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Abstract-A streaming communications model with an au­
toregressive distortion function is proposed. We show that the 
model is useful for delay-sensitive systems, and we present 
asymptotic and non-asymptotic achievability results that exhibit 
some fundamental tradeoffs between rate, reliability and delay. 

I. S ETUP & MOTIVATION 

The need for ultra short-delay high-rate communications 
systems in algorithmic trading, distributed control, cloud com­
puting and vehicle-to-vehicle systems is driving significant 
new research and infrastructure investments [1]-[3]. In this 
paper, we investigate basic rate-reliability-delay tradeoffs for 
a streaming model of communications. The model is ideal 
for delay-sensitive systems and, for concreteness, we motivate 
it by a recent paradigm shift in finance - the algorithmic 
trading of financial instruments in the foreign exchange ( FX) 
market [4]. Let us first give the problem setup. 

A. Setup 

A discrete memoryless source (DMS) emits a sequence of 
symbols Ul, U2, ...  , where each is uniformly distributed on a 
finite set U := {O, 1, ... , M - I}. A transmitter streams the 
source symbols over a discrete memoryless channel (DMC) 
to a receiver operating with integer decoding delay (or, looka­
head) � 2: O. Let X denote the channel's input alphabet, Y 
its output alphabet and TYlx(ylx) := IP[Y = ylX = xl its 
transition probabilities. Encoding and decoding is performed 
in stages n = 1,2, ... 

Encoder (stage n): The DMS has output the first n source 
symbols, Un := (Ul, U2, ... , Un). The transmitter sends 

Xn := j<n) (Un) 
over the channel, where j<n) : un -7 X is a deterministic map 
and un is the n-fold Cartesian product of U. The receiver 
observes Yn at the channel output. 

Decoder (stage n): The channel has output the first (n+ �) 
channel symbols, '\( n+6. := (Yl, Y2,·· ., Yn+6.). The receiver 
attempts to reconstruct the first n source symbols Un via 

qj�) := g(n) ('\(n+6.), 
where g(n) : yn+6. -7 un is a deterministic map and yn+6. 
is the (n + �)-fold Cartesian product of y. The sequence 
(f(1), g(1»), (f(2) , g(2»), ...  is called an (M, �)-code. 

In this paper, we quantify the performance of an (M, �)­
code using a novel autoregressive distortion function. Fix A 2: 
0, and define the distortion between QJn := (Ul, U2,"" un) 
and QJn: = (Ul, U2, ... , un) recursively by 
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dn(QJn, QJn) := Adn-l(QJn-l, QJn-d + :n.{QJn i= QJn}, 
where dl (Ul' ud :=:n. {Ul i= uI} and 11. is the indicator function. 
The recursion provides a form of unequal error protection, 
where early errors are weighted more than late errors. We 
will see, in the next section, that this unequal protection is 
useful for tracking autoregressive processes. Let 

(R ) := NlogM N N+� 

denote the average distortion and rate of the first N stages 
respectively. The main problem of interest is to determine the 
set of achievable rate-distortion-delay tuples in the following 
sense. Our results are summarised in Section I I. 

Definition 1: A rate-distortion-delay tuple (R, D,�) is said 
to be (N, A)-achievable on a DMC if there exists an (M, �)­
code such that R ::; (RN) and D 2: (DN)' 

Definition 1 captures tradeoffs between rate, reliability and 
delay. For example, the decoder initially estimates Un from the 
first (n + �) channel outputs. The decoder then revisits and 
improves this estimate in each successive decoding stage, as 
more channel outputs become available. Intuitively, the rate at 
which the estimate improves is controlled by the distortion 
coefficient A - a larger A will demand a faster rate of 
improvement. Of course, one expects that increasing A will 
lead to compromised achievable rates and delays. This paper 
seeks a better understanding of these tradeoffs. Definition 1 
is related to Sahai's [5] notion of anytime reliability, see 
Appendix A. An application of Definition 1 is given next. 

