Vulnerability Disclosure

We will not discuss every AAT in Table 4.8 but only highlight a few observations.

• AATs 1 to 4 are generated by the XSSRemoveSanitization Semantic Mutation
Operator. Although the register request has five parameters, no test case, for good
reasons, for an XSS attack using the password parameter is generated. The password
is never displayed in the browser and therefore, also no AAT is generated for that
parameter.

• The parameters of the register message are not combined to generate split XSS
attacks. The rationale is that such attacks require four mutation candidates to be mu-
tated at the same time. Both parameters must not be sanitized during the register
message and in addition, they must not be sanitized during the loginAdmin mes-
sage. Since the mutation operators only consider up to two mutation candidates at
the same time, these AATs are missed.

• InvalidateSQLConditionCheckByDetachingVariable generates in total 15
mutated models from which 12 lead to a security property violation. Analyzing all re-
ported AATs, these 12 AATs can be reduced to 6 unique AATs (AAT 5 - 10 in Table 4.8).
They all exploit one or two parameters of the loginAdmin and loginClient mes-
sage. Exemplary, AAT 5 (for AAT 5-7) and AAT 8 (for AAT 8 - 10) are shown in
Listing 4.8 and Listing 4.9 respectively. Please note that they significantly differ in
terms of the length. While an administrator can login at any time, he immediately
logs in when a pending activation action is available. In contrast, a client can only lo-
gin after the activation by an administrator. Therefore, AAT 8 - 10 contain these steps
before the injection is performed. It is important to stress that the decision to let an

138

4.4. Effectiveness Evaluation

admin only login when an activation request is available, is mainly model-checker mo-
tivated since it helps to reduce the size of the state space of the formal specification.
At a model level, a loginClient message is only accepted by the web application
if the user account is activated. Therefore, such an account has to be registered and
activated first.

• The InvalidateSQLConditionCheckByDetachingVariable mutation opera-
tor does not generate mutated models exploiting parameters of the activateClient
and register message that lead to an SQL attack. For these two message handlers,
the SQLRemoveSanitization mutation operator is required. The rationale is that
SQL related operations are not modeled as part of the message receiving condition
(see the complete specification [7] or Listing 4.6).

• SQLRemoveSanitization is generating 5120 mutated models. Due to the imprac-
ticality of model checking such an amount, we apply the Semantic Mutation Operator
SQLRemoveSanitizationUpToLimit[1][2]. It generates AATs 11 - 27. Among
these AATs we want to highlight AAT 26 and 27.

AAT 26. This AAT represents stored SQL injections using the register message to
inject the malicious payload into the system, and the activateClient mes-
sage to let the system execute the injected malicious code. A stored SQL injec-
tion is possible for the activateClient message since activateClient first
reads the data from the database using a first SQL query, and then uses the stored
username to activate that username during a second SQL query. Therefore, the
stored SQL injection exploits the seconds SQL query of the activateClient
message. Listing 4.10 shows AAT 26.

AAT 27. This AAT represents a reflected SQL injections using the activateClient
message. We have seen in Section 4.2.3 that the activateClient message
handler consists of two SQL queries. While AAT 26 exploits the second SQL
query (and is therefore a stored SQL injection), this AAT exploits the first SQL
query (and is therefore a reflected injection). This AAT is shown in Listing 4.11.

Listing 4.6: Bank Application Model Extract M

1 on (?User *->* Actor : activateClient(
2 inst_u_t(?ActivateClientUsername,?RandomValue1Activate)) &
3 authenticatedAsAdmin(?User) &
4 waiting_for_activation(instance_username_t(?ActivateClientUsername,?))
5): { ... }

Listing 4.7: Stored Multi-step Attack on the Bank Application
(wB=webBrowser; wS=webServer) A

1 <wB> *->* wS : register(INJECT(HTML),firstname1,lastname1,email1,password1)
2 wS *->* <wB> : ack_register
3 <wB> *->* wS : loginAdmin(username_admin,password_admin)
4 wS *->* <wB> : VERIFY(wB)

139

4. Evaluation

Listing 4.8: AAT 5 of Table 4.8
(wS=webServer; wB=webBrowser) A

1 <wB> *->* wS : register(username1,firstname1,lastname1,email1,password1)
2 wS *->* <wB> : ack_register
3 <wB> *->* wS : loginAdmin(INJECT(SQL),password_admin)
4 wS *->* <wB> : VERIFY(wB)

Listing 4.9: AAT 8 of Table 4.8
(wS=webServer; wB=webBrowser; pwd admin=password admin) A

1 <wB> *->* wS : register(username1,firstname1,lastname1,email1,pwd_admin)
2 wS *->* <wB> : ack_register
3 <wB> *->* wS : loginAdmin(username_admin,pwd_admin)
4 wS *->* <wB> : listPendingAccounts(username1,firstname1,lastname1,email1)
5 <wB> *->* wS : activateClient(username1)
6 wS *->* <wB> : ack_activateClient
7 <wB> *->* wS : logout
8 <wB> *->* wS : loginClient(username1,INJECT(SQL))
9 wS *->* <wB> : VERIFY(wB)

Listing 4.10: AAT 26 of Table 4.8 A

1 <wB> *->* wS : register(INJECT(SQL),firstname1,lastname1,email1,password1)
2 wS *->* <wB> : ack_register
3 <wB> *->* wS : loginAdmin(username_admin,password_admin)
4 wS *->* <wB> : listPendingAccounts(username1,firstname1,lastname1,email1)
5 <wB> *->* wS : activateClient(username1)
6 wS *->* <wB> : VERIFY(wB)

Listing 4.11: AAT 27 of Table 4.8 A

1 <wB> *->* wS : register(username1,firstname1,lastname1,email1,password1)
2 wS *->* <wB> : ack_register
3 <wB> *->* wS : loginAdmin(username_admin,password_admin)
4 wS *->* <wB> : listPendingAccounts(username1,firstname1,lastname1,email1)
5 <wB> *->* wS : activateClient(INJECT(SQL))
6 wS *->* <wB> : VERIFY(wB)

4.4.3.2. Instantiation of AATs

As discussed in Section 4.3, the students of the Secure Coding class used ZAP, w3af, Nikto,
Burp, Grendel, and InjectMe to test the application for known vulnerabilities. In terms of
XSS and SQL vulnerabilities, they didn’t find any issues. In this section we operationalize
the reported AAT from Section 4.4.3. The required WAAL mapping is given in Appendix D.3.
Executing all test cases, SPaCiTE did not discover any XSS and SQL security issues. Fig-
ure 4.5 shows an exemplary reported verdict.

140

4.4. Effectiveness Evaluation

Figure 4.5.: Bank: Exemplary Verdict of Testing the Bank Application

4.4.3.3. Summary

Verification techniques contribute with the important task of following the application logic
when generating test cases. Providing the steps between an injection and the attack, or
providing a correct sequence to bring the system into the state where an injection can
be performed is the task of the used verification techniques. By considering traces of the
behavior specification, such traces are application-dependent and contribute to application
specific injection and attack locations. As an example, we have seen in this section that
due to the model checker, the test case AAT 8 first let an administrator activate the client
account before the injection is performed.

4.4.4. Effectiveness Conclusion

In Section 1.4 we discussed the hypothesis that in a model-based context, non-trivial se-
curity vulnerabilities for web applications can be found with mutation operators and fault
injections. In Section 4.1 we raised the research question: If non-trivial security vulnerabil-
ities are present, does SPaCiTE, that uses vulnerability-based fault models, find in practice a
higher number of these vulnerabilities than black-box vulnerability scanners? To answer this
question, we have seen in Section 4.4 that SPaCiTE successfully discovered the stored XSS
vulnerability in the WebGoat application, as well as the multi-step stored XSS and stored
SQL vulnerability in the Wackopicko web application. The comparison with black-box vul-
nerability scanners showed that all these three vulnerabilities have not been discovered by
such scanners.

141

4. Evaluation

4.5. Efficiency Evaluation

We have seen in the previous section that SPaCiTE generates test cases for security-interest-
ing non-trivial XSS and SQL vulnerabilities that black-box vulnerability scanner often miss.
Executing test cases on a SUV faces a lot of technical and practical problems that can prevent
a tool to successfully execute such test cases. We have argued in Section 4.1 that black-box
vulnerability scanners use syntax-based fault-models for generating test cases. To compare
vulnerability-based and syntax-based fault models also on a more conceptual level, we
consider the three ASLan++ formal specifications introduced in Section 4.2 and compare
the generated AATs by Syntactic and Semantic Mutation Operators to highlight differences
and potential issues. While Semantic Mutation Operators represent a vulnerability-based
fault model, Syntactic Mutation Operators represent a syntax-based fault model.

4.5.1. Syntactic Mutation Operators

When using a mutation-based approach and verification techniques like model checkers to
generate AATs, first a set of mutated models is generated. Then all models in this set have
to be model checked to generate corresponding AATs. In the ideal case, one only wants to
model check whose mutated models, that also generate an AAT, because (1) model checking
is quite resource intensive, and (2) mutated models that do not generate an AAT cannot
be used for test case generation in our approach. Furthermore, semantically annotated
models require manual work from the Security Analyst. In contrast, Syntactic Mutation
Operators can automatically be applied without annotations. For the efficiency evaluation,
we therefore compare Semantic Mutation Operators with Syntactic Mutation Operators.
Syntactic Mutation Operators are based on the same set of General Mutation Operators
(see Section 2.6.4) as the Semantic Mutation Operators. Nevertheless they differ in the
following sense:

• Syntactic Mutation Operators are applied in the formal specification everywhere the
ASLan++ syntax allows it. It is the syntactic structure of a formal specification that
motivates the application of Syntactic Mutation Operators. As a reminder, Semantic
Mutation Operators only apply a mutation operator to those parts of the specification
where a source code vulnerability might occur in the implementation.

• A second difference is that Syntactic Mutation Operators lack an immediate and ob-
vious connection to semantic information like corresponding vulnerabilities. There-
fore, they can only exploit syntactic changes to determine the malicious parameters
(see Section 2.6.4) whereas Semantic Mutation Operators do have access to seman-
tic annotations. We will see in this section that this has consequences during the
operationalization of AATs.

For this evaluation, we consider the following four Syntactic Mutation Operators: De-
tachVariable, RemoveFunctionFromAssignment, ReplaceVariableByRandomValue, and In-
validateIntroduceFact. The functionality is already discussed in Section 2.6.4. To discuss
the reported AATs by applying Syntactic Mutation Operators, we make the following as-
sumption:

142

4.5. Efficiency Evaluation

Assumption 1. SPaCiTE is not always able to determine which message parameter has to
be used to inject malicious inputs. In this situation, SPaCiTE does not introduce an explicit
‘VERIFY’ action that tells the TEE to check if the malicious effect can be observed. If the ‘VERIFY’
action is missing, we assume that the check is performed after the last message of the AAT.

We take the same three formal specifications as for the effectiveness evaluation (see Sec-
tion 4.2) and apply both Syntactic and Semantic Mutation Operators. The results are re-
ported in Table 4.9. The different columns represent the three formal specifications. For
each specification we list the number of generated mutated models (mM), the number of
AATs (A) and the ratio between the first two columns (mM/A). A row represents the dif-
ferent mutation operators that are applied (syntactic, semantic, first-order, higher-order).
From this table we highlight the following observations that we later discuss in Chapter 5:

• Applying Syntactic Mutation Operators lead to more generated AATs than applying
Semantic Mutation Operator. This means that certain traces are not tested following
the semantics-based approach. Nevertheless, the difference in terms of the absolute
number of AATs is lower than expected. While higher-order Semantic Mutation Op-
erators generate 60 unique AATs from the Wackopicko specification, higher-order
Syntactic Mutation Operators generate 94. This is a ratio of around 1.6. The ratio
between first-order Syntactic and Semantic Mutation Operators is between 1.29 (18
vs. 14 AATs) and 2 (20 vs. 10 AATs).

• While all different mutation operator sets, except the set of higher-order Syntactic Mu-
tation Operators, generate between 19 and 310, the set of higher-order Syntactic Mu-
tation Operators generate between 3820 and 12’046 AATs. In the context of model-
checking this difference is significant. Model checking thousands of models requires
hours of computation. While model-checking 3851 models generated by the higher-
order Syntactic Mutation Operators using the configuration given in Section 4.2 and
eight parallel processes required 312 hours, model checking 248 specifications gener-
ated by the XSSRemoveSanitizationUpToLimit mutation operator required 29
hours.

• The ratio between generated mutated specifications and the fraction of mutated spec-
ifications that generate AATs is much smaller for Syntactic Mutation Operators (be-
tween 2% (94 vs. 3851 models) and 13% (20 vs. 158 models)). The same ratio is
much better for Semantic Mutation Operators (between 12% (24 vs. 204 models)
and 53% (10 vs. 19 models)).

Wackopicko. To compare the set of AATs of all four different combinations (first-order,
higher-order, Syntactic Mutation Operator, Semantic Mutation Operator) in more detail,
we first focus on the Wackopicko use case. We syntactically compare the AATs of each set
and report the findings in Table 4.10. The table has to be read in the following way. Each
row represents a specific set of mutation operators. The diagonal elements show the num-
ber of unique AATs that a specific set generates. The different columns show how many
of the reported AATs are found by the different sets of mutation operators as well. E.g.,
the set of first-order Syntactic Mutation Operators generate 18 unique AATs. 14 out of
these 18 AATs are generated by the first-order Semantic Mutation Operators as well. In a

143

4. Evaluation

nutshell, we expected that Syntactic Mutation Operators subsume Semantic Mutation Oper-
ators. Tables 4.10 and 4.11 show that Syntactic Mutation Operators generate AATs that are
challenging when determining the malicious input parameter. E.g., higher-order Syntactic
Mutation Operators only generate 52 out of these 60 AATs generated by higher-order
Semantic Mutation Operators (Table 4.10). Furthermore, Table 4.11 shows that Syntactic
Mutation Operators generate 6 out of 10 AATs as well but SPaCiTE fails to determine the
input parameter of 4 out of 10 AATs. In the following, we will analyze these issues.

WebGoat Wackopicko Bank
mM A mM/A # mM # AATs mM/A # mM # AATs mM/A

Syntactic first-order
InvalidateIntroduceFact 53 9 0.17 42 4 0.10 59 8 0.14
RemoveFctFromAssign. 8 0 0.00 36 10 0.28 23 0 0.00
DetachVariable 38 15 0.39 41 8 0.20 74 5 0.07
SetToRandomValue 59 0 0.00 56 0 0.00 122 0 0.00
unique artifacts 158 20 0.13 175 18 0.10 278 12 0.04

Syntactic higher-order (min=max=2)
InvalidateIntroduceFact 1378 861 155 0.18 1711
RemoveFctFromAssig. 28 630 300 0.48 253
DetachVariable 703 820 275 0.34 2701
SetToRandomValue 1711 1540 0 0.00 7381
unique artifacts 3820 3851 94 0.02 12046

Semantic first-order
InvSQLByDetachingVar 4 4 1.00 0 0 0.00 7 4 0.57
InvSQLByRandom 4 0 0.00 0 0 0.00 7 0 0.00
SQLRemoveSanitization 3 3 1.00 15 10 0.67 13 6 0.46
XSSRemoveSanitization 8 3 0.38 23 4 0.17 17 0 0.00
unique artifacts 19 10 0.53 38 14 0.37 44 9 0.20

Semantic higher-order (min=max=2)
InvSQLByDetachingVar 1 1 1.00 0 0 0.00 6 6 1.00
InvSQLByRandom 1 0 0.00 0 0 0.00 6 0 0.00
SQLRemoveSanitization 1 1 1.00 57 48 0.84 56 43 0.77
XSSRemoveSanitization 28 21 0.75 253 88 0.35 136 3 0.02
unique artifacts 31 13 0.42 310 60 0.19 204 24 0.12

Table 4.9.: Application of Syntactic and Semantic Mutation Operators with Different
Configurations
(mM=# mutated Models; A=# AATs InvSQLByDetaching-
Var=InvalidateSQLConditionCheckByDetachingVariable; InvSQLByRan-
dom=InvalidateSQLConditionCheckBySettingRandom)

From this Table 4.10 we conclude the following observations:

• The first-order Syntactic Mutation Operator generate 18 AATs that are all generated
by the higher-order Syntactic Mutation Operators as well. This is not astonishing since

144

4.5. Efficiency Evaluation

Set Also generated by

Syn1. Syn2. Sem1. Sem2.
First-order Syntactic 18 18 14 14
Higher-order Syntactic 18 94 14 52
First-order Semantic 14 14 14 14
Higher-order Semantic 14 52 14 60

Table 4.10.: Comparison of Syntactic vs. Semantic Mutation Operator
(Syn1=first-order Syntactic Set; Syn2=Higher-order Syntactic Set;
Sem1=first-order Semantic Set; Sem2=Higher-order Semantic Set)

first-order and higher-order mutation operators do not differ in terms of functionality
but in terms of the number of mutation candidates that they consider for the same
mutated formal specification. 14 out of these 18 AATs are generated by first-order
and higher-order Semantic Mutation Operators as well. The rationale for first-order
vs. higher-order Syntactic Mutation Operators is the same for first-order vs. higher-
order Semantic Mutation Operators.

• The higher-order Syntactic Mutation Operators generate in total 94 AATs. In this situ-
ation, this set of AATs contains traces that are not generated by any other set. Around
19% of the 94 traces are generated by the first-order Syntactic Mutation Operators
as well, even less are generated by first-order Semantic Mutation Operator (around
15%). In comparison, around 56% of the traces are also generated by the higher-order
Semantic Mutation Operator.

• The first-order Semantic Mutation Operators generate in total 14 AATs. All of these
AATs are generated by all other sets as well.

• Finally, the higher-order Semantic Mutation Operator generates 60 AATs in total, from
which 14 AATs are also generated by the first-order Semantic Mutation Operators.
Interestingly, the higher-order Syntactic Mutation Operators generate a subset only
(52 out of 60). We will analyze and discuss the rationales in Chapter 5. Furthermore,
the first-order Semantic Mutation Operators generate 14 out of the 60 AATs.

WebGoat. Analyzing the generated AATs by first-order Syntactic vs. Semantic Mutation
Operators in Table 4.11 on the WebGoat formal specification shows similar issues. Ta-
ble 4.11 has to be read in the following way: The first column lists all 20 AATs generated
by the set of first-order Syntactic Mutation Operators. The third column shows all 10 AATs
generated by the set of first-order Semantic Mutation Operators. Each row states, whether
the trace in the first column is syntactically equivalent to the trace in the third column, or
which of the three issues Issue1, Issue2, or Issue3 occurs.

Issue1. Message parameter to be used for the injection can be determined but the type of
the injection is missing.

Issue2. The message parameter for the injection cannot be determined.

145

4. Evaluation

Issue3. The ID to identify the acting client is considered malicious. This mutation has no
real-word corresponding vulnerability.

Table 4.11 shows that 6 AATs generated by first-order Semantic Mutation Operators are
syntactically equivalent to 6 AATs generated by first-order Syntactic Mutation Operators.
AATs 0, 2, 8, and 17 generated by the first-order Syntactic Mutation Operators correspond
to the remaining 4 AATs generated by the first-order Semantic Mutation Operators. For
those four AATs, SPaCiTE is able to identify the correct message parameter, but since the
violated security property is related to Authentication, the type of malicious input cannot
be determined (Issue1). For 9 AATs generated by the first-order Syntactic Mutation Oper-
ators, SPaCiTE is not able to determine the message parameter (Issue2). Finally, the last
AAT (AAT 7), an identifier that refers to the client performing the action in the browser is
considered as malicious. Since there is no underlying real world vulnerability, this AAT is
only generated by the set of Syntactic Mutation Operators (Issue3).

First-order
Syntactic
Mutation
Operators

First-order
Semantic
Mutation
Operators

0 Issue1 0
1 Issue2
2 Issue1 8
3 Issue2
4 syntactic equivalent 4
5 syntactic equivalent 2
6 syntactic equivalent 5
7 Issue3
8 Issue1 7
9 Issue2
10 Issue2
11 Issue2
12 Issue2
13 Issue2
14 Issue2
15 Issue2
16 syntactic equivalent 6
17 Issue1 1
18 syntactic equivalent 3
19 syntactic equivalent 9

Table 4.11.: Comparison of AATs Generated by First-Order Syntactic vs. First-order
Semantic Mutation Operators

4.5.2. Efficiency Conclusion

In sum, comparing Semantic Mutation Operators (vulnerability-based fault model) vs.
Syntactic Mutation Operators (syntax-based fault model) using the three models introduced

146

4.5. Efficiency Evaluation

in Section 4.2 shows that applying Syntactic Mutation Operators ‘only’ generate between
1.29 (18 vs. 14 AATs) and 2 (20 vs. 10 AATs) times as many AATs as applying Semantic
Mutation Operators. The ratio between all mutated specifications and specifications that
generate an AAT is very low for Syntactic Mutation Operators (between 2% (94 vs. 3851
models) and 13% (20 vs. 158 models)), and much higher for Semantic Mutation Opera-
tors (between 12% (24 vs. 204 models) and 53% (10 vs. 19 models)). This demonstrates
that Syntactic Mutation Operators generate a lot of mutated specifications where the used
model checker cannot find a trace that violates the specified security properties. Since
only mutated specifications that generate an AAT are useful for test case generation, all the
other mutated specifications consume computation power without generating test cases.
Semantic annotations help to prevent some of these mutated models by providing infor-
mation about the underlying used technology and the semantics of the annotated artifact.
Finally comparing reported AATs generated by Syntactic and Semantic Mutation Opera-
tors highlights three issues with AATs generated by Syntactic Mutation Operators — (1)
missing vulnerability information, (2) difficulties during determining which message pa-
rameter has to be used for the injection, and (3) AATs that cannot be instantiated. This
has the consequence that the operationalization is not obvious and heuristics need to be
applied to execute them. We will discuss such heuristics in Section 5.5. Since crucial opera-
tionalization information is missing, such heuristics often implement an over-approximation
and decrease the efficiency of generating executable test cases. The improvements of the
Semantic Mutation Operators are not for free since Semantic Mutation Operator require
manual annotations. We will discuss the required effort in more details in Section 5.6.

147

5. Discussion and Future Work

5.1. Syntactic vs. Semantic Mutation Operators

Table 4.9 shows the application and model checking of three different models (columns)
and different mutation operators (rows). From this table we conclude the following:

The ratio of the number of Abstract Attack Traces (AATs) generated by Syntactic Mutation
Operators divided by the number of AATs generated by Semantic Mutation Operators is
smaller than expected. Rationales for this observation are:

• Our considered formal specifications consist up to eleven different message param-
eters, indicated by P1 . . . P11 on the x-axis in Table 5.1. On the y-axis we see all
defined messages. An ‘X’ and a ‘S’ in the intersection of a message and a parameter P
indicates that the parameter is used for an Cross-site Scripting (XSS) and Structured
Query Language (SQL) injection respectively. E.g., the ‘X’ in the intersection of lo-
gin(P1,P2) and P1 means that a test case was generated that injected an XSS
malicious input using the first parameter of the login message. The table shows that
depending on the model, between 40% and 90% of all the modeled input parame-
ters are involved in XSS related security properties and 100% are involved in SQL
injection related security properties (see Table 5.1). Comparing these two numbers,
one observes that the number of parameters involved in XSS attacks is significantly
smaller than the number of parameters involved in SQL attacks. Having a closer look
to the corresponding formal specifications, it turns out that all parameters that are
sent back to the browser are involved in XSS attacks (percentage numbers in paren-
theses in Table 5.1). Therefore, a Syntactic Mutation Operator cannot exploit an
additional message parameter for violating a security property since all of them are
already considered by Semantic Mutation Operators.

• This behavior is supported by the fact that the considered formal specifications mainly
focus on those message handlers, that are relevant in terms of XSS and SQL attacks.
Communication that is unrelated to these vulnerabilities and message exchanges that
are abstracted, are left out by these models. Therefore, most of the modeled parame-
ters are relevant in terms of XSS and SQL vulnerabilities and are already covered by
AATs generated by Semantic Mutation Operators.

• Important to stress is that a mutation only leads to a test case if a security property
is violated. E.g., if we consider a message with ‘x‘ different message parameters,
but none of them are rendered in the browser, injecting XSS related malicious code
will also never generate an AAT. Therefore, even if a Syntactic Mutation Operator is
applied to parts of the specification related to these parameters, it is very unlikely that
such mutations generate an AAT. Furthermore, by annotating the formal specification,
the Security Analyst is eager to cover as many parts of the specification that correlate

149

5. Discussion and Future Work

with the defined security properties. Therefore, it is very likely that the Security
Analyst has ‘optimized’ the annotations for covering the security properties, meaning
that all parts that are affected by the properties are also annotated. In such a situation,
even if many more mutated models are generated by Syntactic Mutation Operators
than by Semantic Mutation Operators, they either rarely violate a security property,
or they generate an AAT that is also generated by a Semantic Mutation Operator.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

WebGoat
login(P1,P2) X, S S
viewProf(P3) X, S
editProf(P4,P5) X, S X, S

Parameters used for XSS: 80% (100%); Parameters used for SQL: 100%

Wackopicko
register(P1,P2,P3,P4,P5) X, S X, S X, S X, S X, S
upload(P6,P7,P8,P9,P10) X, S X, S X, S X, S S
preview(P11) S

Parameters used for XSS: 90% (100%); Parameters used for SQL: 100%

Bank
register(P1,P2,P3,P4,P5) X, S X, S X, S X, S S
loginAdmin(P6,P7) S S
activateClient(P8) S
loginClient(P9,P10) S S

Parameters used for XSS: 40% (100%); Parameters used for SQL: 100%

Table 5.1.: Parameter Used for Different Attacks (Syntax: X=XSS, S=SQL)

5.2. Comparison of Higher-Order Semantic Mutation Operator
and Higher-Order Syntactic Mutation Operator

Table 4.10 shows that only a subset of the AATs generated by the Semantic Mutation Op-
erators are also generated by the higher-order Syntactic Mutation Operators (52 and 60 in
the last row). Since this is counter intuitive, we performed the following investigation. We
identified those 8 AATs that Semantic Mutation Operators generate but are missed by the
Syntactic Mutation Operators. In the next step, we collected the corresponding mutated
models, from which these 8 AATs are generated. Afterwards, we collected the mutated
models produced by the Syntactic Mutation Operators that contain the same corresponding
mutations. These are the models where the Syntactic Mutation Operators mutated the same
mutation candidates like the Semantic Mutation Operators. Finally, we analyzed the eight
AATs generated from those models. It turns out that all those eight AATs suffer from the
same issue, that we exemplary explain as follows.

150

5.2. Comparison of Higher-Order Semantic Mutation Operator and Higher-Order
Syntactic Mutation Operator

Listing 5.2 shows the kind of AATs that we also expected from the Syntactic Mutation Op-
erators. In a nutshell, the attacker injects malicious XSS data using the filename parameter
of the upload message. Then the user-provided data is stored in the database. Using the
recent message, the malicious data is read from the database and sent back to the client.
In Section 2.3.3 we discussed a way to model such values that are retrieved by a message
handler and stored in a database. Such values can be modeled with random nonces. List-
ing 5.3 shows the AAT of the mutated model where the higher-order Syntactic Mutation
Operators mutated the same parts in the model as the higher-order Semantic Mutation Op-
erators. It is the statement that sanitizes the filename stored in the database. As one can
observe, both AATs consist of the same sequence of messages that are exchanged between
the browser and the web application. Nevertheless it turns out that the information avail-
able to the Syntactic Mutation Operator is not sufficient to determine the parameter where
the injection has to take place. The rationale is the following:

In the AAT returned by the model checker, the unique value instance filename t
(Filename upload(162), n140(RandomValue2Client)) appears as part of the up
load message. The value in the database is represented as instance filename t(
Filename upload(162), n158(Nounce toStore)). Since the Syntactic Mutation
Operator does not know the semantics that the sanitization of the database value is an
inherited property of the sanitization of the filename part of the upload message, the in-
jection parameter cannot correctly be determined. Therefore, the AAT generated by the
Syntactic Mutation Operators does not contain the INJECT and VERIFY keywords (List-
ing 5.3). In such a situation, one could apply the heuristics that there is only one filename
involved in the AAT to determine the injection parameter. At the current state of the work,
such a heuristic is not implemented (yet). In contrast, the semantic annotation Implicit
(see Listing 5.1) establishes the link between the filename part of the upload message
(Filename uploadServer) and the filename stored in the database (Filename toStore). This
information can be exploited by the Semantic Mutation Operators while determine the pa-
rameter to be used for the injection. Therefore, the result is the AAT in Listing 5.2. Although
a syntactical comparison of the AATs concludes that the Semantic Mutation Operator gen-
erates an AAT that is not generated by the Syntactic Mutation Operator, it is actually the au-
tomatic identification process of the vulnerable parameters that fails because the Syntactic
Mutation Operators lack important semantic information.

In sum, the AAT generated by the Syntactic Mutation Operators requires more effort
during the instantiation of the test cases. Either additional automatic analysis techniques
have to be used during the instantiation, or an over approximation is needed to generated
test cases that use every parameter of the AAT for the injection.

Listing 5.1: Extract of the Wackopicko Model:
Sanitization of the Filename Stored in the Database M

1 %@Semantics[HTML, Sanitize, Implicit(Filename_uploadServer)]
2 sanitize_XSS(Filename_toStore) ;

151

5. Discussion and Future Work

Listing 5.2: Missed AAT by Higher-Order Syntactic Mutation Operators
(wS=webServer; cl=client) A

1 <cl> *->* wS : register(cl,username_client,firstname_client,
2 lastname_client,password_client)
3 wS *->* <cl> : welcome(username_client)
4 <cl> *->* wS : similarName
5 wS *->* <cl> : similarName_response(sanitize_SQL_username_t(username_client))
6 <cl> *->* wS : upload(Username_upload(162),Tag_upload(162), INJECT(HTML),
7 Title_upload(162), Price_upload(162))
8 wS *->* <cl> : askForComment(Username_upload(162),Title_upload(162))
9 <cl> *->* wS : preview(Comment_upload(162))

10 wS *->* <cl> : show_preview(Username_upload(162),Title_upload(162),
11 Comment_upload(162))
12 <cl> *->* wS : create
13 <cl> *->* wS : recent
14 wS *->* <cl> : VERIFY(cl)

Listing 5.3: Corresponding AAT by Higher-Order Syntactic Mutation Operators
(wS=webServer; cl=client) A

1 <cl> *->* wS : register(cl,username_client,firstname_client,lastname_client,
2 password_client)
3 wS *->* <cl> : welcome(username_client)
4 <cl> *->* wS : similarName
5 wS *->* <cl> : similarName_response(sanitize_SQL_username_t(username_client))
6 <cl> *->* wS : upload(Username_upload(162),Tag_upload(162),Filename_upload(162),
7 Title_upload(162),Price_upload(162))
8 wS *->* <cl> : askForComment(Username_upload(162),Title_upload(162))
9 <cl> *->* wS : preview(Comment_upload(162))

10 wS *->* <cl> : show_preview(Username_upload(162),Title_upload(162),
11 Comment_upload(162))
12 <cl> *->* wS : create
13 <cl> *->* wS : recent
14 wS *->* <cl> : recent_response(Username_upload(162),Tag_upload(162),
15 Filename_upload(162),Title_upload(162),
16 Comment_upload(162))

5.3. Comparison of First-order Syntactic Mutation Operator to
First-order Semantic Mutation Operator

In this section we discuss results based on the comparison of first-order Syntactic Mutation
Operators and first-order Semantic Mutation Operators applied to the Wackopicko formal
specification.

