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Abstract

Since 2008, genomics data has been outpacing Moore’s Law by a factor of four, and
we are still only at the beginning of understanding biological systems as a whole. One of
the most important regulatory levels in every process of life are the networks of directly
or — via the corresponding proteins or RNAs — indirectly interacting genes. Although the
learning of these gene regulatory networks from given biological data has been intensively
studied in recent years, still only some smaller regulatory subnetworks are understood.

In this thesis, I examine three key objectives from the field of gene regulatory network
inference. First, the analysis of gene expression time series data. This is done by both
the integration of additional knowledge about biological network structures and already
known interactions, as well as the identification of suitable data discretization proced-
ures. Second, the development of an intuitive and easily adaptable analysis workflow to
predict so-far unknown regulatory relations. Third, the integration and representation
of heterogeneous biological data retrieved through experiments, as well as predicted data
for the inference of gene regulatory networks.

I present two novel approaches for the analysis of time series on the first objective.
The first approach uses the concept of Dynamic Time Warping on discretized time series
profiles to learn undirected gene regulatory networks. The profiles are discretized based
on the angle between two consecutive time points. Additionally, an alternative distance
matrix was trained from the profiles of known interacting genes. Dynamic Time Warping
uses this distance matrix and the time series profile for pairwise alignments and ranks
the corresponding gene pairs according to their similarity. The second approach uses
Bayesian learning on time series, discretized to a binary state space. The aim of this
approach is to infer a directed network. Additionally, the known tendency of biological
networks to form scale-free networks is integrated into the learning process. Scale-free
networks are typical for most biological or social networks and imply that the majority
of nodes have only a few connections, while a small number of nodes is linked to many
other nodes. Both approaches were evaluated against synthetic and biological data sets
and performed equally or better than state-of-the-art methods in several benchmarks.

I also present the development and application of a data driven and iterative analysis
framework to identify new regulatory interactions in normal human urothelium (NHU)
cell lines. This framework adopted a novel ranking approach, whereby changes in the

amplitude of experiment and control time series were compared to identify common



regulatory elements. The transcription factor (TF) ELF3 was identified and verified in
the lab as an early regulator of NHU.

The last approach studies the integration of multiple heterogeneous data sources for
four different eukaryotic organisms for the inference of gene regulatory networks. These
data sources consist of predicted data, such as TF binding site predictions or text mining
from PubMed abstracts, or experimental data, such as ChIP-seq or microarrays. I
present a descriptive and predictive study of these data sources to infer their structure,
their interdependencies, and their importance for possible predictions.

The presented results show that current gene regulatory prediction methods still can
be improved and that the integration of additional data sources is an important step
in this process. Furthermore, it is shown that methods have to be adapted and that
an iterative approach towards a better understanding of the underlying processes and

structures leads to new biological insights.



Zusammenfassung

Seit 2008 hat die Datenmenge aus dem Genomicsbereich Moore’s Law bereits um
einen vierfachen Faktor tiberholt und wir sind dennoch erst am Anfang davon biologische
Netze in ihrer Gesamtheit zu verstehen. Eine der wichtigsten regulatorischen Ebenen in
jeglichem Lebensprozess sind die Netzwerke von direkt oder — iiber die entsprechenden
Proteine oder RNAs — indirekt interagierenden Genen. Trotz intensiver Studien iiber
das Lernen von genregulatorischen Netzwerken aus gegebenen biologischen Daten in den
letzten Jahren, kbnnen immer noch nur kleinere regulatorische Subnetzwerke beschrieben
werden.

In dieser Arbeit untersuche ich drei Kernziele aus dem Bereich der genregulatorischen
Netzwerkinferenz. FErstens die Analyse von Genexpressions-Zeitreihendaten. Dies wird
sowohl iiber die Integration von zusatzlichem Wissen iiber biologische Netzwerkstruk-
turen, bereits bekannten Interaktionen, als auch der Findung geeigneter Datendiskre-
tisierungsprozeduren durchgefithrt. Zweitens die Entwicklung von intuitiven und leicht
anzupassenden Analyseprozessen fiir die Vorhersage von bisher unbekannten regulato-
rischen Beziehungen. Drittens die Integration und Darstellung von heterogenen, biolo-
gischen Daten fiir die Ableitung von genregulatorischen Netzwerken. Die verwendeten
Daten setzen sich sowohl aus Experimenten, als auch Vorhersagen zusammen.

Fiir das Erste der oben genannten Ziele beschreibe ich zwei neue Ansétze fiir die Ana-
lyse von Zeitreihendaten. Der erste Ansatz wendet das Konzept von Dynamic Time
Warping auf diskretisierte Zeitreihenprofile an, um ungerichtete genregulatorische Netz-
werke zu lernen. Die Profile sind diskretisiert durch die Steigungswinkel zwischen jeweils
zwei aufeinander folgenden Punkten. Zuséatzlich wurde eine alternative Distanzmatrix
mit Hilfe der Profile von bereits bekannten interagierenden Genen trainiert. Dynamic
Time Warping benutzt die Distanzmatrix und die Zeitreihenprofile fiir paarweise Align-
ments und bewertet die entsprechenden Genpaare nach ihrer Ahnlichkeit. Der zweite
Ansatz wendet Bayessches Lernen auf Zeitreihen an, die in einem bindren Zustandsraum
diskretisiert wurden. Das Ziel dieses Ansatzes ist es ein gerichtetes Netzwerk abzuleiten.
Zusétzlich wird die bekannte Eigenschaft von biologischen Netzwerken, skalenfreie Netz-
werke zu formen, in den Lernprozess integriert. Skalenfreie Netzwerke sind typisch fiir
die meisten biologischen oder sozialen Netzwerke und implizieren, dass die Mehrheit der
Knoten nur eine geringe Anzahl von Verbindungen aufweisen, wihrend eine kleine An-

zahl mit vielen anderen Knoten verlinkt ist. Beide Ansétze wurden gegen synthetische



und biologische Datensétze evaluiert und erreichten gleichwertige oder bessere Ergebnis-
se auf verschiedenen Benchmarks als andere aktuelle Methoden.

Dariiber hinaus présentiere ich auch die Anwendung eines entwickelten, datengetrie-
benen und iterativen Analyseverfahrens fiir die Identifizierung neuer regulatorischer In-
teraktionen in normalen, menschlichem Urothelium (NHU - Normal Human Urothelium)
Zelllinien. Dieses Analyseverfahren beinhaltet einen neuen Rankingansatz, wodurch Ver-
dnderungen in den Amplituden von Experiment- und Kontrollzeitreihen miteinander
verglichen werden um gemeinsame regulatorische Elemente zu finden. Der Transcrip-
tionsfaktor (TF) ELF3 wurde identifiziert und verifiziert im Labor als ein frither Regu-
lator in der Entwicklung von NHU.

Der letzte Ansatz beschéftigt sich mit der Integration von verschiedenen heterogenen
Datenquellen fiir vier unterschiedliche eukaryotische Organismen zur Inferenz von gen-
regulatorischen Netzwerken. Diese Datenquellen bestehen aus vorhergesagten Daten,
sowie TF-Bindestellenvorhersagen, Text Mining aus PubMed Zusammenfasssungen oder
experimentellen Daten, wie ChIP-seq oder Microarrays. Ich stelle eine deskriptive und
pradiktive Studie fiir diese Datenquellen vor, um ihre Struktur und Interdependenzen im
Detail zu beschreiben sowie ihrer Bedeutung fiir mégliche Vorhersagen herauszuarbeiten.

Die vorgestellten Ergebnisse zeigen, dass gegenwartige genregulatorische Vorhersage-
methoden immer noch verbessert werden miissen und dass die Integration von zusatz-
lichen Datenquellen ein wichtiger Schritt fiir diesen Prozess ist. Weiterhin wird gezeigt,
dass Methoden an die speziellen Fragestellungen angepasst werden miissen und dass mit
einem iterativen Ansatz ein besseres Verstindnis der zugrundeliegenden Prozesse und
Strukturen geschaffen werden und dies somit zu neuen biologischen Einsichten fiithren

kann.

Vi
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CHAPTER 1

Introduction




1 Introduction

1.1 Motivation

Probably one of the most frequently introduction slides used in talks on bioinformatics
or systems biology is a graphic showing the exponential increase in available data versus
the understanding of the system itself. The latter is usually depicted as a gently inclining
linear function, in extreme contrast to the steep increase in the amount of data. With
the rise of new computer technologies, the internet and more and more high throughput
methods for the analysis, we have powerful tools at our disposal, which allow us to
gain new insights into fields that were out of our reach before. The last two decades
provided biologists with a tremendous amount of new possibilities to study biological
processes on a detailed level and to analyze systems as a whole. Methods such as
mass spectrometry, DNase footprinting, gene expression, methylation or copy number
analysis via microarrays, and the more recent technology of next-generation sequencing
— to name only a few of the most prominent examples. And even for the relatively
young next-generation sequencing discipline, follow-up techniques already exist. So-
called, next next generation sequencing methods exceed the methods currently used
by several magnitudes with respect to speed and sequencing depth. While the first
sequencing of the human genome took more than a decade and cost several billion
dollars (Human Genome Project, finished in 2003), these new techniques speed up the
genome sequencing process to days — if not hours (depending on the organism) — and
reduce the costs to a few thousand dollars. All these continuously evolving techniques
allow us to create an amount of data beyond human conceivability, and this is currently
the greatest limitation. We are just beginning to understand what this data means, and
we are still far from understanding whole biological systems that are more complex than
the single-cell organism F.cols.

One elementary step towards understanding the various data sources is to develop
methods which extract as much knowledge as possible from each data set. This thesis
focuses on the field of gene regulatory networks and their inference from given time series
data. Gene regulatory networks are one of the essential layers of controlling the cellular
system, and if we gain a deeper insight into their functionality and structure, we also
reach a better understanding of disease mechanisms and their cures. There is an obvious
need for methods which can deal with large-scale data sets and even though there is a
lot of data available, the dimension of the search space in data analysis is even bigger.
The human genome is currently supposed to have approximately 20,000 protein coding
genes, whose sequences only cover about 1.5% of the human genome. Not too long ago,

the majority of the genome sequence was supposed to be junk DNA with no function at



1.2 Contributions

all, but this number has been turned upside down to a current estimate of 80% of DNA
which also encodes regulatory elements. Focusing on the protein coding genes alone
already leaves us with a search space of 20,000? possible directed interactions (including
self-regulations and feedback loops). This scales up further, since this is the search space
for each measured condition of a cell type as well as for each cell type itself.

The second and even more challenging task is to bring together the various fields of
study on biological systems and to integrate the gained knowledge to improve or even
enable new gene regulatory network predictions. There were nearly one million new pub-
lications in PubMed only in 2011, covering novel approaches, data sets and insights into
various biological processes, which can be of great value to new studies if their findings
can be integrated. An impressive new resource are the results of the recently published
ENCODE (Encyclopedia Of DNA Elements) project in Nature, Genome Biology and
Genome Research on finding all functional elements in the human genome sequence.
440 scientists in 32 laboratories all over the world have participated in this project since
2003. They have generated about 15 trillion bytes of raw data and so far have used more
than 300 years of computer time for their analysis. It may seem like a Herculean task
to pick and combine the right data sets, but with every effort towards solving this task,
a step towards a better understanding is made.

For these reasons, this thesis deals with the development of new methods to analyze
time series experiments, their application to a real-world example and the integration of

available data sources into the prediction process of gene regulatory networks.

1.2 Contributions

This thesis presents five main contributions for the task of inferring and understanding
gene regulatory networks. As stated in the previous section, it is essential to get out
as much use as possible from generated data sets. To this end, two newly developed
methods are presented here, which focus on the learning of gene interactions from time
series data.

The first method, described in Chapter combines a Dynamic Time Warping
(DTW) approach with discretized time series profiles to account for noise in the data.
This approach is also able to deal with time shifts and different strengths and velo-
cities of gene regulatory effects. Additionally, a semi-supervised method variant was
developed which uses known gene regulatory interactions in the organism of interest—in
the presented study E. coli or S. cerevisiae—to calibrate an organism specific distance

metric for the DTW calculations [19]. Both methods performed equally well and in some
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cases superior compared to established methods. The methods are implemented in R
and C and can deal with large-scale comparisons on a genome-wide level.

A second, more advanced method is described in Chapter [3.2] This method uses a
Bayesian learning approach on gene expression time series, discretized to a binary state
space [18]. This approach integrates the known tendency of biological networks to form
scale-free networks into the network inference process. This particular network structure
implies that the majority of the genes only interacts with a few other genes, while a small
percentage of the genes functions as so-called hub genes, which have many interaction
partners. The presented method outperforms other methods like ARACNE, Banjo or
MRNet, especially for the task of finding hub genes. So far, there is no other method
capable of integrating the hub gene structure, and which can be applied to large data
sets.

Chapter[d.I]presents a data driven analysis framework which leads to the identification
of a new transcription factor for the development of normal human urothelium (NHU)
[17]. As described in Section gaining insight into a given data set strongly depends
on data quality, the choice of the methods, and the iterative exchange of hypotheses
and results between biologists and data analysts. The outlined approach includes a
detailed analysis pipeline which resulted in the better understanding of factors regulating
the differentiation and proliferation of NHU. Furthermore, follow-up experiments were
designed and executed following the analysis’ findings.

One of the key findings of this thesis is the necessity of integrating additional, already
existing knowledge into the learning process of gene regulatory networks. Chapter [5.]
gives an overview of the various available data sources for finding gene regulatory inter-
actions and how these sources can be integrated and used for further predictions.

The fifth contribution of this thesis is the visualization of data sets. In particular, the
interactive visualization of gene expression time series and the visualization of a large-
scale heterogeneous gene interaction database. Usually, when starting to work on a new
data set, one of the first steps is to visualize the data to get a better understanding of its
structure and potential noise sources. In Appendix [A-1]of Chapter screenshots show
the interactive gene expression time series visualization (available online), which allows
to explore a given data set on gene level as well as on probe set level. Especially for
large heterogeneous data collections it is important to get an overview of the different
interdependencies and the overall structure of the data. The Circos plots in Figures
b.2I5-3] [5-4] and 5.5} presented in Chapter [5.1] give a detailed overview of the collected

and predicted evidences for gene interactions.



1.3 Organization of this Thesis

1.3 Organization of this Thesis

Chapter [2| gives an overview of the biological background and of current gene regulatory
network inference approaches. This thesis primarily focuses on gene interactions, which
are briefly introduced as well as the structure and attributes of gene regulatory networks.
This chapter also shows an exemplary process on how to work with real world data
sets in the field of systems biology. In the following, the initial steps in data pre-
processing, adapting algorithms, the difference between dynamic, and steady-state data
are introduced. Additionally, the proper evaluation of predicted networks is discussed.
The last part of this introduction describes different learning approaches, ranging from
information theory models to ordinary differential equation models and gives a brief
overview of the task of integrating several heterogeneous data sources to improve the
predictions.

Chapter [3| presents two different approaches on gene expression time series data. The
first one is based on Dynamic Time Warping and infers an undirected network. The
learning process follows two main ideas. An angle based discretization to describe the
time series and a dataset-specific distance matrix, which is calibrated with already known
interacting genes. The second approach infers a directed network and integrates the
knowledge about the topological features of biological networks into the learning process.
A typical attribute of a biological network are so-called hubs, highly linked (interacting)
genes. Only a few hubs exist, while the majority of genes has only a few interaction
partners (scale-free structure). The approach also uses time series and integrates the
scale-free property as prior knowledge into a Bayesian learning process.

An example of working with real world biological data sets is presented in Chapter [4]
which describes a data driven analysis pipeline to analyze a microarray time series from
normal human urothelium experiments. The approach shows how to overcome several
quality issues, like missing data points, a possible discretization method, and how to
iteratively reduce the set of candidate genes to a manageable size. The outcome of this
project was the identification of the transcription factor ELF3 as an important regulator
in human urothelium. Several other potentially interesting genes could be identified and
additional time series experiments were designed and executed subsequently. Another
result of this analysis was the interactive visualization platform of the data sets, which
allows biologists to easily explore data sets.

Chapter [5| presents the application of several bioinformatics methods for the integ-
ration of heterogeneous data sources for the prediction of a gene regulatory network.

For this task, several heterogeneous data sources on gene interactions were collected.
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Among the collected data sets are text mining results, transcription factor binding site
predictions, co-expression and protein-protein interaction networks, and ChIP-seq ex-
periments. The aim of this data integration was to identify relevant data sources for
generating a reliable database of prior knowledge for different organisms, like human
and mouse. The integrated data sets where visualized for a first descriptive analysis and
then more sophisticated methods, like Random Forests, were applied to identify feature
importance and to predict a gene regulatory network.

The final Chapter [6] concludes the work. It discusses achieved results and possible

future analyses, which tie in with the approaches and insights presented in this thesis.



CHAPTER 2

Inference of Gene Regulatory Networks

The following sections give a short overview of the state of the art in network infer-
ence. Prior to this the biological background of gene regulatory networks are briefly
introduced. These first sections describe the concept of gene interactions and the spe-
cific structure and attributes of biological networks. Furthermore, the field of systems
biology is introduced and an exemplary analysis workflow, which is based on multiple
iterations of analyses between biologists and bioinformaticians. The second part of this
chapter focuses on the data and evaluation of the analysis. In particular, the complexity
of biological data and the various processing approaches and how synthetic data can be
used to simulate experiments. Additionally, the aspect of proper evaluation of predic-
tions and the differences of dynamic and static data sets are discussed. The last sections
describe the different gene regulatory network inference models and the general concept

of integration of heterogeneous data sources.



2 Inference of Gene Regulatory Networks

2.1 Gene Regulatory Networks

Our current understanding of a biological cell underlies the principle of different regulat-
ory and interacting entities, which form a synergistic ensemble and result in the different
observable phenotypes. These entities can be metabolites, proteins, the various forms of
RNA (like mRNAs or ncRNAs), and form different intertwined layers of regulation. The
overall aim would be to understand the full structure of these regulatory processes and
to develop new cures for diseases. One level of insight towards this aim is the learning
and analysis of gene regulatory networks (GRNs). GRNs focus on the interactions and
interdependencies between genes in a cell and how signals are transferred and regulated
between those genes.

Tremendous advances have been made in recent years in the various fields of biology,
biochemistry and computer science, which allow to analyze biological systems in detail.
However, the understanding of the GRNs as a whole is still limited to only the most
prominent model organisms, such as S. cerevisiae or E. coli. Several insights have been
gained especially for human, mouse and fruit fly, but mostly only single pathways or
subnetworks are understood out of the actual system they are embedded in.

Mathematical modelling of biological systems can help us to better understand the
underlying processes and to interpolate our current knowledge. Still, those models often
underlie the limitation of prior knowledge, lack of data quantity and/or quality as well
as the scientist’s assumptions driving the analysis. The processes on the different levels
of gene, cell, organism and environment, their dependencies and interactions are barely
understood due to their complexity, and the more details we try to incorporate in our
systems, the more complex our models become. For this reason, the field of systems
biology emerged in recent years and a short introduction on this topic is given in the
following sections.

The primary aim of this thesis lies on better understanding the level of transcription
factor (TF) target (TG) interactions in gene regulatory networks, which play an essential
role in systems biology. A TF is a protein which binds to a DNA sequence and thereby
controls the transcription rate of another gene, its target. The DNA sequence is located
in the so-called promoter region of a gene and each TF binds only to a specific sequence,
its transcription factor binding site (TFBS). The majority of these TFBSs is supposed
to be close (within 1000 or even 500 base pairs) upstream of the transcription start site
(TSS) of the regulated gene. Nevertheless, TFBS can be also located several thousand
base pairs distant from the TSS, both upstream and downstream.

The regulation of a gene’s transcription rate by a TF can either increase (activating)
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or decrease (silencing). A TF can also form a protein complex with other TFs or proteins
for the regulation process. TF-TG interactions are supposed to be the key regulators in
cellular systems, but in recent years more and more additional factors of regulation (like
ncRNAs or methylation) have been identified. When studying GRNs on the TF-TG
level, one should be always aware of the additional perturbations not measured on the

system.

2.1.1 Gene Interactions

As mentioned above, the interactions between two genes do not necessarily imply a
physical interaction, like a TF which binds to the promoter region of its target gene,
but might also refer to a indirect regulation, like on the protein or RNA level. When
interpreting the results of GRN predictions it is important to note that some predicted

interactions might be also caused by these indirect factors.

2.1.2 Structure and Attributes

The interactions between several genes can be represented as a network in which each
node represents a gene and each link between the nodes a particular interaction. These
interactions can be either directed if the causal effects are known, as for the relationship
between TF and TG, or undirected. The latter can be used to describe co-expression
networks and link pairs of genes which were found to have a strong correlation. A third
option are partially directed graphs as a mixture of both. Networks can be used to
describe either a particular state of the gene regulatory system or to give an overview of
all possible interactions. Additionally, the edges in such a network can be labeled with
a probability which defines the certainty for a connection between two genes. Biological
network structures have some interesting properties, such as hub genes or that the small

world principle applies, which are discussed in more detail in Chapter [3.2] of this thesis.

2.1.3 Systems Biology

The field of systems biology incorporates various disciplines, like transcriptomics, pro-
teomics, metabolomics etc., and attempts to understand biological systems (organisms)
as a whole. To achieve this goal it is important to connect the different disciplines and
to develop mathematical models which allow to understand and simulate a system.

As already stated above, the focus of this thesis is on the transcriptomics part. Nev-

ertheless, the concept of systems biology applies also to a single discipline and it is
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necessary to find suitable approaches and frameworks to handle the multidimensional
complexity of biological systems and in particular GRNs.

A detailed overview of the different steps for a possible analysis framework of biological
systems is given in Figure [2.1 This framework adapted from machine learning for a
system and data from corresponding experiments follows three basic steps. These steps
can be categorized as ideation (creative process to generate hypotheses), descriptive
analysis (understanding the data structure and interdependencies) and prediction and
interpretation. The strength of this process lies in its iterative nature, which allows and
also requires feedback loops and a stepwise approach towards better understanding the

system.

10
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Ideation Understand the Interpret
Data Structure and Predict
Hypotheses Data Preprocessing ::]nglpﬁs:iez(ﬁ;?‘
! | | |
Generate Explore Visualize Learn
Prior Knowledge Data Selection Evaluation

Experiments

Figure 2.1: Iterative approach to analyze biological systems. The process of in-
ferring a biological system or gaining a better understanding of single processes within

a system is described here with the three domains, ideation, understand the data struc-
ture and interpret and predict. The overall process is an iterative process which requires
continuously, exchange between the three domains and relies to a great extent on the un-
derlying experiments. These experiments can be a newly created data set to follow a hy-
pothesis, experiments from publicly available databases, or validation experiments to test
intermediary results or the final predictions. The first domain on the left, ideation, deals
with the generation of hypotheses about a system of interest. These hypotheses are de-
rived from prior knowledge arising from literature, other experiments or even previous
predictions which have to be evaluated in the lab. The result of this ideation process, is

a hypothesis (or a list of hypotheses) and properly designed and executed experiments

to deal with the resulting tasks. The bidirectional arrows (1) and (2) also imply that the
design of these experiments has to be reconciled with the model selection and data pro-
cessing steps. The domain in the middle, represents the second domain: understanding
the data structure. It is crucial to understand the quality, structure and statistical signi-
ficance of the available data to be able to assess the quality of any prediction in any of the
later steps. Furthermore, it is of course important to have deeper knowledge about the
analyzed system itself. Several data preprocessing and transformation steps might be ne-
cessary to bring the data in a proper format and to reduce noise in the data set. To gain
a better understanding, the structure (distribution, ranges, means) has to be explored
and the data itself visualized to compare the different results. This also allows to select

a suitable subset of the data for the third analysis step in the right domain. This can be
further refined or already validated with additional experiments in the lab. In the last do-
main, strongly depending on the two previous domains, it is important to make the proper
choice of a predictive model which can give new insights into the system of interest. The
predictions and interpretations of the data have to be thoroughly validated (again, also
with experiments) and in an ideal circle, these newly gained insights, lead back to the
ideation process (arrow (3)).

11
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2.2 Data and Initial Considerations

2.2.1 Biological Data and Algorithm Adaptation

Over the last two decades an immense amount of publically available interaction data-
bases were established. These databases cover fields like protein-protein interactions
(STRING, DIP, BIND or HPRD), metabolic pathways (KEGG, ENZYME), TFs and
interactions (JASPAR, TRANSFAC, RegulonDB), and many more [67]. Also more and
more fully sequenced genomes are available (Ensembl, NCBI), which can be searched
for transcription factor binding sites. In addition to these databases, further valuable
insights can be extracted from the large amount of scientific literature. Several text
mining tools have been developed which allow the automatic extraction of interaction
data from the literature (see Chapter for examples). Another source of interest can
be functional annotations of genes. Gene Ontology [6] offers an hierarchical description
of genes and gene product attributes for the domains, cellular component, molecular
function and biological process. All these listed sources are possible sources of prior
knowledge. This knowledge can be used to reduce the search space of possible interac-
tion partners, improve or validate the predictions, or use the available knowledge itself
to make new predictions about interdependencies in a GRN.

The main focus of this thesis lies on the level of interactions between genes and es-
pecially deriving new insight from gene expression time series data (microarray based).
These interactions can be physical interactions (e.g., a TF binds to the promoter region
of its TG) or indirect interactions (e.g., regulation on protein level).

Due to the fast changing landscape of available biological data, it is also an important
task to adapt algorithms for the specific difficulties which arise with these multifaceted
types of data. Each of these data sets comes with its specific strength but also drawbacks
as usually experiments in the lab can strongly depend on their execution (e.g. scientists
and environment). Additionally, the available funding can limit the statistical strength
of the experimental setup. Further factors of influence can be new gene annotations,
technical advances or newly gained insights into the gene regulatory system of interest.
As a result of these constraints, hardly any algorithm is applicable out of the box to
these data sets, rather, they have to be re-evaluated and modified for each analysis. Still,
the major advantage to the discussed synthetic data sets in the next section of biological

experiments is the possibility to actually verify the predictions.

12



2.2 Data and Initial Considerations

2.2.2 Synthetic Data and Evaluation

One major challenge for each newly developed method is the unbiased evaluation against
established methods. Biological data can only be of limited help to assess the perform-
ance of a method due to the huge amount of unknown and also uncontrollable factors
which influence a biological system. Additionally, as mentioned in the previous section,
most of the algorithms have to be adapted to the specific task. This might introduce a

certain bias towards favoring a particular easy-to-use and modifiable algorithm.

Establishing a Synthetic Gold Standard

Several attempts have been made in the last couple of years to establish a synthetic
standard which allows a reliable comparison platform between the different methods.
The goal of these methods is to offer a data generation workbench which allows to control
all factors of influence and to introduce perturbations on a gene regulatory system.

One of the best-known attempts to install common synthetic evaluation standards for
systems biology models is the annual “Dialogue on Reverse-Engineering Assessment and
Methods” (DREAM) which exists since 2006 (http://www.the-dream-project.org/).
Every year, the DREAM project offers open challenges, mostly based on synthetic data
in the area of systems biology, in which the participants can compare their predictions or
for which the different predictions are combined in a wisdom of the crowd approach [94].
The data and the synthetic data generating tools are publically available at the end of the
challenges. The GeneNetWeaver (http://www.tschaffter.ch/projects/gnw/)) offers
an intuitive open-source framework to generate benchmark in silico steady-state and
time series expression data for the prediction of synthetic gene regulatory networks. This
framework has been used for several DREAM challenges and offered valuable insights
into the different network inference methods as well as into the requirements for a reliable
evaluation [I17, 95]. The gene expression data is simulated with a system of ordinary
differential equations, which are supposed to adequately describe the dynamics of the
mRNA and the protein concentration for each gene. These dynamics are regulated
by a maximum transcription rate, a translation rate, as well as mRNA and protein
degradation rates and an input function which computes the relative activation of a
gene (active or inactive). Further details of this approach are described by Marbach
et al. [95]. This method allows to generate steady-state data but also to introduce an
external perturbation on the system (to simulate different experimental conditions) and
to study the behavior of the system over time. The GeneNet Weaver workbench was also
used for the evaluation of the presented method in Chapter
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2 Inference of Gene Regulatory Networks

In addition to the importance of finding suitable approaches which are capable of
describing the dynamics of gene interactions, it is also crucial to apply these functions
on realistic biological network structures. Hence, the generation of plausible networks
for the data generation has to be addressed, too. The GeneNetWeaver approach uses
known biological networks, like S. cerevisiae or E. coli, for the extraction of subnetworks.

Another synthetic data generation tool, which also uses subnetworks (but a dif-
ferent network sampling method), is SynTReN (http://homes.esat.kuleuven.be/
~kmarchal/SynTReN/index.html). This generator simulates gene expression steady-
state data based on Michaelis-Menten and Hill kinetics [143]. A more flexible software is
GeNGe, which runs as a web application and allows to choose between various network
as well as synthetic data generation options (http://genge.molgen.mpg.de). The gene
expression algorithm is based on a non-linear differential equation system [62]. The data
simulation tool Netsim (http://www.medcomp.medicina.unipd.it/bioing/netsim/)
creates networks with a scale-free distribution and calculates the gene activity with dif-
ferential equations, which also account for saturation effects (like GeneNetWeaver) [36].

Unfortunately, the last three mentioned approaches have not been further developed
since their publication and are only to a limited extent intuitively applicable for the data
generation due to outdated packages, software bugs and missing technical documenta-
tion. Currently, the DREAM project offers the most reliable synthetic — and for the
recent challenges, also biological — data sets for inferring gene regulatory networks and
assessing the performance of the applied methods. Still, it should be noted that this
cannot replace the experimental validation of predictions in the lab and that of course a
bias is always introduced in the synthetic data set by the choice of a certain algorithm

for the data generation.

Finding the Adequate Evaluation Measure

Besides the necessity for a proper gold standard, the choice of a suitable evaluation
measure is crucial for assessing the performance of a method with respect to predicting
a reliable network structure.

The classical task consists of binary predictions, which have the goal to assess how well
a method can predict if a connection between two genes exists or not. This corresponds
to two classes for existing and not existing links. The comparison between the predic-
tions of a method and a given gold standard can then give insights into the method’s
performance. Table shows the possible outcomes of such a binary prediction.