B. Motivation: Algorithmic FX Trading 

The FX market is decentralised, massive and operates 
around the clock. Electronic "matchmaker" platforms connect 
thousands of buyers and sellers each second, and sophisticated 
computer algorithms track market movements and implement 
trading strategies. Some algorithms profit by arbitrage (ex­
ploiting small, short-lived, discrepancies in the exchange rates 
between currencies); some minimise the cost of executing 
large currency orders (e.g., a large company paying a foreign 
debt); and others predict market changes arising from external 
forces, such as government and corporate announcements, 
news and social network feeds. Profitability often requires 
short delay (e.g., microsecond) access to market data [1]. 

Consider a tick-by-tick sequence Qo, Ql,' .. of spot (ask or 
bid) prices of a currency pair. Let us assume the following: 
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the spot prices arrive one-by-one at the matchmaker; the 
matchmaker (the transmitter) needs to stream N consecutive 
prices (the source) to a trader (the receiver) over a DMC 
with decoding delay �, and the initial price Qo is known 
to the transmitter and receiver. The DMC serves as a basic 
model for a noisy point-to-point channel or packet erasures in 
a congested network. Encoding and decoding is performed in 
stages, analogous to the setup of Definition 1: In stage n, the 
transmitter sends Xn := j<n) (Qo, ...  , Qn) over the DMC and 
the receiver reconstructs Qn := g(n) (Yl, ... , Yn+�). 

We now use an (M, �)-code and Definition 1 to give an 
achievable upper bound for the average Ll log distortion N A 

' 

(liN) Ln=l [I log Qn -log Qnl· The n-th spot price can be 
written as 

Qn = Q��l (1 + En), 
where En is typically small, say len I :s; 0.01, and An is close 
to one. To apply the autoregressive-distortion function dn, let 
us consider the logarithmic prices Wn := log Qn and 

Wn = log (Q�::'l (1 + En)) � An Wn-l + En, (1) 

where 10g(1 + En) � En for small En. 
If El, E2, ...  are iid random variables and An is constant, then 

the right-most side of (1) is a first-order autoregressive process. 
Such processes are widely used in FX modelling because they 
are simply stated, difficult to outperform in forecasting and 
difficult to reject [6]. Let us assume that El, E2, ...  are iid 
(uniform) on a finite set of 1\;[ real numbersl. 

Log prices exhibit complicated cycles and non-stationary 
properties, which can be modelled by adapting An. For ex­
ample, An might be determined by whether or not Wn-l sits 
above or below a threshold, or by the distance of Wn-l from 
some key economic indicator [6], [8]. Assume that An :s; Amax 
for all n and that An is known at the transmitter and receiver2. 

Suppose that the transmitter streams El, E2, ...  with delay � 
using an (M, �)-code. At stage n, the receiver attempts to 
reconstruct the first n price changes (€in) , €�) , ... , €<;:)). It then 
estimates Wn by setting Wo := log Qo and 

Wn := (IT A i) Wo + � ( IT A i) €�) + €<,;;), n � 1. 
i=l k=l i=k+l 

We can now apply Definition 1 to bound the average Ll log 
error: If (R, D,�) is (N, Amax)-achievable, then there exists 
a code for the log prices such that 

1 N N 
[_ '"' lTV -W 1< [1 '"' d (( o(n) o(n)) ( (n) (n))) 

N � n n -C N � n El • • •  , En , El • • •  , En 
n=l n=l 

::; C (ON) 
::; C D, 

where c := maxa,b'EE la - bl. The reconstructions Ql, Q2, ...  
at  the receiver can be made arbitrarily accurate on average by 
applying Definition 1 with sufficiently small D. 

'It is often assumed that Et, E2, . . .  are log normally distributed for long 
time scales (e.g., day-to-day price changes), by way of the central limit 
theorem. However, high frequency prices are not log-normally distributed [7]. 

2For example, An changes slowly relative to the tick frequency. 
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I I. MAIN RESULTS: ACHIEVABLE BOUNDS 

A. General DMCs 

We now given three achievability results for Definition 1. 
Each result presents an achievable bound for (D N) for any 
given N, distortion coefficient A, source cardinality M and 
delay � (and hence rate (RN)). The following definitions are 
needed. 

