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Abstract

We investigate systems of interacting stochastic differential equations with two kinds of hetero-
geneity: one originating from different weights of the linkages, and one concerning their asymptotic
relevance when the system becomes large. To capture these effects we define a partial mean field sys-
tem, and prove a law of large numbers with explicit bounds on the mean squared error. Furthermore,
a large deviation result is established under reasonable assumptions. The theory will be illustrated
by several examples: on the one hand, we recover the classical results of chaos propagation for homo-
geneous systems, and on the other hand, we demonstrate the validity of our assumptions for quite
general heterogeneous networks including those arising from preferential attachment random graph
models.
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1 Introduction

The application of mean field theory to large systems of stochastic differential equations (SDEs) was
initiated by McKean’s seminal work [26, 27, 28]. In the classical case, an N -dimensional interacting
particle system is governed by SDEs of the form

dXN
i (t) =

1

N − 1

∑
j 6=i

(
XN
j (t)−XN

i (t)
)

dt+ dBi(t), t ∈ R+,

XN
i (0) = Xi(0), i = 1, . . . , N, (1.1)

with independent starting random variables Xi(0) and independent Brownian motions Bi. As the number
of particles increases, the pair dependencies in this coupled system decrease with order 1/N such that a
law of large numbers applies (see Theorem 1.4 of [34]). Defining

dX̄N
i (t) =

1

N − 1

∑
j 6=i

(
E[X̄N

j (t)]− X̄N
i (t)

)
dt+ dBi(t), t ∈ R+,

X̄N
i (0) = Xi(0), i = 1, . . . , N, (1.2)

there exists for every T ∈ R+ a constant C(T ) ∈ R+ independent of N such that

sup
i=1,...,N

E

[
sup
t∈[0,T ]

|XN
i (t)− X̄N

i (t)|2
]1/2

≤ C(T )√
N

. (1.3)

In other words, in a large system, the behaviour of a fixed number of particles evolving according to (1.1)
is well described by the so-called mean field system (1.2), where all stochastic processes are stochastically
independent, a phenomenon that is called propagation of chaos. Thus, mean field theory provides a model
simplification by reducing a many-body problem as in (1.1) to a one-body problem as in (1.2) with explicit
L2-estimates on the occurring error. Moreover, it can be shown that the empirical measure of the particles
satisfies a large deviation principle as N → ∞, see [11, 25]. There exists a huge literature dealing with
this or related topics, and we only mention the review papers [20, 34], where one can also find further
references.

The systems (1.1) and (1.2) describe statistically equal or exchangeable particles: any permutation of
the indices i ∈ {1, . . . , N} leads to a system with the same distribution (cf. [37]). In particle physics such
an assumption is certainly reasonable and underlies many other similar models of mean field type, see
for example the two treatises [35, 36] for numerous examples.

However, when mean field models are considered in applications other than statistical mechanics, the
homogeneity assumption may not be appropriate in all situations. For instance, in [7, 22] the processes
(1.1) are used to model the wealth of trading agents in an economy, who are typically far from being equal
in their trading behaviour (there are “market makers” and others). Similarly, the stochastic Cucker-Smale
model that is considered in [1, 5] describes the “flocking” phenomenon of individuals. Also here it only
seems natural that one or several “leaders” may have a distinguished role, setting them apart from the
remaining system. Moreover, in systemic risk modelling the particles represent financial institutions that
interact with each other through mutual exposures, see [4, 18, 23] for some approaches in this direction.
The different players in the banking sector vary considerably in size and importance, which is obvious
from the fact that some banks were considered too big to fail during the financial crisis of 2007-08.
Further fields of applications where mean field theory is used for interacting particle systems include
genetic algorithms [14], neuron modelling (see [19] and references therein) and epidemics modelling [24].

Partly triggered by the examples in the previous paragraph, this research aims to investigate de-
viations from homogeneous systems to heterogeneous systems. First, we allow for different interaction
rates between pairs (instead of 1/(N − 1) throughout), and second, we permit the subsistence of a core–
periphery structure in the mean field limit, that is, some particles may have a non-vanishing influence
even when the system becomes large. Another restriction we will relax in our analysis concerns the driv-
ing noises of the interacting SDEs: instead of independence we explicitly allow for different degrees of
dependence in the noise terms, even asymptotically. Until now there exists only a very small amount of
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literature that generalizes (1.1) in these directions: in [9, 23, 30, 31] the particles are divided into finitely
many groups within which they are homogeneous (and the number of members in both groups must tend
to infinity for the law of large numbers), and [8, 10], where one major agent exists and propagation of
chaos for the minor agents is considered conditioned on the major one. Other papers that consider general
heterogeneous systems include [13], where the propagation of chaos result is assumed, and [16, 17, 21],
where a law of large numbers for the empirical measure is proved under various conditions. Regarding
the last-mentioned papers, two aspects are worth commenting on. First, assuming that finitely many core
particles do exist in the system, their contribution to the empirical distribution becomes less and less
as N → ∞ although their impact may very well stay high. Thus, in this case the empirical distribution
may fail to describe the behaviour of the system as a whole. Second, whereas for homogeneous systems
the convergence of the empirical measure is equivalent to the existence of a mean field limit in the sense
of (1.3) (see e.g. Proposition 2.2(i) of [34]), this is no longer true for heterogeneous systems. For core
particles the left-hand side of (1.3) need not converge to 0 even if the empirical distribution converges,
say, to a deterministic limit. For example, in the case of [8, 10] with one core particle, an unconditional
propagation of chaos result does not hold for this particle without further assumptions (even if it does
for the periphery particles).

Due to the two aforementioned reasons, we will not work with the empirical distribution in this paper
but state and prove mean field limit theorems for the particles on the process level. In Section 2 we start by
introducing the precise interacting particle model we want to investigate. Then we define a corresponding
partial mean field model, for which we prove a law of large numbers type result (Theorem 3.1) with
explicit convergence rates in Section 3. It generalizes (1.3) by taking into account the different kinds
of heterogeneity due to varying pair interaction rates, a distinction between important/core and less
important/periphery pair relationships, and interdependencies between the driving noise terms.

The main difficulty here is to identify the correct rates that govern the distance between the original
system and the mean field approximation. As we will see, a total of twelve rates is required, each expressing
a connectivity property of the underlying interaction and correlation networks. This is inevitable in
contrast to [8, 10] where the stochastic dependencies among the particles are annihilated simply by
conditioning. In order to elucidate the meaning of each rate, we discuss three exemplary situations in
detail. In Section 3.1, in particular in Example 3.4, we show that in the quasi-homogeneous case all twelve
rates typically boil down to a single rate like in (1.3). In Section 3.2, we explain why the prerequisites
for Theorem 3.1 in the heterogeneous case are essentially sparsity assumptions on the particle network,
which are satisfied for instance if this network is generated from a preferential attachment mechanism,
see Section 3.3. In order to show the last statement, we have to derive the asymptotics of the maximal
in- and out-degrees of directed preferential attachment graphs, see Lemma 3.8. This result may be of
independent interest and generalizes that of [29] for undirected graphs.

The second main result of our paper is a large deviation principle for the difference XN − X̄N , which
is presented in Section 4 as Theorem 4.1. In contrast to homogeneous systems, where such a principle is
proved for the empirical measure (see [11, 25]), we work on the process level again and therefore need to
require the existence of all exponential moments. Furthermore, due to heterogeneity, we do not obtain an
explicit formula for the large deviation rate function, but a variational representation as Fenchel-Legendre
transform. The final Section 5 contains the proofs.

2 The model

Before we introduce the model we analyze in this paper, we list a number of notations that will be
employed throughout the paper.

R+ the set [0,∞) of positive real numbers;
[z] the largest integer smaller or equal to z ∈ R;
N the natural numbers {1, 2, . . .};
A, x the typical notation for a matrix A = (Aij : i, j ∈ N) ∈ RN×N and a vector

x = (xi : i ∈ N)′ ∈ RN, with all binary relations such as ≤, or operations
relying on them such as the absolute value | · | or taking the supremum being
understood componentwise when applied to matrices and vectors;
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(·)′ the transposition operator;
AB,Ax, eA matrix–matrix and matrix–vector multiplication and the matrix exponential,

all defined in analogy to the finite-dimensional case, provided that the involved
series converge;

x.y the entrywise product x.y = (xiyi : i ∈ N)′ for x, y ∈ RN;
|A|∞, |x|∞ |A|∞ := supi∈N

∑
j∈N |Aij | and |x|∞ := supi∈N |xi| for A ∈ RN×N and x ∈ RN;

|A|d |A|d := supi∈N |Aii| for matrices A;
A× the matrix A with all diagonal entries set to 0;
I the identity matrix in RN×N or Rd×d for some d ∈ N;
Lp the space Lp(Ω,F ,P), p ∈ [1,∞], endowed with the topology induced by

‖X‖Lp := E[|X|p]1/p, and to be understood entrywise when applied to matrix-
or vector-valued random variables;

E[X],Var[X] componentwise expectation and variance for random variables in RN×N or RN;
Cov[X,Y ],Cov[X] the matrices whose (ij)-th entry is Cov[Xi, Yj ] and Cov[Xi, Xj ], respectively,

when X and Y are random vectors;
x∗ x∗(t) := sups∈[0,t] |x(s)| for t ∈ R+ and functions x : R+ → R, again considered

entrywise when x takes values in RN×N or RN;
Dd
T , D∞T the space of Rd-valued (resp. RN-valued) functions on [0, T ] whose coordinates

are all càdlàg functions;
CdT , C

∞
T elements of Dd

T and D∞T where each coordinate is a continuous function;
ACdT , AC

∞
T elements of Dd

T and D∞T where each coordinate is an absolutely continuous
function;

DdT , D∞T the σ-field on Dd
T (resp. D∞T ) generated by the evaluation maps πt(x) = x(t),

x ∈ Dd
T (resp. D∞T ), for t ∈ [0, T ];

U, J1 the uniform topology and the Skorokhod topology on Dd
T and D∞T (in the latter

case they are defined via the product of the d-dimensional topologies);
Md
T the space of all (θ1, . . . , θd) where each θi is a signed Borel measure on [0, T ] of

finite total variation |θi|([0, T ])

Given a stochastic basis (Ω,F ,F = (F(t))t∈R+
,P) satisfying the usual hypotheses of completeness and

right-continuity, we investigate a network described by the following interacting particle system (IPS):

dXi(t) =

∞∑
j=1

aij(t)Xj(t) dt+

∞∑
j=1

σij(t)Xj(t−) dLi(t) +

∞∑
j=1

fij(t) dBj(t)

+

∞∑
j=1

ρij(t) dMj(t), t ∈ R+, i ∈ N, (2.1)

subjected to some F(0)-measurable RN-valued initial condition X(0). We will also use the more compact
form

dX(t) = a(t)X(t) dt+ σ(t)X(t−).dL(t) + f(t) dB(t) + ρ(t) dM(t), t ∈ R+, (2.2)

for (2.1). The ingredients satisfy the following conditions:

• The two measurable functions t 7→ a(t) and t 7→ σ(t) are decomposed into a = aC + aP and
σ = σC + σP such that for all T ∈ R+ and i, j ∈ N

A�ij(T ) := sup
t∈[0,T ]

|a�ij(t)| <∞, Σ�ij(T ) := sup
t∈[0,T ]

|σ�ij(t)| <∞, � ∈ {C,P}. (2.3)

We define Aij(T ) := AC
ij(T ) +AP

ij(T ) and Σij(T ) := ΣC
ij(T ) + ΣP

ij(T ).

• L is an RN-valued F-Lévy process (i.e. an F-adapted Lévy process whose increments are independent
of the past σ-fields in F) with finite second moment and mean 0.
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• M is an RN-valued square-integrable martingale on any finite time interval, and B is an RN-valued
predictable process such that each coordinate process is of locally finite variation. We assume that
B and the predictable quadratic variation process 〈M,M〉 have progressively measurable Lebesgue
densities b : Ω× R+ → RN and c : Ω× R+ → RN×N.

• f is the sum of two deterministic measurable functions fC, fP : R+ → RN×N, and ρ the sum of two
predictable processes ρC, ρP : Ω× R+ → RN×N.

Of course, the stochastic integrals behind (2.2) must make sense: each single integral must be well
defined and the infinite sums must converge in an appropriate sense. A sufficient condition for the existence
of the infinite-dimensional integral is the existence of the one-dimensional ones plus the summability of
their L2-norms.

Next, we shall explain the rationale behind the IPS model (2.2) and the specific choices for the involved
processes. By the definition given in (2.1), the processes (Xi : i ∈ N)′ are coupled in two ways in general:
first, they interact internally with each other through a drift term (determined by a) and a volatility
term (determined by σ in conjunction with L); and second, they are exposed to the same external forces
(given by B and M), where f and ρ determine the level of influence these noises have on the particles.
In particular, by tuning the parameters a, σ, f and ρ appropriately, one obtains a large range of possible
dependence structures for the model (2.2).

The question this paper aims to attack is how and to which degree the complexity of the high-
dimensional IPS (2.2) can be reduced. Of course, if all entries of the matrices a, σ, f and ρ are zero or
large, there is no hope in simplifying the model. Therefore, our focus lies on particle networks, where only
a small number of pairs have strong interaction, while the majority of links in the system are relatively
weak. This is implemented in the decomposition of a, σ, f and ρ into a core matrix (superscript C) and
a periphery matrix part (superscript P). It is important to notice that our distinction between core and
periphery is not made on the basis of the particles, but on the linkages between them. This allows for
greater modelling flexibility since it includes multi-tier networks in our analysis.