The first-order Syntactic Mutation Operators generate four AATs that are not generated by
Semantic Mutation Operators (line 1 in Table 4.10). These four AATs are generated by mu-
tated models where syntactic mutations have been performed at the client side (browser).
The formal specification of the server side of the web application still correctly sanitizes
all user-provided input values. The applied mutation by the Syntactic Mutation Operators
leads to the situation that the value received by the client side browser is not the same value

152

5.4. Comparison of First-Order Semantic Mutation Operator to Higher-Order Semantic
Mutation Operator

anymore than used in the security property. The received value is not stored in the variable
anymore, that is used by the security property. Therefore, these four AATs do not reflect
real vulnerabilities.

5.4. Comparison of First-Order Semantic Mutation Operator to
Higher-Order Semantic Mutation Operator

In this section we discuss results based on the comparison of first-order Semantic Mutation
Operator and higher-order Semantic Mutation Operator. In Section 4.5 we showed that all
generated AATs by first-order Semantic Mutation Operator are also generated by higher-
order Semantic Mutation Operator. Considering all AATs generated by the higher-order
Semantic Mutation Operators, we observe that first-order Semantic Mutation Operators
miss all those AATs where more than one input is exploited. Additionally, also some AATs
where only one input is exploited are not covered by the first-order Semantic Mutation
Operator. Therefore, we provide the rationales for those AATs (AAT 2, 3, 14, 19, 27, and
28 in Table 4.7; AAT 11 in Table 4.6).

AAT 3 in Table 4.7 and AAT 11 in Table 4.6. First-order Semantic Mutation Operators do
not generate the AATs of the multi-step stored XSS and multi-step stored SQL injection since
they require more than one mutation in the specific formalization. These two vulnerabilities
and their corresponding attacks are considered as difficult vulnerabilities since automatic
vulnerability scanners do usually not find them. In contrast, SPaCiTE does generate and
find these vulnerabilities thanks to higher-order mutation operators.

AAT 2 in Table 4.7. At first sight, it is peculiar that AAT 2 in Table 4.7 is not generated
by the first-order Semantic Mutation Operators. The AAT consists of one malicious param-
eter only. Nevertheless AAT 2 represents a multi-step attack, where sanitization must be
vulnerable in the register message handler and the recent message handler as well.
Therefore, a first-order mutation operator is not sufficient to generate this AAT.

AAT 3, 14, 19, 27, and 28 in Table 4.7. The same argumentation holds for AAT 3, 14, 19,
27, and 28. There are two different message handler involved and therefore, sanitization
must be invalidated twice to generate these AATs. Therefore, a first-order mutation operator
is not sufficient.

All these examples show that higher-order mutation operators are essential to find (multi-
step) stored XSS and SQL vulnerabilities. In general, the more complex a vulnerability is,
the more is the tendency that higher-order mutation operators are required to find the vul-
nerability. This is also true for attacks that only require one malicious parameter. The above
discussion shows that an AAT consisting of one malicious parameter only is no guarantee
that first-order mutation operators are sufficient.

153

5. Discussion and Future Work

5.5. Operationalizing AATs from Syntactic Mutation Operators

In this section we illustrate on a technical level the effort required to operationalize AATs
generated by Syntactic Mutation Operators. We discuss what kind of AATs are generated
and possible strategies to operationalize them. This section shows that AATs generated from
Syntactic Mutation Operators may lack crucial information needed for the operationaliza-
tion. Applied strategies to operationalize them often lead to an over-approximation which
influences the efficiency. In this section we discuss the different strategies and we will
discuss the implications of them in the following Section 5.6.

Applying Syntactic Mutation Operators generates three different types of AATs. The first
type are AATs that contain the two keywords INJECT and VERIFY together with informa-
tion which type of malicious code is required for the injection (see Listing 5.4). Such an
AAT is possible for a Syntactic Mutation Operators if the violated security property is named
accordingly (XSS, SQL), although such a naming convention is equivalent to a semantic an-
notation of the specified security property. In such a situation the kind of malicious input
can be learnt from the name of the violated property. They have the same form as AATs
generated by Semantic Mutation Operators. The second type of AATs still contain the two
keywords INJECT and VERIFY but they lack information about the type of malicious code
(see Listing 5.6). The third type of AATs are traces without indications where to inject ma-
licious code (see Listing 5.5). While the first type of AATs can be operationalized exactly
in the same way as AATs generated by Semantic Mutation Operators, the other two types
require more effort. To operationalize such AATs, the Security Analyst can apply different
strategies:

Listing 5.4: Example AAT A

1 <client> *->* webServer : register(client,username_client,INJECT(SQL),
2 lastname_client,password_client
3)
4 webServer *->* <client> : welcome(username_client)
5 <client> *->* webServer : similarName
6 webServer *->* <client> : VERIFY(client)

Listing 5.5: Example AAT A

1 <client> *->* webServer : register(client,username_client,firstname_client,
2 lastname_client,password_client
3)
4 webServer *->* <client> : welcome(username_client)
5 <client> *->* webServer : similarName
6 webServer *->* <client> : similarName_response(
7 sanitize_SQL_username_t(username_client)
8)

154

5.5. Operationalizing AATs from Syntactic Mutation Operators

Listing 5.6: Example AAT A

1 <tom> *->* webServer : login(username(tom),INJECT(Unknown))
2 webServer *->* <tom> : VERIFY(tom)

Strategy 1: The Security Analyst operationalizes only AATs that contain information which
parameter is used for which kind of attack. In particular, he does not instantiate
those AATs where no indication is provided (see Listing 5.5). Applying strategy 1 has
the consequence that mutated models are generated where the model checker finds
counter examples, but due to the missing semantics of the mutation it is unclear how
to operationalize them. Syntactic mutations that lead to such AATs can e.g., be:

• A mutation is performed at the client side.

• A mutation may allow the use of a value (e.g., a nonce or a dummy value) that
violates a security property but the same value is not used for the communication
between the client and the web application.

• Syntactic Mutation Operators may lead to so called dummy values used in the
communication between the browser and the web application. When a dummy
value should be sent to the web application, it is unclear what a concrete value
should be. Similar, if a dummy value is sent back to the client, it is unclear how
to verify such a dummy value.

• A mutation of an internal value (e.g., stored in a database) that cannot be linked
to the corresponding value appearing in the communication because of the miss-
ing semantic annotation.

Since AATs like the one in Listing 5.5 are not operationalized when applying strat-
egy 1, there are models so that Syntactic Mutation Operators are less effective than
Semantic Mutation Operators. As an example, Semantic Mutation Operators applied
on the Wackopicko formal specification generate the AAT given in Listing 5.4. It
represents the stored SQL attack. The most similar AAT generated by the Syntactic
Mutation Operators is the one given in Listing 5.5. It contains no injection informa-
tion and therefore, the stored SQL injection test case is not generated using Syntactic
Mutation Operators and applying strategy 1. Since a mutated model was generated
that leads to an AAT it is unfair to ignore it just because not enough injection informa-
tion is available. Therefore, one could treat each parameter as potentially vulnerable,
as explained in the following strategy.

Strategy 2: The Security Analyst instantiates whose AATs where no indication is provided
‘where’ to inject ‘what’ with a brute force strategy. Since he knows that Semantic
Mutation Operators are dedicated to XSS and SQL injections, a brute force strategy
instantiates the AAT given in Listing 5.5 as follows:

• Inject XSS and SQL malicious code respectively using the client reference of the
register message (first parameter).

• Inject XSS and SQL malicious code respectively using the username, first name,
last name and password of the register message.

155

5. Discussion and Future Work

Considering AATs where the malicious parameter is identified but the type of injec-
tion is unknown (see Listing 5.6), a brute force strategy would inject XSS and SQL
malicious code only using the identified parameter.

This brute force strategy leads to the situation that Syntactic Mutation Operators gen-
erate a super set of executable test cases generated by Semantic Mutation Opera-
tors. It contains all the test cases that the Semantic Mutation Operators generate but
Syntactic Mutation Operators generate additional test cases that have no vulnerability
motivation from the specification. To illustrate that, we apply the brute force strategy
to the AAT given in Listing 5.5 and take the AAT that injects XSS malicious code using
the password parameter of the register message. This AAT is not generated by the
Semantic Mutation Operators since at model level, the password is never sent back
to the client and displayed in the browser. Therefore, also no XSS related security
property can be violated and it is very likely that also a penetration tester would not
generate and execute such a test case.

5.6. Effectiveness and Efficiency

The chosen strategy for operationalizing AATs generated from Syntactic Mutation Oper-
ator influences the efficiency of the Semantic Mutation Operators compared to Syntactic
Mutation Operators. In this section we apply strategy 2 described in Section 5.5 to the
Wackopicko formal specification. We illustrate the consequences of applying Syntactic and
Semantic Mutation Operators and speculate about the required effort. An accurate mea-
surement is currently not possible and considered as future work. Furthermore, our evalua-
tion is based on three case studies. They provide important insights and allow the drawing
of tendencies. Nevertheless we are aware that a complete generalization is not possible
from our evaluation data.

Effectiveness of SPaCiTE. In contrast to other tools like black-box vulnerability scanners,
SPaCiTE generates test cases for non-trivial XSS and SQL vulnerabilities that require
multi-step attacks. Executing such test cases on a real implementation can find the
vulnerabilities also in the System Under Validation (SUV), if present. Such vulner-
abilities are often not found by automatic black-box scanners. Concretely, SPaCiTE
finds the stored XSS vulnerability exploitable with a multi-step attack in WebGoat
and Wackopicko, as well as the stored SQL vulnerability exploitable with a multi-step
attack in Wackopicko. ZAP did not find the same vulnerability in WebGoat, and the
black-box scanners Acunetix, AppScan, Burp, Grendel-Scan, Hailstorm, Milescan, N-
Stalker, NTOSpider, Paros, W3af, and Webinspect did not find the vulnerabilities in
Wackopicko.

Effort for Syntactic and Semantic Mutation Operators. While effectiveness is usually a
binary decision, efficiency is non-trivial. An absolute value is not possible due to the
large number of dependencies and the complexity of measuring them. Nevertheless,
we summarize the crucial components (annotation, model-checking, operationaliza-
tion, and execution) and elaborate on their required effort. For the efficiency evalua-
tion, we need approaches that find non-trivial XSS and SQL vulnerabilities but require

156

5.6. Effectiveness and Efficiency

different efforts. Therefore, we compare Semantic Mutation Operators with Syntactic
Mutation Operators, both operating on abstract models.

Modeling. Modeling the web application is an important, not negligible, and crucial
aspect in terms of efficiency. If models are not available, the Security Analyst
must have ASLan++ knowledge to come up with a formal behavioral model.
Depending on the skills of the Security Analyst, the modeling aspect is challeng-
ing and might require several hours. Nevertheless, such a formal specification is
needed both for Syntactic and Semantic Mutation Operators.

Annotations. Syntactic and Semantic Mutation Operators differ in terms of anno-
tation effort. While Semantic Mutation Operators require manual annotations,
Syntactic Mutation Operators do not. For the Wackopicko specification, the Secu-
rity Analyst needs to provide 38 annotations, the WebGoat specification contains
16 annotations, and the Bank specification contains 37 annotations. They all
have a predefined syntax and do not require knowledge about vulnerabilities.
Each annotation requires three inputs from the Security Analyst:

1. The Security Analyst needs to identify those parts of the formal specification
that represent sanitization functionality.

2. For each of them, the Security Analyst needs to provide the technology the
annotated part sanitizes against, since data can be sanitized against SQL,
HTML, Javascript, etc.

3. The third input specifies whether input or internal data is sanitized, and
whether the sanitization occurs with an explicit statement or whether it is
implicitly given by the semantics of another sanitization part.

It is important to stress that such annotations can be provided by a Security
Analyst that has a rough idea about the implementation. Knowing all source
code level details is not necessary. The required effort obviously depends on the
skills of the Security Analyst. From our expertise, we believe that this task can
be completed within very few hours, if not one single hour.

Model-checking Mutated Models. For the Wackopicko web application, applying
Semantic Mutation Operators to the annotated formal specification leads to 348
mutated formal specification. Model checking those specifications requires ap-
proximately 33 hours of computation power (see Figure 5.1) using the config-
uration specified in Section 4.4, eight parallel threads and a timeout of 2400
seconds.

In contrast to the Semantic Mutation Operators, Syntactic Mutation Operators
do not require manual annotations but can be fully automatically applied to
formal ASLan++ specifications. Applying the Semantic Mutation Operators to
the Wackopicko specification generates in total 4026 mutated models. Model
checking all of them requires approximately 320 hours of computational power
(see Figure 5.1). For comparison, higher-order Syntactic Mutation Operators
applied to the WebGoat specification generates 3820 mutated models and the
Bank specification more than 12’000.

157

5. Discussion and Future Work

Figure 5.1.: Impact of Manual Annotation

Modeling Anno-
tations

Mutated
models

Model check-
ing [h]

AATs Executable
test cases

Syntactic ! 4026 320 94 680

Semantic ! ! 348 33 60 60

Table 5.2.: Impact of Manual Annotation

158

5.6. Effectiveness and Efficiency

730 unique
AATs without

Injection
Indications

Approximation
■ 424 AATs using each
parameter for an injection

■ 848 AATs are generated
if XSS and SQL injections
are considered

Model checking 4026 mutated
models generated with Syntactic

Mutation Operators

Filter unique traces

44 unique
AATs without

Injection
Indications

Add injection indications
and Filter unique traces

Approximation
■ 340 AATs using each
parameter for an injection

■ 680 AATs are
generated if XSS and SQL
injections are considered

67 AATs
with Injection

Indications

27 AATs
without
Injection

Indications

a) b)

Figure 5.2.: Operationalization of AATs Generated By Syntactic Mutation Operators

Operationalization. The operationalization of AATs generated both from Syntactic
and Semantic Mutation Operators is possible with the same amount of manual
activities, if generated from the same model. The required activity consists of
providing a single Web Application Abstract Language (WAAL) mapping that
can be reused for all AATs generated from the same formal specification.

In terms of the number of generated executable test cases, AATs generated from
Semantic Mutation Operators differ from AATs generated from Syntactic Muta-
tion Operators. In Section 5.5, we already discussed different strategies for the
operationalization of AATs generated from Syntactic Mutation Operators applied
to a detailed example. Please remember that AATs generated from Semantic Mu-
tation Operators always contain injection information (using the mutation oper-
ators described in Section 2.6.1). For AATs generated from Syntactic Mutation
Operators, this is not always the case (see Section 5.5). As a reminder, AATs as a
direct output of a model checker do not contain the special keywords inject and
verify. These keywords are added by post-processing the reported AATs. Depend-
ing on the used mutation operator, identifying the correct message parameters is
not always possible. Figure 5.2 provides an approximation overview of the num-

159

5. Discussion and Future Work

ber of generated executable test cases for the Wackopicko formal specification
using Syntactic Mutation Operators. Figure 5.2#a shows the situation where the
AATs as a direct output of the model checker are operationalized without trying
to determine the malicious input parameters at all (Strategy 1). Figure 5.2#b
shows the situation where first the malicious parameters are determined before
the AATs are operationalized.

Strategy 1. The model checker processes approximately 4000 mutated models
and generates 730 AATs, where 44 traces are unique. The traces are online
available [36]. In sum, they consist of 44 register messages with 5 pa-
rameters each, 34 upload messages with 5 parameters each, and 34 pre-
view messages with 1 parameter each. Without further analyzing where
to inject which kind of malicious code, every parameter is considered as a
potential injection point. If split injections are neglected and two different
types of malicious injections are considered (XSS and SQL) approximately
850 executable test cases 2*(44 * 5 + 34 * 5 + 34) are generated.

Strategy 2. While Strategy 1 is a blind brute force heuristic, it is recommended
to try to determine the injection parameters. This leads to a total of 94
unique AATs. The traces are online available [36]. For 67 of them, the
injection parameter can be determined. Generating two test cases for each
of the 67 AATs (one for XSS and one for SQL), and applying Strategy 1
for the remaining 27 AATs reduces the number of executable test cases to
approximately 680 test cases (see Figure 5.1), since the 27 AATs consist of
27 register messages with 5 parameters each, 23 upload messages with
5 parameters each, and 23 preview messages with 1 parameter each. This
illustrates that as soon as we have AATs without injection information, a
brute-force strategy very soon generates a huge test suite.

Execution. After the operationalization, the execution is a fully automatic process
for our use cases. The test execution is handled by the TestNG framework, test
data is automatically provided by TestNG data providers, test distribution among
worker nodes is automatically handled by the Selenium Grid framework, and
reseting the web application to a predefined initial state between the execution
of two test cases is automatically possible for the VMWare vSphere Virtualization
Environment [33].

Although the execution is fully automatic in our context, it is not in general.
There are multiple reasons why manual help of the Security Analyst might be
required.

• The discussed mutation operators in Section 2.6.1 allow the fully automatic
execution of test cases at least to the point in the trace, where malicious
data has to be injected. The rationale is that the trace till the injection
point corresponds to a trace conforming the correct behavioral specification.
Whether the remaining trace after the injection is still executable depends
on how the implemented web application reacts upon the injection (error
and exception handling, etc.).

160

5.7. Multiple Malicious Input Parameters

• There exists mutation operators that lead to AATs where manual help of the
Security Analyst is needed. E.g., a mutation operator might inject a vulnera-
bility that allows reordering exchanged messages between the browser and
the web application. As part of the SPaCIoS EU project, we have already
implemented such mutation operators, but they still require future research.
Therefore, they are not discussed as part of this Ph.D thesis.

As a summary, by manually providing approximately 40 semantic annotations, the
number of mutated models can be massively reduced from around 4000 to 350, com-
putation hours from 320 to 33, and the number of executable test cases from 680 to
60 (see Figure 5.1). Nevertheless these numbers have to be put in a bigger context.
In terms of using model-based security test case generation for web applications, we
see advantages and disadvantages both at the same time. While sophisticated attacks
often consist of multiple steps, using verification techniques based on behavioral mod-
els definitely can be used for automatically generating such test traces. E.g., it is the
strength of model checkers to find traces in a model that violates a defined security
property. At the same time, attacks are not only sophisticated because they consist
of multiple steps, but also because the input data has to follow a syntax and is en-
coded in different ways. In this respect, verification techniques in combination with
behavioral models are too abstract as that encoding information could be part of such
specifications. We believe that considering issues at the level of encoding too fast lead
to the state explosion problem that model checker often suffer. We therefore recom-
mend to put future research effort into combining model-based verification techniques
with source code analysis techniques like e.g., symbolic execution. This would allow
the combination of highlevel traces of a web application with low level syntax and
encoding information for concrete, application dependent malicious inputs.

5.7. Multiple Malicious Input Parameters

In Section 4.4.1.1 we have seen that the XSSRemoveSanitization Semantic Muta-
tion Operator generates three additional AATs that are not generated by the XSSRemove
SanitizationUpToLimit[1][2] and XSSRemoveSanitization[1][1]mutation op-
erators. Therefore, we closely analyzed these three additional AATs. Unfortunately, not all
of the additional AATs generated by the XSSRemoveSanitization are useful. To filter
out non-useful AATs a double check on the AATs is needed. When multiple input parameters
are exploited, one has to check if indeed all reported parameters contribute to the violation
of the involved security property. Depending on how the security property is formulated,
exploiting one parameter might already be sufficient to violate the security property. It
might be the case that the security property (formula) covers both input parameters of a
message in the same formula, but one parameter is sufficient to violate the formula. Un-
fortunately, the used model checker for this Ph.D thesis (Cl-Atse) reports all parameters of
the violated formula, independent if they contribute to the violation or not. Therefore, a
double check either needs an analysis of the violated property (formula), or an adaptation
of the security property to make sure that the AAT is reported only if indeed all vulnerability
affected parameters contribute to the property violation.

161

5. Discussion and Future Work

An example of a reported AAT that would have filtered out is AAT 8 in Table 4.31. This
AAT was generated from a mutated model where three mutation candidates were mu-
tated — the ID and the data parameter of the edit message, and the returned ID pa-
rameter part of the login response. For this AAT the data parameter is not required to be
mutated since the data parameter is not contained as part of the login response. There-
fore, this AAT would have been filtered out during a second check. We want to stress that
the double check depends on the violated security property. E.g., let’s consider a security
property in DNF, expressing an attack state. Furthermore, let’s assume that each conjunctive
clause of the DNF consists of one variable only. Therefore, one malicious value is sufficient
to violate the security property. Nevertheless, the used model checker reports all values
occurring in the violated security property. The value-tracking facts (see Section 2.6.4)
restricts this set of values to those that are affected by the vulnerability injection. While
this approach is sufficient for reflected and even multi-step stored attacks using only one
malicious parameter, it is not for multi-value based attacks.

We described the issue with an example of two malicious parameters, but it is a general
problem with any number ≥ 2 of injected vulnerabilities. In rare cases, the issue can
be tackled in the AAT generation phase by setting the minimum and maximum number
of mutations to the required mutations to discover the vulnerability while ignoring any
reported AAT that only exploits one parameter. Another strategy to address this problem is
a post-analysis of the violated security property to find the minimal set of values that are
sufficient to violate the security property. Such a post-analysis is not implemented in the
current version of SPaCiTE yet and is therefore considered as future work.

5.8. Syntactically Different But Semantically Equivalent AATs

If multiple agents / values are available, a vulnerability can be exploited using different
combinations of such values. E.g., if multiple honest agents are defined in the formal spec-
ification, an AAT like AAT 6 in Table 4.3 is a counter example for each honest agent. If in
addition multiple dishonest agents exist, an AAT like AAT 7 in Table 4.3 is a counter example
for multiple combinations of a dishonest and an honest agent. Unfortunately the current
version of the model checker does only report one security property violating trace. If mul-
tiple such combinations should be reported, either the model checker needs to be modified
or the security properties have to be adapted. In contrast, the examples that we have con-
sidered during this Ph.D thesis showed that if an XSS or SQL vulnerability is present for an
agent x with role y, it is also available for any other agent with the same role y. When it
comes to a comprehensive comparison of AATs, two AATs might differ due to using different
agents but the agents have the same role. Although such two AATs are syntactically differ-
ent, they might be semantically equal with respect to XSS and SQL vulnerabilities. In sum,
this observations allows one e.g., to group test cases together, that are equivalent modulo
the user who performs the actions. It further highlights future work e.g., in terms of finding
the minimal set of test cases to identify a vulnerability.

1A similar argumentation is applicable to AAT 10 in Table 4.3

162

5.9. Penetration Tester vs. SPaCiTE User

5.9. Penetration Tester vs. SPaCiTE User

As we have discussed in Chapter 1, a popular way of testing web applications for security
issues is penetration testing. This kind of testing requires that the tester is in the same
mind set as an attacker. In addition the tester must have expertise in terms of exploits and
how the system can be attacked. In contrast, the Security Analyst considered for this Ph.D
thesis is required to be in the implementation mindset. We have seen that one of Security
Analyst’s task is to provide security annotations to a formal specification. These annotations
provide semantics in terms of functionality and used technology during the implementation
of the web application. The expertise to provide and execute attacks on the SUV is moved
from the Security Analyst to the SPaCiTE tool. This implies that the SPaCiTE tool does
not require the same level of expertise than a penetration tester must have. Together with
the fact that SPaCiTE contributes with a modern IDE and the automation of e.g., applying
mutation operators, and operationalization of AATs, the approach tends to be usable for a
broader audience then pure penetration testers.

5.10. Structural Coverage Criteria

We have argued in Chapter 1 that coverage criteria are often proposed in literature for
generating or validating test suites. We have seen that SPaCiTE injects vulnerabilities into
the formal specification of a web application and uses verification tools to generate a test
suite that covers these vulnerabilities. In particular, SPaCiTE does not generate test cases
dedicated to a vulnerability v for parts of the model that do not suffer from the vulnerability
v. This is an advantage of our approach since not every element of the specification is
dedicated to security. Some artifacts are dedicated to the overall functionality of the web
applications, other artifacts are introduced due to the fact that model checkers are used.
Coverage criteria make sense if one has a model that only talks about explicit security
aspect. For example the purpose of a firewall policy is authorization. Every rule was written
because every rule captures one aspect of authorization. Because every rule contributes to
security, achieving high coverage with a test suite for such models make sense. On the other
hand if one considers a behavioral model that is a mixture of functionality and security
mechanism, not every part of the model is of the same importance when security testing is
performed. As an example, if one wants to test for reflected XSS attacks, all test cases that
do not cover at least one user input and one response that contains the user provided input,
do not make sense. The coverage criteria proposed in the literature do not focus on these
aspects and are therefore not appropriate for security testing of models that mix behavioral
and security aspects.

5.11. Vulnerabilities that Require Authentication and
Sophisticated Front End Technologies

One practical issue with finding vulnerabilities especially for automatic tools is ‘authentica-
tion’ and sophisticated client-side technologies like Flash and JavaScript. If authentication
blocks a tool to reach the state of an application where a vulnerability can be exploited,

163

5. Discussion and Future Work

register(username, password)

Disk

username

password

sql query

sql query

activate()

Figure 5.3.: Conceptual Register and ActiveClient Messages

the vulnerability will not be found. Also, if crucial webpage elements require the availability
of Flash or JavaScript, a security tool needs to properly handle such technologies. While
tools that directly operate on the protocol level, often suffer from these issues, SPaCiTE
does properly handle them because the SPaCiTE-conform input models include behavioral
aspects and covers them via the browser level. Therefore, authentication and sophisticated
front end technologies do not raise issues for SPaCiTE.

5.12. Vulnerability Injection vs. Attack Injection

In this subsection we discuss an important difference and the corresponding consequences
between vulnerability injection and attack injection. The bank application offers a method
for registering a new account which is later activated by the administrator using the acti
vateClient message. The conceptual information flow of that example is shown in Fig-
ure 5.3.

For this specific situation, applying the mutation operators proposed in Section 2.6.1
generates AATs that inject a vulnerable payload using the username parameter. The same
parameter is then later used for the activateClient message. This kind of attack can
be generated by solely injecting vulnerabilities. In particular, the mutation operator does
not describe how this vulnerability is exploited. Due to the vulnerability the corresponding
value is not sanitized against SQL and the attack is generated because that abstract value
can be later used in an SQL query (activateClient message handler). As a reminder,
since the modeling level is an abstraction of the real implementation level, the abstraction
level is too high for the model checker to generate malicious payload. Due to that, the
model checker is not able to determine the effect of a malicious value to other artifacts
of the model (e.g., other variables) that then could violate a security property. This leads
to the fact that AATs that require attack injections are missing. E.g., the following SQL
vulnerability and attack behavior is not generated by SPaCiTE with vulnerability injections.

1. Inject a malicious SQL command using the password parameter of the register
message in Figure 5.3.

2. The attack semantics of the used injection turns the stored username parameter
malicious as well. E.g., this can be achieved if the malicious password parameter
appends an additional INSERT command that overrides the username parameter in
the database.

164

5.13. Destructiveness of Attacks

3. The overwritten username parameter in the database is used for the activate
Client functionality.

To let SPaCiTE generate such kind of AATs, the following requirement needs to be ful-
filled: The Semantic Mutation Operators not only need to inject vulnerabilities, but also
attack effects. In the above example, the mutation operator needs to inject the effect that a
malicious password parameter affects the sanitization property of another parameter like
the username. Since the mutation operators as introduced in Section 2.6.1 reflect vulnera-
bilities, the above discussed kind of attacks are not generated by SPaCiTE so far.

5.13. Destructiveness of Attacks

A vulnerability can be exploited by an attack, that destroys data. In models that we have
developed, the act of destroying the data violated defined security properties. A model
checker then returns a counter example that ends in the state where the data was deleted.
For the test generation, this test case needs to be prepended to a test sequence that indeed
verifies that the data was deleted. The current version of SPaCiTE does not address these
kind of attacks since it requires another iteration where the model checker has to generate
a second trace. We consider this as future research that needs to be addressed.

5.14. Scalability

Unfortunately, the proposed approach as a whole does not scale well. The main component
that prevents scalability is the verification technique (model checker). During modeling, the
number of message parameters, the number of messages that can be exchanged between
different agents, and the number of declared data values influence the time for model
checking. In contrast, the Test Execution Engine (TEE) makes use of the Selenium Grid
architecture. It is designed for scalability and makes use of a central hub that manages a
set of nodes that execute the test cases decentralized. In addition, the TestNG framework
used for the executable test cases contributes with dedicated features for concurrent test
execution using thread pools.

5.15. Discussion on Future Larger Scale Evaluation Set-up

[This subsection was already discussed and published in the SPaCIoS deliverable
5.5 [200]]

In this section we discuss possibilities for setting up such experiments in the future, and
conjecture some hypothesis that could be refuted/confirmed as a result of carrying on the
experiments.

When a security tool like SPaCiTE is developed, it has to be evaluated in terms of effective-
ness and efficiency. We will discuss a couple of strategies to compare a structural approach
(e.g., SPaCiTE) to a non-structural approach (e.g., pen testing). For the remainder of this
section, we use the tool SPaCiTE as a representative of a structural testing approach, and
penetration testing as a representative non-structural approach.

165

5. Discussion and Future Work

For all strategies, the evaluation is performed in a time frame of x weeks. A supervisor
selects a vulnerable application where he knows the actual vulnerabilities. The knowledge
where the vulnerabilities are is not shared with the groups that perform the security testing.
After the groups have finished their testing activities, it is the supervisor who analyses the
result according to effectiveness and efficiency.

