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With the continuous global energy shortage and the climate change awareness, recovering 

the wasted energy in the automobiles is an inevitable task. However, the limitation in the 

size of automobile’s engine requires that any additional part should be as small as possible 

and produce as significantly high power as possible, i.e. as high power density as possible. 

The work in this thesis introduces a design procedures to achieve a complete numerical 

simulation and performance optimization for a radial inflow turbine which is used in the 

energy recovery of the automobiles. The geometry is first created for the design point 

making use of dimensionless parameters, such as specific speed, specific diameter, 

loading coefficient, flow coefficient, Mach number and other empirical correlations. 

Out of many working fluids, we chose the organic fluid Ethanol C2H5OH to be our 

working fluid as it has remarkable properties that fit the requirements of the application, 

and it is also appropriate to be used in the turbine operating conditions, such as, it has a 

low boiling temperature and low critical point.  

The numerical simulation has been performed to the radial inflow turbine using a finite 

volume FV model based, which makes use of highly sophisticated turbulence models 

such as SST K-ω and k-ϵ. An appropriate turbulence modelling is a very sensitive issue to 

the turbomachinery design, especially when we have flow transitions and discontinuities 

such as shock waves.  

The effect of the various boundary conditions especially the inlet thermodynamic 

properties and the rotational speed are shown. The impact of the variation of these 

boundary conditions on the produced power and the total to static efficiency are also 

intensively investigated. The geometrical effect also has been thoroughly analyzed, such 

as, the effect of the vaneless space between the nozzle trailing edge and the rotor leading 

edge on the total turbine performance is assessed. The effect of the number of rotor blades 

and the nozzle vanes on the performance has been calculated as well 

The numerical optimization for the design using Multi-Objective Genetic Algorithm 

MOGA is performed. The response surface of the input and output parameters has been 

also created using the Artificial Neural Network ANN and also other embedded 

techniques such Kriging and Non-Parametric Regression. The design points have been 

calculated using the design of experiments DOE. The sensitivity of each output parameter 

to the input parameters has been also shown, which makes us have a clear vision about 

Abstract 
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how the parameters react to each other. From the Global Optimization, design points 

candidates are produced, which should achieve the optimum performance for the design. 

The simulation of the candidate points of the optimization process as operating conditions 

of the turbine have been performed and the results have shown an additional improvement 

of the turbine performance. The amount of the recovered energy in the case study we 

took, is significant enough to apply this method in the automobile industry field as it can 

cutoff a reasonable amount of fuel and hence, a good impact on both the environment and 

the specific fuel consumption SFC i.e. economic impact. 
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1 Introduction 

The limited amount of the fossil fuel, which is the main energy source around the globe, 

means that the reserve of this fuel is continuously reduced with the consumption. This 

reduction is pushing the prices higher and higher, which makes economic problems to the 

non-oil-producer countries. Burning the fossil fuel is always associated with entropy rise 

and serious environmental pollution due to the combustion products, mainly, the carbon 

monoxide CO, hydrocarbons HC, particulate matters PM and the nitrogen oxides NOx 

compounds. These two reasons made harnessing as high energy as possible from the 

supplied fuel to the engine is an inevitable task for the researchers and the engines 

designers. 

The internal combustion engines ICEs have the bigger portion of the fossil fuel 

consumption among the other types of engines. Out of the supplied heat to the engine in 

form of fuel, there’s approximately 30 – 40 % converted to a useful mechanical work, 

and the rest is wasted to the environment, mainly through the exhaust gases and the 

cooling water. However, engines are operating over a wide range of conditions – idling, 

accelerating, cruising, and stop-and-go – making the engine operates away from its ideal 

efficiency point. Under normal driving conditions the average efficiency of IC engines 

drops to approximately 20%.  This is significantly lower than typical electricity-

generating power plants that are between 35-55% efficient, but IC engines in cars do 

operate under a more restrictive set of constraints, primarily the large range of operating 

conditions, small sizes, and low weight requirements.  

Therefore, it is imperative that serious and concrete effort should be launched for 

conserving this energy through waste heat recovery techniques. Such a waste heat 

recovery would ultimately reduce the overall energy requirement and also the impact on 

global warming. Over the past century, the Internal Combustion Engines have been a 

primary power source for automobiles. 

Inserting turbochargers, enhancing the air-fuel mixing and implementing variable valve 

timing are among the methods that the manufacturers thought about and eventually have 

done in order to increase the thermal energy of the ICE engine. However, still about two 

thirds the available energy is being lost and needs to be recovered. Moreover, increasingly 

stringent emissions regulations are causing engine manufacturers to limit combustion 

temperatures and pressures lowering potential efficiency gains [51]. 

As the most widely used source of primary power for machinery critical to the 

transportation, construction and agricultural sectors, engine has consumed more than 60% 

of fossil oil. On the other hand, legislation of exhaust emission levels has focused on CO, 

HC, NOx, and PM. Energy conservation on engines is one of the best ways to deal with 

these problems since it can improve the energy utilization efficiency of the engine and 



Introduction 2 

 

 

 

reduces emissions [42] Waste heat recovery systems has a significant impact on both 

reducing the fuel consumption and the environmental pollution and also increase the 

thermal efficiency of the engine. 

In recent years the scientific and public awareness on environmental and energy issues 

has brought in major interests to the research of advanced technologies particularly in 

highly efficient internal combustion engines. The number of vehicles (passenger and 

commercial vehicles) produced from 2005 to 2010 shows an overall increasing trend from 

year to year despite major global economic down turn in the 2008 – 2010 periods (Fig. 

1). Note that China’s energy consumption in transportation sector is the lowest (13.5%) 

[45]. Although the country produced the highest number of vehicles in 2009 to 2010 as 

compared to the other countries (Table 1). Viewing from the socio-economic perspective, 

as the level of energy consumption is directly proportional to the economic development 

and total number of population in a country. 

 

Figure 1.1 Production of vehicles from 2005 to 2010 for selected countries, [87]. 
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Table 1.1: Terminal energy consumption structure by region and sector, [87]. 

 

 

1.1 The Resources of the Waste Heat Energy in 

Automobiles  

As we try to improve IC engines, it’s important to understand where the inefficiencies 

arise.  Figure 1.2 shows the breakdown of where the incoming energy from fuel that is 

available for work output is going. A typical IC engine will lose 20% of its available work 

to the combustion process, 27% is transferred out as heat, and 16% is transferred out with 

the exhaust. This leaves only 35% of the energy available as work to move the vehicle.  

Maximizing the work output therefore can be accomplished by reducing the heat transfer, 

extracting the available energy from the exhaust, and reducing the inefficiency associated 

with combustion. Reducing losses due to heat transfer and exhaust are more easily tackled 

with current technologies [36] and [28]. The figure 1.2 also shows the efficiency with 

advanced low temperature combustion modes. Presented by Dave Foster from the 

University of Wisconsin. The leftmost bar is for conventional diesel combustion. The bars 

to the right depict observations for various forms of low temperature combustion, 

including partially premixed compression ignition (PPCI) and dual fuel PPCI. All 

efficiencies depicted are based on first law analysis. Loss terms indicated at the top of the 

bar graphs represent incomplete combustion of fuel. 
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Figure 1.2: Recent achievements in peak indicated thermal efficiency in diesel engines, 

[28]. 

 Many companies and research centers have come up with ideas to harness the heat in the 

exhaust gases and the cooling water, one of them was the BMW group where a model to 

the heat recovery has been introduced. The model is obviousely a closed cycle with a 

particular working fluid, and the cycle consists mainly of heat exchanger to exchange the 

heat from the high temperature flow stream to the working fluid, pump, and the main part 

which is in this case an expander, the cycle is shown in figure 1.3 below. 
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Figure 1.3 The heat recovery cycle, [98]. 

In our work, it will be focused on the part which is extracting the energy from the working 

fluid and producing the recovered mechanical work, which is by far, the most crucial and 

important part. For such application, which requires that the added parts to the body of 

the automobile have to be as small in size as possible and weigh as light as possible. 

Taking that into considerations, we choose the radial inflow turbine (RIT) to be the part 

which extracts and recovers the working fluid energy. 

Choosing this kind of turbomachines was due to the exceling features of the radial turbine 

over the other types for this particular application. 

The more compact turbine for power generation the more power density required to cope 

with the miniature turbomachine, to achieve this target the assigned machine has to run 

with a high rotational speed (sometimes 100,000-1M rpm [98]) and even more, so that, a 

new restriction will arise as a result of this high speed and high balancing technique must 

be utilized and that means the aerodynamic performance must be investigated and 

optimized together with the mechanical stresses analysis. A compromise must be 
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achieved, holding the efficiency of the radial turbine as high as possible have to be 

approached and care must be given to the mechanical properties in order not to let the 

mechanical stresses on the blade exceed a specified value of the material yield stress, 

keeping in mind that the centrifugal stresses that arise and exert on the turbine rotor blades 

is increasing with the increasing of the rotational speed and the material density, in 

addition to that the effect of the flow itself  on the pressure side of the rotor blades. 

BMW engineers used a turbosteamer to reclaim a significant amount of the wasted heated 

and they got a reduction in the fuel consumption by 15% and they expected to see this car 

on the road within the next decade [98]. 

A study by researchers at Loughborough University and the University of Sussex, both 

in the UK, has concluded that using waste heat from light-duty vehicle engines in a steam 

power cycle could deliver fuel economy advantages of between 6.3% and 31.7%, 

depending upon drive cycle, and that high efficiencies can be achieved at practical 

operating pressures. The basic concept of the “steam hybrid” system is that energy is 

recovered from the exhaust in the form of a steam/water mixture. Shaft work is produced 

as steam is expanded [43]. 

The greatest advantage of the radial turbine over the axial turbine is that the work 

produced by a single stage is equivalent to that of two or more stages in an axial turbine, 

and this property because of the radial inflow turbine usually has a higher tip speed than 

an axial turbine, and since the power output is a function of the square of the tip speed, 

for a given flow rate, the work is greater than in a single stage axial flow turbine [107]. 

Addition to that the cost of the radial inflow turbine is much lower than that of the axial 

turbine, another special advantage is that the efficiency of the radial turbine is more than 

that of the axial one and particularly when the Reynolds numbers are between Re=105 - 

106 [58]. Another advantage is that the radial turbine is much easier to manufacture and 

fabricate than the axial turbine. 

Mainly the radial inflow turbine consists of the following parts: 

1. Volute. 

2. Nozzle blades. 

3. Rotor blades, hub and sometimes with shroud. 

4. Diffuser. 

Each part has its own design requirements and limitations, the volute geometry must be 

satisfied with the mass, momentum and the energy equations, whether the nozzle is 

normally designed as a simple passage with a constant width and its function is to direct 

the flow with a specific angle and whirl component and the flow is accelerated before 

being delivered to the impeller, the rotor blade is more sophisticated part and care must 

be taken to many parameters in the design process and the number of rotor blades must 

be optimized, normally 9 to 19 blades [107]. 
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The diffuser is to convert part of the kinetic energy from the leaving flow to a static 

pressure and this leads to raise the process efficiency and here care must be given because 

of the low-energy boundary layer may not tolerate the great adverse pressure gradient. 

The fatigue in the radial inflow turbine exducer (the exit section of the rotor) is a serious 

problem, so the exducer should be designed so that the natural frequency is higher than 

the blade passing frequency. The figure (1.3) shows a schematic view of the main parts 

of the radial inflow turbine, where the inflow comes normally from a collector or a volute 

and the outlet of the rotor may get into an exhaust diffuser. 

 

 

 

 

 

 

 

 

 

Figure 1.4   A schematic of radial inflow components. 

The losses of the radial turbine are internal and external losses. The internal losses are 

basically from the heat loss, incidence loss, diffusion or loading loss, clearance loss and 

friction loss and these losses are normally minimal at the design point and increase in the 

off-design points (the design point normally set by a specified design parameters such as: 

specific speed, specific diameter and flow coefficient). However the external losses are 

from the disc friction, the bearing, the gear and the seal [74]. 

 

1.2  Design approach 

The approach we suggested to deal with designing an appropriate turbine for our 

application is to use a radial inflow turbine, as we discussed in the previous section, the 

cycle through which the waste heat energy will be recovered is a Rankin cycle and the 

working fluid we used is an organic fluid.  

That means we are using an Organic Rankin cycle ORC, and choosing an organic fluid 

to be our working fluid has many reasons, the first is that the low-grade temperature heat 
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from the exhaust cannot be efficiently converted to electrical power by using conventional 

methods, and also to make sure that the flow passes in the rotor blade passages will not 

slip in the two-phases region, i.e. the working fluid has to be super dry to avoid the 

corrosion problems and also the liquid drops in the flow make a turbulence and hence 

much losses. 

Calculating the thermodynamic properties of a real gas is needed and to be coupled with 

CFD solver to get accurate viscous simulation results. CFD solvers capable of handling 

real gas have been developed since the end of the 90s [25] and [47]. BONCINELLI [19] 

was one of the pioneer on performing a three dimensional viscous simulation for a 

transonic centrifugal impeller using R134a using fitting model from gas database to get 

the thermodynamic properties. An optimization of the expander blades using a real gas 

has been made by PASQUALE [71], and CHO [24].  Peng-Robinson-Stryjek-Vera and 

Span-Wagner are good models for predicting the gas properties [90] 

In this work we used the Redlich-Kwong empirical equations to deal with the real gas 

thermodynamic properties, which is accurate in giving adequate results [78].  

The optimization procedures have been thoroughly explained. We used in the 

optimization process the Design of Experiments, DOS, in the Design Exploration to get 

the design points. These design points have been generated subjected to our upper and 

lower bounds. 

The sensitivity of the output parameters to the input parameters is a graphically shown. 

Then the Response Surface method has been used and by employing the ANN Artificial 

Neural Network technique, we get a global response surface. The Multi-Objective 

Genetic Algorithm MOGA method is then used to explore the global optimization design 

points for the system of multi input multi output parameters.  

After finding the design candidate points, we run the simulation for each candidate point 

and the main performance parameters are to be further investigated in this stage of design. 

 

1.3 Thesis Structure 

The motivation of this work is a part of the global interest in reducing the fossil fuel 

consumption for both economic and environmental sakes. 

The wasted heat in the exhaust gases is a well-known problem by all the ICEs designers 

and researchers, and hence, the need of recovering this energy relates to the classical 

problems in ICEs manufacturing laboratory and their academic research counterparts. 

Producing an equipment i.e. turbomachine which is capable of efficiently harnessing this 

energy, was always the most important subject in the research, as it has to be as small as 
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possible, and thus, it should run as fast as possible to compensate the miniature effect and 

produce a valuable amount of power. 

In this work we introduced a radial inflow turbine, to be the heart of a cycle that recovers 

the wasted energy from both the exhaust manifold and the cooling system. The radial 

turbine has very interesting properties that fits the requirements of our application, as it 

produces much more specific power than it axial and other turbomachines types. Also it 

is robust, easy to manufacture and has a lower cost. 

In chapter 2 we discussed the fundamentals of fluid mechanics and the main governing 

equations need to be implemented and eventually solved to understand the flow through 

the different component of the turbine. The numerical simulation methods have been also 

described. This chapter is also discussing the turbulence modelling for CFD and the 

important turbulence methods used have been also introduced. The effect of the 

compressibility and Favre averaging have taken a great deal. 

The FVM has been discussed in chapter 3. The vast majority of the industrial CFD 

software depend on the finite volume method. The fundamental and the background of 

this method has been discussed as well as the numerical development. This chapter also 

covers the discrete techniques for the physical domain, the fluid motion equation, the 

application of boundary conditions, the solvers and their numerical implementation.  

Chapter 4 describes the fundamental of turbomachines design. The main design 

parameters and the dimensionless coefficients have been explained. The radial turbine 

aerodynamic considerations, the turbine sizing and the geometry constraints have been 

also presented.  The equation of state of real gases and the analysis method used are also 

explained in details. 

In chapter 5, the discussion was focusing on the numerical simulation of the flow in the 

radial turbine and the results of this simulation. A validation of the results have been 

introduced. The convergence criteria, a mesh independent analysis have also been 

accomplished. The simulation settings and the effect of the turbulence models used are 

also presented. 

Chapter 6 consists of two parts. The first part is the optimization background of the 

optimization methods and techniques used, such as the genetic algorithm GA, the Design 

of Exploration DoE, response surface and the six sigma analysis. The second part contains 

the results of the optimization procedures. After having optimum candidate design points, 

we applied them to the project and ran the simulation again to get the optimum 

performance at the new design point. 

In chapter 7 we discussed the results in chapter 6 and chapter 7, and presented the 

conclusions. For the future works, we wrote some recommendations to be a guidelines in 

a further academic researches. 
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2 Theory of Fluid Dynamics 

 

The governing equation of fluid flow represents mathematical statements of the 

conservation low of physics: 

 The mass of fluid is conserved. 

 The rate of change of momentum is equal to the algebraic sum of the forces on a 

fluid particle (Newton’s second law). 

 The rate of change of energy is equal to the sum of the rate of heat addition to 

and the rate of work done on a fluid particle (first law of thermodynamics). 

Analyzing these governing equations is the corner stone of studying the fluid flow in the 

turbomachines. For the compressible flow, the fluid flow velocity components ui, the 

pressure value p, the gas density ρ and the thermodynamic variables e and h at every 

spatial and time coordinates are fully characterizing the fluid flow motion. For the 

incompressible fluids, there’s no change in density and the thermodynamic properties  

throughout the fluid motion. 

All the CFD-Programs together try to solve these conservation equations to compute and 

resolve the fluid field and make an accurate simulation. The simulation technology in 

many industrial application is getting rapidly improved, and this improvement is partly 

attributed to the new CFD techniques and models, as mentioned in JIYUAN [54]. 

These equations can be written in two forms, integral form and differential form, the 

integral form is a finite control volume and can be solved using the finite volume method, 

it is physically easier to be understood and is more accurate in dealing with the 

discontinuity and the shock waves cases but it is more complex as integrals will show up. 

On the other hand, the differential form is an infinitesimal control volume and could be 

dealt with by applying the finite difference method, it is mathematically easier to be 

understood but physically more complex as the volumes of the elements go to zero. 

In general, in the modern CFD-Programs, the integral form, especially the Finite Volume 

Method FEM, is applied. It can capture the shock-wave better than the differential form, 

because it has discontinuities in the control volume, on the other hand the differential 

form i.e. the finite difference discretization requires that the flow properties in the control 

volume is differentiable, in other words, it has to be continuous, but that is not the case, 

for example, in the shock wave. 
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The conservation of mass or the continuity equation can be defined as follows: 

𝜕𝜌

𝜕𝑡
+ 
𝜕( 𝜌𝑢𝑖)

𝜕 𝑥𝑖
=  0 (2.1) 

 

The equation above is the unsteady, three-dimensional mass conservation at a point in a 

compressible fluid. 

The equation of conservation of momentum or the Navier-Stokes equations, is written as 

follows: 

𝜕( 𝜌𝑢𝑖)

𝜕𝑡
+ 
𝜕(𝑢𝑗 𝜌𝑢𝑖)

𝜕 𝑥𝑗
= − 

𝜕𝑝

𝜕 𝑥𝑖
+ 
𝜕𝑡𝑖𝑗
𝜕 𝑥𝑗

  (2.2) 

 

The field force fi has to be added if it is not absent and it would be at the right hand-side 

of the equation above. The first term represents the instantaneous moment variation, the 

second is the convective term, the third involves the pressure gradient, which can be 

thought as the source term in transport equations, and the last is the diffusion term. The 

viscous stress tensor, 𝑡𝑖𝑗, involves the deformation tensor, 𝑆𝑖𝑗  . The formula is valid for 

Newtonian fluids and assumes the Stokes hypothesis for the second viscosity, 𝜆 =  
2

3
𝜇, 

which is correct for monoatomic gases and almost always adopted in computational fluid 

dynamics (CFD)  and is defined as follows: 

 

𝑡𝑖𝑗 = 2 𝜇 𝑆𝑖𝑗 − 
2

3
 𝜇 
𝜕𝑢𝑘
𝜕𝑥𝑘

 𝛿𝑖𝑗 (2.3) 

 

And the deformation tensor is given as follows 

𝑆𝑖𝑗 = 
1

2
 (
𝜕𝑢𝑖
𝜕 𝑥𝑗

+ 
𝜕𝑢𝑗

𝜕 𝑥𝑖
 ) (2.4) 

 

The third governing equation is the energy conservation law and is constituted by the 

internal energy, the enthalpy, and the heat flux, which is by far a more complex 

expression. The viscous tensor also appears representing the way that part of the moment 

is dissipated by the fluid viscosity in internal energy, the energy equation can be 

represented as follows: 
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𝜕( 𝜌𝑒𝑡)

𝜕𝑡
+ 
𝜕(𝑢𝑗 𝜌ℎ𝑡)

𝜕 𝑥𝑗
= − 

𝜕𝑞𝑗
𝜕 𝑥𝑗

+ 
𝜕𝑢𝑖 𝑡𝑖𝑗
𝜕 𝑥𝑗

  (2.5) 

Where 𝑒𝑡 is the total internal energy and defined as follows: 

𝑒𝑡 = 𝑒 +
1

2
  𝑢𝑖𝑢𝑖 (2.6 ) 

The total enthalpy ℎ𝑡 is given also as follows: 

ℎ𝑡 = ℎ + 
1

2
  𝑢𝑖𝑢𝑖 (2.7) 

ℎ = 𝑒 + 𝑝/𝜌 (2.8) 

𝑞𝑗 is obtained from the Fourier heat flux law, and given as follows: 

𝑞𝑗 = −𝑘
𝜕𝑇

𝜕𝑥𝑗
 (2.9) 

It’s clear from the above governing equation that they are a coupled system of non-linear 

partial differential equations and are very difficult to be solved analytically and there’s 

no general closed-form solution to these equations, as in ANDERSON et al. [2]. 

It is obvious that we have six unknowns and five equation, three for the momentum, the 

continuity and the energy equation, and thus we need another equation to close the 

system, which is the equation of state which relates the pressure, p, the density, ρ and the 

temperature T. in aerodynamics, it is general to assume the gas is a perfect gas, which 

assumes the intermolecular forces are negligible, as in ANDERSON [3]. What is also 

worth telling, is that the equation of momentum is identified as the Navier-Stokes 

equation, which is historically correct. However, in the modern CFD literature, this 

terminology has been extended to include the entire system of flow equations for the 

solution of viscous flow i.e. the continuity, the energy and as well as the equation of 

momentum, and that means, the solution of Navier-Stokes equations is the numerical 

solution of the complete system of the governing equations, said ADERSON et al. [2]. 
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2.1 Turbulent Flow Modelling 

In engineering practice all the encountered flow is becoming unstable above a certain 

Reynolds number. At higher Reynolds numbers flows are observed to become turbulent. 

A chaotic and random state of motion develops in which the velocity and pressure change 

continuously with time within substantial regions of flow. Just in simple cases the 

continuity and the Navier-Stocks equations can be solved analytically [1]. More complex 

flows can be tackled numerically with CFD techniques such as the finite volume method 

without additional approximations. Many, if not most, flows of engineering significance 

are turbulent, so the turbulent flow regime is not just of theoretical interest [23]. The 

Reynolds number of a flow gives a measure of the relative importance of inertia forces 

(associated with convective effects) and viscous forces. It has been observed that at a 

value below a critical Reynold number Recrit, the flow is smooth and the adjacent layers 

of fluid slide past each other in an orderly fashion, and if the flow is steady the regime is 

laminar. At a value above Recrit the velocity and other properties vary in a very random 

way and chaotic and the flow eventually becomes turbulent.  

 

In the case of inviscide or laminar flows the solution of the governing equations does not 

raise any fundamental difficulties. The simulation of turbulent flows presents a significant 

problem. Despite the performance of modern supercomputers, a direct simulation of 

turbulence by the time-dependent Navier-Stokes equations, called Direct Numerical 

Simulation (DNS), is still possible only for rather simple flow cases at low Reynolds 

numbers (Re), as in BLAZEK [18].  When recalling that the number of grid points needed 

for sufficient spatial resolution scales as Re9/4 and the CPU-time as Re3, the restrictions 

of the DNS become quite obvious.  However, this does not mean that DNS is completely 

useless. It is an important tool for understanding the turbulent structures and the laminar-

turbulent transition. DNS also plays a vital role in the development and calibration of new 

or improved turbulence models. In engineering applications, the effects of turbulence can 

be taken into account only approximately, using models of various complexities. 

 

Large-Eddy Simulation (LES) approach is the first level of approximation reached for 

that. The development of LES is founded on the observation that the small scales of 

turbulent motion possess a more universal character than the large scales, which transport 

the turbulent energy. Thus, the idea is to resolve only the large eddies accurately and to 

approximate the effects of the small scales by relatively simple subgrid-scale model. The 

investigation of turbulent flows at much higher Reynolds numbers becomes feasible since 

LES requires significantly less grid points than DNS. But because LES is inherently three-

dimensional and unsteady, it remains computationally very demanding.  

LES is also very promising for more accurate computations of flows in combustion 

chambers or engines, heat transfer and of rotating flows [76]. 

The approximation represented by the so-called Reynolds-Averaged Navier-Stokes 

equations (RANS) which was presented by Reynolds in 1895, is based on the 

decomposition of the flow variables into mean and fluctuating parts followed by time or 

ensemble averaging REYNOLDS O. [80], SCHLICHTING [91] and YOUNG [112].  

In cases where the density is not constant, it is advisable to apply the density (mass) 

weighted or Favre decomposition to the velocity components, as in FAVRE [33] and [34]. 

Otherwise, the averaged governing equations would become considerably more 
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complicated due to additional correlations involving density fluctuations. It is common 

to assume that Morkovin’s hypothesis [68] is valid, which states that the turbulence 

structure of boundary layers and wakes is not notably influenced by density fluctuations 

for Mach numbers below 5. A typical point velocity measurement in a turbulent flow is 

shown in figure 2.1 below 

 

 

  Figure 2.1 Typical point velocity measurement in a turbulent flow, velocity versus 

time, [65]. 

Instead of the velocity in figure 2.1, it can be decomposed into two parts, a steady mean 

value U and the fluctuation component u (t), so that 

𝑢 (𝑡)  =  𝑈 +  𝑢(𝑡) (2.1) 

 

And this is called the Reynold decomposition. A turbulent flow can now be characterized 

in terms of the mean values of flow properties (U, V, W, P etc.) and some statistical 

properties of their fluctuations (u, v, w, p etc.). The turbulent flow is always have a 

three dimensional spatial character and has eddied with a wide range of length scale and 

the largest turbulent eddies interact with and extract energy from the mean flow by a 

process called vortex stretching. 

observing a single point measurement in a turbulent flow, say a velocity measurement 

made with a hot-wire anemometer or a laser Doppler anemometer or a local pressure 

measurements made with a small transducer, and as we saw in the figure 2.1 that the 
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appearance of turbulence manifested itself as random fluctuations of the measured 

velocity component about a mean value. All other flow variables, i.e. all other velocity 

components, the pressure, temperature, density etc., will also exhibit this additional time-

dependent behavior. 