Given a pair of discrete random variables (A, B) on A x 
B with joint pmf PA,E and marginal pmfs PA and PE, the 
information density tA;E : A x B ---7 [-00,00] is 

tA-B(a'b):= log 
PA,B(a,b) 

" PA(a) PB(b)' 
Fix M and a pmf Px on X, and consider the tuple 

(X, Y, X) rv Px(x) TYlx(ylx) Px(x) 
on X x y x X. For each k = 1,2, ...  define 

T(k):= [[ min{l,Mk-l(M -1) (k(Xk, 1r'k, Xk)}], 

where (JZk, 'lr' k, Yzk) is a string of k i.i.d. (X, Y, X), 

(2) 

(k(Xk, 1r'k, Xk):= IF' [Z)(k;Yk (Xk; 1r'k) :::: Z)(k;yk(Xk; 1r'k)I(Xk, 1r'k)] 
and the expectation in (2) is taken with respect to (JZk, 'lr'k). 

Theorem 1: For any N, A, M, � and pmf Px on X, there 
exists an (M, �)-code with 

(ON)::; �; (�An-kmin{1'�T(n+ll-i)}) . (3) 

Proof See Appendix B. • 
The proof of Theorem 1 is a streaming analogue of the 

random coding union bound for block codes [9, Thm. 17]. The 
bound is computable for reasonably large N on many chan­
nels, and we numerically evaluate it for a binary symmetric 
channel in Section I I- B. Theorem 1 is not easy to visualise, so 
to help understand the various tradeoffs we now present two 
bounds based on the DMC's random-coding exponent. 

Denote the channel capacity of the DMC TYlx by 

c:= max [ZX;y(X; Y), PxEPx 
where Px denotes the set of all pmfs on X. The random­
coding exponent of a DMC is defined by [10, p. 139] 

Er(R) := max max [Eo(p, Px) - pR], 0::; R::; C, 
pE]O,I] Px EPx 

where 1+ 

Eo(p,Px):= -log (L (L PX(X) (Ty]x(Ylx») l�P ) P) . 
yEY xEX 

The next two corollaries are proved in Appendix C. 
Corollary 1.1: For any N, �, M = lexp(R*)J with R* < 

C, and A < exp(Er(R*)), there exists an (M, �)-code with 

(0 ) < - -Ll.Er(R*) ( 
(eR* 1) eEr(R*)-log(>-) 

) N - eR* (eEr(R*) _ 1) (eEr(R*)-log(>-) _ 1) e . 

Corollary 1.1 demonstrates that bounded average distortion 
is achievable for N -+ 00 when A < exp( Er(R*)). However, 
the bound in Corollary 1.1 is rather weak; for example, it 
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approaches a vertical asymptote as A ---+ exp( Er(R*)) from 
below. Indeed, when A > exp( Er(R*)) the bounds leading to 
Corollary 1.1 (viz. (16)) explode in N for every constant delay 
�. It is also worth noting that the condition A < exp( Er( R*)) 
effectively constrains (RN) as a function of A, since Er(R*) 
is monotonically decreasing in R* [lO]. 

The above explosion for A> exp(Er(R*)) can be prevented 
by allowing the delay to be linear3 in n; that is, �(n) := sn+ 
0, for some integers s, 0 > O. Notice that linear delay does not 
imply vanishing average rate, since (RN) ----+logM/(l + s) 
as N ---+ 00. It can be shown that Theorem 1 holds with � 
replaced by sn + O. The next corollary shows that bounded 
average distortion is achievable with arbitrarily large N. 

Corollary 1.2: For any N, M = Lexp(R*)J with R* < C, 
A> exp(Er(R*)), and �(n) = sn + 0 with 0 > 0 and 

= pog A - Er (R*) l 
s I Er(R*) 

there exists an (M, �(n))-code with 

( 
(eR* -1) eE,(R*)-logA ) -"E,(R*) (DN) � 

eR* (eE,(R*) -1) (1 _ eE,(R*)-logA ) e . 

B. Example: Binary Symmetric Channel 

Let the DMC TYlx consists of K, independent parallel binary 
sYlmnetric channels, each with crossover probability 0 < s < 
1/2. We call K, the bandwidth expansion factor. Here X = 
Y = {O, I}" and TYlx(ylx) = s

t (1 - s ) "-t, where t � K, is 
the Hamming distance between x and y. 