In the presence of non-negligible pair interactions it is natural to apply the mean field limit only to the
links encoded by the periphery matrices. Therefore, we propose the following partial mean field system
(PMFS) as an approximation to the IPS (2.2):

dX̄(t) =
(
aC(t)X̄(t) + aP(t)E[X̄(t)]

)
dt+

(
σC(t)X̄(t−) + σP(t)E[X̄(t)]

)
.dL(t)

+ fC(t)b(t) dt+ fP(t)E[b(t)] dt+ ρC(t) dM(t), t ∈ R+,

X̄(0) = X(0). (2.4)

Written for each row i ∈ N, this is equivalent to:

dX̄i(t) =

∞∑
j=1

(
aC
ij(t)X̄j(t) + aP

ij(t)E[X̄j(t)]
)

dt+

∞∑
j=1

(
σC
ij(t)X̄j(t−) + σP

ij(t)E[X̄j(t)]
)

dLi(t)

+

∞∑
j=1

(
fC
ij(t)bj(t) + fP

ij(t)E[bj(t)]
)

dt+

∞∑
j=1

ρC
ij(t) dMj(t), t ∈ R+,

X̄i(0) = Xi(0). (2.5)

It is clear that a priori there is no reason for (2.4) to be a good approximation for (2.2). Therefore,
in the next section, we will give precise L2-estimates in terms of the model coefficients for the difference
between the IPS and the PMFS. Moreover, we will determine conditions under which this difference
becomes small such that we can indeed speak of a law of large numbers.
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3 Law of large numbers

The first main result of this paper assesses the distance between the original IPS (2.2) and the PMFS
(2.4). To formulate this we have to introduce some further notation. For T ∈ R+ we define

va(T ) := sup
i∈N

∞∑
j=1

Aij(T ), va,d(T ) := sup
i∈N

AC
ii(T ), vσ(T ) := sup

i∈N

∞∑
j=1

Σij(T ),

vL := sup
i∈N
‖Li(1)‖L2 , vb(T ) := sup

i∈N
sup
t∈[0,T ]

‖bi(t)‖L2 , vX := sup
i∈N
‖Xi(0)‖L2 ,

vf (T ) := sup
i∈N

sup
t∈[0,T ]

∞∑
j=1

(|fC
ij(t)|+ |fP

ij(t)|),

vρ,M (T ) := sup
i∈N

sup
t∈[0,T ]

 ∞∑
j,k=1

∣∣E[ρC
ij(t)ρ

C
ik(t)cjk(t)]

∣∣+
∣∣E[ρP

ij(t)ρ
P
ik(t)cjk(t)]

∣∣1/2

, (3.1)

and introduce the rates

r1(T ) :=
∣∣∣AP(T )|Cov[X(0)]|(AP(T ))′

∣∣∣1/2
d
, r2(T ) :=

∣∣∣ΣP(T )|Cov[X(0)]|(ΣP(T ))′
∣∣∣1/2
d
,

r3(T ) :=
∣∣∣AP(T )|Cov[L(1)]|(AP(T ))′

∣∣∣1/2
d
, r4(T ) :=

∣∣∣ΣP(T )|Cov[L(1)]|(ΣP(T ))′
∣∣∣1/2
d
,

r5(T ) := sup
t∈[0,T ]

∣∣∣fP(t)Cov[b(t)](fP(t))′
∣∣∣1/2
d
, r6(T ) := sup

t∈[0,T ]

∣∣∣E [ρP(t)c(t)(ρP(t))′
] ∣∣∣1/2

d
,

r7(T ) :=
∣∣AP(T )AC(T )×

∣∣
∞, r8(T ) :=

∣∣ΣP(T )AC(T )×
∣∣
∞,

r9(T ) := sup
s,t∈[0,T ]

∣∣∣AP(T )|fC(s)Cov[b(s), b(t)](fC(t))′|(AP(T ))′
∣∣∣1/2
d
,

r10(T ) := sup
s,t∈[0,T ]

∣∣∣ΣP(T )|fC(s)Cov[b(s), b(t)]fC(t))′|(ΣP(T ))′
∣∣∣1/2
d
,

r11(T ) := sup
t∈[0,T ]

∣∣∣AP(T )|E[ρC(t)c(t)(ρC(t))′]|(AP(T ))′
∣∣∣1/2
d
,

r12(T ) := sup
t∈[0,T ]

∣∣∣ΣP(T )|E[ρC(t)c(t)(ρC(t))′]|(ΣP(T ))′
∣∣∣1/2
d
. (3.2)

Theorem 3.1. Fix some T ∈ R+ and grant the general model assumptions as given in Section 2.
Furthermore, assume that each of the numbers in (3.1) is finite. Then (2.2) and (2.4) have a pathwise
unique solution X and X̄, respectively, and there exist constants K(T ) and Kι(T ), ι = 1, . . . , 12, which
depend on the model coefficients only through the numbers in (3.1), such that

sup
i∈N

∥∥(Xi − X̄i)
∗(T )

∥∥
L2 ≤ K(T )

12∑
ι=1

Kι(T )rι(T ). (3.3)

The proof of Theorem 3.1 will be given in Section 5. Compared to the homogeneous case of [34],
we have to take care of several kinds of heterogeneous dependencies in the system: different weights on
the edges, the distinction between core and periphery links, and possibly dependent driving noises. This
explains why we have twelve rates in contrast to a single one in (1.3).

Remark 3.2 Our calculations furnish the following constants in (3.3):

K(T ) :=
√

2 exp((T 1/2va(T ) + 2vσ(T )vL)2T ), (3.4)
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and

K1(T ) := E(T )T, K2(T ) := 2vLE(T )T 1/2,

K3(T ) :=
2

3
E(T )vσ(T )V (T )T 3/2, K4(T ) :=

√
2vLE(T )vσ(T )V (T )T,

K5(T ) := T, K6(T ) := 2T 1/2,

K7(T ) :=
1

2
E(T )V (T )T 2, K8(T ) :=

2√
3
vLE(T )V (T )

K9(T ) :=
1

2
E(T )T 2, K10(T ) :=

2√
3
vLE(T )T 3/2,

K11(T ) :=
2

3
E(T )T 3/2, K12(T ) :=

√
2vLE(T )T,

where

E(T ) := eva,d(T ), V (T ) :=
√

2e(va(T )T 1/2+2vLvσ(T ))2T
(
vX + vf (T )vb(T )T + 2vρ,M (T )T 1/2

)
.

2

Remark 3.3 There are several possibilities to extend Theorem 3.1 without substantially new arguments.

(1) It is straightforward to show that Theorem 3.1 can be extended to the case where the interaction
matrices a and σ are replaced by (still deterministic but possibly history-dependent) linear function-
als.

(2) Suppose that L = ΓL0 with some matrix Γ ∈ RN×N and some other Lévy process L0 with finite
variance and mean zero. Furthermore, Γ = ΓC + ΓP and accordingly LC = ΓCL0 and LP = ΓPL0.
What one would like to do when passing to the PMFS (2.4) is to replace L there by LC. How does
this affect the estimate (3.3) in Theorem 3.1? A similar analysis as for Theorem 3.1 reveals that an
extra rate

r13 :=
∣∣∣ΓPCov[L̃(1)](ΓP)′

∣∣∣1/2
d

appears with constant K13 := 2vσ(T )V (T )T 1/2.

(3) Two further generalizations are discussed in Remark 3.5 and Remark 3.7 below. 2

It is obvious that the usefulness of Theorem 3.1 depends on the sizes of the rates in (3.2): only if they
are small, the PMFS (2.4) is a good approximation to the IPS (2.2). Moreover, there are two different
views on Theorem 3.1: first, if we assume that the underlying network of the IPS is static, it gives an upper
bound on the L2-error when the IPS is approximated by the PMFS; and second, if the interaction network
(i.e. a, σ, f and ρ) is assumed to evolve according to an index N ∈ N, Theorem 3.1 gives conditions under
which the PMFS converges in the L2-sense to the IPS when N → ∞ (this happens precisely when all
rates in (3.2) converge to 0 as N →∞, and the numbers in (3.1) are majorized independently of N). It
is also this second point of view that is the traditional one in mean field analysis and that justifies the
title “Law of large numbers” for the current section.

In the following subsections we will study three examples of dynamical networks and the corresponding
conditions for the law of large numbers to hold for the PMFS.

3.1 Propagation of chaos

We first discuss the phenomenon of chaos propagation, and our results will particularly extend the results
of [18], Section 17.3, [23], Corollary 4.1, and [34], Theorem 1.4 by including inhomogeneous weights in
the model. The setting is as follows:

(1) The underlying network changes with N ∈ N. In particular, we will index X and X̄, the coefficients
a, σ, f and ρ as well as the rates in (3.2) by N .



Partial mean field limits in heterogeneous networks 8

(2) All structural assumptions in Section 2 hold and the numbers in (3.1), some of which now depend on
N , are uniformly bounded in N .

(3) The core matrices aN,C(t), σN,C(t), fN,C(t) and ρN,C(t) are diagonal matrices for all times t ∈ R+.

(4) For each N ∈ N, (Li, bi,Mi, ρ
N,C
ii , XN

i (0) : i ∈ N) is a sequence of independent random elements (note
that the noises indexed by a fixed i may depend on each other).

(5) For each T ∈ R+ the following rates converge to 0 as N →∞:

rNa (T ) := sup
i∈N

 ∞∑
j=1

(AN,Pij (T ))2

1/2

, rNρ,M (T ) := sup
i∈N

sup
t∈[0,T ]

 ∞∑
j=1

E[(ρN,Pij (t))2cjj(t)]

1/2

,

rNσ (T ) := sup
i∈N

 ∞∑
j=1

(ΣN,Pij (T ))2

1/2

, rNf (T ) := sup
i∈N

sup
t∈[0,T ]

 ∞∑
j=1

(fN,Pij (t))2

1/2

.

These hypotheses ensure that all pair dependencies between the processes XN
i , i ∈ N, vanish when

N → ∞. As a result, in the PMFS, the independence of the particles i at t = 0 propagates through all
times t > 0: the PMFS decouples in contrast to the original IPS.

Example 3.4 In classical mean field theory as in the references mentioned in the introduction, the
N -th network consists of exactly N particles. In other words, aNij , σ

N
ij , fNij , ρNij and XN

i (0) are all 0 for
i > N or j > N . Moreover, all pair interaction is assumed to be of order 1/N , that is, we have for each
T ∈ R+

AN,Pij (T ) =
Aij(T )

N
, ΣN,Pij (T ) =

Σij(T )

N
, i, j ∈ N, (3.5)

where Aij(T ),Σij(T ) ∈ R+ are uniformly bounded in i, j ∈ N. Furthermore, the driving noises are
supposed to be independent for different particles and to enter the PMFS completely. This means that
(3) and (4) hold and that fN,P = ρN,P = 0. It is easily shown that under these specifications the rates in
(5) above converge to 0 as N →∞: rNρ,M (T ) and rNf (T ) are simply 0, and rNa (T ) and rNσ (T ) are of order

1/
√
N as N →∞. 2

We still need to show that under assumptions (1)–(5) above, all rates rNι (T ), ι = 1, . . . , 12, converge
to 0 as N → ∞. Since AN,C(T ) is diagonal, we have AN,C(T )× = 0, and since the driving noises for
different particles are independent, all covariances (or covariations) vanish outside the diagonal. Thus,
we have

rN1 (T ) ≤ vXrNa (T ), rN2 (T ) ≤ vXrNσ (T ), rN3 (T ) ≤ vLrNa (T ),

rN4 (T ) ≤ vLrNσ (T ), rN5 (T ) ≤ vb(T )rNf (T ), rN6 (T ) = rNρ,M (T ),

rN7 (T ) = 0, rN8 (T ) = 0, rN9 (T ) ≤ vb(T )vf (T )rNa (T ),

rN10(T ) ≤ vb(T )vf (T )rNσ (T ), rN11(T ) ≤ vρ,M (T )rNa (T ), rN12(T ) ≤ vρ,M (T )rNσ (T ),

which all converge to 0 as N →∞ by hypothesis. The following remark continues Remark 3.3 regarding
further generalizations of Theorem 3.1.

Remark 3.5 In the setting of this subsection there are actually no core relationships between different
particles: every pair interaction rate tends to 0 with large N . If we even assume that there is no dependence
at all originating from the noises (i.e. fN,P = ρN,P = 0 above), the propagation of chaos result can easily
be extended to nonlinear Lipschitz interaction terms (suitably bounded in N) instead of the matrices
aN and σN . As a matter of fact, the classical method of [34], Theorem 1.4, can be applied with obvious
changes. 2
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3.2 Sparse interaction versus sparse correlation

The propagation of chaos result in the last subsection was based on two core hypotheses: asymptotically
vanishing pair interaction rates and the independence of the particles’ driving noises. The motivation for
establishing Theorem 3.1, however, is to deal with situations where these two conditions are precisely not
satisfied, that is, when the coefficients a, σ, f and ρ of (2.2) are decomposed into a core and a periphery
part in a non-trivial way. In fact, in this subsection we discuss a typical situation where the full generality
of Theorem 3.1 is required. Before that, we recall that we consider networks indexed by N ∈ N, and that
we are interested in the cases when the rates in (3.2) vanish when N becomes large.