Strategy 1

For strategy 1, we select two equally educated groups of computer scientists where the
first group performs penetration testing on a given application, and the second group uses
SPaCiTE in order to test the same web application. For both groups the vulnerabilities
are not previously known to the group members. After both groups have tested the same
web applications for x weeks, the discovered vulnerabilities by each group are compared.
An interesting research question in this context is: Given a fixed time frame and a fixed
cost, does a structural or non-structural approach perform better according to effectiveness
and/or efficiency metrics? The corresponding hypothesis is: For a short time frame, a non-
structural testing approach has a better cost-benefit ratio than a structural approach. For a
longer time frame, the opposite is true.

Strategy 2

The following strategies are more focused on the interleaving of structural and non-struc-
tural testing approaches. The first group performs pure penetration testing. The second
group starts with penetration testing as well, but then switches to SPaCiTE. The intuition
behind this strategy is that low hanging fruits are more easily handled with penetration
testing, and more complex issues are better handled by a structural approach. Instead of
continuing with penetration testing for finding more difficult vulnerabilities, a structural
approach is followed.

Strategy 3

Similar to strategy 2, strategy 3 compares pure penetration testing with a mix of structural
and non-structural approach. Again, one group performs pure penetration testing. The
second group first starts with SPaCiTE and then switches to penetration testing as well. An
interesting research question is whether penetration tester report different vulnerabilities if
they first develop a model and the model checker potentially reports more complex issues.

Strategy 4

The next strategy allows a structural approach like SPaCiTE to abstractly highlight security
issues that are then further investigated with penetration testing. Both groups start with
penetration testing and after a certain time, both groups switch to a structural approach.
The difference between the two groups is that the first group sticks to the structural ap-
proach once it switched to the structural approach. The second group can use the structural
approach to get some new inspirations that are then further investigated with penetration
testing.

166

5.16. Conclusion

Strategy 5

Strategies 1 - 4 all compare a model-based structural approach with a non-structural, non-
model-based approach. Strategy 5 focuses on the usefulness and the level of formalism of
the model. For this strategy 3 groups are needed. The first group performs a non model-
based approach like penetration testing. The second group uses a informal or semi-formal
testing approach. An example could be an approach based on UML models. In contrast, the
last group uses SPaCiTE and formal ASLan++ models. The idea is to compare the reported
vulnerabilities depending on the different kinds or the lack of models.

Strategy 6

Finally strategy 6 focuses more on the testing period that follows after first vulnerabilities
have been reported and fixed. One group applies penetration testing and reports found
vulnerabilities. After they have been fixed by the software developers, the corrected code
has to be retested again to verify, whether the reported vulnerability is fixed and whether
no additional vulnerabilities were introduced. The other group applies SPaCiTE and tries
to benefit from the structural and model-based approach during the retesting phase. There-
fore, strategy 6 is more focused on the effort during the retesting phase, and not primarily
during the first testing phase.

5.16. Conclusion

As an overall conclusion, we highlight the following contribution. In a model-based context,
non-trivial security vulnerabilities for web applications can be found with mutation oper-
ators and fault injections. Using ASLan++ formal specifications and fault injections gen-
erate test cases that find non-trivial security vulnerabilities that other tools like black-box
vulnerability scanners often do not find. For sophisticated and non-trivial vulnerabilities,
higher-order mutation operators are needed.

In Section 1.4 we discussed the sub hypothesis that in a model-based context, using
Semantic Mutation Operators is more efficient than using Syntactic Mutation Operators.
In Section 4.1 we raised the research question: Are vulnerability-based fault models at
ASLan++ model level more efficient in generating ‘security-interesting’ test cases than syntax-
based fault models at the same model level? To answer this question, we have seen in Sec-
tion 4.5 and chapter 5 that Syntactic and Semantic Mutation Operators are both based on
the same General Mutation Operators. Since the Syntactic Mutation Operators only operate
on the syntax and do not need semantic annotations, they allow mutations at more locations
in the model than Semantic Mutation Operators and therefore, they generate a bigger set of
mutated specifications. In the context of injecting faults that means that Syntactic Mutation
Operators inject faults at locations in the model that are implemented with technologies
that actually cannot suffer from the injected fault.

Syntactic Mutation Operators generate more mutated models but the ratio of models
that generate an AAT decreases. While Syntactic Mutation Operators generate up to 4000
mutated models but only 94 AATs for the Wackopicko specification, Semantic Mutation
Operators generate approximately 350 mutated models and 60 AATs. This is because a

167

5. Discussion and Future Work

mutated model alone does not generate a test case, but only if a security property is vi-
olated. If all message parameters are covered by the defined security properties in the
formal specifications, Syntactic Mutation Operators do not generate massively more AATs.
This demonstrates that the defined security properties already filter out all those mutations
that do not affect the security properties. The fact that nevertheless more AATs (up to
twice as many (see Table 4.9)) are generated than by using Semantic Mutation Operators
is many fold. One reason is that in the context of XSS and SQL vulnerabilities, syntactically
different AATs might have the same semantics. Considering the WebGoat application as an
example, it is usually not important which concrete user profile is used for exploiting an
XSS vulnerability, because all profiles are handled by the same source code while editing
and viewing. For finding a vulnerability, a trace with one such profile is sufficient. Since
Syntactic Mutation Operators are applied to more locations in the specification, multiple
AATs are generated using different data values but exploiting the same vulnerability. To
provide a minimal and therefore efficient set of test cases, this means that AATs need to be
compared manually to exclude syntactically different but semantically equivalent AATs.

The effectiveness and efficiency of Syntactic Mutation Operators, and therefore the an-
swer for the hypothesis, also depends on the strategy that the Security Analyst applies.
Using a brute force strategy for AATs generated by Syntactic Mutation Operators results
in a test suite that is at least as effective as a test suite generated by Semantic Mutation
Operators. Nevertheless, Semantic Mutation Operators profit from semantic annotations
that make the operationalization aspect of AATs more efficient since all AATs contain infor-
mation where to inject what type of malicious code. By manually providing approximately
40 semantic annotations, the number of mutated models can be massively reduced from
around 4000 to 350, computation hours from 320 to 33, and the number of executable test
cases from 680 to 60 (see Figure 5.1). The question remains whether such a brute force
strategy for AATs generated by Syntactic Mutation Operators fulfills the cost-effectiveness
criteria in the definition of a ‘good’ test case since it generates test cases that a penetration
tester would not generate and execute. More concretely, the question whether it is more ef-
ficient to invest into computation power and execution resources or into the manual task of
annotating formal specifications, needs to be answered for each concrete efficiency metrics
separately. In a concrete situation, the Security Analyst has to judge whether the manual
effort of annotating formal specifications with semantic keywords is worth preventing the
generation of non-executable test cases or test cases without a vulnerability-based rationale.

168

6. Related Work

In this section we discuss related work to put our work into context. We first start with
a paper that highlights open issues in the area of testing web applications. Afterwards,
we discuss papers that follow the same goal but are not necessarily model-based in Sec-
tion 6.1. Finally, we describe papers that are relevant due to the classification discussed in
Appendix A.

An important motivational work was published by Doupé et al. [92]. It analyses existing
black-box vulnerability scanners for web applications. The purpose of that analysis is an
evaluation and an understanding how well automatic web vulnerability scanners perform
in identifying security related vulnerabilities. Doupé et al. evaluated eleven different scan-
ners on a realistic web application for photo-sharing and purchasing, called WackoPicko. All
these scanners are characteristic for the ease of use and the high level of automation. Their
task is to discover the web application and enumerate all reachable pages, including the nec-
essary input vectors. The paper contributes with an extensive evaluation of such black-box
scanners, an identification of challenges for scanners, the development of the WackoPicko
web application, and a discussion why the previously identified scanners fail to detect cer-
tain vulnerabilities. The paper shows that state-of-the-art web application scanners fail to
detect a significant number of vulnerabilities, as also reported in [1, 172, 202, 203, 226].
Many common and important vulnerabilities are not identified by the considered scanners.
It turned out that the crawling task is very critical and challenging for the effectiveness of a
scanner. The paper concludes with reasons for failing in terms of effectiveness:

• Scanner must navigate HTML frames, in particular, it should support well-known and
widely used web technologies. This includes the handling of complex forms and rig-
orous input validation functions since they might prevent the scanner from following
a particular link.

• Scanner must understand the state-based transactions to discover all possible states
of a web application.

• Scanner must handle infinite number of pages. E.g., a web page that includes a
calendar widget can easily lead to an infinite number of web pages (a different web
page for each day).

• Scanner must be able to authenticate itself to access protected areas.

• Scanner must parse and understand client-side technologies like Javascript.

• Crawlers should not suffer from implementation errors. In particular, the HTML
parser should be robust and sophisticated enough to identify a variety of different
links on a web page.

169

6. Related Work

Although we do not consider SPaCiTE as a security scanner, SPaCiTE addresses some
of the above mentioned issues. The price is to be semi-automatic compared to the fully
automatic black-box vulnerability scanners. E.g., SPaCiTE is able to navigate HTML frames
and complex forms (including Javascript) with the help of the Selenium framework [26],
the set of possible states is provided in form of a formal specification, and authentication is
possible with the help of the Web Application Abstract Language (WAAL).

Our work is at the intersection between Model-based Testing (MBT) and penetration
testing (pentesting). We rely on mutation operators to introduce implementation-level vul-
nerabilities into correct models and on model-checkers to generate attack traces. On one
hand, security testing is usually performed by penetration testers that either use manual
techniques, based on their knowledge and by following guidelines like the OWASP test-
ing guide1, or automated techniques thanks to penetration testing tools2. Such tools differ
from our work as they do not rely on models for generating test cases. As already men-
tioned multiple times Doupé et al. [92] evaluated such ‘point-and-click’ pentesting tools
and found that the crawling part (automatically discovering new pages of a web applica-
tion) is a critical and challenging task for these tools that influences the overall ability to
detect vulnerabilities by black-box web vulnerability scanners. The following list provides
a summary of some vulnerability scanners. The first four are analyzed by Doupé et al. and
are selected because they are not dominated by any other scanner analyzed by the same
authors. Unfortunately they are all commercial tools and therefore, access to technical de-
tails is limited. The last one (KameleonFuzz) is developed by Duchene et al. [94]. These
tools have the same goal as SPaCiTE, namely finding vulnerabilities in Web applications.
Demonstrated by Doupé et al. [92], such tools often do not find non-trivial vulnerabilities.
Therefore, the gap that SPaCiTE is addressing is finding non-trivial vulnerabilities that re-
quire multi-step attacks. SPaCiTE generates test cases for such vulnerabilities with formal
abstract behavioral description. Since all of the described black-box tools below are based
on dynamically learning the web application with a crawler, such tools do not, and do not
need to address the abstraction gap between an abstract view of a web application and
the corresponding implementation. Tools like Vera and IBT operate on models and they
address the abstraction gap with mappings to protocol level messages. Since SPaCiTE is a
model-based approach, it addresses this abstraction gap, compared to black-box scanners.
In contrast to Vera or IBT, SPaCiTE addressed the abstraction gap with a mapping that does
not require protocol level knowledge or API level programming.

Acunetix [5] is a commercial vulnerability scanner with an automatic JavaScript analyzer
for AJAX and Web 2.0 applications. It can handle complex web technologies such as
SOAP, XML, AJAX, and JSON. Acunetix tests a web application against many vulner-
abilities, including XSS and SQL injections. During the crawling activity, the scan-
ner builds the site’s structure and enumerates all files. During the scanning phase,
Acunetix emulates a hacker to attack the web application [4].

Burp [10] is a commercial integrated platform to test web applications. According to the
documentation [10], it allows to combine advanced manual techniques with state-of-
the-art automation. Among other components, it consists of a proxy to inspect and

1https://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
2http://sectools.org

170

modify traffic data, an application-aware spider, a scanner for automatically detect
vulnerabilities, and an intruder tool for performing attacks. The intruder performs
fuzzing, enumerating identifiers, brute-force attacks etc. to attack the web application.

N-Stalker [17] is a web security assessment tool. It makes use of the N-Stealth HTTP
Security Scanner and is dedicated to vulnerabilities like XSS, SQL, buffer overflow
and parameter tampering. Furthermore, it has access to a huge web attack signature
database with 39’000 entries.

Webinspect [41, 40] is a commercial assessment tool offered by HP that can be used to
identify known and unknown vulnerabilities in web applications. It is both automated
and configurable. The tool consists of assessment agents to crawl the application, a
security engine to evaluate the results, and audit engines to execute real exploits and
to build the verdict.

KameleonFuzz was developed by Duchene et al. [94] and is a black-box fuzzer for XSS
vulnerabilities in web applications. The tool specifically addresses the problem, how
to fuzz a parameter of a request to a web application and how the effect can be
observed. To solve these problems, KameleonFuzz makes use of a genetic algorithm
which is guided with an attack grammar.

The crawling part of all these black-box vulnerability scanners is very crucial. One way to
overcome this weakness is to use a white-box testing approach. Such approaches are often
dedicated to applications written in a specific language.

Ardilla. The Ardilla tool [141] looks for SQL injections and XSS attacks in PHP applications.
It creates SQL and XSS attack vectors by first creating sample inputs, then symbolically
tracks those inputs by executing the source code and finally mutates the initial sample
inputs to generate concrete exploits.

Apollo. The Apollo tool [61] uses a combination of concrete and symbolic execution and
explicit-state model checking to generate test cases for dynamic Web applications.
The tool implements these techniques for the PHP programming language, using a
modified PHP interpreter. To build the verdict, Apollo monitors application crashes
and validates the output according to the HTML specification.

SAGE. Godefroid et al. [111] developed SAGE, an automated white-box fuzzing testing
approach. The tool is dedicated to the x86 instruction-level and can be applied to
an arbitrary file-reading Windows application. SAGE takes a well-formed input, runs
the application and records the actual execution. It collect all constraints, negates
one by one and uses a constraint solver to produce new inputs (concolic executions).
Since SAGE is dedicated to windows applications, it cannot directly be applied to web
applications. Nevertheless since the tool seems to work extremely well, an adaptation
to web application would make SAGE a competitive tool to SPaCiTE.

Finally, the following two model-based security test generation tools are developed dur-
ing the SPaCIoS EU project by project partners.

171

6. Related Work

VERA. Blome et al. [70] developed VERA, a flexible model-based vulnerability testing tool.
It is based on extended finite state machines and operates without access to source
code. Vera allows the Security Analyst to define attacker models. Such models sepa-
rate the malicious inputs from the behavior description. The VERA framework consists
of one or more instantiation library, that contains malicious input values, a configura-
tion file with application specific information, and a model file which is instantiated
and run on the SUV. Besides the fact that VERA abstracts away from low-level im-
plementation details, the configuration file still allows to specify Cookie and Header
information. VERA mainly differs to SPaCiTE because VERA is based on attacker mod-
els that require the Security Analyst to act like an attacker. Using SPaCiTE, this task
is performed automatically by verification tools at ASLan++ models and the Security
Analyst, if he provides the formal specification, needs to specify the security properties
and is focused on ‘what’ he wants to achieve, but not ‘how’.

IBT. This tool was developed by Armando et al. [60]. The IBT tool is dedicated to generat-
ing test cases from security protocol models. The IBT tool starts with models that are
initially already insecure. Such models consist of transitions that are represented by
rules. The operationalization of AATs is achieved in two steps. In the first step, each
rule is associated (instrumented) with a Java source code fragment. In the second
step, the TEE of the IBT tool executes the corresponding code fragments in the order
given by the AAT. IBT differs to SPaCiTE since the latter also address the problem
how to use initially correct specifications. Furthermore, SPaCiTE abstracts away from
implementing the AATs directly at source code level.

On the other hand, formal models and model-checkers have been used for test case
generation since at least 1998 [56], in a variety of contexts that has been surveyed else-
where [106]. Most of this work concentrates on generating test cases that satisfy structural
criteria on the model (e.g., state coverage, transition coverage, MC/DC coverage). As there
is still no evidence of a strong relationship between such coverage criteria and fault detec-
tion effectiveness [154], we choose to rely on a domain-specific vulnerability-based fault
model. Our work is closely related to mutation testing [90, 134]. Even though mutation
testing usually aims at assessing the effectiveness of a test suite to detect small syntactic
changes introduced into a program, it can also be used to generate and not assess test cases.
This idea was successfully applied for specification-based testing from AutoFocus, HLPSL or
SMV models in the security context [55, 82, 86, 227]. Our work differs in that we start by
real vulnerabilities in web applications and correlate them with specific mutation operators.
Moreover, we do not stop after test generation but also provide a semi-automatic way to
execute the generated test cases on real implementations, in our case, a web application.

More recently, Armando et al. [60] have described work closely related to ours but for
protocols instead of web applications. They start from an already insecure model described
at the HTTP level. Therefore, this model can directly be used by model checkers to find
attacks because the model checker will find a violating trace of the insecure model. The
gap we want to address to this work is how to proceed when the initial model is correct
because a model checker will not report any attack trace. When it comes to the execution
of attack traces, Armando et al. provide an automatic testing approach that relies on a
mapping from each abstract HTTP element in the model to HTTP messages suitable for

172

6.1. Papers With The Same Goal

the SUV. The fully automatic procedure is achieved at the price of describing the model at
the HTTP level. When a web application is described in terms of abstract logical messages
between agents, the work of Armando et al. does not address the additional abstraction
layer between high level actions and HTTP messages. Since we focus on web applications
we want to address the gap between high level application actions and HTTP messages.

Semantic Mutation Operators need additional information from the model that are be-
yond syntactical nature. This information might be introduced by annotating the model.
Such an extension of an implementation level language to generate test cases is addressed
by De Boer et al. [89]. They propose a Java-like specification language to describe the be-
havior of the test harness. The specification consists of expected traces which are used to
synthesize a test environment. A trace is a sequence of method calls and returns (outgo-
ing calls and returns, incoming calls and returns). Our work differs in the sense that their
specification language is an extension of a language that is used for the implementation.
Models are usually at a much higher level of abstraction. We extend/annotate ASLan++
that is a modeling language and therefore address the gap between a higher level modeling
language (ASLan++) and an implementation language. ASLan++ is higher in the abstrac-
tion hierarchy than the language used for the implementation, and therefore, it introduces
an additional layer of abstraction.

6.1. Papers With The Same Goal

The following papers have the same overall goal but differ significantly from our approach.
Appelt et al. [59] published an automated testing approach for SQL injection vulnera-

bilities. It is based on input mutation using several mutation operators. Their approach
starts with a WSDL file of the web service and an existing test case for each operation the
web service performs and should be tested. The mutation operators modify the test case
to generate mutated test cases. The mutation operators are based on behavior-changing,
syntax repairing and obfuscation techniques. To build a verdict, a database proxy is first
trained and later monitoring all SQL queries to detect SQL vulnerabilities. First, Appelt
et al.’s approach differs to our approach at the level it operates. While their approach
directly operates on the implementation level, our approach operates first at an abstract
model level and later bridges the gap to executable test cases. Furthermore, they start with
an existing test suite and mutate that test suite to generate a new set of test cases. They
claim that such initial test suites have to be manually created if they do not already exist
and refer to external tools. Our approach tries to address the delta to come up with such an
initial test suite by considering abstract behavioral models and mutation operators to use
such models for test case generation. Furthermore, since Appelt et al. [59] directly start
with executable test cases, their work does not, and does not need to address the issue of
bridging the abstraction level.

Lebeau et al. [144] published a paper that is very close to our work. They propose a
model-based vulnerability testing approach for web applications to automate model-based
vulnerability testing. The goal is to improve both accuracy and precision of vulnerabil-
ity testing. The input for the proposed approach consists of different UML specifications
that describe the behavioral aspects of web application, as well as vulnerability test pur-
poses. The approach itself consists then of four major steps — (1) formalizing test purposes

173

6. Related Work

from vulnerability patterns, (2) modeling behavioral aspects of the web application, (3)
automatically producing abstract test cases, and finally (4) concretizing and executing test
cases. The contribution consists, among others, of using vulnerability test patterns as test
purposes, and the modeling activities dedicated to vulnerability testing. This work is ex-
tended in a follow up publication [216] where the described approach is applied to detect
multi-step XSS vulnerabilities. The proposed approach is very close to our work. In both
approaches, models are used as input that describe behavioral aspects of the web applica-
tion. Furthermore, steps 2 - 4 of the approach are conceptually equivalent. Nevertheless
step 3 is addressed differently. We consider our delta especially in step 1 of the approach
where we focus on ASLan++ models that serve as input for model checking technologies,
whereas Lebeau et al. [144] use different kind of UML diagrams (class, object, state dia-
grams). Furthermore, the high level behavioral model in our approach is independent of
how the functionality is implemented at the beginning but is then annotated by the Security
Analyst with technology dependent information to guide the test case specification. These
annotations are used to mutate the model by injecting source code level vulnerabilities into
the model. That differs from the proposed approach that considers a formalization of the
environment in order to exploit vulnerabilities. Due to the different approach in step 1, also
step 3 differs. We consider model checking techniques that try to find a way to exploit the
injected vulnerabilities. This is done by checking if specified security properties are violated
by the injected vulnerability. In the approach of the paper, the test patterns directly de-
scribe the behavior of the environment and therefore, security properties are only captured
indirectly.

Fu et al. [108] propose an approach to detect SQL injection vulnerabilities. It introduces
a static analysis framework called SAFELI to detect such attacks at compile time, using
symbolic execution. Therefore, it operates on the source code of the application. By identi-
fying so called hotspots, statements that send SQL queries, symbolic execution techniques
and constraint solvers are used to generate concrete user input that exploit the SQL vul-
nerabilities. The most significant difference to our approach is the input artifact. Whereas
Fu et al. [108] directly operate on executable code, our approach is based on an abstract
representation, called a formal specification.

Martin and Xie [154] published a work about a fault model and mutation testing of access
control policies. They evaluated the research question how strong the correlation between
structural criteria and fault-detection capability is, and characteristics about different mu-
tation operators. Martin and Xie [154] take as input XACML policies and consider three
different test suites. The first test suite is generated randomly, the second one is the result
of minimizing the first one according to a set of requirements, and the first test suite is
generated according to a change-impact analysis of two policies that were mutated. Per-
forming an experiment on eleven different policies, the author report the following major
findings. For certain policies, there is a correlation between structural criteria and fault-
detection capabilities. E.g., a test suite that does not cover policy or rule artifacts does also
not kill mutants generated by mutating the same artifacts. At the other side, even if a 100%
structural coverage is achieved by a test suite, this does not guarantee a good mutation
killing rate. This all indicates that there is a correlation between structural coverage and
fault-detection capability, but it is not strong enough to reach a satisfying level. Comparing
Martin and Xie [154]’s work with our approach, it differs in the following sense. In terms of
the initial input artifacts for the testing approach, Martin and Xie [154] focuses on XACML

174

6.1. Papers With The Same Goal

policies that can be directly used as configuration files for an access control policies. In our
work, we initially start with a formal specification of a web application, that is specified at
an abstract level and the abstraction gap needs to be addressed to test the corresponding
SUV. That means that generated attack traces based on mutated models are at the same
abstract level as the input model. To establish a correlation between abstract security issues
and issues at the implementation level, these AATs need to be mapped to executable test
cases. Due to the fact that different input artifacts are used, the corresponding vulnerabil-
ities differ as well. While Martin and Xie [154] concentrates on faults while specifying an
XACML policy, we focus on web vulnerabilities like XSS and SQL-related faults.

Hu and Ahn [124] published a work about enabling verification and conformance testing
for access control models. The goal is to integrate automatic analysis and conformance
testing for access control systems into the Assurance Management Framework (AMF). The
proposed approach combines both formal verifications and conformance testing. Verifica-
tion is used to check if the formal specification of a security model and the policy fulfill a
given set of security properties. Conformance testing is used to check whether the imple-
mentation of the formal specification and the specification comply. For this purpose, test
cases are automatically generated from the formal specification. The paper’s contribution
consists of an enhanced AMF framework for rigorous analysis and testing; and a method-
ology to combine model-based verification and model-based test generation. In terms of
test case generation, the approach distinguishes between positive and negative test cases.
Negative test cases are generated by taking formal access control model specifications into
consideration that do not satisfy the constraint specification. Positive test cases are gener-
ated by verifying the access control model against the negated constraint specifications. The
described publication differs from our approach in the following aspects: (1) Whereas Hu
and Ahn focus on access control policies, we focus on web applications. This implies that
our formal specification not exclusively consist of the access control part but includes the
behavior description of the web application as well. Furthermore, the considered properties
in our approach go beyond pure access control and capture dedicated web security aspects
like XSS and SQL as well. When it comes to test generation from a formal specification, we
assume for our approach that verification techniques do not report any counter examples.
In contrast to Hu and Ahn, our considered formal specifications do not initially violate the
specified security properties. Therefore, we need to mutate the model to generate negative
test cases. Hu and Ahn face a similar problem for generating positive test cases, where they
mutate the property instead of the model.

Clark et al. [85] published a paper about semantic mutation testing tool for C. They use
semantic mutation operators to capture a different class of errors than what traditional
mutation testing does. They focus on possible misunderstanding of the semantics of the
description language. For their mutation operators, it is sufficient to focus on the syntax
of the specification, including type information since problematic source code level expres-
sions and statements can be identified syntactically. This differs from our work since e.g.,
defined ASLan++ facts or statements do not have a predefined semantics. They interplay
with security properties and need to be annotated by semantic keywords to let Semantic
Mutation Operators inject corresponding vulnerabilities. Furthermore, we use Semantic
Mutation Operators to represent security-related vulnerabilities and try to exploit them
to violate specified security properties, whereas Clark et al. use them to test for different
functional behavior depending on used compiler and configurations. Since the Semantic

175

6. Related Work

Mutation Operators for C directly apply on source code, no abstraction gap needs to be
addresses. This is different in our approach where we assume that we do not have direct
access to the source code. We apply Semantic Mutation Operator at an abstract model
level and therefore, our approach has to address the gap between abstract and concrete test
cases.

6.2. Papers about Model-Based Security Testing

Mouelhi et al. [166] focus on security policies. They propose a model-based approach for
the specification, deployment and testing of security policies in Java applications. The ap-
proach starts with a generic security meta-model of the application. It captures the high
level access control policy implemented by the application and is expressed in a dedicated
security SDL. Before such a model is further used, the model is verified to check the sound-
ness and adequacy of the model with respect to the requirements. Afterwards the model
is automatically transformed to policy decision points (PDP). Since such PDPs are usually
not generated from scratch but are based on existing frameworks, the output of the trans-
formation is e.g. an XACML file that captures the security policy. This transformation step
is essential in MBT since an identified security issue at model level does not automatically
imply the same issue at implementation level, nor does a model without security issues
automatically imply the same on the implementation. Mouelhi et al. make use of mutations
at the model level to ensure that the implementation conforms to the initial security model.
An existing test suite is executed on an implementation generated from a mutated security
model. If such mutants are not detected by the existing test suite, it will be adapted to
cover the mutated part of the security model as well. Finally the test objective is to check
that the implementation (security policy) is synchronized with the security model. Mouelhi
et al.’s approach and our approach share the commonality that both start with a formal
high level specification of the SUV. Nevertheless there are major differences between the
two approaches. Since Mouelhi et al. use mutation testing for evaluating and improving an
existing test suite, we use mutation testing to generate test cases in the first run. In terms of
the application domain, Mouelhi et al. are focused on access control policies, whereas our
work is dedicated to web applications.

Woodraska et al. [228] published an approach for security mutation testing of the FileZilla
FTP Server. As input, they consider the source code of the server and mutate the source code
according to causes (e.g., design-level and implementation level defects) and consequences
of vulnerabilities (e.g., STRIDE attacks). The mutation is a manual process where code is
deleted, modified, and added. To perform this task, a comprehensive study of the source
code was necessary. For this publication, the authors created 30 different mutants. The
generated mutants are used to evaluate the quality of two test generation techniques based
on threat models, represented as attack trees and attack nets [229]. Woodraska et al. [228]
conclude that both test generation techniques have similar vulnerability detection rates but
cannot detect vulnerabilities that are not covered by the threat models. This publication
differs in many aspects from the approach described in this Ph.D thesis. First, we consider
an abstract formal specification of the SUV whereas Woodraska et al. [228] directly operate
on the source code. Second, our approach automatically applies mutation operator after
the Security Analyst has annotated model blocks with their semantics. In this respect, both

176

6.2. Papers about Model-Based Security Testing

approaches need manual input, although our approach automates the application of the
mutation operators. Third, mutation operators are used by Woodraska et al. for evaluating
existing test case generators, whereas in our work, they are used to directly generate the
test cases. Finally, the class of considered vulnerabilities differ due to different SUVs.

Tang et al. [204] published a model-guided security vulnerability discovery approach
for network protocol implementation. Their approach is very related to our work since
they introduce mutation analysis and model checking into fuzz testing. They concentrate
on black-box security testing only and do not depend on source code and implementation
details. The model-based approach starts with a formal specification of the protocol ex-
pressed using a parameterized extended finite state machine. By applying one mutation (at
the model-level) to the original model, they generate a large number of mutants. The work
differs in terms of the domain, where the approach is applied, the test case generation,
and the involved artifacts. Tang et al. [204] focuses on protocol implementation and their
dedicated vulnerabilities. The protocol level and the involved vulnerabilities significantly
differ to web application and their typical vulnerabilities. Both their and our approach rely
on mutation operators to let a model checker report counter examples that are interpreted
as test cases. These abstract counter examples are mapped to input/output packets and
a fuzzer is used to generated test cases for the real system. Our work differs because the
applied mutation operators are not only used to let a model checker generate counter ex-
amples, but also during the test case instantiation. The applied mutation operators are
used as a selection criteria for concrete, executable exploits. In addition, since we test web
applications, we map abstract attack traces to executable actions in the browser instead of
packages at the protocol level.

Ramakrishnan and Sekar [179] published a paper about model-based vulnerability anal-
ysis of computer systems. They focus on modeling different components of a system, com-
pose them so that they represent different communication scenario and model-check the
composition of them against a formally specified security property in LTL. The input models
for the approach are either generated from source code, or e.g., the vendors of the differ-
ent components provide them. Since Ramakrishnan and Sekar [179] focus on computer
systems and not web services, the covered vulnerabilities (e.g., concurrency, file permis-
sions, printing, etc.) are different from our approach (XSS attacks and SQL injections).
Furthermore, in Ramakrishnan and Sekar [179]’s approach, vulnerabilities are mainly dis-
covered due to the composition of different models. Compared to our approach, we inject
vulnerabilities by applying Semantic Mutation Operators. That allows us to also use formal
specifications for test case generation where initially verification techniques do not report
counter examples. Finally, our work differs from Ramakrishnan and Sekar [179] since we
do not stop at the abstract level but generate executable attack traces from the reported
counter examples. This includes addressing the gap between abstract AATs and the SUV so
that the implementation of the modeled system can be tested.