The Reynolds decomposition defines flow property φ at this point as the sum of a steady 

mean component Φ and a time varying fluctuating component φ′(t) with zero mean value: 

hence, 

𝜑(𝑡) =  𝛷 + 𝜑′(𝑡) (2.2) 

 

The time average or the mean value Φ of the flow property φ can be defined as follows  

 𝛷 =   
1

𝛥𝑡
∫ 𝜑(𝑡) 𝑑𝑡

𝛥𝑡

0

 (2.3) 

 

if Δt is larger than the time scale associated with the slowest variations (due to the largest 

eddies) of property φ, the equation  2.3 will give a meaningful time average although in 

the theory Δt has to approach the infinity, MALALASEKERA [65]. This definition of the 

mean of a flow property is adequate for steady mean flows. In time-dependent flows the 

mean of a property at time t is taken to be the average of the instantaneous values of the 

property over a large number of repeated identical experiments. By definition, the time 

average of the fluctuation property φ′(t) is zero, 

𝜑′(𝑡)̅̅ ̅̅ ̅̅ ̅ =  
1

𝛥𝑡
∫ 𝜑(𝑡) 𝑑𝑡

𝛥𝑡

0

 (2.4) 

 

The variance and root mean square (r.m.s.) are the descriptors used to indicate the spread 

of the fluctuations φ  about the mean value of Φ, 

𝜑′(𝑡)2̅̅ ̅̅ ̅̅ ̅̅ =  
1

𝛥𝑡
∫ (𝜑(𝑡))2 𝑑𝑡

𝛥𝑡

0

 (2.5a) 

𝜑𝑟𝑚𝑠 = √𝜑′(𝑡)2̅̅ ̅̅ ̅̅ ̅̅ = [
1

𝛥𝑡
∫ (𝜑(𝑡))2 𝑑𝑡

𝛥𝑡

0

]

1
2⁄

 (2.5b) 
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The r.m.s. Values of the velocity components are generally most easily measured and 

express the average magnitude of velocity fluctuations since they are generally most 

easily measured and express the average magnitude of velocity fluctuations. 

One can express the total kinetic energy per unit mass k of the turbulence at a given 

location as follows: 

𝑘 =  
1

2
 [𝑢 2̅̅ ̅̅ +  𝑣 2̅̅ ̅̅ + 𝑤 2̅̅ ̅̅ ̅] (2.6) 

 

The turbulence intensity Ti is the average r.m.s. velocity divided by a reference mean flow 

velocity Uref and is linked to the turbulence kinetic energy k as follows 

𝑇𝑖 =
(
2
3  𝑘)

1
2⁄

𝑈𝑟𝑒𝑓
 (2.7) 

 

The variance is also called the second moment of the fluctuations. Important details of 

the structure of the fluctuations are contained in moments constructed from pairs of 

different variables, the second moment of them, as for the velocity components u,v is 

𝑢 𝑣 ̅̅ ̅̅ ̅̅ =  
1

𝛥𝑡
∫ 𝑢 𝑣 𝑑𝑡

𝛥𝑡

0

 (2.8) 

 

The values of the second moments of the velocity components 𝑢 𝑣, 𝑢 𝑤 and 𝑤 𝑣 would 

be equal to zero if velocity fluctuations in different directions were independent random 

fluctuations. Also, pressure–velocity moments 𝑝 𝑢 ,𝑝𝑣 etc., play a role in the diffusion 

of turbulent energy. 

The Reynolds-Averaged Equation for incompressible flow will be written and then the 

effect of the compressibility will be taken lately in this chapter. The equations for 

conservation mass and momentum are  

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (2.9) 

𝜌
𝜕𝑢𝑖
𝜕𝑡

+  𝜌 𝑢𝑗 
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖
+ 
𝜕𝑡𝑗𝑖

𝜕𝑥𝑗
 (2.10) 
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The 𝑡𝑗𝑖  is the viscous stress tensor  

𝑡𝑗𝑖 =  2 𝜇 𝑆𝑖𝑗 (2.11) 

 

The 𝑆𝑖𝑗  is the strain rate tensor and    

𝑆𝑖𝑗 = 
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 
𝜕𝑢𝑗

𝜕𝑥𝑖
 ) (2.12) 

 

Then the Reynolds averaged equations of motion in conservation form can be written as 

𝜕𝑈𝑖
𝜕𝑥𝑖

= 0  (2.13) 

𝜌
𝜕𝑢𝑖
𝜕𝑡

+  𝜌 𝑢𝑗 
𝜕 

𝜕𝑥𝑗
(𝑈𝑗𝑈𝑖 + 𝑢′𝑗𝑢′𝑖̅̅ ̅̅ ̅̅ ̅) =  −

𝜕𝑝

𝜕𝑥𝑖
+ 

𝜕 

𝜕𝑥𝑗
 (2 𝜇 𝑆𝑖𝑗)  (2.14) 

 

And the equation above can be written in more recognizable form as follows 

𝜌
𝜕𝑢𝑖
𝜕𝑡

+  𝜌 𝑢𝑗 
𝜕 

𝜕𝑥𝑗
(𝑈𝑗𝑈𝑖)  =  −

𝜕𝑝

𝜕𝑥𝑖
+ 

𝜕 

𝜕𝑥𝑗
 (2 𝜇 𝑆𝑖𝑗 − 𝜌𝑢′𝑗𝑢

′
𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅) (2.15) 

 

The equation above is usually referred to as the Reynolds-averaged Navier-Stocks 

equation RANS and the quantity -𝜌𝑢′𝑗𝑢′𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ is the Reynolds-stress tensor and we can denote 

it -𝜌𝜏𝑖𝑗 where 𝜏𝑖𝑗 is the specific Reynolds-stress tensor, which is a symmetric tensor. 

Hence, we have produced six unknown quantities as a result of Reynolds averaging. 

Unfortunately, we have gained no additional equations and for general three-dimensional 

flows, we have four unknown mean-flow properties, pressure and the three velocity 

components along with the six Reynolds-stress components, we thus have ten unknowns. 

Our equations are mass conservation and the three components of the RANS Equation 

for a grand total of four. This means our system is not yet closed MALALASEKERA 

[65]. 

To close the system we have to have the same number of equations and the unknowns.  

So, we will take the moment to the Navier-Stocks Equation. That is, we multiply the 

Navier-Stokes equation by a fluctuating property and time average the product. Using this 

procedure, we can derive a differential equation for the Reynolds-stress tensor, 

ANDERSON [3]. 
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After tedious procedures and rearranging the Reynolds-stress equation in a suitable 

compact form we can get the following equation viz.  

𝜕𝜏𝑖𝑗

𝜕𝑡
+ 𝑈𝑘

𝜕𝜏𝑖𝑗

𝜕𝑥𝑘
= −𝜏𝑖𝑘  

𝜕𝑈𝑗

𝜕𝑥𝑘
− 𝜏𝑗𝑘  

𝜕𝑈𝑖
𝜕𝑥𝑘

+ 𝜖𝑖𝑗 − 𝑖𝑗

+ 
𝜕

𝜕𝑥𝑘
 [

𝜕𝜏𝑖𝑗

𝜕𝑥𝑘
+ 𝐶𝑖𝑗𝑘] 

(2.16) 

 

Where 

𝑖𝑗 = 
𝑝

𝜌
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 
𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.17) 

 

𝜖𝑖𝑗 = 2 
𝜕𝑢𝑖
𝜕𝑥𝑘

 
𝜕𝑢𝑗

𝜕𝑥𝑘
 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

(2.18) 

 

𝜌𝐶𝑖𝑗𝑘 =  𝜌𝑢𝑖𝑢𝑗𝑢𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑝𝑢𝑖̅̅ ̅̅ ̅̅ 𝛿𝑗𝑘 + 𝑝𝑢𝑗̅̅ ̅̅ ̅̅ 𝛿𝑖𝑘  
(2.19) 

 

As the Navier-Stokes equation is a non-linear in nature, the unknowns will get higher if 

take a higher momentum and additional unknowns will be generated, and by no point the 

number of unknowns will be equal to the number of equations, as we don’t produce 

additional physical principles the situation will remains strictly mathematical. Essentially, 

Reynolds averaging equation has a brutal simplification that leads to lose much 

information from the Navier-Stokes equation. And the function of the turbulence 

modeling is to advice approximation for the unknown correlations in term of flow 

properties that are known to close the system. 

 For the smallest eddies in a turbulent flow Kolmogorov scales provide an estimation of 

the length, velocity and time scales. The integral length scale can be also regarded as a 

characteristic value of the energy-bearing eddies. Another important measure of the any 

turbulent flow is how intense the turbulent fluctuations are. It can be quantified in term 

of specific normal Reynolds- stress components 𝑢2̅̅ ̅̅ , 𝑣2̅̅ ̅̅  and 𝑤2̅̅ ̅̅̅. These three Reynold 

stresses can also be regarded as the kinetic energy per unit mass of the fluctuating velocity 

field in the three coordinate directions and these stresses are usually normalized relative 

to the freestream mean-flow velocity Ue, according to 
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𝑢̂ =  
√𝑢2̅̅ ̅̅

𝑈𝑒
, 𝑣 =

√𝑣2̅̅ ̅̅

𝑈𝑒
 , 𝑤̂ =

√𝑤2̅̅ ̅̅̅

𝑈𝑒
 (2.20) 

 

The quantities 𝑢̂, 𝑣 and  𝑤̂ are the relative intensities in x, y and z directions respectively. 

And if we sum the three Reynolds stresses and divisded it to two we get the turbulence 

kinetic energy k 

𝑘 =  
1

2
(𝑢2̅̅ ̅̅ +  𝑣2̅̅ ̅̅ + 𝑤2̅̅ ̅̅̅ ) =

1

2
𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅̅ ̅  (2.21) 

 

2.2 Eddy Viscosity models 

Joseph Boussinesq was the first practitioner of modeling the Reynolds stress, introducing 

the concept of eddy viscosity. In 1887 Boussinesq proposed relating the turbulence 

stresses to the mean flow to close the system of equations. Here the Boussinesq hypothesis 

is applied to model the Reynolds stress term. Note that a new proportionality constant 𝑡 

> 0, the turbulence eddy viscosity, has been introduced. Models of this type are known as 

eddy viscosity models or EVM's and the main types are the one-equation model and the 

two-equation model, the latter is the mostly used model. Bothe of these models retain the 

Boussinesq eddy-viscosity approximation, but differ in one important respect. One-

equation models are incomplete as they relate the turbulence length scale to some typical 

flow dimension. By contrast, two-equation models provide an equation for the turbulence 

length scale or its equivalent and are thus complete. 

To complete closure of the turbulence kinetic energy equation, Prandtl has postulated that 

the dissipation assumes the form quoted in Equation of the specific Reynold-tensor. 

Introducing a closure coefficient that we will call CD, the dissipation is 

𝜖 =  
𝐶𝐷𝑘

3
2⁄

ℓ
⁄    (2.22) 

 

And the turbulence length scale remains the only unspecified part of the model. 

Prandtl could establish prescriptions for the turbulence length scale ℓ.  Note that in a thin 

shear layer gives 
𝜕𝑈 

𝜕𝑦 
=
(𝑢 𝑣 ̅̅ ̅̅ ̅̅ )

1
2⁄

ℓ𝑚𝑖𝑥
⁄ . So, balancing production and dissipation means 

−(𝑢 𝑣 ̅̅ ̅̅ ̅̅ ) 
𝜕𝑈 

𝜕𝑦 
= 
(𝑢 𝑣 ̅̅ ̅̅ ̅̅ )

3
2⁄

ℓ𝑚𝑖𝑥
⁄ = 

𝐶𝐷𝑘
3
2⁄

ℓ
⁄  , So that the ℓ ∝  ℓ𝑚𝑖𝑥 if  

𝑢 𝑣 ̅̅ ̅̅ ̅̅   

𝑘⁄ =

Constant. 
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Thus the Prandtl One-Equation Model is as follows: 

𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝜏𝑖𝑗  

𝜕𝑈𝑖
𝜕𝑥𝑗

− 
𝐶𝐷𝑘

3
2⁄

ℓ
⁄ + 

𝜕

𝜕𝑥𝑗
 [ + 𝑣𝑇/ 𝜎𝑘  

𝜕𝑘

𝜕𝑥𝑗
] (2.23) 

 

Where 𝜏𝑖𝑗 is 2𝑣𝑇  𝑆𝑖𝑗 − 
2

3
 𝛿𝑖𝑗

 
  

Baldwin and Barth, Spalart and Allmars and Menter have device even more elaborate 

model equations for eddy viscosity. Baldwin and Barth, for example, includes seven 

closure coefficient and three damping functions. 

 

2.3 Two-Equation models 

During the past two decades the Two-Equation models of turbulence have served as the 

foundation for much of the turbulence model research. These models provide not only for 

computation of k, but also for the turbulence length scale or equivalent. Consequently, 

two-equation models are complete, i.e., can be used to predict properties of a given 

turbulent flow with no prior knowledge of the turbulence structure. 

 

2.3.1 The k-ϵ Model 

Until the last decade in the last century this turbulence was by far the most popular Two-

Equation model among the other ones, it has been commonly used in the industry and 

especially in the field of turbomachinery designing researches. In1974 Launder and 

Sharma subsequently returned the model’s closure coefficients and created what is 

generally called the standard k-ϵ model. By taking the following moment to the Navier-

Stokes equation we can derive the exact equation for the ϵ equation 

2𝜐
𝜕𝑢𝑖
𝜕𝑥𝑖

𝜕 

𝜕𝑥𝑗
 [𝑁(𝑢𝑖)]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.24) 

Where    

 𝑁(𝑢𝑖) =  𝜌
𝜕𝑢𝑖

𝜕𝑡
+  𝜌 𝑢𝑘 

𝜕𝑢𝑖

𝜕𝑥𝑘
+

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇 

𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘
 (2.25) 

 

After a tedious algebra we can get the exact equation for ϵ which is as follows 
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𝜕𝜖

𝜕𝑡
+ 𝑈𝑗

𝜕𝜖

𝜕𝑥𝑗
= −2[𝑢𝑖,𝑘

 𝑢𝑗,𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑢𝑘,𝑖

 𝑢𝑘,𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅ ]

𝜕𝑈𝑖
𝜕𝑥𝑖

− 2  𝑢𝑘
 𝑢𝑖 𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅   
𝜕2𝑈𝑖
𝜕𝑥𝑘𝜕𝑥𝑗

− 2 𝑢𝑖,𝑘
 𝑢𝑖 𝑚  𝑢𝑘 𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −   22 𝑢𝑖 𝑚  𝑢𝑘 𝑚 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+  
𝜕

𝜕𝑥𝑖
 [

𝜕𝜖

𝜕𝑥𝑖
−   𝑢𝑗𝑢𝑖 𝑚 ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑢𝑖 𝑚̅̅ ̅̅ ̅ − 2



𝜌
𝑝𝑚  𝑢𝑖 𝑚 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

( 2.26) 

It is clear that the above equation is very complex and more complicated that the kinetic 

energy equation and contains several unknown correlations of fluctuated velocity, 

pressure and velocity gradients. Essentially these correlations are almost impossible to 

measure with any degree of accuracy so there’s presently a little hope to find a reliable 

guidance from the experimentalists regarding a suitable closure approximations [65]. The 

strongest claim that can actually be made is that the conventional closure approximations 

used for Equation (2.26) are dimensionally correct. This is not very different from the 

Kolmogorov approaches that are guided almost exclusively by physical reasoning and 

dimensional analysis. We should keep a very important point in mind is to avoid modeling 

the differential equations rather than the physics of turbulence. 

The Standard k-ϵ model is then as follow 

The kinematic eddy viscosity 

𝑣𝑇 = 
𝐶𝜇𝑘

2

𝜖⁄    
(2.27 ) 

 

Turbulence kinetic energy 

𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝜏𝑖𝑗  

𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝜖 + 
𝜕

𝜕𝑥𝑗
 [(+ 𝑣𝑇/ 𝜎𝑘) 

𝜕𝑘

𝜕𝑥𝑗
] (2.28) 

 

For the dissipation rate part the equation will be  

𝜕𝜖

𝜕𝑡
+ 𝑈𝑗

𝜕𝜖

𝜕𝑥𝑗
= 𝐶𝜖1

𝜖

𝑘
 𝜏𝑖𝑗  

𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝐶𝜖2
𝜖2

𝑘
+ 

𝜕

𝜕𝑥𝑗
 [(+ 𝑣𝑇/ 𝜎

 
𝜖 )   

𝜕𝜖 

𝜕𝑥𝑗
] (2.29) 

 

Where the closure coefficients will be  

𝐶𝜖1 = 1.44, 𝐶𝜖2 = 1.92,  𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0,  𝜎  𝜖 = 1.3 

 
(2.30) 
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𝜔 = 𝜖 (𝐶𝜇𝑘)⁄    and   ℓ =  
𝐶𝜇𝑘

3
2⁄

𝜖
⁄  (2.31) 

 

The equations above are involving viscous damping functions. Yachot and Arzagan have 

been developed a recent version of the k-ϵ model. They have used technique from the 

renormalization theory, they developed what’s known as RNG k-ϵ. The eddy viscosity, k 

and ϵ are still given in equations 2.32, 2.33 and 2.34, however the modeled used modified 

coefficient 𝐶𝜖2  

𝐶𝜖2 = 𝐶̃𝜖2 + 
 𝐶𝜇𝜆

3(1 − 𝜆/𝜆°)

(1 + 𝛽𝜆3)
, 𝜆 =  

𝑘

𝜖
√2𝑆𝑖𝑗𝑆𝑗𝑖 (2.32 ) 

 

The enclosure coefficients for the RNG k-ϵ model  

𝐶𝜖1 = 1.42, 𝐶̃𝜖2 = 1.68,  𝐶𝜇 = 0.085, 𝜎𝑘 = 0.72,

 𝜎  𝜖 = 0.72 
(2.33) 

 

𝛽 = 0.012,  𝜆° = 4.38 (2.34) 

 

 

 

2.3.2 The k-ω Model 

Kolmogorov chose the kinetic energy of the turbulence as one of his turbulence 

parameters and, like Prandtl, modeled the differential equation governing its behavior. 

His second parameter was the dissipation per unit turbulence kinetic energy, ω. In his k-

ω model, ω satisfies a differential equation similar to the equation for k. Kolmogorov 

referred in formulating his model, to ω as the rate of dissipation of energy in unit volume 

and time.  He also called it some mean frequency determined by ω = ck1/2/ℓ to underscore 

its physical relation to the external scale of turbulence, ℓ, where c is a constant. The form 

of the equation for w has changed as the k-ω model has evolved over the past five decades 

and the following version of k-ω has been changed and improved the predictive accuracy 

of the Wilcox model for free shear flows and strongly separated flows.  
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Kinematic eddy viscosity 

𝑣𝑇 = 𝑘/𝜔̃,  𝜔̃ = max {𝜔, 𝐶lim √
2𝑆𝑖𝑗𝑆𝑖𝑗

𝛽∗
 },  𝐶lim = 

7

8
  

 

 

Turbulence Kinetic Energy 

𝜕𝑘

𝜕𝑡
+ 𝑈𝑖

𝜕𝑘

𝜕𝑥𝑘
= −𝜏𝑖𝑗  

𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝛽∗𝑘 𝜔 + 
𝜕

𝜕𝑥𝑗
 [(+ 𝑣𝑇/ 𝜎

∗) 
𝜕𝑘

𝜕𝑥𝑗
]  (2.35) 

 

Specific dissipation rate 

𝜕𝜔

𝜕𝑡
+ 𝑈𝑗

𝜕𝜔

𝜕𝑥𝑗
= 𝛼

𝜔

𝑘
 𝜏𝑖𝑗  

𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝛽 𝜔2 + 
𝜎𝑑
𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

+ 
𝜕

𝜕𝑥𝑗
 [(+ 𝑣𝑇/ 𝜎

  
𝑘

𝜔
)  
𝜕𝜔

𝜕𝑥𝑗
] 

(2.36) 

 

The closure coefficients and the auxiliary relations 

𝛼 =
13

25
, 𝛽 =  𝛽°𝑓𝛽 , 𝛽∗ = 

9

100
, 𝜎 =

1

2
 , 𝜎∗ = 

3

5
,

𝜎𝑑𝑜 = 
1

8
 

( 2.37) 

 

𝜎𝑑 = 

{
 
 

 
 0,    

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
≤ 0

𝜎𝑑𝑜,  
𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 > 0

}
 
 

 
 

 (2.38) 

 

𝛽° = 0.0708, 𝑓𝛽 = 
1 + 85𝑥𝜔
1 + 100𝑥𝜔

 , 𝑥𝜔 = |
𝛺𝑖𝑗 𝛺𝑗𝑘𝑆𝑘𝑖

(𝛽∗𝜔)3
|  

 

𝜖 =  𝛽∗𝜔 𝑘  𝑎𝑛𝑑 ℓ =  𝑘
1
2⁄

𝜔⁄  (2.39) 

 

The value of 𝑥𝜔 for the two dimentsional flow  and the tensors  𝛺𝑖𝑗  and 𝑆𝑖𝑗 are the 

mean-rotation and mean strain rate tensors respectively and are defined 
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𝛺𝑖𝑗 = 
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

− 
𝜕𝑢𝑗

𝜕𝑥𝑖
 ) , 𝑆𝑖𝑗 = 

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 
𝜕𝑢𝑗

𝜕𝑥𝑖
 ) (2.40) 

 

Note that these equation can be used for general compressible flows by replacing , 𝑣𝑇, 
𝑘

𝜔
, and 

𝑘

𝜔̃
  by 𝜇 = 𝜌, 𝜇𝑇 =  𝜌𝑇 , 𝜌𝑘/𝜔, 𝜌𝑘/𝜔̃  respectively and multiplying all but the 

diffusion terms by ρ, also, a mean-energy and equation of state must be added.   

The main difference between this version of the k-ω model and the earlier versions of it 

are the cross diffusion 𝜎𝑑 and the built-in stress limiter, and those modifications have 

been proposed to eliminate the sensitivity to the free stream values of ω. 

One of its advantages is that it can be integrated up to the wall boundaries without the 

need to neither damping functions nor low Reynolds numbers corrections other advantage 

is that this model provides greatly improved prediction for the shock-separated flows 

without including any compressibility modifications to the model as it was required by 

the early version of this model to achieve reasonable results. One more advantage of this 

model is that it can predict free shear flow spreading rates much closer to the 

measurements, so that is applicable for both wall-bounded and free-shear flows. 

2.4 The SST k-ω Model 

A two-layer model which employs the k-ω model of WILCOX [106] in the inner region 

of boundary layers and switches to a k-ϵ model in the outer region of boundary layers and 

in mixing regions MENTER [66] and [67]. This model makes use of the blend functions 

F1 and F2 to achieve the blending. The SST k-ω turbulence model is a two-equation eddy-

viscosity model which has become very popular as the SST model has been found to 

provide very good calculations of wall bounded flows even with highly separated regions. 

Reproducing the k-ω behavior in the viscous and logarithmic layers, where it can 

precisely describe the boundary layer dynamics, and to regain the k-ϵ characteristic in the 

defect layer, where it is less sensible to the free stream conditions, is actually the purpose 

behind developing this model. SST model combines both models to take the maximum 

advantage of their strengths in the distinct sub-layers of the boundary layer. 

The kinetic energy, k, transport equation in the k-ω SST model, is the same as before, but 

the blending function is introduced in the turbulent dissipation frequency 

𝜕(𝜌𝑘)

𝜕𝑡
+
𝜕(𝑢𝑗̅𝜌𝑘)

𝜕𝑥𝑗
= 𝜏𝑖𝑗  

𝜕𝑢𝑖̅
𝜕𝑥𝑗

− 𝛽∗𝜌𝜔𝑘 + 
𝜕

𝜕𝑥𝑗
 [(𝜇 + 𝜌𝑘  𝜇𝑇) 

𝜕𝑘

𝜕𝑥𝑗
] (2.41 ) 
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𝜕(𝜌𝜔)

𝜕𝑡
+
𝜕(𝑢𝑗̅𝜌𝜔)

𝜕𝑥𝑗

= 
𝛾

𝑣𝑇
𝜏𝑖𝑗  

𝜕𝑢𝑖̅
𝜕𝑥𝑗

− 𝛽∗𝜌𝜔2 + 
𝜕

𝜕𝑥𝑗
 [(𝜇 + 𝜌𝑘𝜇𝑇 )

𝜕𝜔

𝜕𝑥𝑗
]

+ 2(1 − 𝐹1)𝜌 𝜎𝜔2
1

𝜔
 
𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 

( 2.42) 

The last term comes from the transformation of the turbulent dissipation transport 

equation in the dissipation frequency transport equation. The factor (1 - F1) provides the 

blending from the k-ϵ with the k-ω model. Near to the wall boundaries, F1 ≈ 1 and (1 - 

F1) ≈ 0, reproducing the original k-ω model. From the defect layer and going in the 

opposite direction of the wall boundaries, F1 ≈ 0 and (1 - F1) ≈ 1, causing the equations 

to behave as the standard k-ϵ model. 

As defined by MENTER [67] the blending functions are defined as follows 

𝐹1 = tanh(𝑎𝑟𝑔1
4) , 𝑎𝑟𝑔1 = min [max (

√𝑘

0,09𝜔𝑦
; 
500𝜈

𝑦2𝜔
) ; 

4𝜌𝜎𝜔2
𝐶𝐷𝑘𝜔𝑦2

] (2.43 ) 

 

Where 𝐶𝐷𝑘𝜔 has numerical limiters 

𝐶𝐷𝑘𝜔 = max(2𝜌𝜎𝜔2  
1

𝜔
 
𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
;  10−20) (2.44) 

 

The turbulent dynamic viscosity 𝜇𝑇 with numerical limiter to improve the Boussinisq 

approximation and consider the shear transport in the SST model. 

𝜈𝑇 = 
𝑎1𝑘

max(𝑎1𝜔;  𝛺𝐹2 )
 (2.45) 

 

The second blend function is given as follows 

𝐹2 = tanh(𝑎𝑟𝑔2
2) , 𝑎𝑟𝑔2 = max(2

√𝑘

0,09𝜔𝑦
; 
500𝜈

𝑦2𝜔
) (2.46) 

 

The constants ∅ in the k-ω SST model are calculated with the constants ∅1  and ∅2 
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∅ =  𝐹1∅1 + (1 − 𝐹2)∅2 (2.47) 

 

The constants in the first set is chosen as 𝜎𝑘1 = 0.85, 𝜎𝜔1 = 0.85, 𝛽1 = 0.075, 𝛼1 =

0.31, 𝛽 
∗ =  0.09, 𝑘 = 0.41, 𝛾1 =

𝛽1

𝛽 ∗
−  𝜎𝜔1

𝑘2

√𝛽 ∗
   , while the constant  ∅2 corresponds to 

the second set and are given by 𝜎𝑘2 = 1,  𝜎𝜔2 = 0.856, 𝛽2 = 0.0828, 𝛽 
∗ =  0.09, 𝑘 =

0.41, 𝛾2 =
𝛽2

𝛽 ∗
−  𝜎𝜔2

𝑘2

√𝛽 ∗
. 

 

2.5  Wall Treatments 

The majority of time spent in a Computational Fluid Dynamics (CFD) projects is usually 

devoted to successfully generating a mesh for the domain, as noted by JINYUAN [53] 

allowing a compromise between the desired accuracy and solution cost. This time-

consuming procedure is considered a bottleneck in the analysis. The preferred method for 

determining the most accurate mesh is to carry out test runs on different mesh sizes and 

configurations and match the converged numerical solution as closely as possible to 

experimental data, in what is termed the grid independence test. Turbulent flows are 

significantly affected by the presence of walls, where the viscosity-affected regions have 

large gradients in the solution variables and accurate presentation of these regions 

determines successful prediction of wall bounded flows, GERSIMOV [38] and SALIM 

[88]. The boundary layer can be numerically solved up the wall boundary if appropriate 

turbulence models are used, like the k-ϵ low-Reynolds, the k-ϵ or the k-ω SST and the 

boundary layer can be numerically solved up the wall boundary and hence adequate 

boundary conditions have to be fixed at the wall boundary. As the wall approached the 

turbulent kinetic energy and its derivative tend to zero, and according to its transport 

equation 𝜖 =  𝜈 
𝜕2𝑘

𝜕𝑦2
 and by double integrating it we get 𝜖 → 2𝜈𝑘/𝑦2. If the dissipation 

frequency is rather employed in the turbulence model, its limit at wall is 𝜔 → ∞ and its 

numerical implementation requires the use of a numerical limiter. 