General assumptions

The following list of hypotheses describes the setting in this subsection.

(1) The statements (1) and (2) of Section 3.1 hold.

(2) M is an RN-valued F-Lévy process, implying that cij(t) = Cov[Mi(1),Mj(1)]t.

(3) At stage N , the system consists of N0 + N particles with some fixed N0 ∈ N, that is, we have
aNij = σNij = fNij = ρNij = XN

i (0) = 0 as soon as i > N0 +N or j > N0 +N .

(4) C := {1, . . . , N0} contains the core particles, PN := {N0 + 1, . . . , N} the periphery particles, whose
number increases with N . Correspondingly, aN,C and σN,C (resp. aN,P and σN,P) characterize the
influence of the core (resp. periphery) particles in the system. In other words, j ∈ C implies that

aN,Pij (t) = σN,Pij (t) = 0 for all i ∈ N and t ∈ R+, while j ∈ PN implies aN,Cij (t) = σN,Cij (t) = 0 for all

i 6= j and t ∈ R+. We assume that the diagonals of aN and σN are completely contained in aN,C and
σN,C, respectively. It follows that the partitions of aN and σN can be illustrated as (omitting all zero
rows and columns, and using ∗ for all potentially non-zero elements):

aN,C/
σN,C

=

N0 N

∗ · · · ∗ 0 · · · · · · 0
...

. . .
...

...
. . .

. . .
...

∗ · · · ∗ 0 · · · · · · 0
∗ · · · ∗ ∗ 0 · · · 0
...

. . .
... 0

. . .
. . .

...
...

. . .
...

...
. . .

. . . 0
∗ · · · ∗ 0 · · · 0 ∗


,

aN,P/
σN,P

=

N0 N

0 · · · 0 ∗ · · · · · · ∗
...

. . .
...

...
. . .

. . .
...

0 · · · 0 ∗ · · · · · · ∗
0 · · · 0 0 ∗ · · · ∗
...

. . .
... ∗

. . .
. . .

...
...

. . .
...

...
. . .

. . . ∗
0 · · · 0 ∗ · · · ∗ 0


.

(5) There is a finite number of systematic noises, namely B1, . . . BN00 and M1, . . . ,MN00 for some fixed
N00 ∈ N independent of N , that are important to a large part of the system, and there are id-
iosyncratic noises BN00+i and MN00+i that only affect the specific particle i ∈ {1, . . . , N}. Thus, we

assume for all i = 1, . . . , N and t ∈ R+ that ρN,Pij (t) = fN,Pij (t) = 0 for j ∈ {1, . . . , N00} ∪ {N00 + i}
and ρN,Cij (t) = fN,Cij (t) = 0 for the other values of j. Hence, fN and ρN are of the form

fN,C/
ρN,C

=

N00 N00+N
∗ · · · ∗ ∗ 0 · · · 0
...

. . .
... 0

. . .
. . . 0

...
. . .

...
...

. . .
. . . 0

∗ · · · ∗ 0 · · · 0 ∗

 ,
fN,P/
ρN,P

=

N00 N00+N
0 · · · 0 0 ∗ · · · ∗
...

. . .
... ∗

. . .
. . .

...
...

. . .
...

...
. . .

. . . ∗
0 · · · 0 ∗ · · · ∗ 0

 .

(6) We have for all T ∈ R+

AN,Pij (T ) =
φNij (T )

RNA
, ΣN,Pij (T ) =

ψNij (T )

RNΣ
, i, j = 1, . . . , N, (3.6)
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where the rates RNA , R
N
Σ ∈ R+ satisfy

RNA√
N
→∞, RNΣ√

N
→∞, as N →∞, (3.7)

and the numbers φNij (T ), ψNij (T ) ∈ R+ satisfy

φ(T ) := sup
i,j,N∈N

φNij (T ) <∞, ψ(T ) := sup
i,j,N∈N

ψNij (T ) <∞.

Note that we always have φNii (T ) = ψNii (T ) = 0.

(7) For different i, j ∈ N, the noises Mi and Mj as well as Bi and Bj are uncorrelated.

(8) The rates rNf (T ) and rNρ,M (T ) from Section 3.1 converge to 0 as N →∞ for all T ∈ R+.

(9) For each N ∈ N, the initial values (XN
i (0) : i ∈ PN ) are mutually uncorrelated.

Conditions (4) and (5) determine the core–periphery structure of the IPS. In practice, a fixed distinc-
tion between core and periphery particles is often not possible because a large number of particles may
be engaged in some strong and some weak linkages at the same time. As already pointed out, this does
not affect the applicability of Theorem 3.1, since the concept of core and periphery refers to the linkages
there. The choice of fixed core and periphery particles in this subsection is only a special case thereof, in-
tended to simplify the arguments below. Next, regarding (6), one can take RNA , R

N
Σ = N for concreteness,

which can then be compared with Section 3.1. Furthermore, let us point out that assumption (7) is only
for convenience (namely that fN and ρN carry the whole correlation structure of the noises). Indeed, it
is always possible (under our second-moment conditions) to replace any stochastic integral ρ ·M , where
M is a Lévy process, with an arbitrary correlation structure by ρ′ ·M ′ where M ′ consists of mutually
uncorrelated Lévy processes (of course, (8) would change accordingly). Finally, if XN (0) is independent of
the driving noises, (9) can be enforced simply by switching to the conditional distribution given XN (0).

Under (1)–(9) it is easy to prove that the rates rN1 (T ), rN2 (T ), rN5 (T ) and rN6 (T ) converge to 0 when
N → ∞. For the latter two, this can be deduced in the same way as in Section 3.1 because the driving
noises of different particles are uncorrelated. For the other two, we use that the starting random variables
of periphery particles are assumed to be uncorrelated. Hence, we have by (3.7), as N →∞, that

rN1 (T ) = sup
i∈N

 ∑
j∈PN

(AN,Pij (T ))2Var[XN
j (0)]

1/2

≤ φ(T )vX

√
N

RNA
→ 0,

rN2 (T ) = sup
i∈N

 ∑
j∈PN

(ΣN,Pij (T ))2Var[XN
j (0)]

1/2

≤ ψ(T )vX

√
N

RNΣ
→ 0.

However, the nine conditions above are in general not sufficient to imply the smallness of the other
rates in (3.2). We need to add extra hypotheses.

Sparseness assumptions

For each of the remaining rates, we further examine what type of conditions are needed to make them
asymptotically small. As we shall see, it is always a mixture of a sparseness condition on the interaction
matrices AN and ΣN and a sparseness condition on the correlation matrices fN and ρN .

rN3 (T ) and rN4 (T ): We first present a counterexample to show that we have to require further conditions.

Consider the simple case where Li = L1 for all i ∈ N and that AN,Pij (T ) = 1/RNA for all T ∈ R+ and
i, j ∈ {1, . . . , N0 +N} with i 6= j. Then

rN3 (T ) = sup
i∈N

 ∑
j,k∈PN\{i}

(
1

ρNA

)2

Cov[Lj(1), Lk(1)]

1/2

= vL
N

RNA
,
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which need not to converge to 0 in general. A similar calculation can be done for rN4 (T ). In order to make
the rates rN3 (T ) and rN4 (T ) small, there are basically two options: we require the interaction matrices
AN,P and ΣN,P to be sparse, or we require the correlation matrix of L to be sparse. Any other possibility
is a suitable combination of these two.

(10a) The noises (Li : i ∈ PN ) corresponding to periphery particles only have sparse correlation (which, in
particular, includes the case of mutual independence as in Section 3.1). More precisely, we require

pNL := #{(i, j) ∈ PN × PN : Cov[Li(1), Lj(1)] 6= 0}| = o
(
(RNA )2 ∧ (RNΣ )2

)
(3.8)

for large N . Then

rN3 (T ) = sup
i∈N

 ∑
j,k∈PN

AN,Pij (T )AN,Pik (T )Cov[Lj(1), Lk(1)]

1/2

≤ φ(T )vL

√
pNL

RNA
→ 0,

and, similarly, rN4 (T )→ 0 as N →∞.

(10b) The matrices AN,P(T ) and ΣN,P(T ), which describe the influence of periphery particles on the system,
are only sparsely occupied, in the sense that every particle in the system is only affected by a small
number of periphery particles. In mathematical terms this condition reads as

pNA,1(T ) := sup
i∈N

#{j ∈ PN : AN,Pij (T ) 6= 0} = o(RNA ),

pNΣ (T ) := sup
i∈N

#{j ∈ PN : ΣN,Pij (T ) 6= 0} = o(RNΣ ). (3.9)

In this case, we get

rN3 (T ) = sup
i∈N

 ∑
j,k∈PN

AN,Pij (T )AN,Pik (T )Cov[Lj(1), Lk(1)]

1/2

≤ φ(T )vL
pNA,1
RNA

→ 0,

and similarly rN4 (T )→ 0 as N →∞.

rN7 (T ) and rN8 (T ): These two rates express the connectivity between core and periphery particles. In

general, they will be not become small with large N . For instance, if AN,Cij (T ) = 1 for all j ∈ C and i 6= j,

and AN,Pij = 1/RNA for all j ∈ PN and i 6= j, then

rN7 (T ) = sup
i∈N

∑
j∈PN

∑
k∈C

AN,Pij (T )AN,Cjk (T ) = N0
N

RNA
,

does not necessarily converge to 0. An analogous statement holds for rN8 (T ). For rN7 (T ), rN8 (T ) → 0
we have to require that the lower left block of AN,C, which describes the influence of core particles on
periphery particles, or the matrices AN,P(T ) and ΣN,P(T ), which describe the influence of periphery
particles on the system, be sparse (or a combination thereof):

(11a) The influence of core on periphery particles is sparse. In other words, we suppose for the maximal
number of periphery particles a single core particle interacts with through the drift:

pNA,2 := sup
j∈C

#{i ∈ PN : AN,Cij (T ) 6= 0} = o(RNA ∧RNΣ ). (3.10)

Then,

rN7 (T ) = sup
i∈N

∑
j∈PN

∑
k∈C

AN,Pij (T )AN,Cjk (T ) ≤ N0φ(T )va(T )
pNA,2
RNA

→ 0

as well as rN8 (T )→ 0 as N →∞.
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(11b) AN,P(T ) and ΣN,P(T ) are sparse in the sense of (3.9). Then rN7 (T ), rN8 (T )→ 0 follow similarly.

rN9 (T ), rN10(T ), rN11(T ) and rN12(T ): Similar considerations as before show that these four rates do not
converge to 0 in general. Instead, we again need to require some mixture of sparsely correlated driving
noises and sparsely occupied matrices AN,P and ΣN,P:

(12a) We assume that for all T ∈ R+

pNf (T ) := sup
j∈{1,...,N00}

#{i ∈ PN : fN,Cij 6≡ 0 on [0, T ]} = o(RNA ∧RNΣ ), (3.11)

pNρ (T ) := sup
j∈{1,...,N00}

#{i ∈ PN : ρN,Cij 6≡ 0 on [0, T ]} = o(RNA ∧RNΣ ). (3.12)

Then, recalling that the components of b and M are mutually uncorrelated,

rN9 (T ) = sup
i∈N

sup
s,t∈[0,T ]

( ∑
j,k∈PN

N00∑
l=1

AN,Pij (T )AN,Pik (T )
∣∣∣fN,Cjl (s)fN,Ckl (t)Cov[bl(s), bl(t)]

∣∣∣
+
∑
j∈PN

(AN,Pij (T ))2
∣∣∣fN,Cj(N00+i)(s)f

N,C
j(N00+i)(t)Cov[bN00+i(s), bN00+i(t)]

∣∣∣)1/2

≤ φ(T )vb(T )vf (T )

√
N00p

N
f (T ) +

√
N

RNA
→ 0,

rN11(T ) = sup
i∈N

sup
t∈[0,T ]

( ∑
j,k∈PN

N00∑
l=1

AN,Pij (T )AN,Pik (T )
∣∣∣E[ρN,Cjl (t)ρN,Ckl (t)]

∣∣∣Var[Ml(1)]

+
∑
j∈PN

(AN,Pij (T ))2
∣∣∣E[(ρN,Cj(N00+i)(t))

2]
∣∣∣Var[MN00+i(1)]

)1/2

≤ φ(T )vρ,M (T )

√
N00p

N
ρ (T ) +

√
N

RNA
→ 0,

and similarly rN10(T ), rN12(T )→ 0 as N →∞.

(12b) AN,2 and ΣN,2 are sparse in the sense of (3.9). Then one can deduce rNι (T )→ 0 for ι = 9, 10, 11, 12
as before.

We conclude this subsection with two remarks.