The paper Model-based Security Vulnerability Testing [183] proposes a fault-based ap-
proach to test case generation. The implementation uses state transition and program
models taken from the design of the Spec-Explorer tool, specified in the corresponding
Spec# language. The whole approach is based on three models — desired behavior model
(which captures the key aspects of application) needed for testing process, an implemen-
tation model needed for exploits, and an attacker model needed for indicating which vul-
nerabilities are used by an exploit. The attack model works as a test purpose that captures

177

6. Related Work

what the attacker wants to do. It is a dedicated, separate model so that attacker behavior
can change dynamically. In particular it captures the precondition for the attack. This helps
to exclude all those scenarios, where the attack is not possible. For test case generation,
the implementation model is combined with the attack model in order to provide an exact
localization of security vulnerabilities. Although the approach allows that the behavioral
specification can be incomplete or underspecified regarding a security issue, vulnerabilities
are nevertheless caught by implementation and attack model. To find counter example us-
ing a constraint solver, the approach combines all three separate models and defines when
a transition of the implementation is faulty with respect to a specification. This is called a
faulty context. Such a faulty transition is considered as a negative test case. The approach
tries to find out if a particular transition defined by the attacker model is present in the
implementation model in a faulty context. The proposed approach is close to our work in
the sense that both approaches are model-based and generate test cases to detect security
vulnerabilities. To do so, both approaches focus on the application level, rather than the
network level. Nevertheless we see a couple of deltas to our work: The paper approach
focuses on modeling attacker knowledge so that attacker behavior can change dynamically.
In our case, we use the built-in Delov-Yao attacker in the model checker. Since security
vulnerabilities are closely related to an implementation, the paper’s approach introduces
an implementation model. In our case the implementation level details are introduced as
fault models that describe source code level vulnerabilities. These vulnerabilities are cov-
ered as Semantic Mutation Operators that mutate the ideal behavioral specification. The
model checker’s task is to check if the introduced vulnerability can be used to violate the
specified security property, independent if that vulnerability is part of the implementation.
In contrast to Salas et al.’s approach, that allows to generate also test cases for perfect
specifications and implementations.

Marback et al. [152] published a paper about security test generation using threat trees.
This work is similar to our approach since it generates security related test cases for web
applications from abstract models. Marback et al. start with building threat trees at the
design level and then combine attack steps with data flow diagrams of the SUV. This is
similar to our approach since it is an abstract view of the SUV and generated test cases from
such threat trees are not automatically executable. The threat tree approach differs to our
approach in the sense that the Security Analyst in our approach is focused on a behavioral
model with semantics annotations about implementation level technologies and function-
ality. Then, vulnerabilities, properties, and verification techniques like model checkers are
used to automatically generate attack traces. In Marback et al.’s approach, the Security
Analyst is more focused on attacks directly and describes these decision-making processes
of an attacker manually. For operationalizing test cases, Marback et al. [152] directly map
model-level elements to implementation-level constructs. In our approach, we let the Se-
curity Analyst map model-level elements to abstract browser actions using a declarative
Domain Specific Language (DSL). Thus, we address the gap to not bother the Security
Analyst with implementation-level details.

178

6.3. Papers in the Context of Property- and Fault-based Test Selection

Authors Title MSSec SecME TSC MES EM EL

Mallouli
et al. [150]

A formal framework to
integrate timed security
rules within a TEFSM-
based system specification

SecP n.s. FB Prot Effe+
Effi

Exec

Mallouli
et al. [149]

Modeling and Testing Se-
cure Web-Based Systems:
Application to an Indus-
trial Case Study

SecP n.s. FB Prot Effe+
Effi

Exec

Martin et al.
[155]

Assessing quality of pol-
icy properties in verifica-
tion of access control poli-
cies

SecP+
FSecM

n.s. FB Prot Ex+
Effe+
Effi

Abs

Zhou et al.
[245]

Protocol Security Testing
with SPIN and TTCN-3

SecP+
FSecM

A+T FB Pre Ex Abs+
Exec

Table 6.1.: Model of System Security = Properties & Test Selection Criteria = Fault-based
(’MSSec’ = Model of System Security; ’SecME’ = Security Model of Environ-
ment; ’TSC’ = Test Selection Criteria; ’MES’ = Majurity of Evaluated System;
’EM’ = Evidence Measures; ’EL’ = Evidence Level; ’SecP’ = Security Proper-
ties; ’FSecM’ = Functionality of Security Mechanisms; ’A’ = Attack Model; ’T’ =
Threat Model; ’FB’ = Fault-Based; ’Prot’ = Prototype; ’Pre’ = Premature System;
’Ex’ = Example Application; ’Effe’ = Effectiveness; ’Effi’ = Efficiency; ’Abs’ =
Abstract; ’Exec’ = Executable; ’n.s.’ = not specified)

6.3. Papers in the Context of Property- and Fault-based Test
Selection

In 2015, we published a paper [104] in the Software Testing, Verification and Reliability
(STVR) Journal which provides a taxonomy and a systematic classification in the context of
model-based security testing. This work is discussed in details in Appendix A. As a summary,
we performed a comprehensive literature survey. In this section we use the classification to
discuss papers that use both property- and fault-based test selection criteria. The identified
approaches are listed in Table 6.1 and are interesting, since our approach is based on (se-
curity) properties and fault-based test selection criteria as well. From a set of 119 papers,
four papers fulfill these criteria. In the following we discuss these papers.

Mallouli et al. [150, 149] describe an approach to integrate timed security rules into
TEFSM-based system specifications. An example of such a rule is e.g., that two succes-
sive travel requests to a Travel Reservation Web Application are separated by at least two
minutes. The main contribution of this work are new algorithms to integrate timed rules
into specifications, a correctness proof, and an industrial case study with France Telecom.
The described approach takes as input a TEFSM functional description of the system, a set
of security rules, and an implementation of the system. The security rules are then inte-
grated, abstract test cases are generated with the TestGenIF tool, and abstract test cases are

179

6. Related Work

mapped to HTTP with tclwebtest. Our work differs in the sense that we assume the security
properties to be given and part of the initial formal specification. As an additional input,
we consider potential source-code level vulnerabilities whose abstract representation is in-
jected into the formal specification. Test cases are then generated by checking if introduced
vulnerabilities violate a specified security property.

Martin et al. [155] assess the quality of policy properties by verifying access control
policies, usually given as XACML policies. Such properties are defined at a higher level than
the policy specification. To verify the properties, a set of mutated policies is generation by
seeding a single fault per mutated model. Afterwards they are checked if they still fulfill
the policy properties. By verifying the mutated models, the properties are determined that
interact with rules in the policy. If a mutated model does not violate the policy properties,
then the quality of the properties is insufficient. In such a case, a rule is not covered by the
property set. In contrast to the usual case where the request set to test the policy would
be improved, this paper proposes to improve the property set. During this approach, the
request set that let a mutated model violate the property set is considered as a test suite for
the policy. The delta to our work is that we assume the specified properties to be validated,
meaning they represent what the security expert indeed wants. Furthermore we don’t focus
on Access Control Mechanism but consider the full functionality of the application. In
addition, our mutation operator capture a more general range of vulnerabilities and are not
limited to access control vulnerabilities.

Zhou et al. [245] describe an approach for protocol security testing with the SPIN model
checker and TTCN-3 for test case specification. The work focuses on specification secu-
rity of communication protocols. It is a general method for protocol security testing that
addresses effective detection of specification vulnerabilities and efficient testing of protocol
implementations. The SPIN model checker is used to find specification flaws with respect to
LTL security constraints, which are partitioned into system security (deadlock, invalid end,
none-progress circle) and protocol requirements (confidentiality, integrity, authorization,
authentication, availability, non-repudiation). To simulate malicious entities, the approach
considers threat models. After the model checking phase, mapping rules translate counter
examples of model checking to TTCN-3. The describe approach is similar to our work in
the sense that both approaches start from a formal specification and end with executing
test cases on a SUV. They both include the steps (1) model checking formal specification
against security properties, (2) counter examples are considered as test cases (3) opera-
tionalization and execution of test cases on the SUV. Nevertheless the delta between the
Zhou et al.’s and our approach is: (1) Zhou et al. consider protocols as SUV, whereas we
consider web applications. (2) Besides the different levels where these SUVs are used in a
software stack, also the types of vulnerabilities are different. In our work, we consider SQL
injections and XSS vulnerabilities, that, in most of the cases, are not part of security pro-
tocols. Finally, our approach includes a mutation step where we modify the initial formal
specification. This addresses the important issue that also test cases for an initially correct
model can be generated.

Conclusion

In sum, all the above discussed papers show that the combination of formal verification
techniques combined with penetration testing has not been addressed for web applications.

180

6.3. Papers in the Context of Property- and Fault-based Test Selection

In this context the question how to use correct formal specifications and corresponding se-
curity properties, that do no generate AATs using verification tools like model checkers, for
test case generation, is still an open issue. Therefore, this Ph.D thesis contributes to this
gap with the methodology discussed in Chapter 2, including different mutation operators.
Furthermore, the discussed papers also show that the gap from abstract to executable test
cases is still an open issue, which we address with the intermediate browser level to sim-
plify the operationalization of test cases and successfully handling sophisticated client-side
browser technologies like JavaScript or Flash.

181

7. Conclusion

In this Ph.D thesis, we developed and evaluated a semi-automatic security testing approach
with fault models and properties. Many web application surveys show that two of the most
severe vulnerabilities for web applications are dedicated to Cross-site Scripting (XSS) and
Structured Query Language (SQL) attacks. Therefore, the considered fault models reflect
such issues and are used to generate test cases. A comprehensive survey of papers published
between 1996 and 2013 in the area of model-based security testing has shown that only
a few papers propose modeling source code level vulnerabilities at an abstract level and
combine them with verification technologies like model checkers to generate test cases for
web applications. Furthermore, Doupé et al. [92] published a paper that demonstrates that
automatic security scanners do not find 8 out of 16 well-known vulnerabilities. Issues like
reaching a sufficient depth in the web application, authentication, client-side technologies
like Flash and Javascript are major issues for such tools. Therefore, we propose a model-
based approach in this Ph.D thesis that starts with a formal specification of web applications.
Model checking such formalizations either directly leads to a counter example, or the model
checker does not find any issues, either because they are correct or long-running specifica-
tions1. While the first kind of models can directly be used for test case generation — by
interpreting the counter example as a negative test case, the second kind of models are not
immediately useful. In this Ph.D thesis, we focus on the latter kind of models. The liter-
ature suggests in such situation structural coverage criteria to generate test cases. Since
such criteria are not optimal in the context of security testing and behavioral models of web
applications, we propose Semantic Mutation Operators.

To make use of models that do not generate Abstract Attack Traces (AATs) for test case
generation, either the specified security properties Φ or the model M needs to be mutated.
If the underlying model M is correct, and therefore, M |= Φ, mutating properties is not
immediately useful for test case generation since all traces of the correct model M satisfy
all original properties (∀φ ∈ Φ : M |= φ). If the security properties are mutated, the model
checker can only report traces from the correct model that all satisfy the initial security
properties. Therefore, the model M itself needs to be mutated to M ′ so that a trace in M ′

exists that violates at least one specified property (∃φ ∈ Φ : M ′ ̸|= φ). Model checking
tools might now report traces of the mutated model that violate an initial security property
φ ∈ Φ.

We call such traces Abstract Attack Trace (AAT) that consists of a sequence of abstract
messages exchanged between different entities. To operationalize such AATs they need to
be instantiated. Since web applications are usually accessed with the help of a browser,
we consider the browser level for this process. Executing test cases requires the help of
the Security Analyst since the abstraction gap has to be bridged between the AAT and the
System Under Validation (SUV). Asking the Security Analyst for a mapping of an AAT to a

1A long-running specification is a model, where the model checker does not find any issues in a reasonable
time frame.

183

7. Conclusion

sequence of actions performed in the browser seems to be easier and more convenient than
providing a mapping directly to protocol level messages because less code has to be written
manually and technical API details can be neglected. In addition the mapping of AATs to
executable source code consists of application-dependent and application-independent in-
formation. Therefore, we split the process of making AATs operational into two different
steps by adding an additional intermediate level in between the AAT layer and the imple-
mentation layer. These three layers have different purposes. Layer 1 describes the AAT as a
sequence of abstract messages as given by the output of the model checker. Therefore, the
first mapping takes as input an AAT and maps it to a sequence of abstract browser actions,
expressed in the Web Application Abstract Language (WAAL) language at the second layer.
WAAL is a language that we developed for this Ph.D thesis to describe how exchanged mes-
sages between agents can be generated and verified in terms of actions a user performs
in a web browser. Providing this mapping is a manual task but supported with a Domain
Specific Language (DSL). The second step is mapping WAAL actions to executable API calls
using a specific framework. In our case we make use of the Selenium framework [26] and
provide a mapping from WAAL to selenium API calls. Once such a mapping is defined, it
can be automatically applied and reused for any test case. Therefore, layer 3 describes the
instantiated attack trace in terms of source code.

We evaluated our approach using three different formal specifications. While WebGoat is
a web application already known from the beginning, Wackopicko and a Bank Application
were only considered during the evaluation. The overall evaluation addressed effectiveness
and efficiency aspects of SPaCiTE, that uses a vulnerability-based fault, compared to ap-
proaches that use a syntax-based fault model. To evaluate the effectiveness of SPaCiTE, we
evaluated WebGoat with a vulnerability scanner called ZAP. Wackopicko was intensively an-
alyzed by Doupé et al. [92], and the bank application was examined using several tools by
Master students of the Technische Universität München. In the first part of the evaluation,
we showed that SPaCiTE generates AATs that correspond to more difficult and sophisticated
attacks like multi-step stored XSS and multi-step stored SQL attacks, attacks that automatic
security scanner usually do not find. In the second part of the evaluation, we elaborated the
efficiency of SPaCiTE by comparing four different sets of mutation operators — first-order,
higher-order, Syntactic Mutation Operators, and Semantic Mutation Operators.

We are very well aware that the conclusion we draw is based on a few case studies.
They provide important insights but the evaluation data does not allow to generalize these
results.

In terms of effectiveness, we conclude that SPaCiTE does find the non-trivial stored XSS
and stored SQL vulnerabilities in WebGoat and Wackopicko both at the abstract, as well as
on the implementation level. In contrast, while ZAP fails to find the stored XSS vulnerabil-
ity in WebGoat, black-box scanners like Acunetix, AppScan, Burp, Grendel-Scan, Hailstorm,
Milescan, N-Stalker, NTOSpider, Paros, W3af, and Webinspect do not find these two vulner-
abilities in Wackopicko. Therefore, the proposed Semantic Mutation Operators are powerful
enough to find the stored XSS and stored SQL vulnerability both at the abstract model level,
as well as at the implementation level.

In terms of efficiency, we conclude that applying higher-order Syntactic Mutation Opera-
tors to the three case studies generate an amount of mutated models that are impractical to
model check. Higher-order Syntactic Mutation Operators generate up to 3800 and 12’000
mutated models for the Wackopicko and Bank specification respectively. At the same time,

184

the Semantic Mutation Operators generate approximately 200 and 300 mutated models
respectively. While model checking those 300 mutated models requires approximately 30
hours, model checking those 3800 models require 312 hours. These numbers do not gener-
alize but they provide an intuition about the computation power required for model check-
ing. Furthermore, applying Syntactic Mutation Operators generate a set of mutated models
where between 2% (94 vs. 3851 models) and 13% (20 vs. 158 models) of the models
generate an AAT. The ratio is much higher when Semantic Mutation Operators are applied,
namely between 12% (24 vs. 204 models) and 53% (10 vs. 19 models). Comparing the
number of generated AATs shows that Syntactic Mutation Operators generate between 1.3
(18 vs. 14 AATs) and 2 (20 vs. 10 AATs) times as many AATs as applying Semantic Muta-
tion Operators. This has several reasons: All relevant input message parameters are already
considered by the Semantic Mutation Operators so that no parameter is left that could be
used by Syntactic Mutation Operators to violate specified security properties. Furthermore,
injecting a vulnerability to a formal specification only leads to an AAT if a security property
is violated. Depending on how intensively the Security Analyst annotated the formal speci-
fication, most/all of the possible AATs are already covered by Semantic Mutation Operators.

Whether Syntactic Mutation Operators perform more efficiently than Semantic Mutation
Operators depends on the strategy how AATs generated by Syntactic Mutation Operators are
handled. Illustrated on the Wackopicko formal specification, automatically applying higher-
order Syntactic Mutation Operators generates around 4000 mutated models, requires 320
hours of model checking, and the generation of around 680 executable test cases. These
numbers are based on the brute force approach for AATs for with it is unclear how to
concretize and execute them. By manually applying around 40 semantic annotations, the
number of mutated models can be reduced to 350, to 33 hours of model checking, and to
the generation of 60 executable test cases. Therefore, the effort for the manual task of an-
notating a formal specification competes with the effort of handling a bigger test suite that
also includes test cases without vulnerability-based rationales. This conclusion obviously
does not generalize but nevertheless provides important insights.

As a summary of the lesson learnt, we want to stress the following conclusions:

1. We believe that the combination of behavioral models and security properties increase
the success of finding vulnerabilities because the application logic can be respected.
E.g., the test cases generated for the Bank application first register a new account
and activate it before a client logs in with malicious data. Such test cases combine
application logic with attacks. They increase the success of the attack compared to a
test case that tries to login without first creating and activating an account.

2. A crucial quality characteristic of the formal specification is an accurate and careful
data flow modeling. E.g., receiving a value and storing it in the database generates
two unique copies of the same data value. Since storing the value might make the
sanitization ineffective, it matters which of the two copies is sent back to the client.

3. To find non-trivial vulnerabilities in the evaluated three use cases, higher-order mu-
tation operators (either syntactic or semantic) are required. To generate test cases
that find reflected XSS and SQL vulnerabilities, it is not guaranteed that first-order
mutation operators are sufficient. Similar, to generate test cases that find stored XSS
and SQL vulnerabilities, it is not guaranteed that second-order mutation operators

185

7. Conclusion

are sufficient. The required order depends on the model, and not on the type of
vulnerability.

4. The difference between Syntactic and Semantic Mutation Operators is the locations
where the mutation operator is applied and the kind of value-tracking facts that are
introduced. While the location where the model is mutated is mainly responsible for
violating the specified security properties, the value-tracking facts are used during the
operationalization of AATs. Therefore, Syntactic Mutation Operator generate much
more mutated models but that set contains those mutated models that are also gener-
ated by Semantic Mutation Operators. Thus, Syntactic Mutation Operators eventually
cover the same test cases as generated by Semantic Mutation Operators, but the com-
putation overhead is massive.

5. By using WAAL as an intermediate language while operationalizing an abstract test
case, the Security Analyst has to specify significantly less lines of codes (approximately
40% for the WebGoat and 50% for the Wackopicko use case) compared to providing
the executable test case directly.

6. To get a more comprehensive test suite, attack injection is required. A pure vulnerabil-
ity injection does not cover the effect of the malicious input. Knowing the semantics
of such a malicious input reveals new test cases, that are missed by pure vulnerability
injections.

7. While sophisticated attacks often consist of multiple steps, using verification tech-
niques based on behavioral models definitely can be used for automatically gener-
ating such test traces. E.g., it is the strength of model checkers to find traces in a
model that violates a defined security property. At the same time, attacks are not only
sophisticated because they consist of multiple steps, but also because the input data
has to follow a syntax and is encoded in different ways. In this respect, verification
techniques in combination with behavioral models are too abstract as that encoding
information could be part of such specifications. We believe that considering issues at
the level of encoding too fast lead to the state explosion problem that model checker
often suffer. We therefore recommend to put future research effort into combining
model-based verification techniques with source code analysis techniques like e.g.,
symbolic execution.

Finally, the overall Ph.D thesis shows, that executable test cases for security-interesting
non-trivial vulnerabilities can be generated using the combination of verification techniques
and penetration techniques. Using fully automatic model checkers to find abstract security
issues is beneficial and can reveal non-trivial traces that violate specified security properties.
Nevertheless we realized that the effort of providing appropriate models, model-checking
them and addressing all the technical challenges when it comes to an automated approach
is very challenging. In particular, model-checking does in general not scale and therefore,
the more complex the web application gets, the more details need to be abstracted that
either later increases the effort to add them again to gain executable test cases, or prevent
the model checker to find vulnerabilities. At the same time, we often realized that the
Security Analyst already gets a clear understanding of the relevant components and their
test cases during the modeling phase.

186

Appendix

187

A. A Taxonomy and Systematic
Classification for Model-Based Security
Testing

[The content of this appendix is in press of the Software Testing, Verification and
Reliability (STVR) Journal.]

As part of the literature study, we performed a comprehensive and systematically sur-
vey of existing model-based approaches, written together with Michael Felderer, Philipp
Zech, Ruth Breu, and Alexander Pretschner. Because of the observation that only very few
classifications for Model-based Security Testing (MBST) approaches exist we published a
taxonomy and a classification of 119 MBST relevant papers in [104]. Although the clas-
sification is reported in terms of papers, we focused on approaches rather than individual
papers since multiple papers for the same approach might have been published. Besides
getting an overview of published work, the goal of that survey study is to better under-
stand which areas of MBST are well-understood and evaluated and which areas are not
studied enough and are therefore potentially interesting for future research. Using five
digital libraries, we collected 119 MBST relevant papers and classified them according to
our proposed taxonomy. The classification provides a state of the art overview of MBST
approaches between 1996 and 2013. Finally we highlighted some interesting observations
based on our classification and discussed potential future research directions. Since MBST
is an active research domain, our taxonomy and classification helps to clarify key issues in
this domain.

We start in Appendix A.1 with a discussion of already existing classifications for Model-
based Testing (MBT), security testing, and MBST and a motivation why further MBST ded-
icated classifications are desirable. In Appendix A.2 we propose our own taxonomy and
apply it to a set of 119 systematically collected papers in Appendix A.3. We report results of
the performed classification in Appendix A.4 and discuss them in Appendix A.5. The survey
is then used in Chapter 6 as a basis to discuss related work that is important for this Ph.D
thesis.

A.1. Existing Classifications

We see our work as a complement to already existing classification approaches [214, 91] by
providing classification criteria specific for security aspects and evidence criteria of the ap-
proaches. Using the above criteria, we systematically collected 119 papers published in one

189

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

of the following digital libraries — IEEE Digital Library1, ScienceDirect2, Springer Link3,
ACM Digital Library4, and Wiley5. Each publication was then categorized by assigning it to
our proposed criteria.

A.1.1. Existing Classifications for MBT

MBT is an active research area and has a big potential to improve test processes in indus-
try [215, 186, 113]. Several MBT classifications already exists:

Utting et al. [214] provide a broad taxonomy for MBT. The taxonomy consists of three
general classes:

• ‘Model specification’ with the sub categories: scope, characteristics, and paradigm.
The scope is a binary value and specifies whether the inputs only or the expected
input-output behavior of the System Under Validation (SUV) is captured. The char-
acteristics is related to timing issues, nondeterminism, continuous or event-discrete
nature of the model. Finally, the last category captures the paradigm and notation
used to describe the model (e.g., state-based, transition-based, history-based, func-
tional, operational, stochastic, data-flow notations).

• ‘Test generation’ with the sub categories: test selection criteria and technologies. Test
selection criteria specify which test cases are generated and include e.g., structural
model coverage, data coverage, requirements-based coverage, ad-hoc, random and
stochastic, and fault-based criteria. The technology category then captures, how the
corresponding test cases are identified, e.g., by using random generation, search-
based algorithms, (bounded) model checking, symbolic execution, deductive theorem
proving, or constraint solving.

• ‘Test execution’ with the sub category: online/offline. While test cases can be adapted
upon the output of the SUV for online testing, they are generated and fixed strictly
before test execution for offline testing.

This taxonomy is extended and complemented by Zander et al. [240]. They extend the
category ‘test generation’with ‘result of the test generation’, as well as the category ‘model
specification’ with ‘MBT basis’. The latter extension captures the elements of a software
engineering process which serve as a basis for the MBT process. Furthermore, Zander et al.
[240] complement the taxonomy with the category ‘test evaluation’ which contains the sub
categories ‘specification’ and ‘technology’.

Dias-Neto and Travassos [91] published a systematic review and classification. Its main
goal is to support the selection of MBT techniques for software projects. The classification
consists of the following dimensions: ‘type of experimental evidence’, ‘testing level (unit, in-
tegration, system, regression)’, ‘use of supporting tools’, ‘model to represent the software to
test (UML, non-UML)’, ‘software execution platforms (embedded, distributed, web services,

1http://ieeexplore.ieee.org
2http://www.sciencedirect.com
3http://link.springer.com
4http://portal.acm.org
5http://onlinelibrary.wiley.com

190

A.1. Existing Classifications

web application)’, and ‘type of non-functional requirements (security, reliability, efficiency,
usability)’. Dias-Neto and Travassos [91] complement Utting et al.’s taxonomy because
the review is very detailed (it identifies 48 different MBT modeling notations) compared
to the first one, which groups them into seven modeling paradigms. At the same time,
Utting et al.’s taxonomy allows a higher level way of classifying existing and future MBT
approaches.

Anand et al. [57] performed an orchestrated survey of methodologies for automated
software test case generation. Anand et al. distinguish three MBT approaches and three
types of modeling notations. MBT approaches are categorized into axiomatic Finite State
Machines (FSMs) and Labeled Transition Systems (LTSs). Modeling notations are catego-
rized into scenario oriented notations, state oriented notations, and process oriented notations.
Comparing Anand et al.’s survey with Utting et al.’s one, the categories of the first one can
be subsumed under the categories paradigm and test selection criteria.

Hierons et al. [121] published an extensive survey on using formal specifications to
support testing. The survey distinguishes three types of specification languages — state-
based specification languages, algebraic languages, and hybrid ones. The paper discusses on
how specification languages can be integrated into testing processes by concrete MBT ap-
proaches. The discussed types of specification languages can be subsumed under the model
specification category in Utting et al.’s taxonomy.

Finally, Hartman et al. [118] provide several decision criteria to choose an appropriate
language for test behavior and test selection modeling. The decision criteria is based on
technological and economical criteria, as well as the distinction between model-driven and
model-based testing. The first category distinguishes between visual vs. textual languages,
proprietary vs. standard languages, and commercial vs. open source tools. The latter category
is divided into UML-based vs. not UML-based testing, online vs. offline testing, system vs. test-
specific language, and domain-specific vs. generic languages. Except the domain-specificity,
the non-technological criteria are covered by Utting et al.’s taxonomy.

As a summary for the discussion of existing work in the area of MBT classifications, we
conclude the following: Utting et al.’s taxonomy is well suited to classify MBT approaches
on a technological-independent level and to identify trends on MBT approaches. The fol-
lowing three arguments support this statement:

1. Utting et al.’s taxonomy provides high-level criteria.

2. The taxonomy does not consider technological details.

3. The taxonomy subsumes many other classifications as shown above.

A.1.2. Existing Classifications for Security Testing

In this section we want to discuss three classification papers in the area of security testing.
Tian-yang et al. [205] published a list of major methods of security testing. It contains

eight different categories: formal security testing, model-based security testing, fault-injection-
based security testing, fuzz testing, vulnerability scanning testing, property-based testing, white
box-based security testing, and risk-based security testing. As the listed categories might sug-
gest, Tian-yang et al.’s publication is rather ad-hoc and focuses only on a few approaches.

191

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

Shahriar and Zulkernine [192] propose seven different main comparison criteria for se-
curity vulnerability testing — vulnerability coverage, source of test cases, test case generation
method, testing level, test case granularity, tool automation, and target application. The cat-
egory tool automation is further split into test case generation, oracle generation, and test
case execution. Shahriar and Zulkernine [192] used these comparison criteria to classify 20
informally collected approaches. Since the goal is to support security practitioners to select
an appropriate approach, the classification mixes abstract and technological criteria.

Finally, Bau et al. [64] classifies eight different security vulnerability testing approaches
according to the following criteria — class of vulnerability that is tested, effectiveness against
the target vulnerability, and relevance of the vulnerability in productive systems. The goal
of this classification is twofold. First, it provides evidence to support the selection of se-
curity vulnerability approaches. Second, the survey assesses the potential impact of future
research.

To conclude this section, security testing involves the definition and evaluation of attacks.
That requires selecting a specific testing approach based on some classification criteria. Ex-
isting classifications show that risk-based, fault-injection, fuzz testing, vulnerability cover-
age, and evidence of an approach are very relevant aspects in this context. Nevertheless
more specific testing techniques are necessary. In particular, testing approaches that go be-
yond functional testing of security mechanisms should be much more addressed in future
research.

A.1.3. Existing Classifications for MBST

In this appendix we want to discuss two classification papers in the area of MBST. Although
a lot of MBST papers are published, only very few and ad hoc classifications exists.

Felderer et al. [102] provides an extension of Potter and McGraw [173]’s classification
by adding model-based approaches. Nevertheless the model-based aspects are restricted to
the integration of risk into the model. Other model-based aspects are missing. In addition
to the risk category, Felderer et al. [102] also adds the category automated test generation.
This category is further divided into the subcategories complete, partial, and missing. Since
the classification also includes non model-based approaches, this survey is more general
and not fully dedicated to MBST.

Finally, Schieferdecker et al. [187] published a classification that claims that in MBST
three different kinds of input models are needed. In their work, they distinguish between
architectural and functional models, threat, fault, and risk models, and weakness and vul-
nerability models. The first category, the architectural and functional models, deal with
requirements and implementations of the SUV. An example are access and usage control
models. Such models express the expected or desired behavior. For security testing, we
not only need the expected behavior but also an understanding, what can go wrong. This
knowledge is provided by the second category, the threat, fault, and risk models. Examples
of such models are fault and attack models (see CORAS [146]), or fault and attack tree
analysis [217]. Finally, the knowledge for the last category, the weakness and vulnerability
models, is collected in Common Vulnerabilities and Exposures (CVE) databases like ‘The
ultimate security vulnerability datasource‘ [11].

To conclude the section about existing classifications for MBST, only a few ad hoc clas-
sifications of published MBST approaches exists. Furthermore, Schieferdecker et al.’s clas-

192

A.2. Classification Criteria for Model-Based Security Testing

sification does not explicitly cover test selection criteria. Due to that, an alignment with
Utting et al. [214]’s taxonomy is difficult. In addition, models of system security and security
models of environment is not distinguished neither. Finally, evidence aspects of MBST are also
not part of Schieferdecker et al. [187]’s taxonomy. Therefore, the goal of our contribution
[104] is to address the above mentioned issues in order to be more comprehensive and to
better align the classification with Utting et al. [214]’s work.