Various possible metrics can be derived from this confusion matrix, which can give an
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2.2 Data and Initial Considerations

Table 2.1: Confusion Matrix
Predicted Class
positive negative

Actual Class
positive  true positive (TP) false negative (FN)
negative false positive (FP) true negative (TN)

Classifications of predicted links as true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN).

estimate how well a method performs on a certain task. The main difference between the
metrics lies in the influence of each of the four outcomes from the confusion matrix in
the chosen evaluation score. Simple metrics are the rates between the confusion matrix
entries, like the true positive rate (TPR = TPTJF%), which is also called sensitivity or
recall, or the corresponding true negative rate (TNR = FI;‘FJF%), also referred to as
specificity. Further rates are the false positive rate, the false negative rate or the rate
of positive predictions. Another, well-known metric is the precision which is defined as
TPTJF%. In addition to these rates, more complex metrics like the Phi coefficient, the
Mathews correlation coefficient or the F-score exist. A more detailed discussion on the
different metrics is given by Fawcett [40] and Kiiffner et al. [129].

However, reducing the prediction task to binary classes is a simplification since genes
can up- and down-regulate their targets or be co- and anti-correlated. This already leads
to a three class problem (up-regulation, down-regulation and no interaction). An even
more challenging task is the highly unbalanced nature of the positive and negative (no
interaction) classes, since the majority of genes only interacts with a few other genes and
the predictions have to deal with sparse networks. When predicting on real world data
sets and using given gold standards, one should always be aware that apparently not
interacting genes might actually be interacting genes and of course this also influences
the performance of the methods.

The above mentioned metrics are usually combined for the performance evaluation of
a method, since they represent different aspects of a prediction. A commonly applied
evaluation method for classification tasks are Receiver Operating Characteristic (ROC)
curves. ROC curves combine the TPR with the FPR and are the resulting visualization
if a step-wise increased cutoff value (or threshold) is applied to a prediction and the
TPR and FPR are plotted against each other for each step. This curve can then be used

to assess the method’s performance with respect to sensitivity (TPR) and 1-specificity

15



2 Inference of Gene Regulatory Networks

(FPR) and to weigh these two measures against each other for the choice of a suitable
threshold. Fawcett et. al. [40] give a very detailed introduction to this topic as well as
the area under the ROC curve (AUROC) and the precision-recall (PR) curves, which are
briefly introduced in the following. The AUROC summarizes the results of ROC curves
in one value and the larger this value, the better the prediction is supposed to be. For a
two class problem an AUROC of 0.5 refers to randomly guessing the classification and
an AUROC of 1 to a perfect classifier. Another common evaluation curve are PR curves,
which plot the precision as a function of the recall (sensitivity) and also apply a step-wise
increased threshold on the prediction. In contrast to ROC curves, it is insufficient to
linearly interpolate between the points of the PR plot [34] to calculate the area under the
precision recall curve (AUC-PR). The calculation of precision and recall curves is more
sensitive than the ROC curves towards the difference in class distributions of positive
and negative examples in the data (also class imbalance or skew). This is also the case
for each point of the PR plot and if the class distribution strongly varies for different
thresholds (local class skew), the linear interpolation leads to an overly-optimistic curve
[34]. Davis and Goadrich show in [34] how to properly interpolate the PR curve with
the use of the analogous ROC convex hull. Additionally, it has been shown that a curve
dominates in ROC space if and only if it dominates also in the PR space [34]. Vice
versa, it is not necessarily true that a method optimizing the ROC curve also optimizes
the PR curve.

In general, ROC curves have the advantage of being less sensitive to the class distri-
bution and are hence a valid measure to compare the AUROC performance of different
methods on different networks. Still, the different PR curves should be additionally
used to assess the performance details for different thresholds. For the task of predict-
ing a network for a specific organism or to rank the TF-TG interactions, it is of more
importance to find the best tradeoff between precision and recall (finding as many as
possible true interactions while keeping the number of false interactions low). Hence,
PR curves are the more appropriate choice for an evaluation metric, but it can be useful
to also include ROC curves for specific tasks [129]. There are several additional factors
of influence for the evaluation of network inference methods, like the unknown number
of false negatives in the data set which have yet not been discovered, or the split of
TFs and their TGs over the different sets used for the cross-validation (or training and
test sets). An introduction to this topic is given by Kiiffner et al. [129]. In case of the
cross-validation on predicted interactions it is suggested to divide the predictions into
four groups in which the prediction method has either seen both nodes (genes), only one

node (TF or TG) of the interaction, or none of the nodes. The performance of the pre-
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dictions can strongly vary due to these groups. Another important topic, which will not
be discussed in more detail here, is the difficulty of distinguishing direct from indirect
regulations in a predicted gene regulatory network. Several methods have been proposed
to overcome this issue, like the data processing inequality [97], partial correlation [25],
two-way ANOVA [85] or network deconvolution [41].

For this thesis, the different presented methods are evaluated with both AUROC as
well as AUC-PR to follow the suggestions above. In Chapter [3.2] the predictions extend

the binary prediction task also to a three-class prediction.

2.2.3 Data Pre- and Post-Processing

The data pre- and post-processing steps can have a large influence on the performance of
a method and should be applied carefully. Different data sets require different procedures
and often the processing steps have to be adapted specifically for a data set. Hence, the
processing steps are also discussed in Chapters and for each of the
specific tasks.

In general, four different pre-processing steps should be considered, data selection,
transformation or discretization, sampling and feature selection. For the first step it is
important to assess the data quality and structure and to select a suitable data subset
which is used for the further analysis. Second, some kinds of data require to transform
the data, like microarray data which has to be normalized to be able to compare the
different genes over different experiments. Examples of microarray pre-processing can
be found in Chapters and Additionally, the performance of the prediction
might be increased by using discrete rather than continuous values to represent gene
expression (or also any other data). This can decrease noise and complexity of the
data (see Chapters and . Possible discretization methods range from simple
mean, median or quantiles (unsupervised; equal-width or equal-frequency techniques)
to IR, ID3 or ChiMerge (supervised techniques) [93]. A more detailed overview of the
different methods is given by Garcia et al. [62] and a survey of discretization methods
on microarray data by Li et al. [90].

Third, if the number of data points is too large for applying the algorithm of choice,
the use representative (stratified) subsamples of the data set should be considered. Fur-
thermore, it is usually the case that for network inference problems, the number of linked
genes is magnitudes lower than the number of unlinked genes. Many algorithms can-
not account for this class skew (already discussed in the previous section), and either a

cost sensitive classifier is applied or samples of the classes are used for the training of a
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predictor. Several sampling procedures have been suggested. Most of these approaches
either oversample the minority class (linked genes) or undersample the majority class
(unlinked genes) to be of comparable size to the other class. The undersampling pro-
cedure SMOTE is described in Chapter 5.1} Feature selection is the fourth option which
can be either data or knowledge driven. The overall goal is to identify a smaller subset
of relevant features (either attributes or variables) which can be used in the construction
of a predictive model. The feature selection can be either on gene level or on the dif-
ferent samples or experiments, which are available for a particular gene. Again, various
methods exist for data driven feature selection and an example of this procedure is given
in Chapter A partly knowledge driven feature selection of possible genes of interest
is presented in Chapter [{.1} For this approach, prior knowledge is used to reduce the
number of genes. This prior knowledge can be for example from literature research or
publicly available databases.

After the method of choice is applied on the pre-processed data set, it is sometimes
helpful to further refine the results. This can be the simple application of a threshold,
which removes low scoring results, as described in the following section, or the integration

of additional knowledge to rank more or less likely results.

2.2.4 Time Series versus Steady-States

Steady-state gene expression data sets can be seen as snapshot of the cellular system at
a certain time with certain conditions. A practical use of this kind of data would be
the study of the differentially expressed genes in cell lines from different populations or
conditions, like healthy and cancer patients. The shortcoming of this approach is that it
does not capture the dynamics of the underlying gene regulatory network, which might
not only have one steady-state but several. Time series are a possible approach to study
the dynamics of regulatory networks over time, but they are usually more complex in
their experimental setup.

An ongoing debate is how and if it is possible to infer not only correlation but also
causality from experiments. The dynamics of time series experiments can give valuable
insight into the interdependencies between different genes, but still, the observed cause
and effect might be the result of an external perturbation of the system which we are not
capable of measuring. The same holds for steady-state experiments, where for example,
the differences between a regulatory system and its perturbated version can be analyzed.
In general, a gene expression time series or steady-state experiment will not be enough to

answer the questions of causality, and additional knowledge about the data-generating
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process is needed. An often quoted phrase on this topic is “correlation does not imply
causation”. A detailed overview of causal inference in statistic and in particular the
distinction between association and causation is given by Pearl [113].

Steady-state experiments can give a snapshot of the state of a cell and have the
advantage over time series experiments that the factor of time does not bring additional
limitations to the experimental setup. For time series experiments it is important to
control as precisely the synchronization of the experiments as possible, especially for the
control cell lines, to be able to perform statistical tests on the resulting data.

Time series experiments allow to study the dynamic effects of the perturbation of
a gene regulatory system. Possible perturbations can be single gene overexpression or
knockdown experiments. Usually, only a single factor is changed, and the remaining
system kept under the same conditions to limit the amount of variables of influence.

Some algorithms, like ARACNE or Banjo can be applied to both types of data, but

usually the focus of a method lies in one or the other type [7].

2.3 Overview of GRN Inference Models

A detailed overview of the different GRN inference models is given by Bansal et al. [7]
and Hecker et al. [67]. In the following, the most important concepts and their categories
are briefly introduced.

The aim in this context, given a set of gene expression data from an experiment
of interest, is usually either the network inference or the ranking of possible targets
(differentially expressed, pathways, TFs, etc.) of interest for a given set of data. Both
tasks demand different approaches and have their own challenges. An example for the
ranking task is given in Chapter [£.1]

In general, most network prediction algorithms can be described with the following
three categories of attributes [67]. First, the representation of the activity level of a
node (gene or protein) in the network, which can be Boolean (active or inactive) or
denoted by other (discrete) categorical or continuous values. Second, the network model
can be based on a stochastic or deterministic, static or dynamic type of model. The
third attribute describes the interactions between the nodes in the network which can
be directed or undirected, linear or non-linear. Figure gives an additional general
overview of the different network inference models which will be also described in more
detail in the following sections.

Another additional group of prediction methods are so-called meta-predictors, which

combine several approaches of the list above. One key finding of the DREAM challenge
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Figure 2.2: Matrix and graph representation of a network. A network can be
represented as a matrix where each entry is a directed link between two genes. Each row
represents all outgoing links from a particular gene, and each column the ingoing links. In
case of an undirected network the matrix is symmetric. The corresponding graph is shown
on the right and includes also self-regulations (node A) and feedback loops (D and F). It
should be noted that the matrix, also called adjacency matrix, does not necessarily imply
Boolean states and that each cell entry can also be filled with a continuous value which
represents the certainty or strength of this edge (interaction). In case of a directed net-
work, the relation of nodes can be termed with child and parents. In the example above,
E is the parent of its child node C.

analysis on network inference was that these wisdom of the crowd approaches outperform
the individual methods (especially when only the top ranked methods are combined) and
that it usually improves the predictions if the best performing methods are combined by

the average rank of their combined edges [95].

2.3.1 Information Theory Models

One of the simplest network learning approaches use correlation, which is either Pearson’s
or Spearman’s correlation coefficient. This approach is rather a clustering approach
based on the idea that genes with similar expression profiles can be grouped together
[38]. The result of this correlation analysis is a co-expression network with undirected
interactions between pairs of genes (an example of such an analysis is given in Chapter
4.1)). The strength of the interaction is quantified by the correlation coefficient. An

empirically chosen threshold can then be applied to prune low scoring interactions with
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(a)

MI(AH) = 0

MI(B,C) > 0 (b)
0< MI(B,E) < min(MI(B,C),MI(C,D))

P(B|C,D,E,F) = P(B|C,D) (c)

dB/dt = c1B + 0,C + 03D (d)

Figure 2.3: Overview of inference models. Figure a) and b) represent undirected
networks. The first figure shows a simple correlation network, where only pairs of genes
(nodes) are compared and low scoring interactions (edges) are pruned with a predefined
threshold (TH). The second undirected network represents information theoretic ap-
proaches, combined with pruning rules, like the Data Processing Inequality (IDP). Figure
c¢) and d) represent directed networks based on Bayesian models and ordinary differential
equations (ODEs). Their structures are the same but their underlying models differ. In
both models B only depends on its direct predecessors (parent nodes C' and D). For the
Bayesian network in Figure ¢), B is conditionally independent of E and F given C' and D.
In case of ODEs the expression of B is described as a function of the expression rates of
C and D and itself. All of these four model types do not allow for cycles (i.e. no feedback
loops). An example for networks with cycles are Dynamic Bayesian Networks.
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an absolute correlation coefficient below this threshold.
Information-theoretic models are based on the measure of entropy. In general, this
measure is used to quantify the amount of information (/(X;; X;)) in common between

two random variables, X; and X, with the entropy of a variable X; defined as:

H(X;)=— Y p(xy,)logp(xy,) (2.1)
ke X,

The probability of each discrete state (value), is described by p(xy,). The distribution
of p is generally unknown and has to be estimated. Several different entropy estimators
exist, like the empirical, Miller-Madow, Pearson or Spearman correlation [I12]. The lat-
ter two can be applied directly to continuous variables, such as gene expression data. An
example for information-theoretic models is the Mutual Information (MI) score, which is
a generalization of the pairwise correlation coefficient between the gene expression pro-
files. Relevance networks calculate this score for all gene pairs and infer their relation if
the MI score is above a certain threshold [23].

Other more advanced MI-based examples are ARACNe (Algorithm for the Recon-
struction of Accurate Cellular Networks) [97], CLR (Context Likelihood of Relatedness)
[39] or MRNET (Minimum Redundancy NETwork) [I14]. All these methods calculate
in a first step the MI matrix for all pairwise genes and apply in a second step different
algorithms to rerank the edges of the MI matrix.

Besides the simple filtering of results with a threshold, some methods apply addi-
tional processing steps, like the earlier mentioned data inequality processing (DPI) by
ARACNe, to remove indirect or redundant interactions. The DPI is computed by finding
the minimal MI between three variables (X1,X2,X3):

I(X1; X3) <min(1(X1; X2),I(X2; X3)) (2.2)

The edge with the lowest value is interpreted as indirect edge and if this value is above
a given threshold, removed from the network. The CLR method, extends the relevance
network approach by additionally integrating the mean (u) and the standard deviation
(o) of the empirical distribution of I(X;; X;) into a score w;j = /27 4 27 with:

I(X; X5) — i
Zi_mw{(),(a)u}

(2.3)
T

The MRNET approach applies a maximum relevance/minimum redundancy feature
selection technique [I14]. This feature forward selection chooses at each step, among

the least redundant variables, the one having the highest MI with the given target. A
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backward selection version has also been introduced recently by Meyer et al. [103] as
well as a comparison of the different methods on synthetic data sets.

Olsen et al. also thoroughly compared the different MI approaches and suggested to
use MRNET combined with Spearman correlation for complete and accurate data, and
the CLR method combined with the Pearson correlation for data with noisy and missing
values [112].

A major advantage of these types of models are their simplicity, the relatively low
computational costs (maximum complexity of O(n3)) and the low number of required
samples, since only bivariate distributions are estimated [I12]. This allows to apply them
also on large-scale data sets to study regulatory systems as a whole. On the downside,
these approaches only take into account pairwise interactions without considering mul-

tiple possible regulators of a gene. The resulting network is only an undirected network.

2.3.2 Boolean Models

Boolean models are a special case of a sequential dynamic system, where time and states
are discrete. They consist of two components, a directed graph as representation and
Boolean functions and states of genes to describe the relationships between the nodes in
the graph [80]. The Boolean network (BN) also allows loops, and each node represents
a gene, which can either be active or inactive (Boolean states {1,0}). Node relationship
can be described with transition functions between the nodes of the network. These
functions — in the simplest case built with the logical operators AND, OR, NOT — are
defined for each node and are used to determine the state of each node for each of the
discrete time points. Usually, these updates are made synchronously in each step for the
whole network. Synchronously means that all edges have the same duration and hence
nodes are updated at multiples of a fixed time step [3].

Due to the structure of BNs, there exist only 2V possible states for a network with
N nodes. This means that at a certain time point the network is always going to fall
into an attractor, which is either a single state (steady-state) or a repeating sequence of
states (cycle). The inference of the Boolean networks is done from the list of observed
states (transition tables).

Two well-known examples for the inference of Boolean network models are REVEAL
[91] and the Akutsu algorithm [2]. The REVEAL approach uses information theoretical
principles for the inference of the network from a given transition table.

A possible extension of the BNs are probabilistic BNs, which can handle uncertainty

and allow the quantification of the relative strength of an interaction between a TF and
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2 Inference of Gene Regulatory Networks

its TG [130].

In summary, BNs are a useful qualitative approach to cope with the complexity and
high dimensionality of biological systems. Albert et al. present several interesting case
studies for the representation of biological systems with BNs [3]. Still, the level of
abstraction, introduced with BNs has several disadvantages, since gene regulation not
only follows a switching behavior, but signals can also be amplified, subtracted or added
over time, or even have a negative feedback control. Another complex topic is the choice
of a suitable discretization procedure for gene expression data (already discussed in the
previous Section .

2.3.3 Bayesian Models

Bayesian models are graphical models which encode the probabilistic relationships among
a set of random variables X;. These relationships are usually described by a directed
acyclic graph (DAG) G. The vertices of this graph represent the random variable X,
and the links (interactions) between the variables are described by a joint probability

distribution:

N
P(Xi X)) = [[ P(Xi = 2| Xj = 2j,.... X j4p = Tj4p) (2.4)
t=1

Applied to a GRN, the set X (vertices) represents the genes, with X, being the
regulators (or parent nodes) of X; (child node). A more detailed introduction on the
structure and use of Bayesian networks is given in Section [3.2

The three main tasks for Bayesian networks are a) inferring the parameters if the
structure of the network is known, b) learning the structure if the parameters are known,
and c) inferring both, structure and parameters. The latter is usually the case for GRNs
since neither the exact gene regulatory function nor the gene regulatory network is known
for the majority of the systems. The advantage of this type of model are its capability to
handle noisy and incomplete data, as well as its ability to avoid overfitting. Additionally,
due to the probabilistic nature of Bayesian networks, it is possible to simply add prior
knowledge into the equations.

A disadvantage of Bayesian networks is the limitation to DAG structures, which cannot
represent feedback loops, which are an important regulatory pattern. Dynamic Bayesian
networks overcome this issue and are of interest especially for time series data and the
dynamic changes of the underlying network. It should furthermore be noted that the

parents of a node in Bayesian networks do not necessarily imply a direct causal effect.
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Banjo is one of the best-known gene network inference tools and uses both Bayesian
and Dynamic Bayesian networks [I55]. In Section Banjo is also used as a benchmark

for the predictions. Banjo can be applied to steady-state as well as time series data.

2.3.4 Ordinary Differential Equation Models

In this thesis, the focus of the methods lies on the three previously mentioned sections.
Hence, the use of ordinary differential equations (ODEs) will be just briefly introduced.
In contrast to Bayesian or information theory models, ODEs do not rely on conditional
probabilities and are a deterministic approach. A gene regulatory system is described
with one ODE per gene, where each ODE describes the gene regulations as a function

of other genes [7]:

dr _
dt

where x(t) = (x1(t),...,xn(t)) represents the gene expression vector for the genes 1

f(z,put) (2.5)

to n at time ¢. The function describes the rate of change for each of the genes (z;) in
dependence of the model parameters p and the external perturbation signals u [67].

ODEs have the advantage to be able to simulate different perturbations (i.e. gene
knock downs, drugs of interest, etc.) on the inferred system and can be used to predict
the reactions to these perturbations. The DREAM project also used a set of ODEs for
the generation of the synthetic gene expression data sets.

NIR, MNI and TSNI are examples for ODE-based algorithms and have been success-
fully applied and extended over the past years [53] [14], [§].

Besides the ODEs, there are several more complex models, like stochastic differential

equation models [ITT].

2.4 Data Integration of Various Sources

As stated earlier, the focus of this work lies on the gene interaction networks. However,
relying on only one type of source in the era of omics, would be ignoring the tremendous
amount of potential prior knowledge. On the transcriptomics level, data sources such
as microarrays, TFBS predictions and prior knowledge from literature research. Re-
cently, focus has shifted to more advanced high-throughput approaches like large-scale
text mining, next generation sequencing (NGS), ChIP-seq or DNase footprintings. The
“Encyclopedia of DNA Elements” (ENCODE) published in 2012, started in 2003 to

systematically map regions of transcription, TF association, chromatin structure and
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2 Inference of Gene Regulatory Networks

histone modification and enabled scientists to assign biochemical functions to 80% of
the human genome [139]. The published data sets offer a great opportunity to enrich
the database of GRN analyses.

Not restricted to GRNs but a general review about the current and future challenges of
data integration throughout the different omics disciplines is given by Gomez-Cabreror
et al. [59]. They additionally used a websurvey to identify current opinions and needs on
this topic from the research community. The three key findings of this review are the use
of prior knowledge and its efficient storage, the development of methods which are cap-
able of analyzing heterogeneous data sets and the creation of data exploration tools that
incorporate useful statistics and visualizations. These are all topics also covered by the
recently wide-spread discussion around “Big Data”. Besides the need for data manage-
ment systems, efficient and reliable machine learning and visualization approaches and
user-friendly tools to give a broader audience access to this new dimension of possible
insights across heterogeneous data sources, I would add the need to establish reliable
evaluation benchmarks for algorithms and to improve the available processes for data
collection. The latter problem of data standardization is also addressed by Gomez-
Cabreror et al. and the lack of easily accessible large collections of data, also limits the
potential of generating a database of prior knowledge for the prediction of biological
systems. Additionally, more and more advanced high-throughput techniques allow to
generate faster and more and more detailed experimental data, while the problem of
efficiently storing the “old” data sets has not even been solved. The field of data in-
tegration applies to many disciplines and faces many exciting challenges. Chapter [5.]
describes an approach which combines various data sources, as well as how to make use
of this combined knowledge base and to visualize the data and results.

A thorough overview of the field of data integration for the inference of gene regulatory
networks is given by Hecker et al. [67]. The number of different data sources and
experimental measurements needed to model a GRN is difficult to define but depends
on the size of the search space, which in turn consists of the model parameters (number
of genes N and weights w; ; describing the interactions between the genes) for the GRN
model. Increasing the number of data sources usually also increases the complexity of the
GRN model and increasing the number of measurements per data source comes usually
at the cost of additional calculation time. A possible solution for the first of these two
problems can be feature selection and mapping. Hecker et al. describe three possible
data- and knowledge-driven approaches, which reduce the number of genes in the GRN
by removing genes which are only poorly represented in the available data (either due

to experimental errors or because of inactive genes) or by combining similarly behaving
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genes into functional entities [67]. Additionally, when using different sources for learning
of GRN, a feature selection on these data sources can help to understand the impact of
a single sources for predicting the GRN of interest.

A list of different GRN learning approaches is also given by Hecker et al. and five
different approaches are discussed in Chapter [5.1} All these methods have to decide on
a suitable data set and a set of reliable data sources, where each data set has to be
preprocessed with respect to data quality, normalization, discretization and selection.
Furthermore, a scoring function has to be defined which is capable of integrating and
weighting the data or different data sources to learn the parameters of a GRN and to

predict the future behavior of genes of interest.

2.5 Summary

In this chapter, an overview of the basic concepts of working with gene expression data
has been given. These concepts include general knowledge about the domain of interest,
here TF-TG interactions and gene regulatory networks. A more detailed description is
out of the scope of this introduction, but it should be noted that every analysis approach
is limited by the understanding of the studied domain. Furthermore, the concepts of data
selection, pre-processing and result evaluation should be understood. In the following
sections, newly developed and applied methods from the introduced fields above, such
as time series analysis, large-scale data integration, Bayesian learning and integration of

prior knowledge into the learning process, are going to be presented.
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CHAPTER 3

Time Series Based Methods for the Inference of Gene Regulatory

Relationships

The analysis of time series data is still one of the most challenging fields and occurs
in many scientific disciplines. Steady-state data can only give a snapshot of the actual
dynamics, while time series allow to study the processes over time and to capture the
dependencies between the forces and protagonists. It should be noted that the topic
of causality is a large philosophical field by itself, and it can still be argued, whether
the observations are cause or effect of an certain outcome. In the following, two ap-
proaches which deal with the inference of regulatory relationships from time series data
are presented. The first focuses on the transformations and shifts of gene expression
time series and how to learn undirected interactions [19]. The second approach uses
Bayesian learning on Boolean discretized gene expression time series along with a prior

on the inferred network structure, which consists of directed interactions [1§].
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3 Time Series Based Methods for the Inference of Gene Regulatory Relationships

3.1 Dynamic Time Warping for the Inference of Undirected Gene
Regulatory Relationships

This section focuses on learning of undirected interactions and dependencies from given
gene expression time series data. A novel angle-based discretization of given microarray
data time series and a new alignment approach, combining the ideas of Dynamic Time
Warping (DTW) with Stochastic Local Search (SLS) are introduced.

The building of alignments of discretized profiles is supposed to be robust against
noisy data and to overcome the assumption of strictly linear relationships between two
interacting genes. A basic assumption for the alignment of time series is that co-regulated
genes also show similar expression behavior over time and hence similar amplitudes which
can be aligned with suitable transformations. Testing and evaluation of the approach
has been done with one synthetic data set as well as four biological data sets.

In the following, different variants of Dynamic Time Warping (DTW) for the infer-
ence of gene regulatory relationships are assessed. A positive influence of the distance
optimization on the performance of the alignments of gene expression profiles could not
firmly be established. However, the results show that discretization can be important to
the outcome of the alignments. The discretization is not only able to keep the important
features of the time series, it is also able to perform better than regular DTW on the

original data.

3.1.1 Dynamic Time Warping

Dynamic time warping (DTW') was introduced in the 1960s [12] and has been intensively
used for speech recognition and other fields, like handwriting recognition systems, gesture
recognition, signal processing and gene expression time series clustering [I]. The basic
idea of this unsupervised learning approach is that a suitable distance measure, which is
most generally the Euclidean distance, allows the algorithm to stretch (or compress) the
time and expression rate axis to find the most suitable fit of two given time series. The
DTW algorithm will be described briefly in the following. Consider two given sequences
S = s1,...,5p and T = ti,...,ty, and a given distance function 6(s;,t;) with 1 < i < n
and 1 < j < m, DTW tries then to minimize with the given § over all possible warping
paths between the two given sequences based on the cumulative distance for each path.
This is solved by a recursive dynamic programming approach for each i € [1,...,n] and
jel,..,m]:
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3.1 Dynamic Time Warping

DTW (i,j) =

o0

fori=35=0

DTW;_1j-1+ 6(si,t;)
min § DTW;_1 j + 6(si,t;)
DTW; j—1+ d(sipt;)

for i,j >0 (3.1)

otherwise

DTW n,m] is the total distance DTW (S,T") and can be calculated in O(nm). The

traceback through the matrix D gives the optimal warping of the aligned sequences. In

the following, the symmetrical version of DTW which is supposed to perform better on

equally sampled time series is used [123].
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Figure 3.1: DTW Alignment of two given sequences. Alignment with DTW of a
cosine for reference and a noisy sine wave as query with traceback through the DTW mat-
rix (replaced for a better overview with the corresponding density levels). The plots and
calculations were done using the dtw R package [57]. In the right plot the warping effect
of the alignment from Figure a can be seen. The grey dotted lines indicate aligned time
points and show the mapping of the corresponding time points on the two time series.

In contrast to other existing methods, the approach deals also with anti-correlated

time series and uses a supervised method to infer a data specific distance matrix for

the alignment. The result is a scoring matrix for the pairwise distances between the

measured genes.

Four different gene expression time series of different lengths are used for the evalu-
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3 Time Series Based Methods for the Inference of Gene Regulatory Relationships

ation. An overview of the networks and data sets will be given in the next section. All
time series are centered around the x-axis by applying a z-score transformation to ac-
count for scale inconsistencies of the microarray experiments. Cubic smoothing splines
are used to interpolate the time series for missing values and smoothen out smaller
fluctuations from experimental or biological noise.

The discretization of each time series for each gene is done according to the steep-

ness of the expression change § exp between two consecutive time steps. This is done
180

by calculating the angle: a= atan § exp- ==. The angles are then discretized into
positive and negative (increasing or decreasing) integer values according to a predefined
threshold. Defining the threshold is done by dividing the largest found angle for increases
or decreases for each time series for a gene, into equally sized subsectors. Consider a
maximum found angle of 180 degrees, which should be split into n subsectors, resulting
a range of % degrees each. Fach of this sectors represents a possible range of angles for
the increase or decrease between two consecutive time points and has assigned a discrete
value. For n sectors the range of these values would be [-5, — § +1,...5 — 1,5]. To
account for noise in the data, the two sectors which are neighboring the x-axis (one in
the positive and one in the negative direction) are combined into one sector with the

discrete value zero. See Figure [3.2]for an example of the discretization.

180

a=atan § erp- — |

ms3
M2
@1
Jo
@-1
W -2
-3

Figure 3.2: Example of the Angle-Based Discretization: The left figure shows a
time course for one gene with four measured time points. For the discretization in this ex-
ample n is set to three, and the resulting possible sectors are shown in the right colored
graphic. According to this setting, the second time point of the time course would be dis-
cretized to one.

A crucial point for the quality of the alignments is the choice of a suitable distance

matrix which defines the distances between the discretized values of the time series.
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3.1 Dynamic Time Warping

This motivates our supervised approach to use a set of already known interacting genes
I to infer the distance matrix §. These gene pairs are chosen randomly from a given
gold standard network along with a further randomly chosen set of not interacting genes
N. The size of the latter is set if possible to twice the size of I. From this larger
set N between successive iterations of the distance calibration process new subsets are
resampled to prevent accidentally chosen existing interaction partners between I and N
genes to distort the result.

The resulting § should minimize the distance for I and maximize the distance for N.
Since DTW is not differentiable, a combination of Stochastic Local Search (SLS) and
simulated annealing for the stepwise improvement of § is applied. For a more detailed
introduction to SLS, see the work of Hoos and Stiitzle [61].

Three constraints on the step-wise altering of the distance matrix ¢ are imposed to
reduce the search space and to keep the basic distance structure between different bins
of angles: §(4,7) =0 for i = 7, §(4,5) = 0(4,7) and 6(¢,5) < 6(¢,j — 1).

The resulting distance matrix is then used for the calculations of the alignments and
the score defines the distance between each pair of genes. Additional alignments are done
for each comparison with flipped signs for one of the time series to find anti-correlated
pairs. All calculations were done in R except for the alignment matrix calculations,

which were done for runtime efficiency in C.