Remark 3.6 In the sparseness conditions (3.8)–(3.12) it is not essential that the majority of entries
is exactly zero. As one can see from the definition of the rates (3.2), they depend continuously on
the underlying matrix entries. It suffices therefore that the matrix entries are small enough in a large
proportion. 2

Remark 3.7 What can be said about Theorem 3.1 in the general case of nonlinear Lipschitz coefficients
aN and σN , apart from the special case discussed in Remark 3.5? In fact, a law of large numbers in the
fashion of Theorem 3.1 can still be shown, but under more stringent conditions: namely we have to require
condition (10b) above in addition, with AN,P and ΣN,P now containing the Lipschitz constants of the
interaction terms. The reason is that (10b) suffices to make rNι (ι ∈ {3, 4, 7, . . . , 12}) small. The remaining
four rates are unrelated to aN and σN and therefore not affected by their nonlinear structure. It is
important to notice that conditions like (10a) and (12a) are no longer sufficient to make the corresponding
rates small. The reason is that they are conditions of correlation type. Since correlation is a linear measure
of dependence, it is not surprising that these conditions are not suitable for the nonlinear case. We do
not go into the details at this point. 2
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3.3 Networks arising from preferential attachment

As demonstrated in the last subsection, the crucial criterion for the rates (3.2) in Theorem 3.1 to vanish
asymptotically with growing network size can be described as a combination of sparse interaction and
sparse correlation among the particles. Condition (3.9) plays a distinguished role here: when valid, it
implies that eight out of twelve rates in (3.2) are small. Moreover, it is the key factor for a nonlinear
generalization of Theorem 3.1 to hold or not; see Remark 3.7. The aim of this subsection is therefore to
find algorithms for the generation of the underlying networks such that the resulting interaction matrices
satisfy (3.9). We will assume that aN,P(t) = aN,P and σN,P(t) = σN,P are independent of t ∈ R+, such
that also AN,P(t) and ΣN,P(t) as well as pNA,1(t) and pNΣ (t) (see (3.9) for their definitions) are independent

of t. Furthermore, we only concentrate on pNA,1 as the analysis for pNΣ is completely analogous.
We will base the creation of the IPS network on dynamical random graph mechanisms. Since we are

mainly interested in heterogeneous graphs, we will investigate the preferential attachment or scale-free
random graph [3]. There are many similar but different constructions of preferential attachment graphs;
in the following, we rely on the construction of [6] for directed graphs. We remark that the random graphs
to be constructed will be indexed by N , corresponding to a family of growing networks for the IPS. In
particular, “time” in the random graph process must not be confused with the time t in the IPS (2.2);
the correct view is rather that the IPS network has been built from the random graphs before time t = 0,
and, of course, independently of all random variables in (2.2).

The preferential attachment algorithm works as follows: we start with G(0) = (V,E(0)), a given graph
consisting of vertices V = N and edges E(0) = {e1, . . . , eν}, where ν ∈ N and ei stands for a directed edge
between two vertices. We allow for multiple edges and loops in our graphs. Without loss of generality,
we assume that the set of vertices in G(0) with at least one neighbour given by {1, . . . , n(0)} with some
n(0) ∈ N. Furthermore, we fix α, β, γ ∈ R+ with α + β + γ = 1 and α + γ > 0 and two numbers
δin, δout ∈ R+. For N ∈ N we construct G(N) = (V,E(N)) from G(N − 1) according to the following
algorithm.

• With probability α, we create a new edge eν+N from v = n(N − 1) + 1 to a node w that is
already connected in G(N −1). Here w is chosen randomly from {1, . . . , n(N −1)} according to the
probability mass function

din
G(N−1)(w) + δin

ν +N − 1 + δinn(N − 1)
, w ∈ {1, . . . , n(N − 1)},

where din
G(v) denotes the in-degree of vertex v in a graph G. We define n(N) := n(N − 1) + 1 and

E(N) := E(N − 1) ∪ {eν+N}.

• With probability β, a new edge eν+N is formed from some vertex v ∈ {1, . . . , n(N − 1)} to some
w ∈ {1, . . . , n(N−1)} (the case v = w is possible). Here v and w are chosen independently according
to the probability mass functions

dout
G(N−1)(v) + δout

ν +N − 1 + δoutn(N − 1)
,

din
G(N−1)(w) + δin

ν +N − 1 + δinn(N − 1)
, v, w ∈ {1, . . . , n(N − 1)},

respectively, where dout
G (v) denotes the out-degree of vertex v in a graph G. Moreover, we set

n(N) := n(N − 1) and E(N) := E(N − 1) ∪ {eν+N}.

• With probability γ, a new edge eν+N from some v ∈ {1, . . . , n(N − 1)} to w = n(N − 1) + 1 is
formed. Here v is chosen randomly according to the probability mass function

dout
G(N−1)(v) + δout

ν +N − 1 + δoutn(N − 1)
, v ∈ {1, . . . , n(N − 1)}.

We set n(N) := n(N − 1) + 1 and E(N) := E(N − 1) ∪ {eν+N}.

Evidently, we always have |E(N)| = ν + N while the number n(N) of non-isolated vertices in G(N) is
random in general.
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The most important result for our purposes is the following one. We define

M in(N) := max{din
G(N)(i) : i ∈ N}, Mout(N) := max{dout

G(N)(i) : i ∈ N}, N ∈ N0,

as the maximal in-degree and out-degree in G(N), respectively.

Lemma 3.8. The maximum in-degree M in(N) and out-degree Mout(N) of G(N) satisfy the following
asymptotics:

cin(N)M in(N)→ µin, cout(N)M in(N)→ µout, N →∞. (3.13)

Here the convergence to the random variables µin and µout, respectively, holds in the almost sure as well as
in the Lp-sense for all p ∈ [1,∞), and (cin(N))N∈N and (cout(N))N∈N are sequences of random variables
which can be chosen such that for every ε ∈ (0, α+ γ) we have a.s.

cin(N)−1 = O
(
N

α+β

1+δin(α+γ−ε)

)
, cout(N)−1 = O

(
N

β+γ

1+δout(α+γ−ε)

)
, N →∞. (3.14)

It follows from this lemma that for every ε ∈ (0, α+ γ) we have a.s.

M in(N) = O
(
N

α+β

1+δin(α+γ−ε)

)
, Mout(N) = O

(
N

β+γ

1+δout(α+γ−ε)

)
, N →∞.

In particular, if G(N) is used to model the underlying network of aN (i.e. an edge in G(N) from i to j
is equivalent to aNij 6= 0), we have

pNA,1 ≤Mout(N) = O
(
N

β+γ

1+δout(α+γ−ε)

)
, N →∞.

In other words, the first part of condition (3.9) holds as soon as RNA , as specified through (3.6) and (3.7),
increases in N at least with rate

N
β+γ

1+δout(α+γ−ε) (3.15)

for some small ε. For example, in the classical case of Example 3.4 where RNA = N , this is always true
except in the case α = δout = 0, where all edges start from one of the initial nodes with probability one.
We conclude that in all non-trivial situations of the preferential attachment model, the resulting networks
are sparse enough for the law of large numbers implied by Theorem 3.1 to be in force.

4 Large deviations

In Theorem 3.1 we have established bounds on the mean squared difference between the IPS (2.2) and the
PMFS (2.4). In Sections 3.1–3.3 we have given examples of dynamical networks in which these bounds
converge to 0 as the network size increases. A natural question is now whether a large deviation principle
holds as N → ∞, which would then assure that the probability of XN deviating strongly from X̄N

decreases exponentially fast in N . In the classical case of homogeneous networks, [11] is the first paper
to prove a large deviation principle for the empirical measures of the processes (1.1). For heterogeneous
networks, however, the empirical measure might no longer be a good quantity to investigate: the weight
of a particle now depends on which particle’s perspective is chosen. A sequence of differently weighted
empirical measures seems to be more appropriate, but then their analysis becomes considerably more
involved. Therefore, in this paper we take a more direct approach and study the large deviation behaviour
of the difference XN−X̄N itself. In order to do so, we have to put stronger assumptions on the coefficients
than in the previous sections. These are as follows.

(A1) XN (0) is deterministic for each N ∈ N.

(A2) For all N ∈ N we have σN = 0. All other coefficients aN,C, aN,P, ρN,C and ρN,P are constant in time.
ρN,C and ρN,P (resp. aN,C and aN,P) only have γ(N) (resp. Γ(N)) non-zero columns, where γ(N)
forms a sequence of natural numbers increasing to infinity and Γ(N) grows at most like exp(γ(N)).
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(A3) All numbers in (3.1), which are indexed by N now, are bounded independently of N .

(A4) (Mi : i ∈ N) is a sequence of independent mean-zero Lévy processes whose Brownian motion part has
variance ci and whose Lévy measure is νi. Moreover, there exists a real-valued mean-zero Lévy process
M0 that dominates Mi, that is, its characteristics c0 and ν0 satisfy ci ≤ c0 and νi(A) ≤ ν0(A) for all
i ∈ N and Borel sets A ⊆ R, and that has finite exponential moments of all orders: E[euM0(1)] < ∞
for all u ∈ R+.

(A5) Assume that GN (t, s) := γ(N)ea
N taN,Pea

N,CsρN,C, s, t ∈ [0, T ], converges uniformly to a limit
G(t, s) ∈ RN×N:

sup
i,j∈N

sup
s,t∈[0,T ]

|Gij(t, s)| <∞, sup
i,j∈N

sup
s,t∈[0,T ]

|GNij (t, s)−Gij(t, s)| → 0, N →∞.

(A6) With RN (t) := γ(N)ea
N tρN,P, t ∈ [0, T ], there exists R(t) ∈ RN×N such that

sup
i,j∈N

sup
t∈[0,T ]

|Rij(t)| <∞, sup
i,j∈N

sup
t∈[0,T ]

|RNij (t)−Rij(t)| → 0, N →∞.

(A7) The following two quantities are finite:

q1 := lim sup
N→∞

q1(N) := lim sup
N→∞

sup
i∈N

γ(N)

∞∑
j=1

∑
k 6=j

|aN,Pij aN,Cjk |,

q2 := lim sup
N→∞

q2(N) := lim sup
N→∞

sup
i,k∈N

γ(N)

∞∑
j=1

|aN,Pij ρN,Cjk |.

(A8) Define for m ∈ N ∪ {0}

Ψm(u) :=
1

2
cmu

2 +

∫
R
(euz − 1− uz) νm(dz), u ∈ R+.

We assume that the following holds for every d ∈ N: denoting for m ∈ N, r ∈ [0, T ] and θ ∈Md
T

Hm(θ, r) :=

∫ T

r

∫ T

s

d∑
i=1

Gim(t− s, s− r) θi(dt) ds+

∫ T

r

d∑
i=1

Rim(t− r) θi(dt),

the sequence
(∫ T

0
Ψm(Hm(θ, r)) dr

)
m∈N

is Cesàro summable, i.e. the following limit exists:

lim
N→∞

1

γ(N)

γ(N)∑
m=1

∫ T

0

Ψm(Hm(θ, r)) dr. (4.1)

Theorem 4.1. Let T ∈ R+. Under (A1)–(A8), the sequence (XN − X̄N )N∈N satisfies a large deviation
principle in (D∞T , J1) with a good rate function I : D∞T → [0,∞], that is, for every α ∈ R+ the set
{x ∈ D∞T : I(x) ≤ α} is compact in D∞T (with respect to the J1-topology), and for every M ∈ D∞T we have

− inf
x∈intM

I(x) ≤ lim inf
N→∞

1

γ(N)
logP[XN−X̄N ∈M ] ≤ lim sup

N→∞

1

γ(N)
logP[XN−X̄N ∈M ] ≤ − inf

x∈clM
I(x),

where intM and clM denote the interior and the closure of M in (D∞T , J1), respectively. Moreover, the
rate function I is convex, attains its minimum 0 uniquely at the origin and is infinite for x /∈ AC∞T .

Remark 4.2 (1) We cannot drop the requirement σN = 0 or condition (A4) in Theorem 4.1. If violated,
the processes XN and X̄N will typically not have exponential moments of all order, whose existence
is essential for our proof below. This kind of problem does not arise when empirical measures are
considered as in [11, 25] for the homogeneous case.
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(2) The Cesàro summability condition (A8) accounts for the possible inhomogeneity of the coefficients
and the distribution of the noises. It holds in particular for the homogeneous case. Since a convergent
series is Cesàro summable with the same limit, it also holds when we have asymptotic homogeneity
(in the sense that the sequence inside the sum of (4.1) converges with m→∞).

(3) With γ(N) = N and assumptions (A2)–(A4) in force, McKean’s example (1.1) or the model con-
sidered in [23] both satisfy the assumptions of the theorem. In McKean’s case our large deviation
principle follows from that of [11] for the empirical measure by applying the contraction principle.

5 Proofs

We start with some preparatory results that are needed for the proof of Theorem 3.1.

Lemma 5.1. Under the assumptions of Theorem 3.1 we have

sup
i∈N

∥∥X̄∗i (T )
∥∥
L2 ≤ V (T ),

where V (T ) is given in Theorem 3.1.

Proof. It is a consequence of (2.4) and the Burkholder-Davis-Gundy inequality that for all t ∈ [0, T ]
and i ∈ N

∥∥(X̄i)
∗(t)

∥∥
L2 ≤

∥∥Xi(0)
∥∥
L2 +

∫ t

0

∞∑
j=1

Aij(T )
∥∥(X̄j)

∗(s)
∥∥
L2 ds

+ 2Var[Li(1)]

∫ t

0

 ∞∑
j=1

Σij(T )
∥∥(X̄j)

∗(s)
∥∥
L2

2

ds


1/2

+

∫ t

0

∞∑
j=1

∣∣fij(s)∣∣∥∥bj(s)∥∥L2 ds+ 2

 ∞∑
j,k=1

∫ t

0

E
[
ρC
ij(s)ρ

C
ik(s)cjk(s)

]
ds

1/2

.