A.2. Classification Criteria for Model-Based Security Testing

In principle, a MBST approach can be classified using a MBT taxonomy, since both are
model-based artifacts. As we have discussed in Appendix A.1.1 Dias-Neto and Travassos
[91] consider security as a non-functional category and classify 16 MBST approaches. Nev-
ertheless, existing MBST classifications are missing important and crucial categories like
risk-based testing, fault-injection, fuzz testing, vulnerability coverage, and evidence, to name a
few. Our survey paper addresses these issues by providing a comprehensive taxonomy that
allows to systematically classify existing work specifically dedicated to MBST. An overview
over all criteria are shown in Figure A.1.

Our taxonomy is based on two main categories — filter criteria and evidence criteria.

A.2.1. Filter Criteria

As a model usually describes an infinite set of traces, filter criteria are used to select a rele-
vant finite subset of traces of the SUV. They formally define the security testing objectives
and highlight what is modeled. We distinguish between model of system security, security
model of the environment, and explicit test selection criteria.

A.2.1.1. Model of System Security

System security models are bound to the SUV since they describe parts of the system. To
be more fine grained, we further consider security properties, vulnerability models, and func-
tionality of security mechanisms as potential models of system security. These three types of
models are described as follows:

a) Security Properties are well-known characteristics like the CIA properties. An
approach in this category must at least explicitly define one of the following prop-
erties: confidentiality, integrity, availability, authentication, authorization, or non-
repudiation.

b) Vulnerability Models describe characteristics of the system, a property that is
part of the system itself. Without a vulnerability, an exploit cannot be success-
fully executed on the SUV. Usually such models are expressed in term of deviation
from the expected, correct behavior [178].

c) Functionality of Security Mechanisms describe concrete means that are used
by the SUV to preserve a specific security property. Typical models are access
control and usage control models. E.g., a abstract policy can be interpreted as the
model that describes the functionality of the security mechanism.

193

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

Figure A.1.: MBST Classification Criteria

194

A.2. Classification Criteria for Model-Based Security Testing

The above discussed models of system security are not mutual exclusive, meaning that a
specific MBST approach might make use of several models. Therefore, we treat the category
model of system security as multi-select.

A.2.1.2. Security Model of the Environment

Security models of the environment describe technical, organizational, and operating con-
text security aspects of the SUV. In contrary to vulnerability models, they focus on causes or
potential consequences of a system behavior. E.g., modeling an exploit of a vulnerability is
part of the environment, whereas modeling the vulnerability consists of modeling the SUV.
In our survey we distinguish the following two sub categories — threat model, and attack
model:

a) Threat Model. These kind of models describe a potential cause of an incident. In
terms of an attack tree, the threat is the root node that motivates an attack [133].

b) Attack Model. These models describe sequences of actions to exploit vulnerabil-
ities. Threats may be considered as their causes. Attack models may be testing
strategies such as string or behavior fuzzing, possibly on the grounds of grammars,
or syntax models, that generate test cases.

The relationship between threats and attacks can be illustrated by attack trees: An attack
tree represents a conceptual view on how an asset might be attacked. It describes a com-
bination of a threat and corresponding attacks. Usually, the top level event (root node) of
an attack tree represents the threat. In contrast, each cut of an attack tree, with the root
node removed from this cut, is an attack. Several non-root nodes of the tree exploit vul-
nerabilities. The children of a node express conditions that need to be fulfilled in order to
exploit the vulnerability at the parent node. If all nodes in a cut (including the root node)
are made true, the corresponding attack is possible and leads to the described threat. Note
that vulnerabilities are inherently bound to a SUV while attacks are inherently bound to a
SUV’s environment. Test selection is done using both.

A.2.1.3. Explicit Test Selection Criteria

As we have previously discussed in the introduction, the set of relevant test cases must be
sufficiently small in order to be useful for testing activities. The category Explicit test se-
lection criteria captures further approaches to cut down the number of relevant test cases
defined by the model. They directly describe the basis for test case selection. In our taxon-
omy, we distinguish the following sub categories:

a) Structural Coverage. Test cases are selected based on some structural criteria of
the model. E.g., a test suite is constructed so that every node or every edge is
covered.

b) Data Coverage. An approach that uses data coverage to generate test cases is
focused on the large data range of a values and specifies which subset of values
are considered for the test case generation.

195

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

c) Requirements-based Coverage. An approach selects test cases according to re-
quirement-based coverage, if informal requirements are the crucial metrics. This
requires that it is possible to explicitly map elements of the model to the given
informal requirements.

d) Explicit Test Case Specifications. Papers classified as explicit test case specifica-
tion present an explicit and formal notation of which test cases are considered for
testing. E.g., explicit test case specifications can be used to characterize specific
paths or scenarios that have to be covered during testing.

e) Random and Stochastic. This criteria directly or indirectly involves probabili-
ties. E.g., usage profiles are an example of a stochastic model.

f) Fault-based. Selection criteria based on faults capture the idea that source code
contains faults either introduced intentionally or unintentionally. An approach that
uses fault-based selection criteria correlates the test suite to faults.

g) Assessment-based. Test selection can be based on results of an assessment of
the artifacts part of a test case. Typically, artifacts are assigned to measured or
estimated values gained during an assessment and can be of different kind. For
instance, a popular estimated value is risk which estimates probabilities and con-
sequences of certain threats. Other metrics for assessment might include costs,
priorities, or severities, as well as size, complexity or change measures. There-
fore, assessment-based criteria select tests on the basis of these values assigned to
artifacts.

h) Relationship-based. Test cases can also be selected based on the difference of
two models. Such differences may happen due to different abstraction levels of
the models or due to the different versions of the same model (see regression
testing).

A.2.2. Evidence Criteria

Evidence criteria capture the applicability and usability of an MBST approach, as well as
the actual state in research. Since such evidence data might be missing in a publication,
the evidence criteria is optional in our taxonomy. Evidence is not something that is specific
for MBST. Dias-Neto and Travassos [91] already present evidence categories for MBT.
Since the selection of applications and a suitable testing approach is very complex, we
extend existing work by presenting orthogonal evidence criteria dedicated to MBST. We
consider the following sub categories — Maturity of evaluated system, Evidence measures,
and Evidence level.

A.2.2.1. Maturity of Evaluated Systems

An approach can be evaluated using different systems. This category captures the type
of the system used for the evaluation and allows the following three sub categories —
Prototype, Premature System, Productive System.

196

A.3. Systematic Selection and Classification of Publications on MBST

a) Prototype. This category represents software in a very early development state
and include e.g., sample applications. They have well-known limitations e.g., ac-
cording to security. Prototypes were developed without industrial pressure.

b) Premature System. A premature system is developed with stakeholders in mind,
but is not in a state yet where it performs valuable tasks on a regular basis.

c) Productive System. A productive system performs valuable tasks for stakehold-
ers on a regular basis.

A.2.2.2. Evidence Measures

Evidence measures are metrics for qualitative and quantitative assessments. Since a SUV
can be evaluated qualitatively and quantitatively at the same time, this category is multi-
select. It contains the following sub categories:

a) Example Application. The approach is applied to a small application in order to
demonstrate its feasibility.

b) Effectiveness Measures. Effectiveness metrics are used to decide if the expected
results are achieved by the approach. They express the effect of the test suite used
during the evaluation. E.g., the effectiveness can be represented as the number of
faults found in the SUV.

c) Efficiency Measures. These measures relate test cases, faults, or tested model
elements to a notion of required time or cost.

A.2.2.3. Evidence Level

The evidence level expresses at which level test cases are evaluated. Using abstract models
as input for a test generation approach, corresponding test cases stays at the same abstrac-
tion level. To test actual systems, these Abstract Attack Traces (AATs) need to be made
operational. Since not every approach turn AATs operational, we distinguish between ab-
stract and executable test case generation. Since both sub categories do not exclude each
other, it is a multi-select criterion.

a) Abstract. Test cases are not executable. Therefore, the effect of the approach on
the SUV cannot be measured.

b) Executable. Test cases can be executed against a SUV and therefore, also their
effect can be considered. Whether intermediate abstract test cases are generated
first is up to the concrete testing approach.

A.3. Systematic Selection and Classification of Publications on
MBST

In this section we describe how we systematically collected published work that is later used
for our classification. In addition we also discuss threats to validity in terms of publication
bias, threats to the identification and classification of publications.

197

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

A.3.1. Paper Selection

To provide clear criteria, which papers are considered for this survey, we initially fixed the
following requirements:

• The considered model of the MBST approach must be explicit and processable by
security tools. Therefore, pure penetration testing and fuzz testing approaches are
excluded for this survey.

• Test cases are generated based on these models and are therefore generated system-
atically. The security test models provide guidance for an effective specification of
security test objectives, security test cases, and their automated generation and eval-
uation.

• We focus on active testing. That means that the considered approaches have to be
dynamic and intrusive — stimuli are sent to the SUV and responses of the system are
observed [187]. In particular, static analysis and monitoring approaches are excluded
since they are not intrusive.

• Finally, approaches that address traditional robustness, safety or trust properties are
excluded for this survey study as well.

• The paper must have a length of at least four pages so that we have enough informa-
tion for the classification. Therefore, e.g., extended abstracts are excluded.

• The paper must be written in English.

• The paper must be primary literature and peer-reviewed.

• Finally, the paper must be published between 1996 and 2013, both including. The
year 1996 was chosen, because it is the year of the first MBST paper identified by Dias-
Neto and Travassos [91].

The search strategy in order to collect relevant peer-reviewed primary publications is
based on an automatic search in the following five digital libraries — IEEE Digital Library,
ScienceDirect, Springer Link, ACM Digital Library, and Wiley. These libraries cover the most
relevant publications in software and security engineering [76].

In order to measure the quality of the search string for the automatic search, we initially
defined a reference database of 76 manually selected relevant papers of all five digital
libraries. These papers were selected by three experts in the MBST area. The goal of
this reference database is that the result of the automatic search must at least contain all
papers of that database. To come up with our search string, we started with the search
string defined by Dias-Neto and Travassos [91] and iteratively improved it by adapting it to
concepts related to (security) models, security, and testing. The final search string below
was used on the fields: title, abstract, and keywords.

198

A.3. Systematic Selection and Classification of Publications on MBST

("model based" OR automata OR "state machine" OR
"specification based" OR policy OR policies OR
"threat model" OR mutation OR risk OR fuzzing)

AND (security OR vulnerability OR privacy OR cryptographic)
AND (test OR testing)

Performing the automatic search, 5928 papers are returned. Before we classify them, we
applied some suitable inclusion and exclusion criteria in three different phases (Figure A.2).
Papers that could not be excluded with enough evidence in phase x stayed in the loop and
entered the next phase x+ 1.

Phase 1. In phase 1, we excluded papers that do not satisfy the criteria defined in
Appendix A.3.1 based on the title of the publication. This reduced the number of
papers from 5928 to 660.

Phase 2. In this phase, we excluded irrelevant papers that do not satisfy our criteria
based on the abstract. After this phase, 324 papers are remaining.

Phase 3. Finally, the full text of the publication was considered and excluded if nec-
essary. After this phase, 119 papers are remaining that we use as a basis for our
classification.

A.3.2. Paper Classification

For the classification, the collected 119 papers were divided among three researchers and
classified against the taxonomy introduced in Appendix A.2. Upcoming issues were dis-
cussed collaboratively in group sessions. To avoid mistakes during the classification, each
paper classification was reviewed by at least one other researcher to apply the 4-eyes prin-
ciple. The final classification is publicly available6 as an interactive table, and appended to
this thesis in Appendix B.2.

A.3.3. Threat of Validity

Performing a classification always faces several threats of validity. Therefore, we want to
discuss the following three threats:

Publication Bias. In our approach only papers that were published are considered. There
is the danger that approaches with a negative research outcome are missed. We con-
sider this threat as moderate, since the digital libraries take a broad range of work-
shops, conferences, and journals into consideration. Nevertheless there is a trade-off
between as many publications as possible and reliable information. We decided to
exclude gray literature (technical reports, work in progress, unpublished, or not peer-
reviewed papers) [142] in favor of quality.

6http://qe-informatik.uibk.ac.at/mbst-classification/

199

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

 3038

ACM Digital
Library

 1769

IEEE
Explore

 111

Science
Direct

 1000

Springer

 10

Wiley

5928
retrieved
papers

660 filtered
papers

324 papers
for full text

reading

119 papers
for

classification

Figure A.2.: Paper Selection Procedure

200

A.4. Results of the MBST Classification

Threats to the Identification of Publications. We are aware of the fact that it is impos-
sible to know all existing relevant publications. Nevertheless we iteratively improved
the search string according to a reference database. We stopped at a point where fur-
ther optimizations of the search string lead to a decreasing precision of found papers.
Although we followed a comprehensive study, it is not complete. However we con-
sider single missing publications as a moderate threat because the classification aims
for validating the taxonomy and characterize the state of the art.

Threats to the Classification of Publications. A high number of primary publications
encloses the threat of misclassification. To address this issue, we considered the fol-
lowing counter measures:

• The taxonomy is clearly defined (see Appendix A.2).

• The classification was performed by three researchers all experts in the MBST
domain.

• The whole classification process was independently reviewed by at least another
author of the survey.

A.4. Results of the MBST Classification

In this section we present the results of the MBST classification, based on four different
tables (Tables A.1 to A.4). They consider the following comparison criteria:

• Model of System Security vs. Security Model of Environment.

• Test selection criteria vs. Security Models.

• Maturity of Evaluated System vs. Evidence Level.

• Security Models vs. Evidence Criteria.

In general, we highlight the following two findings:

• As a first result, we observe that the proposed taxonomy allows to classify all 119
papers. Therefore, the successful classification of all papers indicates the adequacy of
the taxonomy.

• Since the collection of papers were done in a systematic and comprehensive way, the
survey provides a good overview of the state of the art of MBST.

Number of MBST Approaches per Type of Security Model of the Environment. In Ta-
ble A.1 the different columns show all combinations of Model of System Security
whereas the different rows show all combinations of Security models of environments.
The table shows that the most common type of Model of System Security is Function-
alities of Security mechanisms (65 papers). Out of these 65 papers, 42 approaches
exclusively use functionalities of security mechanisms models and do not combine
them with Security models of environment. Both findings are not so surprising consid-
ering that access control models are very popular in the literature. Comparing ‘Models

201

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

of System Security’ and ‘Security models of Environments’, the first is much more pop-
ular since 84 out of 119 papers do not consider Security models of Environment at all.
From the 35 papers that do consider Security models of Environment, 29 make use of
attacker model.

Number of Publications Reporting a Specific Type of Test Selection Criterion. In Ta-
ble A.2, the different columns show the types of models, whereas different rows rep-
resent types of test selection criteria. The table shows that the dominant test selec-
tion criteria is structural criteria because many models in MBST are graphs, like in
MBT. Structural criteria are mainly used in combination with Functionality of Security
Models but also with Security Properties and attack models. Compared to structural
criteria, data coverage is very rarely used (14 papers). If it is used, the most com-
mon combination is with functionality of Security Models. Although not as much used
as structural criteria, fault-based and explicit test case specification are still criteria of-
ten found in state of the art approaches. In contrast, requirement-based, random and
stochastic-based, assessment-based, and relationship-based criteria are very rarely used
and provide room for future work.

Evidence Reported in MBST Publications per Maturity of Evaluated System. In terms
of maturity level of the system to be tested, the most used type are prototypes (see
Table A.3). 81 papers of whose you use prototypes to evaluate the approach, show
the success of the approach based on examples. Compared to that, 25 uses effective-
ness measures, and 19 papers use efficiency measures. This observation corresponds
with the difficulty of the 3 categories. Usually one starts with some example scenario
and only later show more systematically the effectiveness. Once the effectiveness is
evaluated, it is put into a specific context which leads to an efficiency evaluation.
Furthermore, papers that evaluate the approach based on premature or productive
systems also tend to use effectiveness and efficiency measures instead of example
evaluations. Whereas 60% of the prototypes are used for evaluation by examples, it
is exactly the opposite for pre-mature and productive applications. 60% of them are
used for evaluations in terms of effectiveness and efficiency. Differentiating between
effectiveness and efficiency, the latter is used at least.

Number of Publications per Type of Security Model. Table A.4 puts types of evidence
in relation to types of security models. Further it is a refinement of Table A.3. One
can observe that except one single exception [127], evidence is always specified. This
underlines the importance of providing an evaluation of the proposed approach. Ta-
ble A.3 already shows that premature systems are almost never used for an evaluation
strategy. This table provides further inside knowledge on that issue. E.g., premature
systems are never used in combination with vulnerability models. If a paper makes
use of attack models, productive systems are the dominant type of systems used for
evaluation. An explanation could be that attack models describe sequences of steps
that an attacker has to perform. Complex systems like productive systems are more
likely to provide an environment, where such a sequence of steps is possible to exe-
cute. The most common types of security models that are evaluated with effective-
ness and efficiency measures are functionalities of security mechanisms. Considering
the ratio between evaluating the approach at abstract vs. executable level, one can

202

A.5. Discussion of the Results

observe that this ratio is highest for security property models. The ratio is lowest for
vulnerability models. One explanation for this could be that security properties are
often abstract and can be evaluated statically, whereas vulnerabilities often require an
executable system.

Model of System Security

SecP V FSecM SecP+V SecP+FSecM V+FSecM n.s. Sum

Se
c.

M
od

el
of

En
v. T 1 0 3 0 0 0 2 6

A 2 0 1 0 0 0 20 23

T+A 1 1 0 0 1 0 3 6

n.s. 15 7 42 2 9 9 0 84

Sum 19 8 46 2 10 9 25 119

Table A.1.: Number of MBST Approaches per Type of Security Model of the Environment
(‘T’ = Threat Model; ‘A’ = Attack Model) and Model of System Security (‘SecP’
= Security Properties; ‘V’= Vulnerabilities; ‘FSecM’ = Functionality of Security
Mechanisms), where ‘+’ represents a combination of different types of security
models of the environment or models of system security and ‘n.s’ stands for ‘not
specified’

A.5. Discussion of the Results

The goal of this survey is a classification schema for the state of the art in MBST. Based on
the presented results in Appendix A.4, we selectively discuss the relationship between ‘se-
curity properties’ and ‘vulnerabilities’, the use of coverage criteria by existing publications,
and the feasibility and ROI of MBT.

a) Security Properties and Vulnerabilities. Comparing research approaches based on se-
curity mechanisms, security properties, and vulnerabilities, the first two categories are
much more often chosen than the last kind of approach. At one side, this sounds sur-
prising since the goal of security testing is finding potential faults — and faults are
very much correlated to vulnerabilities. At the other side, it turns out that fault-based
approaches are very often performed manually and are therefore not based on an ex-
plicit model. There is no obvious reason for this and one can only speculate. It seems
that vulnerabilities are hard to formally specify in an explicit model. Comparing se-
curity mechanisms vs. security properties, more published approaches focus on the
first one. At one side, this seems strange, since from a theoretical point of view, the
difference between testing an access control mechanism and an authentication prop-
erty is very hard. Both concepts define a set of traces that are intersected with the
set of traces defined by the SUV. At the other side, one can speculate that perform-
ing function testing a security mechanism is easier than testing an abstract security

203

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

Model of System Security

SecP V FSecM T A Sum

Te
st

Se
le

ct
io

n
C

ri
te

ri
a

SC 13 7 38 7 16 81

DC 0 1 10 2 1 14

RC 3 0 4 2 0 9

TCS 9 1 9 1 6 26

RS 1 1 5 0 0 7

FB 6 9 12 3 5 35

AB 0 1 0 0 3 4

RB 2 2 2 0 1 7

Table A.2.: Number of Publications Reporting a Specific Type of Test Selection Criterion
(‘SC’ = Structural Coverage; ‘DC’ = Data Coverage; ‘RC’ = Requirements Cover-
age; ‘TCS’= Explicit Test Case Specifications; ‘RS’ = Random and Stochastic; ‘FB’
= Fault-Based; ‘AB’ = Assessment-Based; ‘RB’ = Relationship-Based) per Type
of Security Model (‘SecP’ = Security Properties; ‘V’= Vulnerabilities; ‘FSecM’ =
Functionality of Security Mechanisms; ‘T’ = Threat Model; ‘A’ = Attack Model)

property. This origins in the fact that a security property affects every trace defined
by the SUV, whereas the security mechanism is restricted to one dedicated security
component. Nevertheless, it is not always clear that a security property enforced by a
security mechanism holds system-wide. To bring some lights into the approaches that
deal with security properties, we performed a further analysis on the 31 papers that
are classified as property-based. It turns out that the majority of those paper focus on
confidentiality rather than integrity or availability properties. This opens possibilities
for further research since a vulnerability in general can be exploited to violate a set of
different security properties.

As a summary, we see room for future research that (1) explicitly addresses vulner-
abilities, (2) further investigates the relationship between functional testing a secu-
rity mechanism and guaranteeing system-wide properties, and (3) directly addresses
system-wide security properties.

b) Coverage Criteria. In section Appendix A.4 we observed that coverage criteria are very
popular as test selection criteria. This is very likely based on the fact that generating
test cases based on coverage criteria can be highly automated. Nevertheless, there is
an ongoing discussion whether such generated test cases have a good potential fault
detection rate [178, 224, 115, 132, 161, 147, 120, 95]. Usually, coverage criteria
are defined independent of underlying fault-models, the success of test case strategies
based on coverage criteria depends on the distribution of the faults in the system. In
general, this distribution is not known a priori. At the other side, coverage criteria
can also be used without an explicit model in order to identify vulnerable parts of an

204

A.5. Discussion of the Results

Evidence Measures

Abs Exec Abs + Exec Sum

M
at

ur
ity

of
Ev

al
ua

te
d

Sy
st

em

Prototype

Ex 36 22 23 81

Effe 3 15 7 25

Effi 3 9 7 19

Sum 42 46 37 125

Premature

Ex 1 0 1 2

Effe 0 2 1 3

Sum 1 2 2 5

Production

Ex 3 3 1 7

Effe 2 7 0 9

Effi 1 0 0 1

Sum 6 10 1 17

Table A.3.: Evidence Reported in MBST Publications per Maturity of Evaluated System
(‘Premature’ = Premature System; ‘Productive’ = Productive System), Evidence
Measures (‘Ex’ = Example Application; ‘Effe’ = Effectiveness Measures; ‘Effi’ =
Efficiency Measures) and Evidence Level (‘Abs’ = Abstract; ‘Exec’ = Executable),
where ‘+’ represents a combination of evidence levels

205

A. A Taxonomy and Systematic Classification for Model-Based Security Testing

Prot Pre Prod Ex Effe Effi Abs Exec Abs+Exec

SecP 27 3 1 25 5 5 17 5 9

V 17 0 2 13 9 4 4 11 4

FSecM 56 3 6 49 19 13 24 24 16

T 10 1 1 11 3 3 5 4 3

A 21 2 5 25 4 2 10 10 8

Sum 131 9 15 123 40 27 60 54 40

Table A.4.: Number of Publications per Type of Security Model (‘SecP’ = Security Proper-
ties; ‘V’= Vulnerabilities; ‘FSecM’ = Functionality of Security Mechanisms; ‘T’
= Threat Model; ‘A’ = Attack Model) Reporting Evidence per Maturity of Evalu-
ated System (‘Prot’ = Prototype; ‘Pre’ = Premature System; ‘Prod’ = Productive
System), Evidence Measures (‘Ex’ = Example Application; ‘Effe’ = Effectiveness
Measures; ‘Effi’ = Efficiency Measures) and Evidence Level (‘Abs’ = Abstract;
‘Exec’ = Executable), where ‘+’ represents a combination of evidence levels

application (e.g., fuzz testing [112]). Therefore, future research should contribute to
a better understanding which kind of coverage criteria target an effective and efficient
security testing in the context of MBST.

c) Feasibility and ROI of Model-Based Testing. The literature only provides rough cal-
culations about the ROI of model based testing [113, 160]. This origins from the
fact that the ROI in this context has first not been sufficiently understood so far, and
second, is very hard to measure. This corresponds with the observation made in the
paragraph ‘Evidence Reported in MBST Publications per Maturity of Evaluated Sys-
tem’ in Appendix A.4, that efficiency evaluation is rarely considered in publications.
In the context of re-usability, building and managing models is more beneficial than
building and managing test suites directly. This benefit has a practical price:

• Finding the correct abstraction level.

• Modeling knowledge.

• Efficiency of test case generation out of models.

• Debugging help for models.

• Synchronization of models with source code of applications.

• Embedding the modeling activities into the overall software development pro-
cess.

• Developing models must be cost efficient. Otherwise, the models will never exist.
This holds for MBT and MBST.

• More generally, since both MBT and MBST require models, all concerns for MBT
are also valid concerns for MBST.

206

A.6. Conclusion

Finally, future research has to address the issue which kind of models are beneficial
for MBST. In particular, it has to elaborate whether general security models can be
build that can be re-used in different contexts.

A.6. Conclusion

In the first part of this Ph.D thesis, a taxonomy for MBST and a classification of systemat-
ically collected state of the art MBST publications was conducted. The taxonomy is based
on a comprehensive analysis of existing classification schemes for both MBT and security
testing. The extension that this taxonomy provides is in terms of two main categories —
filter criteria and evidence criteria. Filter criteria capture the idea how test cases are selected
— either by different types of security model and/or explicit test selection criteria. They
define a finite subset of all the traces of a SUV that are interesting in the context of security
testing. Evidence criteria capture the idea how the proposed security testing approach is
evaluated in terms of the maturity of the evaluated system, the used evidence measures,
and the evidence level. Using a systematic search in five digital libraries, we finally collected
119 MBST relevant papers and classified them according to our proposed taxonomy. The
classification provides a state of the art overview of MBST approaches between 1996 and
2013. Finally, we highlighted some interesting observations based on our classification and
discussed potential future research directions. Since MBST is an active research domain,
our taxonomy and classification helps to clarify key issues in this domain.

207

B. MBST Classification

B.1. Abbreviations for Filter and Evidence Criteria

Abbreviation Meaning

Model of System Security MSSec

SecP Security Properties

V Vulnerabilities

FsecM Functionality of Security Mechanisms

n.s. not specified

Security Model of Environment SecME

A Attack Model

T Threat Model

n.s. not specified

Test Selection Criteria TSC

SC Structural Coverage

DC Data Coverage

RC Requirements Coverage

TCS Explicit Test Case Specifications

RS Random and Stochastic

FB Fault-Based

AB Assessment-Based

RB Relationship-Based

n.s. not specified

Table B.1.: Abbreviations for Filter Criteria

B.2. MBST Classification

Table B.3 shows the result of the classification as described in Appendix A. The table is
sorted by author names and applying the abbreviations from Table B.1 and Table B.2 of
Appendix B.1.

209

B. MBST Classification

Abbreviation Meaning

Maturity of Evaluated System MES

Prot Prototype

Pre Premature System

Prod Productive System

n.s. not specified

Evidence Measures EM

Ex Example Application

Effe Effectiveness Measures

Effi Efficiency Measures

n.s. not specified

Evidence Level EL

Abs Abstract

Exec Executable

n.s. not specified

Table B.2.: Abbreviations for Evidence Criteria

Filter Criteria Evidence Criteria

Paper MSSec SecME TSC MES EM EL

Abassi and Fatmi [50] SecP+FSecM n.s. TCS Prot Ex Abs

Abbassi and El Fatmi [51] SecP n.s. TCS Prot Ex Abs

Al-Azzani and Bahsoon [52] n.s. A TCS Prot Ex Abs

Al-Shaer et al. [53] FSecM n.s. RS Prot Effe+Effi Abs+Exec

Allen et al. [54] V n.s. SC Prot Ex+Effe Exec

Antunes and Neves [58] FSecM n.s. RS Prot Ex Abs+Exec

Armando et al. [60] SecP+FSecM n.s. SC Pre Effe Exec

Bartel et al. [63] V n.s. AB Prot Ex Abs+Exec

Belhaouari et al. [65] FSecM n.s. SC+DC+RS Prot Ex+Effi Exec

Bertolino et al. [67] FSecM n.s. DC Prot Effe+Effi Exec

Bertolino et al. [68] FSecM T FB Prot Ex+Effe+Effi Abs+Exec

Beyer et al. [69] SecP n.s. SC Prot Effe+Effi Abs+Exec

Blome et al. [70] n.s. A TCS Prot Ex Exec

Bortolozzo et al. [71] FSecM n.s. FB Prod Effe Exec

Botella et al. [72] FSecM n.s. SC+RC Prot Ex+Effi Abs+Exec

Bozic and Wotawa [74] n.s. A SC Prot Ex Exec

Bracher and Krishnan [75] SecP n.s. RC+TCS Prot Ex Abs

210

B.2. MBST Classification

Brucker et al. [79] FSecM n.s. SC+DC Prot Effi Abs

Brucker and Wolff [77] FSecM n.s. SC+DC Prot Effi Abs

Brucker et al. [78] FSecM n.s. SC+DC Prod Ex Abs

Brucker et al. [80] FSecM n.s. SC+DC Prot Ex Abs

Büchler et al. [82] SecP n.s. FB Prot Ex Abs

Büchler et al. [83] SecP n.s. FB Prot Ex+Effe+Effi Abs+Exec

Chen et al. [84] SecP+FSecM n.s. SC Prot Ex Abs+Exec

Dadeau et al. [86] FSecM n.s. FB Prot Ex Abs+Exec

Darmaillacq et al. [87] FSecM n.s. SC Prot Ex Abs

Darmaillacq et al. [88] FSecM n.s. TCS Prot Ex Abs+Exec

El Kateb et al. [96] SecP+FSecM n.s. TCS Prot Ex Abs+Exec

El Maarabani et al. [97] FSecM n.s. SC Prot Ex Exec

Elrakaiby et al. [98] FSecM n.s. FB Prot Ex+Effe n.s.

Falcone et al. [99] FSecM n.s. SC Prot Ex Exec

Faniyi et al. [100] n.s. A TCS Prot Ex Abs

Felderer et al. [103] SecP n.s. SC+RB Prot Ex Abs

Fourneret et al. [105] SecP+FSecM n.s. SC Prot Ex Abs

Gilliam et al. [110] SecP+V n.s. n.s. Prot Ex Abs

Hanna et al. [116] SecP n.s. SC Prot Ex Abs

Hanna et al. [117] V n.s. FB+DC Prot Effi Exec

He et al. [119] n.s. A+T SC Prot Ex Abs

Yu et al. [238] FSecM n.s. SC Prot Ex Abs

Hsu et al. [123] FSecM T SC+DC Prot Ex Abs+Exec

Hu and Ahn [124] SecP+FSecM n.s. TCS Prot Ex Abs

Hu et al. [125] FSecM n.s. SC Prot Ex Abs

Hu et al. [126] SecP+FSecM n.s. SC Prot Ex Abs+Exec

Huang and Wen [127] n.s. A SC n.s. n.s. n.s.