Very fine computational meshes near to the wall is required for the numerical resolution 

of the complete boundary layer, with y+ values around 1, incurring in high computational 

costs. The wall function can be an alternative to the full numerical solution of the 

boundary layer, if the solution of the boundary layer is not the main point of interest in 

the fluid flow problem being addressed. In many industrial applications, the wall function 

can be employed without negative effects on the simulated flow characteristics, and the 

wall function relies on the similitude law of the stable boundary layer for most part of the 

flow If the dimensionless sublayer-scaled velocity, u+, and distance, y+, are used, the 
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velocity distribution in the boundary layer describes a constant pattern, as shown in Figure 

2.2. 

 

Figure 2.2: Typical velocity profile u+(y+) at the turbulent boundary layer, [106]. 

The sublayer-scaled velocity and distance are defined as follows: 

𝑦+ = 
𝑦 𝑢𝜏
𝜈
; 𝑢+ = 

𝑢𝑡
𝑢𝜏

 (2.48) 

 

Where 𝑢𝑡 is the velocity component in the direction tangent to the wall and the friction 

velocity, 𝑢𝜏 is defined with the shear stress at the wall 𝜏𝑤 

𝑢𝜏 = √
𝜏𝑤
𝜌

 (2.49) 

 

The boundary layer can be divided in the viscous sub-layer, the logarithmic layer and the 

defect layer. In the viscous sub-layer, the sublayer-scaled velocity is equal to the sublayer-

scaled distance, u+ = y+, as shown in the figure 2.2. In the logarithmic region, they are 

related by the following law: 

𝑢+ = 
1

𝑘
 𝑙𝑖𝑛 𝑦+ + 𝐶 (2.50) 
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According to WILCOX [106] the logarithmic layer goes typically from y+ = 30 until y 

=0.1𝛿, where 𝛿 is the thickness of the boundary layer. The von Karman constant k is 0.41 

and the constant C depends on the surface roughness and for the smooth surface is 5.2. 

The distance between the first mesh point and the wall, y2, has to produce y+ values in the 

range mentioned above, when the wall function is employed. Sometime a full numerical 

solution is inevitable despite the cost, especially when the boundary layer is highly 

unstable and the separation is massively present. In our case the wall function, automatic 

and scalable, can be applied with a good accuracy if the design was sufficiently adequate. 

 

2.6 Effects of Compressibility 

Introducing an equation for conservation of energy and an equation of state, for flows in 

which compressibility effects are an issue, is necessary. Just as Reynolds averaging gives 

rise to the Reynolds-stress tensor, we expect that similar averaging will lead to a turbulent 

heat-flux vector. It is also expected that new compressibility related correlations will 

appear throughout the equations of motion. These are important issues that must be 

addressed in constructing a turbulence model suitable for application to compressible 

flows, which can be expected to apply to constant property (low speed) flows with heat 

transfer [106]. 

 Common observations pertaining to compressible turbulence, the Favre mass-averaging 

procedure and derive the mass-averaged equations of motion have to be accomplished. 

Developing a turbulence model for the compressible mixing layer and then followed with 

an application of perturbation methods to the compressible log layer, then apply several 

models to attached compressible boundary layers, including effects of pressure gradient, 

surface cooling and surface roughness, are all important issues in modeling a 

compressible turbulence flow [35]. 

By definition, a compressible flow is one in which significant density changes occur, even 

when pressure changes are small. It includes low-speed flow with large heat transfer rate. 

Models for high speed flows seem to fit the limited data quite well, perhaps with the 

expectation of combusting flow. Generally speaking, compressibility has a relatively 

small effect on turbulent eddies in wall-bounded flows. This appears to be true for Mach 

numbers up to about 5, provided the flow doesn't experience large pressure changes over 

a short distance such as we might have across a shock wave. At subsonic speeds, 

compressibility effects on eddies are usually unimportant for boundary layers provided. 

Based on these observations, Morkovin hypothesized that the effect of density 

fluctuations on the turbulence are small provided they remain small relative to the mean 

density. This is a major simplification for the turbulence modeler because it means that, 

in practice, one needs only account for the non-uniform mean density in computing 

compressible, shock-free, non-hypersonic turbulent flows. 
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There are limitations to the applicability of Morkovin's hypothesis even at non-hypersonic 

Mach numbers. For example, because the fluctuated density to the average density is 

typically not small, it applies neither to flows with significant heat transfer nor to flows 

with combustion. Also, because density fluctuations generally are much larger in free 

shear flows, models based on Morkovin's hypothesis fail to predict the measured 

reduction in spreading rate with increasing free-stream Mach number for the 

compressible mixing layer. The level of the fluctuation to the average density for a 

boundary layer at Mach 5 is comparable to the level found in a mixing layer at Mach 1. 

However, in addition, there seem to be qualitative changes in mixing layer structure as 

Mach number increases [106].  

 

2.7 Favre Averaging  

When we deal with compressible fluid medium, we will be having density and 

temperature fluctuation addition to the velocity and pressure fluctuation. So, using the 

common time-averaging procedure will produce new terms that has no analogs in the 

laminar equations [106]. We will first consider the conservation of mass where the 

instantaneous velocity is written as the sum of the mean value and the fluctuation density 

value 

𝜌 =  𝜌̅ + ρ ′  (2.51) 

 

And by treating the instantaneous velocity in the usual way into the continuity equation 

yields 

𝜕

𝜕𝑡
(𝜌̅ + ρ ′) +

𝜕

𝜕𝑥𝑖
( 𝜌̅ 𝑈𝑖 + ρ 

′ 𝑈𝑖 + 𝜌̅ 𝑢𝑖
′ + ρ ′𝑢𝑖

′  ) = 0 (2.52) 

 

And by taking the time averaging to the above equation we get the Reynolds-averaged 

continuity equation for compressible flow, which is sometimes referred to as the 

primitive-variable form of the continuity equation 

𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌̅𝑈𝑖  +   ρ ′𝑢𝑖′̅̅ ̅̅ ̅̅ ̅) = 0 (2.53) 

 

To achieve the closure, an approximation for the correlation between the fluctuation part 

of the density and the velocity has to be found. For the momentum equation the problem 
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is ever more complex where the Reynolds-stress tensor produced from the time averaging 

of the ρui, uj, and it is clear that we will be having a triple correlation involving 

ρ ′, 𝑢𝑖
′ and 𝑢𝑗

′. 

Favre suggested a mass-averaged for the velocity 𝑢̃𝑖, which is a density-weighted 

averaging procedure. 

𝑢̃𝑖 = 
1

𝜌̅
 lim
𝑇→∞

∫ 𝜌(𝑋, 𝜏) 𝑢𝑖 (𝑋, 𝜏)𝑑𝜏
𝑡+𝑇

𝑡

 (2.54) 

 

 So that the equation 4.42 can be rewritten  

𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌 ̅𝑢̃𝑖) = 0  

 

And in terms of conventional of Reynolds averaging we have 

(2.55) 

 

 

 

𝜌̅𝑢̃𝑖 = 𝜌𝑢𝑖̅̅ ̅̅̅ (2.56) 

The value of the above averaging known as the Reynolds averaging, and we 

can get also the following 
 

  𝜌̅𝑢̃𝑖 = 𝜌̅𝑈𝑖 + 𝜌𝑢𝑖′́
̅̅ ̅̅̅ (2.57) 

 

Actually what we’ve done is treating the momentum per unit volume ρ𝑢𝑖 as an 

independent variable rather than the velocity i.e the rate of change of momentum per unit 

volume and not the velocity is equal to the sum of the imposed forces per unit volume in 

the flow, and that is a sensible thing from the physical point of view.  

When Favre Average used, the usual decomposition for the instantaneous velocity into a 

mass averaged part 𝑢̃𝑖 and fluctuation part 𝑢𝑖
ʺ   i.e. 

𝑢𝑖 = 𝑢̃𝑖 + 𝑢𝑖
″ (2.58) 

 

After multiplying the equation 2.44 by ρ and taking the time average we will get the Favre 

average as follow 

𝜌𝑢𝑖̅̅̅̅̅ =  𝜌̅ 𝑢̃𝑖 + 𝜌𝑢𝑖″̅̅ ̅̅ ̅ (2.59) 

 

And after a tedious procedures and performing the conventional Reynolds average we 

find 
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𝑢𝑖ʺ̅ = −
𝜌́𝑢𝑖′̅̅ ̅̅̅

𝜌̅
  (2.60) 

The clear point after proceeding the Favre averaging is that the averaging is a 

mathematical simplification rather than a physical one, and this has to be born in mind. 

 

2.8 Favre Average Equations 

The equations governing the mass, momentum and heat, have to be solved when we deal 

with motion for a compressible flow medium. The instantaneous equations are as follows 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖) = 0 (2.61) 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) + 

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = − 

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝑡𝑖𝑗

𝜕𝑥𝑗
 (2.62) 

𝜕

𝜕𝑡
[𝜌(𝑒 +

1

2 
𝑢𝑖𝑢𝑗)] +

𝜕

𝜕𝑥𝑗
[𝜌 𝑢𝑗(ℎ +

1

2 
 𝑢𝑖𝑢𝑗)] =

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑡𝑖𝑗) −

𝜕𝑞𝑗

𝜕𝑥𝑗
 (2.63) 

 

For the compressible flow the tensor 𝑡𝑖𝑗 involves the second viscosity ζ as well as the 

conventional molecular viscosity μ.  

We will be eventually in need of defining the equation of state for the compressible fluid, 

and for gases the perfect gas law so that the pressure, density and temperature are related. 

𝑃 = 𝜌𝑅𝑇   (2.64) 

 

The relation between the stress and strain rate for the Newtonian fluid is  

𝑡𝑖𝑗 = 2𝜇𝑠𝑖𝑗 + ζ 
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 (2.65) 

 

The Fourier law is used to get the heat flux 

𝑞𝑗 = −𝑘
𝜕𝑇

𝜕𝑥𝑗  
 (2.66) 

 

For the sake of simplification we will relate the second viscosity to the molecular 

viscosity μ 
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𝜁 = − 
2

3
 𝜇 (2.67) 

This assumption is correct for the monatomic gases and is generally used in all gases in 

standard CFD applications [106]. By assuming this we guarantee that the tii = 0 and thus 

the viscous stresses don’t contribute in the pressure even when sii= 
𝜕𝑢𝑖

𝜕𝑥𝑖
 ≠ 0. The second 

assumption is that the fluid is calorically perfect i.e the specific heat coefficients are 

constants, this is just for the sake of simplification but actually the specific heat 

coefficients are not constant and we will deal with as they are not constants. 

𝑞𝑗 = −𝑘
𝜕𝑇

𝜕𝑥𝑗  
=  − 

𝜇

𝑃𝑟𝐿

𝜕ℎ

𝜕𝑥𝑗
 (2.68) 

 

 The laminar Prandtl number PrL is defined by 

𝑃𝑟𝐿 =
𝐶𝑃𝜇

𝑘
  (2.69) 

 

To mass average the conservation equations, we decompose the various flow properties 

as follow 

𝑢𝑖 = 𝑢̃𝑖 + 𝑢𝑖
″

𝜌 =  𝜌̅ + 𝜌′

𝑝 = 𝑃 + 𝑝′

ℎ =  ℎ̃ + ℎ″

𝑒 =  𝑒̃ + 𝑒″

𝑇 =  𝑇̃ + 𝑇″

𝑞𝑗 = 𝑞𝐿𝑗 + 𝑞𝐿𝑗
′}
 
 
 

 
 
 

 (2.70) 

 

It is clear that decomposing flow properties p, ρ and qj is in terms of conventional mean 

value and the fluctuation part. And by substituting these parts in the equations of mass, 

momentum and energy conservation we get what is generally call the Favre (mass) 

averaged mean conservation equations. 

𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖) = 0 (2.71) 

𝜕

𝜕𝑡
(𝜌̅𝑢̃𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̃𝑗𝑢̃𝑖) = −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝑡𝑖̅𝑗 − 𝜌𝑢𝑗″ 𝑢𝑖″̅̅ ̅̅ ̅̅ ̅̅ ̅] (2.72) 
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𝜕

𝜕𝑡
[(𝜌̅(𝑒̃ +

𝑢̃𝑖𝑢̃𝑖
2
)) +

𝜌𝑢𝑖″ 𝑢𝑖″̅̅ ̅̅ ̅̅ ̅̅ ̅

2
] + 

𝜕

𝜕𝑥𝑗
[𝜌̅𝑢̃𝑗 (ℎ̃ +

𝑢̃𝑖𝑢̃𝑖
2
) + 𝑢̃𝑗

𝜌𝑢𝑖″ 𝑢𝑖″̅̅ ̅̅ ̅̅ ̅̅ ̅

2
 ]

=
𝜕

𝜕𝑥𝑗
[− 𝑞𝐿𝑗 − 𝜌𝑢𝑗

″ℎ″̅̅ ̅̅ ̅̅ ̅̅ + 𝑡𝑖𝑗𝑢𝑖″̅̅ ̅̅ ̅̅ −   𝜌𝑢𝑗″
1

2
𝑢𝑖″ 𝑢𝑖″

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 ]

+
𝜕

𝜕𝑥𝑗
[𝑢̃𝑗(𝑡𝑖𝑗̅̅ ̅ − 𝜌𝑢𝑖″ 𝑢𝑗″̅̅ ̅̅ ̅̅ ̅̅ ̅)] 

(2.73) 

𝑃 = 𝜌̅𝑅𝑇̃ (2.74) 

 

 It is easy to notice that the term of the Favre-averaged Reynold-stress tensor 

appear, 𝜌̅ 𝜏𝑖𝑗 = 𝜌𝑢𝑖″ 𝑢𝑗″̅̅ ̅̅ ̅̅ ̅̅ ̅, and here is to say that the tensor 𝜏𝑖𝑗 is symmetric. 

The equation (2.62) represents the sum of internal energy, mean-flow kinetic energy and 

turbulence kinetic energy of the Favre-averaged mean energy equation for total energy. 

It is also obvious that this equation has many terms of an identifiable physical property. 

Where the double correlation between 𝑢𝑖
″ which is the kinetic energy per unit volume for 

the turbulent fluctuations. The correlation between 𝑢𝑗
″ and ℎ″ refers to the turbulent 

transport of heat. On the right hand side of the equation we find the two terms 𝑡𝑖𝑗𝑢𝑖″̅̅ ̅̅ ̅̅  and 

𝜌𝑢𝑗″
1

2
𝑢𝑖″ 𝑢𝑖″

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
  correspond to the molecular diffusion and the turbulent transport of the 

turbulence kinetic energy, respectively [106]. These terms arise because the mass 

averaged total enthalpy appearing in the convective term of Equation (2.62) is the sum of 

mass-averaged enthalpy, mean kinetic energy and turbulence kinetic energy. They 

represent transfers between mean energy and turbulence kinetic energy that naturally 

arise when we derive the Favre-averaged turbulence kinetic energy equation. We can 

derive equation for k simply by multiplying the equation (2.42) by 𝑢𝑖
″ and time average. 

𝜌 𝑢𝑖″
𝜕𝑢𝑖
𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝜌𝑢𝑖″𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= − 𝑢𝑖″

𝜕𝑝

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅
+  𝑢𝑖″

𝜕𝑡𝑖𝑗

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
 (2.75) 

 

Carrying out the time averaging is done by proceeding term by term and using the tensor 

notation for the al derivatives i.e. proceeding from the left to the right and starting with 

the unsteady term and the convective term then with the pressure-gradient term and finally 

the viscous term at the far right end of the equation (2.64) and substituting all the result 

into the equation above.  By doing this we arrive the Favre-averaged turbulent kinetic 

equation and by using the Favre-averaged continuity equation to rewrite the unsteady and 

the convective terms in the non-conservative form. The exact equation will be a follows 
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𝜌̅
𝜕𝑘

𝜕𝑡
+ 𝜌̅𝑢̃𝑗  

𝜕𝑘

𝜕𝑥𝑗

=  𝜌̅ 𝜏𝑖𝑗  
𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝑡𝑖𝑗  
𝜕𝑢𝑖″

𝜕𝑥𝑗

̅̅ ̅̅ ̅

+  
𝜕

𝜕𝑥𝑗
 [𝑡𝑖𝑗𝑢𝑖″̅̅ ̅̅ ̅̅ −  𝜌𝑢𝑗″

1

2
𝑢𝑖″ 𝑢𝑖″

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑝′𝑢𝑗″̅̅ ̅̅ ̅̅ ] − 𝑢𝑖″ ̅̅ ̅̅

𝜕𝑝

𝜕𝑥𝑖
+ 𝑝′

𝜕𝑢𝑖″

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅
 

(2.76) 

 

The last two terms are called the pressure work and the pressure dilatation, respectively. 

Comparing the mean energy Equation (2.62) with the turbulence kinetic energy Equation 

(2.65), we see that indeed the two terms, 𝑡𝑖𝑗𝑢𝑖″̅̅ ̅̅ ̅̅  and 𝜌𝑢𝑗″
1

2
𝑢𝑖″ 𝑢𝑖″

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 on the right-hand side of 

the mean-energy equation are Molecular Diffusion and Turbulent Transport of turbulence 

kinetic energy [32]. We can notice that the turbulence kinetic energy equation also 

indicates that the Favre-averaged dissipation rate is given by 

𝜌̅ 𝜖 =   𝑡𝑖𝑗
𝜕𝑢𝑖″

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
=  
1

2
 𝑡𝑖𝑗 (

𝜕𝑢𝑖
″

𝜕𝑥𝑗
+ 
𝜕𝑢𝑗

″

𝜕𝑥𝑖
) =  𝑡𝑖𝑗𝑠𝑖𝑗″̅̅ ̅̅ ̅̅   (2.77) 

 

One can easily derive an incompressible equation form from the equation (2.65), where 

the last two terms will vanish in the limit of the incompressible flow with zero density 

fluctuation. The pressure work vanish because the time average of the   𝑢𝑖
″ is zero when 

the density fluctuation is zero and similarly the pressure dilatation term vanishes as the 

fluctuation field has zero divergence for the incompressible flow. 

We can derive the Favre-averaged Reynolds-stress equation y assuming the following 

𝜕

𝜕𝑡
(𝜌̅ 𝜏𝑖𝑗) + 

𝜕

𝜕𝑥𝑘
(𝜌̅ 𝑢̃𝑘𝜏𝑖𝑗)

=  − 𝜌̅ 𝜏𝑖𝑘  
𝜕𝑢̃𝑗

𝜕𝑥𝑘
− 𝜌̅ 𝜏𝑖𝑘  

𝜕𝑢̃𝑖
𝜕𝑥𝑘

+ 𝜌̅𝜖𝑖𝑗 − 𝜌̅ 𝛱𝑖𝑗

+ 
𝜕  
𝜕𝑥𝑘

 [− (𝑡𝑘𝑗𝑢𝑖″̅̅ ̅̅ ̅̅ ̅ + 𝑡𝑘𝑖𝑢𝑗″̅̅ ̅̅ ̅̅ ̅) + 𝜌̅ 𝐶𝑖𝑗𝑘 ] + 𝑢𝑖″̅̅ ̅ 
𝜕𝑃  
𝜕𝑥𝑗

 + 𝑢𝑗″̅̅ ̅  
𝜕𝑃  
𝜕𝑥𝑖

 

(2.78) 

Where 

𝜌̅ 𝛱𝑖𝑗 = p′ (
𝜕𝑢𝑖

″

𝜕𝑥𝑗
+ 

𝜕𝑢𝑗
″

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
  (2.79) 

𝜌̅𝜖𝑖𝑗 = 𝑡𝑘𝑗
𝜕𝑢𝑖″

𝜕𝑥𝑘
+ 𝑡𝑘𝑖

𝜕𝑢𝑗″

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.80) 
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𝜌̅ 𝐶𝑖𝑗𝑘 = 𝜌𝑢𝑖″𝑢𝑗″ 𝑢𝑘
″̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  +   p′𝑢𝑖″ 𝛿𝑗𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +  p′𝑢𝑗″ 𝛿𝑖𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (2.81) 

 

Now we can summarize the Favre-averaged mean equations and turbulence kinetic 

energy equation in conservation form. 

𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖) = 0 (2.82) 

𝜕

𝜕𝑡
(𝜌̅𝑢̃𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̃𝑗𝑢̃𝑖) = −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝑡𝑖̅𝑗 − 𝜌̅ 𝜏𝑖𝑗] (2.83) 

𝜕

𝜕𝑡
(𝜌̅𝐸) + 

𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̃𝑗𝐻)

=
𝜕

𝜕𝑥𝑗
[− 𝑞𝐿𝑗 − 𝑞𝑇𝑗 + 𝑡𝑗𝑖𝑢𝑖

″̅̅ ̅̅ ̅̅ −   𝜌𝑢𝑗″
1

2
𝑢𝑖″ 𝑢𝑖″

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
]

+ 
𝜕

𝜕𝑥𝑗
 [𝑢̃𝑖 (𝜏𝑖̅𝑗 + 𝜌̅ 𝜏𝑖𝑗  )] 

(2.84) 

𝜕

𝜕𝑡
(𝜌̅𝑘) +  

𝜕( 𝜌̅𝑢̃𝑗𝑘)

𝜕𝑥𝑗

=  𝜌̅ 𝜏𝑖𝑗  
𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝜌̅𝜖  +  
𝜕

𝜕𝑥𝑗
 [𝑡𝑖𝑗𝑢𝑖″̅̅ ̅̅ ̅̅ −  𝜌𝑢𝑗″

1

2
𝑢𝑖″ 𝑢𝑖″

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑝′𝑢𝑗″̅̅ ̅̅ ̅̅ ]

−  𝑢𝑖″ ̅̅ ̅̅
𝜕𝑃

𝜕𝑥𝑖
+ 𝑝′

𝜕𝑢𝑖″

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅
 

(2.85) 

𝑃 = 𝜌̅𝑅𝑇̃ (2.86) 

 

The quantities E and H are the total energy and the total enthalpy, and include the kinetic 

energy of the fluctuating turbulent field  

𝐸 = 𝑒̃ + 
1

2
 𝑢̃𝑖𝑢̃𝑗 + 𝑘  𝑎𝑛𝑑  𝐻 = ℎ̃ + 

1

2
 𝑢̃𝑖𝑢̃𝑗 + 𝑘  (2.87) 
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2.9  k-ω Model for Compressible Flows 

Since many of the compressible equations are done with the k-ω model, it is instructive 

to focus on its equations and the closure approximations used to derive it. 

We will start with the mass conservation equation then the momentum equation and then 

the energy conservation equation and the relevant equations. 

𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖) = 0 (2.88) 

𝜕

𝜕𝑡
(𝜌̅𝑢̃𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̃𝑗𝑢̃𝑖) = −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝑡𝑖̅𝑗 − 𝜌̅ 𝜏𝑖𝑗] (2.89) 

𝜕

𝜕𝑡
[(𝜌̅(𝑒̃ +

𝑢̃𝑖𝑢̃𝑖
2

+ 𝑘))] + 
𝜕

𝜕𝑥𝑗
[𝜌̅𝑢̃𝑗 (ℎ̃ +

𝑢̃𝑖𝑢̃𝑖
2

+ 𝑘)]

=
𝜕

𝜕𝑥𝑗
[(
𝜇

𝑃𝑟𝐿
+ 
𝜇𝑇
𝑃𝑟𝑇
)
𝜕ℎ̃

𝜕𝑥𝑗
+ (𝜇 + 𝜎∗

𝜌𝑘

𝜔
)
𝜕𝑘

𝜕𝑥𝑗
]

+ 
𝜕

𝜕𝑥𝑗
[𝑢̃𝑖(𝑡𝑖̅𝑗 + 𝜌̅ 𝜏𝑖𝑗)] 

(2.90) 

 

Reynolds-stress and molecular tensors 

𝑡𝑖̅𝑗 = 2𝜇 𝑆̅𝑖𝑗, 𝜌̅ 𝜏𝑖𝑗 =  2𝜇𝑇𝑆𝑖̅𝑗 − 
2

3
𝜌̅ 𝑘 𝛿𝑖𝑗,  𝑆̅𝑖𝑗 = 𝑆𝑖𝑗 − 

1

3
 
𝜕𝑢̃𝑘
𝜕𝑥𝑘

 𝛿𝑖𝑗 (2.91) 

 

And for the eddy viscosity  

𝜇𝑇 = 
𝜌̅ 𝑘 

𝜔̅
, 𝜔̅ = 𝑚𝑎𝑥 {𝜔, 𝐶𝑙𝑖𝑚√

2  𝑆̅𝑖𝑗   𝑆̅𝑖𝑗

𝛽∗
} , 𝐶𝑙𝑖𝑚 =

7

8
 (2.92) 

𝜕

𝜕𝑡
(𝜌̅ 𝑘) + 

𝜕

𝜕𝑥𝑗
(𝜌̅ 𝑢̃𝑗𝑘) =  𝜌̅ 𝜏𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽∗𝜌̅ 𝑘𝜔 + 
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎∗

𝜌𝑘

𝜔
 )
𝜕𝑘

𝜕𝑥𝑗
] (2.93) 

𝜕

𝜕𝑡
(𝜌̅ 𝜔) + 

𝜕

𝜕𝑥𝑗
(𝜌̅ 𝑢̃𝑗𝜔)

= 𝛼
𝜔

𝑘
 𝜌̅ 𝜏𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽 𝜌̅ 𝜔2 + 𝜎𝑑
𝜌̅

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

+ 
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎  

𝜌𝑘

𝜔
 )
𝜕𝜔

𝜕𝑥𝑗
] 

(2.94) 
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Closure coefficients 

𝛼 =  
13

25
, 𝛽 = 𝛽°𝑓°, 𝛽∗  

9

100
, 𝜎 =

1

2
, 𝜎∗ = 

3

5
, 𝜎𝑑𝑜 = 

1

8
 (2.95) 

𝛽° = 0.0708, 𝑃𝑟𝑇 = 
8

9
,  𝜎𝑑 = 

{
 
 

 
 0,

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 ≤ 0

 𝜎𝑑𝑜 ,
𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 > 0

 

 (2.96) 

𝑓𝛽 = 
1 + 85𝜒𝜔
1 + 100𝜒𝜔

, 𝜒𝜔 = |
𝛺𝑖𝑗𝛺𝑗𝑘𝑆̂𝑘𝑖
(𝛽∗𝜔)3

| , 𝑆̂𝑘𝑖 = 𝑆𝑘𝑖 − 
1

2

𝜕𝑢̃𝑚
𝜕𝑥𝑚

 𝛿𝑘𝑖 (2.97) 

 

There are a couple points worthy to be mentioned regarding applying this equation for 

both compressible and incompressible flow, first is that the turbulent kinetic equation has 

no particular compressibility terms involving pressure work, diffusion or dilatation, 

second, the energy conservation ensures ensure conservation of the total energy which 

includes the kinetic energy of the turbulence. It is clear that the closure coefficients are 

identical to those appears in the incompressible k-ω model. 