Therefore, if we define w(t) := supi∈N ‖(X̄i)
∗(t)‖L2 , we obtain

w(t) ≤ vX + vf (T )vb(T )T + 2vρ,M (T )T 1/2 + va(T )

∫ t

0

w(s) ds+ 2vLvσ(T )

(∫ t

0

(w(s))2 ds

)1/2

≤ vX + vf (T )vb(T )T + 2vρ,M (T )T 1/2 + (va(T )T 1/2 + 2vLvσ(T ))

(∫ t

0

(w(s))2 ds

)1/2

.

Now we square the last inequality, apply the basic estimate (a + b)2 ≤ 2(a2 + b2) and use Gronwall’s
inequality to deduce our claim, namely that

w(T ) ≤
√

2e(va(T )T 1/2+2vLvσ(T ))2T
(
vX + vf (T )vb(T )T + 2vρ,M (T )T 1/2

)
.

2

Lemma 5.2. Let T ∈ R+ and assume the finiteness of the numbers (3.1). We fix some j ∈ N throughout
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this lemma and define for t ∈ [0, T ]

Yj(t) := Y 1
j + Y 2

j (t) + Y 3
j (t) + Y 4

j (t) + Y 5
j (t)

:= (Xj(0)− E[Xj(0)]) +
∑
k 6=j

∫ t

0

aC
jk(s)(X̄k(s)− E[X̄k(s)]) ds

+

∞∑
k=1

∫ t

0

(
σC
jk(s)X̄k(s−) + σP

jk(s)E[X̄k(s)]
)

dLj(s)

+

∞∑
k=1

∫ t

0

fC
jk(s)(bk(s)− E[bk(s)]) ds+

∞∑
k=1

∫ t

0

ρC
jk(s) dMk(s).

Furthermore, introduce the integrals

Ij0 [x](t) := x(t), Ijn[x](t) :=

∫ t

0

aC
jj(s)I

j
n−1[x](s) ds, n ∈ N, (5.1)

where x : [0, T ]→ R is a measurable function such that the integrals in (5.1) exist for t ∈ [0, T ]. Then

X̄j(t)− E[X̄j(t)] =

∞∑
n=0

Ijn[Yj ](t) =

5∑
ι=1

∞∑
n=0

Ijn[Y ιj ](t), t ∈ [0, T ], (5.2)

where the sums converge with respect to the maximal L2-norm X 7→ ‖X∗(T )‖L2 .

Proof. We deduce from (2.4) that

X̄j(t)− E[X̄j(t)]

= (Xj(0)− E[Xj(0)]) +
∑
k 6=j

∫ t

0

aC
jk(s)(X̄k(s)− E[X̄k(s)]) ds

+

∫ t

0

aC
jj(s)(X̄j(s)− E[X̄j(s)]) ds+

∞∑
k=1

∫ t

0

(
σC
jk(s)X̄k(s−) + σP

jk(s)E[X̄k(s)]
)

dLj(s)

+

∞∑
k=1

∫ t

0

fC
jk(s)(bk(s)− E[bk(s)]) ds+

∞∑
k=1

∫ t

0

ρC
jk(s) dMk(s)

= Ij1 [X̄j − E[X̄j ]](t) + Yj(t).

Iterating this equality n times, we obtain

X̄j(t)− E[X̄j(t)] =

n−1∑
ν=0

Ijν [Yj ](t) + Ijn[X̄j − E[X̄j ]](t), t ∈ [0, T ]. (5.3)

Next, observe that for any càdlàg process (X(t))t∈R+ with ‖X∗(T )‖L2 <∞ we have

∥∥(Ijν [X])∗(T )
∥∥
L2 ≤ ‖X∗(T )‖L2Ijν [1](T ) ≤ ‖X∗(T )‖L2

(AC
jj(T ))ν

ν!
,

which is summable in ν. Thus, recalling from Lemma 5.1 that both Yj and X̄j−E[X̄j ] have finite maximal
L2-norm, we can let n→∞ in (5.3) and get

X̄j(t)− E[X̄j(t)] =

∞∑
ν=0

Ijν [Yj ](t), t ∈ [0, T ],

which is the first assertion. The second part of formula (5.2) holds by linearity. 2
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Proof of Theorem 3.1. The existence and uniqueness of solutions to (2.2) and (2.4) follow from the
general theory of SDEs, see [32], Theorem V.7. Since the numbers (3.1) are finite, there are no difficulties
in dealing with infinite-dimensional systems as in our case.

It follows from (2.2) and (2.4) that the difference between X and X̄ satisfies the SDE

d(X(t)− X̄(t)) =
(
a(t)(X(t)− X̄(t)) + aP(t)(X̄(t)− E[X̄(t)])

)
dt

+
(
σ(t)(X(t−)− X̄(t−)) + σP(t)(X̄(t−)− E[X̄(t)])

)
.dL(t)

+ fP(t)(b(t)− E[b(t)]) dt+ ρP(t) dM(t), t ∈ R+,

X(0)− X̄(0) = 0.

Thus, denoting the left-hand side of (3.3) by ∆(T ), we obtain from the Burkholder-Davis-Gundy inequal-
ity and Jensen’s inequality that

∆(T ) ≤ va(T )

∫ T

0

∆(t) dt+ 2vσ(T )vL

(∫ T

0

(∆(t))2 dt

)1/2

+

∣∣∣∣∣
∫ T

0

∥∥aP(t)(X̄(t)− E[X̄(t)])
∥∥
L2 dt

∣∣∣∣∣
∞

+

∣∣∣∣ ∥∥∥(σP(X̄ − E[X̄]) . L
)∗

(T )
∥∥∥
L2

∣∣∣∣
∞

+ T sup
t∈[0,T ]

∣∣∣ ∥∥fP(t)(b(t)− E[b(t)])
∥∥
L2

∣∣∣
∞

+
∣∣∣ ∥∥(ρP ·M)∗(T )

∥∥
L2

∣∣∣
∞

≤ (T 1/2va(T ) + 2vσ(T )vL)

(∫ T

0

(∆(t))2 dt

)1/2

+

4∑
ι=1

∆ι(T ), (5.4)

where ∆ι(T ) stands for the last four summands in the line before. So Gronwall’s inequality produces the
bound

∆(T ) ≤ K(T )

4∑
ι=1

∆ι(T ), (5.5)

where K(T ) =
√

2 exp((T 1/2va(T ) + 2vσ(T )vL)2T ). We now consider each ∆ι(T ) separately.
For ι = 3 we simply have

∆3(T ) ≤ T sup
t∈[0,T ]

sup
i∈N

 ∞∑
j,k=1

fP
ij(t)f

P
ik(t)Cov[bj(t), bk(t)]

1/2

= Tr5(T ). (5.6)

For ι = 4 another application of the Burkholder-Davis-Gundy inequality yields

∆4(T ) ≤ 2 sup
i∈N

 ∞∑
j,k=1

E

[∫ T

0

ρP
ij(t)ρ

P
ik(t) d[Mj ,Mk](t)

]1/2

≤ 2T 1/2 sup
i∈N

sup
t∈[0,T ]

 ∞∑
j,k=1

E
[
ρP
ij(t)cjk(t)ρP

ik(t)
]1/2

= 2T 1/2r6(T ). (5.7)

For ι = 1, we use Lemma 5.2 including the notations introduced there and the fact that for all
stochastic processes (X(t))t∈R+

and (Y (t))t∈R+
with càdlàg sample paths we have

sup
r,s∈[0,T ]

∣∣E [Ijn[X](s)Ikm[Y ](r)
]∣∣ ≤ (AC

jj(T ))n

n!

(AC
kk(T ))m

m!
sup

r,s∈[0,T ]

|E[X(s)Y (r)]| (5.8)
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for any j, k ∈ N and m,n ∈ N ∪ {0}. In this way we obtain

∆1(T ) =

∣∣∣∣∣
∫ T

0

∥∥aP(t)(X̄(t)− E[X̄(t)])
∥∥
L2 dt

∣∣∣∣∣
∞

= sup
i∈N

∫ T

0

∥∥∥∥∥∥
∞∑
j=1

aP
ij(t)(X̄j(t)− E[X̄j(t)])

∥∥∥∥∥∥
L2

dt

≤
5∑
ι=1

sup
i∈N

∫ T

0

∥∥∥∥∥∥
∞∑
j=1

aP
ij(t)

∞∑
n=0

Ijn[Y ιj ](t)

∥∥∥∥∥∥
L2

dt

=

5∑
ι=1

sup
i∈N

∫ T

0

 ∞∑
j,k=1

∞∑
n,m=0

aP
ij(t)a

P
ik(t)E

[
Ijn[Y ιj ](t)Ikm[Y ιk ](t)

]1/2

dt

≤ e|A
C(T )|d

5∑
ι=1

sup
i∈N

∫ T

0

 ∞∑
j,k=1

AP
ij(T )AP

ik(T ) sup
r,s∈[0,t]

∣∣E[Y ιj (s)Y ιk (r)]
∣∣1/2

dt

=: e|A
C(T )|d

5∑
ι=1

Rι(T ). (5.9)

Using Lemma 5.1, the five terms in (5.9) can be estimated as follows:

R1(T ) ≤ T sup
i∈N

 ∞∑
j,k=1

AP
ij(T )AP

ik(T )|Cov[Xj(0), Xk(0)]|

1/2

= Tr1(T ),

R2(T ) ≤ sup
i∈N

∫ T

0

∞∑
j=1

AP
ij(T ) sup

s∈[0,t]

‖Y 2
j (s)‖L2 dt

≤ sup
i∈N

∫ T

0

∞∑
j=1

AP
ij(T )

∑
k 6=j

∫ t

0

AC
jk(s)‖X̄k(s)− E[X̄k(s)]‖L2 ds

 dt

≤ T 2

2
V (T ) sup

i∈N

∞∑
j=1

∑
k 6=j

AP
ijA

C
jk =

T 2

2
V (T )r7(T ),

R3(T ) ≤ sup
i∈N

∫ T

0

( ∞∑
j,k=1

AP
ij(T )AP

ik(T ) sup
s∈[0,t]

∣∣∣∣E[( (σCX̄ + σPE[X̄]
)
j
· Lj

)
(s)

×
( (
σCX̄ + σPE[X̄]

)
k
· Lk

)
(s)
]∣∣∣∣
)1/2

dt

≤ sup
i∈N

∫ T

0

( ∞∑
j,k=1

AP
ij(T )AP

ik(T )Cov[Lj(1), Lk(1)]

×
∫ t

0

E
[∣∣∣(σC(s)X̄(s) + σP(s)E[X̄(s)]

)
j

(
σC(s)X̄(s) + σP(s)E[X̄(s)]

)
k

∣∣∣] ds

)1/2

dt

≤ 2

3
T 3/2vσ(T )V (T )r3(T ),

R4(T ) ≤ sup
i∈N

∫ T

0

 ∞∑
j,k=1

AP
ij(T )AP

ik(T )

∫ t

0

∫ t

0

∣∣∣∣∣∣
∞∑

l,m=1

fC
jl(s)f

C
km(r)Cov[bl(s), bm(r)]

∣∣∣∣∣∣ dr ds

1/2

dt

≤ T 2

2
sup
i∈N

 ∞∑
j,k=1

AP
ij(T )AP

ik(T ) sup
s,t∈[0,T ]

∣∣∣∣∣∣
∞∑

l,m=1

fC
jl(s)f

C
km(t)Cov[bl(s), bm(t)]

∣∣∣∣∣∣
1/2
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=
T 2

2
r9(T ),

R5(T ) ≤ sup
i∈N

∫ T

0

 ∞∑
j,k=1

AP
ij(T )AP

ik(T ) sup
s∈[0,t]

∣∣∣∣∣∣
∞∑

l,m=1

E
[
(ρC
jl ·Ml)(s)(ρ

C
km ·Mm)(s)

]∣∣∣∣∣∣
1/2

dt

≤ sup
i∈N

∫ T

0

 ∞∑
j,k=1

AP
ij(T )AP

ik(T )

∫ t

0

∣∣∣∣∣∣
∞∑

l,m=1

E
[
ρC
jl(s)clm(s)ρC

km(s)
]∣∣∣∣∣∣ ds

1/2

dt

≤ 2

3
T 3/2r11(T ).

The last step in the proof is the estimation of ∆2(T ). To this end, we make use of the Burkholder-
Davis-Gundy inequality another time and get

∆2(T ) ≤ sup
i∈N

∥∥∥((σP(X̄ − E[X̄])
)
i
· Li
)∗

(T )
∥∥∥
L2

≤ 2vL sup
i∈N

(∫ T

0

E
[(
σP(t)(X̄(t)− E[X̄(t)])

)2
i

]
dt

)1/2

.

The further procedure is analogous to what we have done for ∆1(T ): instead of aP we have σP here. We
leave the details to the reader and only state the result, which is

∆2(T ) ≤
∑

ι∈{2,4,8,10,12}

Kι(T )rι(T ).

This completes the proof of Theorem 3.1. 2

Our next goal is to prove Lemma 3.8 concerning the rate of growth of the maximal degree in the
preferential attachment random graph as described in Section 3.3. For the undirected version as in [3]
the corresponding result goes back to [29]. Indeed, the proof there basically works for our case as well,
but there are some steps that require different arguments. Thus, we decided to include the proof to our
lemma.