Theorem 2: Fix N, A, M, � and choose Px uniform on X. 
There exists an (M, �)-code such that the average distortion 
bound (3) holds for T(k) given by 

",k r(k) = L (�k)ct(1- c)",k-t min { 1, 
t=O 

t 
Mk-l(M _ 1)T"'k L (",k) } . 

8=0 

The proof of Theorem 2 is omitted for brevity. Figure 1 depicts 
the bound (3) as per Theorem 2. Two values of the distortion 
coefficient, A = 2°·49 and 2°.52, are plotted for three delays 
� = 0, 5 and 10. We fix s = 0.11, K, = 5 and M = 2, and 
we notice that 0. 49 In 2 < Er(ln 2). As Corollary 1.1 suggests, 
the bounds converge for A = 2°·49 and explode for A = 2°.52. 

Remark 1: When the DMC TYlx consists of K, indepen­
dent channels, the bounds in Corollaries 1.1 and 1.2 can be 
tightened via channel splitting and combining [11]. 

ApPENDIX A 

ANYTIME CAPACITY AND DEFINITION 1 

Let us first restate some definitions in [5] using the nomen­
clature of this paper. Fix a > O. A rate R is said to be a­
anytime reliable [5] for a DMC if there exists a constant b > 0 
and an (M,0)-code4 such that R � log M and 

IP[Q)�') i= Qhl ::; b Ta(n-k+l) V k � 1 and n � k. (4) 

3In this case, Definition 1 will apply to (M, fl(n))-codes, where the stage­
n decoder waits for (n+fl(n)) channel symbols, and the rate (RN) is defined 
with fl(n) in place of fl. 

4The setup of [5] corresponds to zero-delay codes in this paper. 
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Fig. 1. Achievable bounds on the average distortion (D N) for the parallel 
BSC with M = 2, K, = 5 and c: = 0.11. The bounds are plotted as a function 
of the number of source symbols N (or, equivalently, the number of binary 
channel symbols K,N). 

The anytime exponent, for a fixed rate R, is 

EAny(R) := sup {a ;::: 0 : R is a-anytime reliable }. 
The anytime capacity, for a fixed exponent a, is 

CAny(a) := sup {R;::: 0 : EAny(R) ;::: a }. 
To relate the anytime setup with Definition 1, it will 

be useful to tweak Sahai's definition of anytime reliability; 
specifically, let us require that the error probabilities in (4) 
decay with an exponent strictly greater than a. 

Definition 2: Fix a ;::: O. We say that a rate R is a-anytime 
achievable if there exists a constant b > 0, an exponent a > a, 
and an (M,O)-code such that (4) holds and R � log M. 

It can be shown that the anytime exponent and capacity 
both remain unchanged under Definition 2. The next lemma 
provides a bridge to the setup of Definition 1 in this paper. 

Lemma 3: Fix a ;::: O. A rate R is a-anytime achievable if 
and only if there exists a constant b > 0, an exponent a > a 
and an (M,O)-code such that R � log M and 

00 

L 2a(n-k+l) IP[Q)�'} =J Q.hl � b, Vk;::: 1. (5) 
n=k 

Proof The forward "if" assertions follows directly from 
the non-negativity of each term in (5). Consider the reverse 
"only if" assertion. Fix R, and suppose we have an (M,O)­

code such that R � log M and (4) holds for some a > a and 
b > O. Pick a' E (a, a). For each and every k we have 

00 00 

L 2a'(n-k+l) IP[Q)�'} =J Q.hl � b L T(a-a')(n-k+l), (6) 
n=k n=k 

where the RHS of (6) is finite and independent of k. • 
Lemma 3 asserts that the anytime achievability requirement 

of Definition 2 is equivalent to the boundedness of each and 
every positive series (indexed by k = 1,2, ...  ) in (5); or, 
equivalently, there exists b' > 0 such that for all N 

N 
L 2a(n-k) IP[Q)�'} =J IUkl � b', V k E {I, 2, ... , N}. (7) 
n=k 
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On the other hand, (D N) with A = 2a can be written as an 
average version of (7); i.e., 

(DN) = � � (� 2a(n-k) lP[vt) =I Qhl) . 
The next proposition attempts to quantify the difference be­
tween Definitions 1 and 2 by showing that if (D N) is bounded 
for all N, then (7) holds for any fraction of the indices 
k E {1, 2, ... ,N}. The proof is similar to [13, Thm. 18] and 
is omitted. 