 

2.10 Compressible boundary layers 

Although the boundary layer in the radial inflow turbine is almost not a serious problem 

where the flow is in the direction of the negative pressure gradient and the boundary later 

is normally thin and low energized and the separation is not an issue to care about. But 

the flow in the exhaust region or in the diffuser is of course in the positive pressure 

gradient and thus the boundary layer in this region is highly energized and the separation 

can happen under particular operation points, that’s why studying the boundary layer in 

the turbine in general and giving a special care to the exhaust part is an inevitable task to 

be done.  

For the constant-pressure, adiabatic-wall boundary layers and in the range of 5 Mach 

number, the most turbulence models are capable of providing a reasonable predictions. 

However, the adverse pressure is still anathema for the k-ϵ while presenting no major 

problem for the k-ω model. In the presence of heat transfer, nontrivial discrepancies from 

the measured values will the model predict. 

The algebraic models Cebeci-Smith [95] and Baldwin-Lomax model [14] usually require 

no special compressibility corrections. The Cebeci-Smith model uses the velocity 

thickness 𝛿𝑣
∗ which is defined by the equation (2.84) below, and it is used for both 

compressible and incompressible flow 
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𝛿𝑣
∗ = ∫( 1 − 𝑈/𝑈𝑒)

𝛿

0

 𝑑𝑦 (2.98) 

 

The velocity thickness used in the above is different from the displacement thickness,𝛿∗, 

which is defined for compressible flows as follows 

𝛿∗ = ∫( 1 −
𝜌̅

𝜌̅𝑒

𝑢̃

𝑢̃𝑒
)

𝛿

0

 𝑑𝑦 (2.99) 

 

Maise and McDonalds have illustrated the main reason behind why is the algebraic 

models can be used for the compressible boundary layers without modifications. They 

used the most recent experimental data at that time for the compressible boundary layers 

and inferred the mixing length variation, and the analysis shows that for Mac up to 5. 

One of the observations was that the velocity profile for adiabatic walls correlate with the 

incompressible profile when the Van Driest scaling used, 

𝑢∗

𝑈∞
= 
1

𝐴
 sin−1 (𝐴 

𝑢̃

𝑈∞
) ,  𝐴2 = 

𝛾 − 1

2
 𝑀∞

2 (
𝑇̃∞

𝑇̃𝑤
) (2.100) 

 

And the Van Diest scaling fails to correlate the compressible velocity profiling when heat 

in present also it says that the classical mixing length is independent of Mach number. 

It has been also shown that the algebraic models are consistent with the Maise-McDonalds 

observations, and that has been done by using the singular perturbation methods. A lot of 

scientists and researchers have used the Cebeci-Smith model and the Baldwin-Lomax 

models and found a great agreement with the measurements when it’s applied to the 

adiabatic walls but there will be a larger differences when it is applied to a surface with 

heat transfer. 

In the two equations models the problem is even more complicated as the log-layer 

solution indicated that the length scale for the k-ω and the k-ϵ varies linearly with the 

distance from the surface and independent from the Mach number and the models can 

also predicts the Van Driest velocity thus it is consistent with two of the most impotent 

observations of Maise and McDonalds. 
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2.10.1  Shock-Induced Boundary-Layer Separation 

The interaction between the boundary-layer and the shock wave is one of the most 

challenging CFD problems. Many researchers have tried to model this physical 

phenomena since 1960’s, and since the time required to solve the Favre-averaged 

continuity, Navier-Stokes and energy-conservation equation at that time was quite long 

as the computer capacity at that time was relatively limited, the efforts were confined to 

algebraic models. Also, the best compressible-flow numerical algorithms of that era was 

the time-marching methods that required many thousands of time-steps to get the solution 

solved.  

The first solution to the Favre-averaged Navier-Stokes equation has been obtained by 

WILCOX [106] in 1974, Wilcox has used an advanced turbulence model for shock-

induced separation of boundary-layer. Six computations have been included in this CFD 

study, three for the reflection of an oblique shock from a flat plate and three for a flow 

into a compression corner. It has been shown that the two-equation turbulence models 

give a reasonably accurate description of the flowfield of an oblique shock reflection from 

a flat plate. The figure below shows a comparison between the computed and the 

measured pitot-pressure Pp. 

 

  

 

Figure 2.3: Computed and measured Pitot-pressure profile for Mach 3 shock-wave/ 

boundary- layer interaction, [106]. 

The numerical flowfield for the other three computations i.e. for the compression corners, 

as in LAW [59] are differ significantly from the experimentally measured flowfield even 

though the Mach number, Reynolds number and the shock strength are identical to that 

of the fat-plate/shock boundary-layer flat-plate case [106].   What is worth being 

mentioned here is that the turbulence model used is the Saffman-Wilcox mode with 

surface boundary conditions given by matching the law of the wall, and the numerical 

algorithm used was first order accurate explicit time-marching procedure. Back then, the 

              Saffmann-Wilcox k-ω2; ------- computed separation-bubble dividing streamline;   

•••• REDA-MURPHY [110]  
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limited computation capacity was an issue and made this calculations being done in a 

relatively long time and getting a steady-state conditions.  

Later on, both computational methods and computing ability have been improved 

significantly, as many researchers have done an innovative work such as KNIGHT [56] 

and HORSTMANN [48] made, for example, using the two-equation model computation 

for shock-separated flow, possible within a very short CPU time. 

 

2.10.2 The Use of Wall Function for Shock-Separated Flow 

Reducing the CPU time is the primary motivation behind using the wall functions in the 

large scale computations that require usually substantial computer resources. 

The most of the modern shock-separated computations have been done without using all 

functions although there is no evidence whatsoever that the law of the wall hold in 

separated regions and its use via wall functions is therefore a questionable approximation. 

For the k-ω model and following Wilcox 1989 we can derive the following compressible-

flow wall function  

𝑢∗ = 𝑢𝜏 [
1

𝑘
 ln (

𝑢𝜏𝑦

𝑣𝑤
) + 𝐶 − 1.13 

𝑢𝜏𝑦

𝑣𝑤
 𝑃+ + 𝑂( 𝑃+)2 ]

𝑘 =  
𝜌̅𝑤
𝜌̅
 
𝑢𝜏

2

√𝛽∗
 [1 + 1.16 

𝑢𝜏𝑦

𝑣𝑤
 𝑃+ +  𝑂( 𝑃+)2 ]

𝜔 =  √ 
𝜌̅𝑤
𝜌̅
 
𝑢𝜏

 

√𝛽∗ 𝑘𝑦
 [1 − 0.30 

𝑢𝜏𝑦

𝑣𝑤
 𝑃+ +  𝑂( 𝑃+)2 ]

}
 
 
 

 
 
 

 (2.101) 

 

Where  

𝑃+ = 
𝑣𝑤
𝜌 𝑢𝜏

3
 
𝑑𝑃

𝑑𝑥
 (2.102) 

 

Very little sensitivity of the placement to the grid point closest to the surface or at y+ 

below 100, has been shown after using the above wall function with the k-ω model. 
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3 Finite Volume Method (FVM) for CFD  

 

 

3.1 Introduction 

The finite volume method is a discretization method which is well suited for the numerical 

simulation of various types (elliptic, parabolic or hyperbolic, for instance) of conservation 

laws, it has been extensively used in several engineering fields, such as fluid mechanics, 

heat and mass transfer or petroleum engineering. 

 Some of the important features of the finite volume method are similar to those of the 

finite element method. It may be used on arbitrary geometries, using structured or 

unstructured meshes, and it leads to robust schemes. An additional feature is the local 

conservativity of the numerical fluxes that is the numerical flux is conserved from one 

discretization cell to its neighbor. This last feature makes the finite volume method quite 

attractive when modelling problems for which the flux is of importance, such as in fluid 

mechanics and heat and mass transfer. The finite volume method is locally conservative 

because it is based on a “balance” approach: a local balance is written on each 

discretization cell which is often called “control volume”; by the divergence formula, an 

integral formulation of the fluxes over the boundary of the control volume is then 

obtained. The fluxes on the boundary are discretized with respect to the discrete 

unknowns. 

The FV approach is easy to understand and program as the all terms that need to be 

approximated have a physical meaning, and that’s why it is so popular among the 

engineers. 

The disadvantage of this method is that it will be more difficult to be developed for the 

3D after the second order, this is due to the fact that the FVM requires three levels of 

approximation which is interpolation, differentiation and integration [65]. 
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3.2 FVM for diffusion problem 

A numerical method based on the integration form of the control volume  govern the 

transport equation of the fluid flow and the heat transfer has been developed, the Finite 

Volume (control volume) Method, and by considering a pure  diffusion in the steady state, 

which is the simplest transport process at all, the governing equation of the steady pure 

diffusion process can easily be derived from the general transport equation for the 

property  ∅ by deleting the convection and the transient terms. 

The general governing equation will be: 

div( Γ grad ϕ)  +  Sϕ =  0 (3.1) 

 

The control volume integration which forms the key steps of the finite volume method 

that distinguishes it from all other CFD techniques yields the following form: 

∫div( Γ grad ϕ)dV + ∫ 𝑆𝜙 𝑑𝑉

 

𝐶𝑉

 

𝐶𝑉

 =  ∫n. ( Γ grad ϕ)dA + ∫ 𝑆𝜙 𝑑𝑉

 

𝐶𝑉

  

𝐴

 

= 0 

(3.2) 

 

Steady state diffusion in a three-dimensional situation is governed by 

𝜕

𝜕𝑥
[Γ 
𝜕∅

𝜕𝑥
 ] + 

𝜕

𝜕𝑦
[Γ 
𝜕∅

𝜕𝑦
 ] + 

𝜕

𝜕𝑧
[Γ 
𝜕∅

𝜕𝑧
 ] + 𝑆∅ = 0 (3.3) 

 

Now, a three dimensional grid is used to subdivide the domain. A typical control volume 

is shown in the figure (3.1) below:  
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Figure 3.1 Three dimensional cell and neighboring nodes. 

A cell containing node P has six neighboring nodes identified as west, east, south, north, 

bottom and top (W, E, S, N, B and T). Were, the notion w, e, s, n, b and t is used to refer 

to the west, east, south, north, bottom and top cell faces respectively [65]. 

Integration of equation (3.4) over the control volume shown gives, 

 

[𝛤𝑒 𝐴𝑒 (
𝜕∅

𝜕𝑥
)𝑒 − 𝛤𝑤 𝐴𝑤 (

𝜕∅

𝜕𝑥
)𝑤] + [𝛤𝑛 𝐴𝑛 (

𝜕∅

𝜕𝑦
)𝑛 − 𝛤𝑠 𝐴𝑠 (

𝜕∅

𝜕𝑦
)𝑠]

+ [𝛤𝑡 𝐴𝑡  (
𝜕∅

𝜕𝑧
)𝑡 − 𝛤𝑏 𝐴𝑏  (

𝜕∅

𝜕𝑧
)𝑏] + 𝑆̅ ∆𝑉 = 0  

(3.4) 
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The equation above can be developed to a discretized form, as below,  

[𝛤𝑒 𝐴𝑒  
(∅𝐸 − ∅𝑃)

𝛿𝑥 𝑃𝐸
− 𝛤𝑤 𝐴𝑤  

(∅𝑃 − ∅𝑤 )

𝛿𝑥 𝑊𝑃
]

+ [𝛤𝑛 𝐴𝑛
(∅𝑁 − ∅𝑃 )

𝛿𝑦 𝑃𝑁
− 𝛤𝑠 𝐴𝑠  

(∅𝑃 − ∅𝑠 )

𝛿𝑦 𝑠𝑃
]

+ [𝛤𝑡 𝐴𝑡  
(∅𝑇 − ∅𝑃 )

𝛿𝑧 𝑃𝑇
− 𝛤𝑏 𝐴𝑏  

(∅𝑃 − ∅𝑏 )

𝛿𝑧 𝐵𝑃
]

+ (𝑆𝑢 + 𝑆𝑃  ∅𝑃) = 0 

(3.5) 

 

The above equation can be rearranged to give the discretized equation for the entire nodes: 

𝑎𝑃∅𝑝 = 𝑎𝑤𝑤 + 𝑎𝐸∅𝐸 + 𝑎𝑆∅𝑆 + 𝑎𝑁∅𝑁 + 𝑎𝐵∅𝐵 + 𝑎𝑇∅𝑇 + 𝑆𝑢 (3.6) 

 

Where: 

𝑎𝑤 𝑎𝐸 𝑎𝑆 𝑎𝑁 𝑎𝐵 𝑎𝑇 𝑎𝑃 

 
𝛤𝑤 𝐴𝑤
𝛿𝑥 𝑊𝑃

 
𝛤𝑒 𝐴𝑒 

𝛿𝑥 𝑃𝐸
  
𝛤𝑠 𝐴𝑠
𝛿𝑦 𝑠𝑃

 
𝛤𝑛 𝐴𝑛
𝛿𝑦 𝑃𝑁

  
𝛤𝑏 𝐴𝑏
𝛿𝑧 𝐵𝑃

  
𝛤𝑡 𝐴𝑡
𝛿𝑧 𝑃𝑇

 
𝑎𝑤 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝑎𝐵 + 𝑎𝑇

− 𝑆𝑃      

The boundary conditions can be introduced by cutting links with the appropriate face(s) 

and modifying the source term accordingly. 

 

3.3 FVM for Convection Problem 

The effect of the convection has to be taken into consideration in the problems where the 

fluid flow plays a role. In nature, the convection always occurs alongside with the 

diffusion, so a method of predicting combined convection and diffusion is examined. 

The steady convection-diffusion equation can be derived from the transport equation for 

a general property ∅ by deleting the transient term. 

div( ρ u ϕ)  =  div( Γ grad ϕ)  +  Sϕ  (3.7) 

The integration over the control volume 

∫  

 

𝐴

n. ( ρ u ϕ)𝑑𝐴 =  ∫n. ( Γ grad ϕ)dA + ∫ 𝑆𝜙 𝑑𝑉

 

𝐶𝑉

  

𝐴

 ( 3.8) 
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The equation represent the flux balance in a control volume, where, the net convection 

flux is given in the left hand side whether the right hand side gives the net diffusive flux 

and the generation or the destruction of the property ∅ within the control volume. 

The principal problem in the discretization of the convective terms is that the calculation 

of the value of transported property ∅ at control volume faces and its convective flux 

across these boundaries. The central differencing method of obtaining discretized 

equations for the diffusion and source terms on the right hand side of equation has been 

introduced. It would seem obvious to try out this practice, which worked so well for 

diffusion problems, on the convective terms. However, the diffusion process affects the 

distribution of a transported quantity along its gradients in all directions, whereas 

convection spreads influence only in the flow direction. This crucial difference manifests 

itself in a stringent upper limit to the grid size, which is dependent on the relative strength 

of convection and diffusion, for stable convection– diffusion calculations with central 

differencing [65].  

The central differencing scheme CDS has been used to represent the diffusion, and it 

seems logical to try linear interpolation to compute the cell face values for the convective 

terms on the left hand side of this equation. 

One of the properties of the CDS is that it doesn’t recognize the direction of the flow and 

the strength of the diffusion relative to the convection and also doesn’t possess 

transportiveness at high Peclet numbers and it is stable and accurate only at Peclet number 

less than 2. In the Upwind Differencing Scheme UDS, the diffusion term still discretized 

using piecewise linear profile and if the flow is not aligned with the grid lines, false 

diffusion will be produced. Many interpolation methods have been developed to 

overcome the limitation of the UDS and the CDS. The quadratic upwind interpolation 

scheme QUICK form is one of them LEONARD [60] which doesn’t offer a significant 

advantage over the other schemes. High-order-interpolation schemes, which involve 

more neighbor cells, acceptable convergence but lower robustness than the UDS, have 

been summarized by SKODA [94] like SMART from GASKELL AND LAU [37], 

MINMOND by HARTEN [44] and OSHER by CHAKRAVARTHY AND OSHER [21]. 

Other schemes like the Exponential Scheme, which is accurate for any Peclet number for 

the 1-D steady convection-diffusion but it is not accurate for the 2,3-D and it is 

computationally so expensive. The Hybrid Scheme which combines the advantage of both 

UDS and CDS where it is identical to the CDS for −2 ≤ 𝑃𝑒 ≤ 2 and it reduces to UDS 

with zero diffusion outside this range, but it still a first order accuracy in term of Tylor 

series. 
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3.4 Properties of discretization schemes 

In theory numerical results may be obtained that are indistinguishable from the ‘exact’ 

solution of the transport equation when the number of computational cells is infinitely 

large, irrespective of the differencing method used. However, in practical calculations we 

can only use a finite – sometimes quite small – number of cells, and our numerical results 

will only be physically realistic when the discretization scheme has certain fundamental 

properties. The most important ones are the conservativeness, boundedness and 

transportiveness. 

 

3.4.1 Conservativeness 

Integration of the convection–diffusion equation over a finite number of control volumes 

yields a set of discretized conservation equations involving fluxes of the transported 

property ∅  through control volume faces [65]. To ensure conservation of ∅  for the whole 

solution domain the flux of ∅  leaving a control volume across a certain face must be 

equal to the flux of ∅  entering the adjacent control volume through the same face. To 

achieve this, the flux through a common face must be represented in a consistent manner 

by one and the same expression in adjacent control volumes. Inconsistent flux 

interpolation formula gives rise to unsuitable schemes that do not satisfy overall 

conservation. 

 

3.4.2 Boundedness 

The discretized equations at each nodal point represent a set of algebraic equations that 

needs to be solved. Normally iterative numerical techniques are used to solve large 

equation sets. These methods start the solution process from a guessed distribution of the 

variable ∅  and perform successive updates until a converged solution is obtained. It has 

shown that a sufficient condition for a convergent iterative method can be expressed in 

terms of the values of the coefficients of the discretized equations: 

∑|𝑎𝑛𝑏|

|𝑎𝑃
ˊ |

 (3.9) 

 

Here 𝑎𝑃
ˊ  is the net coefficient of the central node, and the summation in the numerator is 

taken over all the neighboring nodes (nb). If the differencing scheme produces 

coefficients that satisfy the above criterion the resulting matrix of coefficients is 

diagonally dominant. To achieve diagonal dominance we need large values of net 

coefficient  𝑎𝑃− 𝑆𝑃  so the linearization practice of source terms should ensure that SP is 

always negative. If this is the case –SP is always positive and adds to 𝑎𝑃. Diagonal 

dominance is a desirable feature for satisfying the ‘boundedness’ criterion. This states 
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that in the absence of sources the internal nodal values of property ∅  should be bounded 

by its boundary values. 

 

3.4.3 Transportiveness 

The transportiveness property of a fluid flow can be illustrated by considering the effect 

at a point P due to two constant sources of φ at nearby points W and E on either side as 

shown in Figure below. We define the non-dimensional cell Peclet number as a measure 

of the relative strengths of convection and diffusion: 

Pe =  
𝐹

𝐷
=  

𝜌 𝑢

𝛤/𝛿𝑥
 (3.10) 

 

Where δx is the characteristic length (cell width) 

The lines in the figure below indicate the general shape of contours of constant ∅   (say 

∅  = 1) due to both sources for different values of Pe. The value of ∅   at any point can be 

thought of as the sum of contributions due to the two sources. 

 

 

 

Figure 3.2 Distribution of ∅ in the vicinity of two sources at different Peclet numbers, 

[65].

 

Let us consider two extreme cases to identify the extent of the influence at node P due to 

the sources at W and E: 

 No convection and pure diffusion (Pe → 0). 

 No diffusion and pure convection (Pe →). 

In the case of pure diffusion the fluid is stagnant (Pe → 0) and the contours of constant ∅  

will be concentric circles centered on W and E since the diffusion process tends to spread 

∅  equally in all directions. Figure 5.9a shows that both ∅ = 1 contours pass through P, 
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indicating that conditions at this point are influenced by both sources at W and E. As Pe 

increases the contours change shape from circular to elliptical and are shifted in the 

direction of the flow as shown in Figure (3.2). Influencing becomes increasingly biased 

towards the upstream direction at large values of Pe, so, in the present case where the 

flow is in the positive x-direction, conditions at P will be mainly influenced by the 

upstream source at W. In the case of pure convection (Pe →) the elliptical contours are 

completely stretched out in the flow direction. All of property ∅  emanating from the 

sources at W and E is immediately transported downstream. Thus, conditions at P are 

now unaffected by the downstream source at E and completely dictated by the upstream 

source at W. Since there is no diffusion ∅pis equal to ∅W. If the flow is in the negative x-

direction we would find that ∅p is equal to ∅E. It is very important that the relationship 

between the directionality of influencing and the flow direction and magnitude of the 

Peclet number, known as the transportiveness, is borne out in the discretization scheme. 

 

3.5 The upwind differencing scheme. 

One of the major inadequacies of the central differencing scheme is its inability to identify 

flow direction. The value of property φ at a west cell face is always influenced by both 

φP and φW in central differencing. In a strongly convective flow from west to east, the 

above treatment is unsuitable because the west cell face should receive much stronger 

influencing from node W than from node P. The upwind differencing or ‘donor cell’ 

differencing scheme takes into account the flow direction when determining the value at 

a cell face: the convected value of φ at a cell face is taken to be equal to the value at the 

upstream node. In Figure (3.4) we show the nodal values used to calculate cell face values 

when the flow is in the positive direction (west to east) and in Figure (3.3) those for the 

negative direction. 
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When the flow is in the positive direction, uw > 0, ue > 0 (FW > 0, Fe > 0) and When the 

flow is in the negative direction, uw 0, ue 0 (FW 0, Fe 0). 

 

3.6 The Hybrid differencing  

The hybrid differencing scheme of SPALDIN [97] is based on a combination of central 

and upwind differencing schemes. The central differencing scheme, which is second-

order accurate, is employed for small Peclet numbers (Pe < 2) and the upwind scheme, 

which is first-order accurate but accounts for transportiveness, is employed for large 

Peclet numbers (Pe ≥ 2). The hybrid differencing scheme uses piecewise formulae based 

on the local Peclet number to evaluate the net flux through each control volume face. 

 

3.7 Discritization of Instationary Term 

The coordinate of time has to be considered in the unsteady flows computation. Like the 

other three space coordinates the time must be discretized. The solution methods are 

essentially step by step. The conservation equation can be rewritten including the 

unsteady term, the convection, the diffusive flux and the source term, and as follows 

 

 

Figure 3.3 The 

Upwind 

Differencing 

Scheme in the 

Posetive 

Direction, 

[65] 

Figure 3.4 The 

Upwind 

Differencing 

Scheme in the 

Negative 

Direction, [65] 



Finite Volume Method (FVM) for CFD 52 

 

 

 

𝜕(𝜌∅)

𝜕𝑡
=  −𝑑𝑖𝑣 (𝜌∅𝜐) + 𝑑𝑖𝑣 (𝛤𝑔𝑟𝑎𝑑 ∅) + 𝑞∅ = 𝑓(𝑡, ∅(𝑡)) (3.11) 

 

The second-order implicit Euler method has been chosen to be used, which is accurate in 

term of taking the information from the previous two time steps for the current time step. 

The instationary term can be approached as follows 

∫
𝜕(𝜌∅)

𝜕𝑡

 

𝑣

 𝑑𝑣 ≈  
3(𝜌∅𝑃)

𝑚 − 4 (𝜌∅𝑃)
𝑚−1 + (𝜌∅𝑃)

𝑚−2

2∆𝑡
 (3.12) 

 

The superscripts m, m-1 and m-2 correspond to the two previous time steps and the current 

one. 

It is clear that the values of the transport variable used in the convection, the diffusive 

flux and the source terms, is ∅𝑚 and thus the method is fully implicit. The terms ∅𝑚−1 

and ∅𝑚−2  are added to the vector in the metrical equation.  

There are other methods like the explicit method, Crank-Nicolson Method mentioned in 

CRANK-NICOLSON [27] and Three Time Level method mentioned in REGAL [79]. 

 

3.8 Boundary Conditions 

To solve the mathematical system, boundary conditions have to be applied at the borders 

of the control volume and these boundary conditions should reflect the physical 

conditions at the boundaries.  

Mainly there are two methods of imposing the boundary conditions, the first is imposing 

the values of the variables at the boundary faces which is the so called Dirichlet boundary 

conditions. Also the boundary conditions can be imposed by specifying a fixed gradient 

at the boundary faces which is the so called von Neumann boundary conditions.  

In the FVM the types of the boundary conditions are basically, inlet, outlet, walls, 

symmetry and periodicity. The conservation of the scalar and the vectorial fluxes has to 

be ensured fat the interfaces of the multi-blocks computational domains. There are 

different possible combinations of the boundary conditions, and below the most common 

and numerically stable ones. 
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3.8.1 Inlet and Outlet Boundary Conditions 

In most cases, the values of the velocity components at the inlet is either given or can be 

directly calculated. 

As we implement a compressible working fluid, the pressure gradient is also imposed, 

where the pressure correction is given U′
i, in = Uci P

′
in, this for the case of subsonic flow. 

For the case of supersonic flows, the pressure is specified at the inlet using Dirichlet 

instead of Neumann boundary conditions, and hence the pressure correction becomes zero 

as its value is explicitly specified.  

Since the internal energy transport equation for the compressible flows has to be solved, 

the value of the temperature T has to be specified at the inlet cell faces. Normally, the 

value of the kinetic energy K is prescribed at the inlet face based on the turbulence 

intensity. Typically, the value of the turbulence intensity is being between 1% and 20% 

and it is known from the experiments or its influence on the numerical simulation is 

tested.  

Fixed value of the turbulence dissipation ϵ, using an estimation based on the kinetic 

energy and the characteristic length. The characteristic length is specific for each case.  

The values of the turbulence dissipation frequency, ω, for the case of the turbulence 

models derived from k-ω, can be computed from ϵ. 

At the outlet domain, the components of the velocity distribution make a part of the 

problem unknowns. Therefore, a constant velocity gradient is imposed at the outlet 

leading to extrapolate the values of the domain interior to the outlet boundary 

𝑈𝑖,𝑜𝑢𝑡 = 𝑈𝑖,𝑃 + 𝜆𝑜𝑢𝑡(𝑈𝑖,𝑃 − 𝑈𝑖,𝑄) (3.13) 

 

The parameter 𝜆𝑜𝑢𝑡 is the extrapolation factor and is derived from the distance between 

the cell centers and the boundary. 

𝜆𝑜𝑢𝑡 = 
|𝑋𝑝𝑞 − 𝑋𝑝|

|𝑋𝑄 − 𝑋𝑝𝑞| −  |𝑋𝑝𝑞 − 𝑋𝑝|
 (3.13) 

 

The index Q makes reference to the center point of the cell neighboring the boundary cell, 

whose center is P.  

In case of subsonic flow, the pressure at the outlet is set constant and the pressure 

correction P′ set to zero. In the individual boundary cells the pressure level set to constant 
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𝑃𝑐𝑜𝑛𝑠𝑡 or the pressure surface averaged at the outlet boundary, 𝑃𝑃𝑄 , can be fixed. A 

blending for both conditions is also possible 

𝑝𝑜𝑢𝑡 =∝𝑃 𝑃𝑃𝑄 + (1 −∝𝑃)𝑃𝑐𝑜𝑛𝑠𝑡 (3.14) 

For the supersonic flow, the pressure value at the outlet can be also extrapolated from the 

domain interior values, corresponding to a constant gradient, as the outlet pressure is also 

a part from the solution. 

 

3.8.2 Block Interface 

Most of the problems are made up of more than one domain with different topology, and 

the fluid flows from one domain to the other. These domains may be stationary or rotating 

components or through different parts. Different meshing strategies are desired and the 

position of the grid nodes at both sides of the blocks interface may not exactly match, 

which is known as the non-matching interface, and this problem needs to be dealt with. 