3.1.2 Performances of Different DTW Variants

The evaluation is done on five differently sized networks, a synthetic five gene network of
yeast, called IRMA [24], the SOS signaling pathway in E. coli consisting of eight genes
[120], a 11 cell cycle regulating network derived by Li et al. from the literature [89], and a
full set of cell regulating genes, consisting of 1129 genes published by Rowicka et al. [121].
Gold standard and time series for the IRMA and SOS signaling pathway were taken from
the R package TDARACNE [157] and consist of 16 and 14 measurements. The 11 cell
cycle network by Li et al. as well as the suggested set of Rowicka et al. are tested with
two time series experiments by Pramila et al. [I16] and Tu et al. [142]. These sets follow
several full cell cycles and include 50 and 36 time points. Genes of the large-scale network
which were not found in the experimental sets were left out. This resulted in gene sets
of size 961 and 944 for Pramila et al. and Tu et al.. As a benchmark network for the
large-scale cell cycle analysis, the protein-protein interaction network from the STRING
database (v8.3) [73] is used. STRING calculates for each interaction a score based on the

evidence from various sources like experiments, interaction databases or abstract text
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mining. A cutoff of 0.8 was applied to select only interactions with high confidence. It is
clear that the PPI network is only able to cover part of the gene regulatory processes but
still, observations on this level can provide insight into the performance of the methods.
STRING is also considering pairs derived from co-expression analysis and might therefore
be more suitable than other PPI databases. Self-regulations were excluded from all data
sets

The performance on the data sets are compared to the results with simple correlation,
partial correlation, MRNET (mutual information) [102], DTW and DDTW (a modific-
ation of DTW which uses for the discretization the first derivative for each point) [83].
DTWy;s. applies our discretization method with different numbers of sectors (n) and
calculates the alignments with DTW. DTWgrs additionally applies the distance calib-
ration before the calculations. Methods ending with __anti also consider anti-correlated
time series in the calculations. The evaluation is done based on ROC curves and the
AUC. Interactions are undirected and hence only a two class problem considered, inter-
action predicted or not.

The results from the small networks in Figure [3.3] show that MRNET performs well
even on shorter time series. Our methods perform only on the E.coli data better but
are the second best performer on this task compared to the established methods. The
discretized version performs in all cases, except for the Tu et al. data, better than
guessing and outperforms DTW and DDTW , except for the Pramila et al. data, where
DDTW performs equally well. Including anti-correlation into the calculations improves
in all cases of the discretized method the performance but has no positive effect for the
regular DTW and DDTW . On the large-scale network evaluation in Figure the use
of only correlated genes performs significantly better than with anti-correlation.

In general, the different DTW approaches perform better on the large-scale data
sets than correlation or MRNET, except in the case of regular DTW and DDTW on
the Pramila et al. data. The results of DT Wy;s. show that the discretization keeps the
important features and performs well even with a small number of sectors. The approach
of DTWgrs seems, to this date, not to be able to improve the distance measure and
achieves slightly smaller AUC values. The discretization method outperforms DTW and
DDTW on the Pramila et al. data and performs only slightly worse on the other data

set.
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Figure 3.3: Comparison of the performances on three small networks. The dot-
ted line indicates guessing. The number of sectors ranges from 1 to 8. Knowledge size for
calibration was set to 2. MRNET performs best on all yeast data sets and only slightly
worse than our proposed method on F.coli. The discretized version of DTW performs, ex-
cept for case b), always better than guessing and best for the F.coli data set. Including
anti-correlation improves in all cases the performance of DT W;s.. The other DTW ver-
sions perform quite differently on the data sets and in most cases even worse than guess-
ing, especially in c).

3.1.3 Conclusion

Several variants of Dynamic Time Warping for the detection of gene regulatory rela-

tionships were investigated in detail. While the supervised optimization of the distance
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Figure 3.4: Comparison of the performances on a large-scale network. The dot-
ted line indicates guessing. Number of sectors ranges from 1 to 8. Knowledge size for cal-
ibration was set to 10. Gold Standard: STRING DB. Our approach performs significantly
better in a) and only slightly worse in b). DDTW and DTW perform best on the Tu et
al. set but the influence of the anti-correlation is only small. DT Wy, performs much
better in b) without the anti-correlation.

matrix did not lead to improvements, a novel discretization approach seems, even with
a small number of defined sectors, able to keep the main features and appears as a suit-
able qualitative transformation for time series alignments. On the biological data sets,
our approach seems to be more stable compared to DTW and DDTW. In contrast
to correlation-based methods, DTW is also able to infer the orientation of the time
shift through the traceback and hence able to hint at possible causalities. A next step
would be to make use of this information and to further evaluate the robustness of the
discretization method compared to DTW and DDTW.
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3.2 Hub-Centered Gene Network Reconstruction

3.2 Hub-Centered Gene Network Reconstruction using Automatic

Relevance Determination

3.2.1 Introduction

With the development of large-scale experimental platforms for the acquisition of
genome-wide data, massive amounts of experimental data describing complex cellular
processes are becoming widely available. The extraction of knowledge and development
of models from such data remains a major challenge. Manual model development is con-
strained to small models involving a few dozen components, and requires extensive prior
biological knowledge. The alternative is to use automated machine learning approaches
to infer models directly from data, as reviewed by Kaderali and Radde [79].

For small models involving only a few dozen genes, detailed quantitative network
inference approaches using nonlinear differential equations can be employed [100]. Such
approaches fail for larger networks due to computational limitations and practical non-
identifiability of model parameters. Boolean network models have been proposed as an
alternative, neglecting the quantitative detail and assuming genes to be in only one
of two states, active or inactive [80, O1]. Updates of the states are then done using
logical rules, either synchronously for all genes or using asynchronous update rules [66].
Further extensions are based on fuzzy logic [152] or probabilistic Boolean networks, which
basically use alternative sets of Boolean update rules that are stochastically employed
[130].

Bayesian networks on the other hand are stochastic models that use conditional prob-
abilities to describe dependencies between genes in a network [134] [48], [64] [49]. These
conditional distributions can be discrete or continuous, and are used to compute the like-
lihood of given data. Using Bayes’ theorem, this is then used to compute the posterior
distribution over alternative models given the data.

For large-scale network inference involving thousands of genes, relevance network ap-
proaches are often used. They consider the similarity or dissimilarity between pairs of
genes in a network, for example using pairwise correlation or mutual information, and
use the “guilt by association” principle to reconstruct the underlying network. ARACNE
is a representative approach of this type, it uses Gaussian kernel estimators to compute
the mutual information between two genes, and then filters the resulting networks using
different criteria [97].

Main challenges in automated network reconstruction arise from (1) The exponential

growth of possible model topologies for increasing network size, (2) the high level of
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biological and experimental variability in measured data with often low signal to noise
ratios, and (3) the frequently large number of different components that are measured,
combined with an — in comparison — small number of different observations under chan-
ging conditions, e.g. number of time points or perturbations of the biological system.
Together these problems lead to non-identifiability and overfitting of models. Regular-
ization methods are therefore widely employed to penalize overly complex models.

The most commonly used regularization assumption in gene regulatory network re-
construction is that the inferred models should be sparse: There are typically only a
low number of regulators acting on each gene [5], 27, 144 [60]. Some studies furthermore
indicate that the degree distribution in biological networks often follows a power law
distribution, with only few highly-connected genes, and most genes having only a low
number of interaction partners [74]. While there is ongoing debate about the statistical
support of this claim [84], [92], it is widely believed that central hubs do exist in gene reg-
ulatory networks. This is usually incorporated into network inference approaches only
indirectly, by limiting the number of regulators in the network [26, 21].

We here propose to use Bayesian networks with a Boolean state space to reconstruct
transcriptional networks from gene expression time series data. We furthermore intro-
duce a hierarchical prior distribution on the edge-weights in the network, which not only
leads to sparse networks, but explicitly aims for the identification of central hub genes
in the network, and centers the network reconstruction around these hubs.

We show results with the proposed approach on simulated as well as real experimental
data sets of different sizes. Specifically, we present inference results on the genetic reg-
ulatory network controlling progression through the yeast cell cycle, based on three
published genome-wide microarray studies. A first interesting result of our study indic-
ates that large-scale network inference on this dataset is a very difficult problem, where
none of the published methods we employed was able to significantly outperform random
guessing. However, using the hierarchical prior presented in this work, key regulators
could correctly be identified. Focusing our analysis on a smaller sub-network, we were
able to reconstruct a core network regulating progression through the cell cycle. Our
findings confirm that MCM1/SFF, CLB5/6 and CLN3 are key regulators in the yeast

cell cycle network.

3.2.2 Bayesian Network Model

We describe the activity of genes in a transcriptional network of n genes using discrete

variables x; € {+1}, i = 1,...,n, where z;(¢) = 1 means that gene i is active at time
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3.2 Hub-Centered Gene Network Reconstruction

t, and z;(t) = —1 means the gene is inactive. We furthermore assume discrete time
t=0,1,...,T, and model the time-invariant probability for each gene z;(t) to be active
at time ¢, conditional on the states of all genes at the previous time point, x(t — 1) =
(z1(t — 1), x2(t — 1), ..., 2 (t — 1)) using the probability distribution

1
1 + e—.Z’i(t) Z::l Wjﬂiivj(t—l) ’

p(zi(t)x(t —1), W) = (3-2)
W € R™™™ is a weight matrix and describes the strength of regulation between all genes.
In case of an activation of gene ¢ by gene j, W;; > 0, in case of an inhibition, W;; < 0,
and W;; = 0 if there is no effect of gene j on gene i.

Equation describes a sigmoid function over the weighted sum of incoming reg-
ulations on a given gene x;. If the sum 2?21 W,iz;(t — 1) is positive, the probability
that x;(t) = 1 will be larger than the probability that z;(t) = —1, if the sum is negative,
gene ¢ will more likely be inactive than active.

Summarizing the logarithm of the likelihood over all genes and all time points,
the log-likelihood of given data D can be written as

T n
Inp(D|W) :ZZIHp x; () |x(t —1),W), (3.3)

t=11i=1
where D = {x(0),...,x(T")} is the data, and x(t) € {—1, + 1}" is the state vector of the

system at time t.

We have previously used a similar model to reconstruct small signaling networks from
RNAI perturbation data, see [78]. We are here extending this model for gene expression
data, and use a hierarchical prior distribution to enable the hub-centered reconstruction

of large-scale gene regulatory networks.

3.2.3 Prior Distribution

For this purpose, we employ a hierarchical prior distribution on the regulation strengths

W to regularize the network reconstruction. As first level prior, independent normal

distributions with variance o2

; are used as prior on the weights Wj;, where the same

variance 032- is used for all prior distributions over weights emanating from the same node
J: ,
1Y
2 o~
i (3.4)

p(Wee) = 12:[ \/70

39



3 Time Series Based Methods for the Inference of Gene Regulatory Relationships

The variance serves as hyperparameter, and determines the strength of the regulatory
effect a given node j can have on all other nodes. Therefore, ce describes the respective
regulatory strength for each node in the network.

We furthermore use a second-level prior on the hyperparameter o. Since a standard
deviation needs to be positive by definition, and should neither become too large nor

too small, we use a gamma distribution on the o, thus

7"

n
p(ce|a,r) H ] _‘wf, (3.5)

with positive shape and rate parameters r and a, respectively, and gamma function I'(r).

Importantly now, the same value of o; is used for all regulations exhibited by the same
gene, i.e., for all outgoing edges for gene j. Incoming edges for a particular gene can have
different values of ¢. The combined effect of these two priors is that genes that receive
a large weight also get a larger variance hyperparameter, and are more likely to attract
further large edges in future inference steps, making the gene a hub. Correspondingly,
genes with small weights get a small variance parameter o, and it becomes increasingly
difficult for these genes to attract large edges. Such a hub formation can not be achieved
with ordinary sparseness priors such as L1 regression.

The shape and rate parameters r» and a of the second-level prior ultimately control
how large the weights of edges emanating from a particular node in the network can
become. The choice of gamma distribution implies that most genes in the network have
small variance hyperparameter . Only few genes receive large values of o, and hence,
larger values for the weights on their outgoing edges. Pruning edges with small values
would then directly lead to sparse networks, where edges are concentrated around central
hub genes.

If we would allow different values of o for each edge (i.e., o is a property of the edge,
not of the gene), we would still obtain sparse networks where most edges have small
values and only few edges receive large values, but the “large” edges would not center
around hub genes anymore, but would be evenly distributed over the network.

We note that a similar automatic relevance determination (ARD) model has success-
fully been used in pattern recognition using neural networks by Neal [106], but the
approach has not been used so far for genetic regulatory network reconstruction. Other
related ARD approaches include Bayesian principal component analysis [15] and ARD-
nonnegative matrix factorization [137].

The proper choice of prior hyperparameters (the shape and rate parameters a and r)
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3.2 Hub-Centered Gene Network Reconstruction

is critical to obtain optimal performance of the method. The values of a and r indirectly
control how many hub genes there are. The regularization through the prior distribution
should be sufficiently strong to learn hub genes and avoid overfitting, but regularization
should not be too strong to completely dominate the learning from the data. “Good”
values for a and r hence depend not only on the size of the network, but also the amount
of experimental data available, the expected number of hubs in the data, and the level
of noise in the data. The choice of parameters is hence a difficult issue, that — as with
other Bayesian approaches and regularization parameters in general — requires a lot of

experience and skill. We discuss this issue further at the end of the results section.

3.2.4 Optimization of the Posterior Distribution

Given oe, we can write the log-posterior distribution over W using Bayes’ theorem as
Inp(W|ce, D) = In P(D|W) + In P(W|ce) — (1, (3.6)

where C1 = Inp(D|ce) is independent of W and can be neglected. Similarly, given W,

again using Bayes’ rule, we can write the log-posterior distribution over ce as
Inp(ce|W,D) = Inp(W|ce) + In p(ce|a,r) — Co, (3.7)

where again Cy = In p(W) is independent of ce and can be neglected.

We now iteratively optimize equation with respect to W and equation with
respect to ce, until the optimization converges. The idea here is that the optimization
with respect to W serves to reconstruct the network, whereas the optimization with
respect to oe controls the magnitudes of the outgoing edge weights any given node j can
have. If a node j receives an outgoing weight with large value W ;, its hyperparameter
ae; will increase in the next iteration, thus increasing the likelihood that other edges
emanating from j will also receive larger weights, making j a hub gene. We note that
the shape and rate parameters r and a of the second level prior indirectly control
the expected number of hub genes.

The choice of starting point for optimization algorithms such as gradient descent is an
important issue, depending on which different local or global optima can be identified
in the optimization. We expect resulting networks to be sparse, and therefore, most
of the weights W should be close to zero. We therefore suggest to start the gradient
descent with respect to equation at or in the vicinity of the origin, with a fairly
large starting value of ¢ to initially avoid a strongly peaked prior distribution P(W |ce).
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The major disadvantage of gradient based optimization is that only a single maximum
a posteriori estimate of W and ce is returned. However, multiple different networks
might explain given data, corresponding to different modes of the posterior distribution.
Although we expect the resulting network to be sparse, starting the gradient descent
at the origin for W may results in getting stuck in a suboptimal local optimum. As
an alternative for small networks, we therefore sample from the posterior distribution
using the Hybrid Monte Carlo algorithm, a Markov chain Monte Carlo sampler that
was originally proposed by Duane [37], see also Neal [106] and Kaderali [77]. The basic
idea for our application is in each step of the Markov chain to randomly decide whether
to sample from equation or from equation using hybrid Monte Carlo. These
results can not only be used to validate the gradient based computations, but furthermore
allow it to study the full posterior distribution over networks and model parameters,
given the data. This is of particular value in case of multimodal distributions, when
several different network topologies or sets of model parameters are consistent with the

observed data.

3.2.5 Evaluation of Networks

We use Receiver Operator Characteristic and Precision-Recall analysis to evaluate res-
ults of the network reconstruction. In our model, the ce; provide information on the
importance of individual genes in the network, the W describe the inferred network
topology. To assess the quality of reconstructed networks, we evaluated precision (frac-
tion of true positives in all predicted regulations), sensitivity (=recall, fraction of true
positives in all actual positives) and specificity (fraction of true negatives in all actual
negatives) of our approach. For this purpose, a variable threshold ¢ on the absolute
value of the weights W is introduced, edges with weights below the threshold are pruned
from the network, and precision, sensitivity and specificity of edge recognition are then
computed. Receiver Operator Characteristic (ROC) and Precision to Recall (PR) curves
can then be plotted by varying the threshold ¢ and plotting the resulting sensitivity over
specificity, or precision over sensitivity (recall), respectively. Each value of ¢ results in
a specific point in these plots, the ROC and PR curves arise by varying ¢ continuously
and connecting the resulting points. ROC graphs nicely describe the overall relationship
of positive to negative instances in the predicted model, and have the advantage to be
insensitive to changes in the class distribution. On the other hand, precision to recall
curves consider only the correctly inferred positive instances amongst all predicted links,

and are therefore particularly useful for sparse networks. PR and ROC curves are then
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summarized further using the area under the curve (AUC), which is a value between
0 and 1. The closer this value is to one, the better is the reconstructed network. We
compute the AUC for both ROC and PR curves.

We note here that the computation of sensitivity, specificity and precision usually
requires two-class problems. In our context, three classes are possible for each edge
— a positive regulation, an inhibition, or no regulation between two given genes. The
assignment of predicted links to the four possible outcomes true positive (TP), false
positive (FP), true negative (TN) and false negative (FN) used for the computation of
sensitivity, specificity and precision is shown in Table

Table 3.1: Evaluation of Predicted Networks
Predicted Regulation
Activation Inhibition No Regulation

Actual Regulation

Activation TP FP FN
Inhibition FP TP FN
No Regulation FP FP TN

Classifications of predicted links as true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN). The assignment given here is used in the
three-class classification problem to compute sensitivity, specificity and precision.

Importantly, the three classes imply that guessing a network will on average not result
in an AUC value of 0.5 anymore, but values smaller than 0.5, depending on the number
of activations, inhibitions and nonexistent edges in the true network. For a technical
proof, see Mazur et al. [100].

We performed a statistical test to assess the significance of the difference of the ob-
tained AUC values from AUCs for randomly generated Networks. The null hypothesis
is that the AUC of the ROC curve is not different from the AUC for guessing. Since
our ROC curves are based on a three-class problem, we can not apply out of the box
solutions for the calculation of the p-value. Therefore, we extended the methods of the
R package pROC developed by Xavier et al. [119], which employs the method by De-
Long et al. [35]. Briefly, the method of DeLong employs the mathematical equivalence
of the AUC to the Mann-Whitney U-statistic. ROC curves can then be compared by
evaluating the difference of the AUCs, which is asymptotically normal. To compare two
AUC values, the method uses the covariance matrix for each of the ROC curves and
finally does a two-sided t-test on the score of this comparison. To be be able to apply

DeLong’s method, we extended the Mann-Whitney kernel implementation of the pROC

43



3 Time Series Based Methods for the Inference of Gene Regulatory Relationships

package as follows:

1 ifz=1landy <=z

1/2 ifz=landy=x

0 ifz=1landy >z

0(z.y,7) = (3.8)
1 ifz=—-landy >«

1/2 ifz=—-landy==x

0 fz=—-landy<zx

with = being the cases or TN, y being the controls or TP and z being the signs of the
edges in the gold standard, either 1 or -1.

A further problem in the evaluation of reconstruction performance on real data arises
due to the lack of a “gold standard” network. Hence, to evaluate the hub gene identi-
fication on real data, we extracted protein networks from the STRING database [136].
STRING calculates for each interaction a score based on the evidence from various
sources like experiments, interaction databases or abstract text mining. It is clear that
the PPI network reflects only a part of the gene regulatory processes but still, observa-
tions at this level can provide insight into the performance of the methods. STRING is
also considering pairs derived from co-expression analysis and might therefore be more
suitable than other PPI databases. We then computed the degree d; of each gene ¢ in
the STRING network, and assessed correlations between d; and the network inference
hyperparameter o;. We then again used receiver operator characteristic analysis to study
the predictive strength of o to identify hub genes, by varying a threshold on o for a fixed
threshold on the degree d, and computing sensitivity and specificity. ROC curves were

summarized using the AUC, and AUC was plotted for continuously varied d.

3.2.6 Overview of Results

We implemented our method in C++4, using the gnu gce compiler under the Linux op-
erating system. All computations reported were carried out on a 3 GHz 64 bit Intel
processor using a single processor core (no parallel processing). For a systematic eval-
uation of the approach, we used different simulated datasets, as well as real, publicly
available microarray data.

Simulated data has the advantage that the real network underlying the data is known,
and can be used to evaluate the performance of the network reconstruction and hub
identification. We therefore discuss simulated data first. More specifically, we start by

showing results using data that was simulated with the Boolean model used also in the
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inference method, using three different network sizes (11 genes, 100 genes, and 1000
genes), and using different dataset sizes generated from these networks for the inference
task (20, 40 and 200 time points). This simulated dataset allows it to study the effect
of network size and dataset size on performance of the network inference. To evaluate
whether the choice of prior introduces artificial hubs even on random networks where
no hubs are present, we furthermore simulated data for a 1000 gene Erdos-Rényi [107]
random network, again with different numbers of time points (20, 40 and 200 time
points).

We next proceed by using a further simulated dataset, that was simulated with a
realistic kinetic model for gene regulation, implemented in the GeneNetWeaver (GNW)
package [06]. GNW uses systems of differential equations for simulation, data hence
need to be discretized before they can be used in the network inference. GNW allows
the simulation of time course data using a realistic model of noise for microarray data,
this dataset hence allows to study the effect of noise on the network reconstruction.

We finally applied our network inference method to three different publicly available
microarray gene expression data sets regarding the yeast cell cycle, published by Spell-
man [133], Cho [29] and Pramila [I16]. These three datasets were pooled, and network
inference done on the ensemble dataset. We start by showing results on a small subset
of the genes in this pooled dataset, representing a core network of 11 genes known to
be involved in the yeast cell cycle. Thereafter, we present results on the reconstruction
of a relatively large yeast transcriptional network comprising almost 800 genes. On this
dataset, we compare results of our approach with results obtained using the relevance-
network approaches ARACNE [97] and MRNet [99], as well as the Bayesian approach
implemented in Banjo [13].

All analyses done and results achieved on simulated and real data are summarized in
Tables and

3.2.7 Synthetic Data Simulation with Boolean Model

To systematically evaluate our network reconstruction approach, we simulated data for
three different network topologies, with different numbers of genes. The smallest net-
work contained 11 genes, and is the yeast cell cycle core network described by Li and
coauthors [89], as shown in Figure We furthermore used the CenturySF network
topology comprising 100 genes, and the JumboSF network topology comprising 1000
genes, proposed by Mendes [I01]. These topologies include desired properties such as

regulatory loops, hub genes, and are sparse.
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Table 3.2: Overview of Analyses on Network Inference

Simulated Data

Network Nodes Edges TP Gradient Descent MCMC
ROC p-val PR | ROC p-val PR
Boolean Model
Yeast Cell Cycle (CC) 11 34 20 0.74 0.0035  0.37 0.68 0.024  0.37
Core (Simulated) 40 0.76 0.0029  0.48 0.74 0.0045 0.48
200 0.93 7.78-08  0.67 0.91 6.4e-08 0.77
Mendes CenturySF 100 200 20 0.64 < le-8 0.13 0.43  0.0007 0.005
40 0.75 < le-8 0.3 0.52 < 1e-8 0.04
200 0.90 < le-8  0.66 0.67 < 1le-8 0.19
Mendes JumboSF 1000 999 20 0.68 < le-8  0.05
40 0.77 < le-8 0.26
200 0.88 < le-8  0.62
Random Network 1000 5000 20 0.42 - 0.003
40 0.62 - 0.09
200 0.79 - 0.4
GeneNetWeaver -
No noise 100 532 25 0.53 - 0.053
250 1317 25 0.50 - 0.020
500 2150 25 0.50 - 0.008
With noise 100 532 25 0.51 - 0.054
250 1317 25 0.50 - 0.021
500 2150 25 0.50 - 0.009
Real Data
Network Nodes Edges TP Gradient Descent MCMC
ROC p-val PR | ROC p-val PR
Li et al. Yeast CC Core 11 34 98 0.56 - 027 0.59 - 0.26
Large Yeast CC Network 781 unk. 98 0.52 - 001

Overview of all results on the simulated and biological datasets, using the approach presented in this manuscript. See the main text for
comparison with other methods. Shown are results for the full network reconstruction task; table 3 shows corresponding results for hub
identification. Each row in the table corresponds to one dataset. Nodes, edges and TP gives the number of genes, regulations and time
points in the respective dataset. ROC and PR are the area under the curve values (AUC) of the Receiver Operator Characteristic
(ROC) and Precision-Recall (PR) analysis, respectively. P-values were computed to test the null hypothesis of a significant deviation
from random guessing for the AUC ROC values. Due to runtime limitations, MCMC results were calculated only for small networks,
and p-values only for the synthetic networks with AUC values >0.5. unk.: True number of edges for Yeast CC Network is unknown.
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Table 3.3: Overview of Analyses on Hub Identification
Simulated Data

Network Nodes Edges TP AUC Hub
Top 10 Hubs Overall
GeneNetWeaver
No noise 100 532 25 0.76 0.77
250 1317 25 0.31 0.56
500 2150 25 0.74 0.85
With noise 100 532 25 0.29 0.45
250 1317 25 0.83 0.83
500 2150 25 0.92 0.92
Real World Data
Network Nodes Edges TP AUC Hub
Top 10 Hubs Overall
Large Yeast CC Network 781 unk. 98 0.94 0.97

Overview of all hub identification results on the simulated and biological datasets. Hub
AUCs were only calculated for the large networks since they are only of little relevance
for small networks. Each row in the table corresponds to one dataset. Nodes, edges and
TP gives the number of genes, regulations and time points in the respective dataset.
AUC Hub is the AUC value computed for hub identification, shown are AUC values for
the top 10 hub genes and maximum overall AUC values. A value of 0.5 corresponds to
random guessing, values between 0.5 and 1 measure the hub identification
performance. unk.: True number of edges for Yeast CC Network is unknown.

Weights for given topology were uniformly randomly generated between —2 and +2,
a starting state was randomly chosen, and time courses were simulated with 20, 40 and
200 time points, using the stochastic model described by equation . Weights in
this range correspond to a moderate level of noise in the experimental data, due to the
probabilistic model employed to simulate the data.

We then took the simulated data, and used our gradient descent and Markov chain
approaches to reconstruct the underlying networks from the data alone. Shape and
rate parameters of the gamma prior were set to r = 4.8 and a = 0.4 for these

computations.

3.2.8 Results with Gradient Descent

Iterative gradient descent on the equations (3.6) and (3.7) was carried out as described
in the methods section, until convergence was reached. For the 11 gene network, compu-

tation finished in a few seconds. For 100 genes, computation time varied between 17s for
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Figure 3.5: Yeast Cell Cycle Core Network. Core yeast cell cycle network, as de-
rived by [89] from literature. There is one external checkpoint, cell size, which initiates
progression through the cell cycle. Activations are shown in green, inhibitions in red, and
self-regulations in yellow.

20 time points, up to 4.1 min for 200 time points. On the 1000 gene network, gradient
descent required 12.3 min, for 20 time points, 90.5 min for the 40 time point data set,
and 447.33 min and roughly 7 1/2 hours on the 200 time point data set.

Figure [3.6)shows ROC and PR curves for the networks reconstructed from the data, in
dependence of network size and number of time points available. As expected, for small
network sizes (11 genes) and many (200) time points, the network reconstruction per-
forms very well, and performance decreases with increasing network size and decreasing
number of time points. Corresponding AUC values together with p-vales to assess the
significance of the results (HO: AUC values are not superior to guessing, see methods
for details) are shown in Table To put these results further into perspective, we
generated 1000 random “reconstructed” networks with 11, 100 and 1000 genes each, by
drawing weights from a standard normal distribution, and computed the AUC for these
networks. For the 11, 100 and 1000 gene networks this yields an average AUCHSe of
0.34, 0.38 and 0.39, respectively, and an average AUCSR™ of 0.14, 0.009 and 0.0005.

This reconfirms that results are significantly better than random.
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Figure 3.6: ROC and PR Results on Simulated Data. The Figure shows receiver
operator characteristic (ROC) and precision to recall curves (PR) for network reconstruc-
tion on simulated data, for different network sizes and different numbers of time points.
A, B: ROC and PR curves for the network with 11 genes, C,D: ROC and PR curves for
network with 100 genes, E.F: ROC and PR curves, respectively, for network with 1000
genes. Black: 20 time points used for network reconstruction, red: 40 time points, blue:
200 time points. It can clearly be seen how performance deteriorates with increasing net-
work size and decreasing number of different time points. We note that, due to the three-
class classification problem underlying the graphs, random guessing of network topologies

would not yield a diagonal line in the ROC plots, but a significantly lower line with an
area under the curve of approximately 0.33.

3.2.9 Results with MCMC

We next repeated the computation using the Markov chain Monte Carlo sampling ap-
proach. Due to the high running time, an evaluation was done only for the 11 and 100
gene networks, by iteratively sampling from the distributions and . 1 million
sampling steps were done for the 11 gene network. Due to runtime constraints, only
800,000 steps were done on the 100 gene network. Running times for 20, 40 and 200
time points were 116, 207 and 929 minutes for the 11 gene network, and 10, 20 and
80 days for the 100 gene network, respectively. We note that computations were done
using a single processor thread, and significant speed-ups can clearly be expected from
parallelization of the sampler.

To simplify analysis of the reconstructed networks, we summarized the different val-
ues sampled for each parameter by the mean. This clearly is a crude intervention, and

disregards much of the additional information contained in the distribution, for example,
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in case of a bimodal distribution. More sophisticated methods such as cluster analysis,
and the consideration of higher order moments, can be used here. In spite of this sim-
plification, results for the 11 gene network were completely equivalent to results for
the gradient descent method (see Table , indicating that in this simulated example,
only one set of parameters corresponding to one network topology is consistent with the
experimental data, and is recovered using both gradient descent and Markov chain. Res-
ults of the 100 Gene Network obtained using the MCMC sampler were still significantly
better than guessing, but inferior to results obtained from gradient descent, compare
Table This is likely due to multiple local optima of the posterior distribution. In
this situation, averaging over multiple modes leads to an average result with low pos-
terior probability, and thus suboptimal results. Furthermore, the number of sampling
steps carried out (800,000) may not be sufficient to achieve adequate sampling from the

stationary distribution, but this was a limiting factor due to runtime.

3.2.10 Results on a Non-Hub Network

To test our approach for biases towards inferring a scale-free structure also if no such
structure is present in the gold standard network, we tested the gradient descent method
on a random (Erdés-Rényi) 1000 gene network (generated with igraph [33]) with 5000
interactions. The data set size is the same as for the scale-free networks, we simulated
each of 20, 40 and 200 time points as described above. Network reconstruction was then
done using the same settings as above, with conjugate gradient descent.