Proposition 4: Fix I > 0, 0 < 7] < 1 and b' = 1/(1 - 7]). 
If there exists an (M, �)-code such that (DN) < I V N, 
then there exists a sequence of sets Sl, S2,' .. with SN <;;; {1, 
2, ... , N} and ISNI = l7]N J +1 such that (7) holds V k E SN· 

Finally, we note that (to the best of our knowledge) no 
achievability results for deterministic codes have been found 
for the anytime setup. 

ApPENDIX B 

PROOF OF THEOREM 1 

A. M -ary Tree Codes 

An (1\1, �)-code can be efficiently represented by an infinite 
M-ary rooted tree. Label the M edges (to child nodes) of 
each node with a unique u E U, and label each node by the 
unique edge path from the root to that node. For example, 
QJn = (U1, U2, ... ,un) denotes the depth-n node identified 
by the edge path (U1' U2," " un). An (M, �)-code is then an 
assignment of a channel code symbol to each node in the tree. 
Let c( QJn) E X denote the code symbol assigned to node QJn. 
For example, if U1, U2 and U3 are the first three symbols output 
by the source, then the first three code symbols sent over the 
channel are c(Ud,C(U1,U2) and C(U1,U2,U3) . Finally, denote 
the string of n code symbols on the path to node QJn by 

where QJi represents the first i symbols of QJn. 

B. A Maximum-Likelihood (ML) Decoder 

A key problem in the proof will be to estimate the first k 
source symbols Q)k from the first n channel output symbols 'j( n, 
where k � n. We use an M L  decoder that works as follows. 

Fix an (M, �)-code and a pmf Px on X. Upon observing 
Yn = (Yl, Y2,· .. , Yn) from the channel, the decoder computes 
the information density of every code string; i.e., it computes 

for all QJn E un. The decoder uniformly at random selects a 
string Qin from the set 

and it declares the first k symbols of Qin to be its reconstruc­
tion, QJk : = Qik' 
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C. Random Coding 

For a given (M, �)-code: Suppose that the first nc, := n+ 
� symbols output by the source are Q)nil = QJnil' Let �k( QJnil) 
denote the conditional probability that the M L  decoder incor­
rectly reconstructs the first k symbols of Q)nil' 

Consider a random experiment in which all symbols of the 
(M, �)-code are selected i.i.d. rv Px. The code is random 
and �k(QJnil) is a real-valued random variable. We now upper 
bound the average conditional error probability for the all­
zero source string, [ �k (Vnil) = [ �k (0,0, ...  ,0), where the 
expectation is taken over the code and channel. To do so, it is 
useful to define the fan of QJk E Uk, 

fan (QJk) := {Qinil E Unil : QJk = Qid· 
If «::(Vnil) is transmitted and Ynil observed, then a necessary 

condition for the M L  decoder to make an error is that there 
exists a 'bad' source string QJnil 1- fan (Vk) such that 

ZXnil;1r'nil (<<::(QJnil);Ynil) � ZXnil;1r'nil (<<::(Qinil);Ynil) 
holds for every string Qinil E fan (Vk). Taking in account 
randomness in the channel and code, we have 

[�k(1)nil)�IP [ U (_ n {Z(C(QJnil);Vnil) 
Unil �fan(Ok) Unil Efan(Ok) 

2: Z(C(Uinil);Vnil)}) ]  
�IP [ U {Z(C(QJnil);Vnil)2:Z(C(1>nil);Vnil)} ] (8) 

Unil �fan(Ok) 

where (b) considers only the all-zero source string in the 
intersection. In both (a) and (b), we use uppercase C( QJnil) to 
emphasise that the code is random, and that we have omitted 
the information density subscripts 't-nil, 'j( nil . 