Hwang et al. [128] FSecM n.s. SC+RS Prot Effe+Effi Exec

Hwang et al. [129] SecP n.s. SC Prot Ex Abs+Exec

Hwang et al. [130] FSecM n.s. SC+Random Prot Effe+Effi Exec

Julliand et al. [135] SecP+FSecM n.s. TCS Prot Ex Abs

Julliand et al. [136] FSecM n.s. SC+DC Prod Effe Abs

Jürjens [137] SecP T SC+RC Prot Ex Abs

Jurjens and Wimmel [138] FSecM T RC Prot Ex Abs

Jürjens and Wimmel [139] FSecM n.s. TCS Prot Ex Abs

Kam and Dean [140] n.s. A FB Pre Effe Exec

Le Traon et al. [143] V+FSecM n.s. SC+FB Prot Effe Exec

Traon et al. [206] V+FSecM n.s. SC+FB Prot Ex+Effe Exec

Lebeau et al. [144] FSecM n.s. SC+RC Prot Ex Abs

Li et al. [145] FSecM n.s. SC Prot Ex Abs

Mallouli and Cavalli [148] SecP n.s. TCS Prot Effe Abs

211

B. MBST Classification

Mallouli et al. [149] SecP n.s. FB Prot Effe+Effi Exec

Mallouli et al. [150] SecP n.s. FB Prot Effe+Effi Exec

Mammar et al. [151] SecP n.s. SC+RC Prot Ex Exec

Marback et al. [153] n.s. T SC+DC Prod Ex+Effe Exec

Martin and Xie [154] V+FSecM n.s. SC Prot Effe+Effi Exec

Martin et al. [155] SecP+FSecM n.s. FB Prot Ex+Effe+Effi Abs

Masood et al. [156] FSecM A SC Prot Effe+Effi Abs+Exec

Masson et al. [157] SecP+V n.s. TCS Prot Ex Abs

Morais et al. [162] n.s. A SC Prot Ex Abs+Exec

Morais et al. [163] n.s. A+T SC Prot Ex+Effi Exec

Mouelhi et al. [164] V+FSecM n.s. FB Prot Ex Exec

Mouelhi et al. [165] FSecM n.s. FB Prot Ex Exec

Mouelhi et al. [166] V+FSecM n.s. SC+FB Prot Effe Exec

Mouelhi et al. [167] V+FSecM n.s. RB Prot Ex+Effe Exec

Nguyen et al. [169] V+FSecM n.s. FB Prot Ex Exec

Noseevich and Petukhov [170] SecP n.s. SC Prot Ex Abs+Exec

Pari-Salas and Krishnan [171] FSecM n.s. SC Prot Ex Abs

Pretschner et al. [176] FSecM n.s. DC Prot Ex+Effe Exec

Rekhis et al. [180] FSecM n.s. TCS Prot Ex Abs

Rosenzweig et al. [181] FSecM n.s. SC Prot Ex Abs

Saidane and Guelfi [182] SecP A+T SC Prot Ex Exec

Salas et al. [183] SecP A TCS Prot Ex Abs

Salva and Zafimiharisoa [184] V+FSecM n.s. RB Prot Ex+Effe+Effi Abs+Exec

Savary et al. [185] V n.s. FB Prod Effe+Effi Abs

Schneider et al. [189] n.s. A FB Prot Ex Exec

Schneider et al. [188] n.s. A SC Prod Ex Abs+Exec

Senn et al. [191] FSecM n.s. SC Prod Ex Exec

Shahriar and Zulkernine [193] n.s. A SC Prod Effe Exec

Shu and Lee [195] SecP n.s. RB Pre Effe Abs+Exec

Shu and Lee [194] SecP A SC Prod Ex Abs

Shu et al. [196] V n.s. SC Prod Effe Exec

Singh et al. [197] SecP n.s. RS Prot Ex Abs

Stepien et al. [201] n.s. A RB Prot Ex Abs+Exec

Tang et al. [204] V n.s. RS Prot Ex Exec

Traore and Aredo [207] FSecM n.s. RC Prot Ex Exec

Tuglular and Belli [208] V+FSecM n.s. SC Prot Ex Abs+Exec

Tuglular and Gercek [209] FSecM n.s. SC Prot Ex Abs+Exec

Tuglular and Gercek [210] FSecM n.s. SC Prod Effe Exec

Tuglular et al. [211] FSecM n.s. SC Prot Ex Exec

Turcotte et al. [212] V n.s. FB Prot Ex Abs+Exec

Wang et al. [219] n.s. A+T SC+TCS Prot Ex Abs

212

B.2. MBST Classification

Wang et al. [220] FSecM n.s. SC Prot Ex+Effe Exec

Weber et al. [221] FSecM n.s. SC Prot Ex+Effe Abs

Wei et al. [222] n.s. A SC Prot Ex Abs+Exec

Whittle et al. [225] n.s. A SC Prot Ex Abs

Wimmel and Jürjens [227] V A+T FB Prot Ex Abs

Xu et al. [232] FSecM n.s. SC Prot Ex+Effe Abs+Exec

Xu et al. [231] n.s. T SC Prot Effe Exec

Xu et al. [230] FSecM n.s. SC Prot Effe Exec

Yan and Dan [233] FSecM n.s. SC Prot Ex Abs

Yan et al. [234] FSecM n.s. TCS Prot Ex Abs

Yang et al. [236] FSecM n.s. TCS Pre Ex Abs

Yang et al. [237] n.s. A DC Prot Ex Exec

Yang et al. [235] n.s. A SC Prod Ex+Effe Exec

Yu et al. [239] FSecM n.s. DC Prod Effe Exec

Zech [241] n.s. A SC+AB Prot Ex Abs+Exec

Zech et al. [243] n.s. A AB Prot Ex Abs+Exec

Zech et al. [242] n.s. A SC+AB Prot Ex Abs

Zhang et al. [244] n.s. A FB Prot Ex Exec

Zhou et al. [245] SecP+FSecM A+T FB Pre Ex Abs+Exec

Zulkernine et al. [246] n.s. A TCS Prod Ex Abs

Table B.3.: Classification of Selected Model-Based Security Testing Publications

213

C. Syntax Definitions

C.1. Grammar Web Application Abstract Language (WAAL)
Mapping

Listing C.1: WAAL Mapping Grammar
1 grammar spacite.Waalmapping with org.eclipse.xtext.common.Terminals
2

3 generate waalmapping "http://www.Waalmapping.spacite"
4

5 WaalmappingModel:
6 simulatedAgents=SimulatedAgents
7 agentConfigurations=AgentConfigurationsSection
8 (functions=FunctionSection)?
9 (messagestoactions=MessagesActionSection)?

10 ;
11

12 AgentConfigurationsSection:
13 {AgentConfigurationsSection}
14 name='AGENTS_CONFIGURATIONS' open='{'
15 agents+=Agent*
16 close='}'
17 ;
18

19 Agent:
20 'Agent:' agentName=STRING '{'
21 ('httpBasicAuthentication_Username:' httpBasicUsername=STRING
22 'httpBasicAuthentication_Password:' httpBasicPassword=STRING)?
23 'BrowserIP:' browserIP=STRING 'BrowserPort:' browserPort=INT
24 'Sessions:' sessions=Sessions
25 'Driver:' driver=('REMOTEWEBDRIVER' | 'RC')
26 'Platform:' platform=('ANDROID' | 'ANY' | 'LINUX' | 'MAC' | 'UNIX' |
27 'VISTA' | 'WIN8' | 'WIN8_1' | 'WIDNOWS' | 'XP')
28 'Browser:' browser=('firefox' | 'chrome')
29 'Browser Version:' browserVersion=BrowserVersion
30 ('Init:' '{'
31 initActions+=(AbstractGeneratingAction | AbstractVerifingAction)*
32 '}'
33)?
34 '}'
35 ;
36

37 Sessions:
38 '{' names+=Session (',' names+=Session)* '}'
39 ;
40 Session:
41 '{' names+=EndPoint (',' names+=EndPoint)* '}'
42 ;

215

C. Syntax Definitions

43

44 EndPoint:
45 name=STRING
46 ;
47

48 BrowserVersion:
49 version=('ANY' | STRING)
50 ;
51

52 SimulatedAgents:
53 'SIMULATED_AGENTS' open='{' listOfAgents=ListOfAgents close='}';
54

55 ListOfAgents:
56 agents+=STRING (',' agents+=STRING)*
57 ;
58

59 MessagesActionSection:
60 'MESSAGES_TO_ACTIONS' '{'
61 (Messages2actionsMappings+=Messages2ActionsMapping)+
62 '}'
63 ;
64

65 Messages2ActionsMapping:
66 'Message@Actions' '{'
67 abstractPart=AbstractPart
68 waalPart=WaalPart
69 '}'
70 ;
71

72 AbstractPart:
73 'abstract' '{'
74 abstractMessage=STRING
75 '}'
76 ;
77

78 WaalPart:
79 {WaalPart}
80 'waal(generation)' '{'
81 waalactionsGeneration+=(AbstractGeneratingAction | AbstractVerifingAction)*
82 '}'
83 'waal(verification)' '{'
84 waalactionsVerification+=(AbstractGeneratingAction | AbstractVerifingAction)*
85 '}'
86 ;
87

88 FunctionSection:
89 'MAPPINGS' open='{' (listOfFunctions+=Function)* close='}'
90 ;
91

92 Function:
93 name=ID ':' (valuePair+=ValuePair)+
94 ;
95

96 ValuePair:
97 ('abstract:' input=STRING)? 'concrete:' output=STRING
98 ;

216

C.1. Grammar WAAL Mapping

99

100

101 // WAAL actions:
102

103 AbstractGeneratingAction:
104 'Generate::'
105 'Element:' element=BrowserElement
106 'Action:' action=GA
107 ('Additional action:' additionalAction=AdditionalAction)?
108 ('Postcondition:' postcondition=Postcondition)?
109 ;
110

111 AbstractVerifingAction:
112 'Verify::'
113 'Element:' element=BrowserElement
114 'Condition:' condition=Condition
115 ;
116

117 GA:
118 ClickAction | TypeAction | SelectAction | SwitchTo | GoToURL |
119 WaitForElement | FollowAction | SelectFile
120 ;
121

122 ClickAction:
123 name='Click' (implicit+=ClickActionImplicit)*
124 ;
125

126 ClickActionImplicit:
127 'ImplicitElement:' implicitElement=STRING
128 'ImplicitAttribute:' implicitAttribute=STRING
129 'ImplicitValue:' implicitValue=InputValue
130 ;
131

132 TypeAction:
133 name='Type' value=InputValue ('DefaultValue' defaultValue=STRING)?
134 ;
135

136 SelectAction:
137 name='Select' value=InputValue
138 ;
139

140 SwitchTo:
141 name='SwitchTo'
142 ;
143

144 GoToURL:
145 name='GoToURL' url=STRING
146 ;
147

148 WaitForElement:
149 name='WaitFor'
150 ;
151

152 FollowAction:
153 name='Follow'
154 ;

217

C. Syntax Definitions

155

156 SelectFile:
157 name='SelectFile' value=STRING
158 ;
159

160 AdditionalAction:
161 AcknowledgeAlert | CancelAlert
162 ;
163

164 AcknowledgeAlert:
165 {AcknowledgeAlert}
166 'AcknowledgeAlert'
167 ;
168

169 CancelAlert:
170 {CancelAlert}
171 'Cancel Alert'
172 ;
173

174 Postcondition:
175 'Element:' element=BrowserElement
176 'Condition:' condition=Condition
177 ;
178

179 Condition:
180 IsDisplayed | IsNotDisplayed | IsPresent | IsNotPresent | IsContained |
181 IsNotContained | ValueHasChanged | PageIsLoaded | VerifyMaliciousEffect
182 ;
183

184 IsDisplayed:
185 {IsDisplayed}
186 'ElementIsDisplayed'
187 ;
188

189 IsNotDisplayed:
190 {IsDisplayed}
191 'ElementIsNotDisplayed'
192 ;
193

194 IsPresent:
195 {IsPresent}
196 'ElementIsPresent'
197 ;
198

199 IsNotPresent:
200 {IsNotPresent}
201 'ElementIsNotPresent'
202 ;
203

204 IsContained:
205 'TextIsContained:' value=STRING
206 ;
207

208 IsNotContained:
209 'TextIsNotContained:' value=STRING
210 ;

218

C.1. Grammar WAAL Mapping

211

212 ValueHasChanged:
213 {ValueHasChanged}
214 'ValueHasChanged'
215 ;
216

217 PageIsLoaded:
218 {PageIsLoaded}
219 'PageIsLoaded'
220 ;
221

222 /*
223 * ELEMENTS
224 */
225 BrowserElement:
226 BrowserWindow | WebpageContent | PageElement
227 ;
228

229 BrowserWindow:
230 locator=ByBrowser
231 ;
232

233 WebpageContent:
234 locator=ByWebpageContent
235 ;
236

237 PageElement:
238 PageElementButton | PageElementInputButton | PageElementTextfield |
239 PageElementDropdown | PageElementLink | PageElementSelectableList |
240 Div | Span | PageElementImage | PageElementTextArea | GenericElement
241 ;
242

243 PageElementButton:
244 'Button:' locator=Locator
245 ;
246

247 PageElementInputButton:
248 'InputButton:' locator=Locator
249 ;
250

251 PageElementTextfield:
252 'Textfield:' locator=Locator
253 ;
254

255

256 PageElementDropdown:
257 'Dropdown:' locator=Locator
258 ;
259

260 PageElementLink:
261 'Link:' locator=Locator
262 ;
263

264 PageElementSelectableList:
265 'SelectableList:' locator=Locator
266 ;

219

C. Syntax Definitions

267

268 Div:
269 'DIV:' locator=Locator
270 ;
271

272 Span:
273 'SPAN:' locator=Locator
274 ;
275

276 GenericElement:
277 'GenericElement:' locator=Locator
278 ;
279

280 PageElementImage:
281 'Image:' locator=Locator
282 ;
283

284 PageElementTextArea:
285 'TextArea:' locator=Locator
286 ;
287

288 /*
289 * LOCATOR
290 */
291 Locator:
292 ByID | ByXPath | ByCSS | ByLinkText | ByPartialLinkText | ByName |
293 ByVisibleText | ByAttribute | ByWebpageContent | ByBrowser
294 ;
295

296 ByID:
297 'ByID' '(' arg=STRING ')'
298 ;
299

300 ByXPath:
301 'ByXPath' '(' arg=STRING ')'
302 ;
303

304 ByCSS:
305 'ByCSS' '(' arg=STRING ')'
306 ;
307

308 ByLinkText:
309 'ByLinkText' '(' arg=STRING ')'
310 ;
311

312 ByPartialLinkText:
313 'ByPartialLinkText' '(' arg=STRING ')'
314 ;
315

316 ByVisibleText:
317 'ByVisibleText' '(' arg=STRING ')'
318 ;
319

320 ByName:
321 'ByName' '(' arg=STRING ')'
322 ;

220

C.1. Grammar WAAL Mapping

323

324 ByAttribute:
325 'ByAttribute' '(' 'Attribute:' att=STRING ',' 'Value:' value=STRING ')'
326 ;
327

328 ByWebpageContent:
329 arg = 'WebpageContent'
330 ;
331

332 ByBrowser:
333 arg = 'Browser'
334 ;
335

336 InputValue:
337 Parameter | Injection | StrValue | VariableValue
338 ;
339

340 Parameter:
341 '$' value=INT
342 ;
343

344 Injection:
345 'INJECT' '(' type=Injectiontype (',' position=IntValue)? ')'
346 ;
347

348 StrValue:
349 value=STRING
350 ;
351

352 IntValue:
353 value=INT
354 ;
355

356 VariableValue:
357 value=ID
358 ;
359

360 Injectiontype:
361 type=('value' | 'HTML'| 'JAVASCRIPT' | 'SQL')
362 ;
363

364 VerifyMaliciousEffect:
365 action='VERIFY_MALICIOUS_EFFECT'
366 ;
367

368 terminal SL_COMMENT:
369 '//' !('\n'|'\r')* ('\r'? '\n')?
370 ;

221

D. WAAL Mappings

D.1. WAAL Mapping for WebGoat

Listing D.1: WAAL Mapping for WebGoat W

1 SIMULATED_AGENTS { "tom", "jerry" }
2

3 AGENTS_CONFIGURATIONS {
4 Agent: "tom" {
5 httpBasicAuthentication_Username: ""
6 httpBasicAuthentication_Password: ""
7 BrowserIP: "127.0.0.1"
8 BrowserPort: 4444
9 Sessions: { {"webServer"} } // e.g., { {"user1"}, {"user2"} }

10 Driver: REMOTEWEBDRIVER
11 Platform: LINUX
12 Browser: firefox
13 Browser Version: ANY
14 }
15 Agent: "jerry" {
16 httpBasicAuthentication_Username: ""
17 httpBasicAuthentication_Password: ""
18 BrowserIP: "127.0.0.1"
19 BrowserPort: 4444
20 Sessions: { {"webServer"} } // e.g., { {"user1"}, {"user2"} }
21 Driver: REMOTEWEBDRIVER
22 Platform: LINUX
23 Browser: firefox
24 Browser Version: ANY
25 }
26 }
27

28 MAPPINGS {
29 username:
30 abstract:" tom " concrete:"\"Tom Cat (employee)\""
31 abstract:" jerry " concrete:"\"Jerry Mouse (hr)\""
32

33 pwd:
34 abstract:" tom " concrete:"\"tom\""
35 abstract:" jerry " concrete:"\"jerry\""
36 }
37

38 MESSAGES_TO_ACTIONS {
39

40 Message@Actions {
41 abstract {
42 // profile(username_t, text)

223

D. WAAL Mappings

43 "profile"
44 }
45 waal(generation) {
46 // waal actions to generate the above message
47 }
48 waal(verification) {
49 // waal actions to verify the above message
50 Verify::
51 Element: WebpageContent
52 Condition: TextIsContained: "Credit Card"
53 }
54 }
55 Message@Actions {
56 abstract {
57 // editProf(username_t, text)
58 "editProf"
59 }
60 waal(generation) {
61 // waal actions to generate the above message
62 Generate::
63 Element:InputButton:ByAttribute(Attribute:"value",Value:"EditProfile")
64 Action:Click
65

66 Generate::
67 Element:Textfield:ByName("address1")
68 Action:Type $5 DefaultValue "Default"
69

70 Generate::
71 Element:InputButton:ByAttribute(Attribute:"value",Value:"UpdateProfile")
72 Action:Click
73 }
74 waal(verification) {
75 // waal actions to verify the above message
76 }
77 }
78 Message@Actions {
79 abstract {
80 // deleteProf(username_t)
81 "deleteProf"
82 }
83 waal(generation) {
84 // waal actions to generate the above message
85 }
86 waal(verification) {
87 // waal actions to verify the above message
88 }
89 }
90 Message@Actions {
91 abstract {
92 // viewProf(username_t)
93 "viewProf"
94 }
95 waal(generation) {
96 // waal actions to generate the above message
97 Generate::
98 Element:SelectableList:ByName("employee_id")

224

D.1. WAAL Mapping for WebGoat

99 Action: Select $4
100

101 Generate::
102 Element: InputButton: ByAttribute(Attribute:"value",Value:"ViewProfile")
103 Action:Click
104 }
105 waal(verification) {
106 // waal actions to verify the above message
107 }
108 }
109 Message@Actions {
110 abstract {
111 // login(username_t, password_t)
112 "login"
113 }
114 waal(generation) {
115 // waal actions to generate the above message
116 Generate::
117 Element: Browser
118 Action: GoToURL "http://guest:guest@172.16.1.12/WebGoat/attack"
119

120 Generate::
121 Element: InputButton:
122 ByAttribute(Attribute:"value", Value: "Start WebGoat")
123 Action: Click
124

125 Generate::
126 Element: Link: ByVisibleText ("Cross-Site Scripting (XSS)")
127 Action: Follow
128

129 Generate::
130 Element: Link: ByVisibleText ("Stage 1: Stored XSS")
131 Action: Follow
132

133 Generate::
134 Element: Dropdown: ByName("employee_id")
135 Action: Select $4
136

137 Generate::
138 Element:Textfield:ByName("password")
139 Action:Type $5 DefaultValue "Default"
140

141 Generate::
142 Element:InputButton:ByAttribute(Attribute:"value",Value:"Login")
143 Action:Click
144 }
145 waal(verification) {
146 // waal actions to verify the above message
147 }
148 }
149 Message@Actions {
150 abstract {
151 // retE2L
152 "retE2L"
153 }
154 waal(generation) {

225

D. WAAL Mappings

155 // waal actions to generate the above message
156 Generate::
157 Element:InputButton:ByAttribute(Attribute:"value",Value:"ListStaff")
158 Action:Click
159 }
160 waal(verification) {
161 // waal actions to verify the above message
162 }
163 }
164 Message@Actions {
165 abstract {
166 // listStaff(username_t)
167 "listStaff"
168 }
169 waal(generation) {
170 // waal actions to generate the above message
171 }
172 waal(verification) {
173 // waal actions to verify the above message
174 Verify::
175 Element: WebpageContent
176 Condition: TextIsContained: "Staff Listing Page"
177 }
178 }
179

180 Message@Actions {
181 abstract {
182 // create
183 "VERIFY"
184 }
185 waal(generation) {
186 // waal actions to generate the above message
187 }
188 waal(verification) {
189 // waal actions to verify the above message
190 Verify::
191 Element:Browser
192 Condition:VERIFY_MALICIOUS_EFFECT
193 }
194 }
195 }

226

D.2. WAAL Mapping for Wackopicko

D.2. WAAL Mapping for Wackopicko

Listing D.2: WAAL Mapping for Wackopicko W

1 SIMULATED_AGENTS { "i", "client", "clientDishonest" }
2

3 AGENTS_CONFIGURATIONS {
4

5 Agent: "client" {
6 httpBasicAuthentication_Username: ""
7 httpBasicAuthentication_Password: ""
8 BrowserIP: "127.0.0.1"
9 BrowserPort: 4444

10 Sessions: { {"webServer"} } // e.g., { {"user1"}, {"user2"} }
11 Driver: REMOTEWEBDRIVER
12 Platform: LINUX
13 Browser: firefox
14 Browser Version: ANY
15 }
16

17 Agent: "i" {
18 httpBasicAuthentication_Username: ""
19 httpBasicAuthentication_Password: ""
20 BrowserIP: "127.0.0.1"
21 BrowserPort: 4444
22 Sessions: { {"webServer"} } // e.g., { {"user1"}, {"user2"} }
23 Driver: REMOTEWEBDRIVER
24 Platform: LINUX
25 Browser: firefox
26 Browser Version: ANY
27 }
28 }
29

30 MAPPINGS {
31

32 username_client:
33 abstract: "" concrete: "\"abc\""
34 firstname_client:
35 abstract: "" concrete: "\"abc\""
36 lastname_client:
37 abstract: "" concrete: "\"abc\""
38 password_client:
39 abstract: "" concrete: "\"abc\""
40

41 Username_upload:
42 abstract: " 162 " concrete: "\"abc\""
43 Tag_upload:
44 abstract: " 162 " concrete: "\"tag\""
45 Filename_upload:
46 abstract: " 162 " concrete: "\"test.png\""
47 Title_upload:
48 abstract: " 162 " concrete: "\"title\""
49

50 Username_Server:
51 abstract: " 152 " concrete: "\"abc\""

227

D. WAAL Mappings

52 Lastname_Server:
53 abstract: " 152 " concrete: "\"abc\""
54 }
55

56

57 MESSAGES_TO_ACTIONS {
58

59 Message@Actions {
60 abstract {
61 // welcome(username_t)
62 "welcome"
63 }
64 waal(generation) {
65 // waal actions to generate the above message
66 }
67 waal(verification) {
68 // waal actions to verify the above message
69 Verify::
70 Element: WebpageContent
71 Condition: TextIsContained: "Hello"
72 }
73 }
74 Message@Actions {
75 abstract {
76 // preview(comment_t)
77 "preview"
78 }
79 waal(generation) {
80 // waal actions to generate the above message
81 Generate::
82 Element:TextArea:ByID("comment-box")
83 Action:Type $4 DefaultValue "Default"
84

85 Generate::
86 Element:InputButton:ByAttribute(Attribute:"value",Value:"Preview")
87 Action:Click
88 }
89 waal(verification) {
90 // waal actions to verify the above message
91 }
92 }
93 Message@Actions {
94 abstract {
95 // askForComment(username_t, title_t)
96 "askForComment"
97 }
98 waal(generation) {
99 // waal actions to generate the above message

100 }
101 waal(verification) {
102 // waal actions to verify the above message
103 Verify::
104 Element: WebpageContent
105 Condition: TextIsContained: "Add your comment"
106 }
107 }

228

D.2. WAAL Mapping for Wackopicko

108 Message@Actions {
109 abstract {
110 // recent
111 "recent"
112 }
113 waal(generation) {
114 // waal actions to generate the above message
115 Generate::
116 Element: Link: ByXPath("html/body/div[1]/div[2]/div[1]/ul/li[3]/a/span")
117 Action: Follow
118

119 Generate::
120 Element:Image:ByXPath("(.//img)[1]")
121 Action:Click
122 }
123 waal(verification) {
124 // waal actions to verify the above message
125 }
126 }
127 Message@Actions {
128 abstract {
129 // register(agent, username_t, firstname_t, lastname_t, password_t)
130 "register"
131 }
132 waal(generation) {
133 // waal actions to generate the above message
134 Generate::
135 Element: Browser
136 Action: GoToURL "http://172.16.1.12/WackoPicko/"
137

138 Generate::
139 Element: Link: ByVisibleText ("Create an account")
140 Action: Follow
141

142 Generate::
143 Element:Textfield:ByName("username")
144 Action:Type $5 DefaultValue "Default"
145

146 Generate::
147 Element:Textfield:ByName("firstname")
148 Action:Type $6 DefaultValue "Default"
149

150 Generate::
151 Element:Textfield:ByName("lastname")
152 Action:Type $7 DefaultValue "Default"
153

154 Generate::
155 Element:Textfield:ByName("password")
156 Action:Type $8 DefaultValue "Default"
157

158 Generate::
159 Element:Textfield:ByName("againpass")
160 Action:Type $8 DefaultValue "Default"
161

162 Generate::
163 Element:InputButton:ByAttribute(Attribute:"value",Value:"Create Account!")

229

D. WAAL Mappings

164 Action:Click
165 }
166 waal(verification) {
167 // waal actions to verify the above message
168 }
169 }
170 Message@Actions {
171 abstract {
172 // upload(username_t, tag_t, filename_t, title_t, price_t)
173 "upload"
174 }
175 waal(generation) {
176 // waal actions to generate the above message
177 Generate::
178 Element: Link: ByXPath("html/body/div/div[2]/div[1]/ul/li[2]/a/span")
179 Action: Follow
180

181 Generate::
182 Element:Textfield:ByName("tag")
183 Action:Type $4 DefaultValue "Default"
184

185 Generate::
186 Element:Textfield:ByName("name")
187 Action:Type $5 DefaultValue "Default"
188

189 Generate::
190 Element:Textfield:ByName("title")
191 Action:Type $6 DefaultValue "Default"
192

193 Generate::
194 Element:Textfield:ByName("price")
195 Action:Type $7 DefaultValue "Default"
196

197 Generate::
198 Element:InputButton:ByName("pic")
199 Action:SelectFile "/tmp/test.png"
200

201 Generate::
202 Element:InputButton:ByAttribute(Attribute:"value",Value:"Upload File")
203 Action:Click
204 }
205 waal(verification) {
206 // waal actions to verify the above message
207 }
208 }
209 Message@Actions {
210 abstract {
211 // show_preview(username_t, title_t, comment_t)
212 "show_preview"
213 }
214 waal(generation) {
215 // waal actions to generate the above message
216 }
217 waal(verification) {
218 // waal actions to verify the above message
219 Verify::

230

D.2. WAAL Mapping for Wackopicko

220 Element: WebpageContent
221 Condition: TextIsContained: "A Preview of what your comment"
222 }
223 }
224 Message@Actions {
225 abstract {
226 // recent_response(username_t, tag_t, filename_t, title_t, comment_t)
227 "recent_response"
228 }
229 waal(generation) {
230 // waal actions to generate the above message
231 }
232 waal(verification) {
233 // waal actions to verify the above message
234 Verify::
235 Element: WebpageContent
236 Condition: TextIsContained: "Recently uploaded pictures"
237

238 }
239 }
240 Message@Actions {
241 abstract {
242 // similarName
243 "similarName"
244 }
245 waal(generation) {
246 // waal actions to generate the above message
247 Generate::
248 Element: Link: ByXPath("html/body/div[1]/div[4]/ul/li[1]/a")
249 Action: Follow
250 }
251 waal(verification) {
252 // waal actions to verify the above message
253 }
254 }
255 Message@Actions {
256 abstract {
257 // similarName_response(username_t)
258 "similarName_response"
259 }
260 waal(generation) {
261 // waal actions to generate the above message
262 }
263 waal(verification) {
264 // waal actions to verify the above message
265 Verify::
266 Element: WebpageContent
267 Condition: TextIsContained: "Users with similar names to you"
268 }
269 }
270 Message@Actions {
271 abstract {
272 // create
273 "create"
274 }
275 waal(generation) {

231

D. WAAL Mappings

276 // waal actions to generate the above message
277 Generate::
278 Element:InputButton:ByAttribute(Attribute:"value",Value:"Create")
279 Action:Click
280 }
281 waal(verification) {
282 // waal actions to verify the above message
283 }
284

285 }
286 Message@Actions {
287 abstract {
288 // create
289 "VERIFY"
290 }
291 waal(generation) {
292 // waal actions to generate the above message
293 }
294 waal(verification) {
295 // waal actions to verify the above message
296 Verify::
297 Element:Browser
298 Condition:VERIFY_MALICIOUS_EFFECT
299 }
300 }
301 }

232

D.3. WAAL Mapping for Bank Application

D.3. WAAL Mapping for Bank Application

Listing D.3: WAAL Mapping for Bank Application W

1 SIMULATED_AGENTS { "i", "webBrowser" }
2

3 AGENTS_CONFIGURATIONS {
4 Agent: "i" {
5 httpBasicAuthentication_Username: ""
6 httpBasicAuthentication_Password: ""
7 BrowserIP: "127.0.0.1"
8 BrowserPort: 4444
9 Sessions: { {"webServer"} } // e.g., { {"user1"}, {"user2"} }