We focused our analysis of the results on the question if the network inference learns
artificial hubs from the data, although none are present. Correspondingly, we evaluated
the degree distribution of the reconstructed networks. Figure shows the resulting
degree distribution, for the 1000 gene scale-free network above (JumboSF, Figure
left plot), as well as the Erdos-Rényi random network (Figure right plot). The
results clearly show that the approach does not identify artificial hubs, provided sufficient
amounts of experimental data are available. In case of the data set with 20 time points,
a distortion of the random network result can be seen. This data set is too sparse and
the method cannot infer the right topology from it. In this situation the prior starts

dominating the obtained results.

3.2.11 Synthetic Data Simulation with GeneNetWeaver

As a further test of the method, we next simulated data using a realistic kinetic model,
implemented in the GeneNetWeaver (GNW) package [96]. We subsampled networks of
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Figure 3.7: Inferred Degree Density Distribution on Scale-free and Random
Networks. To test whether artificial hubs are generated in network inference due to their
used prior distribution, we performed a comparative analysis on two different 1000 gene
networks. The first network is the JumboSF network, a large scale-free network with cent-
ral hub genes. The second network is a random Erdds-Rényi network, which does not con-
tain any hubs. Network inference was performed using identical parameter values for the
hyperparameters on both data sets. The figure shows the degree distribution of the in-
ferred networks, in dependence of the number of time points used for network inference
(left: JumboSF, right: random network). The plot shows that, provided sufficient data is
available, the prior distribution does not lead to artificial hubs. On the other hand, if only

little data is used for network inference, the prior starts dominating the results, as one
would expect.

size 100, 250 and 500 from the Yeast transcriptional network implemented in GNW, and
generated 25 time points using the ordinary differential equation model, with settings as
for the DREAM challenge (see GeneNetWeaver documentation). Data were simulated
without noise and with noise using the DREAM microarray noise model implemented
in GNW. Data were discretized to Boolean states using a threshold of 50% on the
maximum of the simulated gene activity levels. We then used the gradient descent
approach with the hierarchical ARD prior presented, as well as a standard L1 sparseness
prior to reconstruct the underlying networks from the data. Results of the network
reconstruction were summarized by computing the area under the ROC curve for the
reconstructed edges, as well as the area under the ROC curve for the hub identification.

Due to the low number of time points simulated, overall performance of the network
reconstruction was not significantly superior to guessing in all runs. However, both the
L1 prior as well as the hierarchical prior led to a successful identification of hub genes,

with AUC values as shown in Table and in all but one case superior performance of
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Table 3.4: AUC Results for Network Reconstruction and Hub Identification
on Simulated Data:

Network Size (Genes) no noise noise
L1 ARD | L1 ARD
Network Reconstruction
100 0.508 0.527 | 0.510 0.511
250 0.499 0.499 | 0.504 0.504
500 0.504 0.497 | 0.499 0.496
Hub Identification
100 0.526 0.767 | 0.449 0.453
250 0.789  0.563 | 0.755  0.827
500 0.698 0.849 | 0.859 0.924

Data was simulated using the GeneNetWeaver package, subsampling networks of size
100, 250 and 500 from the yeast transcriptional network. Simulation was done using an
ordinary differential equation model, with and without experimental noise added to the
data. Network reconstruction was carried out using the model described, using an L1
and a hierarchical automatic relevance determination (ARD) prior, respectively. Shown
are the area under the ROC curve values for the correct identification of edges (top)
and hub identification (bottom). A value of 0.5 is equivalent to guessing, a value of 1
corresponds to perfect identification of hub genes.

the hierarchical ARD prior. Interestingly, in case of the smallest network simulated, the
addition of noise was so detrimental that no successful hub identification was feasible
using either method. This probably reflects the situation that when more genes and
hence more edges are present in a network, the influence of noise on the hub identification
is less severe simply due to more edges contributing information on an individual hub
gene. Overall, the results indicate that in the simulated data, information content seems
not sufficient to reconstruct the full network, but it is still possible to identify key
regulatory genes. Together, these observation motivate the use of hub-centered methods
in particular on larger networks, where full reconstruction of a network is very difficult

or even fails completely, but still some information on hubs can be extracted.

3.2.12 Results using Microarray Data on the Core Network of the Yeast Cell Cycle

We next evaluated our reverse engineering approach using publicly available microarray
data regarding the yeast cell cycle. Data were pooled from the studies by Spellman
[133], Cho [29] and Pramila [I16]. We discarded the CDC15-synchronized data from the

Spellman data set, due to previous reports of quality problems [42]. Experimental meas-
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urements were interpolated using smoothing splines, and binarized using the median of
each gene as threshold. Missing values were interpolated with the mean of the preced-
ing and the following time point. This discretization of the data into binary (Boolean)
states can lead to several consecutive time points without any changes in all genes, such
time points were then collapsed into a single time point, i.e. repetitive states after
the binarization were removed. Network inference was performed using all time series
simultaneously.

As reference network to evaluate the performance of our reconstruction, we used the
11 gene yeast cell cycle model proposed by Li et al. [89], see Figure This network
was carefully constructed from the literature, and we constrained our further analysis
on reconstructing the interaction network between the 11 genes contained in this core
network.

Network reconstruction was done using gradient descent, with shape parameter r = 4.6
and rate parameter a = 0.2. Precision, sensitivity and specificity for reconstructed net-
works were computed as described in methods, and used to plot receiver operator char-
acteristic and precision to recall curves. The area under the curve was then calculated,
resulting in AUCRroc = 0.56 and AUCpr = 0.27. As it has been done for the syn-
thetic networks, we generated 100 random networks and computed the AUC for these
networks. This yields an average AUCH5e of 0.35 and an average AUCHR™ of 0.13,
indicating that our approach performs significantly better than guessing.

To furthermore study the effect of the choice of starting point for the gradient descent,
we performed computations with different starting values, results are summarized in
Figure[3.8] These results support the choice of the origin as starting point for the gradient
descent, which seems to give good results. The rationale here is that we expect sparse
networks, hence most edges should have weights equal to or close to zero. Apparently,
if largely distinct values are chosen, the optimization tends to get stuck in local optima
corresponding to overly complex, non-sparse networks.

We next repeated the network reconstruction using the Monte Carlo sampler, us-
ing 800,000 iterations and a burn-in phase of 50,000 steps. Computation time was 264
minutes, or 4 hours and 24 minutes. To check for convergence of the Markov Chains, sev-
eral chains were run with different starting points, length, and random seed, and results
were compared, indicating good convergence of the chains to the stationary distribution.
We summarized values sampled for each model parameter by the mean, and used this to
evaluate the reconstruction performance. Results overall were very similar to the ones
obtained using gradient descent, with AUC%IOC%/IC = 0.59 and AUC’II\J/IEMC = 0.26, again

significantly outperforming guessing.
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Figure 3.8: Effect of Starting Point on obtained AUC values. Shown are the dis-
tribution of AUC values (left: ROC, right: PR) of 1000 gradient descent runs, for ran-
domly chosen starting values for W, on the yeast core network. For the parameter vec-
tor W, randomly chosen values within ranges of [—1,1], [-3,3] and [—5,5] were used as

a starting points for the calculations with CG. This was done for each of the suggested
ranges 1000 times, and AUC ROC and AUC PR values were computed. The boxplots
show the comparison between the different AUC values for these calculations. It can be
clearly seen, that randomly sampled start values close to zero allow the approach to ob-
tain better results for the optimal values of w. If the range of initial values for W is too
large, the optimization ends in suboptimal local optima corresponding to overly complex
networks with many non-zero edges.

Interestingly, obtained values for the hyperparameter o were very similar for all genes,
both for the Markov chain Monte Carlo and the gradient descent approach. This prob-
ably reflects the fact that on such small networks, consisting of only 11 genes, the
definition of hub genes is not or only marginally useful, and does not significantly in-
fluence network reconstruction. Still, largest hyperparameter values were attained by
MCM1/SFF, CLB5/6, SBF and CLN3 which are key genes in the cell cycle network. For
example, CLN3 initiates the cell cycle, or the transcription factor MCM1/SFF controls
downstream genes like CLB2, CDC20 and SWI5.

It is clear that an analysis based on the mean of all values sampled for each parameter
is a major simplification, and will actually yield inferior results in case of multimodal
distributions. We have sampled 750,000 different values for each edge from the posterior
distribution over model parameters, given the data, and clearly, this data can not only
be used to provide confidence intervals on parameter estimates, but might also point to
alternative topologies consistent with the data. To gain a better picture of the landsacpe
of different modes and thus possible alternative topologies, we used the Dip test of

unimodality on the Markov chains. This test, suggested by Hartigan and Hartigan
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(1985) [65], measures the departure of an empirical distribution from the best fitting

unimodal distribution. The smaller this Dip-score statistic becomes, the more likely the

distribution is unimodal. Due to the large sample size used in our Markov chains, the

Dip test would reject the null hypothesis of unimodality for all edges in our network. We

hence directly use the Dip value as a measure of the “deviation from unimodal”. Figure
ShOWS the average Dip values for three prior settings (¢ = 0.2 and r = 4.6, a = 1.6 and
r = 1.6, a = 4.6 and r = 0.2), indicating that several of the edges show clear multimodal

distributions. These edges could now be characterized further experimentally, to assess

the true underlying network. A cell might have different interaction paths for different

states, like proliferation and differentiation, and also fallback paths exists to avoid single

point of failures.
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Figure 3.9: Multimodal Distributions in the Yeast Cell Cycle Core Network.
Shown are Dip scores for the distribution of sampled edge weigths from the Markov chain.
The Dip value measures the departure of an empirical distribution from the best fitting
unimodal distribution. Large scores indicate a stronger deviation from unimodality. Rows
in the diagram represent source (regulating) genes for edges, columns the target (regu-
lated) genes. Colors have been used to indicate the magnitude of the deviation from un-

imodality.
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3.2.13 Hub Genes in the Yeast Transcriptional Regulation

The previous example on the core cell cycle network regards a relatively small network.
For such small networks, the definition of hub genes is not so useful, and accordingly,
the parameters o; describing the importance of individual genes in the network were all
similar, and essentially peaked at the mode of the prior distribution . To evaluate
hub genes in larger networks, we took the set of 800 cell cycle regulated genes reported
by Spellman et al. [I33], and intersected this gene set with the genes in the Pramila
data set [116], resulting in a set of 781 genes. Data were preprocessed as described
above, network reconstruction was carried out using gradient descent. Shape and rate
parameters of the prior were set to r = 3 and a = 7.5, posterior optimization took 145
minutes. Computation with the Markov chain sampler is not feasible for this large net-
work due to excessive running time. We furthermore used ARACNE, MRNet and Banjo
for comparison, and furthermore repeated the computation with the model using
a standard L1 sparseness prior. ARACNE and MRNet results were computed using the
R package minet [99]. ARACNE results were computed using default parameters in the
minet implementation. Since minet uses additive tolerance instead of multiplicative tol-
erance, we furthermore used parmigene [124] to compute ARACNE results, and applied
DPI thresholding at three different thresholds from 0.01, 0.05 and 0.15. MRNet results
were computed using the Spearman estimator, the number of bins was set to v/ N with
N being the number of samples, as suggested in the documentation. Banjo was run with
default parameters.

Since our simulation study indicates that at least 200 time points are required to
successfully reconstruct a network of the given size, it is clear that individual edges pre-
dicted in our inferred network must be interpreted with great caution and need further
experimental validation. In fact, we directly evaluated the reconstructed networks by
comparison with the STRING database, using only experimentally verified or all inter-
actions. We computed sensitivity /specificity and precision/recall of the reconstructed
networks, and plotted ROC and precision-recall curves. None of the methods was able
to perform better than guessing on this pooled dataset (Area under the curve for ROC
[PR] analysis: Hierarchical Prior 0.515 [0.0106], L1-Prior 0.49744 [0.059], L2-Prior 0.496
[0.058], ARACNE 0.4993 [0.0099], Banjo 0.500 [0.06], MRNET 0.498 [0.059]).

We will therefore concentrate our analysis of this large reconstructed network on the
identification of central hubs predicted.

Figure shows a histogram of the reconstructed regulation strengths for the
7812 = 609,961 possible regulations between all pairs of the 781 genes. Negative weights
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Figure 3.10: Hub Genes in the Yeast Cell Cycle. Histogram of reconstructed regu-
lation strength for the full yeast cell cycle dataset. Negative weights correspond to inhib-
itions, positive weights to activations. Weights in the vicinity of zero indicate no regula-
tion between two genes. The plot shows the distribution of regulation strengths between
any two genes, showing clearly that only few genes exhibit strong regulations. The inset
shows a histogram of the corresponding hyperparameters o (equation , controlling the
magnitude of the regulations exhibited by a particular gene. As can clearly be seen, most
genes have only small importance corresponding to low values of o, and only few genes
are assigned large values of o and correspondingly large weights on their outgoing connec-
tions.

correspond to inhibitions, positive weights to activations, and weights in the vicinity
of zero indicate no regulation between two genes. The inset in the figure shows the
distribution of hyperparameters o for the 781 genes, providing a direct measure of the
importance of individual genes. A large value of o; for a gene i indicates that the gene
has strong (positive or negative) effects on other genes. For example, 114 genes (14.5%)
have a hyperparameter of o; > 2 and 209 genes (26.7%) have o; > 1, predicting that
these genes play important roles in the yeast gene regulatory network.

Since predicted regulation strengths are continuous, we pruned all weights with abso-
lute value < 0.75 from the network. This yields a network with average out-degree 2.65.
A plot of the correlation between the number of other genes regulated by a gene and o
shows a good linear correlation (Pearson p = 0.699, plot not shown), reconfirming that
o appropriately summarizes the genes importance in the reconstructed network. 114
genes have a hyperparameter value o; > 2, they on average are predicted to regulate

16.8 other genes, whereas an average gene in the full network regulates only 2.65 other
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genes.

We next evaluated in more detail genes identified as “hubs” in the transcriptional net-
work. We retrieved interactions between the 781 genes in our dataset from the STRING
database, using all interaction types. We then computed the degree d; of each gene 7 in
the STRING network, and assessed correlations between d; and the network inference
hyperparameter o;.

Pearson correlation between o; and d; was only weak (p = 0.0497), probably due to the
large number of non-hub genes contributing significant noise to the correlation coefficient,
and possibly also influenced by false positives in the database network. Accordingly,
correlation improves to p = 0.127 if the top 25%, p = 0.334 if the top 5%, and p = 0.711
if only the top 1% predicted hub genes are used.

We then used receiver operator characteristic analysis to study the predictive strength
of o to identify hub genes, by varying a threshold on o for a fixed threshold on the
degree d, and computing sensitivity and specificity. ROC curves were summarized using
the AUC, and AUC was plotted over different thresholds on the degree d, as shown
in Figure B.11] To compare results obtained using our approach with other methods,
we reconstructed networks using ARACNE [97], MRNet [99] and Banjo [13], using the
same input data. Importance values o; were then computed for each gene from the
reconstructed edge weights as described above, and we then computed ROC and AUC
values. We furthermore compared these results with a reconstruction using equation
with a normal and a L1 prior distribution, to study the effect of the hierarchical
prior distribution used.

Figure [3.11] summarizes the AUC values obtained with these different approaches, in
dependence of the STRING degree of the underlying genes. The dashed grey line in
Figure [3.11] corresponds to the expected AUC for random guessing, the solid red curve
shows the AUC for our ARD approach using the full posterior distribution. The dotted
brown curve shows results using a L1 sparsity prior, the dotted black curve was obtained
using a Normal distribution as prior. In comparison, the green and the pink dot-dashed
curves were obtained using the relevance network approaches ARACNE and MRNet,
respectively, whereas the dashed blue line shows results of the Bayesian method Banjo.
While the Bayesian ARD approach performs only slightly better than guessing for low-
degree genes (AUC ~ 0.55), it makes excellent predictions for highly connected genes,
which it identifies as hub-genes with high area under the ROC curve, and thus with
high sensitivity and specificity. A comparison with the same model using an L1 and
a normal prior shows clearly how the prior distribution used helps identify hub genes.

Interestingly, at least on this dataset, the relevance network approaches ARACNE and
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Figure 3.11: Receiver Operator Characteristic Analysis for the Prediction of
Hub Genes in the Yeast Cell Cycle. Genes were split in two groups “hub” and “non-
hub” based on a threshold € on the degree of the gene in the literature derived network,
and ROC curves were computed by then varying the threshold on o. ROC curves were
summarized for each # using the area under the curve. The plot shows AUC(6) over 6.
The red curve shows results for the inferred network using the method presented, the
black dotted line shows results using the method with a Normal prior, the brown dashed
line using a L1 “sparseness” prior distribution. The dashed blue line was obtained using
Banjo, the dot-dashed green lines shows results of ARACNE, the dot-dashed pink line
represents results of MRNet. The grey dashed line corresponds to the expected value for
randomly guessing a network. Larger AUC values indicates better performance.

MRNet performed worst, and actually make hub predictions that are inferior to guessing.

3.2.14 Choice of Prior Hyperparameters

A critical issue is the choice of hyperparameter values a and r for the ARD prior. Optimal
values for a and r depend on the size of the network, the number of experimental data
points, level of noise in the data, and expected number of hub genes. Some theoretical

insight on the effect of changing a and r can be gained from a marginalization of the
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prior over o:
o0

plwlar) = [ pluwlo)p(olasr) do (39)
0

which can be solved and analyzed numerically. By plotting p(w|a,r) over w for different
values of a and r, one can see that choosing smaller values of r corresponds to a more
“peaked” prior, i.e. a stronger “sparsity” of the inferred networks, whereas smaller values
of a cause the overall importance of the prior to decrease. Hence, for larger networks
and in case of small amounts of data, smaller values of r and larger values of a should be
preferred, whereas in case of excellent and large amounts of data and small networks, r
should be chosen larger and a smaller, to decrease the influence of the prior distribution.

Due to the difficulty in manually choosing these parameters, we performed a sensitivity
analysis to assess the sensitivity of results with respect to choices for a and r. On the
simulated data (synthetic 11 gene, 100 gene and 1000 gene data sets), we modified
parameters a and r in the range from 0.2 to 4.8, performed the network inference for
each combination using gradient descent using 20 and 200 time points from the data, and
computed resulting AUCRro¢c values. Results are shown in the heatmaps in Figure
The plots show that results are relatively insensitive over a large range of parameters.
Smaller values of the hyperparameter r correspond to a more peaked prior distribution,
resulting in “sparser” networks. Correspondingly, the figure shows that smaller values
of r should be chosen for larger networks. In comparison, the correct choice of a seems
less important.

On the experimental data regarding the hub genes in the yeast cell cycle, we also
performed a similar analysis. We note that parameters chosen for this analysis (a = 7.5,
r = 3) result in a significantly narrower distribution of o than the hyperparameter values
used on the synthetic data, corresponding to much stronger regularization — in line with
expected larger levels of noise in the data. We modified both parameters individually
and together by up to £50%, reran the network inference, and computed average AUC
values for the reconstructed networks. Figure [3.13 shows the resulting AUC values, and
clearly shows that in spite of considerable variation of the hyperparameter values over a

wide range, performance is again only marginally affected.

3.2.15 Discussion

In this paper, we present a novel approach to reconstruct gene regulatory networks from
microarray gene expression time series data, which employs the concept of hub genes for

regularization. Our evaluation on the simulated data shows that the method precisely
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Figure 3.12: Sensitivity Analysis for the Network Inference Performance on
Synthetic Data with Respect to Parameters a and r. Plots comparing distribu-
tions of AUC values for ROC graphs for different a and r settings (x- and y-axis), for the
synthetic networks of sizes 11, 100 and 1000, using data sets with 20 and 200 time points,
respectively. The plots show that results are relatively insensitive over a large range of
parameters. Smaller values of the hyperparameter r correspond to a more peaked prior
distribution, resulting in “sparser” networks. Correspondingly, the figure shows that smal-
ler values of r should be chosen for larger networks. Although the effect of changing a
seems not as pronounced, larger values of a correspond to a narrower prior distribution,
and should therefore be used if fewer data are available to avoid overfitting.

retrieves the original network from the data, provided sufficient time points are available.

Furthermore, the approach can help identify hub genes in regulatory networks, and we

have shown an application to a large biological dataset on yeast, where we successfully
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Figure 3.13: Sensitivity Analysis for the Prediction of Hub Genes in the Yeast
Cell Cycle with Respect to Parameters a and r. To assess the effect of changes

of model parameters a and r, both parameters were varied individually and together by
up to £50 percent. Network reconstruction was restarted for each combination of values
for @ and r, and average AUC values were computed for the reconstructed networks in
comparison to the STRING network. The figure shows the resulting AUC values over a, r,
indicating that results are relatively insensitive over a wide range of parameter values.

identified several important hub genes.

While a considerable number of approaches to reconstruct networks from data have
been published to date, to our knowledge, this is the first method that simultaneously
identifies hubs in the regulatory network and centers the network reconstruction around
these hub genes, by using a hierarchical Bayesian prior distribution on the edge weights.
While clearly other network reconstruction approaches can also be used to identify hubs
in retrospect, our approach specifically centers the reconstruction of the network around
central hub genes. In particular on large, noisy datasets, this may be a major advantage
over other approaches that may only identify clusters of correlated genes, but not ne-
cessarily induce a hierarchical structure. This is shown on the yeast cell cycle network,
where ARACNE, Banjo and MRNet all failed to correctly identify the highest-degree
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hubs in the network. We therefore believe our approach to have high potential for the
identification of hubs in unknown regulatory networks, around which further experi-
mental effort should be centered in elucidating the respective network. Ultimately, this
could be highly useful for an iterative procedure of network reconstruction, experiment
design, further biological experiments, and feeding the results back into network recon-
struction, of particular interest for large networks. Indeed, if certain hubs in a network
are already known, this can even be integrated into the network inference by choosing a
different prior over ¢ for the known hub genes.

We have shown two different approaches to evaluate the posterior distribution over
models given the data. On the one hand, we used a Markov chain Monte Carlo approach
to sample from the posterior distribution. The advantage of this is that full distribu-
tions are evaluated, hinting to possible different, alternative network topologies, yielding
additional information on confidence in results. The disadvantage of this method is the
computational burden involved, making it infeasible for networks involving more than a
few dozen genes, at least without further parallelization of the sampler. On the other
hand, we use gradient based optimization to maximize the posterior, yielding a single
optimal network topology. This can be computed considerably faster and is feasible for
networks with several hundred to thousands of genes, but does not provide any informa-
tion on alternative, high-probability networks, and no confidence intervals are available
on model parameters.

We showed results on simulated data, indicating that even with only moderate noise,
for a network of approximately 1000 genes, at least 200 time points are needed for reliable
network reconstruction. Hence, while the size of the used yeast data set clearly is not
sufficient for a precise reconstruction of the whole network structure, we could identify
important hubs in the regulatory network, which were validated using the STRING
database. An interesting result from our point of view is that all published approaches
that we tried, including our own, failed to reconstruct a yeast transcriptional network
from the microarray data, at least in comparison to the gold standard network from
the STRING database. This may be due to low quality of the experimental data and
the lack of targeted interventions, but these results are in line with findings in recent
results of the DREAM competition, where also even the best submitted methods showed
surprisingly weak performance, and most methods did not perform better than guessing
[135, 117]. Under conditions of high noise and limited amounts of experimental data, for
large-scale network reconstruction, a method that centers on hubs may therefore be of
value to concentrate further experimental efforts and network reconstruction attempts

around these hub genes.
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Interestingly, the HUB prediction for the yeast dataset shows good performance with
high AUC values if a fairly strict definition of hub genes is enforced, by requiring a hub
to have a large number (> 50) of interaction partners in the STRING network. If this
threshold is relaxed, AUC values drop rapidly. We offer two explanations for this beha-
vior: On the one hand, genes with low connectivity in the network probably contribute
significant noise to the network reconstruction, simply due to their large number. On the
other hand, false positives in the STRING dataset will affect genes with few interaction
partners more than genes with a large number of partners, since a gene with say 100
interaction partners would still be considered a hub, even if 20 of the interactions are
false. It is somewhat surprising that the transition occurs so rapidly around a value of
50 interaction partners, one would expect a more smooth transition where AUC gradu-
ally increases with increasing degree. To study this further and exclude the possibility
that this is an artifact of the method employed, we additionally performed the same
computation on the 500 gene simulated network with noise from GeneNetWeaver, where
indeed a smooth increase of the AUC values is observed. We therefore speculate that
the rapid transition in the Yeast dataset is not due to the method we used, but rather
an artifact of the data set.

A difficulty in using our approach, that all Bayesian methods share, is the need to select
parameters for the prior distributions. In some cases, these can significantly influence
results, and the choice of parameters ¢ and r in our method is not straightforward.
Optimal values depend on the size of the network, the amount of available experimental
data, the level of noise in the data, and the expected number of hub genes. Importantly,
our sensitivity analysis of the yeast cell cycle network reconstruction with respect to
parameters a and r shows that results are relatively insensitive over a wide range of
parameter choices. Still, considerable experience is required in tuning these parameters.
Methods to assist finding sensible choices, such as empirical Bayes approaches or careful
cross-validation, could be used to address these issues.

The main assumption we make in our model is the binarization of state space — each
gene is assumed to be either active or inactive. This implies a loss of detailed expression
levels, but allows us to tremendously reduce model complexity and computation time,
and hence, to explore biological networks of a much larger scale. This discretization of
the data may furthermore have advantages in case of microarray data as used in this
study, in particular if the data is more of a qualitative than of a quantitative nature
due to inherent noise, or if data from different platforms or different studies shall be
integrated. Furthermore, in contrast to co-expression based approaches, the underlying

Boolean model allows causative inferences, hence edges between genes are directed and
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can be interpreted not only as correlation or co-expression, but causality.

A difficulty associated with the use of a Boolean model is the requirement to discretize
the experimental data. We have used smoothing cubic splines in this work to smooth out
smaller fluctuations in the experimental data, and thus take care of some of the noise in
the data. Data were then discretized for each gene separately by using the median of the
respective gene as threshold. For the small 11 gene network, we have manually checked
the resulting data, and the discretized values were compared with the raw data to assure
that the interpolation and discretization has produced reasonable results. However, this
is clearly not feasible for large-scale network inference with hundreds to thousands of
genes, and discretization can then become a difficult issue, in particular since it will
clearly have a considerable effect on results of the network inference. Already using the
mean instead of the median as discretization threshold can lead to a completely different
data set, if the time course for a particular gene has a single large outlier.

The spline interpolation itself requires the choice of a smoothing factor, and clearly,
also other interpolation functions could be employed (for example linear, polynomial,
etc.). Kaderali et al. have previously proposed an iterative procedure between spline in-
terpolation and network inference for a model using ordinary differential equations [L00].
In this work, model predictions are fed back into the interpolation, to adaptively choose
parameters for the interpolation. It is not immediately evident how such a procedure
can be used with a Boolean model, but this might be an interesting question for future
work.

Overall, our results show that the approach presented may be a valuable tool for
large-scale network reconstruction, and may guide experimental efforts to characterize
identified hubs in more detail. The Boolean discretization used in principle allows the
reconstruction of larger networks and may in fact be an advantage in case of noisy data,
but our results also clearly indicate that an accurate reconstruction of a large network
is not feasible with present limited data sets containing at most a few dozen time points
or different conditions. In addition to larger experimental data sets, a key to overcome
these challenges will be the integration of as much biological knowledge as is available.
Our method contributes to this aim by providing a general framework for reconstructing

sparse networks with small world properties.
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CHAPTER 4

Analysis of Regulatory Relationships in Real-World Domains

In the previous chapter two new methods were presented for the analysis of gene ex-
pression time series data. In this chapter the focus lies on the analysis of a completely
new gene expression data set, which is also a time series. This time series describes
the behavior of human cell lines for two experimental setups and their controls. The
evaluation of any predictions in human is difficult, since no gold standard exists to which
the results could be compared. Furthermore, due to the costs of measuring experiments,
the data set is a short time series, which consists only of four time points. Further
limitations to the analysis were experimental noise and time shifts between the time
points. Nevertheless, this is not an untypical task in this field since most experiments
have only limited funding and have to focus on the time points which are supposed to
be the most interesting ones. It is a challenging task to deal with these preliminaries.
Further obstacle are batch effects from the experiments, choosing the proper normal-
ization method, finding a suitable ranking of genes of interest and to identify genes of
interest for follow-up studies. In the following sections an approach is presented, which
is capable of dealing with all of these topics. A general workflow from the raw analysis
to the identification of genes of interest will be outlined. The application of this work-
flow resulted in the identification of the TF ELF3 as a new regulatory factor of human
urothelium [I7]. This analysis has been done in close collaboration with the Jack Birch
Unit for Molecular Carcinogenesis from the University of York, where all the lab work

was done.
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4.1 ldentification of ELF3 as an Early Transcriptional Regulator of

Human Urothelium

Despite major advances in high-throughput and computational modelling techniques,
understanding of the mechanisms regulating tissue specification and differentiation in
higher eukaryotes, particularly man, remains limited. Microarray technology has been
explored exhaustively in recent years and several standard approaches have been es-
tablished to analyze the resultant datasets on a genome-wide scale. Gene expression
time series offer a valuable opportunity to define temporal hierarchies and gain insight
into the regulatory relationships of biological processes. However, unless datasets are
exactly synchronous, time points cannot be compared directly. Here we present a data-
driven analysis of regulatory elements from a microarray time series that tracked the
differentiation of non-immortalised normal human urothelial (NHU) cells grown in cul-
ture. The datasets were obtained by harvesting differentiating and control cultures
from finite bladder- and ureter-derived NHU cell lines at different time points using two
previously validated, independent differentiation-inducing protocols. Due to the asyn-
chronous nature of the data, a novel ranking analysis approach was adopted whereby
we compared changes in the amplitude of experiment and control time series to identify
common regulatory elements. Our approach offers a simple, fast and effective ranking
method for genes that can be applied to other time series. The analysis identified ELF3
as a candidate transcriptional regulator involved in human urothelial cytodifferentiation.
Differentiation-associated expression of ELF3 was confirmed in cell culture experiments
and by immunohistochemical demonstration in situ. The importance of ELF3 in ur-
othelial differentiation was verified by knockdown in NHU cells, which led to reduced
expression of FOXA1 and GRHL3 transcription factors in response to PPAR~y activa-
tion. The consequences of this were seen in the repressed expression of late/terminal
differentiation-associated uroplakin 3a gene expression and in the compromised devel-

opment and regeneration of urothelial barrier function.

4.1.1 Introduction

The bladder and associated lower urinary tract is lined by urothelium, a transitional epi-
thelium that functions as a permeability barrier to limit exposure to urinary toxins and
to minimise alterations in urine and blood composition ([43], reviewed [88]). The main-
tenance of this vital urinary barrier is supported by an exceptional regenerative capacity,

whereby the urothelium switches from a mitotically-quiescent to a highly proliferative
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Figure 4.1: Graphical abstract of the presented workflow.

state in response to damage [87].

