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Abstract—Distributed power control schemes have been inten-
sively studied in the literature for uplink transmissions in cellular
networks as well as in ad hoc networks. In these schemes, the
signal to interference plus noise (SINR) requirements of the new
users are gradually approached without violating the existing
links. In this paper, we consider a downlink cellular scenario,
in which new nomadic cells seek admission to the network. A
distributed power control algorithm with active cell prote ction
is presented, where a cell is said to be active if it has sufficient
resources to support the connected users and, otherwise, itis
said to be inactive. With the proposed algorithm, inactive cells
lower their loads by gradually performing power ramping, while
active cells scale their transmission power accordingly, to avoid
being overloaded. We prove the active cell protection property
and compare the convergence of the algorithm under different
interference assumptions. Further, we present an algorithm for
adapting the power ramping factor in power limited scenarios
for further performance enhancements.

I. I NTRODUCTION

Distributed Power Control (DPC) is one of the fundamental
mechanisms for resource allocation in wireless communication
systems. DPC has been extensively studied in the context
of single-carrier networks including the uplink channel and
the distributed wireless mesh networks [1]–[7]. Based on a
noiseless power control scheme in [1], the authors propose in
[2] an iterative DPC algorithm that converges to the optimal
power vector where a linear interference plus noise model
is considered. The idea is further extended in [3] by adding
Active Link Protection (ALP) such that the Quality of Service
(QoS) for the users do not drop below the requirements
during the transient phase. The energy-robustness trade-off of
ALP/DPC is discussed in [4], where the authors propose an
algorithm, denoted as the Robust Distributed Power Control
(RDPC), to dynamically adjust the control parameter. Fur-
thermore, the ALP/DPC framework has been extended in the
context of Standard Interference Functions (SIFs) in [5], [6]
and detailed analyses on the convergence performance and
power limits are given in [5]. Another class of interference
functions, proposed in [7] as General Interference Functions
(GIFs), reflecting the case of zero noise interference, is also
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proven there to be a suitable interference function for the
DPC/ALP model.

The abovementioned papers merely study cellular uplink
transmissions or ad-hoc networks with focus on the Signal
to Interference plus Noise Ratio (SINR) performance. Re-
cently, the concept of 5G nomadic networks [8] raised new
interest in downlink power control schemes for network-level
QoS requirements. Nomadic networks, comprising randomly
distributed nodes (e.g., parked vehicles with on-board relay
node (RN) infrastructures), are regarded as an important 5G
system component that allows for a flexible and dynamic
network extension [9]. The locations of such RNs, referred
to as nomadic RNs, are random and not controlled by the
network operators. Moreover, the nomadic RNs operate in
a self-organized fashion and are activated based on capac-
ity, coverage or energy efficiency demands. Algorithms for
the activation and deactivation of nomadic relays have been
identified as the key techniques to enable such a dynamic
network [10], [11]. An unavoidable issue is that the additional
interference generated by the newly activated nomadic nodes
might severely affect the neighboring active cells, such that
the cells become overloaded. Hence, certain mechanisms are
required to protect the active cells.

In this paper, we generalize the ALP algorithm of [5] in
order to provide Active Cell Protection (ACP), where a cell,
either a base station (BS) or a nomadic RN, isactive if the cell
is not overloaded and has sufficient resources for supporting
the QoS of the connected nodes. Therefore, this paper extends
the algorithm of [5] to relay-assisted cellular networks where
multiple user equipments (UEs) are served by a single BS
(transmitter). In other words, the algorithm of [5] is a special
case of our algorithm, if there are no RNs and each BS serves
only one UE. Moreover, we discuss the algorithm performance
under different interference models: static interferencemodel
as in [12]–[14] and dynamic interference model as in [11],
[15]. We prove the SIF property and hence the convergence of
the proposed ACP algorithm under both assumptions. Further-
more, power constraints and signaling issues are also discussed
for practical implementations. Simulations confirm that the
proposed algorithm can be applied to nomadic networks which
benefit significantly during the activation procedure. Notethat
due to the page limitation, we only sketch the proofs for the
lemmas and propositions in this paper.



The rest of the paper is organized as follows: Section II
presents the system model. The load interference function
is introduced in Section III, where some of its important
properties are proven. In Section IV, the active cell protection
algorithm is presented, while simulation and conclusion are
provided in Section V and Section VI, respectively.

II. SYSTEM MODEL

Based on the model in our previous work [10], we consider
the downlink channel of a nomadic relay network withM BSs,
N UEs andK RNs. The set of BSs, RNs and UEs are denoted
by B, R andU , respectively. Furthermore, we use direct links,
relay links and access links to denote the BS-UE, BS-RN and
RN-UE links, respectively.2 In this paper, we consider L3-RNs
according to the Long Term Evolution (LTE) standard [16].
Such RNs are seen by the UEs as separate cells that have all
the Radio Resource Management (RRM) functionalities of the
BSs: the RNs are able to reuse the resources of the BS for
the access link transmissions, while the relay links and direct
links compete for resources allocated to the correspondingBS.