Proof of Lemma 3.8. The statement is evidently true for M in when α+ β = 0 (resp. for Mout when
β + γ = 0). In fact, for this extremal case, in every step of the random graph a new edge is created
pointing to (resp. from) a new node. This means that M in(N) (resp. Mout(N)) remains constant for all
N ∈ N0, and the claim follows with cin = 1 (resp. cout = 1) identically. In the other cases, we closely
follow the proof of Theorem 3.1 in [29]. In addition to the notation introduced in Section 3.3, we further
define for N ∈ N0 and � ∈ {in, out}:

S�(N) := ν +N + δ�n(N),

X�(N, j) := d�G(N)(j) + δ�, j ∈ N,

N�j := inf{N ∈ N0 : d�G(N)(j) 6= 0}, j ∈ N,

s� := α1{�=in} + β + γ1{�=out},

c�(0, k) := 1, c�(N + 1, k) := c�(N, k)
S�(N)

S�(N) + s�k
, k ∈ R+,

Z�(N, j, k) := c�(N�j +N, k)

(
X�(N�j +N, j) + k − 1

k

)
1{N�

j <∞}, j ∈ N, k ∈ R+,

G(N) := σ(eν+i : i = 1, . . . , N), G(∞) := σ

( ∞⋃
N=0

G(N)

)
.

Obviously, G(N) is the σ-field of all information up to stepN in the preferential attachment algorithm, and
N�j is a stopping time relative to the filtration (G(N))N∈N for every j ∈ N. Analogously to Theorem 2.1
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of [29] one can now show that for all k ∈ R+ and j ∈ N the sequence (Z�(N, j, k))N∈N0
is a positive

martingale relative to the filtration (G(N�j +N))N∈N0
. As a consequence, Doob’s martingale convergence

theorem implies that
Z�(N, j, k)→ ζ�(j, k) a.s. (5.10)

for some random variables ζ�(j, k). The convergence in (5.10) also holds in Lp for all p ∈ [1,∞) because
we have

Z�(N, j, k)p ≤ C(k, p)Z�(N, j, kp) a.s. (5.11)

for some deterministic constants C(k, p) ∈ R+ independent of N and j. Indeed, on {N�j < ∞} we have
by definition

Z�(N, j, k)p

Z�(N, j, kp)
=
c�(N�j +N, k)p

c�(N�j +N, kp)

(
X�(N�j +N, j) + k − 1

k

)p(
X�(N�j +N, j) + kp− 1

kp

)−1

,

where

c�(N, k)p

c�(N, kp)
=
c�(N − 1, k)p

c�(N − 1, kp)

S�(N)p−1(S�(N) + s�kp)

(S�(N) + s�k)p
≤ c�(N − 1, k)p

c�(N − 1, kp)
≤ . . . ≤ c�(0, k)p

c�(0, kp)
= 1,(

x+ k − 1

k

)p(
x+ kp− 1

kp

)−1

=
Γ(kp+ 1)

Γ(k + 1)p
Γ(k + x)p

Γ(x)p−1Γ(kp+ x)

x→∞−→ Γ(kp+ 1)

Γ(k + 1)p
,

which shows (5.11). Next, define for N ∈ N0 and j ∈ N

m�(N, j) := max{Z�(N −N�i , i, 1) : i = 1, . . . , j,N�i ≤ N}, m�(N) := m�(N,n(N)),

µ�(j) := max{ζ�(i, 1) : i = 1, . . . , j}, µ� := sup{µ�(j) : j ∈ N},

such that in particular the relationship m�(N) = c�(N, 1)(M�(N) + δ�) holds. It is not hard to see that
(m�(N))N∈N0

, as the maximum of martingale expressions, is a submartingale relative to (G(N))N∈N0
. By

definition the sequence (c�(N, k))N∈N0
decreases to 0 as N →∞; more precisely, we have

c�(N, k) = c�(N − 1, k)
S�(N − 1)

S�(N − 1) + s�k
≤ c�(N − 1, k)

ν +N − 1 + δ�(n(0) +N − 1)

ν +N − 1 + δ�(n(0) +N − 1) + s�k

≤
N−1∏
j=0

(1 + δ�)j + δ�n(0) + ν

(1 + δ�)j + δ�n(0) + ν + s�k
=

Γ
(
N + δ�n(0)+ν

1+δ�

)
Γ
(
N + δ�n(0)+ν+s�k

1+δ�

) ∼ N− s�k
1+δ� , N →∞.

As a consequence, when p is large enough,

E[m�(N)p] ≤ E

n(N)∑
i=1

Z�(N −N�i , i, 1)p

 ≤ C(1, p)E

n(N)∑
i=1

Z�(N −N�i , i, p)


≤ C(1, p)

∞∑
i=1

E[Z�(0, i, p)] ≤ C(1, p)

(
n(0) + p+ δ� − 1

p

) ∞∑
i=1

E[c�(N�i , p)]

≤ C(1, p)

(
n(0) + p+ δ� − 1

p

)(
n(0) +

∞∑
i=1

E[c�(i, p)]

)
<∞ (5.12)

independently of N . This implies that the submartingale m� converges a.s. and in Lp for all p ∈ [1,∞).
It follows from (5.12) that for j ≥ n(0) we have

E[(m�(N)−m�(N, j))p] ≤ E

 n(N)∑
i=j+1

Z�(N −N�i , i, 1)p


≤ C(1, p)

(
n(0) + p+ δ� − 1

p

) ∞∑
i=j−n(0)+1

E[c�(i, p)]. (5.13)
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Letting N →∞, the left-hand side of (5.13) converges to

E
[(

lim
N→∞

c�(N, 1)M�(N)− µ�(j)
)p]

,

while the right-hand side is independent of N . Now taking the limit j → ∞ and again assuming that p
is large, we obtain the desired result (3.13). Note at this point that µ� is indeed an a.s. finite random
variable that belongs to Lp for all p ∈ [1,∞), which is proved using a similar argument as in (5.12).

It remains to prove (3.14). To this end, observe that by the law of large numbers we have (n(N) −
n(0))/N → α+ γ a.s. In other words, there exists for every ε ∈ (0, α+ γ) a possibly random N̄ ∈ N such
that for all N ≥ N̄ we have ∣∣∣∣n(N)− n(0)

N
− (α+ γ)

∣∣∣∣ ≤ ε,
or, equivalently, n(N) ∈ [n(0)+(α+γ−ε)N,n(0)+(α+γ+ε)N ]. Consequently, for all k ∈ N and N ≥ N̄

c�(N, k) =

N−1∏
i=0

S�(i)

S�(i) + s�k
≥
N̄−1∏
i=0

S�(i)

S�(i) + s�k

N−1∏
i=N̄

ν + i+ δ�(n(0) + (α+ γ − ε)i)
ν + i+ δ�(n(0) + (α+ γ − ε)i) + s�k

=

N̄−1∏
i=0

S�(i)

S�(i) + s�k

N̄−1∏
i=0

ν + i+ δ�(n(0) + (α+ γ − ε)i) + s�k

ν + i+ δ�(n(0) + (α+ γ − ε)i)

×
N−1∏
i=0

ν + i+ δ�(n(0) + (α+ γ − ε)i)
ν + i+ δ�(n(0) + (α+ γ − ε)i) + s�k

= c�(N̄ , k)
Γ
(
N̄ + δ�n(0)+ν+s�k

1+δ�(α+γ−ε)

)
Γ
(
N + δ�n(0)+ν

1+δ�(α+γ−ε)

)
Γ
(
N̄ + δ�n(0)+ν

1+δ�(α+γ−ε)

)
Γ
(
N + δ�n(0)+ν+s�k

1+δ�(α+γ−ε)

)
∼ c�(N̄ , k)

Γ
(
N̄ + δ�n(0)+ν+s�k

1+δ�(α+γ−ε)

)
Γ
(
N̄ + δ�n(0)+ν

1+δ�(α+γ−ε)

)N− s�k
1+δ�(α+γ−ε) , N →∞.

So choosing c�(N) := c�(N, 1) for N ∈ N0 fulfills (3.14). 2

Finally, we turn to the proof of the large deviation result in Section 4.

Proof of Theorem 4.1. By definition, XN − X̄N satisfies the equation

XN (t)− X̄N (t) =

∫ t

0

aN (XN − X̄N )(s) ds+

∫ t

0

aN,P(X̄N (s)− E[X̄N (s)]) ds+ ρN,PM(t), t ∈ [0, T ],

whose solution is

XN (t)− X̄N (t) =

∫ t

0

ea
N (t−s)aN,P(X̄N (s)− E[X̄N (s)]) ds+

∫ t

0

ea
N (t−s)ρN,P dM(s), t ∈ [0, T ].

In order to establish a large deviation principle, it suffices by Theorem 4.6.1 of [15] to prove such a
principle in (Dd

T ,DdT , J1) for the first d coordinates of the process for every d ∈ N, that is, for the
Dd
T -valued process

Y Ni (t) := Y N,1i (t) + Y N,2i (t) + Y N,3i (t)

:=

∫ t

0

∫ s

0

∞∑
j,k=1

e
aN (t−s)
ij aN,Pjk ea

N,C
kk (s−r)

∑
l 6=k

aN,Ckl (X̄N
l (r)− E[X̄N

l (r)]) dr ds

+

∫ t

0

∞∑
j,k,l=1

e
aN (t−s)
ij aN,Pjk

∫ s

0

ea
N,C
kk (s−r)ρN,Ckl dMl(r) ds

+

∞∑
j,k=1

∫ t

0

e
aN (t−s)
ij ρN,Pjk dMk(s), i = 1, . . . , d, t ∈ [0, T ], (5.14)
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where we have used the formula

X̄N
i (t)− E[X̄N

i (t)] =

∫ t

0

ea
N,C
ii (t−s)

∑
j 6=i

aN,Cij (X̄N
j (s)− E[X̄N

j (s)]) ds+

∞∑
j=1

∫ t

0

ea
N,C
ii (t−s)ρN,Cij dMj(s),

valid for all i ∈ N and t ∈ R+. Actually, we will even prove the large deviation principle in (Dd
T ,DdT , U),

which is stronger. To this end, we introduce the notation

x̂(t) :=

[γ(N)T ]−1∑
k=1

x
(

k
γ(N)

)
1[ k

γ(N)
, k+1
γ(N) )

(t) + x
(

[γ(N)T ]
γ(N)

)
1[ [γ(N)T ]

γ(N)
,T)(t), t ∈ [0, T ], x ∈ Dd

T .

Then by Theorem 4.2.13 of [15] and Lemma 5.3 below we can equally well show a large deviation principle
for Ŷ N = Ŷ N,1 +Ŷ N,2 +Ŷ N,3. The same principle will then hold for Y N . But this is proved in Lemma 5.5.
That the rate function for XN − X̄N is convex with unique minimum 0 at 0 and can only be finite for
functions in AC∞T , is inherited from the rate function of Ŷ N . 2

Lemma 5.3. For each d ∈ N and ι = 1, 2, 3, the Dd
T -valued processes Y N,ι and Ŷ N,ι are exponentially

equivalent, that is, for all ε ∈ (0, 1) we have

lim
N→∞

1

γ(N)
logP

[
sup
t∈[0,T ]

sup
i=1,...,d

|Y N,ιi (t)− Ŷ N,ιi (t)| > ε

]
= −∞.

Proof. We start with ι = 1. Writing t̂ = [γ(N)t]/γ(N) and diag(a) := a− a×, we obtain

sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣Y N,1i (t)− Ŷ N,1i (t)
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣∣(eaN t − ea
N t̂)

(∫ t

0

∫ s

0

e−a
NsaN,Pediag(aN,C)(s−r)(aN,C)×(X̄N (r)− E[X̄N (r)]) dr ds

)∣∣∣∣
∞

+ sup
t∈[0,T ]

∣∣∣∣eaN t̂(∫ t

t̂

∫ s

0

e−a
NsaN,Pediag(aN,C)(s−r)(aN,C)×(X̄N (r)− E[X̄N (r)]) dr ds

)∣∣∣∣
∞
. (5.15)

We can proceed with these two terms separately. Since |eaN t − ea
N t̂|∞ ≤ vaevaT /γ(N), we have for the

first term in (5.15)

P

[
sup
t∈[0,T ]

∣∣∣∣(eaN t − ea
N t̂)

(∫ t

0

∫ s

0

e−a
NsaN,Pediag(aN,C)(s−r)(aN,C)×(X̄N (r)− E[X̄N (r)]) dr ds

)∣∣∣∣
∞
> ε

]

≤ P

[
sup
t∈[0,T ]

∣∣aN,P(aN,C)×(X̄N (t)− E[X̄N (t)])
∣∣
∞ >

εγ(N)

va(evaT )3T 2

]

≤ P

 sup
t∈[0,T ]

sup
i∈N

∞∑
j=1

∑
k 6=j

∣∣aN,Pij aN,Cjk (X̄N
k (t)− E[X̄N

k (t)])
∣∣ > εγ(N)

va(evaT )3T 2

 =: p(N).

We note that ξN := X̄N − E[X̄N ] satisfies the integral equation

ξN (t) =

∫ t

0

aN,CξN (s) ds+ ρN,CM(t), t ∈ R+.