Urothelium shows an increase in morphological complexity between basal, intermedi-
ate and superficial cell zones. The lumen-facing superficial cells are uniquely specialised
to provide urinary barrier function. With well-developed tight junctions limiting para-
cellular permeability [146], the major transurothelial barrier is provided by thickened
plaques of asymmetric unit membrane (AUM) decorating the apical membrane of the
superficial cells [68]. The AUM is constituted in the Golgi as a result of precise uro-
plakin protein interactions (reviewed [I53]), the disruption of which has devastating
consequences for urothelial permeability and urinary tract development. Thus, the tar-
geted disruption of the uroplakin UPK3a gene in mice resulted in distinctive structural
and functional abnormalities of the urothelium and high grade vesicoureteric reflux [69].
Although a few examples of minor uroplakin gene anomalies associated with urinary
tract malformations have since been found in man [72], there is no common association
[54, 56, [75], 82], indicating that major disruption of urothelial differentiation during hu-
man development is likely non-viable.

Although morphological and molecular features of urothelial differentiation are well
characterised, relatively little is known of the transcriptional mechanisms underpinning
this process. In mice, Kruppel-like factor 5 (KLF5) has been shown to be involved in the
embryological development and differentiation of bladder urothelium [I1]. In the same
study, KLF5-null fetal urothelium was shown to be deficient for expression of PPAR~,
GRHL3, ELF3 and OVOL1, supporting the participation of these factors in a hier-
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archical transcriptional network regulating urothelial development. The authors further
showed in transient transfection assays that KLF5 regulated expression of the mGRHL3
promoter. In mouse development, GRHL3 plays an essential role in epidermal morpho-
genesis, with GRHL3-deficient mice exhibiting failed skin barrier formation, defective
wound repair and loss of eyelid fusion [20]. GRLH3 has also been shown to be critical
to urothelial differentiation during mouse development [156]. Although it is assumed
that these factors and relationships are conserved from mouse to man, there is a lack
of experimental approach to enable these developmental relationships to be assessed in
human cells.

We have developed a robust experimental system for the propagation and differenti-
ation of normal human urothelial (NHU) cells in vitro. When isolated from the tissue
and cultured in a serum-free low calcium medium as finite cell lines, NHU cells subsume
a basal squamous (CK14+) phenotype, are highly proliferative and do not show spon-
taneous differentiation even at confluence [I31]. Nevertheless, cultured NHU cells retain
the capacity to differentiate to form a functional barrier urothelium, as shown by subcul-
ture in medium containing bovine serum and physiological [Ca?*], where transepithelial
electrical resistances of >3,000 f2.cm? are routinely attained [3I]. In addition, phar-
macological activation of the nuclear receptor peroxisome proliferator activated receptor
gamma (PPAR~) initiates the urothelial differentiation gene expression programme in in-
dividual cells, but without self-organisation into a barrier urothelium [148|, (146, [149] 147].
Thus, the outcomes of these two differentiation-inducing protocols are not identical, yet
both result in development of a differentiated urothelial cell phenotype. We reasoned
that comparison of the two protocols to identify common changes in gene expression over
time would help limit method-dependent artefacts and hence was a strategy that could
help identify key regulatory genes involved in determining urothelial differentiation. To
these ends, we performed a gene array series at different time-points following differen-
tiation induction using the two differentiation-inducing protocols performed in parallel.
Our aim was to perform an unbiased analysis to identify common regulatory features
and in the following, we describe the quality assessment of the data, the overcoming of
synchronization issues by performing a qualitative ranking approach, the identification
of a set of significant genes involved in transcriptional regulation and the experimental

validation of a previously unidentified regulator of human urothelial cytodifferentiation.
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4.1.2 Materials and Methods

Troglitazone (TZ) was obtained from Sigma-Aldrich (Dorset, UK) and the EGF receptor
tyrosine kinase inhibitor PD153035 was obtained from Merck Millipore (Darmstadt,
Germany). The PPAR~-specific antagonist, T0070907 was obtained from Cambridge
Bioscience (Cambridge, UK). Rabbit anti-ELF3 antibody (ab97310) was obtained from
Abcam, Cambridge, UK. Mouse anti-fS-actin (clone AC-15) was obtained from Sigma-
Aldrich (Dorset, UK).

Tissue Samples

Human urothelial tissue samples were sourced ethically with informed written consent
from patients and approval for use in research from Leeds (East) and York Research
Ethics Committees. The surgical specimens were collected from patients with no history
of urothelial cancer and were processed for histology or used to establish urothelial cell
cultures. Samples taken for (immuno)histology were fixed for 16h in 10% (v/v) formalin,

dehydrated and processed into paraffin wax.

Cell Culture

Finite NHU cell lines were established as detailed elsewhere [I32]. For routine propaga-
tion, cultures were maintained as monolayers in low calcium [0.09 mM] Keratinocyte
Serum Free Medium containing bovine pituitary extract and EGF (Invitrogen) and fur-
ther supplemented with cholera toxin (KSFMc). Cultures were sub-cultured by trypsin-
isation at just-confluence and used for experiments between passages 3 to 5.

To induce differentiation, two previously described methods were used. In the first
(referred to as TZ/PD): NHU cell cultures were treated with 1uM TZ with concurrent
1M PD153035 to block EGFR activation and induce individual cell differentiation [149].
In the second protocol (referred to as ABS/Ca?"): cultures were pre-treated with 5%
adult bovine serum (ABS, Harlan Sera-Lab) for 3 days before subculture (time point
T=0 h) into KSFMc supplemented with 5% ABS and 2 mM CaCly, leading to gen-
eration of a differentiated, tight barrier epithelium as described [31I]. Vehicle control
non-differentiated cultures were maintained in parallel in KSFMc and used at the same
time points (between 24 to 144 hours). Cultures were lysed in situ with TRIzol® to
prepare RNA by the manufacturer’s recommended protocol (Invitrogen). RNA samples

were treated with a DNA-free kit (Ambion) and quantified by UV spectrophotometry.
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Microarray Experiments and Preprocessing

Time series experiments were performed on two independent donor NHU cell lines (Y579
and Y676) using the TZ/PD and ABS/Ca?" differentiation-inducing protocols described
above. For each arm of the experiment, parallel non-differentiated control cultures were
included and RNA was extracted at 6, 24, 72 and 144 hours, where t=0 coincided with
the treatment to induce differentiation in the TZ/PD cultures. The nature of the differ-
entiation process meant that (as described above and Cross et al. [31]) the ABS/Ca?*
arm had a serum pre-treatment stage, which affected absolute synchronization of the
two arms of the experiment. Following RNA extraction, induction of differentiation in
the experimental arms was verified by assessing the expression of UPK2 transcript by
quantitative real time PCR (not shown).

For the arrays, mRNA was converted to cDNA and then to biotin-labelled cRNA be-
fore hybridising to HG-U133 Plus 2.0 arrays (Affymetrix). The array chips were washed
and scanned at 560nm using an Affymetrix GeneChip Scanner. Quality assessment of the
microarrays was performed with the arrayQualityMetrics package [81] and two samples
were discarded due to quality issues (one control sample: 72h ABS/Ca?" from cell line
Y676; and one experimental sample: 6h TZ/PD from cell line Y676). The experiment
thus yielded 30 arrays (2 cell lines x (2 experimental and 2 control arms) x 4 time points)
- 2 discarded arrays).

All calculations were performed in R. The microarray data were RMA normalized [71]
using the Bioconductor package affy [55]. To reduce the dimensionality of the data and
to filter out insignificant signals, an intensity filter was applied, which retained probe
sets for which at least 25 per cent of all time points for the experimental time series had
an intensity above log2(100). 25,461 probe sets remained after the filtering step, corres-
ponding to about 13,500 genes. Since the time series began at 6h, the first control time
point was used as a zero time point to account for changes of the expression level between
the starting point of the control cell lines and the experiments. This left three time series
with five time points and one with four because of the discarded sample (the 6h time
point in the TZ/PD Y676 experiment). The quality analysis and a principal component
analysis of the different samples are provided in the Appendix [A] An interactive visu-
alisation of the results can be accessed from: http://www.informatik.uni-mainz.de/
groups/information-systems/research/timeseries-visualisation

All calculations were performed in R. Microarrays were RMA normalized [71] using
the Bioconductor package affy [65]. To reduce the dimensionality of the data and to

filter out insignificant signals, an intensity filter was applied, which retained probe sets
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for which at least 25 per cent of all time points for the experimental time series had an

intensity above log2(100).

Filtering and Ranking

We developed an approach that focused on the expression changes over time on a qual-
itative level to overcome the lack of precise synchronization of events. We searched
only for the maximum changing event per gene and experiment and globally compared
changes over time from control to experiment, thus avoiding direct comparison of time
points.

We calculate for each probe set time series a AX, the difference between the maximum

intensity of all time points x; € X to the minimum intensity of all time points:

AX = max(z; € X) — min(z; € X) (4.1)

This difference AX, describes the maximum change over time per probe set for each
time series. In a second step, we calculate the difference of the AX,,, for the experiment

and the AX_,; for the control time series. We refer to this as amplitude log fold change
(ALFC):

ALFC = AXopp — AXomi (4.2)

This value defines if a probe set changes significantly over time compared to its control
without having to compare the individual time points. A positive ALFC means the
change is larger for the experiment and a negative value vice versa, indicating a silenced

gene. Probe sets were then ordered in decreasing order from their ALFC value.

Validation Experiments

In validation experiments, NHU cell cultures (independent cell lines from arrays) were
induced to differentiate by co-treatment with 1uM troglitazone (TZ as PPAR~y agonist)
and 1M PD153035 (EGFR inhibitor) as described above in [149]. To further define the
role of PPAR~y, parallel cultures were pretreated for 3 hours with 5uM T0070907 as a
specific PPAR#y antagonist prior to induction of differentiation. Replicate cultures were
harvested at 6, 24, 48 and 72 hours and used to extract DNA-free RNA for analysis
of transcript expression (see below). Parallel cultures were lysed and processed for
immunoblotting and probed with rabbit anti-ELF3 antibody, which was also used to

assess ELF3 localisation in paraffin wax-embedded tissue sections of human urothelium
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by immunoperoxidase histochemistry (see below). Appropriate vehicle (DMSO), loading
(B-actin for RT-PCR and immunoblotting) and specificity (RT-negative and irrelevant

antibody) controls were included in all experiments.

Reverse-transcribed (RT) and real-time quantitative (RTq) PCR

Cell cultures were solubilised in TRIzol® and the RNA was isolated by chloroform ex-
traction and iso-propanol precipitation, according to the manufacturer’s protocol (Life
Technologies, Paisley, UK). The RNA was treated with DNase I (DNA-freeTM kit from
Ambion, Huntingdon, UK). cDNA was synthesised from 1ug of total RNA using the Su-
perscript first-strand synthesis system (Life Technologies, Paisley, UK). RT-PCR was
performed using Go Taq® Hotstart Polymerase (Promega, Southampton, UK) with
primer sets designed to amplify specific human products (Table . RT negative and
no template (water) controls were always included. For semi-quantitative analysis, tem-
plate cDNA was mixed with SYBR® Green PCR Master Mix (Applied Biosystems) and
300nM of each forward and reverse target gene primers (Table and analyzed on an
ABI StepOnePlus™ Real Time PCR System. The thermal profile was: 20 sec hold at
95°C, followed by 40 cycles of denaturation at 95°C (3 sec) and elongation at 60°C (30
sec). Dissociation curves were performed to confirm the presence of a single amplific-
ation product and the absence of primer dimers for each primer set. Assay efficiency,
validated using the CT slope method prior to use, confirmed that both the test and
endogenous assays were of equivalent efficiency (within tolerance range). SYBR® Green

results were expressed as relative quantification (RQ) values (Applied Biosystems).

Immunohistochemistry

De-waxed 5um tissue sections were blocked for endogenous peroxidase activity with 3%
(v/v) hydrogen peroxide for 10 minutes. Antigen retrieval was performed by microwave
boiling of tissue sections in a 10mM citric acid buffer (pH 6.0) for 10 minutes, followed by
10 minutes cooling on ice. Tissue sections were treated with an Avidin/Biotin blocking
kit (Vector labs, Peterborough, UK), before applying 10% goat serum for 5 minutes to
prevent non-specific binding of the secondary antibody. Rabbit anti-ELF3 antibody
(2ug/ml) was applied, followed by biotinylated goat anti-rabbit secondary antibody
(1/800, Dako Cytomation Ltd, Ely, UK) — each for 15 minutes at ambient temperature,
with washing in between. Antibody binding was detected using a tyramide-based signal
amplification system (CSA system, Dako Cytomation Ltd, Ely, UK), as described in the

manufacturer’s protocol. Tissues were lightly counterstained in Mayer’s haematoxylin,
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Table 4.1: Primer sequences used for RTPCR and RTqPCR

PCR Product Forward Primer (5’-3")
(gene name) Reverse Primer (5’-3’)
ELF3 (RTPCR) GTTCATCCGGGACATCCTC
GCTCAGCTTCTCGTAGGTC
ELF3 (RTqPCR) TCAACGAGGGCCTCATGAA
TCGGAGCGCAGGAACTTG

GRHL3 (RTgPCR) | TGGAATATGAGACGGACCTCACT
CAGACACGTTCTCTGTCAGGAATT
FOXA1 (RTqPCR) | CAAGAGTTGCTTGACCGAAAGTT

TGTTCCCAGGGCCATCTGT

UPK3a (RTPCR) CGGAGGCATGATCGTCATC
CAGCAAAACCCACAAGTAGAAAGA

UPK?2 (RTqPCR) CAGTGCCTCACCTTCCAACA

TGGTAAAATGGGAGGAAAGTCAA
CLDN7(RTqPCR) GCAGTGGCAGATGAGCTCCTAT
CATCCACAGCCCCTTGTACA
B-actin (RTPCR) ATCATGTTTGAGACCTTCAA
CATCTCTTGCTCGAAGTC
GAPDH (RT¢qPCR) | CAAGGTCATCCATGACAACTTTG
GGGCCATCCACAGTCTTCTG

This list gives an overview of the primer sequences for the different marker genes.

dehydrated through ethanol to xylene and mounted in DPX (Sigma Aldrich).

Immunoblotting

Culture lysates were resolved on 4-12% gradient bis-Tris acrylamide NuPAGE® gels
(Life Technologies, Paisley, UK) and electrotransferred onto 0.45-pym PVDF-FL mem-
branes (Merck Millipore, Darmstadt, Germany). Membranes were probed with anti-
ELF3 (1gu/ml) and S-actin (1/250,000) antibodies for 16 hours at 4°C; bound antibody
was detected with goat anti-rabbit Ig conjugated to IRDye® 800 (50ng/ml; Rockland
Immunochemicals; supplied by Tebu-bio, Peterborough, UK) or anti-mouse immuno-
globulins conjugated to Alexa Fluor® 680 (200ng/ml; Life Technologies), as appropriate.
Immunolabelled protein bands were visualized and relative quantifications generated us-

ing an Odyssey infrared imaging system (LiCor, Cambridge, UK).
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Knock-down of ELF3 by retroviral-mediated shRNA interference

For RNA interference experiments, siRNA oligos were designed to target the ELF3
coding sequence before adding the hairpin loop, restriction overhangs for directional
cloning and an Mlul restriction site (to verify cloned inserts) in to generate the following

ELF3 sense shRNA sequences including hairpin loop:

shRNA1: GATCCGCTACCAAGTGGAGAAGAACATTCAAGAGA
TGTTCTTCTCCACTTGGTAGCTTTTTTACGCGTG
shRNA2: GATCCGCTCTTCTGATGAGCTCAGTTTTCAAGAGA
AACTGAGCTCATCAGAAGAGCTTTTTTACGCGTG
shRNA3: GATCCGCTCAGTTGGATCATTGAGCTTTCAAGAGA
AGCTCAATGATCCAACTGAGCTTTTTTACGCGTG

A scrambled control shRNA was also prepared. Oligonucleotides were annealed and
cloned into the RNAi-Ready pSIREN-RetroQ retroviral expression vector (Clontech)
and transfected into the PT67 packaging cell line using the manufacturer’s protocols.
Following antibiotic selection, conditioned virion-containing medium was harvested from
confluent PT67 cultures and filtered through a 0.45um low protein binding Tuffryn®
filter to remove cell debris. NHU cells were transduced for 6hr with 8ml of conditioned
medium supplemented with 8ug/ml Polybrene (Hexadimethrine Bromide, Sigma), after
which virus-containing medium was removed and cultures replenished with KSFMec.
Transduced NHU cell cultures were selected with 1ug/ml puromycin and screened for

ELF3 protein expression by immunoblotting following induction of differentiation.

Trans-epithelial electrical resistance (TER) studies

Differentiating urothelial cell cultures were established on Snapwell™ membranes using
the ABS/Ca?* differentiation-inducing protocol and with medium changed on altern-
ative days. TER readings were taken daily using a portable EVOM™ Epithelial Volt-
ohmmeter (World Precision Instruments), as described [122]. After stabilisation of the
TER readings, cultures were scratched to create a wound of 250pum wide. Further TER

measurements were taken at regular intervals over a period of 61h during wound closure.

4.1.3 Results

Candidate Gene Selection

The time series microarray data was pre-processed and filtered as described in the Meth-
ods section. The first intensity filtering left 25,461 probe sets (about 13,500 genes). The
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initial goal was to prioritize and group genes with respect to their possible importance
in regulating the differentiation or proliferation process. The main difficulty for the
analysis of the time series data arose due to inherent a) variability between the two
biological replicates (independent human donor cell lines) studied and b) differences
in the pre-treatment and hence precise timing of the two procedures (ABS/Ca?" and
TZ/PD) used to induce differentiation. Together, these confounded synchronization of
the experimental arms and impaired direct comparison of control and experimental time
points. To overcome these issues, we developed an approach that focused on the ex-
pression changes over time on a qualitative level, which we refer to as the ALFC. Thus,
instead of performing pairwise comparisons between each time point of control and ex-
periment, we looked for the maximum expression burst in the time series for each gene
and compared the global expression change over time between the control and exper-
iment. By discretizing the global differences between experimental and control arms,
we effectively circumvented any problems related to shifts in timing between or within
experiments. The result was that we were able to avoid direct comparison of the time
points, whilst still considering the time information. An overview of the resulting sets
and their intersections is shown in Figure

The calculated ALFC was then used for further filtering of the data sets. We used
a set of 25 pre-defined marker genes selected as implicated in urothelial differentiation
or proliferation (Table in order to select the size of sets for further investigation.
Figure [£.3] shows the stair-step plots with the number of markers included by apply-
ing different thresholds for each of the four experimental arms (see Table for an
overview of the included markers). Based on this analysis, we selected the top 1000
ranked probe sets associated with each experimental arm. We proceeded to analyze the
different intersections between the four selected top 1000 probe sets (see Figure
and B for an overview). By definition, the overlap between all four experimental arms
(two biological replicates and two differentiation-inducing procedures) identified com-
mon (method-independent) genes, whereas the overlap exclusive to either of the two
differentiation-inducing procedures (ABS/Ca?* or TZ/PD) revealed method-dependent

factors.

Identification of common regulatory genes implicated in urothelial differentiation.

For the intersection of all four sets, the ALFC was normalized to one for each exper-
imental arm and the absolute sum of the ALFC was calculated and used to prioritize

the list of probe sets. The overlap of all four experiments resulted in 189 probe sets and
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Figure 4.2: Overview of the probe set overlaps between the experiments. Fig-
ures A and B give an overview of how the top ranked probe sets were combined. The in-
tersection was built either on all four filtered 1000 top ranked sets or the two ABS/Ca?*
experimental arms. The ALFC for each probe set was then normalized to one and the set
sorted according to the sum of absolute ALFC over all experiments. The intersection of
the ABS/Ca?" sets was ranked from the difference between the absolute sum of ALFC

on the ABS/Ca?* arm and the absolute sum of the ALFC on the TZ/PD arm. Figures

C and D display Venn diagrams which show the intersection and overlaps of the four dif-
ferentiation series (TZ/PD and ABS/Ca?", on two independent donor cell lines Y579 and
Y676). The overlaps were generated using the top 1000 probe set lists from each experi-
ment. The Venn diagram in panel C shows the number of genes present at the intersec-
tion of all four data sets. 142 up-/downregulated genes were found within the intersection.
Within this subset, four TFs were found (ELF3, BCL6, BNC1, IRF1). Figure D shows the
same overlaps on the probe set level. The 189 probe sets in the intersection of all sets map
to the 142 genes from Figure C. The overlap between the ABS/Ca?" experimental arms
contains 472 probe sets with 13 identified as TFs (see Table for details). From these

13 TFs, nine factors (GRHL1, GRHL3, FOXC1, ID2, SMAD3, FOXN2, ETS1, MITF and
FOXD1) were unique to the ABS/Ca?* arm and not included in the TZ/PD lists.
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Table 4.2: List of markers for probe set filtering

Expected behavior versus control Marker genes
Expressed, but not changing KRT7, KRT19, GAPDH, ACTB, SMAD2
Downregulated KRT5, KRT6A, KRT6B, SMURF2, SMAD7,
MYBL2, BUBI1, PLK1, CREB1
Upregulated early FOXA1, GATA3, IRF1, IRF2
Upregulated late KRT13, CLDN4, UPK2, UPK3A,
UPKI1A, UPK1B, UPK3B

This list gives an overview of the proliferation and differentiation-associated
transcribed gene markers used to define the filtering thresholds.

Table 4.3: Overview of top ranked probe sets and their associated marker
genes

Experiment | Probe Sets pos. neg. Marker genes

Cell Line (Genes) + -

TZ/PD 1000 955 45 UPKI1A, UPK1B, UPK2, UPK3A, IRF1,

Y579 (707) FOXA1, CLDN4, KRT5/6A /6B, SMAD7

TZ/PD 1000 997 3 UPKI1A, UPKI1B, UPK2, UPK3A,

Y676 (695) UPK3B, ACTB, KRT5/6A/6B/13,

IRF1, FOXA1l, GATA3

ABS/Ca’* 1000 953 47 | UPKI1B, KRT5/6A/6B/13, IRF1, CLDN4

Y579 (731)

ABS/Ca’*t 1000 996 4 | UPK1A, UPK1B, UPK3A, UPK3B, IRF1,

Y676 (755) SMAD7, SMURF2, KRT5/6A/6B/13,
CLDN4, FOXA1, GATA3

This Table gives an overview of the four experiments with the top 1000 ranked probe
sets (number of genes represented) according to ALFC and showing the associated
marker genes (from Table [4.2). Genes were assigned as positive (+) or negative (-)
depending on the ALFC value. A positive ALFC value indicates that over the time
series, the gene expression of the probe set for the experimental arm changed more
than for the control arm.

the overlap of the ABS/Ca?" arms resulted in 427 probe sets (see Figure and D).
The 20 top ranked genes on these lists are shown in Table 4. We next used the dragon
TcoF-DB [127] to find transcription factors (TFs) of interest within the two sets. TcoF-
DB currently consists of 1365 TFs which were manually curated [145] or are contained
in TRANSFAC, where they have passed a manual curation step.

Four TFs (ELF3, BNC1, BCL6 and IRF1) were found in the overlap of all four ex-
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Figure 4.3: Defining the ALFC threshold. Definition of a suitable ALFC threshold:
Stair-step plots for the four experiments showing the number of rediscovered markers in
the data set for differently sized sets of top ranked probe sets (up to 1500). The ranking is
done using the calculated ALFC and each bar represents the number of found markers for
the particular amount of chosen genes. A plateau around 1000 is reached in all four data
sets and hence a threshold of choosing the top 1000 probe sets is applied for the second
filtering step. The maximum amount of found markers is shown in brackets next to the
experiment identifier in the left corner of each chart.

periments and 13 TFs were associated with the ABS/Ca?* overlap, of which nine TFs
(GRHL1, GRHL3, FOXC1, ID2, SMAD3, FOXN2, ETS1, MITF and FOXD1) remained
after the TZ/PD arm was filtered out. It should be noted that the gene list for the
ABS/Ca?t overlap does not necessarily exclude a gene from being also relevant to the
TZ/PD model: the list contains similar genes but the specific ranking is based only on
the ABS/Ca?" arm.
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Table 4.4: Overview of TFs and 20 top ranked genes within the overlaps of the
experiments

Overlap of all sets
TFs Top 20
ELF3, RARRES1, LIMCHI1, TRIM31,
BNC1, UBD, SPINK1, PDE10A,
BCL6, TMPRSS2, CP, PIGR,
IRF1 C10orf116, HPGD, CX3CL1,
GKN1, IGFBP3, ELF3,
RHOU, SYTL5, TFF1,
MUC20, RARRES3

Overlap of ABS/Ca’t experiments
TFs Top 20
GRHL1, GRHLS, MUC4, CLIC5, CXCL6,
FOXC1, ID2, BCL2A1, DUOX2, SERPINB9
BNC1, SMAD3S, SERPINA3, PIGR, MAP3K8

ELF3, BCLS, IDO1, ILIRL1*, ZG16B
FOXN2, ETSI, IL8, PDZRN3, RARRES3
IRF1, MITF, MMP7, GABRP*, PPBP*
FOXD1 RARRES!

This table shows the lists of top ranked genes in the overlaps/intersections of all four
experimental arms and for the two ABS/Ca?* specific arms (see Figure and D).
The genes are ordered according to their ALFC. We observe in general for the TZ/PD
model the largest gene expression burst between 24h and 72h. For the ABS/Ca’*t
model, the burst occurs earlier, between Oh and 6h (but note that this protocol
involves a priming pre-treatment). *The majority of the genes are upregulated, except
the genes ILIRL1, GAPRP and PPBP from the overlap of the ABS/Ca?" arms.

ELF3 was the top ranked TF (overlap of all sets) with a larger ALFC value than
most other genes in all four differentiated datasets (see Figure [£.4). The 95% quantile
of all probe sets (in the overlap of all sets) lay at an ALFC value of 0.6, while the
three probe sets for ELF3 represented on the HG-U133 Plus 2.0 chip (210827 _s_ at,
229842 at, 201510_at) reached values of 1.57, 2.06 and 1.72, respectively. A two-tailed
p-value test for all three probe sets was significantly smaller than 0.05 (between 2.6e-10
and 5.3e-18). The main expression burst for ELF3 occurred early, between Oh to 24h,
and increased in case of the TZ/PD arm until 72h. As ELF3 has not been previously
implicated in human urothelial cytodifferentiation, we validated its expression in human

urothelium in situ and during differentiation of normal human urothelial cells in vitro.
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In addition, we examined how the expression of ELF3 was regulated in relationship to
PPARy activation.

Validation of ELF3 expression by human urothelium.

By immunohistochemistry, ELF3 localised specifically to the urothelium in sections of
human ureter. The localization pattern was exclusively nuclear and the intensity of
expression increased from basal to the most differentiated superficial cells (Figure [4.5A).

In cultures of NHU cells induced to differentiate by activation of PPAR~ (through co-
treatment with TZ and PD153035), ELF3 transcript expression was induced within 24
hours and remained high at 72 hours. Inhibition of PPAR~y activation by pretreatment
of cells with the specific PPAR#y antagonist, T0O070907, resulted in inhibition of ELF3
induction (Figure [4.5B).

The ELF3 transcript results were confirmed by immunoblotting for ELF3 protein,
which revealed upregulation of ELF3 protein at 24 hours. Inhibition by pretreatment
with T0070907 confirmed that this was a PPAR~y-mediated process (Figure )

Immunoblotting revealed that shRNAs designed to three regions of the ELF3 protein
coding sequence were successful at inhibiting ELF3 protein expression following induc-
tion of differentiation by PPAR~y activation (Appendix. Sequence shRNA1 showed
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Figure 4.4: ALFC values for ELF3, MUC20 and GRHL3. ALFC values for the
probe sets of three genes of interest, ELF3, MUC20 and GRHL3. The mean ALFC of

all probe sets is shown by the green bars. For all three genes the ALFC is significantly
larger than for the average probe set. The only exception is the 243774 at probe set for
MUC20 in case of the TZ/PD model. In this case, the ALFC is slightly negative. Accord-
ing to GeneAnnot, this probe set is the least sensitive of the four probe sets, which can be
mapped to MUC20.
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Figure 4.5: Experimental validation of ELF3. ELF3 immunolocalisation in human
urothelium on a section of normal ureter (A). Note nuclear localisation and increased in-
tensity in the most highly differentiated superficial cells (Scale bar = 50uM). Expression
of ELF3 transcript (B) and protein (C) was examined in NHU cells induced to differen-
tiate in response to the TZ/PD protocol. The antagonist T0070907 was used to confirm
specific involvement of PPAR~. Cells were pre-treated with 5uM T0070907 (or vehicle
control) for 3h prior to addition of 1uM troglitazone (TZ) and 1M PD153035. RNA ex-
tractions and whole-cell protein lysates were collected for analysis at 6h, 24h, 48h and 72h
post-treatment. At each time point a DMSO vehicle control was included. For transcript
analysis (B), ELF3 gene expression was analyzed by RT-PCR and S-actin was included
as a normalisation control. Whole cell lysates were processed for western blotting (C) and
labelled with antibodies against ELF3 or p-actin as loading control.
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the most efficient knockdown and was used in subsequent experiments.

Following induction of differentiation in response to PPARy activation (TZ/PD pro-
tocol), cells stably transduced with ELF3 shRNA showed reduced induction of ELF3
transcript and of the terminal differentiation-associated UPK3a gene, compared to the
transduced scrambled control cells (Figure ) Quantitative analysis by real-time PCR
of the ELF3 knock-down cultures showed reduced differentiation-induced expression of
CLDN7 and of the transcription factors FOXA1 and GRHL3 (Figure [4.6B).

To assess the consequence of ELF3 knockdown on differentiated urothelial barrier
function, TER was used to monitor barrier development post-induction of differentiation
using the ABS/Ca?" protocol. A measurable barrier first became apparent at four days
post-induction of differentiation in both the control and ELF3 knockdown cells, but the
ultimate TER attained was significantly reduced in the latter (control versus ELF3k/d:
3,420+443 versus 2,064+176 £2.cm?; p<0.001 +sd; n=6; Figure ) Following scratch
wounding of the cultures, initiation of barrier repair was less efficient in the knockdown

cells and the final barrier attained was reduced compared to the transduced scrambled

control (Figure [1.6D).