10 Driver: REMOTEWEBDRIVER
11 Platform: LINUX
12 Browser: firefox
13 Browser Version: ANY
14 Init: {
15 Generate::
16 Element: Browser
17 Action: GoToURL "http://172.16.1.21"
18 }
19

20 }
21 Agent: "webBrowser" {
22 httpBasicAuthentication_Username: ""
23 httpBasicAuthentication_Password: ""
24 BrowserIP: "127.0.0.1"
25 BrowserPort: 4444
26 Sessions: { {"webServer"} } // e.g., { {"user1"}, {"user2"} }
27 Driver: REMOTEWEBDRIVER
28 Platform: LINUX
29 Browser: firefox
30 Browser Version: ANY
31 Init: {
32 Generate::
33 Element: Browser
34 Action: GoToURL "http://172.16.1.21"
35 }
36 }
37 }
38

39 MAPPINGS {
40 username1:
41 abstract: "" concrete: "\"matt\""
42 firstname1:
43 abstract: "" concrete: "\"Matt\""
44 lastname1:
45 abstract: "" concrete: "\"buechler\""
46 email1:
47 abstract: "" concrete: "\"buechler@cs.tum.edu\""
48 password1:
49 abstract: "" concrete: "\"12345678\""
50 username_admin:
51 abstract: "" concrete: "\"admin\""

233

D. WAAL Mappings

52 password_admin:
53 abstract: "" concrete: "\"admin\""
54 }
55

56 MESSAGES_TO_ACTIONS {
57

58 Message@Actions {
59 abstract {
60 // ack_activateClient
61 "ack_activateClient"
62 }
63 waal(generation) {
64 // waal actions to generate the above message
65 }
66 waal(verification) {
67 // waal actions to verify the above message
68 Verify::
69 Element: WebpageContent
70 Condition: TextIsContained: "Activate Clients"
71 }
72 }
73 Message@Actions {
74 abstract {
75 // ack_login(firstname_t, lastname_t, email_t)
76 "ack_login"
77 }
78 waal(generation) {
79 // waal actions to generate the above message
80 }
81 waal(verification) {
82 // waal actions to verify the above message
83 Verify::
84 Element: WebpageContent
85 Condition: TextIsContained: "Overview"
86 }
87 }
88 Message@Actions {
89 abstract {
90 // loginClient(username_t, password_t)
91 "loginClient"
92 }
93 waal(generation) {
94 // waal actions to generate the above message
95 Generate::
96 Element: Textfield:
97 ByXPath("html/body/section[1]/form/table/tbody/tr[1]/td[2]/input")
98 Action: Type $4 DefaultValue "defaultValue"
99

100 Generate::
101 Element: Textfield:
102 ByXPath("html/body/section[1]/form/table/tbody/tr[2]/td[2]/input")
103 Action: Type $5 DefaultValue "defaultValue"
104

105 Generate::
106 Element: InputButton: ByAttribute(Attribute:"value",Value:"Login")
107 Action: Click

234

D.3. WAAL Mapping for Bank Application

108 }
109 waal(verification) {
110 // waal actions to verify the above message
111 }
112 }
113 Message@Actions {
114 abstract {
115 // activateClient(username_t)
116 "activateClient"
117 }
118 waal(generation) {
119 // waal actions to generate the above message
120 Generate::
121 Element: Button: ByVisibleText("New Clients")
122 Action: Click
123

124 Generate::
125 Element: Button:
126 ByXPath("html/body/section[10]/table/tbody/tr/td[5]/button")
127 Action: Click
128 ImplicitElement: "html/body/section[10]/table/tbody/tr/td[1]"
129 ImplicitAttribute: "innerHTML"
130 ImplicitValue: $4
131 }
132 waal(verification) {
133 // waal actions to verify the above message
134 }
135 }
136 Message@Actions {
137 abstract {
138 // ack_register
139 "ack_register"
140 }
141 waal(generation) {
142 // waal actions to generate the above message
143 }
144 waal(verification) {
145 // waal actions to verify the above message
146 Verify::
147 Element: WebpageContent
148 Condition: TextIsContained: "Login"
149 }
150 }
151 Message@Actions {
152 abstract {
153 // loginAdmin(username_t, password_t)
154 "loginAdmin"
155 }
156 waal(generation) {
157 // waal actions to generate the above message
158 Generate::
159 Element: Textfield:
160 ByXPath("html/body/section[1]/form/table/tbody/tr[1]/td[2]/input")
161 Action: Type $4 DefaultValue "defaultValue"
162

163 Generate::

235

D. WAAL Mappings

164 Element: Textfield:
165 ByXPath("html/body/section[1]/form/table/tbody/tr[2]/td[2]/input")
166 Action: Type $5 DefaultValue "defaultValue"
167

168 Generate::
169 Element: InputButton: ByAttribute(Attribute:"value",Value:"Login")
170 Action: Click
171

172 Generate::
173 Element: Button: ByXPath("html/body/nav/button[6]")
174 Action: Click
175 }
176 waal(verification) {
177 // waal actions to verify the above message
178 }
179 }
180 Message@Actions {
181 abstract {
182 // register(username_t, firstname_t, lastname_t, email_t, password_t)
183 "register"
184 }
185 waal(generation) {
186 // waal actions to generate the above message
187 Generate::
188 Element: Link: ByVisibleText("register")
189 Action: Click
190

191 Generate::
192 Element: Textfield:
193 ByXPath("html/body/section[2]/form/table/tbody/tr[1]/td[2]/input")
194 Action: Type $4 DefaultValue "defaultValue"
195

196 Generate::
197 Element: Textfield:
198 ByXPath("html/body/section[2]/form/table/tbody/tr[2]/td[2]/input")
199 Action: Type $5 DefaultValue "defaultValue"
200

201 Generate::
202 Element: Textfield:
203 ByXPath("html/body/section[2]/form/table/tbody/tr[3]/td[2]/input")
204 Action: Type $6 DefaultValue "defaultValue"
205

206 Generate::
207 Element: Textfield:
208 ByXPath("html/body/section[2]/form/table/tbody/tr[4]/td[2]/input")
209 Action: Type $7 DefaultValue "defaultValue"
210

211 Generate::
212 Element: Textfield:
213 ByXPath("html/body/section[2]/form/table/tbody/tr[5]/td[2]/input")
214 Action: Type $7 DefaultValue "defaultValue"
215

216 Generate::
217 Element: Textfield:
218 ByXPath("html/body/section[2]/form/table/tbody/tr[7]/td[2]/input")
219 Action: Type $8 DefaultValue "defaultValue"

236

D.3. WAAL Mapping for Bank Application

220

221 Generate::
222 Element: Textfield:
223 ByXPath("html/body/section[2]/form/table/tbody/tr[8]/td[2]/input")
224 Action: Type $8 DefaultValue "defaultValue"
225

226 Generate::
227 Element: InputButton:
228 ByAttribute(Attribute:"value",Value:"Register")
229 Action: Click
230 Additional action:AcknowledgeAlert
231 }
232 waal(verification) {
233 // waal actions to verify the above message
234 }
235 }
236 Message@Actions {
237 abstract {
238 // logout
239 "logout"
240 }
241 waal(generation) {
242 // waal actions to generate the above message
243 Generate::
244 Element: Button: ByID("logoutButton")
245 Action: Click
246 }
247 waal(verification) {
248 // waal actions to verify the above message
249 }
250 }
251 Message@Actions {
252 abstract {
253 // listPendingAccounts(username_t, firstname_t, lastname_t, email_t)
254 "listPendingAccounts"
255 }
256 waal(generation) {
257 // waal actions to generate the above message
258 }
259 waal(verification) {
260 // waal actions to verify the above message
261 Verify::
262 Element: Button:
263 ByXPath("html/body/section[10]/table/tbody/tr/td[5]/button")
264 Condition: ElementIsDisplayed
265 }
266 }
267

268 Message@Actions {
269 abstract {
270 // create
271 "VERIFY"
272 }
273 waal(generation) {
274 // waal actions to generate the above message
275 }

237

D. WAAL Mappings

276 waal(verification) {
277 // waal actions to verify the above message
278 Verify::
279 Element:Browser
280 Condition:VERIFY_MALICIOUS_EFFECT
281 }
282 }
283 }

238

E. Makefiles

E.1. Makefile for Selenium Grid Hub

Listing E.1: Makefile for Selenium Grid Hub CL

1 DL=curl --remote-name
2 URL=http://selenium-release.storage.googleapis.com/2.42
3 install:
4 $(DL) $(URL)/selenium-server-standalone-2.42.2.jar
5

6 run:
7 java
8 -jar selenium-server-standalone-2.42.2.jar
9 -role hub

10 -maxSession 50
11 -DPOOL_MAX 512

E.2. Makefile for Selenium Grid Node

Listing E.2: Makefile for Selenium Grid Node CL

1 DL=curl --remote-name
2 URL=http://selenium-release.storage.googleapis.com/2.42
3 install:
4 $(DL) $(URL)/selenium-server-standalone-2.42.2.jar
5

6 register:
7 java
8 -jar selenium-server-standalone-2.42.2.jar
9 -role node

10 -hub http://localhost:4444/grid/register
11 -maxSession=50
12 -browser "maxInstances=50,browserName=firefox"

239

E. Makefiles

List of Acronyms

SUV System Under Validation. .190

AAT Abstract Attack Trace . 197

WAAL Web Application Abstract Language . 215

DSL Domain Specific Language . 184

TEE Test Execution Engine . 165

XSS Cross-site Scripting . 183

SQLI SQL Injection . 62

AST Abstract Syntax Tree . 74

ZAP OWASP Zed Attack Proxy . 116

LTS Labeled Transition System . 191

FSM Finite State Machine. .191

MBT Model-based Testing . 189

MBST Model-based Security Testing . 189

GA Generation Action . 76

VA Verification Action . 76

BA Browser Actions . 87

RA Recovery Actions . 87

DNS Domain Name System. .3

ASLR Address Space Layout Randomization . 8

IDS Intrusion Detection System. 9

CVE Common Vulnerabilities and Exposures . 192

SQL Structured Query Language. .183

AST Abstract Syntax Tree . 74

HLPSL High Level Protocol Specification Language . 95

240

Bibliography

[1] Anantasec: Web vulnerability scanners evaluation (jan-
uary 2009). http://anantasec.blogspot.com/2009/01/
web-vulnerability-scanners-comparison.html. Accessed: 2015-03-
16.

[2] Cert/cc. http://www.cert.org/stats/cert_stats.htm.

[3] Cve-2015-2237. http://www.cvedetails.com/cve/CVE-2015-2237/. Ac-
cessed: 2015-03-28.

[4] Acunetix web vulnerability scanner overview. http://www.acunetix.com/
support/docs/wvs/overview/, . Accessed: 2015-06-29.

[5] Acunetix. https://www.acunetix.com/, . Accessed: 2015-06-22.

[6] Appscan. http://www-03.ibm.com/software/products/de/appscan. Ac-
cessed: 2015-06-22.

[7] Bank aslan++ model. http://models.spacite.matt-buechler.com/
bank.aslanpp.

[8] Betster (php betoffice) authentication bypass and sql injection. http://www.
securityfocus.com/archive/1/archive/1/534816/100/0/threaded, .
Accessed: 2015-03-28.

[9] Betster : online betting for your office. http://betster.sourceforge.net/, .
Accessed: 2015-03-28.

[10] Burp. http://portswigger.net/burp/. Accessed: 2015-06-22.

[11] Cve. http://www.cvedetails.com. Accessed: 2015-03-28.

[12] Grendle-scan. http://sourceforge.net/projects/grendel/. Accessed:
2015-06-22.

[13] Imperva web application attack report, july 2013. http://www.imperva.com/
docs/HII_Web_Application_Attack_Report_Ed4.pdf. Accessed: 2014-
06-04.

[14] Junit. http://junit.org/. Accessed: 2015-05-18.

[15] Milescan. http://www.milescan.com/. Accessed: 2015-06-22.

[16] mysql real escape string. http://php.net/manual/de/function.
mysql-real-escape-string.php. Accessed: 2014-09-08.

241

Bibliography

[17] N-stalker. http://www.nstalker.com/. Accessed: 2015-06-22.

[18] Ntospider. http://www.rapid7.com/products/appspider/. Accessed:
2015-06-22.

[19] Nunit. http://www.nunit.org/. Accessed: 2015-05-18.

[20] Owasp broken web applications project. https://www.owasp.org/index.
php/OWASP_Broken_Web_Applications_Project, . Accessed: 2015-04-08.

[21] Owasp top 10 2013. https://www.owasp.org/index.php/Top_10_
2013-Top_10, . Accessed: 2015-03-12.

[22] Xss filter evasion cheat sheet. https://www.owasp.org/index.php/XSS_
Filter_Evasion_Cheat_Sheet, . Accessed: 2015-05-22.

[23] Cve details - owncloud. http://www.cvedetails.com/product/22262/
Owncloud-Owncloud.html?vendor_id=11929, . Accessed: 2014-07-08.

[24] Owncloud. https://owncloud.org/, . Accessed: 2014-07-08.

[25] Paros. http://sourceforge.net/projects/paros/. Accessed: 2015-06-22.

[26] Seleniumhq browser automation. http://seleniumhq.org, . Accessed: 2014-
07-06.

[27] Selenium element locators. https://selenium.googlecode.com/git/docs/
api/py/selenium/selenium.selenium.html, . Accessed: 2015-05-21.

[28] Selenium webdriver. http://docs.seleniumhq.org/docs/03_webdriver.
jsp, . Accessed: 2014-07-06.

[29] Bypassing chrome’s anti-xss filter. http://blog.securitee.org/?p=37. Ac-
cessed: 2015-04-17.

[30] How to escape special character in mysql. http://stackoverflow.com/
questions/881194/how-to-escape-special-character-in-mysql, .
Accessed: 2014-10-31.

[31] Mysql 5.7 reference manual :: Language structure :: Literal values :: String literals.
http://dev.mysql.com/doc/refman/5.7/en/string-literals.html, .
Accessed: 2014-10-29.

[32] Testng. http://testng.org/doc/index.html. Accessed: 2015-04-06.

[33] Vmware vsphere. http://www.vmware.com/products/vsphere. Accessed:
2015-06-27.

[34] W3af. http://w3af.org/. Accessed: 2015-06-22.

[35] Wackopicko aslan++ model. http://models.spacite.matt-buechler.
com/wackopicko.aslanpp, .

242

Bibliography

[36] Wackopicko: Traces generated by Syntactic Mutation Operators. spacite.
matt-buechler.com, . Accessed: 2015-06-29.

[37] Wackopicko. http://www.aldeid.com/wiki/WackoPicko, . Accessed: 2015-
04-18.

[38] Webgoat aslan++ model. http://models.spacite.matt-buechler.com/
webgoat.aslanpp, .

[39] Category:owasp webgoat project. https://www.owasp.org/index.php/
Category:OWASP_WebGoat_Project, . Accessed: 2015-04-08.

[40] Webinspect. http://resources.infosecinstitute.com/webinspect/, .
Accessed: 2015-06-29.

[41] Webinspect. http://www8.hp.com/de/de/software-solutions/webinspect-dynamic-
analysis-dast/, . Accessed: 2015-06-29.

[42] Website security statistics report, may 2013. https://www.whitehatsec.com/
assets/WPstatsReport_052013.pdf. Accessed: 2014-06-05.

[43] Wordpress.org. https://wordpress.org/. Accessed: 2015-05-21.

[44] Template expressions (xtend). https://eclipse.org/xtend/
documentation/203_xtend_expressions.html#templates. Accessed:
2015-05-21.

[45] Cross-site scripting (xss). https://www.owasp.org/index.php/
Cross-site_Scripting_%28XSS%29, . Accessed: 2015-04-05.

[46] Types of cross-site scripting. https://www.owasp.org/index.php/Types_
of_Cross-Site_Scripting, . Accessed: 2015-04-05.

[47] Xtend. https://eclipse.org/xtend, . Accessed: 2015-05-21.

[48] Xtext - language development made easy. https://eclipse.org/Xtext, . Ac-
cessed: 2015-05-21.

[49] Owasp zed attack proxy. https://www.owasp.org/index.php/ZAP. Accessed:
2014-08-23.

[50] Ryma Abassi and SGE Fatmi. Using security policies in a network securing process.
In Telecommunications (ICT), 2011 18th International Conference on, pages 416–421.
IEEE, 2011.

[51] Ryma Abbassi and Sihem Guemara El Fatmi. Towards a test cases generation method
for security policies. In Telecommunications, 2009. ICT’09. International Conference
on, pages 41–46. IEEE, 2009.

[52] Sarah Al-Azzani and Rami Bahsoon. Using implied scenarios in security testing. In
Proceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems,
pages 15–21. ACM, 2010.

243

Bibliography

[53] Ehab Al-Shaer, Adel El-Atawy, and Taghrid Samak. Automated pseudo-live testing of
firewall configuration enforcement. Selected Areas in Communications, IEEE Journal
on, 27(3):302–314, 2009.

[54] William H Allen, Chin Dou, and Gerald A Marin. A model-based approach to the
security testing of network protocol implementations. In Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, pages 1008–1015. IEEE, 2006.

[55] P. Ammann, W. Ding, and D. Xu. Using a model checker to test safety properties. In
ICECCS, pages 212–221, 2001.

[56] Paul E. Ammann, Paul E. Black, and William Majurski. Using model checking to
generate tests from specifications. In In Proceedings of the Second IEEE International
Conference on Formal Engineering Methods (ICFEM’98, pages 46–54. IEEE Computer
Society, 1998.

[57] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen, Wolf-
gang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. An orches-
trated survey of methodologies for automated software test case generation. Journal
of Systems and Software, 86(8):1978–2001, 2013.

[58] João Antunes and Nuno Fuentecilla Neves. Using behavioral profiles to detect soft-
ware flaws in network servers. In Software Reliability Engineering (ISSRE), 2011 IEEE
22nd International Symposium on, pages 1–10. IEEE, 2011.

[59] Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. Automated
testing for sql injection vulnerabilities: An input mutation approach. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 259–269, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2645-2. doi:
10.1145/2610384.2610403. URL http://doi.acm.org/10.1145/2610384.
2610403.

[60] Alessandro Armando, Giancarlo Pellegrino, Roberto Carbone, Alessio Merlo, and Da-
vide Balzarotti. From model-checking to automated testing of security protocols:
bridging the gap. In TAP’12: Proceedings of the 6th international conference on Tests
and Proofs, pages 3–18, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-
30472-9. doi: 10.1007/978-3-642-30473-6 3. URL http://www.ai-lab.it/
armando/pub/tap2012.pdf.

[61] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D. Ernst. Finding bugs
in web applications using dynamic test generation and explicit-state model checking.
TSE, 36(4):474–494, 2010.

[62] Avantssar. Deliverable D2.3 (update) ASLan++ specification and tuto-
rial. http://www.avantssar.eu/pdf/deliverables/avantssar-d2-3_
update.pdf, 2008.

[63] Alexandre Bartel, Benoit Baudry, Freddy Munoz, Jacques Klein, Tejeddine Mouelhi,
and Yves Le Traon. Model driven mutation applied to adaptative systems testing. In

244

Bibliography

Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on, pages 408–413. IEEE, 2011.

[64] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art: Auto-
mated black-box web application vulnerability testing. In Security and Privacy (SP),
2010 IEEE Symposium on, pages 332–345. IEEE, 2010.

[65] Hakim Belhaouari, Pierre Konopacki, Régine Laleau, and Marc Frappier. A design
by contract approach to verify access control policies. In Engineering of Complex
Computer Systems (ICECCS), 2012 17th International Conference on, pages 263–272.
IEEE, 2012.

[66] E. Bernard, Fabrice Bouquet, A. Charbonnier, Bruno Legeard, Fabien Peureux, Mark
Utting, and E. Torreborre. Model-based testing from UML models. In MBT’2006,
Model-based Testing Workshop, INFORMATIK’06, volume P-94 of LNI, Lecture Notes in
Informatics, pages 223–230, Dresden, Germany, October 2006. ISBN 978-3-88579-
188-1. ISBN 978-3-88579-188-1.

[67] Antonia Bertolino, Said Daoudagh, Francesca Lonetti, and Eda Marchetti. Automatic
xacml requests generation for policy testing. In Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conference on, pages 842–849. IEEE,
2012.

[68] Antonia Bertolino, Said Daoudagh, Francesca Lonetti, Eda Marchetti, Fabio Mar-
tinelli, and Paolo Mori. Testing of polpa authorization systems. In Automation of
Software Test (AST), 2012 7th International Workshop on, pages 8–14. IEEE, 2012.

[69] Dirk Beyer, Adam J Chlipala, Thomas A Henzinger, Ranjit Jhala, and Rupak Majum-
dar. Generating tests from counterexamples. In Proceedings of the 26th International
Conference on Software Engineering, pages 326–335. IEEE Computer Society, 2004.

[70] Abian Blome, Martin Ochoa, Keqin Li, Michele Peroli, and Mohammad Torabi Dashti.
Vera: A flexible model-based vulnerability testing tool. In Software Testing, Veri-
fication and Validation (ICST), 2013 IEEE Sixth International Conference on, pages
471–478. IEEE, 2013.

[71] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham Steel. Attack-
ing and fixing pkcs# 11 security tokens. In Proceedings of the 17th ACM conference
on Computer and communications security, pages 260–269. ACM, 2010.

[72] Julien Botella, Fabrice Bouquet, Jean-Francois Capuron, Franck Lebeau, Bruno Leg-
eard, and Florence Schadle. Model-based testing of cryptographic components–
lessons learned from experience. In Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pages 192–201. IEEE, 2013.

[73] Fabrice Bouquet, Christophe Grandpierre, Bruno Legeard, and Fabien Peureux. A test
generation solution to automate software testing. In AST’08, 3rd Int. workshop on
Automation of Software Test, pages 45–48, Leipzig, Germany, May 2008. ACM Press.
ISBN 978-1-60558-030-2. doi: http://doi.acm.org/10.1145/1370042.1370052.
URL http://doi.acm.org/10.1145/1370042.1370052.

245

Bibliography

[74] Josip Bozic and Franz Wotawa. Xss pattern for attack modeling in testing. In Au-
tomation of Software Test (AST), 2013 8th International Workshop on, pages 71–74.
IEEE, 2013.

[75] Shane Bracher and Padmanabhan Krishnan. Enabling security testing from specifi-
cation to code. In Integrated Formal Methods, pages 150–166. Springer, 2005.

[76] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed
Khalil. Lessons from applying the systematic literature review process within the
software engineering domain. Journal of systems and software, 80(4):571–583, 2007.

[77] Achim D Brucker and Burkhart Wolff. Test-sequence generation with hol-testgen
with an application to firewall testing. In Tests and Proofs, pages 149–168. Springer,
2007.

[78] Achim D Brucker, Lukas Brügger, and Burkhart Wolff. Model-based firewall confor-
mance testing. In Testing of Software and Communicating Systems, pages 103–118.
Springer, 2008.

[79] Achim D Brucker, Lukas Bruügger, Paul Kearney, and Burkhart Wolff. Verified fire-
wall policy transformations for test case generation. In Software Testing, Verification
and Validation (ICST), 2010 Third International Conference on, pages 345–354. IEEE,
2010.

[80] Achim D Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff. An approach
to modular and testable security models of real-world health-care applications. In
Proceedings of the 16th ACM symposium on Access control models and technologies,
pages 133–142. ACM, 2011.

[81] M. Büchler. Security testing with fault-models and properties. In Software Testing,
Verification and Validation (ICST), 2013 IEEE Sixth International Conference on, pages
501–502, March 2013. doi: 10.1109/ICST.2013.74.

[82] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Security mutants for
property-based testing. In Tests and Proofs, pages 69–77. Springer, 2011.

[83] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Semi-automatic secu-
rity testing of web applications from a secure model. In Software Security and Re-
liability (SERE), 2012 IEEE Sixth International Conference on, pages 253–262. IEEE,
2012.

[84] Zhe Chen, Shize Guo, and Damao Fu. A directed fuzzing based on the dynamic
symbolic execution and extended program behavior model. In Proceedings of the
2012 Second International Conference on Instrumentation, Measurement, Computer,
Communication and Control, pages 1641–1644. IEEE Computer Society, 2012.

[85] John A. Clark, Haitao Dan, and Robert M. Hierons. Semantic mutation testing. Sci.
Comput. Program., 78(4):345–363, April 2013. ISSN 0167-6423. doi: 10.1016/
j.scico.2011.03.011. URL http://dx.doi.org/10.1016/j.scico.2011.03.
011.

246

Bibliography

[86] Frédéric Dadeau, P-C Héam, and Rafik Kheddam. Mutation-based test generation
from security protocols in hlpsl. In Software Testing, Verification and Validation
(ICST), 2011 IEEE Fourth International Conference on, pages 240–248. IEEE, 2011.

[87] Vianney Darmaillacq, Jean-Claude Fernandez, Roland Groz, Laurent Mounier, and
Jean-Luc Richier. Test generation for network security rules. In Testing of Communi-
cating Systems, pages 341–356. Springer, 2006.

[88] Vianney Darmaillacq, J Richier, and Roland Groz. Test generation and execution
for security rules in temporal logic. In Software Testing Verification and Validation
Workshop, 2008. ICSTW’08. IEEE International Conference on, pages 252–259. IEEE,
2008.

[89] F S De Boer, M B Bonsangue, A Grüner, and M Steffen. Java test driver genera-
tion from object-oriented interaction traces. Electronic Notes in Theoretical Computer
Science, 243:33–47, 2009.

[90] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Program Mutation: A New Approach
to Program Testing. In Infotech State of the Art Report, Software Testing, pages 107–
126, 1979.

[91] Arilo C Dias-Neto and Guilherme H Travassos. A picture from the model-based test-
ing area: Concepts, techniques, and challenges. Advances in Computers, 80:45–120,
2010.

[92] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners. In Proceedings of the 7th Interna-
tional Conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, DIMVA’10, pages 111–131, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-
642-14214-1, 978-3-642-14214-7. URL http://dl.acm.org/citation.cfm?
id=1884848.1884858.

[93] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security As-
sessment: Identifying and Preventing Software Vulnerabilities. Addison-Wesley Profes-
sional, 2006. ISBN 0321444426.

[94] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. KameleonFuzz:
Evolutionary Fuzzing for Black-Box XSS Detection. In CODASPY, pages 37–48, San
Antonio, Texas, USA, 2014. ACM. doi: 10.1145/2557547.2557550.

[95] A. Dupuy and N. Leveson. An empirical evaluation of the mc/dc coverage crite-
rion on the hete-2 satellite software. In Digital Avionics Systems Conference, 2000.
Proceedings. DASC. The 19th, volume 1, pages 1B6/1–1B6/7 vol.1, 2000.

[96] Donia El Kateb, Yehia El Rakaiby, Tejeddine Mouelhi, and Yves Le Traon. Access
control enforcement testing. In Automation of Software Test (AST), 2013 8th Inter-
national Workshop on, pages 64–70. IEEE, 2013.

[97] Mazen El Maarabani, Iksoon Hwang, and Ana Cavalli. A formal approach for inter-
operability testing of security rules. In Signal-Image Technology and Internet-Based
Systems (SITIS), 2010 Sixth International Conference on, pages 277–284. IEEE, 2010.

247

Bibliography

[98] Yehia Elrakaiby, Tejeddine Mouelhi, and Yves Le Traon. Testing obligation policy
enforcement using mutation analysis. In Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on, pages 673–680. IEEE, 2012.

[99] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. j-post:
a java toolchain for property-oriented software testing. Electronic Notes in Theoretical
Computer Science, 220(1):29–41, 2008.

[100] Funmilade Faniyi, Rami Bahsoon, Andy Evans, and Rick Kazman. Evaluating se-
curity properties of architectures in unpredictable environments: A case for cloud.
In Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on, pages
127–136. IEEE, 2011.

[101] Dan Farmer and Wietse Venema. Improving the security of your site by breaking into
it, 1993.

[102] M. Felderer, B. Agreiter, P. Zech, and R. Breu. A classification for model-based secu-
rity testing. In The Third International Conference on Advances in System Testing and
Validation Lifecycle(VALID 2011), pages 109–114, 2011.

[103] Michael Felderer, Berthold Agreiter, and Ruth Breu. Evolution of security require-
ments tests for service–centric systems. In Engineering Secure Software and Systems,
pages 181–194. Springer, 2011.

[104] Michael Felderer, Philipp Zech, Ruth Breu, Matthias Büchler, and Alexander
Pretschner. Model-based security testing: A taxonomy and systematic classification.
Software Testing, Verification and Reliability, 2015. accepted for publication.

[105] Elizabeta Fourneret, Martin Ochoa, Fabrice Bouquet, Julien Botella, Jan Jurjens, and
Parvaneh Yousefi. Model-based security verification and testing for smart-cards. In
Availability, Reliability and Security (ARES), 2011 Sixth International Conference on,
pages 272–279. IEEE, 2011.

[106] G. Fraser, F. Wotawa, and P. Ammann. Testing with model checkers: a survey. STVR,
19(3):215–261, 2009.

[107] Gordon Fraser and Franz Wotawa. Property relevant software testing with model-
checkers. SIGSOFT Softw. Eng. Notes, 31(6):1–10, November 2006. ISSN 0163-
5948. doi: 10.1145/1218776.1218787. URL http://doi.acm.org/10.1145/
1218776.1218787.

[108] Xiang Fu, Xin Lu, B. Peltsverger, Shijun Chen, Kai Qian, and Lixin Tao. A static anal-
ysis framework for detecting sql injection vulnerabilities. In Computer Software and
Applications Conference, 2007. COMPSAC 2007. 31st Annual International, volume 1,
pages 87–96, July 2007. doi: 10.1109/COMPSAC.2007.43.

[109] M. Gegick and L. Williams. Toward the use of automated static analysis alerts for
early identification of vulnerability- and attack-prone components. In Internet Mon-
itoring and Protection, 2007. ICIMP 2007. Second International Conference on, pages
18–18, July 2007. doi: 10.1109/ICIMP.2007.46.

248

Bibliography

[110] David P Gilliam, John D Powell, John C Kelly, and Matt Bishop. Reducing software
security risk through an integrated approach. In Software Engineering Workshop,
2001. Proceedings. 26th Annual NASA Goddard, pages 36–42. IEEE, 2001.

[111] P. Godefroid, M.Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In NDSS,
2008. 16 pages.