If we define the set difference 

K ._ { Unil \fan (Vd , 
,.- fan (Vi) \ fan (Vi+l) , 

for i = 0 
for i � 1, 

then (8) can be written as 

[�(1)nil) ::; IP [Q C
n
�

lCi 

{z( C( QJnil); V nil) 

2: Z(C(1>nil); V nil) }) ] . 

Now apply the union bound 

[�(1)nil) ::; min { 1, � IP [
un
�

lCi 

{Z(C(QJnil); V nil) 

2: Z(C(1>nil); V nil) } ] }. (9) 

We now notice that for every source string QJnil E Ki, the 
first i symbols of the corresponding code string C( QJnil) are 
identical to the first i symbols of C( Vnil). That is, 

C1 ,i(QJnil) = C1 ,i(Vnil), V QJnil E Ki, 
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where we denote 

Cj,j,(QJnb.):= (C(QJj),C(QJj+l),'" ,C(QJj'))' 
Thus, the error event due to Ki in (9) depends only on the 
last (nil. - i) symbols of C(QJnb.) and C([)nb.)' 

[�(�nb.) ::; min { 1, � IF' [un�Ki {Z(CHl,nb. (IUnb.); Ir'Hl,nb.) 
� Z(CH1,nb. (�nb.); Ir'Hl,nb.) }] }. (10) 

We now invoke a technique used by Polyanskiy in [9, 
Thm. 17]: Rewrite the probability in ( 10) as an expectation 
of a conditional probability, where the expectation is taken 
with respect to (Ci+l,nb. ([)nb.)' 'tfi+l,nb.)' Doing so gives the 
bound in ( 1 1), and ( 12) follows by another application of the 
union bound. The probability term in ( 12) is the same for all 
QJnb. E Ki and IKil = (M - l)Mnb.-i-l, which leads to 

k-l 
[ �([)nb.) :s: min {I, LT(nil. - i) } , ( 13) 

i=O 
where TO is defined in (2). 

The bound ( 13) applies to the all-zero string [)nb.' By 
sYlmnetry, the same bound holds for all QJnb. E Unb.. Moreover 
the source is uniform, so the average error probability satisfies 

k-l 
IP[O�) i- Qhl :s: min {I, LT(nil. - i) } . ( 14) 

i=O 
D. Completing the proof 

The average distortion (averaged over the code, source and 
channel) satisfies 

(ON) = � � (�An-k IF'[O�,) # Qhl) 
2 � � (�An-k min { 1, � T(nLl. - i)}), (15) 

where (*) follows from ( 14). To complete the proof, we note 
that there must exist at least one deterministic (M, � )-code 
in the ensemble for which the bound ( 15) holds. • 

ApPENDIX C 
PROOF OF COROLLARIES 1. 1 AND 1.2 

The next lemma can be distilled from Polyanskiy [9, p. 25] 
and Gallager [ 12, p. 5], we omit the details. 

Lemma 5: Fix p E [0,1], R* < C, M = lexp(R*)J, and a 
pmf Px on X. We have 

T(k) :s: (e:R--: 1) e-k(Eo(p,Px)-pR*), 'V k � 1. 

A. Proof Outline for Corollary 1.1 
Fix N, Px, �, P E [0,1]' A = ea, M = leR* J. We have 

(0 ) < eR* - 1 � � (� c>(n-k) N - eR* N � �e 
n=l k=l 
(�e-(n+Ll.-i)(EO(P'PX)-PR*)) ), (16) 

from Theorem 1 and Lelmna 5. Selecting Px and p in ( 16) 
to maximise Eo(p, Px) - pR* gives 

(ON)::; e:R-:-l � f; (tec>(n-k)(�e-(n+Ll.-i)Er(R*))) . 
n-l k=l t-O 

The corollary follows from the above geometric sums. • 

B. Proof Outline for Corollary 1.2 
Substitute �(n) = sn+6 in ( 16). Pick p and Px to maximise 

Eo(p, Px) - pR* and evaluate the geometric sums. • 
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