The non-matching in the turbomachines can take place between the rotor and the stator 

vanes or between the rotor and the exhaust nozzle, in both cases the non-matching is due 

to the relative motion, grid density, different blocking or the periodicity, the figure below 

shows a typical non-matching interface between two structural grids. 

 

 

Figure 3. 5: Typical block interface with non-matching nodes. 
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LILEK ET AL [61] suggested a numerical procedure and implemented further by 

RIEDEL [83], consists in dividing the interface faces into surfaces, defined by 

intersection of the interface faces of one block with the edges of the other non-matching 

block and calculating the fluxes conservation with these subfaces [63]. 

The numerical method used for GGI (general grid interface) in CFX is that the control 

surface approach used to perform the connection across a GGI attachment or periodic 

condition. To have a full freedom to change the grid topology and the physical distribution 

across the interface, a physically based intersection algorithm has been employed. A 

general intersection algorithm permits connections to be successfully made even when 

the resultant surfaces on either side of an interface do not physically “fit” together to form 

a well-defined physical connection. In addition, an automatic surface trimming function 

is performed by the GGI algorithm, to account for mismatched surface extent [5]. This 

gives the ability for successful attachment even if the surface of one side of the interface 

is larger than the surface on the other side, where the intersection is constructed between 

the overlapped regions. 

For the domains that rotate relative to one another the Multiple Frame of Reference MFR 

allow the analysis, which is appropriate for the cases focus on the rotor-stator interaction 

for rotating turbomachinery, and the MFR is actually a GGI base approach. 

 

3.8.3 Wall Boundary Conditions 

Considering an impermeable or non-porous walls where no mass flow in the wall normal 

direction and the convective flux at the wall flux disappeared. The velocity components 

at the wall velocity, due to the non-slip condition at the wall Ui = Ui.w. For the solution 

of the momentum equations at the wall cells, the diffusive flux is determined with the 

shear stress at the wall, τw, and its direction. The derivation of the diffusive flux makes 

use of the wall local coordinate system, (n, t, and b), where n corresponds to the direction 

normal to the wall, t to the flow direction in the cell center point, P, and b completes the 

orthogonal system, being normal to the n and t directions. 

The shear stress components can be directly evaluated with the local coordinate system 

aligned to the flow direction, where the shear stress is calculated with the velocity partial 

derivative. 

𝜏𝑛𝑛 = 2𝜇 
𝜕𝑈𝑛
𝜕𝑛

= 0,  𝜏𝑛𝑡 = 2𝜇 
𝜕𝑈𝑡
𝜕𝑛

, 𝜏𝑛𝑛 = 2𝜇 
𝜕𝑈𝑏
𝜕𝑛

= 0 (3.15) 

 

The normal vector, ni, is known from the problem geometry, while the tangential vector, 

ti, is only determined by the flow. In the third vector direction, bi, no flow takes places, 
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Ub,P = 0. The normal velocity component, Un,P , is calculated with the scalar product Ui,p 

ni. The tangential velocity vector, Ui,t,p, is obtained from the distance between the velocity 

vector, Ui,p , and the normal velocity vector, Ui,n,p . 

𝑈𝑖,𝑡,𝑝 = 𝑈𝑖,𝑝 − 𝑈𝑖,𝑛,𝑝 = 𝑈𝑖,𝑝 − (𝑈𝑗,𝑝𝑈𝑗)𝑛𝑖 (3.16) 

 

The tangential direction vector. ti  for the tangential velocity vector 𝑈𝑖,𝑡,𝑝 is evaluated as 

follows 

𝑡𝑖 = 
𝑈𝑖,𝑡,𝑝

|𝑈𝑖,𝑡,𝑝|
 (3.17) 

 

As usual, the diffusive flux at the wall face is calculated with the shear stress in the flow 

direction and the integral is approximated by the midpoint rule. The diffusive flux at the 

wall, in the numerical implementation of the FVM is computed with differ correction, 

with the shear stress from the previous iteration in order to keep the matrix diagonal 

coefficient the same for all cells. 

Neumann boundary conditions are imposed at the wall for both the pressure and the 

pressure correction term, and that leads to the extrapolation from the domain interior. 

The value of the wall temperature can be fixed or the derivative of it can be imposed, 

which is equivalent to specify the wall heat flux 𝑞𝑤 = −𝜆 (
𝜕𝑇

𝜕𝑛
)
𝑤

. 

The value of the derivative of the kinetic energy at the wall is also assumed to be zero, 

which leads to Dirichelt, Kw = 0, and Neumann, (
𝜕𝑘

𝜕𝑛
) = 0, boundary conditions.  

The value of the dissipation is fixed at the wall boundary, for the turbulence models based 

on the kinetic energy k and the dissipation ϵ. CHAPMAN AND KUHN [22] suggested 

an appropriate approximation  

𝜖𝑤
𝑘−𝜀 =  𝜈 

4𝑘𝑝

𝑦𝑝2
− 𝜖𝑝 (3.18) 

 

The wall function assumes that the first mesh point is inside the logarithmic region of the 

boundary layer, otherwise, the application is not valid, as in some case where a successive 

meshes need to be generated until satisfying the logarithmic conditions, or to employ a 

modified version of the wall function, as VIESER, ESCH AND MENTOR [57] have 
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done, where the law of the wall is blended with analytical expression of ω near the wall 

for k-ω based turbulence model.  

 

3.8.4 Free Slip 

Symmetry boundary condition, Euler wall or the free slip wall, are incompressible, like 

the non-slip wall but the flow can slip freely at its surface without any frictional stress at 

the wall boundary. No mass flux crosses the wall and the diffusive flux accounts for the 

momentum conservation. It normally constitutes simplifications of physical aspects of 

the fluid flow [63]. 

   

3.8.5 Periodic Interface 

The spatial periodicity is a characteristic of the cases where geometrical patterns are 

repeated in the computational domain. The blading channel of the turbomachines is the 

typical example of that. 

For the simplicity of the periodic cases only one instance of the whole pattern can be 

simulated, so we can save much computational resources [63]. This simplification is 

acceptable for the stationary and homogenous flows. And since we simulate single 

periodic element, adequate boundary conditions have to be set at the interface where the 

next periodic element would be. At the periodic interface, the transport values have to be 

assumed to have the same value at the both sides of the interface. 

 

3.9 The Pressure-Velocity Coupling 

Discretizing the mass flow through a surface of the control volume must be done carefully 

to lead to a proper pressure-velocity coupling and to accurately handle the effect of 

compressibility. The CFD code we implement, uses a co-located or non-staggered grid 

layout such that the control system we use is identical for all transport equation, as 

mentioned in PATANKER [72] but the co-located method lead to a decoupled pressure 

field. An alternative discretization for the mass flow, has been introduced by RHI AND 

CHOW [81] to avoid the decoupling. MAJUMDAR [64] has modified this method to 

remove the dependence of the steady-state solution on the time step. In Ansys CFX, a 

similar strategy is adopted by applying a momentum-like equation to each integration 

point [4]. 
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3.10 Solver 

Solving the following algebraic system  

𝐴𝑃
∅ + ∑ 𝐴𝑙

∅ ∅𝑙 = 
𝑙

𝑄𝑃
∅ (3.19) 

 

Where the matrix A contains the coefficients related to the variables, which are implicitly 

solved, as the independent vector Q contains the source term, the explicitly related 

variables and the differed correlations. We have the matrix coefficients AP and Al depend 

on the velocity components which are themselves unknowns, because of the non-linearity 

property of the transport equation. Thus, the solution of the system is divided into inner 

and outer iterations. The source terms and the matrix coefficients at a given iteration n, 

can be calculated with the previous values of n-1. Constant values of AP and Al  are chosen 

for the processing of inner iterations, where the algebraic system is solved, and after that 

the values of the velocity and the density are updated with the new values and then the 

outer iteration begins. Convergence criteria are needed to decide when the outer and the 

inner loops to stop. The most common criteria are based on the sum-norm, maximum-

norm and the root-mean-square RMS- norm of the residuum vector. When the residuum 

vector is chosen, a common convergence criteria can be applied where the value of the 

vector is smaller than a given value of ϵ. To increase the stability and as the other 

procedures can be used and the under-relaxation is one of the common techniques. 

Reinforcing the matrix diagonal dominance for the impulse equation in the inner 

interaction, can also increase the convergence stability. 

 

3.10.1  The Segregated Solver and the Implicit Pressure Correction 

An explicit treatment has been applied to the impulse equations, the pressure term, which 

means that it is included in the source term and its value is taken from previous solution 

iteration. So that, the impulse equation gives only a solution for the velocity components. 

To solve the pressure field, a coupling of pressure and the mass flow rate, by applying the 

equation of mass conservation, is needed, which is known as pressure correction method.  

Making use of the staggered variables arrangement instead of the collected arrangement, 

is first introduced by PATANKAR [72] in the SIMPLE algorithm. DEMERDZIC ET AL 

[30] has extended the SIMPLE algorithm to be applied to the compressible fluids by 

proposing an approximation of the pressure and the pressure correlation. VAN 

DOORMAL AND RAITHNY [101] have modified it further with the SIMPLEC 

algorithm or by ISSA [50] in the PISO algorithm, which is for the instationary problem 

or when large time steps.  
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3.10.2 Coupled Solver 

The segregated solvers was the base of the first FVM codes but the recent ones are based 

also on the coupled solvers or just on the coupled solvers, as the coupled solvers make no 

use of the implicit pressure correction method but rely directly on the discretization of the 

original mass conservation equation. The unknown vector includes the pressure variable 

and it is no anymore treated explicitly but implicitly in the algebraic system and solved 

simultaneously with the velocity component. Generally, the solution procedure is the 

same of the staggered solver but the pressure and the velocity components and the mass 

flow don’t need correction. Finally, the mass and impulse conservation are first solved 

then the energy conservation equation and then the turbulent transport equation and 

eventually the additional transport equation of the system [63]. 

 

3.10.3 Linear Solver 

A multigrid accelerated Incomplete Lower Upper factorization technique for solving the 

discrete system of linearization equations has been used by the solver we applied.  

It is an iterative solver, whereby the exact solution of the equation is approached during 

the course of several iteration [5]. A general matrix represent the linearized system of 

discrete equations 

[𝐴][𝜑][𝐵] (3.20) 

 

by starting with an approximate solution φn, the above equation can be solved iteratively, 

which is to be improved by a correction φ′ to yield a better solution  

𝜑𝑛+1 = 𝜑𝑛 + 𝜑′  (3.21) 

 

Where 𝜑′ is the solution of: 

𝐴𝜑′ = 𝑟𝑛  (3.22) 

 

With  𝑟𝑛 , the residual obtained from  

𝑟𝑛 = 𝑏 − 𝐴𝜑𝑛 (3.23) 
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And by repeating the application for this algorithm will yield to the desired accuracy. 

Iterative solvers such as ILU tend to rapidly decrease in performance as the number of 

the computational mesh elements increases, and the performance also decrease if there a 

large aspect ratio [5]. The Strongly Implicit Decomposition behaves likewise. 

Interactive methods like the Conjugate Gradient Square CGS or the Biconjugate 

Stabilized BCGSTAB are considerably faster and more stable as mentioned in PERIC 

[35].  

By solving the algebraic system by distributing it over several computers or computer 

clusters which run in parallel, can also accelerate the computational speed, as mentioned 

by SKODA [94]. For the parallelization, the original computational mesh is divided, or 

partitioned, in several blocks, as if they were blocks with non-matching interfaces. The 

solution of each one of these blocks is assigned to one computer or core and the interface 

information, or interface fluxes, are exchanged between them. Mainly due to the data 

exchange between processing units, the performance increase is not a linear function of 

the number of processor or cores and is bound to a maximum. 
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4 Turbines Concepts and Configuration  

 

 

4.1 Introduction 

The automobile turbocharger is the best known use of the radial inflow turbines, but they 

also appear in the auxiliary power turbines and, for example, in the turboprop aircraft. 

They are used also in the geothermal energy production, in processing industries, 

including refineries, natural-gas processing, and air liquefaction. In the automotive 

application burned gases from the engine exhaust manifold are directed into a radial 

inflow turbine of the turbocharger, which powers a centrifugal compressor on the same 

axis. The compressor, in turn, increases the pressure and density of the supplied air to the 

engine. As the engine speed may change quite rapidly, turbochargers must respond to the 

changing operating conditions nimbly. Therefore they are made light in weight and low 

in inertia.  

The main difference between the radial inflow turbine used in the turbocharger and the 

one proposed in our application is that the power available in the exhaust gases for the 

turbine in the turbocharger is much more than sufficient than the power demand to run 

the compressor and that’s why the designer for this kind of applications doesn’t really 

care about the efficiency and the optimum design. Therefore, we see that the turbine in 

the turbocharger is normally designed to be nozzleless, to gain some production cost and 

to produce it with a lower inertia. However, in our application and in the applications 

where the efficiency and designing the turbomachine at its optimum state, is a matter, 

more care has to be given to the design of the nozzle raw and of course, for the other 

components. 

In this chapter we introduce the main design procedures used in the up-to-date research 

development process. Then we’ll go through defining the main parameters and constraints 

and the effect of each parameter on the turbine performance. 
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4.2 Aerodynamic design strategy 

In the design procedures we shall address the basic stage component design, the nozzle 

and the rotor, the interstage or the vaneless annular passage will as well be dealt with, and 

inserted before and after the nozzle row. Specific aerodynamic and geometric calculations 

at stations located at the exit and inlet of all components, are required for component 

sizing. 

It is conveniently used to specify the stage performance in term of total-to-static 

𝜂𝑡−𝑠 performance to the rotor as shown in the equation 4.1, mentioned in AUNGIER [8]. 

Basically, the designer has to provide the stage inlet total temperature Tt1, the stage inlet 

total pressure, Pt1, the stage mass flow rate, the pressure ratio, the specific speed ns, the 

velocity ratio νs, the total-to-static efficiency ηt-s and the equation of state of the working 

fluid. The figure (4.1) below is a schematic represent in the station notations of the turbine 

used. 

 

Figure 4.1: The station notations of the stage. 

Where the  𝜂𝑡−𝑠 is defined as follows 

𝜂𝑡−𝑠 = 
ℎ𝑡1 − ℎ𝑡5
ℎ𝑡1 − ℎ5

 (4.1) 
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After BALJE [15] we define the specific speed in a dimensionless form as follows: 

𝑛𝑠 = 
𝜔 √𝑄5

(∆𝐻𝑖𝑑)
3
4⁄
 (4.2a) 

Where the ∆𝐻𝑖𝑑 is the ideal heat drop correspond to an isentropic expansion from the 

stage inlet total conditions to the rotor exit static pressure, and 𝑄5is the volume flow rate 

at the exit of the od the rotor and it is defined as the ratio of the mass flow rate to the rotor 

exit total density  

𝑄5 =
𝑚̇

𝜌𝑡5
 (4.2b) 

Selecting the values of the velocity ratio and the specific speed really determine the 

quality of the design, but the selection of the total-to-static efficiency is a consequence of 

these choices. General correlations have been proposed to help in the initial choice of 

these parameters. For the radial inflow turbine, there are already some correlations existed 

which have been introduced by many researchers, such as, WOOD [110], LINHAR [62] 

BALJE [15], CORDIER [26] and ROHLIK [85]. 

 

Figure 4.2: Balje Diagram for radial inflow turbines, [32]. 

Using extensive empirical data, CORDIER [26] carried out intensive empirical analysis 

of good turbomachines and attempted to correlate the data in term of specific speed, Ns, 
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and the specific diameter Ds. This concept has been further improved by BALJE [15] and 

eventually plotted a graph correlates these two parameters, as shown in the figure (4.2) 

above. 

Where the specific diameter defined as follows 

𝐷𝑠 = 
𝐷 4 (∆𝐻𝑖𝑑)

1
4⁄

√𝑄5
 (4.3) 

For the preliminary design system, a generalized stage performance chart, shown in figure 

(4.3), has been used to help in choosing the initial values. This chart is based on the work 

done by the researcher mentioned in the paragraph above. The preferred range for the 

specific speed, and as a general rule, can be taken between 0.45 -0.75, although we are 

not really free and sometimes we’ve to choose beyond this range of values due to some 

restrictions like mechanical integrity, Mach number and speed. And that’s why the chart 

has been extended further. 

 

 

 

Figure 4.3: Balje diagram for a radial inflow turbines, [32]. 
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The correlations which relates the values of the total-to-static efficiency, the speed ratio 

with the specific speed can also be presented to make use of it in choosing arbitrary 

values. 

𝜈𝑠 = 0.737 𝑛𝑠
0.2  (4.4) 

 𝜂𝑡−𝑠 = 0.87 − 1.07(𝑛𝑠 − 0.55)
2 − 0.5 (𝑛𝑠 − 0.55)

3 (4.5) 

 

The performance analysis can be proceeded when we finished the preliminary design of 

the turbine, and improving the estimated values of the specific speed, the total-to-static 

efficiency and the velocity ratio. 

To complete a well-matched and optimized stage components, the preliminary procedure 

is rather ineffective as it needs more parameters to be introduced, but it can be used as a 

candidate where the designer starts adjusting these parameters to reach an acceptable or 

even an optimum design point. 

ROHLIK [85] showed a breakdown of the losses for each component of the radial inflow 

turbine, and as can be seen in the figure 4.4 below 

 

 

Figure 4.4: Distribution of losses along envelope of total to static efficiency, [85]. 
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4.2.1 The flow and load coefficients 

Defining the flow and the load coefficients enable the designer to describe the overall 

dimension of the machine so that assessment and comparison can be easily made. These 

parameters have been extensively used in the design of axial turbines and eventually also 

have been used to the same extent with the radial turbines. The blade speed in the radial 

turbine is widely varied due to the change in the radius between the inlet and exit, unlike 

in the axial turbines. The loading coefficient can be defined based on the rotor inlet speed  

𝜓 = 
∆ℎ₀

𝑈4
2 = 

𝐶𝜃4
 

𝑈4
− 𝑟 

𝐶𝜃5
 

𝑈4
 (4.6) 

 

Where 𝑟 =  
𝑟5𝑠

𝑟4
, and 𝐶𝜃5

  is the tangential component for the velocity at the exit of the rotor 

which is negligibly small compared to the 𝑈4 at the design point. 

The flow coefficient is non-dimensionlized to the rotor inlet speed, and it is defined in 

term of the meridional velocity as follows 

𝜑 =  
𝐶𝑚4
 

𝑈4
 (4.7) 

 

The power coefficient is also an important parameter and it is defined as the ratio of the 

produced power to the inlet total enthalpy and as follow 

𝑆𝑤 = 
𝑊

𝑚 ̇ ℎ₀1
 (4.8) 

 

BAINES [11] has introduced a correlation between the flow and load coefficients with a 

contour of constant total to static efficiency, and as shown in the figure (4.5) below 
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Figure 4.5: Correlation of measured efficiency of a range of turbine designs with stage 

loading and flow coefficients, [11]. 

 

From the figure above, the maximum efficiency occurs for the flow coefficient in the 

range of 0.2-0.3 and loading coefficient in the range of 0.7-0.9. We have started with 

combinations of values within these ranges. 

 

4.2.2 Aerodynamic Considerations of the Rotor Exit 

The Mach number at the shroud has to be designed in a way not to reach unity to avoid 

an oblique or a normal shock wave from being happened. The blade height at the exit is 

also to be chosen sufficiently large to reduce the relative velocity. However, choosing the 

minimum exit Mach number begins by assuming the radial inflow turbines operates under 

conditions such that the absolute velocity at the exit of the rotor is axial, then the mass 

balance is to be written as follows. 

𝑚̇ =  𝜌5𝐶5𝐴5 = 𝜌5𝐶5 𝜋 (𝑟5𝑠
2 − 𝑟5ℎ

2 ) =  𝜌5𝐶5 𝜋 𝑟5𝑠
2  (1 − 𝑘2) (4.9) 

Where  𝑘 =  𝑟5𝑠
2 /𝑟5ℎ

2  , and then, 

𝑚̇ =  
𝑃5
𝑅𝑇5

 𝑀5 √𝛾𝑅𝑇5 𝜋 𝑟5𝑠
2  (1 − 𝑘2) (4.10) 
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A form of the flow coefficient as introduced in KORPELA [57] is as follows 

𝛷 = 
𝑚̇

𝜌𝑜1𝐶𝑜1𝜋 𝑟2
2 = 

𝑃5
𝑃𝑜1

 (
𝑇𝑜1
𝑇5
)

1
2⁄

 𝑀5  
𝑟5𝑠
2

𝑟4
2  (1 − 𝑘

2) (4.11) 

 

Substituting 
𝑈5𝑠
2

𝑈2
= 

𝑟5𝑠
2

𝑟2
 and dividing it through 𝑈4

2 in the equation above and by have 

𝑊5𝑠
2 = 𝐶5

2 + 𝑈5𝑠
2  we get, 

𝛷 = 
𝑃5
𝑃𝑜1

 (
𝑇𝑜1
𝑇5
)

1
2⁄

𝑀5  
𝑀5𝑅𝑠  
2 − 𝑀5

2

𝑀𝑜𝑢
2

 (1 − 𝑘2) (4.12) 

 

By solving it to the 𝑀5𝑅𝑠  
  

𝑀5𝑅𝑠  
2 = 𝑀5

2 + 
𝛷𝑀𝑜𝑢

2  

(1 − 𝑘2)
 
1

𝑀5
(1 + 

𝛾 − 1

2
 𝑀5

2)

1
2⁄

 (
𝑃5
𝑃𝑜1

) (
𝑇𝑜1
𝑇𝑜5
)

1
2⁄

 (4.13) 

 

Where the pressure ratio and the stagnation temperature ratio are given as follow: 

𝑃5
𝑃𝑜1

= (1 − 
𝑆𝑤
𝜂𝑡𝑠
)

−𝛾
(𝛾−1)⁄

          
𝑇𝑜1
𝑇𝑜5

= 
1

1 − 𝑆𝑤 
  (4.14) 

 

We can also define B as  

𝐵 = 𝛷𝑓  (1 − 
𝑆𝑤
𝜂𝑡𝑠
)

−𝛾
(𝛾−1)⁄

 
1

1 − 𝑆𝑤 
 (4.15) 

Where  

𝛷𝑓 = 
𝛷𝑜𝑀𝑜𝑢

2

(1 − 𝑘2)
 (4.16) 
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The relative Mach number at the exit will be as follows: 

𝑀5𝑅𝑠  
2 = 𝑀5

2 + 𝐵 (
1

𝑀5
2 + 

𝛾 − 1

2
)

1
2⁄

  (4.17) 

 

After differentiating the equation above and setting it equal to the zero, we get the 

minimum relative exit Mach number as follows: 

𝑀5𝑅𝑠  
 = [𝑀5

2 + 𝐵 (
1

𝑀5
2 + 

𝛾 − 1

2
)

1
2⁄

]

1
2⁄

 (4.18) 

The figure below shows the minimum of  𝑀5𝑅𝑠  
  marked by small circles, and since we 

assumed that the velocity at the exit is axial, this follows: 

 

Figure 4.6: Relative Mach number M5R as a function of Mach number M5, with Φf as a 

parameter. The pressure ratio is po1/p5 = 2, with ηts = 0.85 and γ = 1.4, [57] 
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𝑀5
2

𝑀5𝑅𝑠  
 =  

𝐶5
𝑊5𝑠

cos 𝛽5𝑠 (4.19) 

It’s clear from the plotting that the minimum Mach number at the exit of the rotor occurs 

when the value of β5 = - 56° for the pressure ratio of value 2 and ηts = 85 %. These values 

can be deviate a little bit due to violating some other design constraints and to meet the 

mechanical and the manufactural integrity of the complete design.  

ROHLIK [85] has suggested to the relative exit to the inlet velocity ratio W5/W4 =2, 

which gives a good design from the rotor. And that for the shroud W5s/W4 =2.5. 

The ratio of the blade height to the rotor inlet diameter is also assumed to be in arrange 

of 0.5 – 1.5. 

 

4.2.3 The Optimum Incidence Angle and the Blade Number  

KORPELA [57] has suggested that the slip factor of the centrifugal compressor to be 

adopted, which is, as Sanitz reported, given as follows: 

𝜎 =  
𝐶𝜃4
𝐶𝜃4
′         𝑤𝑖𝑡ℎ   𝜎 = 1 − 

0.63 𝜋

𝑍
 (4.20) 

Where Z is the number of blades and 𝐶𝜃4
′  is the tangential velocity component at the inlet 

of the rotor in the absence of the slip factor. For the radial blades 𝐶𝜃4
′ = 𝑈4. And that 

gives the following: 

𝐶𝜃4
𝑈4

=  1 − 
0.63 𝜋

𝑍
 (4.21) 

We have also 

𝐶𝜃4 = 𝑈4 + 𝑊𝜃4 = 𝑈4  +  𝑊𝑟4 tan 𝛽4 = 𝑈4  + 𝐶𝜃4  
tan 𝛽4
tan𝛼4

 (4.22) 

And that leads the ratio 
𝐶𝜃4

𝑈4
 to be as follows: 

𝐶𝜃4
𝑈4

= 
tan𝛼4

tan𝛼4 −  tan𝛽4 
 (4.23) 

At the condition of minimum Mach number we have, (See appendix A), α4 = π/2 + β4/2. 

We get 
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𝐶𝜃4
𝑈4

= cos β4 (4.24) 

We have also the number of blades related to the inlet relative flow angle β4 

cos β4 = 1 − 
0.63 π

Z
  (4.25) 

KORPELA [57] suggested that if this angle corresponds to the optimum nozzle angle for 

a minimum Mach number at the entry, the substitution β4 = 2 α4 – π, and the suggestion 

of WHITFIELD [104] leads to the formula of the optimum nozzle angle  

cos β4 =  
1

√𝑍
 (4.26) 

The figure 4.7 shows the optimum angle along with the GLOSSMAN’s [41] suggestions  

𝑍 = 
𝜋

3
 (110 − 𝛼4) tan𝛼4 (4.27) 

AUNGIER [8] suggested also a correlation for the number of blades as function of the 

rotor inlet flow angle  

 

Figure 4.7: Blade width-to-radius ratio as a function of the relative velocity ratio 

W5s/W4 for relative flow angles corresponding to minimum Mach number at the inlet 

and at axial exit. The pressure ratio is po5 /p5 = 2, with ηts = 0.85, γ= 1.4, and the static enthalpy loss 

coefficient of the stator is ζs = 0.15. The exit hub to shroud radius ratio is k = 0.2, [57]. 
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4.3 Turbine Geometry  

The researchers, ROHLIK [85], BALJE [15] and AUNGIER [8] have invested a lot of 

effort in outlining a unified methodology of approaching the optimum design geometry 

of a radial inflow turbine for a particular operating conditions. Therefore, turbine 

geometries have been examined in detail for calculated points on and near the curve of 

maximum static efficiency. To illustrate the change in optimum turbine shape with the 

application as represented by specific speed, several design parameters were then plotted 

as functions of specific speed. 

Among these parameters, the optimum stator-exit angle, the ratio of the stator exit height 

to the rotor inlet diameter versus the specific speed have been plotted. The ratio of the 

exit tip diameter to the rotor inlet diameter has ben also showed. The variation of the 

blade- speed ratio with the specific speed along the maximum static efficiency is also 

plotted by ROHLIK [85], and the nature of calculations was such that the ratio of the 

blade tip speed to the actual work is almost constant for the all points calculated, as the 

blade speed ratio includes ideal rather than actual work, and its variation reflex the 

variation in static efficiency in the turbine.  