Hence we have

(ξN )∗(t) ≤
∫ t

0

|aN,C|(ξN )∗(s) ds+ (ρN,CM)∗(t), t ∈ R+,
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or after n ∈ N iterations,

(ξN )∗(t) ≤ (|aN,C|t)n

n!
(ξN )∗(t) +

n−1∑
m=0

(|aN,C|t)m

m!
(ρN,CM)∗(t),

(ξN )∗(t) ≤
(

I− (|aN,C|T )n

n!

)−1 n−1∑
m=0

(|aN,C|t)m

m!
(ρN,CM)∗(t),

where the last line holds when n is large enough such that (vaT )n/n! < 1. It is not difficult to recognize
that the exact value of n only affects some constants in the subsequent arguments with no impact on the
final result; we therefore assume without loss of generality that n = 1 (i.e. vaT < 1). Then

p(N) ≤ P

sup
i∈N

∞∑
j=1

∑
k 6=j

∞∑
l=1

|aN,Pij aN,Cjk |(I− |a
N,C|T )−1

kl sup
t∈[0,T ]

γ(N)∑
m=1

|ρN,Clm Mm(t)| > εγ(N)

va(evaT )3T 2


≤ P

 1

γ(N)
sup
l∈N

sup
t∈[0,T ]

γ(N)∑
m=1

|ρN,Clm Mm(t)| > εγ(N)(1− vaT )

q1(N)va(evaT )3T 2

 .
Let λ(N) be positive numbers to be chosen later. Using the independence of the Lévy processes Mi and
Doob’s maximal inequality, we arrive at

p(N) ≤ exp

(
−ελ(N)γ(N)(1− vaT )

q1(N)va(evaT )3T 2

) γ(N)∏
m=1

E
[
exp

(
λ(N)

γ(N)
sup
l∈N
|ρN,Clm ||Mm(T )|

)]

≤ exp

(
−ελ(N)γ(N)(1− vaT )

q1(N)va(evaT )3T 2

) γ(N)∏
m=1

(
1 + E

[
exp

(
λ(N)

γ(N)
sup
l∈N
|ρN,Clm |Mm(T )

)])

≤ 2γ(N) exp

(
−ελ(N)γ(N)(1− vaT )

q1(N)va(evaT )3T 2

)
exp

(
Tγ(N)Ψ0

(
λ(N)

γ(N)
sup
l,m∈N

|ρN,Clm |

))
.

Now define

λ(N) := γ(N)Ψ−1
0 (1)/

(
sup
l,m∈N

|ρN,Clm |

)
, N ∈ N.

Since Ψ0 is a convex function, its inverse Ψ−1
0 is concave and therefore we have for large N that λ(N) ≥

Ψ−1
0 (γ(N))/

(
supl,m∈N |ρ

N,C
lm |

)
, which increases to infinity with N . With this choice of λ(N) it follows

that

lim
N→∞

1

γ(N)
log p(N) = −∞,

which completes the proof for the first term in (5.15). The second term can be treated in analogous way:

now the factor γ(N) does not come from the difference |eaN t−ea
N t̂|∞, but from the domain of integration

(t̂, t]. The details are left to the reader.
For ι = 2 similar methods apply. Also here we do not give the details. Instead, we sketch the proof

for ι = 3 where some modifications are necessary. Recalling the meaning of Γ(N) from (A2), we have

sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣Y N,3i (t)− Ŷ N,3i (t)
∣∣∣ ≤ sup

t∈[0,T ]

sup
i=1,...,d

∣∣∣∣((ea
N t − ea

N t̂)

(∫ t

0

e−a
NsρN,P dM(s)

))
i

∣∣∣∣
+ sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣∣(ea
N t̂

(∫ t

t̂

e−a
NsρN,P dM(s)

))
i

∣∣∣∣
≤ |ea

N t − ea
N t̂|∞ sup

t∈[0,T ]

sup
i=1,...,Γ(N)

∣∣∣∣(∫ t

0

e−a
NsρN,P dM(s)

)
i

∣∣∣∣
+ evaT sup

t∈[0,T ]

sup
i=1,...,Γ(N)

∣∣∣∣(∫ t

t̂

e−a
NsρN,P dM(s)

)
i

∣∣∣∣ . (5.16)
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We can again consider these two terms separately. For the first one we have

P

[
|ea

N t − ea
N t̂|∞ sup

t∈[0,T ]

sup
i=1,...,Γ(N)

∣∣∣∣(∫ t

0

e−a
NsρN,P dM(s)

)
i

∣∣∣∣ > ε

]

≤ Γ(N) sup
i=1,...,Γ(N)

P

[
sup
t∈[0,T ]

∣∣∣∣(∫ t

0

e−a
NsρN,P dM(s)

)
i

∣∣∣∣ > εγ(N)

vaevaT

]

≤ Γ(N) sup
i=1,...,Γ(N)

exp

(
−ελ(N)γ(N)

vaevaT

) γ(N)∏
k=1

E

exp

λ(N) sup
i∈N

∣∣∣∣∣∣
∫ T

0

∞∑
j=1

e−a
Ns

ij ρN,Pjk dMk(s)

∣∣∣∣∣∣


= Γ(N) sup
i=1,...,Γ(N)

exp

(
−ελ(N)γ(N)

vaevaT

) γ(N)∏
k=1

E

exp

λ(N)

γ(N)
sup
i∈N

∣∣∣∣∣∣
∫ T

0

∞∑
j=1

e−a
Ns

ij γ(N)ρN,Pjk dMk(s)

∣∣∣∣∣∣
 .

Now recall that the stochastic integral in the last line has an infinitely divisible distribution. Moreover,
the larger the integrand, the larger the exponential moment is. Since the integrand above is uniformly
bounded in i and k by our hypotheses, the stochastic integral above can be replaced by some constant
times Mk(T ) for the further estimation. Therefore, the remaining calculation can be completed as in the
case ι = 1. For the second term in (5.16) the reasoning is the same, except that the factor γ(N) is now
due to the domain (t̂, t] of the stochastic integral. Observe at this point that Mk(t)−Mk(t̂) has the same
distribution as Mk(t− t̂) and that |t− t̂| ≤ 1/γ(N). Again, we do not carry out the details. 2

Lemma 5.4. For each ι = 1, 2, 3 the processes (Ŷ N,ι : N ∈ N) form an exponentially tight sequence
in (Dd

T ,DdT , U), that is, for every L ∈ R+ there exists a compact subset KL of Dd
T (with respect to the

uniform topology U) such that
1

γ(N)
logP[Ŷ N,ι /∈ KL] ≤ −L.

Proof. We first consider ι = 1. We will adapt the idea of Lemma 4.1 in [12] to our setting. As shown
in part (I) of the proof there, it suffices to show that for every a, ε ∈ (0,∞) there exist a compact set
H ⊆ Dd

T , some C ∈ (0,∞) and n ∈ N such that for all N ≥ n

P[d(Ŷ N,1, H) > ε] ≤ Ce−γ(N)a, (5.17)

where d(f,H) := inf{supt∈[0,T ] supi=1,...,d |fi(t)− gi(t)| : g ∈ H} for f ∈ Dd
T . In order to prove (5.17), we

first define for n ∈ N and A ⊆ Rd

Hn(A) :=

f ∈ Dd
T : f =

[γ(n)T ]−1∑
κ=1

xκ1[ κ
γ(n)

, κ+1
γ(n) )

+ x[γ(n)T ]1[ κ
γ(n)

,T ], x1, . . . , x[γ(n)T ] ∈ A

 .

It follows from Equation (4.3) of [12] that for N ≥ n, A ⊆ Rd and f ∈ HN (A) we have

d(f,Hn(A)) ≤ sup
κ=0,...,[γ(n)T ]−1

sup
λ∈[1, γ(N)

γ(n)
+1)

sup
i=1,...,d

∣∣∣∣∣∣fi
 [γ(N)κ

γ(n) ] + λ

γ(N)
∧ T

− fi
 [γ(N)κ

γ(n) ]

γ(N)

∣∣∣∣∣∣ . (5.18)

Next, define K := [−1, 1]d. Then for every β ∈ (0,∞) and N ≥ n we have

P[d(Ŷ N,1, Hn(βK)) > ε] ≤ P[Ŷ N,1 /∈ HN (βK)] + P[Ŷ N,1 ∈ HN (βK), d(Ŷ N,1, Hn(βK)) > ε]. (5.19)



Partial mean field limits in heterogeneous networks 26

The first probability is bounded as follows:

P[Ŷ N,1 /∈ HN (βK)] = P

[
sup

i=1,...,d
sup

κ=1,...,[γ(N)T ]

∣∣∣∣∣
∫ κ

γ(N)

0

∫ s

0

∞∑
j,k=1

e
aN (κ/γ(N)−s)
ij aN,Pjk ea

N,C
kk (s−r)

×
∑
l 6=k

aN,Ckl (X̄N
l (r)− E[X̄N

l (r)]) dr ds

∣∣∣∣∣ > β

]

≤ P

 sup
t∈[0,T ]

sup
i=1,...,d

∞∑
j=1

∑
k 6=j

∣∣aN,Pij aN,Cjk (X̄N
k (t)− E[X̄N

k (t)])
∣∣ > β

(evaTT )2

 =: p′(N).

By the same arguments as in Lemma 5.3, one obtains (again assuming vaT < 1 without loss of generality)

p′(N) ≤ 2γ(N) exp

(
−βλ(N)(1− vaT )

q1(N)(evaTT )2

)
exp

(
Tγ(N)Ψ0

(
λ(N)

γ(N)
sup
l,m∈N

|ρN,Clm |

))
.

We choose λ(N) := γ(N) this time. Then we can make log(p′(N))/γ(N) arbitrarily small uniformly for
large N by varying the value of β.

For the second step of the proof of (5.17) we conclude from (5.18) that

P[Ŷ N,1 ∈ HN (βK), d(Ŷ N,1, Hn(βK)) > ε]

≤ P

[
sup

κ=0,...,[γ(n)T ]−1

sup
λ∈[1, γ(N)

γ(n)
+1)

sup
i=1,...,d

∣∣∣∣∣∣Ŷ N,1i

 [γ(N)κ
γ(n) ] + λ

γ(N)
∧ T

− Ŷ N,1i

 [γ(N)κ
γ(n) ]

γ(N)

∣∣∣∣∣∣ > ε

]
. (5.20)

For the further procedure, we split the difference in the last line into two terms in the same way as in
(5.15). We only treat the corresponding first term. As before, the other one can be estimated similarly.

Introducing the notation tN,nκ,λ (resp. tN,nκ ) for the time point in the first (resp. second) parenthesis of

(5.20), and observing that 0 ≤ t̂N,nκ,λ − tN,nκ ≤ 2/γ(N) + 1/γ(n), we obtain

P

[
sup

κ=0,...,[γ(n)T ]−1

sup
λ∈[1, γ(N)

γ(n)
+1)

sup
i=1,...,d

∣∣∣∣∣
((

ea
N t̂N,nκ,λ − ea

N tN,nκ

)

×
∫ t

0

∫ s

0

e−a
NsaN,Pediag(aN,C)(s−r)(aN,C)×(X̄N (r)− E[X̄N (r)]) dr ds

)
i

∣∣∣∣∣ > ε

]

≤ P

 sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣∣∣∣
∞∑
j=1

∑
k 6=j

aN,Pij aN,Cjk (X̄N
k (t)− E[X̄N

k (t)])

∣∣∣∣∣∣ > ε

va(evaT )3T 2
(

2
γ(N) + 1

γ(n)

)


≤ 2γ(N) exp

− ελ(N)(1− vaT )

q1(N)va(evaT )3T 2
(

2
γ(N) + 1

γ(n)

)
 exp

(
Tγ(N)Ψ0

(
λ(N)

γ(N)
sup
l,m∈N

|ρN,Clm |

))
,

where the last line follows in similar fashion as before. With λ(N) := γ(N) we can make, by taking n
large enough, the logarithm of the last term divided by γ(N) arbitrarily small for N ≥ n. This finishes
the proof for ι = 1. The case ι = 2 is analogous, while for ι = 3 the line of argument remains the same
in principle, with slight changes to account for the discretization of Lévy processes, cf. the proofs of
Lemma 5.3 and Lemma 4.1 of [12]. 2

Lemma 5.5. The process (Ŷ Ni : i = 1, . . . , d) satisfies a large deviation principle in (Dd
T ,DdT , U) with a

good convex rate function Id : Dd
T → [0,∞] such that Id(x) < ∞ implies x ∈ ACdT . Moreover, we have

Id(0) = 0 and this minimum is unique.

Proof. We apply the abstract Gärtner-Ellis theorem of [12], Theorems 2.1 and 2.4, to Ŷ N and prove
the following steps.
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(1) The laws of Ŷ N , N ∈ N, are exponentially tight in (Dd
T ,DdT , U).

(2) For all θ ∈Md
T the limit Λ(θ) = limN→∞(γ(N))−1ΛN (γ(N)θ) exists, where

ΛN (θ) := logE

[
exp

(
d∑
i=1

∫ T

0

Ŷ Ni (t) θi(dt)

)]
.

(3) The mapping Λ is CdT -Gâteaux differentiable, in the sense that for all θ ∈ Md
T there exists xθ ∈ CdT

such that for all η ∈Md
T

δΛ(θ; η) := lim
ε→0

Λ(θ + εη)− Λ(θ)

ε
=

d∑
i=1

∫ T

0

xθi (t) ηi(dt). (5.21)

Part of the claim is that the limit in (5.21) exists. Moreover, we have Λ(0; η) = 0 for all η ∈Md
T .