[112] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox fuzzing for
security testing. Queue, 10(1):20:20–20:27, January 2012. ISSN 1542-7730. doi:
10.1145/2090147.2094081. URL http://doi.acm.org/10.1145/2090147.
2094081.

[113] Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor Braberman. Model-
based quality assurance of protocol documentation: tools and methodology. Software
Testing, Verification and Reliability, 21(1):55–71, 2011.

[114] Fanglu Guo, Yang Yu, and Tzi cker Chiueh. Automated and safe vulnerability assess-
ment. In Computer Security Applications Conference, 21st Annual, pages 10 pp.–159,
Dec 2005. doi: 10.1109/CSAC.2005.11.

[115] Walter J. Gutjahr. Partition testing vs. random testing: The influence of uncertainty.
IEEE Trans. Softw. Eng., 25(5):661–674, 1999.

[116] Aiman Hanna, Hai Zhou Ling, Jason Furlong, Zhenrong Yang, and Mourad Debbabi.
Targeting security vulnerabilities: From specification to detection (short paper). In
Quality Software, 2008. QSIC’08. The Eighth International Conference on, pages 97–
102. IEEE, 2008.

[117] Aiman Hanna, Hai Zhou Ling, XiaoChun Yang, and Mourad Debbabi. A synergy
between static and dynamic analysis for the detection of software security vulnera-
bilities. In On the Move to Meaningful Internet Systems: OTM 2009, pages 815–832.
Springer, 2009.

[118] Alan Hartman, Mika Katara, and Sergey Olvovsky. Choosing a test modeling lan-
guage: A survey. In Hardware and Software, Verification and Testing, pages 204–218.
Springer, 2007.

[119] Ke He, Zhiyong Feng, and Xiaohong Li. An attack scenario based approach for soft-
ware security testing at design stage. In Computer Science and Computational Tech-
nology, 2008. ISCSCT’08. International Symposium on, volume 1, pages 782–787.
IEEE, 2008.

[120] M.P.E. Heimdahl, M.W. Whalen, A. Rajan, and M. Staats. On mc/dc and implemen-
tation structure: An empirical study. In Digital Avionics Systems Conference, 2008.
DASC 2008. IEEE/AIAA 27th, pages 5.B.3–1–5.B.3–13, 2008.

[121] Robert M Hierons, Kirill Bogdanov, Jonathan P Bowen, Rance Cleaveland, John Der-
rick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause,
et al. Using formal specifications to support testing. ACM Computing Surveys (CSUR),
41(2):9, 2009.

249

Bibliography

[122] Dominik Holling, Alexander Pretschner, and Matthias Gemmar. 8cage: lightweight
fault-based test generation for simulink. In ASE’14, pages 859–862, 2014.

[123] Yating Hsu, Guoqiang Shu, and David Lee. A model-based approach to security flaw
detection of network protocol implementations. In Network Protocols, 2008. ICNP
2008. IEEE International Conference on, pages 114–123. IEEE, 2008.

[124] Hongxin Hu and GailJoon Ahn. Enabling verification and conformance testing for
access control model. In Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies, SACMAT ’08, pages 195–204, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-129-3. doi: 10.1145/1377836.1377867. URL http:
//doi.acm.org/10.1145/1377836.1377867.

[125] Vincent C Hu, Evan Martin, JeeHyun Hwang, and Tao Xie. Conformance checking
of access control policies specified in xacml. In Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, volume 2, pages 275–
280. IEEE, 2007.

[126] Vincent C Hu, D Richard Kuhn, and Tao Xie. Property verification for generic access
control models. In Embedded and Ubiquitous Computing, 2008. EUC’08. IEEE/IFIP
International Conference on, volume 2, pages 243–250. IEEE, 2008.

[127] Bo Huang and Qiaoyan Wen. An automatic fuzz testing method designed for de-
tecting vulnerabilities on all protocol. In Computer Science and Network Technology
(ICCSNT), 2011 International Conference on, volume 2, pages 639–642. IEEE, 2011.

[128] JeeHyun Hwang, Tao Xie, Fei Chen, and Alex X Liu. Systematic structural testing of
firewall policies. In Reliable Distributed Systems, 2008. SRDS’08. IEEE Symposium on,
pages 105–114. IEEE, 2008.

[129] JeeHyun Hwang, Tao Xie, Vincent Hu, and Mine Altunay. Acpt: A tool for modeling
and verifying access control policies. In Policies for Distributed Systems and Networks
(POLICY), 2010 IEEE International Symposium on, pages 40–43. IEEE, 2010.

[130] JeeHyun Hwang, Tao Xie, Fei Chen, and Alex X Liu. Systematic structural testing of
firewall policies. Network and Service Management, IEEE Transactions on, 9(1):1–11,
2012.

[131] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-
1990, December 1990.

[132] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test
suite effectiveness. In ICSE, pages 435–445, 2014.

[133] ISO/IEC. ISO/IEC 27005:2011 Information technology – Security techniques – Infor-
mation security risk management, 2011.

[134] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. TSE, 37(5):649–678, 2011.

250

Bibliography

[135] Jacques Julliand, Pierre-Alain Masson, and Regis Tissot. Generating security tests
in addition to functional tests. In Proceedings of the 3rd international workshop on
Automation of software test, pages 41–44. ACM, 2008.

[136] Jacques Julliand, Pierre-Alain Masson, Régis Tissot, and Pierre-Christophe Bué. Gen-
erating tests from b specifications and dynamic selection criteria. Formal aspects of
computing, 23(1):3–19, 2011.

[137] Jan Jürjens. Model-based security testing using umlsec: A case study. Electronic
Notes in Theoretical Computer Science, 220(1):93–104, 2008.

[138] Jan Jurjens and Guido Wimmel. Formally testing fail-safety of electronic purse proto-
cols. In Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th Annual
International Conference on, pages 408–411. IEEE, 2001.

[139] Jan Jürjens and Guido Wimmel. Specification-based testing of firewalls. In Perspec-
tives of System Informatics, pages 308–316. Springer, 2001.

[140] Ben WY Kam and Thomas R Dean. Linguistic security testing for text communica-
tion protocols. In Testing–Practice and Research Techniques, pages 104–117. Springer,
2010.

[141] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. Automatic
creation of sql injection and cross-site scripting attacks. In ICSE, pages 199–209,
2009.

[142] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele
University, 33:2004, 2004.

[143] Yves Le Traon, Tejeddine Mouelhi, Franck Fleurey, and Benoit Baudry. Language-
specific vs. language-independent approaches: embedding semantics on a meta-
model for testing and verifying access control policies. In Software Testing, Verifi-
cation, and Validation Workshops (ICSTW), 2010 Third International Conference on,
pages 72–79. IEEE, 2010.

[144] Franck Lebeau, Bruno Legeard, Fabien Peureux, and Alexandre Vernotte. Model-
based vulnerability testing for web applications. In SECTEST’13, 4-th Int. Work-
shop on Security Testing. In conjunction with ICST’13, 6-th IEEE Int. Conf. on Soft-
ware Testing, Verification and Validation, pages 445–452, Luxembourg, Luxembourg,
March 2013. IEEE Computer Society Press. doi: 10.1109/ICSTW.2013.58. URL
http://dx.doi.org/10.1109/ICSTW.2013.58.

[145] Keqin Li, Laurent Mounier, and Roland Groz. Test generation from security policies
specified in or-bac. In Computer Software and Applications Conference, 2007. COMP-
SAC 2007. 31st Annual International, volume 2, pages 255–260. IEEE, 2007.

[146] Mass Soldal Lund, Bjornar Solhaug, and Ketil Stølen. Model-driven risk analysis: the
CORAS approach. Springer, 2011.

[147] Y.K. Malaiya, M.N. Li, J.M. Bieman, and R. Karcich. Software reliability growth with
test coverage. Reliability, IEEE Transactions on, 51(4):420–426, 2002.

251

Bibliography

[148] Wissam Mallouli and Ana Cavalli. Testing security rules with decomposable activi-
ties. In High Assurance Systems Engineering Symposium, 2007. HASE’07. 10th IEEE,
pages 149–155. IEEE, 2007.

[149] Wissam Mallouli, Mounir Lallali, Gerardo Morales, and Ana R Cavalli. Modeling and
testing secure web-based systems: Application to an industrial case study. In Sig-
nal Image Technology and Internet Based Systems, 2008. SITIS’08. IEEE International
Conference on, pages 128–136. IEEE, 2008.

[150] Wissam Mallouli, Amel Mammar, and Ana Cavalli. A formal framework to integrate
timed security rules within a tefsm-based system specification. In Software Engineer-
ing Conference, 2009. APSEC’09. Asia-Pacific, pages 489–496. IEEE, 2009.

[151] Amel Mammar, Wissam Mallouli, and Ana Cavalli. A systematic approach to inte-
grate common timed security rules within a tefsm-based system specification. Infor-
mation and Software Technology, 54(1):87–98, 2012.

[152] Aaron Marback, Hyunsook Do, Ke He, Samuel Kondamarri, and Dianxiang Xu. Se-
curity test generation using threat trees. In Dimitris Dranidis, Stephen P. Masticola,
and Paul A. Strooper, editors, AST, pages 62–69. IEEE, 2009. ISBN 978-1-4244-
3711-5. URL http://dblp.uni-trier.de/db/conf/icse/ast2009.html#
MarbackDHKX09.

[153] Aaron Marback, Hyunsook Do, Ke He, Samuel Kondamarri, and Dianxiang Xu. A
threat model-based approach to security testing. Software: Practice and Experience,
43(2):241–258, 2013.

[154] Evan Martin and Tao Xie. A fault model and mutation testing of access control
policies. In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, pages 667–676, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
654-7. doi: 10.1145/1242572.1242663. URL http://doi.acm.org/10.1145/
1242572.1242663.

[155] Evan Martin, JeeHyun Hwang, Tao Xie, and Vincent Hu. Assessing quality of policy
properties in verification of access control policies. In Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pages 163–172. IEEE, 2008.

[156] Ammar Masood, Arif Ghafoor, and Aditya P Mathur. Conformance testing of tem-
poral role-based access control systems. Dependable and Secure Computing, IEEE
Transactions on, 7(2):144–158, 2010.

[157] Pierre-Alain Masson, Jacques Julliand, Jean-Chritophe Plessis, Eddie Jaffuel, and
Georges Debois. Automatic generation of model based tests for a class of security
properties. In Proceedings of the 3rd international workshop on Advances in model-
based testing, pages 12–22. ACM, 2007.

[158] Gary McGraw. Software security. Security & Privacy, IEEE, 2(2):80–83, 2004.

[159] Gary McGraw. Software Security: Building Security In. Addison-Wesley Professional,
2006. ISBN 0321356705.

252

Bibliography

[160] Michael Mlynarski, Baris Güldali, Gregor Engels, and Stephan Weißleder. Model-
based testing: Achievements and future challenges. Advances in Computers, 86:1–39,
2012.

[161] Audris Mockus, Nachiappan Nagappan, and Trung T. Dinh-Trong. Test coverage
and post-verification defects: A multiple case study. In Proceedings of the 2009 3rd
International Symposium on Empirical Software Engineering and Measurement, ESEM
’09, pages 291–301, Washington, DC, USA, 2009. IEEE.

[162] Anderson Morais, Eliane Martins, Ana Cavalli, and Willy Jimenez. Security protocol
testing using attack trees. In Computational Science and Engineering, 2009. CSE’09.
International Conference on, volume 2, pages 690–697. IEEE, 2009.

[163] Anderson Morais, Ana Cavalli, and Eliane Martins. A model-based attack injection
approach for security validation. In Proceedings of the 4th international conference on
Security of information and networks, pages 103–110. ACM, 2011.

[164] Tejeddine Mouelhi, Yves Le Traon, and Benoit Baudry. Mutation analysis for secu-
rity tests qualification. In Testing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, pages 233–242.
IEEE, 2007.

[165] Tejeddine Mouelhi, Franck Fleurey, and Benoit Baudry. A generic metamodel for
security policies mutation. In Software Testing Verification and Validation Workshop,
2008. ICSTW’08. IEEE International Conference on, pages 278–286. IEEE, 2008.

[166] Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry, and Yves Le Traon. A model-
based framework for security policy specification, deployment and testing. In Model
Driven Engineering Languages and Systems, pages 537–552. Springer, 2008.

[167] Tejeddine Mouelhi, Yves Le Traon, and Benoit Baudry. Transforming and selecting
functional test cases for security policy testing. In Software Testing Verification and
Validation, 2009. ICST’09. International Conference on, pages 171–180. IEEE, 2009.

[168] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
2004. ISBN 0471469122.

[169] Phu H Nguyen, Mike Papadakis, and Iram Rubab. Testing delegation policy enforce-
ment via mutation analysis. In Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on, pages 34–42. IEEE, 2013.

[170] George Noseevich and Andrew Petukhov. Detecting insufficient access control in web
applications. In SysSec Workshop (SysSec), 2011 First, pages 11–18. IEEE, 2011.

[171] Percy A Pari-Salas and Padmanabhan Krishnan. Testing privacy policies using mod-
els. Information Technology papers, 2008.

[172] H. Peine. Security test tools for web applications. Technical Report 048.06, Fraun-
hofer IESE, Jan 2006.

[173] B. Potter and G. McGraw. Software Security Testing. IEEE Security & Privacy, 2004.

253

Bibliography

[174] A. Pretschner. Defect-based testing. In Irlbeck, M., Peled, D., Pretschner, A.: Depend-
able Software Systems Engineering, NATO Science for Peace and Security Series - D:
Information and Communication Security, pages 224–245. IOS Press, 2015. doi:
10.3233/978-1-61499-495-4-224.

[175] A. Pretschner, T. Mouelhi, and Y. Le Traon. Model-based tests for access control
policies. In Software Testing, Verification, and Validation, 2008 1st International Con-
ference on, pages 338–347, April 2008. doi: 10.1109/ICST.2008.44.

[176] Alexander Pretschner, Tejeddine Mouelhi, and Yves Le Traon. Model-based tests for
access control policies. In Software Testing, Verification, and Validation, 2008 1st
International Conference on, pages 338–347. IEEE, 2008.

[177] Alexander Pretschner, Dominik Holling, Robert Eschbach, and Matthias Gem-
mar. A generic fault model for quality assurance. In Ana Moreira, Bernhard
Schätz, Jeff Gray, Antonio Vallecillo, and Peter J. Clarke, editors, MoDELS, volume
8107 of Lecture Notes in Computer Science, pages 87–103. Springer, 2013. ISBN
978-3-642-41532-6. URL http://dblp.uni-trier.de/db/conf/models/
models2013.html#PretschnerHEG13.

[178] Alexander Pretschner, Dominik Holling, Robert Eschbach, and Matthias Gemmar. A
generic fault model for quality assurance. In Proc. ACM/IEEE 16th Intl. Conf. on
Model Driven Engineering Languages and Systems, 2013.

[179] C. R. Ramakrishnan and R. Sekar. Model-based vulnerability analysis of computer
systems. In IN PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON VERI-
FICATION, MODEL CHECKING AND ABSTRACT INTERPRETATION, 1998.

[180] Slim Rekhis, Baha Bennour, and Noureddine Boudriga. Validation of security solu-
tions for communication networks: A policy-based approach. In Network Computing
and Applications (NCA), 2011 10th IEEE International Symposium on, pages 115–122.
IEEE, 2011.

[181] Dean Rosenzweig, Davor Runje, and Wolfram Schulte. Model–based testing of cryp-
tographic protocols. In Trustworthy Global Computing, pages 33–60. Springer, 2005.

[182] Ayda Saidane and Nicolas Guelfi. Towards improving security testability of aadl
architecture models. In Network and System Security (NSS), 2011 5th International
Conference on, pages 353–357. IEEE, 2011.

[183] P.A.P. Salas, P. Krishnan, and K.J. Ross. Model-based security vulnerability testing.
In Software Engineering Conference, 2007. ASWEC 2007. 18th Australian, pages 284–
296, April 2007. doi: 10.1109/ASWEC.2007.31.

[184] Sébastien Salva and Stassia R Zafimiharisoa. Data vulnerability detection by security
testing for android applications. In Information Security for South Africa, 2013, pages
1–8. IEEE, 2013.

[185] Aymerick Savary, Marc Frappier, and Jean-Louis Lanet. Detecting vulnerabilities in
java-card bytecode verifiers using model-based testing. In Integrated Formal Methods,
pages 223–237. Springer, 2013.

254

Bibliography

[186] Ina Schieferdecker. Model-based testing. IEEE Software, 29(1):14–18, 2012.

[187] Ina Schieferdecker, Juergen Grossmann, and Martin Schneider. Model-based security
testing. Proceedings 7th Workshop on Model-Based Testing, 2012.

[188] Martin Schneider, Jurgen Grossmann, Ina Schieferdecker, and Andrej Pietschker. On-
line model-based behavioral fuzzing. In Software Testing, Verification and Validation
Workshops (ICSTW), 2013 IEEE Sixth International Conference on, pages 469–475.
IEEE, 2013.

[189] Martin Schneider, Jürgen Großmann, Nikolay Tcholtchev, Ina Schieferdecker, and
Andrej Pietschker. Behavioral fuzzing operators for UML sequence diagrams. Springer,
2013.

[190] David Scott and Richard Sharp. Abstracting application-level web security. In Pro-
ceedings of the 11th International Conference on World Wide Web, WWW ’02, pages
396–407, New York, NY, USA, 2002. ACM. ISBN 1-58113-449-5. doi: 10.1145/
511446.511498. URL http://doi.acm.org/10.1145/511446.511498.

[191] Diana Senn, David Basin, and Germano Caronni. Firewall conformance testing. In
Testing of Communicating Systems, pages 226–241. Springer, 2005.

[192] Hossain Shahriar and Mohammad Zulkernine. Automatic testing of program secu-
rity vulnerabilities. In Computer Software and Applications Conference, 2009. COMP-
SAC’09. 33rd Annual IEEE International, volume 2, pages 550–555. IEEE, 2009.

[193] Hossain Shahriar and Mohammad Zulkernine. Phishtester: automatic testing of
phishing attacks. In Secure Software Integration and Reliability Improvement (SSIRI),
2010 Fourth International Conference on, pages 198–207. IEEE, 2010.

[194] Guoqiang Shu and David Lee. Message confidentiality testing of security protocols–
passive monitoring and active checking. In Testing of Communicating Systems, pages
357–372. Springer, 2006.

[195] Guoqiang Shu and David Lee. Testing security properties of protocol
implementations-a machine learning based approach. In Distributed Computing Sys-
tems, 2007. ICDCS’07. 27th International Conference on, pages 25–25. IEEE, 2007.

[196] Guoqiang Shu, Yating Hsu, and David Lee. Detecting communication protocol se-
curity flaws by formal fuzz testing and machine learning. In Formal Techniques for
Networked and Distributed Systems–FORTE 2008, pages 299–304. Springer, 2008.

[197] Sankalp Singh, James Lyons, and David M Nicol. Fast model-based penetration
testing. In Proceedings of the 36th conference on Winter simulation, pages 309–317.
Winter Simulation Conference, 2004.

[198] SPaCIoS. Deliverable 2.1.1: Analysis of the relevant concepts used in the case stud-
ies: applicable security concepts, security goals and attack behaviours, 2011.

[199] SPaCIoS. Deliverable 2.1.2: Modeling security-relevant aspects in the IoS, 2012.

255

Bibliography

[200] SPaCIoS. Deliverable 5.5: Final Tool Assessment, 2014.

[201] Bernard Stepien, Liam Peyton, and Pulei Xiong. Using ttcn-3 as a modeling language
for web penetration testing. In Industrial Technology (ICIT), 2012 IEEE International
Conference on, pages 674–681. IEEE, 2012.

[202] L. Suto. Analyzing the effectiveness and coverage of web application security scan-
ners, case study, Oct 2007.

[203] L. Suto. Analyzing the accuracy and time costs of web application security scanners,
Feb 2010.

[204] Wen Tang, Ai-Fen Sui, and W. Schmid. A model guided security vulnerability discov-
ery approach for network protocol implementation. In Communication Technology
(ICCT), 2011 IEEE 13th International Conference on, pages 675–680, Sept 2011. doi:
10.1109/ICCT.2011.6157962.

[205] Gu Tian-yang, Shi Yin-sheng, and Fang You-yuan. Research on software security
testing. World Academy of Science, Engineering and Technology Issure, 69:647–651,
2010.

[206] Yves Le Traon, Tejeddine Mouelhi, and Benoit Baudry. Testing security policies:
going beyond functional testing. In Software Reliability, 2007. ISSRE’07. The 18th
IEEE International Symposium on, pages 93–102. IEEE, 2007.

[207] Issa Traore and Demissie B Aredo. Enhancing structured review with model-based
verification. Software Engineering, IEEE Transactions on, 30(11):736–753, 2004.

[208] Tugkan Tuglular and Fevzi Belli. Protocol-based testing of firewalls. In Formal Meth-
ods (SEEFM), 2009 Fourth South-East European Workshop on, pages 53–59. IEEE,
2009.

[209] Tugkan Tuglular and Gurcan Gercek. Feedback control based test case instantiation
for firewall testing. In Computer Software and Applications Conference Workshops
(COMPSACW), 2010 IEEE 34th Annual, pages 202–207. IEEE, 2010.

[210] Tugkan Tuglular and Gurcan Gercek. Mutation-based evaluation of weighted test
case selection for firewall testing. In Secure Software Integration and Reliability Im-
provement (SSIRI), 2011 Fifth International Conference on, pages 157–164. IEEE,
2011.

[211] Tugkan Tuglular, O Kaya, Can Arda Muftuoglu, and Fevzi Belli. Directed acyclic graph
modeling of security policies for firewall testing. In Secure Software Integration and
Reliability Improvement, 2009. SSIRI 2009. Third IEEE International Conference on,
pages 393–398. IEEE, 2009.

[212] Yves Turcotte, Oded Tal, Scott Knight, and Thomas Dean. Security vulnerabilities
assessment of the x. 509 protocol by syntax-based testing. In Military Communi-
cations Conference, 2004. MILCOM 2004. 2004 IEEE, volume 3, pages 1572–1578.
IEEE, 2004.

256

Bibliography

[213] Mathieu Turuani. The cl-atse protocol analyser. In Frank Pfenning, editor, Term
Rewriting and Applications, volume 4098 of Lecture Notes in Computer Science, pages
277–286. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-36834-2. doi: 10.
1007/11805618 21. URL http://dx.doi.org/10.1007/11805618_21.

[214] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing ap-
proaches. Softw. Test. Verif. Reliab, 22(2):29–312, 2012.

[215] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. ISBN
0123725011.

[216] Alexandre Vernotte, Frédéric Dadeau, Franck Lebeau, Bruno Legeard, Fabien
Peureux, and François Piat. Efficient detection of multi-step cross-site scripting
vulnerabilities. In ICISS’14, 10-th Int. Conf. on Information Systems Security, vol-
ume 8880 of LNCS, pages 358–377, Hyderabad, India, December 2014. Springer.
doi: 10.1007/978-3-319-13841-1 20. URL http://dx.doi.org/10.1007/
978-3-319-13841-1_20.

[217] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F Haasl. Fault
tree handbook. Technical report, DTIC Document, 1981.

[218] David von Oheimb and Sebastian Mödersheim. ASLan++ — a formal security spec-
ification language for distributed systems. In B. Aichernig, F. de Boer, and M. Bon-
sangue, editors, Formal Methods for Components and Objects, FMCO 2010, Graz, Aus-
tria, volume 6957 of LNCS, pages 1–22. Springer, December 2010. ISBN 978-3-642-
25270-9.

[219] Linzhang Wang, Eric Wong, and Dianxiang Xu. A threat model driven approach
for security testing. In Proceedings of the Third International Workshop on Software
Engineering for Secure Systems, page 10. IEEE Computer Society, 2007.

[220] Weiguang Wang, Qingkai Zeng, and Aditya P Mathur. A security assurance frame-
work combining formal verification and security functional testing. In Quality Soft-
ware (QSIC), 2012 12th International Conference on, pages 136–139. IEEE, 2012.

[221] Sam Weber, Amitkumar Paradkar, Suzanne McIntosh, D Toll, Paul A Karger, Matthew
Kaplan, and Elaine R Palmer. The feasibility of automated feedback-directed
specification-based test generation: A case study of a high-assurance operating sys-
tem. In Software Reliability Engineering, 2008. ISSRE 2008. 19th International Sym-
posium on, pages 229–238. IEEE, 2008.

[222] Tian Wei, Yang Ju-Feng, Xu Jing, and Si Guan-Nan. Attack model based penetration
test for sql injection vulnerability. In Computer Software and Applications Conference
Workshops (COMPSACW), 2012 IEEE 36th Annual, pages 589–594. IEEE, 2012.

[223] C. Weissman. Penetration testing. In Marshall D. Abrams, Sushil G. Jajodia, and
H. J. Podell, editors, Information Security: An Integrated Collection of Essays, pages
269–296. IEEE Computer Society Press, Los Alamitos, CA, USA, 1995.

257

Bibliography

[224] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. IEEE
Trans. Softw. Eng., 17(7):703–711, 1991.

[225] Jon Whittle, Duminda Wijesekera, and Mark Hartong. Executable misuse cases for
modeling security concerns. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th
International Conference on, pages 121–130. IEEE, 2008.

[226] A. Wiegenstein, F. Weidemann, M. Schumacher, and S. Schinzel. Web application
vulnerability scanners - a benchmark. Technical report, Virtual Forge GmbH, Oct
2006.

[227] Guido Wimmel and Jan Jürjens. Specification-based test generation for security-
critical systems using mutations. In Formal Methods and Software Engineering, pages
471–482. Springer, 2002.

[228] Daniel Woodraska, Michael Sanford, and Dianxiang Xu. Security mutation testing
of the filezilla ftp server. In Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC ’11, pages 1425–1430, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0113-8. doi: 10.1145/1982185.1982493. URL http://doi.acm.org/
10.1145/1982185.1982493.

[229] Dianxiang Xu and K.E. Nygard. Threat-driven modeling and verification of secure
software using aspect-oriented petri nets. Software Engineering, IEEE Transactions
on, 32(4):265–278, April 2006. ISSN 0098-5589. doi: 10.1109/TSE.2006.40.

[230] Dianxiang Xu, Lijo Thomas, Michael Kent, Tejeddine Mouelhi, and Yves Le Traon. A
model-based approach to automated testing of access control policies. In Proceedings
of the 17th ACM symposium on Access Control Models and Technologies, pages 209–
218. ACM, 2012.

[231] Dianxiang Xu, Manghui Tu, Michael Sanford, Lijo Thomas, Daniel Woodraska, and
Weifeng Xu. Automated security test generation with formal threat models. Depend-
able and Secure Computing, IEEE Transactions on, 9(4):526–540, 2012.

[232] Dianxiang Xu, Michael Sanford, Zhaoliang Liu, Mark Emry, Brad Brockmueller,
Spencer Johnson, and Michael To. Testing access control and obligation policies.
In Computing, Networking and Communications (ICNC), 2013 International Confer-
ence on, pages 540–544. IEEE, 2013.

[233] Chen Yan and Wu Dan. A scenario driven approach for security policy testing based
on model checking. In Information Engineering and Computer Science, 2009. ICIECS
2009. International Conference on, pages 1–4. IEEE, 2009.

[234] Ma Yan, Yan Xuexiong, Zhu Yuefei, and Shao Guoliang. A method of ttcn test case
generation based on tp description. In Computer Science and Engineering, 2009.
WCSE’09. Second International Workshop on, volume 1, pages 255–258. IEEE, 2009.

[235] Dingning Yang, Yuqing Zhang, and Qixu Liu. Blendfuzz: A model-based framework
for fuzz testing programs with grammatical inputs. In Trust, Security and Privacy in
Computing and Communications (TrustCom), 2012 IEEE 11th International Conference
on, pages 1070–1076. IEEE, 2012.

258

Bibliography

[236] Yahui Yang, Yunfei Chen, Min Xia, and Juan Ma. An automated mechanism of secu-
rity test on network protocols. In Information Assurance and Security, 2009. IAS’09.
Fifth International Conference on, volume 1, pages 503–506. IEEE, 2009.

[237] Yang Yang, Huanguo Zhang, Mi Pan, Jian Yang, Fan He, and Zhide Li. A model-
based fuzz framework to the security testing of tcg software stack implementations.
In Multimedia Information Networking and Security, 2009. MINES’09. International
Conference on, volume 1, pages 149–152. IEEE, 2009.

[238] Hong Yu, Huang Song, Hu Bin, and Yao Yi. Using labeled transition system model
in software access control politics testing. In Instrumentation, Measurement, Com-
puter, Communication and Control (IMCCC), 2012 Second International Conference
on, pages 680–683, Dec 2012.

[239] Hong Yu, Liu Xiao-Ming, Huang Song, and Zheng Chang-You. Data oriented soft-
ware security testing. In Proceedings of the 2012 Second International Conference on
Instrumentation, Measurement, Computer, Communication and Control, pages 676–
679. IEEE Computer Society, 2012.

[240] Justyna Zander, Ina Schieferdecker, and Pieter J Mosterman. Model-based testing for
embedded systems, volume 13. CRC Press, 2012.

[241] Philipp Zech. Risk-based security testing in cloud computing environments. In Soft-
ware Testing, Verification and Validation (ICST), 2011 IEEE Fourth International Con-
ference on, pages 411–414. IEEE, 2011.

[242] Philipp Zech, Michael Felderer, and Ruth Breu. Towards a model based security test-
ing approach of cloud computing environments. In Software Security and Reliabil-
ity Companion (SERE-C), 2012 IEEE Sixth International Conference on, pages 47–56.
IEEE, 2012.

[243] Philipp Zech, Michael Felderer, and Ruth Breu. Towards risk–driven security test-
ing of service centric systems. In Quality Software (QSIC), 2012 12th International
Conference on, pages 140–143. IEEE, 2012.

[244] Zhao Zhang, Qiao-Yan Wen, and Wen Tang. An efficient mutation-based fuzz testing
approach for detecting flaws of network protocol. In Computer Science & Service
System (CSSS), 2012 International Conference on, pages 814–817. IEEE, 2012.

[245] Li Zhou, Xia Yin, and Zhiliang Wang. Protocol security testing with spin and ttcn-3.
In Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on, pages 511–519. IEEE, 2011.

[246] Mohammad Zulkernine, Mohammad Feroz Raihan, and Mohammad Gias Uddin. To-
wards model-based automatic testing of attack scenarios. In Computer Safety, Relia-
bility, and Security, pages 229–242. Springer, 2009.

259