4.1.4 Discussion

Much has been learned about transcriptional regulation during tissue development from
null expression studies in transgenic mice, but translation to human systems is more
challenging. Here we demonstrate how bioinformatics analysis of a normal human dif-
ferentiating cell culture time series can identify key transcriptional regulators involved
in human tissue-specific determination and differentiation, and provide insight into the
relationships and hierarchies of the transcriptional networks.

We have described a qualitative approach for the analysis of asynchronous time series
data and applied it to four gene expression time series representing two differentiation-
inducing protocols in bladder and ureter derived finite human urothelial cell lines. Unlike
other methods for analysing short time series [30}, [I57], our method is directly applicable
to analysing non-synchronous short time series and overcomes issues of missing time
points or replicates. The result of our analysis is a ranked list that offers an intuitive
pipeline for successive iterations between data analysis and biological evaluation to at-
tain a manageable set of candidate genes. The same approach can be used to look for
specific differences between different experimental arms to identify genes upregulated
by one protocol only. For example, such analyses could provide insight as to why the

ABS/Ca?t protocol generates a differentiated multi-layered and functional barrier ur-
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Figure 4.6: Analysis of ELF3 knock-down on NHU cytodifferentiation and
barrier repair. Expression of urothelial differentiation-associated genes was examined

in ELF3 versus scrambled shRNA transduced cells. A) Scrambled shRNA control (ctrl)
and ELF3 knockdown (k/d) cells cultures were exposed to vehicle only (0.1% DMSO) or
differentiated by co-treatment with TZ and PD153035 (TZ/PD) and the expression of
ELF3 and late differentiation-associated UPK3a was analyzed by RT-PCR at 48h and 72h
post-treatment. B) The expression of ELF3, GRHL3, FOXA1 and claudin 7 was analyzed
by RTqPCR in cells transduced with scrambled versus ELF3 shRNA at 48h post differen-
tiation with TZ/PD. In A and B, the reaction controls included an RT-negative for each
RNA sample, a no-template (H20) control, a S-actin normalisation control and a genomic
DNA positive control. C) Barrier function in ELF3 versus scrambled shRNA transduced
cultures was followed over an 8 day period following differentiation in ABS/Ca?* by meas-
urement of the transepithelial electrical resistance (TER). D) The same cultures were
then wounded and the restoration of barrier function was observed over the subsequent

61 hours. Statistical analysis was calculated by ANOVA with Bonferroni Multiple Com-
parisons post-test (***P<0.001, **P<0.01).

othelium, compared to the generation of differentiated but non-organised monolayer cell
cultures that result from the TZ/PD protocol.

In this report, we concentrated on identifying common (method-independent) genes
involved in regulating the development of a differentiated phenotype from normal human
urothelial cells. The culture system is such that it maintains NHU cells in a proliferative
squamous basal phenotype, characterised by CK14+/CK13- expression [I3I] and we
have shown that PPAR~y activation [146], 149, 147] or subculture in serum [3I] can
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4 Analysis of Regulatory Relationships in Real-World Domains

switch cells into a differentiating CK14-/CK13+ transitional epithelial programme. Our
analysis has identified the epithelium-specific Ets domain transcription factor ELF3 as
a differentiation-associated gene whose expression is regulated downstream of PPAR~y.
In mice, ELF3 has been shown to be induced in the urothelium following infection with
uropathogenic E.coli (UPEC) [105].

Infection of the bladder epithelium of mice with UPEC triggers a response in which
bacterial-laden superficial cells are exfoliated and the urothelium is reconstituted through
differentiation of underlying basal and intermediate cells [I05]. One of the early tran-
scriptional responses to attachment of the UPECs is thought to be upregulation of the
transcription factor ELF3, which has also been implicated in keratinocyte terminal dif-
ferentiation [4, 110]. Mysorekar and colleagues hypothesised that ELF3 has a dual role in
regulating urothelial differentiation and mediating host defense through transactivation
of iINOS [105].

Targeted disruption of ELF3 in the mouse resulted in 30% lethality, with the remaining
offspring reported as showing disrupted morphological and cellular differentiation of
the small intestinal epithelium [I08]. ELF3-deficient enterocytes expressed markedly
reduced levels of the transforming growth factor type II receptor (TGFSRII) and could
be genetically rescued by introduction of a human TGFSRII transgene, demonstrating
that ELF3 is the critical upstream regulator of TGFSRII in the mouse small intestinal
epithelium [45].

Transcriptional reprogramming of the TGFSR pathway, including downregulation of
TGFBRII, has been documented in NHU cytodifferentiation [44]. However, TGFSR
signalling was not associated in urothelial differentiation itself and instead was implicated
in priming an autocrine tissue repair programme [44].

A GRHL3-null mouse embryo model was used to demonstrate that the transcriptional
regulator GRHL3 is required for formation of normal superficial cells and terminal dif-
ferentiation of bladder urothelium [I56]. The gene and protein expression of the uro-
plakins was significantly downregulated in bladders of GRHL3-null mice and a functional
GRHLS3 binding site was identified on the UPK2 gene promoter. More recently it has
been proposed that the transcriptional regulator KLF5 is required for urothelial mat-
uration and differentiation [IT]. Thus, in mice with KLF5 deficient bladder epithelium,
the urothelium fails to stratify and there was reduced expression of terminal differen-
tiation markers, including uroplakins and claudins. Eleven transcription factors were
downregulated in KLF5-deficient bladder urothelium including PPAR~y, ELF3, FOXA1
and GRHL3. The murine GRHL3 gene has been shown to be a downstream target of
KLF5 and it has therefore been proposed that PPAR~y and GRHL3 participate in a
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KLF5-dependent transcriptional network regulating urothelial differentiation [I1].

Southgate et al. have previously shown a specific role for PPAR~y in the induction
of differentiation in normal human urothelial cell cultures, which depends both on the
suppression of EGFR activity and availability of activating ligand [I49]. PPAR~ activa-
tion leads to de novo expression of intermediary transcription factors including FOXA1
and IRF1 that act directly as transcription factors for inducing the de novo expression
of uroplakins and other genes associated with urothelial differentiation [I48]. ELF3 lies
downstream of PPAR~: it has predicted PPAR response elements in the promoter and is
induced specifically by PPAR~y activation. We have now demonstrated that ELF3 influ-
ences urothelial differentiation, as the induction of UPK3a expression and the ultimate
acquisition of barrier function were both inhibited by ELF3 knockdown. The effect on
ELF3 on UPK3a transcription must be indirect as no Ets binding sites are predicted
in the UPK gene promoters (not shown), although as shown by knockdown, ELF3 does
influence expression of other implicated transcriptional regulators including FOXA1 and
GRHLS3.

In conclusion, we propose a hierarchy in the specification of human urothelium that
has ELF3 downstream of PPAR~y, but upstream of GRHL3 and FOXA1. We suggest
that our strategy of studying the temporal development of a differentiated phenotype
in vitro can help unravel the hierarchical relationships between candidate transcription
factors and their individual roles in the differentiation programme and we have provided

a new approach for extracting this information from gene array studies.
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CHAPTER b

Large-Scale Integration of Heterogeneous Data

The previous chapters have introduced different methods to analyze gene expression
time series data. Time series offer, as already mentioned, a great opportunity to explore
possible causalities in the data but are also challenging to use for the inference of gene
regulatory networks. The previous sections have also shown that relying on a set of
gene expression data alone is not enough. As outlined in Chapter [, for the analysis
of time shifted human urothelium, it can be seen that for identifying gene interactions
or network structures, the incorporation of additional prior knowledge can be of great
value. In the last couple of years, a tremendous amount of experimental data has been
collected and stored in publicly available databases. This data covers various levels of
cellular systems, such as gene expression data from microarrays (and more recently from
Next Generation Sequencing), protein-protein interaction data, DNase footprinting, chip
on chip or mass spectrometry data. Furthermore, various prediction methods have been
published, tested and improved over the last years, which offers a great opportunity to
mine these data sets for new insights into the underlying systems. The major challenge
is to combine the different sources into one integrated database and to make use of
this data as prior knowledge for learning gene regulatory networks. The next sections
describe the curation of a heterogeneous gene interaction data set for different organisms,
as well as an approach for combining these different data sets for the prediction of gene
regulatory networks. The data generation and analysis was done in collaboration with
Robert Pesch, who provided the text mining, ChIP-seq and gold standard data within
the TUM and LMU graduate school RECESS. A part of this, data collection for the
analysis of conserved regulatory networks in eukaryotes has been published in Pesch et
al. [115].
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5.1 Introduction

Regulatory networks consisting of transcription factor and target genes are the core of
biological systems. A transcription factor (TF) binds to a target gene (TG) to enhance
or suppress the expression rate of this gene to response to environmental changes, in-
tercellular signals or to control the cell cycle. Unfortunately, little is known about the
details of regulatory networks and a reliable structure is only known for E. coli and to
some extent for S. cerevisiae. For more complex eukaryotes like D. melanogaster, M.
musculus and of course H. sapiens, we are still only able to describe small fragments of
the regulatory mechanisms.

The predictive performance of gene regulatory network analyses often relies on the
combination of different data sources and how well these sources can be integrated into
the learning process. In the simplest case, this is done by just using the knowledge about
TFs. Genes are then grouped into TFs and TGs, and only directed interactions are added
from TFs to TGs. This reduces the amount of possible interactions tremendously. In
the following, five different approaches dealing with the integration of additional data
sources for GRN learning for eukaryotes will be introduced. Their common challenges
are the network size, data quality and pre-processing, feature generation and selection,
model complexity and performance evaluation. Each approach offers different solutions,
but has also shortcomings regarding the mentioned challenges.

A possible data integration framework, which uses inductive logic programming (ILP)
for static data for S. cerevisiae was introduced by Frohler et al. [50]. The data consisted
of discretized gene expression data (microarrays) for 173 different experimental condi-
tions, TFBS data, PPI data (physical and genetic interactions) and functional categories.
The different data sets were represented with predicates and relations with the goal to
learn the corresponding predicate (consisting of GenelD, ConditionID and discretized
expression value) for each gene. Learning was done with the Tilde tool [16] and the set
of genes reduced to 1,411 TG and 53 TFs with high gene expression variance over all
conditions. An advantage of the ILP approach is its ability to easily integrate additional
constraints and data sources. The field of logic programming has not yet received as
much attention for GRN inference as the classical fields mentioned in Chapter 2] Recent
promising approaches, such as from Brouard et al. [22], come from the field of Markov
logic networks (MLNs) [I18]. Besides the integration of heterogeneous data sources,
an attractive aspect of MLNs is the more intuitive interpretability compared to other
black-box models like SVMs. Furthermore, they are capable of modeling cycles, such as

regulatory feedback loops in the network. A drawback of MLNs is their need for a larger
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amount of observations and also their computational complexity.

An approach using Bayesian networks to combine expression data with multiple
sources of prior knowledge was presented by Werhli et al. [I50]. They also used data
sets from yeast and additionally, the RAF signaling pathway. Each integrated source
is encoded with an energy function and the sampling of the prior and posterior prob-
abilities was done with Markov chain Monte Carlo (MCMC), similar to the procedure
described in Chapter The main focus of this paper lies on the algorithm and less
on the biological aspects of data integration. They integrated two additional sources
and applied their method on a smaller subset of genes, 25 in yeast and 11 genes for the
RAF signaling pathway. Besides the computational complexity of this method, Bayesian
networks do not allow for feedback loops, which are also an important regulatory struc-
ture. Still, their method was able to infer the GRNs and outperformed other methods
such as Graphical Gaussian Models, Bayesian networks with and without prior and prior
knowledge only as baseline. It also offers a mathematical framework to add additional
data sources and train weights for them individually.

A biology driven framework, illustrated on data from C.elegans, has been published
by Cheng et al. [28]. They based their approach on the three main regulation categories:
TF to gene, TF to miRNA and miRNA to gene. They used ChIP-seq, RNA-seq, known
protein-protein and TF-TF interactions, and a set of predicted miRNA target sites at
the 3’'UTRs. Positive and negative signs for the regulating TFs were assigned according
to the RNA-seq expression profiles and their correlations. Their integrated GRN was
simply generated by keeping those genes, which had both a TF and a miRNA predicted
binding site. The network was then enriched with known TF-TF interactions. Due
to the integration rule, their approach is limited to only those interactions which are
covered by all data sources. For example the set of C.elegans was reduced to 22 TFs
out of 393 TFs. They also applied their approach to smaller data sets of human and
mouse and analyzed the hierarchical structure and motif enrichment for all three results.
The advantage of this approach lies in restricting the analysis to only qualitative, pre-
processed data sources, which of course also strictly limits this approach to small data
sets and also cannot account for noise or uncertainties in the data. Also, there is no
standard evaluation possible, except testing in the lab.

Another genome-wide machine learning approach on learning a GRN in human is the
regulatory interaction predictor (RIP) [I0]. The interesting concept of this approach
is the feature generation from the given data sets. These data sources consist of the
network topology from the gold standard, TFBS predictions and the correlation of gene

expression microarray data. The features include the number of correlation neighbors to
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a gene, which are regulated by the corresponding TF, or the number of genes regulated
by a TF, or the number of correlating neighbors to a gene, which have a significant
PWM hit of the corresponding TF. In total, ten different features were created and
an ensemble classifier of SVMs (with Gaussian kernels) with 20 x 100-fold stratified
crossvalidation was employed for the training. The gold standard consisted of 2,896 true
regulatory interactions (derived from TRANSFAC) and 284,651 non-interacting pairs.
The evaluation was done with precision-recall curves on the average values of the 20
ensemble classifiers, as well as the predicted interactions on a microarray study.

Marbach et al. applied supervised and unsupervised machine learning methods on a
diverse functional genomics data set [94]. For D. melanogaster, they predicted about
300,000 regulatory edges, given 600 TFs with 12,000 TGs. As input data they used
conserved TFBS motifs and ChIP binding of TFs (both referred to as physical features),
as well as chromatin marks and gene expression data (both referred to as functional
features). For their unsupervised method they used the mean of the scores for the
integrated features and kept the top 2% edges ranked by the highest scores. For the
supervised method they used logistic regression and accounted for the class imbalance
problem by using a stratified crossvalidation, where positive and negative examples were
balanced. Additionally, the weights of positive instances were scaled to be balanced
between negative and positive examples. They evaluated their predictions on different
data sets, such as tissue-specific expression patterns. They were also able to use a
regression model on their integrated regulatory network to predict the expression of
~17% of the genes correctly from the expression level of TFs in a new experiment.
One of their findings was that physical information is the most informative feature
when evaluating against their gold standard, but has almost no predictive power for
the gene expression levels. Another interesting outcome was that the supervised and
unsupervised approach performed comparably. A reason for this might be the small
number of available edges for the training set of the supervised approach.

All the presented methods focus more or less on the biological part of the analysis,
scale only to small networks with very granular details or to large networks, which allow
to explore the topological properties and to identify functional modules. Furthermore,
they use different evaluation procedures, which in most cases do not allow comparison of
the results to newly developed methods. Due to more reliable gold standards and com-
plete data sets, most of the approaches focus on the more well-known model organisms,
like S. cerevisiae, D. melanogaster or C. elegans. Only the RIP approach attempts to
generate newly combined features from the data sources and only Marbach et al. assess

the predictive contribution of each data source. None of these methods offers a global
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visualization of the data sources and their overlapping features and only Cheng et al.
also compared their results on smaller networks between different organisms.

In the following, the focus will be on the description and analysis of more complex
organisms (like mouse and human) and how well predictions can be made with the
currently available data. In particular, three major points are addressed. First, the
quantitative and qualitative description and visualization of the available data for those
organisms and how well the different sources agree on the interactions. Second, the
predictive power of the data and newly generated features to classify TF-TG interactions
and third, how the different data sources contribute to the predictions.

The database created for this thesis consists of five different information sources:
relations extraction from textual documents, transcription factor binding site (TFBS)
predictions, protein-protein interaction (PPI), ChIP-seq and gene expression data. Con-
sidered individually, all of these data sources have different strengths and weaknesses.

In the next sections the individual methods will be described, as well as their different
predictive capabilities. This is followed by using the data of two of the organisms —
mouse and human — to classify TF-TG pairs with state of the art machine learning
techniques and finally, assessing the importance of each data source for the predictions.

The results of this analysis provide the following insights. First, as expected, the
overlap between the integrated data sources is very limited but at least for half of the
known interactions for each organism, two or more data sources describe the same inter-
action between two genes. Second, the integration of features, which are generated by
combining the different data sources or their network properties (such as hub score or
shortest paths), can improve the predictions. Third, the collected data sets can be used
to correctly classify TF-TG pairs from already known interactions. Fourth, across all
data sets ChIP-seq experiments show the proportionally largest overlap with the known
interactions and also a larger overlap with TFBS predictions. Additionally, this ana-
lysis shows that a combination of the different sources contributes best to the predictive

performance.

5.2 Data Sources and Applied Methods

Four different standard organisms were chosen for the integration into the database,
S. cerevisiae, D. melanogaster, M. musculus and H. sapiens, of which the main focus
will be on mouse and human, since these are the most complex and least understood
organisms on this list. All of these organisms have been heavily explored with respect to

different aspects over the last decades and offer the most reliable possibility to evaluate
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our predictions with already established biological knowledge about the gene regulatory
interactions. The five main pillars of the here presented approach are text mining,
co-expression, PPI networks, ChIP-seq experiments and TFBS predictions. The data
sources and the general data processing steps will be described in the following. This
is followed by the definition of the gold standards for the different organisms to assess
the performance of the predictions. The last sections describe the architecture of the
MySQL database in which the data is stored, the feature generation and the applied

classification algorithms.

5.2.1 Text Mining

For text mining data, a set of abstracts from PubMed (20,766,340 abstracts) and full
text Publications from the PubMed central open access subset (389,322 articles) was
used to search for descriptions of potentially interacting genes. The gene names were
identified with syngrep [32], which is a dictionary-based gene name identification tool.
Dictionaries were compiled for the different species by combining the gene names, aliases
and synonyms for each gene from UniProt, Ensembl, HGNC, MGI and FlyBase. The
relations between the genes were identified with a simple tri-occurrence approach, RelEx
[51] and a shallow linguistics (SL) kernel [58] on a sentence base. A brief description
of the methods is given in the following (the generation of the text mining data set is
described in more detail in Pesch et al. [115]):

Tri-occurrence: A list of keywords indicating regulatory interactions was created. For
each sentence where at least one keyword was found, a regulatory relation between

the respective genes was assumed.
RelFz: A rule-based relations extracting tool using dependency parse trees.

SL: A SVM kernel for identifying a relation using the local and global context of the

sentence.

From RelEx all Tri-occurrence relations stating a regulatory relation were used. For
SL, the simple margin active learning approach [I141] was used to create a model for the
identification of regulatory sentences. For this purpose a set of 450 identified regulatory
relations found by RelEx was manually corrected. This set was used to train an initial
model. The model was refined by applying the learned predictor and 10,000 randomly
selected relations found by the Tri-occurrence approach und selecting the 100 instances,

which were closest to the separating margin of the SVM. This set of relations was then
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manually annotated and included in the training set. The model was refined with this

approach until no further performance improvement on a control set could be observed.

5.2.2 Chromatin Immunoprecipitation Data (ChlIP-seq)

The use of high-throughput sequencing (seq) in combination with chromatin immun-
oprecipitation (ChIP) allows to study genome-wide protein bindings. ChIP allows to
selectively enrich DNA fragments, which are bound by a particular protein. The DNA
fragments can then be sequenced. ChIP-seq makes it possible to analyze the physical in-
teractions between TFs and the corresponding DNA sizes. The data was taken from the
ENCODE project. The ChIP-seq experiments were downloaded for mouse from http:
//genome-euro.ucsc.edu/ENCODE/downloadsMouse.html and the other data sets from
ENCODE http://genome-euro.ucsc.edu/ENCODE/downloads.html.

5.2.3 Co-expression Network Generation

The data sets and their sources are described in Table The samples were taken from
different experiments and in case of the larger organisms, also from different cell lines, and
combined into single compendia. All samples are based on the Affymetrix platform and
the probe sets were mapped to Ensembl gene identifiers. The mapping was necessary for
combining the different data sources in the following analyses. This mapping was done
partly with the available mapping files from the data sources, available Bioconductor
annotation packages and the DAVID gene ID conversion tool [70]. Some of the probe
sets or given identifiers were ambiguous or outdated and could not be mapped onto
Ensembl identifiers. Those probe sets were discarded from our final data set. Probe
sets, which referred to the same Ensembl identifier were integrated by using the one
with the maximum interquartile range (IQR). This ensures to keep the probe set with
significant changes across the different samples. The drawback of this approach is the
possibility that a large IQR might be also caused by strong noise in the measurement.
Still, using the mean of all matching probe sets could lead to discarding interesting
signals from single probe sets.

Three methods were used to assess the co-expression patterns in the different data
sets, correlation (Pearson), partial correlation and mutual information. All calculations
were done in R with the default parameters. In contrast to regular correlation, partial
correlation not only examines the relationship between two variables, but also subtracts
the possible effect of the other variables on this particular correlation. The GeneNet

[128] package was used to calculate the partial correlation. The third method, mutual
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information, has its origin in information theory and measures the mutual dependence
of two variables. ARACNe is a reverse engineering approach, particularly designed for
cellular networks, which uses mutual information in combination with the Data Pro-
cessing Inequality (DPI) [97]. The DPI is used to remove the weakest interaction (edge)
between any three genes in the resulting network. For the calculations, the R package
parmigene [124] was used and the default setting for the DPI of 0.5 was applied. It
should be noted that including the different conditions from the different experiments
could give additional insights, but for this analysis only the overall correlating genes were
considered. Furthermore, gene co-expression can only capture the regulation on mRNA
level and not on the protein level. A possible extension of the co-expression analysis
could be to either use the conditions or to cluster the given samples and to calculate the

correlation of the genes within those clusters.

5.2.4 PPl Network Curation

For the PPI network data, the current dump of the PPI database STRING (version 9.0)
[73] was downloaded and the protein identifier mapped with the given protein aliases file
to the corresponding Ensembl gene IDs. Table gives an overview of the different PPI
networks. STRING integrates four different sources of knowledge in its PPI network:
genomic context, high-throughput experiments, (conserved) co-expression and previous
knowledge (from publications and other databases). From these sources a confidence
score between 0 and 1000 is calculated, which reflects the reliability of an interaction.
Scores equal or above 700 are considered to be highly reliable (this is an empirically
chosen threshold). The largest network exists for human, with nearly twice the number
of interactions as in the mouse and fruit fly PPI networks. The number of proteins is
similar for human and mouse, as well as the proportion of PPIs above the threshold
of 700. In addition to the interactions and their scores, for all pairs of proteins in the
networks the shortest path (unweighted) and the number of shared neighbors, which have
a direct interaction with the two proteins, were calculated. This was done with the igraph
package in R [33]. The number of neighbors per protein in mouse is significantly smaller
than for human or fruit fly. As already discussed in Section biological networks tend
to be scale-free, which means that the majority of nodes has only a few interactions while
only a few, so-called hubs, have many interaction partners [9]. This structure ensures
topological robustness against single deletions of nodes in the network, as well as quick
information transfer over a few connections from one point in the network to another.

The nearly equal average path lengths for all organisms in Table[5.2]are an indicator for
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5 Large-Scale Integration of Heterogeneous Data

this structure. Additionally, Kleinberg’s hub score (implemented in the igraph package)

was calculated for each gene in the network and used as an additional feature (described

in Section [5.4.1)).

5.2.5 TFBS Prediction

The extraction of the promoter region for each organism was done with the RSAT work-
bench [I40]. For all organisms, the same promoter size was chosen, 500bp upstream and
500bp downstream of the transcription start site (TSS). It should be noted that TFBS
can be found also in far more distant regions, in human regions up to 5000bp (and even
further distant regions) are considered to contain binding sites. Additionally, in some
organisms, TFBS can be found even far downstream of the gene of interest. Still, the
majority of the TFBS are considered to be close to the T'SS and increasing the search
space for the TFBS prediction introduces additional noise to the results. Open reading
frames (ORFs) from other genes were excluded from the promoter regions. If available,
the sequences were directly extracted from Ensembl (version 66) with RSAT, otherwise
from the RSAT database. The lists of all possible TFs for each organism were extrac-
ted from the Transcription factor prediction database (DBD) [86]. For some of these
predicted factors, position weight matrices (PWMs) are available from the transcription
factor binding profile databases JASPAR [125] and TRANSFAC (version 9.3) [98]. The
PWNMs were used to search the extracted promoter sequences for significant TFBS. An
overview of all sequences and PWMS are available in Table A parallel version of
the TFBS prediction tool cureos [I51] in R has been developed and was applied with

default parameters for the predictions.

5.2.6 Database Evidence for Regulatory Relations

Regulatory relations where extracted from the multi-species curated databases TRANS-
FAC [98] and ORegAnno [104]. Furthermore species-specific direct relations were manu-
ally extracted from YeastRact [I38], RedFly [63] and the pathway databases Biocarta
and NCI-Pathway [126]. In the following the collected sets of known interactions are
referred to as database evidences and the other predicted and collected evidences as

regulatory evidences. Table gives an overview of this.
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Table 5.3: Overview of curated transcription factor and promoter sequence data

Organism DBD TFs PWMs Promoter Size (upstream)
JASPAR TRANSFAC  (All Seqs/Unique Seqs)
S. cerevisiae 177 177(-) 38(1) 1000
170 unique genes
D. melanogaster 1102 125(-) 51(-) 1000
139 unique genes
M. musculus 1385 53(1) 374(7) 1000
276 unique genes
H. sapiens 1336 76(3) 420(9) 1000
300 unique genes

This table shows the collected data for the TFBS prediction. The genes were mapped with the David conversion tool to
Ensembl identifiers and the promoter sequences were extracted and pre-processed with the RSAT workbench. I chose the
promoter region to be 500 base pairs up- and downstream of the transcription start site and to exclude ORFs from other
genes from these regions. The lists of all possible TF for each organism were extracted from the DBD. The number of
available TFs with PWMs are shown in columns two and three. The PWMs were used to search the extracted promoter
sequences for significant TFBS.
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Table 5.4: Overview of curated database evidences for each organism

Organism Interactions
S. cerevisiae 4310
D. melanogaster 461
M. musculus 928
H. sapiens 3222

This table shows the number of directed interactions between pairs of genes derived
from the different databases. As expected, most of the known regulatory interactions
were found for S. cerevisiae. Even though a similar number of interactions was found
for S. cerevisiae and human, the number of the interactions for the latter only cover a
very small proportion of the total number.

5.3 Descriptive Data Analysis and Visualization

The following sections give an overview of the different collected data sources, visualize
their shared predictions and assesses how well those regulatory evidences are potentially

able to describe the known interactions (database evidences).

5.3.1 Storing the Data and Overview of Regulatory Evidences

All the different data sources are stored into a MySQL database and all found regu-
latory relations with their data sources and evidences were combined into one table.
Unfortunately, considering all possible gene pairs for an organism with n genes would
lead to n?/2 (including self-regulations and with undirected interactions) entries in the
database. This kind of dimensionality is not convenient to handle — even with a data-
base — and the amount of information is still sparse for many interactions where only
a correlation value exists. Therefore, the search space was limited to gene pairs with
evidence from at least one of the of the following methods: text mining, PPI (STRING),
ChIP-seq, database evidence or TFBS prediction. Table shows an overview of the

resulting database entries.

5.3.2 Overlaps of Regulatory Evidences

In the following, the shared and unique predictions of the different methods for the
different organisms are visualized with Circos plots (Figures and . This
kind of plot arranges the different methods in a circular manner and allows to compare

more methods than common Venn diagrams, which are readable only up to four or five
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Table 5.5: Number of relations in the database

Organism STRING TFBS Cor. (ARACNe) Co-occ. Tri-occ. RelEx SL ChIP-seq
S. cerevisiae 489,891 110,201 623,241 (17,509) 137,031 31,053 4353 31,040 28,762
D. melanogaster | 847,360 165,686 1,048,808 (36,327) 230,764 70,640 15,342 70,545 64,865
M. musculus 1,004,612 1,834,034 2,243,840 (540,135) 848,456 275,577 49,747 275,373 284,659
H. sapiens 1,806,229 4,717,964 4,479,719 (263,167) 1,479,470 451,311 75,044 432917 1,687,564

This table gives an overview of the the relation available from the different experimental and predicted sources in the
database. The number of interactions with calculated partial correlation is the same as for correlation. ARACNe has an
additional filtering step, the DPI, and predicts a much smaller amount of relevant gene pairs.
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different methods. See Figure [5.1] for a detailed description of the Circos plots.

L ® Number of interactions

"47000“ .
- Number of Interactions

| oo shared with one, two,

| three, four or five other

! L J
- methods (left to right
- y green band)

% \\\\\X“ o Number of shared
interactions
—
I __o Number of source
U specific interactions

® All unique interactions for
this source

®

® @ DB-evi — @ Datasource

) Segments represent each method
@ Highlight tracks show unique interactions
® Ribbons link two methods

Figure 5.1: Description of different data tracks in the Circos plots. Circos plots
offer the possibility to visualize dependencies on a large-scale between different objects.
Originally used for the display of chromosomes, they have been recently applied for vari-
ous other tasks. Here, the plot visualizes the shared interactions between each possible
pairing of the data sources in the database. Each source is represented by a segment and
a color (see (D). The different segments are connected with ribbons (see 3)), which rep-
resent the number of shared predicted TF-TG pairs between the two sources. The thicker
these ribbons are, the more predicted interactions are shared between the two sources.
Parts of the segment without ribbons mean predictions, which are solely made by this
particular source. The segment size might also contain multiple connections for the same
TF-TG pair, if more than one other source predicts the same pairing, and can be, because
of this, longer than the real number of predicted TF-TG pairs. The additional highlight
tracks (see ) show the real number of unique TF-TG interactions for this source in black
and the additional highlight bands in green show how many other methods (at least one
to at most five, from left to right) share these predictions.

For all four organisms, the strongest connected sources are of course the text mining

approaches, since these are partly subsets of each other. It can be also seen that TFBS
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5 Large-Scale Integration of Heterogeneous Data

predictions come with a large number of TF-TG predictions, which are not confirmed by
any other method and are possibly noise. For the Circos plots there was also no filtering
on the prediction scores and the number might be reduced by setting a threshold. It
should be noticed that the TFBS predictions are also limited to the number of available
PWDMs. In case of D. melanogaster, only 139 PWMSs are used, which is only about
one tenth of the total number of TFs (Figure . The best coverage is for yeast with
nearly a PWM for each TF. Figure [5.5] shows that this may come with a lot of false
positive predictions. The only data source not shown are the correlations, since, without
applying a threshold, an interaction for each pair of genes would be shown. Hence, the
TFBS predictions could be partially confirmed by stronger correlations.