(4) We have {x ∈ Dd
T : Λ∗(x) <∞} ⊆ ACdT , where

Λ∗(x) := sup
θ∈Md

T

(
d∑
i=1

∫ T

0

xi(t) θi(dt)− Λ(θ)

)
, x ∈ Dd

T .

(5) For every α ∈ R+ the set {x ∈ Dd
T : Λ∗(x) ≤ α} is compact in (Dd

T ,DdT , U).

Part of the Gärtner-Ellis theorem is that the rate function Id is given by Λ∗, the convex conjugate or
Fenchel-Legendre transform of Λ. Since Λ is a convex function in θ satisfying (3), the conjugate Λ∗∗

of Λ∗ is again Λ, see Theorem 12 of [33]. Thus, by the first corollary to Theorem 1 in [2], we have
Id(0) = Λ∗(0) = 0 and this minimum is unique.

Let us now prove (1)–(5) above. Part (1) has been proved in Lemma 5.4. For (2) we first compute Λ.
For all θ ∈Md

T we have (recall that t̂ := [γ(N)t]/γ(N)])

ΛN (γ(N)θ) = logE

[
exp

(
d∑
i=1

∫ T

0

(∫ t̂

0

∫ s

0

γ(N)

∞∑
j,k,l,m=1

e
aN (t̂−s)
ij aN,Pjk e

aN,C(s−r)
kl ρN,Clm dMm(r) ds

+ γ(N)

∞∑
j,k=1

∫ t̂

0

e
aN (t̂−s)
ij ρN,Pjk dMk(s)

)
θi(dt)

)]

=

γ(N)∑
m=1

logE

[
exp

(
d∑
i=1

∫ T

0

(∫ t̂

0

∫ s

0

∞∑
j,k,l=1

γ(N)e
aN (t̂−s)
ij aN,Pjk e

aN,C(s−r)
kl ρN,Clm dMm(r) ds

+

∫ t̂

0

γ(N)

∞∑
j=1

e
aN (t̂−s)
ij ρN,Pjm dMm(s)

)
θi(dt)

)]
(5.22)

by the independence of the processes Mm. By a stochastic Fubini argument (see Theorem IV.65 of [32]),
the term within the exponential in the previous line can also be written as (š denotes the smallest multiple
of γ(N) that is larger or equal to s)∫ T̂

0

(∫ T̂

r

∫ T

š

d∑
i=1

GNim(t̂− s, s− r) θi(dt) ds+

∫ T

ř

d∑
i=1

RNim(t̂− r) θi(dt)

)
Mm(dr), (5.23)

and has an infinitely divisible distribution such that its logarithmic Laplace exponent in (5.22) is explicitly

known. Denoting the parenthesis in (5.23) by HN
m (θ, r), it is given by

∫ T̂
0

Ψm(HN
m (θ, r)) dr. We claim that

this term converges uniformly in m to
∫ T

0
Ψm(Hm(θ, r)) dr. Indeed, by the dominating property of M0,



Partial mean field limits in heterogeneous networks 28

the claim follows as soon as we can prove that HN
m (θ, r)→ Hm(θ, r) as N →∞, uniformly in m ∈ N and

r ∈ [0, T ]. This in turn follows from

|Hm(θ, r)−HN
m (θ, r)|

≤

∣∣∣∣∣
∫ T

T̂

∫ T

s

d∑
i=1

Gim(t− s, s− r) θi(dt) ds

∣∣∣∣∣+

∣∣∣∣∣
∫ T̂

r

∫ š

s

d∑
i=1

Gim(t− s, s− r) θi(dt) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ T̂

r

∫ T

š

d∑
i=1

(Gim(t− s, s− r)−GNim(t− s, s− r)) θi(dt) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ T̂

r

∫ T

š

d∑
i=1

(GNim(t− s, s− r)−GNim(t̂− s, s− r)) θi(dt) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ ř

r

d∑
i=1

Rim(t− r) θi(dt)

∣∣∣∣∣+

∣∣∣∣∣
∫ T

ř

d∑
i=1

(Rim(t− r)−RNim(t− r)) θi(dt)

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

ř

d∑
i=1

(RNim(t− r)−RNim(t̂− r)) θi(dt)

∣∣∣∣∣
≤ d sup

i,m∈N
sup

s,t∈[0,T ]

|Gim(t, s)|

(
γ(N)−1 sup

i=1,...,d
|θi|([0, T ]) + sup

i=1,...,d

∫ T̂

r

|θi|([s, š)) ds

)

+ d sup
i=1,...,d

|θi|([0, T ])

(
T sup
i,m∈N

sup
s,t∈[0,T ]

|Gim(t, s)−GNim(t, s)|+ vaT

γ(N)
sup

N,i,m∈N
sup

s,t∈[0,T ]

|GNim(t, s)|

+ γ(N)−1 sup
i,j∈N

sup
t∈[0,T ]

|Rij(t)|+ sup
i,j∈N

sup
t∈[0,T ]

|Rij(t)−RNij (t)|+ va
γ(N)

sup
N,i,j∈N

sup
t∈[0,T ]

|RNij (t)|

)
,

where all terms converge to 0 by hypothesis independently of m and r. For the second summand one has

to notice that the integral term equals
∫ T̂
r

∫ t
t̂

1 ds |θi|(dt) and thus converges to 0 uniformly in i and r
with rate 1/γ(N). Since the value of Cesàro sums remains unchanged under uniform approximations, it
follows from assumption (A8) of Theorem 4.1 that

Λ(θ) = lim
N→∞

1

γ(N)

γ(N)∑
m=1

∫ T

0

Ψm(HN
m (θ, r)) dr = lim

N→∞

1

γ(N)

γ(N)∑
m=1

∫ T

0

Ψm(Hm(θ, r)) dr.

Next, we prove the CdT -Gâteaux differentiability of Λ. First, regarding the existence of δΛ(θ; η) in
(5.21), we note that the mappings Md

T → L∞(N× [0, T ]), θ 7→ (Hm(θ, r) : m ∈ N, r ∈ [0, T ]), are continu-
ous linear operators and therefore Fréchet differentiable, which is stronger than Gâteaux differentiability.
Together with the fact that Ψm is differentiable with locally bounded derivative, and cm ≤ c0 and νm ≤ ν0

for all m ∈ N, this implies that for every θ and η

ε−1

∫ T

0

(Ψm(Hm(θ + εη, r))−Ψm(Hm(θ, r))) dr

converges uniformly in m ∈ N as ε→ 0. This in turn proves the Gâteaux differentiability of Λ. Moreover,
it enables us to compute the derivative explicitly. Using the chain rule for Fréchet derivatives, we obtain

δΛ(θ; η) = lim
N→∞

γ(N)∑
m=1

∫ T

0

lim
ε→0

Ψm(Hm(θ + εη, r))−Ψm(Hm(θ, r))

ε
dr

= lim
N→∞

γ(N)∑
m=1

∫ T

0

Ψ′m(Hm(θ, r))Hm(η, r) dr

= lim
N→∞

γ(N)∑
m=1

∫ T

0

Ψ′m(Hm(θ, r))

(∫ T

r

∫ T

s

d∑
i=1

Gim(t− s, s− r) ηi(dt) ds+

∫ T

r

d∑
i=1

Rim(t− r) ηi(dt)

)
dr



Partial mean field limits in heterogeneous networks 29

= lim
N→∞

γ(N)∑
m=1

d∑
i=1

∫ T

0

(∫ t

0

∫ s

0

Ψ′m(Hm(θ, r))Gim(t− s, s− r) dr ds+

∫ t

0

Rim(t− r) dr

)
ηi(dt)

=

d∑
i=1

∫ T

0

∫ t

0

lim
N→∞

γ(N)∑
m=1

(∫ s

0

Gim(t− s, s− r)Ψ′m(Hm(θ, r)) dr +Rim(t− s)Ψ′m(Hm(θ, s))

)
ds ηi(dt),

where all interchanges of integration, summation and taking limits are justified by dominated convergence.
From the last line we deduce the existence of xθ ∈ CdT satisfying (5.21). SinceHm(0, r) = 0 and Ψ′m(0) = 0,
we have δΛ(0; η) = 0 identically.

Next, we demonstrate (4), namely that Λ∗ only assumes finite values on the set ACdT , that is, Λ∗(x) <

∞ implies that for every ε ∈ (0,∞) there exists δ ∈ (0,∞) such that
∑d
i=1

∑n
j=1 |xi(bj)−xi(aj)| < ε when-

ever n ∈ N, 0 ≤ a1 < b1 ≤ . . . ≤ an < bn ≤ T and
∑n
j=1(bj−aj) < δ. In order to do so, we follow the strat-

egy of proof in [12], Theorem 3.1. We consider θi :=
∑n
j=1 ξ

j
i (δbj − δaj ) where ξji ∈ Rd is arbitrary. Then

we evidently have θi((r, T ]) =
∑n
j=1 ξ

j
i 1[aj ,bj)(r). Denoting CT := T sups,t∈[0,T ] supi,m∈N |Gim(t, s)| +

supt∈[0,T ] supi,m∈N |Rim(t)|, it follows that

Λ(θ) ≤ sup
m∈N

∫ T

0

Ψm(Hm(θ, r) dr ≤
∫ T

0

Ψ0

(
CT

d∑
i=1

θi((r, T ])

)
dr

=

∫ T

0

n∑
j=1

Ψ0

(
CT

d∑
i=1

ξji

)
1[aj ,bj)(r) dr ≤ sup

j=1,...,n
Ψ0

(
CT

d∑
i=1

|ξji |

)
n∑
j=1

(bj − aj)

=: C(T, ‖ξ1‖1, . . . , ‖ξn‖1)

n∑
j=1

(bj − aj),

where ‖ξj‖1 :=
∑d
i=1 |ξ

j
i |. As a consequence, we deduce from the definition of Λ∗ that for all τ ∈ (0,∞)

and ‖ξj‖1 ≤ τ
d∑
i=1

n∑
j=1

ξji (xi(bj)− xi(aj)) ≤ C(T, τ, . . . , τ)

n∑
j=1

(bj − aj) + Λ∗(x).

Taking ξji as the τ times the sign of xi(bj)− xi(aj), it follows that

d∑
i=1

n∑
j=1

|xi(bj)− xi(aj)| ≤ τ−1C(T, τ, . . . , τ)

n∑
j=1

(bj − aj) + τ−1Λ∗(x). (5.24)

If Λ∗(x) <∞, we can now choose τ first and then δ to make the left-hand side arbitrarily small.
It only remains to prove (5), the compactness of the level sets of Λ∗. By step (4) and the lower

semicontinuity of Λ∗, its level sets are closed subsets of ACdT . Thus, the Arzelà-Ascoli theorem provides
a compactness criterion. First, observe that for all t ∈ [0, T ] we have for x ∈ ACdT with Λ∗(x) ≤ α that

d∑
i=1

|xi(t)| = sup
θ∈Θt

d∑
i=1

∫ T

0

xi(t) θi(dt) ≤ α+ sup
θ∈Θt

Λ(θ) <∞,

where Θt is the finite collection of all θ for which each coordinate is either δt or −δt. Second, for the proof
of the uniform equicontinuity of the functions x ∈ ACdT with Λ∗(x) ≤ α, we recall from (5.24) that

d∑
i=1

|xi(t)− xi(s)| ≤ τ−1C(T, τ, . . . , τ)(t− s) + τ−1α,

which converges to 0 independently of x when s ↑ t and τ →∞. 2



Partial mean field limits in heterogeneous networks 30

Acknowledgement

We thank Jean-Dominique Deuschel and Nina Gantert for their advice on the topic of large deviations.
We are also grateful to Oliver Kley for drawing our attention to preferential attachment models. The first
author further acknowledges support from the graduate program TopMath at Technische Universität
München and the Studienstiftung des deutschen Volkes.

References

[1] S.M. Ahn and S.-Y. Ha. Stochastic flocking dynamics of the Cucker-Smale model with multiplicative
white noises. J. Math. Phys., 51(10):103301, 2010.

[2] E. Asplund and R.T. Rockafellar. Gradient of convex functions. Trans. Amer. Math. Soc., 139:
443–467, 1969.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512,
1999.

[4] S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald, and J.E. Stiglitz. Liaisons dangereuses:
Increasing connectivity, risk sharing, and systemic risk. J. Econ. Dyn. Control, 36(8):1121–1141,
2012.

[5] F. Bolley, J.A. Cañizo, and J.A. Carrillo. Stochastic mean-field limit: non-Lipschitz forces and
swarming. Math. Model. Methods Appl. Sci., 21(11):2179–2210, 2011.

[6] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pages
132–139, New York, 2003. ACM.

[7] J.-P. Bouchaud and M. Mézard. Wealth condensation in a simple model of economy. Phys. A, 282
(3–4):536–545, 2000.

[8] R. Buckdahn, J. Li, and S. Peng. Nonlinear stochastic differential games involving a major player
and a large number of collectively acting minor agents. SIAM J. Control Optim., 52(1):451–492,
2014.

[9] A. Budhiraja and R. Wu. Some fluctuation results for weakly interacting multi-type particle systems.
Stoch. Process. Appl., 126(8):2253–2296, 2016.

[10] R. Carmona and X. Zhu. A probabilistic approach to mean field games with major and minor
players. Ann. Appl. Probab., 26(3):1535–1580.
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