 

4.3.1 Radial-Inflow Turbine Rotor Sizing 

After introducing the inlet total pressure and temperature, the mass flow rate and the 

pressure ration and with the aid of the equation of state, we can immediately calculate the 

static pressure at the exit of the rotor and the ideal enthalpy drop. The rotor tip blade speed 

and the discharge spouting velocity can be given as follows: 

𝐶𝑜𝑠 = √2 ∆𝐻𝑖𝑑 
   

(4.28) 

𝑈4 = 𝜈𝑠 𝐶𝑜𝑠   (4.29) 

 

And from the specified efficiency, the total enthalpy at the exit of the rotor can be 

calculated 

𝐻5 = 𝐻1 − ∆𝐻𝑖𝑑 𝜂𝑠 (4.30) 

 

After AUNGIER [8] the discharge total density can be assumed, for the sake of, simplicity 

to be equal to the static density at the exit of the rotor. This assumption is true when the 

absolute velocity at the exit of the rotor is negligibly small otherwise, this value needs to 
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be corrected. The specific speed equation introduced by BALJE [15] can then be solved 

for the rotor speed ω, and hence the rotor tip radius is defined 

𝑟4 =
𝑈4
𝜔

 (4.31) 

 

The effect of the losses that occurs upstream the rotor influences the rotor tip sizing, and 

by estimating the isentropic enthalpy loss an estimate of the rotor inlet total pressure 

found to be as follows: 

𝑃𝑡4 = 𝑃𝑡4 − 𝜌𝑡1  ∆𝐻𝑖𝑑 (1 − 𝜂𝑠)/4 (4.32) 

 

For the calculations of the sizing the turbine at the optimum design point, it is assumed 

that the rotor exit tangential velocity equal to zero, in practice the value of it deviates a 

bit away from the zero, and then the inlet tangential velocity can be defined as follows: 

𝐶𝜃4 = 𝑈4𝜂𝑠/(2𝜈𝑠
2)  (4.33) 

 

4.3.2 Radial-Inflow Turbine Design Specifications 

AUNGIER [8] suggested the following design specifications to be effective and sufficient 

to complete the rotor design, which are, the inlet flow angle α4, the inlet blade thickness 

tb4, the exit blade thickness tb5, the exit hub radius rh5, the exit shroud radius rs5, the axial 

length LR, the number of rotor blades NR, the inlet blade angle β4, and the impeller blade 

type, the latter considered either  a straight-line-element or radial element blade which is 

preferred for our application and for the applications of high speed turbines, where the 

inlet blade is considered to be right angled i.e. 90° 

Default values considered to be a reasonable estimation and these values are to be 

subsequently revised. For the nozzle exit flow angle or the rotor inlet absolute angle 

ROHLIK [85] has recommended an equation which relates it to the specific speed and as 

follows: 

𝛼4 = 10.8 + 14.2 𝑛𝑠
2 (4.34) 
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A similar correlations have been suggested by AUNGIER [8] for the blade thickness and 

exit hub radius: 

𝑡𝑏4 = 0.04 𝑟4 (4.35) 

𝑡𝑏5 = 0.02 𝑟4 (4.36) 

𝑟ℎ5 = 0.18 𝑟4 (4.37) 

 

The following procedure has been found to be effective in estimating values for exit 

shroud radius and the axial length which based on maintaining a reasonable ratio passage 

width-to-the flow path radius of curvature. 

𝐶𝑚5
𝐶𝑚4
⁄ = 1 + 5( 𝑏4/𝑟4)

2 (4.38) 

From the mass balance and the values of Cm4 and b4 with the assumption of Cθ5 is zero, 

the value of rh5, and similarly we can find the value of rs5 and then the axial length can be 

estimated as follows: 

𝐿𝑅 = 1.5( 𝑟𝑠5 − 𝑟ℎ5) (4.39) 

The correlation proposed by JAMIESON [52] has been modified by AUNGIER [8]  and 

ROHLIK [85] to develop an empirical equation to estimate the optimum number of the 

turbine blades and as follows:  

𝑁𝑅 = 12 + 0.03(33 − 𝛼4) (4.40) 

Where 𝛼4 is measured from the tangent. It is clear the number of blades has to be rounded 

to get an integer value for the number of blade. It is also worth to be mentioned here that 

the estimation of the inlet blade angle is based on the operation at the optimum incidence 

angle and based in the slip factor model described by AUNGIER [8] and as the slip factor 

depends on the inlet blade angle, iteration is needed to converge on a correct blade angle 

of the turbine rotor inlet 

The limiting radius ratio has been ignore form the sip factor model to get a simplified 

form of it, and that assumes avoiding the blade too short to be effective, and the this 

assumption can be checked in the performance analysis of the design procedures, hence 

the slip factor is being given as follows: 

 

𝜎 = 1 − √sin 𝛽4 /𝑁𝑅
0.7  (4.41) 
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𝐾𝐵4 = 1 − 𝑁𝑅 𝑡𝑏4/[ 2𝜋 𝑟4  sin 𝛽4 ] (4.42) 

  

𝐾𝐵4 is the impeller blockage factor. 

This parameter defines the fraction of the flow passage available for the through-flow 

inside the blade after correction for the blade metal blockage. AUNGIER [8] said that the 

since the slip factor is defined based on the flow velocity inside the blade, and since the 

Cm4 defines the outside flow velocity, the ideal tangential velocity inside the blades is 

approximated by assuming the gas density equal to its value outside the blades, and that 

means, 

𝐶𝜃4
∗ =  𝜎 [ 𝑈4 − 𝐶𝑚4

𝑐𝑜𝑡𝛽4
𝐾𝐵4

 ] (4.43) 

 

Inside the blades, the ideal and the actual incidence angle can be defined as follows: 

𝑖4
∗ = 𝛽4 − 90° + tan

−1[ (𝑈4 − 𝐶𝜃4
∗ )

𝐾𝐵4
𝐶𝑚4

 ]   (4.44) 

𝑖4
 = 𝛽4 − 90° + tan

−1[ (𝑈4 − 𝐶𝜃4
 )

𝐾𝐵4
𝐶𝑚4

 ] (4.45) 

 

It’s clear that for the default values of the blade inlet, both values of the incidence angles 

will be equal. 

The value of the static enthalpy can be found from the velocity components and the 

absolute value of the enthalpy at the inlet, and as follows: 

ℎ4 = 𝐻4 − 
1

2
 (𝐶𝑚4

2 − 𝐶𝜃4
2  )  (4.46) 

Using the equation of state at the rotor inlet, the entropy can be found as the total enthalpy 

and pressure at the inlet are known, and thus, we can find all the other properties at the 

rotor exit using the equation of state, the entropy and the exit static pressure. The width 

of the blade inlet can be estimated from the equation of mass conservation, 

𝑏4 = 𝑚̇/[2𝜋𝑟4𝜌4𝐶𝑚4]̇  (4.47) 
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The rotor exit with is the, of course, the difference between the rotor exit hub and shroud 

radiuses. We already found the value of the total rotor exit enthalpy in the equations 

previously and since we have assumed the tangential velocity component at the rotor exit 

is zero, the mass balance can be performed at the rotor exit by an iterative way, 

𝐶𝑚5 = 𝑚̇/[2𝜋𝑟5𝜌5 𝑏5 ]̇  (4.48) 

ℎ5 = 𝐻5 − 
1

2
 𝐶𝑚5
2  (4.49) 

 

All the static thermodynamic conditions are defined as the static density and enthalpy by 

applying the equation of state, and these values are to be improved throughout the 

iteration procedure. 
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4.3.3 Rotor Design Evaluating 

The researchers have provided some useful guidelines for evaluating the rotor design 

results in the preliminary phase of design and the table below shows the most important 

parameters and the preferred relations of them. 

Table 4.1: The Recommended Range of the Optimum Design Parameters. 

Parameter Recommended Range Source 

Flow angle at the rotor inlet  α4 68-75° 
DIXON [31] and 

ROHLIK [85] 

Rotor vane exit angle β5 -50 - -70° 
WHITFIELD and 

BAINES [104] 

Rotor exit vane diameter hub to 

shroud ratio  D5h/D5s 
˂ 0.4 

DIXON [31] and 

ROHLIK [85] 

Rotor exit to the inlet vane diameter 

Ratio D5s/D4    
˂ 0.7 

DIXON [31] and 

ROHLIK [85] 

Mean rotor diameter ratio D5/D4 0.53-0.66 
WHITFIELD and 

BAINES [104] 

Rotor inlet width to the inlet diameter 

ratio b2/D4 
0.05-0.15 

WHITFIELD, 

BAINES [104], 

DIXON [31] and 

ROHLIK [85] 

Rotor tip speed to the spouting 

velocity U2/Co 
0.55 - 0.80 BALJE [15] 

Rotor exit to inlet relative velocity 

ratio W5/W4 
2 - 2.5 BALJE [15] 

Rotor exit absolute velocity to inlet 

rotor tip speed ratio C5/U4 
0.15 - 0.5 

WHITFIELD and 

BAINES [104] 

Rotor loss coefficient λR 0.4 - 0.8 BALJE [15] 

Nozzle Loss coefficient  λN 0.06 - 0.24 BALJE [15] 

The reaction R 0.45 – 0.65 WATANABE [103] 

The ratio of the meridional velocity 1 – 1.5 WOOD [110] 

The ratio of the rotor exit meridional 

velocity to the blade velocity 
0.2 – 0.4 AUNGIER [8] 

Exit shroud velocity to the inlet 

velocity  
≤ 0.7 ROHLIK [85] 

The flow coefficient φ 0.2 – 0.3 BAINES [23] 

The load coefficient ψ 0.7 – 0.9 BAINES [23] 

Specific Diameter Ds 2.5 – 5 BALJE [15] 

Specific Speed ns 0.45 - 0.8 BALJE [15] 

Power ratio Sw 0.15-0.25 
WHITFIELD, 

BAINES [104] 
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4.3.4 Rotor End-Wall Contours 

To avoid excessive flow profile distortion due to passage curvature effect and to get a 

reasonable passage area distribution, we have to confirm in the preliminary design that 

the inlet and exit stations are connected with smooth end-wall contours. To minimize the 

curvature effect, the rotor hub contour is constructed by using the large circular-arc that 

is compatible with the rotor dimensions obtained from the rotor sizing procedures. The 

radius of the circular-arc Rc is the smaller of either (r4 – rh5) or LR, and the remainder of 

the hub contour is constructed with a linear segment at an appropriate end of the circular-

arc of the hub. At Rc = LR  the figure 4.7 illustrate the hub contour, where the segment L4 

is added to complete the contour. If the Rc = (r4 – rh5)  it is clear that the segment L5 at the 

exit of the rotor is required. Using the power law relation the shroud contour is 

constructed to obtain a reasonable passage area distribution. 

 

 

Figure 4.8: A typical hub contour as Aungier suggested. 

 

𝑟 =  𝑟𝑠5 + (𝑟4 − 𝑟𝑠5)𝜉
𝑛 (4.50) 

𝜉 =
𝑧 − 𝑧5

(𝐿𝑅 − 𝑏4)
 (5.51) 
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After defining the two end-wall contours, the meridional distance along the contours can 

be calculated by numerical integration then the coordinates of the contour at te mean value 

of  m can be obtained by interpolation and as follows: 

𝑑𝑚 =  √(𝑑𝑧)2 − (𝑑𝑟)2 (4.52) 

 

The figure 4.9 below, shows also the mean quasi-normal used to construct the contour. 

BALJE [15] suggested a reasonable basis for shroud contour design by achieving area on 

this mean quasi-normal, Am, and this is approximately equal to the average of the inlet 

and outlet rotor areas. This is achieved by constructing contours using values of n from 2 

to 9, and choosing the one at which the desired curvature passage is performed. The quasi 

normal length and as the ratio of the passage width is computed, b/Rc at each point on the 

surface, this value is qualitative measure the hub-to-shroud flow profile distortion to be 

expected and this parameter has to be kept less than unity. 

A good illustration of the value of the preliminary end-wall contours is done by BALJE 

[66] where the normalized passage width and the area distribution area reasonably 

smooth. The distribution of the b/Rc is also reasonably smooth and within the expectable 

limit, as can be seen in the figure 4.8, but still this is also for the preliminary design phase 

and modifications are needed before the manufacturing. 

 

 

 

Figure 4.9: Typical Rotor Geometry Distributions, Aria/Ariamax.., Rotor inlet width b/ 

Rotor inlet width bmax. and the Rotor inlet width b/ Chord radius, [15]. 

Normalized Passage Length From the inlet 
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4.3.5 Straight Line Element Rotor Blade Camberline 

Constructing the straight-line element blades is done as described in BALJE [15] by 

defining the blade geometry on the end-wall contours and connecting the corresponding 

blade camberline and surface defining points with straight-line elements. An acceptable 

three-dimensional blade geometry is provided and is relatively easy to design, analyze 

and manufacture. Integrating the equation 5.53 from the exit to the inlet of the rotor i.e. 

m5 = 0 and m4 = the total meridional length of the contour, where the camberline along 

the shroud contour is defined as follows: 

𝜃(𝑚) = 𝐴𝑚 + 𝐵 𝑚3 + 𝐶 𝑚4 (4.53) 

 

The coefficients of the right-hand side of the equation above can be defined to match the 

blade angles at the inlet and the outlet of the rotor blade and to require the first and the 

second derivative of the equation 4.54 to be zero at the end point. This requires the blade 

angles on the end-wall contours to be related to the known blade angles at the midpassage 

position. It is also assumed that the blade angle at the inlet is constant from the hub to the 

shroud, and at the exit it is assumed that the Cθ = 0 and Cm is constant from the hub to the 

shroud. Therefore,  

𝑟𝑠5 tan 𝛽𝑠5 = 𝑟ℎ5 tan𝛽ℎ5 = 𝑟5 tan𝛽5 (4.54) 

 

The coefficients then can be defined as follows: 

𝐴 =  
cot 𝛽𝑠5
𝑟𝑠5

 (4.55) 

𝐵 = 
1

𝑚4
2  [
cot 𝛽5
𝑟5

− 
cot 𝛽𝑠5
𝑟𝑠5

] (4.56) 

𝐶 = 
𝐵

2𝑚4
 (4.57) 

 

The camberline of the hub contour is defined by the equation  

𝜃(𝑚) = 𝐷𝑚 + 𝐸 𝑚2 + 𝐹 𝑚3 (4.58) 
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The coefficients of the right hand side of the equation above can be determined by 

matching the blade angles at the and points and requiring that θ4 is constant from the hub 

to the shroud at the rotor inlet, and it is shown from the shroud camberline  

𝜃4 = 
𝑚4

2
 [
cot 𝛽5
𝑟5

 +  
cot 𝛽𝑠5
𝑟𝑠5

] (4.59) 

 

And the constants of the hub camberline can be defined as follows: 

𝐷 =  
cot 𝛽ℎ5
𝑟ℎ5

 (4.60) 

𝐸 =  
3𝜃4

𝑚4
2 − 

1

𝑚4
  [
cot 𝛽ℎ5
𝑟ℎ5

+ 
cot 𝛽4
𝑟4

]  (4.61) 

𝐹 =  
1

𝑚4
2  [
cot 𝛽ℎ5
𝑟ℎ5

+ 
cot 𝛽4
𝑟4

] − 
2 𝜃4

𝑚4
3  (4.62) 

 

The definition of the corresponding lade angle distribution for either contour is 

cot 𝛽 = 𝑟 
𝜕𝜃

𝜕𝑚
 (4.63) 

 

The end-wall angle distributions generated with the camberline constructed for the end-

wall-contour in the preliminary design stage, is shown in the figure 4.9 below. 

 The thickness for the blade is set to be equal to the blade inlet thickness except the last 

10% of the blade length where it is tapered linearly to the discharge blade thickness, 

which is assumed to be the half of the inlet blade thickness. 
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Figure 4.10: Straight-Line Elements Blade Angles, [15]. 

 

4.3.6 Radial Element Rotor Blade Camberline 

As our application needs that the turbines operates at high speed, the radial elements 

method is used to construct the rotor blade camberlines. Using this method eliminate the 

bending stresses in the blade due to the centrifugal forces, as it is not the optimum choice 

from the perspective of the aerodynamics design performance, the radial-element blade 

may be used to provide an adequate mechanical integrity. This radial element blade 

camberline is defined as follows: 

𝜕𝜃

𝜕𝑟
= 0 (4.64) 

 

Therefore, one end-wall contour is sufficient to define the blade camberline at θ 

distribution i.e. θ must be defined as constant from zh4 to zs4, so, the shroud camberline is 

the obvious choice. That means for the radial element camberline, the shroud camberline 

defined in the equation 4.54 through the equation 4.57 is also used. The coefficients are 

somewhat simplified by putting β4 = 90°, and that defines the distribution of θ as a 

function of z and the hub camberline can be constructed by numerical interpolation of θ 

as a function of z, as we can see it in the figure 5.65 below. The blade thickness 

distribution is the same of the straight-line element method. 
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Figure 4.11: Radial-Elements Blade Angle Distribution, [15]. 

 

4.3.7 The Equation of State of Real Gases 

As we introduced the ethanol (C2H5OH) to be the working fluid and as it has to be a dry 

gas throughout its flowing in the turbine components, we have to be aware of choosing 

its properties according to the real gas equation of state. The general thermal equation of 

state for any fluid is as follows: 

𝑃

𝜌𝑅𝑇
= 𝑧(𝑇, 𝑃) (4.65) 

 

Where z is the compressibility factor. The thermally perfect gas is a special case where 

z=1. For many years the compressibility factor was obtain from tabular data as in 

NELSON and OBERT [70] and PILTZER [75]. In the recent time there are many 

excellent real gas equations of sates and one can employ to in the practice. Real gas 

equations of state can provide the many other thermodynamic parameters required and 

normally yield better accuracy and superior computational speed when used in numerical 
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analysis. For a general aerodynamic analysis one of the simple two-parameter equations 

is a good choice. These models offer a good accuracy, excellent computational speed and 

easy access to the required gas property data for almost any working fluid or fluid 

mixture, as AUNGIER [8], said. Among the most accurate two-parameter equation is the 

Redich-Kwong equation, and other modifications made by AUNGIER [7], SOAVE [96], 

and WILSON [108]. These equation of states have been evaluated by Aungier in a 

considerable details for twelve compounds over a wide range of temperature and pressure. 

More care has been taken to the acentric factors, ω, as this parameter has been extensively 

used in the modified Redlih-Kwong equation of state, which can improve the accuracy of 

the prediction, acentric factor is defined by PITZER [75] as follows: 

𝜔 = −𝑙𝑜𝑔10 (
𝑃𝑣
𝑃𝑐
) − 1      

𝑇

𝑇𝑐
= 0.7 (4.66) 

 

Where Pvis the pressure on the vapor saturation line and the subscript c designates a 

critical point property. 

It was concluded that the original Redlich-Kwong equation of state and the Aungier’s 

modified Redlich-Kwong are suitable for general turbomachinery aerodynamics design 

and analysis, but the other modified equations by other researchers are only applicable 

over a particular compounds and where they were developed and show some 

improvement but they show a reduction in the accuracy and serious deficiency when the 

acentric factor ω less than zero and also they exhibited less accuracy for the supercritical 

pressure i.e. when the pressure is greater than the critical pressure, as AUNGIER [8] said. 

The original Redlich-Kwong equation is 

𝑃 =
𝑇𝑅

𝑉 − 𝑏
−

𝑎

𝑉(𝑉 + 𝑏)√𝑇𝑟
 (4.67) 

 

Where Tr = T/Tc is referred to as the reduced temperature, and  

𝑎 = 0.42747 𝑅2
𝑇𝑐
2

𝑃𝑐
 (4.68) 

𝑏 = 0.08664 𝑅
𝑇𝑐
 

𝑃𝑐
 (4.69) 
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The equation requires only the critical temperature and the critical pressure for the fluid 

and the caloric equation of state data for its application. It offers a good accuracy over a 
wide range of thermodynamic conditions, but it has one well-known deficiency near the 

critical point of the fluid, as mentioned in AUNGIER [8]. 

The AUNGIER’s modified Redlich-Kwong equation of state [7] is  

𝑃 =
𝑇𝑅

𝑉 − 𝑏 + 𝑐
−

𝑎

𝑉(𝑉 + 𝑏) 𝑇𝑟
𝑛 (4.70) 

 

a and b are the same for the original; Redlich-Kwong Equation, and n is given by the 

following equation,  

𝑛 = 0.4986 + 1.1735 𝜔 + 0.4754 𝜔2 (4.71) 

 

The constant c is calculated by applying all the critical point properties. And it is included 

to remove the deficiency for the original equation near the critical point. 

As mentioned in JOHNSON [55] a more complex but a highly accurate real gas model is 

the eight-parameter Benedict-Webb-Rubin, BWR. In the solver we used the equation 

used is the Redlich-Kwong as it is sufficiently accurate enough for our analysis. 

 

4.4 Inviscid Solution Method 

The equation of continuity, momentum and energy governing the flow of an inviscid 

flow, an in their most general form, contain time derivatives, as we have seen in the 

previous chapter. Two solution techniques are available for the steady flow. The first is 

by removing the time from the equation and the remaining terms then may be solved in 

their existing form for the so called primitive variables such as temperature, pressure and 

velocity. In practice it is more common to rewrite the equation and solve them in term of 

non-simple functions such as the velocity potential or stream function, as mentioned in 

WHITFIELD [104]. The advantage of this is the reduction of the number of terms to be 

solved at each grid point from four in the two dimensional flow and five in the three 

dimensional flow (two thermodynamic properties and two or three velocity components) 

to a single term. However, this procedure is normally accompanied with less in generality 

and difficult in setting the boundary conditions, due to the new complex form of the 

variables. 

The second method is to solve the full time-varying equation by starting a guessed initial 

flow of the field and proceeding in marching the equation through the time until the 
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solution converges to a steady state and the time part disappeared, and this method is 

often known as time marching method, and it is widely applicable for the turbomachinery 

problems. Bu it is more expensive as it requires more iterations and hence longer time. 

Streamline curvature method, potential flow methods and time dependent Euler equation 

solution are also related to this category 

 

4.5 Viscous Solution Method 

There is now a little doubt that there exist in the radial turbines, significant regions in the 

flow dominated by viscous processes. The diffusion in process in the stator is strongly 

dependent on the growth of the boundary layers. In the rotor of the radial inflow turbine, 

evidence is exist that the secondary flows are significant in redistributing low momentum 

fluid through the passage, and this not only a fraction of the total aerodynamic loss but 

also influences the rotor exit flow angle or deviation β5, said WHITFIELD [104]. To 

model these features demands the solution of the full Navier-Stokes equations including 

the viscous shear term, and since in very few cases are flows likely to be wholly laminar, 

turbulence must also be included. Some difficulties are also existed in dealing with shock 

waves and thin shear layers such as boundary layers and wakes, which need a large 

number of grid points and highly refined mesh. 

The flow of compressible fluids through the turbomachines are invariably turbulent 

during some, if not all, of their progress through the machine and even if the Reynolds 

number is sufficiently low in a way that the natural transition doesn’t occur itself, but 

there is enough sources of disturbance in a form of blade and rows bends and 

discontinuities in the flow passages to introduce transitions. So that, the solution of 

Navier-Stokes equations requires that the account should be made for the effect of the 

turbulence. 

The Navier-Stokes equations in their Reynolds average form is a common choice for the 

engineering applications in which the effect turbulence appears shear stress terms to be 

added to the laminar viscous stress [104]. 

 

4.6 Coupled Viscous-Inviscid Methods 

As mentioned in many literatures, in many cases viscous effects are important only in 

limited regions of the complete domain, and thus it is recommended to combine both 

viscous and inviscid methods mentioned in the last two sections. In which the bulk of the 

flow is solved by one of inviscid technique, and only in those regions where it is important 

are viscous terms brought into the calculations. The solution with this method is 

considerably acceptable and more economical. 
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4.7 Nozzle Row Analysis and Sizing 

The main function of the nozzle vanes is to set the angle of approach of the working fluid 

to the rotor and imparting some swirl to the stream. The form of the nozzle depends on 

whether the nozzle ring is preceded by a volute or by a simple collector. However, 

sometimes the swirl provided by the volute is sufficient to present the fluid to the rotor 

with an appropriate incidence angle and the nozzle raw is simply removed or the function 

of the nozzle vanes will be just to remove the circumferential non-uniformities in the flow 

and accelerate it further. Sometimes, additional turning for the flow is required and thus 

a little camber is needed or possibly none at all. Whether if the nozzle is preceded by a 

collector, the nozzle has to accelerate the flow and turn its direction, as the collector 

doesn’t generate the swirl itself.  

The conformal transformation of the axial design cascade is one of the most common 

design method used to transform the axial cascade to the annual plane, and the used 

equations are  

𝜃 =  
𝑥

𝑟𝑜
 

r = 𝑟𝑜 exp (𝑦/𝑟𝑜) 

(4.72) 

 

Where ro is the reference radius, such as the trailing edge radius and the x,y are the usual 

Cartesian coordinates of the linear vane and r, θ are the polar coordinates of the 

transformed profile. This method has been described by WICELSINUS [109] and 

explained further by HIETT and JOHNSON [46], RIBAUD and MISCHEL [82] and 

WHITFIELD [10]. 

An important parameter that has to be sized is the throat area of the nozzle which has to 

be sized to pass the required mass flow rate, which can be given in the following equation. 

𝐴𝑡ℎ =  
𝑚̇√𝑅𝑇𝑜 𝑡ℎ/𝛾

𝑃𝑜 𝑡ℎ
 
1

𝑀𝑡ℎ
 ( 1 + 

𝛾 − 1 

2
 𝑀𝑡ℎ

2)
𝛾+1

2(𝛾−1) (4.73) 

If the nozzle is purely convergent the throat area can be written in term of the nozzle exit 

geometry and the lockage factor .the latter would be expected to be small in an 

accelerating passage. 

𝐴𝑡ℎ =  𝜋 𝑑2 𝑏2 (1 − 𝐵 𝐾𝑡ℎ) cos 𝛼2 (4.74) 

 The nozzle exit Mach number in the unchecked nozzles is the throat Mach number which 

is also the absolute Mach number at the entry of the rotor. The nozzle can be assumed to 

be adiabatic in the preliminary design as the flow is very fast and spending very short 
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time in the nozzle passage, and then the exit temperature is constant. An isentropic 

approach is sufficient at the beginning of the design, and since the losses in the nozzle 

has a very small faction of the overall turbine losses, which is estimated by Kofsky and 

Wassebauer  to be about 5 per cent and increased to 15 per cent with increasing the 

velocity and the frictional area surface. The total pressure can also be assumed to be 

constant [10]. 

In the chocked nozzles, further acceleration in the gas can only be achieved if a 

convergent-divergent nozzle is arranged, but this is an unusual situation in the radial 

turbine and especially in our application it is to be avoided as it adds more complexity 

and hence cost to the design. 

Another approach is a tuning process placed on the trailing edge via an expansion fan and 

if the expansion is assumed to be isentropic the flow angle at the throat and the exit can e 

related using the following equation [89]. 

cos 𝛼2
cos 𝛼𝑡ℎ

= 
1 − 𝐵𝐾𝑡ℎ
𝑀2

 [
2

𝛾 + 1
 ( 1 + 

𝛾 − 1 

2
 𝑀2

2) ]

𝛾+1
2(𝛾−1)

 (7.75) 

 

And for the supersonic nozzle, the equation above needs to be solved to specify the exit 

conditions. 