Another interesting insight is that the ChIP-seq experiments, which were initially
supposed to reflect mostly true regulatory interactions (given a sufficient sequencing
depth [76]), share only very few interactions with other regulatory evidences and have
a large number of specific regulatory evidences for this source (ChIP-seq only). An
explanation could be that many regulatory interactions are so far unannotated or low
data quality. One source of influence on this could be the number of replicates needed
for each experiment, which was set from the ENCODE consortium to be at least two,
while a recent publication claimed that this might not be sufficient [I54]. Nevertheless,
considering the smaller total amount of ChIP-seq experiments with the other sources and
the proportional overlap with database evidences, ChIP-seq still seems to be a highly
reliable resource. The largest ChIP-seq overlaps are found with the TFBS predictions,
and it could be interesting to combine these regulatory evidences.

More than half of each of the collected database evidences, which were used as gold
standard for the predictions are confirmed by at least two different methods. For the
data representation it is important to note that a part of these confirmations might be
the result of the strong overlaps between the text mining approaches.

One obvious statement from these four model organisms is scarcity of data on con-
firmed TF-TG interactions. This makes it even more challenging to make predictions
for these organisms. In addition to the small number of known interactions for a gold
standard, there exists a huge search space of possible interactions. Several interesting
questions arise from this, like to which extent the different methods are suitable for even
finding new TF-TG pairs and if the different regulatory evidences should be weighted
according to their accuracy. It is also interesting to which extent we can predict in-
teractions now, especially in higher eukaryotes. These are standard organisms and a
tremendous amount of experiments and work has been put into exploring their regu-

latory networks in the last couple of years, and consequently, there is already a lot of

104



5.3 Descriptive Data Analysis and Visualization

data available, which is stored across several databases. In a simple way, this collec-
ted regulatory evidences could be used to compare results and predictions from single

experiments to the given evidences and to rank genes of interest accordingly.
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ri-Occurrence

Figure 5.2: Circos plot for intersections on all collected regulatory evidences
on human. This overview shows the shared predicted and experimental verified inter-
actions between TF-TG pairs in human. Correlation predictions are left out since these
exist for nearly every TF-TG pair shown here. As to be expected, the strongest connec-
tions are between the three text mining predictions since tri-occurrence is also a subset of
co-occurrence. There is also a stronger connection between ChIP-seq and TFBS predic-
tion, which includes about 500,000 TF-TG pairings. STRING and Co-occurrence shares
about 100,000 interactions with the TFBS predictions and ARACNe even slightly more.
Nevertheless, there are only about 100,000 interactions for the TFBS predictions, where
at least two are confirmed by two other sources. Nearly all interactions from the data-
base evidences are covered by at least one other method. Also notice that this region is
zoomed, and the scaling is different to the other methods. In total, this represents 3222

interactions, where nearly half of these interactions are at least confirmed by three other
methods.
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Figure 5.3: Circos plot for intersections on all collected regulatory evidences
on mouse. Similar to the overview of the human data set, also STRING has the most
overlaps across all other sources. Again, the text mining approaches share many predic-
tions and also the TFBS predictions have the most predictions with no other source con-
firming them. The predictions with ARACNe seem to filter out substantially less inter-
actions and keep more than twice the number of interactions as in human. Considering
experimental evidences from ChIP-seq, human has more than five times as many regu-
latory evidences as mouse. The overlap of the ChIP-seq experiments with the database
evidences is also very small and compared to the number of experiments, the smallest of
all here collected organisms.

107



5 Large-Scale Integration of Heterogeneous Data

0B gvidence
ARAENe Chie.g

;i

[
|

Figure 5.4: Circos plot for intersections on all collected regulatory evidences
on D. melanogaster. This data set is an interesting outlier compared to human and
mouse, since the STRING data clearly outnumbers all other methods combined. This
data set seems to be more similar to the yeast data (Figure regarding the distribu-
tion of regulatory evidences. The overlap of TFBS predictions and database evidences is
also very small for this data set. This could be an evidence for generally low performing

PWNDMs, poor choice of the promoter regions, or of course for, many so far unannotated
regulatory interactions.
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Figure 5.5: Circos plot for intersections on all collected regulatory evidences

on S. cerevisiae. Even for yeast, not all database evidences also have a regulatory evid-
ence. The majority has less than two evidences.
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5.4 Predictive Analysis on M. musculus and H. sapiens

As stated earlier, the focus of this data integration study lies on the more complex and
less well-tested organisms. Hence, the analysis will be illustrated on M. musculus and
H. sapiens. Following the study of Marbach et al. [94], the gold standard — consisting of
database evidences — was used to generate a training and test set for the predictions. All
genes included in the gold standard were extracted from the full data set, along with all
possible interactions between those genes and the corresponding regulatory evidences.
For M. musculus this resulted in a set with 532 genes and 39,811 possible interactions,
and for H. sapiens in a set with 1995 genes and 371,341 possible interactions. Interactions
having only the correlation score as evidence were discarded. Even for this small number
of genes, the search is huge, considering the comparably small number of regulatory
evidences.

It is clear that this set can only represent a snapshot of the full regulatory network.
Nevertheless, this subset offers the opportunity to create a benchmark of known inter-
actions, which allows to evaluate the predictive importance of each data source. Several
approaches for evaluation benchmarks and difficulties have already been introduced in
Section The predictions in the following are evaluated against this generated gold
standard. The performance is measured with AUROC and precision-recall curves. The

10-fold crossvalidation is done on regular samples instead of sampled subnetworks.

5.4.1 Feature Generation and Selection

Figure gives an overview of the features used for the prediction of regulatory inter-
actions. Basically, features can be divided into interaction and gene specific features. In
general, the interaction specific features are supposed to contribute more to the learning
process. Gene specific features can give hints regarding the tendency of genes to interact
with other genes, like the calculated hub score from the PPI data. All interaction-specific
features, except the ones from text mining and ChIP-seq, have an associated score. The
other features are Boolean. A simplification of the learning process, described in the
next section, is made by only considering the interactions as undirected, which means
that most of the features refer only to the interaction and not specifically to one of the
genes.

Additionally, features were generated from the base sets above. These features were
extracted from the PPI networks (STRING) and the combination of partial correlation
and TFBS predictions. The STRING networks offers additional insight into another
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Figure 5.6: Overview of generated features. This figure shows the different gener-
ated features from the regulatory evidences. These features can be divided into two main
groups: the gene specific and the interaction specific features.

level of regulation on the basis of PPI. Even though it is known that gene regulatory

networks and PPI networks can be compared only to a very small extent, the structure

and the distances in this network might predict if two genes are more or less likely to

interact. The shortest paths between any two proteins in the network were therefore

computed (edge count), as well as the hub score of each protein and the number of

shared neighbors between two proteins. Calculations were performed using the igraph

R package. Hubs are of particular interest, since they control a large amount of other

genes or proteins and play an essential role in the regulation process. A threshold of 700

was applied to the STRING network to exclude PPIs with a low confidence score. This

resulted in the following features:

—

. Shortest path in all data

\V)

. Shortest path in data above 700
3. STRING hub score

4. STRING hub score in data above 700
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5. STRING shared neighbors

6. STRING shared neighbors in data above 700

The following features were generated for the combination of partial correlation and
TFBS predictions:

1. TG (neighbors +TF) pVal: Calculated p-value for TF-TG pairs where the TG
has correlated neighbors with also significant hit of the same TF. The p-value was
calculated by getting all neighbors for the respective TG with a partial correlation
above the 90% quantile (on all possible interactions) and by sampling the same
amount of neighbors 100 times randomly. A two-tailed test was applied to compute

the statistical significance.

2. TG (neighbors +TF): Number of TF-TG correlated neighbors (with TG) with a
hit of the same TF

3. TG (neighbors) Number of correlation neighbors

4. TFBS PWM length: Number of positions described by PWMs

The combination of the different sources of regulatory evidences can be used to improve

the predictions and additionally for testing for suitable extensions of the data sources.

5.4.2 Feature Imputation

Due to the different preprocessing steps and initially missing data points, not all features
(regulatory evidences) have a value and unfortunately not all prediction methods are
capable of dealing with missing values. The categorical and numerical values were filled
using the GBM (Gradient Boosting Machine) function from the imputation R package
[46]. The imputation uses boosted trees, where each column (feature) is treated as a
regression problem. For each of the columns i, boosted regression trees are applied
to predict ¢ by using all other columns except 7. Should the predictor variables also
contain missing data, the GBM function uses surrogate variables as substitutes for the
predictors. Additionally, a simple majority class imputation was used, where the most
frequent value is used for imputing missing values. A comparison of the effect of the two
imputation methods with respect to AUC is given in the following prediction section.

Figure gives an overview of the results when applied to the mouse data set.
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5.4.3 Correlation of Regulatory Evidences and their Features

Despite the overlaps of the data sources, it is also of interest how well the created features
correlate to each other in the training data. Figures[5.7/and[5.8|give an overview of these

correlations.
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Figure 5.7: Numerical feature correlation on the mouse data set. This figure
shows an all against all correlation comparison of the generated features. The color code
ranges from red via white to blue. Red indicates anti-correlation and blue correlation.
The flatter the shape of the circle, the stronger the absolute correlation. As expected, the
strongest correlations occur between similar methods and the newly generated features
within those methods. The microarray-based data sets for correlation, partial correlation
and ARACNe have a strong positive correlation, as have the text mining methods (co-
occurrence has been left out, since it would dominate the other methods, due to its low
specificity) and the STRING based features. The generated features with the threshold of
700 on the STRING data set seem to be significantly different compared to the full data
sets (shortest part, shared neighbors).
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Feature correlations
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Figure 5.8: Numerical feature correlation on the human data set. The cor-
relations are quite similar to the ones in Figure[5.7] Only some features correlate with
stronger intensity, like the shortest path and shared neighbors features from STRING
with a cutoff of 700 correlate stronger positively and negatively with the hub scores. A
large hub score for at least one of the two observed genes possibly indicates shorter paths
between those two genes. The SL text mining score correlates with the STRING score,
while tri-occurrence and ReLex only correlate with the shared neighbors from STRING
with a cutoff. Again, the microarray-based features do not seem to have a clear tendency
towards another source of regulatory interactions.

In conclusion of the comparisons of the feature correlations, most of the features
correlate with little overlap to each other, except for the closely related ones, which
originate from the same data source. The pattern of correlations is very similar between
the mouse and the human data set. For the predictions, it is expected that the features

can all contribute very differently to the predictive performance and might also reflect
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Figure 5.9: Hierarchical clustering of feature correlation on the human data
set. In addition to the correlation analysis in Figure [5.8] a hierarchical clustering was
applied to the correlation values. The clustering identified three major groups. The left
group contains both text mining methods (SL and tri-occurrence), the original TFBS pre-
diction scores and the gene specific hub scores from STRING. The group in the middle,
mostly STRING-based features, except for the correlation, and the right group is the most
diverse group, containing the STRING score, a text mining method (ReLex), ChIP-seq
and also a microarray based feature (ARACNe). The latter ones do not seem to group
specifically with each other.

different perspectives on the regulatory interactions. This could result in a lower coverage
of single interactions by evidences from multiple data sources. In the previous section,
it has already been stated that there exists only a limited overlap of multiple regulatory
evidences for the interactions from the gold standard (database evidence). The clustering
in Figure [5.9 shows three potential groups, but should be used with care due to the low
overall correlations. The microarray-based features are split over all three groups, while
the text mining approaches cluster together with the binding site predictions and the
hub scores (left group). The STRING, ChIP-seq and ARACNe results form another
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group (right group) with other, mostly STRING-based features.
The following section describes how the different features can be used to make predic-

tions of regulatory interactions.

5.4.4 Predictions of Regulatory Evidences and Performance Evaluation

The predictions were done with random forests using the caret R package [47]. The
number of random features for the prediction was set to ten and the number of trees to
500. 10-fold crossvalidation was used on the data set to assess the performance (AUROC)
of the prediction. Three different pre-processing methods were applied to the data set
to overcome the unevenly distributed classes and the missing values (described in the
feature imputation section .

Figure [5.10] shows a comparison between the random forest predictions for the mouse
data set with and without down-sampling of the majority class, as well as the effect
of GBM feature imputation and imputation with the majority class. Additionally, four
other approaches and random guessing of the interactions was evaluated against the
random forest performance. Those approaches were neural networks (NN), naive Bayes
(NB), k-nearest neighbors (KNN) and an unsupervised approach (SUM). For the latter,
the scaled sum of all features was calculated for each regulatory interaction in the data
set. Random forests in general also perform well on data with unevenly distributed
classes. This is due to the random selection of attributes for each decision tree and the
use of samples that are drawn by bootstrapping (n samples with replacement). Because
of the much larger size of the human data set, down-sampling of the data was applied
to account for computational complexity. For the mouse data set, it was also tested
if down-sampling reduces the predictive performance (see green bar in Figure .
Sampling was done in ten iterations with sampling a class distribution of 1200 to 800
(negative to positive) examples. The performance was similar to the predictions on the
full data set with random forests and therefore, sampling was applied for the calculations
on the human data set. Additionally, the originally two Boolean features denoting if the
interacting genes are a TF or not, were combined into one Boolean feature (true if at
least one feature is a TF and false otherwise). The results from the feature importance
analysis on mouse in the next section (see Figure indicated that the two single
features already had a stronger impact on the result.

The calculations on the mouse data set reached an AUROC of 0.87 and of 0.95 on
human. The corresponding ROC and precision-recall curves are shown in Figures [5.11

The predictions show that the features can be used to train a predictive model. They
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also give a good example for the importance of carefully choosing the evaluation metrics.
AUROC values offer a good possibility to compare different methods, but especially
for the case of human and mouse, it can be seen that even though the predictions in
human have a larger AUROC, the performance is lower with respect to precision and
recall. The reason for this is the larger data set for human, which has of course an
order of magnitudes more possible interactions. The more of these mostly not existing
interactions the prediction method manages to classify as TN, the larger the AUROC.
For the case of a great majority of not existing interactions, classifying an interaction as
TN is quite easy.

1
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Figure 5.10: Comparison of different prediction and imputation methods on
the mouse data set. This barplot shows the different outcomes of the imputation meth-
ods along with different prediction methods. The performance is measured with AUC.
The applied methods from left to right are random forest, neural networks, naive bayes,
k-nearest neighbors, unsupervised approach, which uses the sum of the scaled features
and random guessing of interactions. On all methods, the GBM imputation (red bars)
increases the performance. Random forests outperform the other prediction methods re-
gardless of the imputation method. Additionally, the effect of down-sampling the major-
ity class (green bar) was evaluated, since calculations on a larger data set, like human, is
computationally expensive. The performance was comparable to the calculations on the
full data set.

5.4.5 Feature Importance

In the following, the importance of the single features is evaluated. This is supposed to

give insights as to which features should be generated for future predictions, or which
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Figure 5.11: Comparison of AUROC and precision and recall curves. This plot
gives an overview of the results of the predictions with random forest on the two data
sets. The blue line indicates the AUROC curve with the true positive rate (also sensit-
ivity) on the y-axis and the false positive rate (1-specificity) on the x-axis. The red dotted
line refers to the corresponding precision-recall (PR) curve. Considering only the AUROC
curve, the prediction on the human data reaches a larger AUC value than the prediction
on the mouse data. Still, the results of the PR curve show that both methods perform
nearly equally well and that the prediction on mouse is superior for the regions of lower
recall.

features are obsolete, especially if they are computationally exhaustive (like the TG
(neighbors + TF) pVal feature). The randomForest R package also allows to calculate
the feature importance by calculating the class-specific contribution of each feature with
a mean raw importance score and additionally the overall mean decreased accuracy. The
larger the value, the more important the particular feature for both values. The mean
decreased accuracy measures the effect of including a particular feature in the model and
how much this reduces the classification error. The same applies to the raw importance
score, just only calculated separately for each class (positive and negative or interacting
and not interacting). The results were sorted by the mean decreased accuracy and are
shown for the top 23 features in Figures [5.12] and 5.13]

An obvious insight from these calculations is the importance of the TF information.
The combined TF feature in human is ranked for both classes at the top. In contrast to
this, the information about the gene type had nearly no influence on the predictions. The
ChIP-seq feature is of high importance, especially for the identification of the negative
class. The microarray based features are inconclusive and strongly vary between the

predictions on the human and mouse data. For both data sets, one of these features is
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ranked on the fourth position for identifying the positive class. The different positions of
ARACNe could indicate that it depends on the filtering or on the included experiments
for these features. The text mining approaches also performed quite differently and a
more thorough study on these results should be done. A possible explanation could
be the stronger overlap with STRING (see Figures and , which could cause the
algorithms to favor the impact of evidences from STRING over text mining. This could
also explain the differences in the importance of the STRING results. Especially for
human, the STRING based features are ranked at the top. The hub score seems to
play an important role and it could be also interesting for the following calculations to
combine this score into one feature. For the mouse data set, the hub score seems to be
of greater importance for predicting the negative class. The TFBS score also plays an
important role for this data set. On human, it is still important but ranked only on the
10th position. A reason could be the low specificity of some of the TFBS and of course
the potentially large number of falsely predicted binding sites.
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Figure 5.12: Feature importance for random forest predictions on the mouse
data set. To assess the contribution of each feature to the predictions we used the ran-
domForest R package to calculate the mean decrease in accuracy for each class-specific
feature. The larger the value of a feature, the more important its contribution to the pre-
diction. The right side of the plot shows the values for the positive class (interaction)

and the left side represents the negative class (no interaction). Text mining features are
colored in green, TFBS based features in blue, STRING based features in light blue,
microarray-based features like correlation are red, ChIP-seq feature in orange and the re-
maining features, which were either extracted from databases or are a mixture of other
features (like TFBS and partial correlation) are colored light grey. A mixture of all differ-
ent data sources is ranked among the top eleven features (considering the positive class).
ChIP-seq is particularly important for identifying the negative class. The information if a
gene is a TF has a high rank for both classes. Most of the generated STRING features are
ranked low for identifying the positive class but are at the same time a good indicator for
the negative class. The TFBS predictions and the text mining approach are performing
well for both classes.
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Figure 5.13: Feature importance for random forest predictions on the human
data set. The merged feature “TF” was ranked first, for the positive and negative class.
This is a quite intuitive result, since in interacting gene pairs usually one of the genes is
a TF. In contrast to the predictions on the mouse data, the STRING features perform
better and the text mining results seem to have less influence on the result. The ChIP-
seq feature again plays an important role for identifying the negative class. Also, in con-
trast to the other prediction, the ARACNe feature is ranked at the top. Comparing the
ARACNe feature in the Circos plots [5.3] and the results for mouse seem to be much
less restrictive and maybe a higher DPI for this data set would have removed less reliable
results. For both predictions the TFBS PMW length is an important feature.
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5.5 Discussion

The analysis of the different heterogeneous data sources was done from different per-
spectives starting with the simple descriptive visualization of the data. The visualiz-
ation indicated that TFBS predictions come with a potentially huge amount of false
positives and that they are of course limited to the known PWMs for the TFs. This is
not a surprising insight but from the overall overview, it can be seen in which dimension
the number of false positives might be compared to other prediction methods. Another
insight is the high correlation of the text mining results to each other, with simple co-
occurrence being the least restrictive. The latter data set has the largest overlaps to
ARACNe and STRING. Furthermore, only a comparably small number of known inter-
actions (database evidence) is available for the training of machine learning approaches.
Still, for most of the collected data sets more than two sources of regulatory evidences
exist for about half of the database evidences. The ChIP-seq data is supposed to be the
most reliable source but, as mentioned earlier, also depends on the experimental setup.
This data source has proportionally the largest overlap with the database evidences and
additionally a larger overlap with the TFBS predictions. It might be of interest to fur-
ther evaluate the origin of the large number of regulatory evidences, which are measured
only by ChIP-seq. Another insight is that STRING offers the strongest overlap across
all sources, but these overlaps are in most cases only specific to one other source and not
confirmed by a third. Comparing the different organisms to each other with respect to
their distribution of features, mouse and human are similar to each other, as are yeast
and fruit fly. The PPI network from STRING seems to be proportionally much bigger
for the latter two organisms compared to the other available data sources.

Following the approach by Bauer et al. [10], additional features were generated, which
should combine different base features and also statistical tests. The p-value describ-
ing for each pair of TF-TGs the probability that the same result would have been also
achieved for a set of TF-TGs with their strongly correlated neighbors, which have also
a hit from the same TF, is unfortunately of limited use for the predictions. The com-
bination of TFBS predictions and co-expression was supposed to reduce the noise in the
TFBS predictions and also in the microarray data. In contrast to this, the generated
STRING features performed well according to their feature importance. The shortest
path and the hub score seem to be supporting indicators for predicting interactions.
These two features also strongly correlate and probably relate to each other. A gene
with a large hub score, hence, many interactions, probably has also a shorter path to all

other genes. Short paths and highly connected genes might also originate in the same
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pathway and, thus, share a similar regulation. Another surprisingly well performing fea-
ture was the TFBS PWM length feature, which seems to reduce the noise of the TFBS
predictions and is a relevant feature for the positive and the negative class. A longer
PWM binding site is usually more specific and less likely to be hit by chance in another
promoter sequence.

The predictions on mouse and human show promising results and are capable of in-
ferring the TF-TG interactions from the gold standard. Random forests outperformed
the other methods on the mouse data set and also the GBM feature imputation could
improve the predictions. For the mouse data set it was also shown that even with down-
sampling, the majority class the predictions performed equally well. For computational

reasons down-sampling was also applied to the human data calculations.

5.6 Outlook

The previous sections introduced a framework for analyzing and collecting a hetero-
geneous data set for multiple organisms. Each data source has its own important pre-
processing steps and offers different perspectives on the GRN of an organism. The
framework presented here should encourage analysis of more complex data sources and
the generation of new features from the single data sets and their combinations.

Additionally, the following suggestions and insights arise from this analysis. The
integration of different data sources is already possible with state of the art approaches
and for different organisms these data sources contribute differently to the predictions
and should be handled accordingly. The presented framework offers an initial descriptive
visualization, which allows to explore the collected data sets and also to evaluate the
possibilities to combine or further refine features. An example for the latter are the hub
score and the shortest path feature from the STRING data. Both features contributed
to the predictive performance positively.

The combination of the data sources into more complex features did not improve the
predictions, but several other combinations are suggested from the analysis, like the
combination of TFBS predictions with ChIP-seq or text mining and STRING.

Next steps should include further assessing the performance of each data source and
studying single overlaps, like TFBS predictions and ChIP-seq or the overlap of text
mining results and STRING. Furthermore, predictions on the full data sets should be
evaluated and could be used to find new functional annotations for related genes. An-
other interesting extension of this approach might be to compare the conserved genes

between organisms and their local network structures or to predict the next state of a
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GRN network, given a new experiment.

The already available data sets offer an amazing variety of possible analyses and
opportunities for the development of new methods and frameworks. Still, the most
challenging task lies in the data collection and one major goal for the future is the

automatization of data integration processes.
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CHAPTER 6

Conclusion

The here presented work contributes to both the field of development of new methods
for the inference of GRNs, as well as the application on real-world data sets by gaining
insight into biological processes in human urothelium cells. A key statement of this
thesis is the importance of combining the technical understanding, such as machine
learning and data mining methods, and deeper domain knowledge for the inference of
gene regulatory networks.

Achieving this goal is not a process of following a classical water fall model, where
everything can be defined and planned in the beginning. It is rather an iterative and agile
process which requires close collaboration between biologists and bioinformaticians. The
insights of Chapter [4]are the result of an iterative approach towards the understanding of
the interdependencies in the normal human urothelium time series experiments. These
iterations consist of several steps like the quality assessment, a descriptive as well as
predictive exploration and visualization of the data and the successive evaluation of the
intermediate results with the biologists as well as updates on new insights from the lab.
The choice for this analysis felt on a rather simple, yet effective, data driven method
which could help to identify ELF3 as a new regulation factor for human urothelium. The
predictions were validated in the lab and the basis for a set of new microarray time series
experiments. These experiments are the logical subsequent step in the iterative process
and aim to extend the role of the ELF3 regulation in more detail. The contributions
of this analysis are the adaptation of an iterative and agile analysis approach and the
development of a novel data driven ranking procedure, which is capable of working
also on short and noisy time series data (e.g. asynchronous or missing time points).
Another contribution is the implementation of an interactive time series visualization

and of course the identification of the new regulator gene in human urothelium. The
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visualization helped to discuss the potentially interesting gene sets and to further refine
the final set of genes, which were supposed to be highly relevant for the development of
human urothelium.

Despite the data and process driven considerations, it is also important to improve or
to develop new methods for the inference of GRNs. Gene expression time series offer
a great opportunity to analyze gene regulatory systems but of course it is necessary to
gain as much detailed insight as possible for answering the question of interest from the
given data. Questions such as the search for a regulatory factor driving the observed
process, a subset of interacting genes, the ranking of possible targeted genes or even the
whole GRN structure. My contributions to this field are outlined in detail in Chapter
Bl Two novel GRN inference approaches are presented there, which deal with the data
pre-processing, discretization, the developing of new algorithms, as well as their evalu-
ation on synthetic and real world data sets. The first approach deals with the task of
learning undirected, also called co-expression, networks. I adapted the concept of Dy-
namic Time Warping (DTW) to align pairs of gene expression time series profiles and to
account for asynchronous time series. The time shifts can be caused by slower or faster
evolving processes for different genes or by quality issues from the data generation itself.
I developed an approach, which combines an angle based time series discretization and
DTW for the alignment of pairs of gene expression profiles. Additionally, I developed a
Stochastic Local Search based supervised extension of this approach to infer an organ-
ism specific distance matrix for the alignments. The training of this specific distance
matrix is done by using known interacting genes and their profiles to find a distance
matrix, which optimizes the alignment for the corresponding gene pairs. Both methods
performed equally and even better than the compared methods, but the results with the
standard distance matrix performs more stable over all benchmarks. The two versions
of the DTW based approach run in parallel and can be applied to complete genomes.
The second contribution to this chapter is an Bayesian approach, which integrates prior
knowledge into the learning process and infers a directed GRN. As described in Section
biological networks tend to be scale-free and this tendency is used as prior for the
Bayesian network inference. Each interaction in the inferred GRN has a score, which
reflects the certainty for this prediction. The prior calculates an additional score for
each gene which reflects the tendency to have more or less interactions partners. The
parameters for the GRN were inferred by applying a Hybrid-Monte-Carlo sampling pro-
cedure to explore also different possible states of the GRN and additionally, conjugate
gradient optimization was implemented for the optimization on large-scale networks.

The performance was evaluated for the inference of GRNs from given synthetic and gene
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expression time series experiments. Additionally, the capability of identifying hubs was
evaluated against other GRN inference methods, which it also outperformed.

The various properties and conditions of biological data sets can provide different
limitations and challenges to the analysis. Gaining new knowledge about gene regulatory
systems with experiments is an important task, but with the standardization of data
generation like microarrays or next generation sequencing techniques, the need to get as
much as possible of information from each experiments requires to advance the methods
but also to find an efficient way of integrating the immense amount of already existing
data and knowledge from public databases. Chapter [5] reviews five different concepts for
the integration of different data sources into the learning process of GRNs. To study the
different aspects of large-scale data integration, various sources for regulatory predictions
and experiments were collected for four different organisms (and additionally E. coli and
A. thaliana, which are not presented in this thesis). The generation of these multi-source
data sets is also one of the contributions. Each source has to be pre-processed and
integrated, or even predicted, like it is the case for TFBS. Additionally, a set of different
features was created, such as the hub score for proteins in the STRING network or
the p-value, which combines the TFBS predictions with the correlation values from
gene expression microarrays. The second contribution of this analysis is the descriptive
visualization and analysis of the collected data, which allows to compare the complete
data set and also the different organisms to each other. Finally, the data sets for two
eukaryotic organisms — human and mouse — were used to train a random forest model.
The GRNs of both of these organisms have so-far been rarely analyzed on a large-scale
due to the lack of data or gold standards. The performance evaluation showed that the
trained model is capable of predicting gene regulatory interactions and allowed to weigh
the importance of the single data sources and generated features. One insight of this
analysis was the importance of the information about hub genes, which might not only
be important TFs, but also influence regulation on the PPI level.

In summary all four approaches contribute to each other. Improving the methods helps
to make more reliable predictions. Defining a suitable workflow for the analysis helps to
understand and integrate new insights into the already known structure of GRNs. Using
different sources of data helps to analyze the GRN from different perspectives and is a

valuable extension to the time series analysis methods.
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CHAPTER [/

Outlook

As mentioned in the previous chapter the analysis of the human urothelium cell lines,
resulted in valuable insights into the underlying regulatory process. Following the sug-
gested analysis workflow, follow-up experiments were designed and executed. These
experiments are again microarray time series experiments and work with cell lines with
knockdowns of the identified TF ELF3. Furthermore, the analysis on normal human
urothelium is intended to be combined with another project in collaboration with the
Institut Curie in Paris. This project focuses on the corresponding NHU cancer cell lines.
The interactive visualizations have already proven to be a valuable tool for the discus-
sions of potentially interesting genes. It is intended to extend this tool with additional
features, such as gene ontology information or the integration of the predictions on the
different gene expression data sets, or a more generic framework, which allows to upload
own gene expression time series for further analysis.

Concerning the novel approaches, the DTW based approach could be also extended
to infer direct interactions, if the direction of the shifts from the alignment matrices
were also considered. Additionally, the effects of the organism specific distance matrix
should be explored in more detail and maybe restricted to experiment specific matrices.
Another approach could aim to find clusters of gene expression profiles and to compare
their available annotated pathways to each other.