The nozzle-rotor interspace is also to be estimated. However, it is common in the nozzle 

turbine design a small vaneless region between the nozzle exit and the rotor blade tip to 

be inserted which is called interspace. The smaller interspace the more compact design 

we get, which is preferred also in our case. But this vaneless region has to be sufficient 

enough to give the nozzle vane wake some space in which to mix out and produce 

circumferentially uniform conditions at the entry to the rotor and prevent the effect of 

passing rotor blades from travelling upstream and influencing the flow in the nozzle.  

It is well known in the axial turbines that the wake can be observed for several chord 

lengths, and there’s no sufficient reasons that the radial turbine will behave differently. 

An empirical determination done by WATANABE [103] has been introduced at which 

the maximum efficiency of a radial turbine can be occurred at value of an interspace 

geometry parameter k 

𝑘 = (
∆𝑟

𝑏
) cos 𝛼  ≅ 2 

Or  
r3

r4
= 1 + 2𝑏 𝑠𝑖𝑛𝛼4/𝑟4 

(4.76) 
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Where Δr is the radial interspace distance between the nozzle exit and the rotor inlet and 

α is the mean flow angle and b is the nozzle vane width. A significant influence of the 

rotor speed on the nozzle and also on the rotor blade surface pressure distribution if the 

interspace is about 2 percent and has no significant effect if it was about 20 percent, said 

WHITFIELD [10]. So the maximum efficiency can be reached is a compromise between 

the interface between nozzle and rotor which increases with reducing the clearance 

between the nozzle and the rotor and on the other hand the fluid friction and the boundary 

layer growth which increases with increasing the interspace. 

AUNGIER [7] suggested also that the nozzle length has to be restricted to the following 

inequality an within its range 

1.1 ≤
𝑟2
𝑟3
≤ 1.7 (4.77) 

 

Where r2 is the nozzle inlet radius and the r3 is the nozzle exit radius. 

A governing equation of a parabolic arc for the nozzle vane camber line has been 

suggested by AUNGIER [7], and a very general airfoil geometry can be produced as 

follows 

𝑥2 + 
𝑐 − 2𝑎

𝑏
 𝑥𝑦 +

(𝑐 − 2𝑎)2

4𝑏2
 𝑦2 − 𝑐𝑥 − 

𝑐2 − 4𝑎𝑐

4𝑏
𝑦 = 0 (4.78) 

 

The nozzle blades are designed by imposing a general lade thickness distribution on this 

parabolic arc, as a restriction a/c has to be within the following range. 

0.25 < 𝑎/𝑐 < 0.75 (4.78) 

 

γ3 is the vane setting angle and has to be equal or greater than 5°. 

It is been recommended to adopt the blade thickness distribution in any location along the 

camberline as follows  

𝑡 = 𝑡𝑟𝑒𝑓 + [𝑡𝑚𝑎𝑥 − 𝑡𝑟𝑒𝑓]𝜉
𝑒 (4.79) 

𝑡𝑟𝑒𝑓 = 𝑡2 + [𝑡3 − 𝑡2] (𝑥/𝑑) (4.80) 

𝜉 =
𝑥

𝑑
;  𝑥 ≤ 𝑑 (4.81) 
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𝜉 =
𝑐 − 𝑥

𝑐 − 𝑑
; 𝑥 > 𝑑 (4.82) 

𝑒 =  √0.4𝑑/𝑐  [0.95 (1 −
𝑥

𝑐
) (1 − 𝜉) + 0.05] (4.83) 

Where 𝑡𝑚𝑎𝑥 is the maximum thickness along the camberline and d is its location, a nose-

radius is imposed at each end and c is the chord length. 

 

4.8 Operating Points Estimation 

The operation conditions of the turbine have been estimated based on a case study with 

the assumption that the lost energy throug the exgaust gases is a between 75% and 83% 

of the shaft power, as we have seen in the figure 1.1 above. The heat exchanger used by 

the turbosteames led to salvage around 80% of the heat energy [9]. Therefore, a bout 

219.7 hp (163.83 kW) automobile leads to about 15 bar and 650 K of Ethanol. 

We calculated the results as we used the Rankin cycle and the fluid has been heated from 

the boiling line to the final superheated point as it enters the turbine. 

 

 

Figure 4.12: Ethanol T-S diagram. 
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5 Simulation of Radial Inflow turbine 

Design the radial inflow turbine, which is the most important part in the process of 

recovering energy in our system, needs taking care of many design parameters and 

application requirements. We started the design procedure by making use of some 

dimensionless parameters, which are very useful for the preliminary design. The applied 

parameters have been recommended and reported by researchers, such as in BALJE [15], 

AUNGIER [8] and BAINES [10]. The main parameters are, the specific speed, ns, the 

specific diameter, Ds, the Reynolds number, the velocity ration υ, Mach number, the 

loading and the flow coefficients, ψ and φ respectively, and some other geometrical 

parameters.  

The turbine inlet boundary conditions have been estimated by the energy balance. We 

calculated the energy transferred from the exhaust gas flow to the working fluid, which 

is an organic working fluid, as we assumed to be more suitable. 

Choosing an appropriate turbomachine, which serves efficiently in the application of 

energy recovery in the automobile, is one of the main targets of this work. The organic 

working fluid has been first suggested is the Ethanol (C2H5OH) in our case. 

From our intensive literature survey, and having in mind the requirements of our 

application and the main characteristics of the suggested turbomachine, the radial inflow 

turbine is the type we chose to design and optimize to serve this duty. We used the fore 

written equations and correlations, with the aid of the up-to-date numerical methods, the 

simulation of the radial turbine is accomplished. Starting with the preliminary design and 

going through the parameter study and the optimization. The operating conditions of the 

radial turbine can be estimated by taking into consideration the thermal efficiency of the 

ICEs, which is 30%-50% [29] and [51], then we can calculate the wasted energy that can 

be redirected to the working flow (Ethanol) via a heat exchanger, and after that using the 

thermodynamic table of the organic working fluid together with the equation-of-state the 

turbine inlet conditions can be found. Different ranges of design conditions are also 

investigated. For calculating the energy in the heat gases, the average calorific value of 

diesel is (42-45) MJ/kg  [49]. 
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5.1 Turbine preliminary design 

A number of methods have been suggested for obtaining the overall dimensions of the 

turbine geometry. ROHLIK [85] drew a chart that related the specific speed to the ratio 

of tangential velocity to the rotor tip speed. BENSON [17] and [16] has analyzed the 

turbine performance at a wide range of operating conditions and the sensitivity of the 

performance to various geometrical and aerodynamic parameters. BAINES [13] and [10] 

has suggested an integrated approach of designing a radial inflow turbine, which is a rapid 

cost-effective design and optimization method, he suggested using the loading and flow 

coefficients in combination with the mean-line approach and then he plotted a contour 

shows the correlation between these two coefficients, as shown in the figure 5.1 below 

 

Figure 5.1: Stage loading coefficients for radial turbines with radial section blades 

versus flow coefficient and the data points show the total to static efficiency, [12] 

As mentioned in WRIGHT [111], Cordier diagram which has been developed further by 

BALJE [15], introduced a guide lines for the combination of the specific speed and the 

specific diameter at the optimum efficiency.  

We used this diagrams together with the flow and load coefficient to choose the operating 

points and the preliminary design for our radial inflow turbine. The figure 5.2 below 

shows the correlation between the specific speed and the specific diameter. 
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Figure 5.2: Balje diagram for the radial inflow turbine, [32]. 

Starting with Euler turbomachinery equation 

𝑤

𝑚
= 
1

2
[(𝑈4

2 − 𝑈5
2) + (𝐶4

2 − 𝐶5
2) − (𝐶𝑤4

2 − 𝐶𝑤5
2 )] (5.1) 

 

Since many losses including friction and exit kinetic energy increase as the square of 

velocity so in general the aim is to keep the flow velocities as low as reasonably possible. 

The incidence angle is also a crucial parameter on the performance of the turbine, where 

the optimum incidence of through flow depends solely on the geometric characteristics 

of the runner, i.e., blade curvature, thickness and solidity SHAH [89]. 
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5.2 Mesh Independence Analysis 

Using the commercial ANSYS-CFX 14.5 software, a 3D viscous turbulent simulation has 

been carried out. The three dimensional computational mesh for the simulation of the 

radial inflow turbine used, has been shown in the figure 5.1 for the nozzle passage. ICEM 

and Turbogrid are commercial software for generating the mesh. They are capable enough 

to create an efficient grid for the turbine components in use. The figures 5.3 to 5.6 shows 

a part of the mesh created for the numerical simulation. 

 

 

Figure 5.3: Mesh of the nozzle passage. 
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Figure 5.4: The mesh of the rotor blades at the hub. 

 

Figure 5.5: Control volume with one nozzle passage. 
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Figure 5.6: The mesh of the rotor blade. 

The total grid number of the initial created mesh has been analyzed. A mesh independence 

analysis has been done by running the simulation from a very coarse mesh with 116,256 

nodes to a very fine mesh with 1,247,145 nodes, and for different intermediate 

refinements values between these two upper and lower limits. We found the numerical 

calculations can be regarded to be mesh-independent with 363,300 nodes. 153,318 nodes 

for the nozzle and 209,982 nodes for the rotor passage. 

 

Figure 5.7: Mesh independence analysis. 
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After the computational system has been discretized with different degrees of mesh 

refinement. The convergence criteria have been examined, and for this purpose the total-

to-static efficiency was taken as a monitoring parameter of interest and insured to have 

reached the steady state, the imbalances and the residuals have been also observed and 

checked of being equal or less than the recommended ranges of the convergence criteria. 

For the imbalances a value below 1% is acceptable and for the minimum residuals a value 

below 1E-4 and a value below 1E-3 for the maximum RMS residuals are also acceptable 

[5]. Monitoring points have been used to observe the total pressure, Mach number, total 

enthalpy, total temperature and the isentropic efficiency at these points. We have put two 

points exactly at the nozzle exit, other two point at the inlet of the rotor blade and other 

two at the exit section of the rotor blade.  

All of the parameters have reached a steady state at the end of the simulation, as we can 

see below the figures 5.5, 5.6, 5.8 and 5.7  are for the total pressure, Mach number, total 

temperature at point 4 which is at the trailing edge of the rotor blade.  

 

 

Figure 5.8: Total pressure at monitoring point 4. 
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Figure 5.9: Mach number at monitoring point 4.  

 

Figure 5.10: Total enthalpy at monitoring point 4. 
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Figure 5.11: Total temperature at monitoring point 4. 

The turbulence model used was the SST k-ω model which has been found to have the 

efficiency to capture the flow details better than the other turbulence models although its 

ability in capturing accurate details in the transitions needs to be improved, as we will 

later see in this chapter. It has been recommended by many other researchers, like in 

TSUEI [99], WILCOX [106]. 

For our further calculations a case of 363,300 nodes is fine enough and can be regarded 

as a grid independence.  

The table 5.1 below summarize the results of the calculations made for the grid 

independence analysis. 

 

Table 5.1: Summery of the mesh-independence work-through. 

Total 

Number 

of Nodes 

Mass 

imbalance 

in the 

Stator 

domain 

(%) 

Mass 

imbalance 

in the 

rotor 

domain 

(%) 

Total 

energy 

imbalance 

in the 

stator 

domain 

(%) 

Total 

energy 

imbalance 

in the 

rotor 

domain 

(%) 

RMS 

Residuals 

for the U-

Mom. 

RMS 

Residuals 

for the V-

Mom. 

RMS 

Residuals 

for the 

W-Mom. 

RMS 

Residuals 

for the H-

Energy 

RMS 

Residuals/ 

turb. K.E 

116256 2.70E-03 1.58E-02 3.10E-03 1.28E-02 2.50E-05 2.10E-05 1.30E-05 4.80E-05 1.10E-04 
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5.3 Validation of the results 

The data of the turbines which work with an Organic Rankine Cycle near or above the 

critical point and with high density working fluid, are rare and especially for the 3D 

simulation, analysis, design and optimization. In this case and as a validation for our first 

step in the preliminary design, we compared our preliminary results from the 3D 

simulation with ANSYS-CFX 14.5 to those got from a Vista RTD, which is a commercial 

mean-line code, and this mean-line code has been validated over a wide range of 

experimental results. This code needs a fixed value of mass flow rate, the stage input 

thermodynamic properties, the number of blades, rotational velocity [73]. The required 

input values have been calculated by using MATLAB R2014a to solve the 

turbomachinery equations of the recommended input parameters for the preliminary 

design.  

The table 5.2 below shows a very good agreement between the values we got from the 

mean-line code Vista RTD and those simulated in the 3D CFD tool, the ANSYS-CFX 

14.5 is in this case. 

The main thermodynamic and geometrical parameters have been compared, and it is clear 

that the shaft power has notable difference and the reason behind that is that the mean-

line code accepts just a constant specific heat capacity and gas constant values whether 

the value of them are changing significantly with the temperature, Cp, R =f(T), and the 

values of them in ANSYS-CFX are used as proposed by Redlich-Kwong as we mentioned 

that previously. 
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Table 5.2: Comparison of the mean-line analysis and the 3D-CFD simulation. 

Variable Mean-line Design 
Preliminary 3D 

Viscous CFD 

Difference 

% 

ηt-s  [%] 79.2 83.7164 8.978408 

Πt-s [-] 1.72 1.6168 6.382979 

Shaft power 

[kW] 
20.918 23.0488 

9.244733 

Pt 2 [kPa] 1500 1490.97 0.605646 

Mabs 3 [-] 0.582 0.606 3.960396 

Mrel  3 [-] 0.271 0.2555 6.066536 

U3 [m s-1] 258.126 265.18 2.66008 

V3 [m s-1] 238.402 254.514 6.330497 

α3 [deg.] 65.757 67.6925 2.859253 

β3 [deg.] -18 -17.8854 0.640746 

Tt 4 [K] 680 673.1 1.025108 

T4 [K] 676.4 671.565 0.71996 

Pt4 [kPa] 925.93 921.729 0.455774 

P4 [kPa] 873.15 885.036 1.342996 

d3 [mm] 39.409 42 6.169048 

b3 [mm] 3.9 4 2.5 

dhub 4 [mm] 7.094 7.4 4.135135 

dshroud 4 []mm 26.246 27.8 5.589928 

d3/ drms 4 [-] 2.05 2.064 0.678295 

 

 

5.4 The Turbulence Models Effect 

For the turbomachinery simulation, selecting a suitable turbulence model can be a 

challenging task. There’s no single model suitable for all types of turbomachinery 

simulation. Two equation models, like K-ϵ and K-ω, are common choices for predicting 

cases with difficulties like flow separation, rotating flow, the flow strongly affected by 

secondary flow etc. The two equation models are based on the Boussinisq eddy viscosity 

assumption which leads to an over production of the turbulent energy in the regions of 

strong acceleration or deceleration like the leading edge, SCHMITT [92]. An SST- k-ω 

model with automatic wall function can, generally, better predict the flow behavior 

compared to the classical like k-ϵ and k-ω models. 
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The figure 5.12 below shows the static pressure predicted by using the standard K-ϵ 

turbulence model with scalable wall function and the SST K-ω model with automatic wall 

function, and the figure below shows the difference between the two models in predicting 

the static pressure. It is clear that there’s difference between the two models particularly 

in the boundary layer region, which is actually expected as these two turbulence models 

behave differently in these regions. 

 

 

 

 

 

Figure 5.12: The effect of using k-ϵ and SST k-ω turbulence models on the pressure 

prediction. 
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5.5 Inlet boundary and off-design conditions effect 

The effect of different boundary conditions has been analyzed and the sensitivity of the 

main thermodynamic properties has been studied. A 3D numerical simulations have also 

been performed at off-design conditions for different total inlet temperature and at 

different rotational speed. For the nominal rotational speed, 80% and 120% of the nominal 

speed. The velocities and the different flow angles have been calculated at the midline of 

the blade i.e. at 50% span. 

 

Figure 5.13: The effect of the total inlet temperature on the total to static efficiency η t-s 

at different rotational speeds N. 

 

 

Figure 5.14: The effect of the total inlet temperature on the shaft power Psh at different 

rotational speeds N. 
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From the figures 5.13, it is clear that at the nominal speed, the turbine can effectively 

handle temperature variation with a variation of the total to static efficiency in the range 

of 6%, over the tested range of temperature. At temperatures lower than the nominal one 

the 80% nominal speed has a total to static efficiency slightly higher than the nominal at 

total inlet temperature lower than 590 K, the nominal speed has the maximum efficiency, 

as one can see in the figure 5.13 above.  

 

 

Figure 5.15: The effect of the total inlet temperature on the isentropic enthalpy drop at 

different rotational speeds N. 

In the figures 5.14 and 5.15, and as we expected, the behavior of the turbine for the output 

power and the isentropic drop of enthalpy is similar. It is clear that both parameters are 

increasing with the increase of the total inlet temperature, as the specific heat constant at 

constant pressure, cp, is increasing with increasing of temperature and at specified 

temperature drop the enthalpy drop will be a function cp. 

The degree of reaction of the turbine, which represent the ratio of the static enthalpy drop 

in the rotor to the enthalpy drop in the stage, recommended to be in the range of 0.45-

0.65, as mentioned in WATANABE [11]. It behaves, as shown in figure 5.16, not much 

sensitively to the inlet temperature at the nominal speed, but the sensitivity increases at 

the off-design conditions. At the nominal speed the reaction is 0.5336, and the deviation 

of it over the range of the inlet total temperature is for 0.59 to 0.54, which is acceptable 

and within the recommended range. While at 120% nominal speed, the reaction exceeds 

the recommended range, particularly at low temperatures. 
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Figure 5.16: The effect of the total inlet temperature on the total to reaction at different 

rotational speeds N. 

 

 

Figure 5.17: The effect of the total inlet temperature on the specific speed Ns at different 

rotational speed N. 

The dimensionless specific speed Ns and the specific diameter Ds are the most important 

parameters in characterizing the performance of the radial inflow turbine. As mentioned 

in BALJE [15] and later in WHITFIELD [104], the recommended range of the specific 

speed is between 0.45 -0.8, and as shown in the figure 5.17, the turbine at the nominal 

speed can handle the range of temperature variations and keep the specific speed within 
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the recommended range. However, at off-design rotational speed, the turbine efficiency 

and the performance become more sensitive to the total inlet temperature variation and 

slip away from the recommended values. The recommended value of Ds, as mentioned in 

BALJE [15], is in the range of 2.5-5. The sensitivity of the specific diameter to the 

temperature over the tested range, behaves similar to the specific speed but the values still 

within the recommended range as shown the figure 5.18 below. 

  

 

Figure 5.18: The effect of the total inlet temperature on the specific diameter Ds at 

different rotational speed N. 

 

Figure 5.19: The effect of the total inlet temperature on the load coefficient at different 

rotational speed N. 
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As shown in the equation 4.6, the loading coefficient, ψ, may depend solely on the 

circumferential velocity at the rotor inlet Cθ4, and the rotor tip velocity U4, since the ratio 

of the circumferential velocity at the rotor exit to the rotor inlet tip velocity U4 is 

negligibly small at the design point. The figure 5.19 shows that the effect on the loading 

coefficient when the turbine operates at rotational speed different from the nominal one, 

is more than the effect of the temperature, i.e. the loading coefficient is more sensitive to 

the change in rotational speed than the inlet temperature change, which complies with the 

equation 4.6. Where the recommended values of the loading coefficient, as in ROHLIK 

[85], is in the range of 0.7-0.9. 

The flow coefficient, φ, as shown in the figure 5.20 below behaves almost similar to the 

behavior of the load coefficient. However, the variation of the flow coefficient over the 

tested range of the total inlet velocity at the nominal rotational speed is 0.1507.  It is clear 

for the figure 5.20 below, that the turbine at the nominal speed can handle a wide range 

of inlet temperature and still within the recommended range of the flow coefficient by 

ROHLIK [85], which is between 0.15-0.35 at the optimum efficiency, and that means that 

the sensitivity of the flow coefficient to the inlet total temperature variation in relatively 

low. 

 

 

Figure 5.20: The effect of the total inlet temperature on the flow coefficient ψ at 

different rotational speed N. 
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Zero swirl at the rotor exit is normally assumed at the optimum efficiency i.e. zero degree 

of the exit flow angle (α5). However, taking into consideration the component 

downstream the rotor, which is sometimes a simple exhaust diffuser, some swirl value is 

recommended to enhance the highly energized boundary layer and protect the flow from 

being separated in this negative pressure-gradient flow component.  The sensitivity of the 

rotor exit flow angle (α5) to the inlet temperature, is more at speed values higher than the 

nominal speed, 120% in this case, but the sensitivity of the speed lower than the nominal 

speed is similar to that of the nominal speed, as shown in the figure 5.21 below. 

 

 

Figure 5.21: The effect of the total inlet temperature on rotor exit flow angle α5 at 

different rotational speed N. 
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Figure 5.22: The effect of the total inlet temperature on rotor exit relative flow angle β5 

at different rotational speeds N. 

The figure 5.23 shows one of the most important design parameter in the radial turbine, 

which is the rotor relative inlet angle. The recommended value of it, has been reported by 

many researchers, DIXON [31] may have done the most notable work in this concern, 

and recommended the range of -20° to -40°. It is clear from the figure 5.23 that at the 

nominal speed the turbine behaves the best among all the operating speeds and its 

sensitivity is particularly low to the total inlet temperature.  

 

Figure 5.23: The effect of the total inlet temperature on rotor inlet relative flow angle 

β4 at different rotational speed N. 
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The velocity ratio, υ, represented in the figure 5.24 below, shows that this parameter is 

within the recommended range, for the nominal speed and the lower speed, 80% of the 

nominal in this case. The recommended range as mentioned in BALJE [15] is between 

0.55 and 0.8. 

The velocity ratio represents the ratio of the rotor tip velocity to the spouting velocity, 

which can be also empirically estimated from the equation 4.4, and as mentioned in 

AUNGIER [8], it has been shown that the velocity ratio depends solely on the specific 

speed of the radial turbine. 

Where the velocity ratio given as follows 

𝜈 =  
𝑈4
𝐶𝑜

 (5.1) 

 

Figure 5.24: The effect of the total inlet temperature on the velocity ratio ν at different 

rotational speeds N. 
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5.6 Blade Number Effect 

The blade number effect on the radial inflow turbine performance has been studied by 

many turbomachinery researchers. Correlations have been proposed and examined. 

Selecting an appropriate number of blades for both, the stator and the rotor, has to take in 

mind that blade blockage is increased with increasing the number of blades but at the 

other hand we get a relatively uniform flow and blade loading. Choosing lesser number 

will lead to less blockage and hence less losses, but the flow will be less uniform. 

GLOSSMAN has proposed an empirical correlation to determine the minimum number 

of rotor blades required for calculating the passage losses and the incidence as shown in 

equation (4.23) above. ROHLIK [85] has also modified equation (4.46) for the optimum 

number of blades derived from the graph proposed by JAMIESON [52].  

The figures 5.25, 5.26 and 5.27 show the static pressure at 25%, mid and 75% rotor span-

wide positions, and for different numbers of rotor blades, respectively. 

 

 

Figure 5.25: The blade loading, Static pressure P for different numbers of rotor blade 

at 50% span. 
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Figure 5.26: The blade loading, Static pressure P for different numbers of rotor blade 

at 75% span. 

 

Figure 5.27: The blade loading, Static pressure P for different numbers of rotor blade 

at 25% span. 
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5.6.1 Rotor Inlet Width Estimation 

Using the equation 4.47, the rotor inlet blade width can be calculated. WHITFIELD and 

BAINES [104], DIXON [31] and ROHLIK [85] have proposed a dimensionless ratio, 

which relates the rotor inlet width to the rotor inlet diameter b/D4. The recommended 

value of this ratio is between 0.05 and 0.15. A value within this range offers a good 

compromise between turbine performance, the blockage and mass flow rate capacity. 

We run the simulation for b/D4 between 0.714 and 0.19 and keeping the other geometrical 

parameters and the boundary conditions constants. It is clear from the figures 5.28, 5.29 

and 5.30 that the relative and the absolute Mach number increase by increasing the blade 

inlet width. This increasing can be attributed to the increasing of the mass flow rate. 

 

Figure 5.28: Relative Mach number Mrel. at the rotor trailing edge vs. normalized span 

length. 

 

Figure 5.29: Relative Mach number Mrel. at the rotor leading edge vs. normalized span 

length. 
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Figure 5.30: Absolute Mach number Mrel. at the rotor trailing edge vs. normalized span 

length. 

The relative flow angle at the rotor exit is also plotted for a different values of b/D4, as 

shown in the figure 5.31 below. We can see that the relative angle also increase with 

increasing the rotor inlet width. For a normalized span-width between 10% and 95%, the 

relative angle can handle the variation of the blade inlet width and stay within the 

recommended value of β5. 

 

Figure 5.31: Relative flow angle at the rotor trailing edge vs. normalized span length. 
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The total-to-static efficiency to the reference total-to-static efficiency ηts/ ηts ref. has been 

graphically expressed in the figure 5.32 below, for the same range of the rotor inlet width 

ratio. It can be seen that the efficiency decreases at blade width different from that of 

nominal one, which we chose it to be 0.095 in this case. 

The figure 5.33, represents the effect of the rotor inlet width on the absolute flow angle 

at the trailing-edge α5, it shows that the value of the angle decreases with increasing the 

blade width. 

 

Figure 5.32: Effect of the relative inlet width on the relative total to static efficiency. 

 

Figure 5.33: Absolute flow angle at the rotor trailing edge vs the normalized blade span 

length. 
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The effect of changing the rotor inlet blade width on the blade loading has been also 

graphically expressed in the figure 5.34 below and for different positions of the 

normalized span-wise, 25%, 50% and 75% in this case. The blade loading and for the all 

positions of the span is seemed to be more stable for the values of b/D4 between 0.0714 

and 0.145, which almost agrees with the recommended values by the authors mentioned 

above. 

 

 

 

Figure 5.34: Static pressure P versus normalized meridional length for different span 

positions with relative blade width d/D4 as parameter. 
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5.6.2 The Vane Solidity in the Radial Inflow Turbine Stator 

As we mentioned in the previous chapter, the nozzle row is needed to accelerate the flow, 

i.e. increasing the kinetic energy of the flow, and also to deliver the flow to the rotor at 

specified angle. Generally, the radial inflow turbine doesn’t require a complex geometry 

nozzle, a nozzle without or with a little camber can be sufficient. In the turbochargers, the 

designers didn’t have to use a nozzle row at all, as the direct flow from the exhaust 

manifold contains energy much more than the energy required to run the compressor, and 

thus losses area acceptable with saving additional costs of the nozzle row manufacturing.  

The number of the nozzle vanes has to be chosen in a way that offers a compromise 

between the metal blockage and the uniformity of the flow and also not to let the 

resonance with blade rotor possible. Sometimes it is recommended to have a prime 

number of the nozzle vanes. Different numbers of the nozzle vanes have been chosen, 

and the effect of the numbers on different performance parameters has been investigated 

and the results have been graphically shown. We chose odd numbers from 11 to 21. 

The nozzle loss coefficient λN is shown in the figure 5.35 below and it is obvious that the 

loss coefficient increases by increasing the number of the nozzle vanes. This increment 

is attributed to the increasing wetted area of the nozzle row. BALJI [15] has recommended 

a range for the nozzle loss coefficient which is between 0.06 and 0.24. The figure 5.35 

shows that λN is acceptable and within the recommended range until 17 nozzle blades. 

 

Figure 5.35: The effect of the number of nozzle blades on the nozzle loss coefficient, λN. 
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The figure 3.36 shows the static pressure contour at 50% span-wide. The static pressure 

distribution from the nozzle leading-edge to the nozzle trailing-edge, at the trailing edge 

of the nozzle a wake flow can be noticed but it is also obvious that the wake is getting 

smaller with increasing the number of nozzle vanes. 

 

 

 

Figure 5.36: Iso-colour plots of the pressure distribution at 50% span for different 

number of nozzle blades. 

The figures 5.37, 5.38 and 5.39 shows the effect of the number of nozzle blades in 

combination with different number of rotor blades. The relative and absolute Mach 

number of the trailing and leading edge are plotted versus the normalized spanwise axes. 
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Figure 5.37: Relative Mach number Mrel at the rotor leading edge (LE) for different 

numbers of nozzle blades. 

 

Figure 5.38: Relative Mach number Mrel at the rotor trailing edge (TE) for a different 

numbers of nozzle lades. 
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Figure 5.39: Absolute Mach number Mabs at the rotor leading edge LE for a different 

numbers of nozzle blades. 

 

5.7 Estimating the Interspace Distance. 

The vaneless space between the nozzle vane trailing edge and the rotor blade leading edge 

has a significant effect on the aerodynamic performance of the radial inflow turbine. 

Increasing the vaneless distance leads to a more aerodynamically efficient design and a 

more circumferentially uniform flow state around the rotor periphery, but on the other 

hand, the longer vaneless space distance we insert, the more wetted surface area will be 

and then the more frictional losses the turbine will have due to the long flow path. But 

with a shorter vaneless distance between the stator vane trailing edge and the rotor blade 

leading edge, the wakes and jets will not have enough space to mix out to the required 

extent and hence a higher level of nonuniformity entering the rotor is expected  

Additional to the influence of the aerodynamic performance, it has impact on the 

structural behavior of the rotor introducing an alternate loading pattern as the rotor blade 

passes through a successive jets and wakes, said SIMPSON [93].   

TUNAKOV [100] investigated the effect of the vaneless space and suggested that the 

optimum clearance should represent the compromise between the frictional losses and the 

nonuniformity and suggested the following relationship 
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Where Δr is the vaneless radial distance, b is the rotor blade width and 𝛼4 is the rotor inlet 

flow angle. RODGERS [84] mentioned that the interspace can have a significant impact 

on the turbine performance. WATANABE suggested also a relationship for estimating 

the ratio of the nozzle trailing edge to the rotor blade leading edge which has been chosen 

as a parameter (r3/ r4) 

r3
r4
= 1 + 2𝑏 𝑠𝑖𝑛𝛼4/𝑟4 (5.3) 

 

We have tested a four different vane space i.e. a different r3/ r4 ratio and compared to the 

baseline preliminary model which has (r3/ r4 = 1.095). 

 

  

Figure 5.40: Normalized total pressure losses ΔPt/Pt3 versus the radius ratio of the 

nozzle trailing edge radius r3 and the ratio inlet radius r4. 
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Figure 5.41: Ratio of the absolute Mach number of the nozzle outlet Mabs 3 and the 

absolute Mach number at the rotor inlet Mabs 4 versus the radius ration r3/r4. 
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6 Optimization a Radial Inflow Turbine  

The optimization process of any application is the mathematical process through which 

the set of conditions that produces the optimum of a specified function is obtained. 

Generally, any optimization problem consists of a set of design variables, objective 

function (or fitness function in the genetic algorithm) and constraints. In the course of 

obtaining the optimum solution the numerical values of the design variables are 

determined. The objective function is a mathematical expression that embodies the design 

variables that need to be maximized or minimized locally or globally, and the constraints 

are the conditions that have to be satisfied to achieve the optimization. 

Several optimization methods have been developed over the past. However, the 

optimization methods can be globally distinguished as deterministic or stochastic 

algorithms. The deterministic algorithms behave predictably and give the same output for 

a particular input, whether the stochastic algorithms don’t, and give different optimum 

output depend on the initial value and other parameters. The deterministic method can be 

further subdivided in gradient based and derivative free algorithms, while the stochastic 

can be divided into simulated annealing and evolutionary algorithms such as the genetic 

algorithm GA optimization method. 

The DesignXploration DX is an optimization tool in Ansys Workbench, which consists 

of the response surface optimization, parameters correlation and the six sigma analysis 

SSA tools to explore the design space through exploring and understand the performance 

at other design or operating conditions. Finding the conditions which give the best 

performance, determine the key parameters influencing the design and explore the 

robustness of the design is also achieved. 

In this chapter we will perform the optimization using two methods which are classified 

under the Goal Driven Optimization GDO, and they are the Multi-Objective Genetic 

Algorithm method MOGA and the Non-Linear Programming by Quadratic Lagrangian 

NLPQL, then we choose the candidate point from these methods as optimum design 

points.  
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6.1 Design of Experiments DOE method 

DX uses a DOE to determine the location of sampling points and to select design points 

with parameter combinations intended to explore the solution space efficiently. The 

design of experiments method works best for fewer than 20 input parameters [6]. 

There are many types of DOE, such as Central Composite Design CCD, Optimal Space-

Filling Design OSF, Box-Behnken Design, Sparse Grid Initialization and Latin 

Hypercube Sampling Design LHS.  

In our sampling we chose the CCD, and the design type used is the auto defined which 

switches between the G-Optimal and the VIF-optimal, depends on the number of input 

variables. Rotatable (spherical) design is preferred if the above option doesn’t provide a 

reasonable values of the goodness of fits from the response surface plotter. However, 

there are other criteria to consider for an optimal design setup [6]. In the table 6.1 below, 

the design points are listed based on the above criteria. 

 

Table 6.1: sample of the design Points in the Design of Experiments 

 

Name 

Omega 

[radian 
s^-1] 

Pt in 

[Pa] 
Tt in [K] 

Shaft 

Power 
[W] 

ηt-s β5 α5 WR=W5/W4 
CmR= 

Cm5/Cm4 
β5 

1 -13100 1475000 650 21613.4 0.866885 -28.6473 16.6126 1.45381 1.23673 -45.644 

2 -14410 1475000 650 18050.9 0.85331 -50.3038 31.8576 1.04161 1.17329 
-

44.7047 

3 -11790 1475000 650 22856.7 0.852207 -8.46201 5.47714 1.63988 1.23114 
-

45.5712 

4 -13100 1350000 650 11625.5 0.821266 -55.1681 36.1564 0.955653 1.21943 
-

42.1023 

5 -13100 1600000 650 30658.4 0.859804 -9.32449 6.41589 1.6182 1.21796 
-

45.6461 

6 -13100 1475000 585 19493.1 0.870865 -39.8465 27.1199 1.22175 1.20433 
-

45.2534 

7 -13100 1475000 715 23853 0.860586 -17.706 9.73373 1.59139 1.23399 
-

45.6914 

8 -14165.1 1373371 597.1528 8980.6 0.760248 -68.8024 50.3505 0.636792 1.09899 
-

46.0248 

9 -12034.9 1373371 597.1528 14429.1 0.865008 -40.6747 26.589 1.22314 1.22199 
-

45.3532 

10 -14165.1 1576629 597.1528 25284.6 0.871694 -37.6343 24.7598 1.27671 1.21219 
-

45.4862 

11 -12034.9 1576629 597.1528 27904.4 0.856988 -6.07413 4.57819 1.65563 1.23657 -45.709 

12 -14165.1 1373371 702.8472 12787.3 0.813664 -56.7838 37.007 0.934468 1.22332 
-

41.4902 

13 -12034.9 1373371 702.8472 17368 0.862899 -21.6128 12.1715 1.54933 1.23525 
-

45.6974 

14 -14165.1 1576629 702.8472 29690.9 0.861797 -19.6792 10.7911 1.57698 1.23695 
-

45.7841 

15 -12034.9 1576629 702.8472 30749.8 0.833781 11.4937 -1.23323 1.60414 1.21255 
-

45.8769 
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In the DX optimization we used seven output parameter and three input parameters as we 

can see in the table above. For the sake of clarity we used a parameter key names to 

represent them in the various analysis and optimization processes, as shown in the table 

6.2 below. 

Table 6.2: The keys of the parameters used in the DX optimization. 

Parameter P2 P6 P9 P10 P11 P12 P13 P14 P15 P16 

Property 

Shaft 

Power 

[W] 

ηt-s 

[-] 

β4 

[degree] 

α5 

[degree] 

WR 

[-] 

CmR 

[-] 

β5 

[degree] 

ω 

radian 

s^-1 

Pt in 

[Pa] 

Tt in 

[K] 

 

The design points are then plotted and graphically displayed as a DOE matrix 

representation of the generated design parameters, as shown in the figure 6.1 below. The 

parallel Y axes represent each parameter value. 

 

 

Figure 6.1: Parameters parallel chart. 
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The Goodness of Fit of the output parameters shown in the figure 6.2 below. The 

Goodness of Fit related closely to the meta-model used in the response surface. It is clear 

that the shaft power prediction from the design points is very close to those predicted 

from the response surface, but the total-to-static efficiency diviates a little bit more also 

the other parameters can be observed in the figure below. 

 

Figure 6.2: Goodness of Fit predicted from the Response Surface versus the goodness 

observed from the design points. 

6.1.1 Response Surface 

Creating a response surface is generally done by solving the the output parameters for all 

design points as defines by th DOS  and the then fitting the output parameters as a function 

of the input parameters using regression analysis techniques. There are several modelling 

algorithm to create the response surface, such as the Full 2nd  order polynomial, Kriging, 

non-parametric regression and neural network, as explained in [6]. 

The impact of each parameter on one another is shown in the 3-D response surface charts 

shown in the figure 6.3 below. From the graphs we can analyse and find the value of the 

parameter that maximizes or minimizes the output parameter. In this figure the impact of 

the total inlet pressure and temperature on the total-to-static efficiency and the ratio of the 

relative velocity WR at the leadign and at the trailing edge of the rotor is shown. Also the 
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effect of the rotational speed on the efficiency is drawn, and so on we can analyse the 

other input and output parameters. 

Figure 6.3: 3D response chart for the ηt-s vs. the total inlet pressure and temperature 

and ω. Also ηt-s vs. total inlet pressure and temperature. 
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A 2-D response surface for the rotational speed ,ω, and the total inlet pressure is also 

shown in the figure 6.4 and figure 6.5 below. In the figure 6.5 the design points from the 

DOE are also shown together with the response surface and the difference can be noticed. 

The maximum achievable total-to-static efficiency ,ηt-s, related to the input parameters Pt 

in and rotational speed can then be easily assesed. 

 

Figure 6.4: 2D response surface of the ηt-s vs. ω. 

 

Figure 6.5: 2D response surface of the ηt-s vs Pt in, with the DOE points. 
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Different types of algorithm can be employed to produce the response surface. The full 

2nd Order Polynomial and the Neural Network are very close in producing the response 

surface as we can see in the figures 6.6 and 6.7. Other types are also plotted such as the 

Kriging and the Non-Parametric Regression.  

 

Figure 6.6: The Response Surface of the total-to-static efficiency ηt-s versus the Pt in for 

different algorithm types. 

 

Figure 6.7: Response Surface of the ηt-s  to the Pt in by different algorithm types (The –ve 

sign refers to the direction of the rotation). 
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6.1.2 The Artificial Neural Network  

The Artificial Neural Network ANN used here is a mathematical technique based on the 

neural network in the human brain, and it is a statistical learning model used to estimate 

or approximate function. The ANN is an interconnected group of nodes akin the neurons 

in the brain as shown in the figure below.  

It, generally, consists of many layers. The 

first layer has the input neurons which send 

data via synapses to the second layer of 

neurons, and then via synapses to the third 

layer which contains the output neurons. 

More layers may be needed for more 

complex systems. The synapses store 

parameters called “weight” which 

manipulate the data in the calculations 

[106]. The ANN is defined by three 

parameters, which are the interconnection 

pattern between the different layers of  

Figure 6.8: A schematic graph of the ANN. 

neurons, the learning process of updating the weight of interconnections and the third is 

the activation function that converts the neurons weighted input to its output activation. 

It has three levels the input, the hidden and the output level. The solution of it is given as 

in the following equation 

𝑓𝑘(𝑥𝑖) = 𝐾 (∑𝑊𝑗𝑘𝑔𝑗(𝑥𝑖)) 
6.1 

where xi is the inputs, the hidden contains the 𝑔𝑗(𝑥𝑖), K is predefined function. 𝑊𝑗𝑘 is the 

weight function and issued from the algorithm which minimizes the distance between the 

interpolation and the known values (design points) [6]. 
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6.1.3 Parameter Local and Global Sensitivity 

Also the impact of the input parameters on the output parameters can be seen in the figure 

6.9 below. The local sensitivity of each parameter is represented graphically. The 

sensitivity charts are single parameter sensitivities, which means that the DOE calculates 

the change of the output based on each input independently at the current value of each 

input parameter value. 

The large the change of the output the more significant and effective the input parameter 

is, as we can see the sensitivity of the input pressure by the shaft power and the exit flow 

angle at the rotor trailing edge. 

The figure 6.10 represents statistical sensitivity, which is a global sensitivity, as we can 

see in the GD Optimization. This sensitivity based on correlation analysis using generated 

sample points. It doesn’t depend on the setting of the input parameters because all possible 

values for the input parameters are already taken into consideration in the sensitivity 

determination step. 

 

 

Figure 6.9: Local sensitivity of Parameters. 
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Figure 6.10: Global sensitivity depending on output parameters 

The candidate design points can be shown in the figure 6.11 below. A suggested 

combination of the parameters have been proposed and tradeoff can be made to select a 

new design point 

 

Figure 6.11: Cadidate design  points 
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6.2 Genetic algorithm optimization 

After performing the Multi-Objective Genetic Algorithm optimization which is a Non-

dominated Sorted Genetic Algorithm-II, NSGA-II. We set our objectives, constraints, the 

output and input parameters. It is worth saying here that this method is limited to the 

continuous input parameters and it aims at finding a global optimization point. 

It suggested a list of candidates and as follows: 

Table 6.3: List of candidate points 

Parameter 
Candidate 

point 1 

Candidate 

point 2 

Candidate 

point 3 

Candidate 

point 4 

Candidate 

point 5 

 ω (radian s^-1)  13300.86667 12895.23782 12916.6 12916.6 13241.43315 

Ptin (Pa)  1596927.083 1548098.958 1523496.881 1523496.881 1540286.458 

Tin (K)  593.4580247 589.8510232 609.2820406 609.2820406 650.5792537 

 Shaft Power (W)  26407.87864 25455.05132 24183.29074 24183.29074 25233.01448 

ηt-s [-] 0.872081718 0.873357663 0.867987306 0.867987306 0.864709672 

 Beta le (degree)  23.14573929 -24.62340086 -25.9521606 -25.9521606 -20.84372209 

α5 (degree)  14.70271838 15.69298092 15.74800074 15.74800074 12.0239813 

WR 1.519560602 1.499730466 1.477745631 1.477745631 1.537104898 

 CmR 1.246787815 1.232020532 1.223683355 1.223683355 1.2223689 

β4(degree)  45.20801857 -45.53209879 -45.66009314 -45.66009314 -45.57593907 

 

6.3 Optimization methods results 

The candidate points of the optimization process have been applied as a boundary. The 

performance of the turbine has experienced additional improvements over the results of 

the parameter study and the preliminary design. 

The recovered energy as a percentage of the output power of the automobile for the five 

candidate points are as follow 

 

Table 6.4: Percentage of the recovered energy. 

The candidate point 

number 
1 2 3 4 5 

Percentage of the 

recovered energy % 
16.119 15.553 14.761 14.76 15.402 

 



Optimization a Radial Inflow Turbine 136 

 

 

 

 

Figure 6.12: Relative Mach number M5re at the rotor trailing edge TE versus the 

normalized span width for the optimization candidate points. 

The figure 6.12 and the figure 6.13, represents the relative and the absolute Mach number 

at the trailing edge of the rotor blade. It is clear that the behavior of the Mach numbers 

are similar and the curves are almost concentrated. 

 

 

Figure 6.13: Absolute Mach number M5re at the rotor trailing edge TE versus the  

normalized span width for the optimization candidate points. 
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7 Conclusions 

The work of this thesis aims at presenting and optimized a compact design of a radial 

inflow turbine to be employed in the energy recovery applications of the automobiles and 

to operate efficiently with high rotational speed with different operating conditions. An 

appropriate working fluid has also been introduced. 

However, around two-third the energy supplied to the ICEs is wasted and dumped to the 

environment. The exhaust gas and the cooling system through which this energy is wasted 

the most. Therefore, harnessing as much energy as possible and recovering it, is an 

inevitable duty for the designers and the academic researchers. An energy recovery closed 

cycle has been adopted, which allows the wasted energy to be transferred to its organic 

working fluid and eventually producing energy. In this study we introduced and 

successfully designed and optimized a radial inflow turbine for this recovery cycle.  This 

radial turbine plays the main role in the energy recovery cycle and it is the most important 

and complex part in the design process. The miniature and the high speed effect of the 

turbine have been carefully studied. The Ethanol with chemical composition C2H5OH 

has been chosen to be the working fluid. As this working fluid has a relatively low boiling 

temperature, and as we expected, the fluid flow throughout the turbine is in the 

superheated region or even above the critical point. It is very important to have a super 

dry fluid in the turbine, to avoid some mechanical problems such as corrosion or even 

more turbulence level if we have liquid particles. 

To have an accurate numerical simulation, a mesh-independent analysis has been 

performed to have a sufficiently refined grid in a way that more refinement in the mesh 

doesn’t affect the simulation results. A finite volume FV model has been employed for 

the numerical simulation of the fluid flow through the radial inflow turbine. In this model 

we made use of the turbulence models mainly the SST-k-ω. This turbulence model has 

been validated over many cases, and it is recommended as a good choice that offers a 

compromise between the calculation cost and the accuracy. We made also a comparison 

between the SST-k-ω and the standard k-ϵ models and we found that the SST-k-ω gives 

better results, especially in the regions close to the walls. Choosing an appropriate 

turbulence model is of great importance, as a lot of transitions have to be investigated, 

such as wake/ jet effect, shock and flow separation. 

The preliminary geometry of the turbine has been created using recommended values of 

dimensionless parameters, such as the specific speed, the specific diameter, Mach 

number, velocity ratio and other geometrical correlations. The geometry is further 

adjusted in the performance analysis and the optimization procedures. The performance 

of the turbine at the design point has been compared to the results of Vista RTD, as it is 

validated over many experimental results, and it shows a very good agreement. The 

performance of the turbine has been further analyzed for different boundary conditions, 

at the design point and at off-design points. That gave us an excellent insight about the 
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effect of miniature, the effect of high density working fluid and also the effect of high 

rotational speed on the turbine performance. The latter properties are the main 

requirements of our application. 

An optimization procedures have been performed to find the optimum performance of the 

radial inflow turbine under various operating conditions, and also find the effect of each 

parameter on the design configuration. The Design Exploration tools has been used, 

employs various optimization algorithms and techniques. We used first the Design of 

Experiments method DOE, and used the Central Composite Design CCD type of DOE, 

to get the list of design points. The output parameters have been calculated depending on 

the design points produced previously, and then graphically represented. The response 

surface analysis has also been performed using artificial neural network ANN and also 

using the full 2nd Order polynomial. The Goal Driven Optimization GOD is then 

performed using the Multi-Objective Genetic Algorithm Method MOGA which aims at 

finding the global optimum. This optimization has constraints based on the parameter 

correlations given in previous works such as in ROHLIK [85] and BALJI [15]. A list of 

optimum design-points candidates are then evaluated. The performance of the turbine has 

then been checked for these optimum points, and improvement in the performance is 

obvious. 

 

7.1 Outlook 

This work has presented many observations and intensively investigated and optimized 

the design performance the proposed turbomachine. Some of these observations have 

been covered and some still need further investigations. Developing a turbulence model 

that deals with fluids above the critical points and fluids with high density is an important 

work to perform. Also the structural analysis and the effect of high speed on the life time 

of the turbine is a valuable work, addition to that, choosing an appropriate material that 

withstand all the mechanical and thermal stresses is a crucial topic that still needs to deal 

with. However, the bearings of the turbine need also to be tested, we suggest a magnetic 

bearings to be first chosen and further investigated. 

A full cycle with thermodynamic and structural optimization and by applying different 

optimization methods to find the interaction between the various parameters can be also 

performed. 
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8 Appendix A 

 

8.1 Minimum inlet Mach number 

Optimizing the inlet flow to the rotor has been shown by WHITFIELD [104], and it is 

done by choosing the absolute and the relative flow angles that give the smallest inlet 

Mach number for a given power ratio. High inlet Mach number and possibility of 

chocking are happened at improper flow angels. Following the development of Whitfield 

the tangential velocity is first written as follows: 

 

𝐶𝜃2 = 𝑈2 + 𝑊𝜃2 = 𝑈2 + 𝐶𝜃2  
𝑡𝑎𝑛 𝛽2
𝑡𝑎𝑛 𝛼2

 ( 1 ) 

In which the last term has been derived by sing  

 

𝐶𝜃2 = 𝐶𝑚2 𝑡𝑎𝑛 𝛼2                        𝑊𝜃2 = 𝑊𝑚2 𝑡𝑎𝑛 𝛽2    ( 2 ) 

Taking into consideration 𝐶𝑚2 = 𝑊𝑚2. Multiplying through by 𝐶𝜃2 and rearranging gives  

𝐶𝜃2
2  (1 − 

𝑡𝑎𝑛 𝛽2
𝑡𝑎𝑛 𝛼2

) =  𝑈2𝐶𝜃2 ( 3 ) 

Following the Euler equation of turbomachinery, the right hand side is the work delivered, 

and since it is related to the power ratio, it will be taken to be fixed quantity. Dividing 

both by 𝐶2
2 leads to  

𝑠𝑖𝑛𝛼2
2 (1 − 

𝑡𝑎𝑛 𝛽2
𝑡𝑎𝑛 𝛼2

)  = y ( 4 ) 

In which 

𝑦 =  
𝑈2𝐶𝜃2

𝐶2
2 = 

𝑈2𝐶𝜃2

𝐶𝑜2
2  

𝐶𝑜2
2

𝐶2
2   (5) 

Or  

𝑦 =
𝑆𝑤

( 𝛾 − 1)
 
1

𝑀𝑜2
2 = 

𝑠

𝑚
 (6) 
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Where the following notation has been introduced: 

 

𝑠 =  
𝑆𝑤

( 𝛾 − 1)
                  𝑚 =  𝑀𝑜2

2  (7) 

The inlet stagnation Mach number has been defined as follows: 

 

𝑀𝑜2
2 = 

𝑎2

√𝛾 𝑅 𝑇02
 (8) 

Which can be also written as follows: 

 

𝑀𝑜2
2 = 

 𝑉2
2

𝑎𝑜2
2 =  

 𝑉2
2

𝑎2
2  
 𝑎2
2

𝑎𝑜2
2 = 𝑀𝑜2

2  
𝑇2
𝑇𝑜2

 (9) 

So that  

 

𝑀𝑜2
2 = 

𝑀2
2

1 + 
𝛾 − 1
2  𝑀2

2
 (10) 

Dividing the equation (4) by 𝑐𝑜𝑠2𝛼2, and noting that   
1

𝑐𝑜𝑠2𝛼2
= 𝑡𝑎𝑛2𝛼2 + 1, gives the 

following: 

(1 − 𝑦) 𝑡𝑎𝑛2𝛼2 − tan 𝛽2  tan 𝛼2 − 𝑦 = 0 (11) 

Or  

(𝑚 − 𝑠) 𝑡𝑎𝑛2𝛼2 −  𝑚 tan𝛽2 tan𝛼2 − 𝑢 = 0 (12) 

 

For a given value of power ratio, Mach number and relative flow angle, this equation can 

be solved for tan α2. The solution is found with the power ratio and the relative flow angle 

as parameters. 

The minimum of each curve is sought for each the minimum of each value of 𝑆𝑤, 𝛽2.  

To find it, let a=tan α2 and b = tan β2, and that puts the equation in the below form 
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(𝑚 − 𝑠)𝑎2 −𝑚𝑏𝑎 − 𝑠 = 0                         𝑚 =  
𝑠(1 + 𝑎2)

𝑎 ( 𝑎 − 𝑏)
 (13) 

And by setting the derivative of the above equation equal to zero, the minimum of m at 

fixed values of s and b can be obtained.  

 

𝑑𝑚

𝑑𝑎
= 
2𝑠 (𝑎 − 𝑏)𝑎2 − 𝑠 ( 2𝑎 − 𝑏)(1 + 𝑎2)

𝑎2 ( 𝑏 − 𝑎)2
 (14) 

And this reduced to  

𝑏𝑎2 + 2𝑎 − 𝑏 = 0 (15) 

Solving the quadratic equation gives 

𝑎 =   
−1 ∓ √1 + 𝑏2 

𝑏
 (16) 

 

Substituting this value of a into equation (13) gives 

𝑚 = 
2𝑠

1 ∓ √1 + 𝑏2
 (17) 

 

For the minimum of m as a function of s and β2. Since 

√1 + 𝑏2 = √1 + 𝑡𝑎𝑛  𝛽2
2 = 

1

cos𝛽2
 (18) 

 

So the equation (16) becomes 

tan𝛼2 = 
− cos 𝛽2  ∓ 1

sin 𝛽2
 (19) 

Having the identity  
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cos 𝛽2 = 𝑐𝑜𝑠
2
𝛽2
2
− 𝑠𝑖𝑛2

𝛽2
2

 (20) 

sin 𝛽2 =  2 sin
𝛽2
2
 cos

𝛽2
2

 (21) 

The equation (19)  leads to  

tan𝛼2 = 
− 𝑐𝑜𝑠2

𝛽2
2 + 𝑠𝑖𝑛

2 𝛽2
2  ∓ 1 

2 sin
𝛽2
2  cos

𝛽2
2

 (22) 

The positive sign gives 

tan𝛼2 = tan
𝛽2
2

 (23) 

It has been shown that the value of 𝛼2  > 0 𝑎𝑛𝑑 𝛽2 < 0 .The negative sign gives  

tan𝛼2 = − cot
𝛽2
2
            𝑜𝑟                 tan 𝛼2 = tan( 

𝜋

2
+ 
𝛽2
2
 ) (24) 

Hence  

𝛼2 =  
𝜋

2
+ 
𝛽2
2
  (25) 

  Substituting this into equation (17) when the value of m is minimum, this gives 

𝑚 = 
2𝑠 cos𝛽2
cos 𝛽2  ∓ 1

 (26) 

The positive sign is chosen since the minus sign gives a negative m value, and this gives 

𝑀𝑜2 𝑚𝑖𝑛
2 = 

2𝑠 cos 𝛽2
1 + cos 𝛽2

 (27) 

As we’ve seen in the equation (10)  

𝑀2
2 = 

𝑀𝑜2
2

1 − 
𝛾 − 1
2  𝑀𝑜2

2
 (28) 

By substituting the value of  𝑀𝑜2 𝑚𝑖𝑛
2  from equation (28) into the above equation gives 
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𝑀2
2 = [(

2𝑆𝑤
𝛾 − 1

) 
cos 𝛽2

1 + (1 − 𝑆𝑤) cos 𝛽2
]

1
2⁄

 (29) 

 

The minimum of the curve is seen from that the at nozzle angels in their usual range 

between 60° < α2 < 80°. There may be two angles satisfy the equation (13). The smaller 

angle is to be chosen. The larger angles put the limit of how large the Mach number can 

be. 
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