The Bayesian inference approach could be extended to also work on continuous vari-
ables and the impact of different discretization methods studied in more detail. Addi-
tionally, the approach offers a great opportunity to be extended towards the integration
of different data sources. A possible application for this approach could be the data from
Chapter[pl The posterior distribution could again use a sigmoid function to combine the

regulatory evidences to train the weight for the directed interactions between any two
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genes. The prior could infer an additional data source or feature specific weight. This
weight can be used to rank the overall importance of a feature to the GRN inference
process. The posterior could again follow a normal distribution and the prior a Gamma
distribution. The latter expects to have some very important features and a larger ma-
jority of the features, which contribute only little to the identification of gene regulatory
interactions. These considerations already extended the functions from Section but
the different scale types, ordinal and nominal variables, have to be dealt with first.
The analysis of Chapter [5| shows first promising results concerning the integration of
heterogeneous data sources. A next step could be to apply the trained random forest
models on the full data sets of human and mouse. These predictions could then be
used to help developing new experiments or at least to prioritize a set of potentially
interesting genes. Additionally, the inferred GRN structure could be assessed for known
models and of course compared to the insights of Chapter 4l Part of the database has
already been visualized and it is possible to interactively explore the data [I15], and
another next step could be to visualize the whole data along with the new predictions.
Finally, the most obvious extensions of this approach would be to integrate further data
sets, such as gene ontology information, more recent gene expression data sets or DNase

footprinting experiments.
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Iterative approach to analyze biological systems. The process of infer-
ring a biological system or gaining a better understanding of single processes
within a system is described here with the three domains, ideation, under-
stand the data structure and interpret and predict. The overall process is
an iterative process which requires continuously, exchange between the three
domains and relies to a great extent on the underlying experiments. These
experiments can be a newly created data set to follow a hypothesis, exper-
iments from publicly available databases, or validation experiments to test
intermediary results or the final predictions. The first domain on the left,
ideation, deals with the generation of hypotheses about a system of interest.
These hypotheses are derived from prior knowledge arising from literature,
other experiments or even previous predictions which have to be evaluated
in the lab. The result of this ideation process, is a hypothesis (or a list of
hypotheses) and properly designed and executed experiments to deal with
the resulting tasks. The bidirectional arrows (1) and (2) also imply that the
design of these experiments has to be reconciled with the model selection
and data processing steps. The domain in the middle, represents the second
domain: understanding the data structure. It is crucial to understand the
quality, structure and statistical significance of the available data to be able
to assess the quality of any prediction in any of the later steps. Further-
more, it is of course important to have deeper knowledge about the analyzed
system itself. Several data preprocessing and transformation steps might be
necessary to bring the data in a proper format and to reduce noise in the
data set. To gain a better understanding, the structure (distribution, ranges,
means) has to be explored and the data itself visualized to compare the dif-
ferent results. This also allows to select a suitable subset of the data for
the third analysis step in the right domain. This can be further refined or
already validated with additional experiments in the lab. In the last domain,
strongly depending on the two previous domains, it is important to make
the proper choice of a predictive model which can give new insights into the
system of interest. The predictions and interpretations of the data have to

be thoroughly validated (again, also with experiments) and in an ideal circle,

these newly gained insights, lead back to the ideation process (arrow (3)). . .
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2.2

2.3

3.1

Matrix and graph representation of a network. A network can be
represented as a matrix where each entry is a directed link between two
genes. Each row represents all outgoing links from a particular gene, and
each column the ingoing links. In case of an undirected network the matrix is
symmetric. The corresponding graph is shown on the right and includes also
self-regulations (node A) and feedback loops (D and F'). It should be noted
that the matrix, also called adjacency matrix, does not necessarily imply
Boolean states and that each cell entry can also be filled with a continuous
value which represents the certainty or strength of this edge (interaction). In
case of a directed network, the relation of nodes can be termed with child
and parents. In the example above, E is the parent of its child node C.

Overview of inference models. Figure a) and b) represent undirected
networks. The first figure shows a simple correlation network, where only
pairs of genes (nodes) are compared and low scoring interactions (edges) are
pruned with a predefined threshold (T'H). The second undirected network
represents information theoretic approaches, combined with pruning rules,
like the Data Processing Inequality (IDP). Figure c) and d) represent direc-
ted networks based on Bayesian models and ordinary differential equations
(ODEs). Their structures are the same but their underlying models differ. In
both models B only depends on its direct predecessors (parent nodes C' and
D). For the Bayesian network in Figure c), B is conditionally independent
of F and F given C and D. In case of ODEs the expression of B is described
as a function of the expression rates of C' and D and itself. All of these four

model types do not allow for cycles (i.e. no feedback loops). An example for

networks with cycles are Dynamic Bayesian Networks. . . . . . . .. ... ..

DTW Alignment of two given sequences. Alignment with DTW of a
cosine for reference and a noisy sine wave as query with traceback through the
DTW matrix (replaced for a better overview with the corresponding density
levels). The plots and calculations were done using the dtw R package [57]. In
the right plot the warping effect of the alignment from Figure a can be seen.

The grey dotted lines indicate aligned time points and show the mapping of

the corresponding time points on the two time series. . . . . . . . .. ... ..

2]
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3.2 Example of the Angle-Based Discretization: The left figure shows a
time course for one gene with four measured time points. For the discret-
ization in this example n is set to three, and the resulting possible sectors
are shown in the right colored graphic. According to this setting, the second
time point of the time course would be discretized to one. . . . . ... ...

3.3 Comparison of the performances on three small networks. The dot-
ted line indicates guessing. The number of sectors ranges from 1 to 8. Know-
ledge size for calibration was set to 2. MRNET performs best on all yeast
data sets and only slightly worse than our proposed method on E.coli. The
discretized version of DT'W performs, except for case b), always better than
guessing and best for the F.coli data set. Including anti-correlation improves
in all cases the performance of DT Wy;s.. The other DTW versions perform
quite differently on the data sets and in most cases even worse than guessing,
especially in ¢). . . . . . ..

3.4 Comparison of the performances on a large-scale network. The dot-
ted line indicates guessing. Number of sectors ranges from 1 to 8. Know-
ledge size for calibration was set to 10. Gold Standard: STRING DB. Our
approach performs significantly better in a) and only slightly worse in b).
DDTW and DTW perform best on the Tu et al. set but the influence of the
anti-correlation is only small. DT'Wy;,. performs much better in b) without
the anti-correlation. . . . . . . . . ... .. L

3.5 Yeast Cell Cycle Core Network. Core yeast cell cycle network, as derived
by [89] from literature. There is one external checkpoint, cell size, which
initiates progression through the cell cycle. Activations are shown in green,

inhibitions in red, and self-regulations in yellow. . . . . ... ... ... ...
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3.6

3.7

ROC and PR Results on Simulated Data. The Figure shows receiver
operator characteristic (ROC) and precision to recall curves (PR) for network
reconstruction on simulated data, for different network sizes and different
numbers of time points. A, B: ROC and PR curves for the network with 11
genes, C,D: ROC and PR curves for network with 100 genes, E.F: ROC and
PR curves, respectively, for network with 1000 genes. Black: 20 time points
used for network reconstruction, red: 40 time points, blue: 200 time points.
It can clearly be seen how performance deteriorates with increasing network
size and decreasing number of different time points. We note that, due to the
three-class classification problem underlying the graphs, random guessing of
network topologies would not yield a diagonal line in the ROC plots, but a
significantly lower line with an area under the curve of approximately 0.33.

Inferred Degree Density Distribution on Scale-free and Random
Networks. To test whether artificial hubs are generated in network infer-
ence due to their used prior distribution, we performed a comparative analysis
on two different 1000 gene networks. The first network is the JumboSF net-
work, a large scale-free network with central hub genes. The second network
is a random Erdos-Rényi network, which does not contain any hubs. Network
inference was performed using identical parameter values for the hyperpara-
meters on both data sets. The figure shows the degree distribution of the
inferred networks, in dependence of the number of time points used for net-
work inference (left: JumboSF, right: random network). The plot shows
that, provided sufficient data is available, the prior distribution does not lead
to artificial hubs. On the other hand, if only little data is used for network

inference, the prior starts dominating the results, as one would expect.

135



List of Figures

3.8

3.9

3.10

136

Effect of Starting Point on obtained AUC values. Shown are the
distribution of AUC values (left: ROC, right: PR) of 1000 gradient descent
runs, for randomly chosen starting values for W, on the yeast core network.
For the parameter vector W, randomly chosen values within ranges of [—1,1],
[—3,3] and [—5,5] were used as a starting points for the calculations with CG.
This was done for each of the suggested ranges 1000 times, and AUC ROC
and AUC PR values were computed. The boxplots show the comparison
between the different AUC values for these calculations. It can be clearly
seen, that randomly sampled start values close to zero allow the approach
to obtain better results for the optimal values of w. If the range of initial
values for W is too large, the optimization ends in suboptimal local optima
corresponding to overly complex networks with many non-zero edges.

Multimodal Distributions in the Yeast Cell Cycle Core Network.
Shown are Dip scores for the distribution of sampled edge weigths from the
Markov chain. The Dip value measures the departure of an empirical distri-
bution from the best fitting unimodal distribution. Large scores indicate a
stronger deviation from unimodality. Rows in the diagram represent source

(regulating) genes for edges, columns the target (regulated) genes. Colors

have been used to indicate the magnitude of the deviation from unimodality.

Hub Genes in the Yeast Cell Cycle. Histogram of reconstructed regula-
tion strength for the full yeast cell cycle dataset. Negative weights correspond
to inhibitions, positive weights to activations. Weights in the vicinity of zero
indicate no regulation between two genes. The plot shows the distribution
of regulation strengths between any two genes, showing clearly that only few
genes exhibit strong regulations. The inset shows a histogram of the cor-
responding hyperparameters o (equation , controlling the magnitude of
the regulations exhibited by a particular gene. As can clearly be seen, most
genes have only small importance corresponding to low values of o, and only

few genes are assigned large values of o and correspondingly large weights on

their outgoing connections. . . . . . . . ... ... Lo
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3.11

3.12

3.13

4.1

Receiver Operator Characteristic Analysis for the Prediction of
Hub Genes in the Yeast Cell Cycle. Genes were split in two groups
“hub” and “non-hub” based on a threshold 6 on the degree of the gene in the
literature derived network, and ROC curves were computed by then varying
the threshold on o. ROC curves were summarized for each € using the area
under the curve. The plot shows AUC(0) over 6. The red curve shows
results for the inferred network using the method presented, the black dotted
line shows results using the method with a Normal prior, the brown dashed
line using a L1 “sparseness” prior distribution. The dashed blue line was
obtained using Banjo, the dot-dashed green lines shows results of ARACNE,
the dot-dashed pink line represents results of MRNet. The grey dashed line
corresponds to the expected value for randomly guessing a network. Larger
AUC values indicates better performance. . . . . . . . .. ... ... .....
Sensitivity Analysis for the Network Inference Performance on Syn-
thetic Data with Respect to Parameters a and r. Plots comparing
distributions of AUC values for ROC graphs for different a and r settings (x-
and y-axis), for the synthetic networks of sizes 11, 100 and 1000, using data
sets with 20 and 200 time points, respectively. The plots show that results are
relatively insensitive over a large range of parameters. Smaller values of the
hyperparameter r correspond to a more peaked prior distribution, resulting
in “sparser” networks. Correspondingly, the figure shows that smaller values
of r should be chosen for larger networks. Although the effect of changing a
seems not as pronounced, larger values of a correspond to a narrower prior
distribution, and should therefore be used if fewer data are available to avoid
overfitting. . . . . . . L.
Sensitivity Analysis for the Prediction of Hub Genes in the Yeast
Cell Cycle with Respect to Parameters a and r. To assess the effect
of changes of model parameters a and r, both parameters were varied in-
dividually and together by up to £50 percent. Network reconstruction was
restarted for each combination of values for a and r, and average AUC values
were computed for the reconstructed networks in comparison to the STRING
network. The figure shows the resulting AUC values over a, r, indicating that

results are relatively insensitive over a wide range of parameter values. . . . .

Graphical abstract of the presented workflow. . . . . . ... ... ...
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4.2 Overview of the probe set overlaps between the experiments. Fig-
ures A and B give an overview of how the top ranked probe sets were com-
bined. The intersection was built either on all four filtered 1000 top ranked
sets or the two ABS/Ca?* experimental arms. The ALFC for each probe
set was then normalized to one and the set sorted according to the sum of
absolute ALFC over all experiments. The intersection of the ABS/Ca?* sets
was ranked from the difference between the absolute sum of ALFC on the
ABS/Ca?* arm and the absolute sum of the ALFC on the TZ/PD arm. Fig-
ures C and D display Venn diagrams which show the intersection and overlaps
of the four differentiation series (TZ/PD and ABS/Ca?*, on two independent
donor cell lines Y579 and Y676). The overlaps were generated using the top
1000 probe set lists from each experiment. The Venn diagram in panel C
shows the number of genes present at the intersection of all four data sets.
142 up-/downregulated genes were found within the intersection. Within this
subset, four TFs were found (ELF3, BCL6, BNC1, IRF1). Figure D shows
the same overlaps on the probe set level. The 189 probe sets in the inter-
section of all sets map to the 142 genes from Figure C. The overlap between
the ABS/Ca?" experimental arms contains 472 probe sets with 13 identified
as TFs (see Table for details). From these 13 TFs, nine factors (GRHLI,
GRHL3, FOXC1, ID2, SMAD3, FOXN2, ETS1, MITF and FOXD1) were
unique to the ABS/Ca®" arm and not included in the TZ/PD lists. . . . . . .

4.3 Defining the ALFC threshold. Definition of a suitable ALFC threshold:
Stair-step plots for the four experiments showing the number of rediscovered
markers in the data set for differently sized sets of top ranked probe sets
(up to 1500). The ranking is done using the calculated ALFC and each bar
represents the number of found markers for the particular amount of chosen
genes. A plateau around 1000 is reached in all four data sets and hence a
threshold of choosing the top 1000 probe sets is applied for the second filtering
step. The maximum amount of found markers is shown in brackets next to

the experiment identifier in the left corner of each chart. . . . . . . ... ...
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4.4

4.5

ALFC values for ELF3, MUC20 and GRHL3. ALFC values for the
probe sets of three genes of interest, ELF3, MUC20 and GRHL3. The mean
ALFC of all probe sets is shown by the green bars. For all three genes
the ALFC is significantly larger than for the average probe set. The only
exception is the 243774 at probe set for MUC20 in case of the TZ/PD model.
In this case, the ALFC is slightly negative. According to GeneAnnot, this
probe set is the least sensitive of the four probe sets, which can be mapped
to MUGQC20. . . . . . o
Experimental validation of ELF3. ELF3 immunolocalisation in human
urothelium on a section of normal ureter (A). Note nuclear localisation and
increased intensity in the most highly differentiated superficial cells (Scale bar
= 50uM). Expression of ELF3 transcript (B) and protein (C) was examined in
NHU cells induced to differentiate in response to the TZ/PD protocol. The
antagonist T0070907 was used to confirm specific involvement of PPAR:y.
Cells were pre-treated with 5uM T0070907 (or vehicle control) for 3h prior to
addition of 1uM troglitazone (TZ) and 1uM PD153035. RNA extractions and
whole-cell protein lysates were collected for analysis at 6h, 24h, 48h and 72h
post-treatment. At each time point a DMSO vehicle control was included.
For transcript analysis (B), ELF3 gene expression was analyzed by RT-PCR
and [S-actin was included as a normalisation control. Whole cell lysates were
processed for western blotting (C) and labelled with antibodies against ELF3

or f-actin as loading control. . . . . . . .. ... ... L.
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4.6

140

Analysis of ELF3 knock-down on NHU cytodifferentiation and bar-
rier repair. Expression of urothelial differentiation-associated genes was ex-
amined in ELF3 versus scrambled shRNA transduced cells. A) Scrambled
shRNA control (ctrl) and ELF3 knockdown (k/d) cells cultures were exposed
to vehicle only (0.1% DMSO) or differentiated by co-treatment with TZ and
PD153035 (TZ/PD) and the expression of ELF3 and late differentiation-
associated UPK3a was analyzed by RT-PCR at 48h and 72h post-treatment.
B) The expression of ELF3, GRHL3, FOXA1 and claudin 7 was analyzed
by RTqPCR in cells transduced with scrambled versus ELF3 shRNA at 48h
post differentiation with TZ/PD. In A and B, the reaction controls included
an RT-negative for each RNA sample, a no-template (H20) control, a /-
actin normalisation control and a genomic DNA positive control. C) Barrier
function in ELF3 versus scrambled shRNA transduced cultures was followed
over an 8 day period following differentiation in ABS/Ca?* by measurement
of the transepithelial electrical resistance (TER). D) The same cultures were
then wounded and the restoration of barrier function was observed over the

subsequent 61 hours. Statistical analysis was calculated by ANOVA with

Bonferroni Multiple Comparisons post-test (***P<0.001, **P<0.01). . . . . .
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5.1

5.2

Description of different data tracks in the Circos plots. Circos plots
offer the possibility to visualize dependencies on a large-scale between dif-
ferent objects. Originally used for the display of chromosomes, they have
been recently applied for various other tasks. Here, the plot visualizes the
shared interactions between each possible pairing of the data sources in the
database. Each source is represented by a segment and a color (see (D).
The different segments are connected with ribbons (see 3)), which represent
the number of shared predicted TF-TG pairs between the two sources. The
thicker these ribbons are, the more predicted interactions are shared between
the two sources. Parts of the segment without ribbons mean predictions,
which are solely made by this particular source. The segment size might
also contain multiple connections for the same TF-TG pair, if more than one
other source predicts the same pairing, and can be, because of this, longer
than the real number of predicted TF-TG pairs. The additional highlight
tracks (see @) show the real number of unique TF-TG interactions for this
source in black and the additional highlight bands in green show how many
other methods (at least one to at most five, from left to right) share these
predictions. . . . . . ..
Circos plot for intersections on all collected regulatory evidences
on human. This overview shows the shared predicted and experimental
verified interactions between TF-TG pairs in human. Correlation predictions
are left out since these exist for nearly every TF-TG pair shown here. As
to be expected, the strongest connections are between the three text mining
predictions since tri-occurrence is also a subset of co-occurrence. There is
also a stronger connection between ChIP-seq and TFBS prediction, which
includes about 500,000 TF-TG pairings. STRING and Co-occurrence shares
about 100,000 interactions with the TFBS predictions and ARACNe even
slightly more. Nevertheless, there are only about 100,000 interactions for the
TFBS predictions, where at least two are confirmed by two other sources.
Nearly all interactions from the database evidences are covered by at least
one other method. Also notice that this region is zoomed, and the scaling
is different to the other methods. In total, this represents 3222 interactions,
where nearly half of these interactions are at least confirmed by three other
methods. . . . . . e
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5.3 Circos plot for intersections on all collected regulatory evidences
on mouse. Similar to the overview of the human data set, also STRING has
the most overlaps across all other sources. Again, the text mining approaches
share many predictions and also the TFBS predictions have the most predic-
tions with no other source confirming them. The predictions with ARACNe
seem to filter out substantially less interactions and keep more than twice
the number of interactions as in human. Considering experimental evidences
from ChIP-seq, human has more than five times as many regulatory evid-
ences as mouse. The overlap of the ChIP-seq experiments with the database
evidences is also very small and compared to the number of experiments, the
smallest of all here collected organisms. . . . . . . ... ... ... ......

5.4 Circos plot for intersections on all collected regulatory evidences
on D. melanogaster. This data set is an interesting outlier compared
to human and mouse, since the STRING data clearly outnumbers all other
methods combined. This data set seems to be more similar to the yeast data
(Figure regarding the distribution of regulatory evidences. The overlap
of TFBS predictions and database evidences is also very small for this data
set. This could be an evidence for generally low performing PWMs, poor
choice of the promoter regions, or of course for, many so far unannotated
regulatory interactions. . . . . . . . . ...

5.5 Circos plot for intersections on all collected regulatory evidences
on S. cerevisiae. Even for yeast, not all database evidences also have a
regulatory evidence. The majority has less than two evidences. . . . . . . .. |

5.6 Overview of generated features. This figure shows the different generated
features from the regulatory evidences. These features can be divided into

two main groups: the gene specific and the interaction specific features.
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5.7

5.8

5.9

Numerical feature correlation on the mouse data set. This figure
shows an all against all correlation comparison of the generated features. The
color code ranges from red via white to blue. Red indicates anti-correlation
and blue correlation. The flatter the shape of the circle, the stronger the
absolute correlation. As expected, the strongest correlations occur between
similar methods and the newly generated features within those methods. The
microarray-based data sets for correlation, partial correlation and ARACNe
have a strong positive correlation, as have the text mining methods (co-
occurrence has been left out, since it would dominate the other methods, due
to its low specificity) and the STRING based features. The generated features
with the threshold of 700 on the STRING data set seem to be significantly
different compared to the full data sets (shortest part, shared neighbors).

Numerical feature correlation on the human data set. The correla-
tions are quite similar to the ones in Figure Only some features correlate
with stronger intensity, like the shortest path and shared neighbors features
from STRING with a cutoff of 700 correlate stronger positively and negatively
with the hub scores. A large hub score for at least one of the two observed
genes possibly indicates shorter paths between those two genes. The SL text
mining score correlates with the STRING score, while tri-occurrence and Re-
Lex only correlate with the shared neighbors from STRING with a cutoff.
Again, the microarray-based features do not seem to have a clear tendency
towards another source of regulatory interactions. . . ... ... ... ...
Hierarchical clustering of feature correlation on the human data
set. In addition to the correlation analysis in Figure [5.8] a hierarchical
clustering was applied to the correlation values. The clustering identified
three major groups. The left group contains both text mining methods (SL
and tri-occurrence), the original TFBS prediction scores and the gene specific
hub scores from STRING. The group in the middle, mostly STRING-based
features, except for the correlation, and the right group is the most diverse
group, containing the STRING score, a text mining method (ReLex), ChIP-
seq and also a microarray based feature (ARACNe). The latter ones do not

seem to group specifically with each other. . . . .. ... ... ... ....

- [I13
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5.10 Comparison of different prediction and imputation methods on the
mouse data set. This barplot shows the different outcomes of the imputa-
tion methods along with different prediction methods. The performance is
measured with AUC. The applied methods from left to right are random
forest, neural networks, naive bayes, k-nearest neighbors, unsupervised ap-
proach, which uses the sum of the scaled features and random guessing of
interactions. On all methods, the GBM imputation (red bars) increases the
performance. Random forests outperform the other prediction methods re-
gardless of the imputation method. Additionally, the effect of down-sampling
the majority class (green bar) was evaluated, since calculations on a larger
data set, like human, is computationally expensive. The performance was
comparable to the calculations on the full data set. . ... ... ... .. ..

5.11 Comparison of AUROC and precision and recall curves. This plot
gives an overview of the results of the predictions with random forest on the
two data sets. The blue line indicates the AUROC curve with the true positive
rate (also sensitivity) on the y-axis and the false positive rate (1-specificity)
on the x-axis. The red dotted line refers to the corresponding precision-
recall (PR) curve. Considering only the AUROC curve, the prediction on the
human data reaches a larger AUC value than the prediction on the mouse
data. Still, the results of the PR curve show that both methods perform
nearly equally well and that the prediction on mouse is superior for the regions

of lower recall. . . . . . . .. e
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5.12

5.13

Feature importance for random forest predictions on the mouse
data set. To assess the contribution of each feature to the predictions we
used the randomForest R package to calculate the mean decrease in accur-
acy for each class-specific feature. The larger the value of a feature, the
more important its contribution to the prediction. The right side of the plot
shows the values for the positive class (interaction) and the left side repres-
ents the negative class (no interaction). Text mining features are colored in
green, TFBS based features in blue, STRING based features in light blue,
microarray-based features like correlation are red, ChIP-seq feature in orange
and the remaining features, which were either extracted from databases or
are a mixture of other features (like TFBS and partial correlation) are colored
light grey. A mixture of all different data sources is ranked among the top
eleven features (considering the positive class). ChIP-seq is particularly im-
portant for identifying the negative class. The information if a gene is a TF
has a high rank for both classes. Most of the generated STRING features are
ranked low for identifying the positive class but are at the same time a good
indicator for the negative class. The TFBS predictions and the text mining
approach are performing well for both classes. . . . . ... ... ... ...
Feature importance for random forest predictions on the human
data set. The merged feature “TF” was ranked first, for the positive and
negative class. This is a quite intuitive result, since in interacting gene pairs
usually one of the genes is a TF. In contrast to the predictions on the mouse
data, the STRING features perform better and the text mining results seem
to have less influence on the result. The ChIP-seq feature again plays an
important role for identifying the negative class. Also, in contrast to the
other prediction, the ARACNe feature is ranked at the top. Comparing the
ARACNe feature in the Circos plots[5.3]and[5.2] the results for mouse seem to
be much less restrictive and maybe a higher DPI for this data set would have
removed less reliable results. For both predictions the TFBS PMW length is

an important feature. . . . . . . ... L
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Gene expression time series plots for a set of possible key genes.
These plots give an overview of the transcript expression profiles of the follow-
ing key genes: UPK2, UPK1A, UPK3A, UPK3B, ELF3, GRHL3, KLF5 and
FOXA1. For genes with multiple probe sets the probe set with the largest

inter quartile range (IQR) has been selected as representative. . . . . . . . ..

Principal Component Analysis (PCA) of the available samples.
PCA was performed on the samples to assess how well the different con-
ditions could be separated. Unfortunately, up to the first ten components
are needed to explain nearly 80% of the variability of the data. Figure

gives an example of one possible choice for the principal components (PC)

and how these two components separate experiment from control. . . . . . . .

Principal Component Analysis (PCA): Rotation of the samples
with PC1 and PC3. As described in Figure principal components
(PCs) one and three were used to separate experimental and control samples.
Experiments are in dark blue (1) and controls in light blue (0). Depending
on the choice of the PCs, the samples (microarrays) can be separated for
different conditions. In general, samples which are close to each other in this
plot tend to be also close in the timing of the corresponding experiments to
each other (6h, 24h, 72h and 144h). For more details we refer to the project

website where different features can be visualized and various settings of the

PC combinations can be tested. . . . . . . . . ...

Immunoblot: Analysis of ELF3 knock-down. For ELF3 knock-down,
three ELF3 shRNA and a control shRNA were transduced into NHU cells and
selected with puromycin. Cultures were induced to differentiate with 1uM
troglitazone (TZ) and 1uM PD153035 or DMSO vehicle control for 24h prior
to immunoblotting for ELF3. Band intensity was determined by densitometry

analysis and normalised to (-actin; the efficiency of knockdown is expressed

as a percentage of the scrambled control. . . . . . . .. .. .. ... ......
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A Appendix

A.1 Supplementary Material: Identification of ELF3 as an Early

Transcriptional Regulator of Human Urothelium

A.1.1 Additional tables and plots
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Figure A.1: Gene expression time series plots for a set of possible key genes.
These plots give an overview of the transcript expression profiles of the following key
genes: UPK2, UPK1A, UPK3A, UPK3B, ELF3, GRHL3, KLF5 and FOXA1. For genes
with multiple probe sets the probe set with the largest inter quartile range (IQR) has
been selected as representative.
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Figure A.2: Principal Component Analysis (PCA) of the available samples.
PCA was performed on the samples to assess how well the different conditions could be
separated. Unfortunately, up to the first ten components are needed to explain nearly
80% of the variability of the data. Figure [A.3| gives an example of one possible choice for
the principal components (PC) and how these two components separate experiment from
control.
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Figure A.3: Principal Component Analysis (PCA): Rotation of the samples
with PC1 and PC3. As described in Figure principal components (PCs) one and
three were used to separate experimental and control samples. Experiments are in dark
blue (1) and controls in light blue (0). Depending on the choice of the PCs, the samples
(microarrays) can be separated for different conditions. In general, samples which are
close to each other in this plot tend to be also close in the timing of the corresponding ex-
periments to each other (6h, 24h, 72h and 144h). For more details we refer to the project
website where different features can be visualized and various settings of the PC combina-
tions can be tested.
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DMSO 24h TZ/PD

% expression 100% 49% 61% 90%

Figure A.4: Immunoblot: Analysis of ELF3 knock-down. For ELF3 knock-down,
three ELF3 shRNA and a control sShRNA were transduced into NHU cells and selected
with puromycin. Cultures were induced to differentiate with 1uM troglitazone (TZ) and
1M PD153035 or DMSO vehicle control for 24h prior to immunoblotting for ELF3. Band
intensity was determined by densitometry analysis and normalised to §-actin; the effi-
ciency of knockdown is expressed as a percentage of the scrambled control.

170



	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization of this Thesis

	2 Inference of Gene Regulatory Networks
	2.1 Gene Regulatory Networks
	2.1.1 Gene Interactions
	2.1.2 Structure and Attributes
	2.1.3 Systems Biology

	2.2 Data and Initial Considerations
	2.2.1 Biological Data and Algorithm Adaptation
	2.2.2 Synthetic Data and Evaluation
	2.2.3 Data Pre- and Post-Processing
	2.2.4 Time Series versus Steady-States

	2.3 Overview of GRN Inference Models
	2.3.1 Information Theory Models
	2.3.2 Boolean Models
	2.3.3 Bayesian Models
	2.3.4 Ordinary Differential Equation Models

	2.4 Data Integration of Various Sources
	2.5 Summary

	3 Time Series Based Methods for the Inference of Gene Regulatory Relationships
	3.1 Dynamic Time Warping
	3.1.1 Dynamic Time Warping
	3.1.2 Performances of Different DTW Variants
	3.1.3 Conclusion

	3.2 Hub-Centered Gene Network Reconstruction
	3.2.1 Introduction
	3.2.2 Bayesian Network Model
	3.2.3 Prior Distribution
	3.2.4 Optimization of the Posterior Distribution
	3.2.5 Evaluation of Networks
	3.2.6 Overview of Results
	3.2.7 Synthetic Data Simulation with Boolean Model
	3.2.8 Results with Gradient Descent
	3.2.9 Results with MCMC
	3.2.10 Results on a Non-Hub Network
	3.2.11 Synthetic Data Simulation with GeneNetWeaver
	3.2.12 Results using Microarray Data on the Core Network of the Yeast Cell Cycle
	3.2.13 Hub Genes in the Yeast Transcriptional Regulation
	3.2.14 Choice of Prior Hyperparameters
	3.2.15 Discussion


	4 Analysis of Regulatory Relationships in Real-World Domains
	4.1 Identification of ELF3 as an Early Transcriptional Regulator of Human Urothelium
	4.1.1 Introduction
	4.1.2 Materials and Methods
	4.1.3 Results
	4.1.4 Discussion


	5 Large-Scale Integration of Heterogeneous Data
	5.1 Introduction
	5.2 Data Sources and Applied Methods
	5.2.1 Text Mining
	5.2.2 Chromatin Immunoprecipitation Data (ChIP-seq)
	5.2.3 Co-expression Network Generation
	5.2.4 PPI Network Curation
	5.2.5 TFBS Prediction
	5.2.6 Database Evidence for Regulatory Relations

	5.3 Descriptive Data Analysis and Visualization
	5.3.1 Storing the Data and Overview of Regulatory Evidences
	5.3.2 Overlaps of Regulatory Evidences

	5.4 Predictive Analysis on M. musculus and H. sapiens
	5.4.1 Feature Generation and Selection
	5.4.2 Feature Imputation
	5.4.3 Correlation of Regulatory Evidences and their Features
	5.4.4 Predictions of Regulatory Evidences and Performance Evaluation
	5.4.5 Feature Importance

	5.5 Discussion
	5.6 Outlook

	6 Conclusion
	7 Outlook
	List of Figures
	List of Tables
	Bibliography
	A Appendix
	A.1 Supplementary Material: Identification of ELF3 as a Novel Regulator in Human Urothelium
	A.1.1 Additional tables and plots