The amount of bandwidths (in Hz) at BSs and RNs are
fixed and grouped in vectorsb(m) = (b(m)

1 , . . . , b(m)
M )T and

b(k) = (b(k)
1 , . . . , b(k)

K )T , respectively. The vector of the required
minimum rates (in bit/s) of the UEs is denoted byr(n) =
(r(n)

1 , . . . , r(n)
N )T . Note that each UE can be connected either

to an RN or directly to a BS (not to both simultaneously),
while an RN can only be connected to a BS. The Spectral
Efficiency (SE) of a link(i, j) is assumed to be (in bit/s/Hz)

ωi,j = log(1 + τi,j) (1)

whereτi,j denotes the corresponding SINR as defined in (2).
Throughout the paper we take the following assumptions:

(A.1) The parametersr(n), b(m) andb(k) are known parameters
at a central network unit or can be estimated reliably.

(A.2) While access links and direct links interfere with each
other, the RNs use separate time-frequency resources on
the relay links and access links. Hence the access links
do not interfere with the relay links.

(A.3) In the previous work [10], we considered the worst-
case interference model in order to ensure the bandwidth
constraints. In order to further optimize the network, we
adapt a more realistic interference model. [15], [17], [18],
where interference power is scaled by the load (denoted
asρ) of the interfering BSs.

As a result, the SINR of a link(i, j) is given by

τi,j =







pigi,j∑
d∈B,d 6=i pdgd,jρd+σj

for j ∈ R,
pigi,j∑

d∈B
⋃

R,d 6=i pdgd,jρd+σj
for j ∈ U .

(2)

Herein,σj , pi andgi,j refer to the receiver-side noise power,
transmission power and channel gain for link(i, j), respec-
tively, while ρd denotes the load of the noded which is defined

2Throughout this paper, notations with superscripts (m), (k) and (n) are
variables associated with BSs, RNs and UEs, respectively, while notations
with (m,n), (m,k) and (k,n) are referring to the direct links, relay links and
access links, respectively.

as the ratio of the amount of used bandwidth for supporting
the QoS of the assigned UEs to the available bandwidth at
the node. Note thatρd = 1, if we consider a static worst-
case interference model as in many load balancing studies
[12]–[14]. We explain the load functionρ in the Section II-A
in more detail. Note thatτi,j > 0 always holds, since both
received power and interference plus noise are positive values.
Furthermore, a positiveτi,j exists also for the case when both
i, j ∈ R, however, we do not allow a connection between RNs
in this work.

A. Load Power Coupling Model

In this paper, we deal with the power control problem
and assume the user assignment is already established. Fur-
ther, we denoteUi and Ri to be the set of UEs and RNs
that are connected to nodei. We defineρ , [

ρ
(m)
i

ρ
(k)
i

] =

[ρ1, . . . ρM , ρM+1, . . . , ρM+K ]T ∈ R
M+K
+ , i ∈ B

⋃
R, to be

the vector of loads at the BSs and RNs, where thei-th entry
of the load vector can be calculated as

ρi = ρ
(1)
i + ρ

(2)
i , i ∈ B

⋃

R

=
∑

j∈Ui

r(n)
j

biωi,j(ρ)
︸ ︷︷ ︸

direct/access links

+
∑

k∈Ri

r(k)
k

biωi,k(ρ)
︸ ︷︷ ︸

relay links

(3)

=
∑

j∈Ui

r(n)
j

biωi,j(ρ)
+

∑

k∈Ri

∑

j∈Uk

r(n)
j

biωi,k(ρ)
.

Herein, ρ(1)i and ρ
(2)
i refer to the load corresponding to the

UEs (direct/access links) and RNs (relay links), respectively,
while r(k)

j is the rate requirement of an RN, which is the sum
rate of all the UEs connected to this RN:

r(k)
k =

∑

j∈Uk

r(n)
j , for j ∈ U , k ∈ R . (4)

Thus, for a givenp, the total load is determined by the function
F = [F1, . . . , FM+K ] : R2×(M+K) → R

M+K given by

ρ = F(ρ,p) = F(1)(ρ,p) + F(2)(ρ,p) (5)

where ρ
(1)
i = F

(1)
i (ρ,p) and ρ

(2)
i = F

(2)
i (ρ,p) with p ,

[p1, . . . , pM+K ]T . We refer to the model in (5) asdynamic
interference model, indicating that the load depends on itself
via interference. If we consider thestatic interference model,
for which we decouple the dependencies on the load vector of
both sides in (5), we have:

ρ = F(ρ′,p), (6)

whereρ′ is not related toρ and determines the interference
level. In particular, we get theworst-case interference model,
if we setρ′ = 13. Note that in a real system, the load can not
be larger than 1. Hence, we can write the real load as:

ρ̄ = min(ρ,1). (7)

3Throughout the paper,1l(0l) refers to column vector of lengthl. If not
specified,1(0) is a column vector with proper length for matrix operator.
Furthermore,1m×n(0m×n) refers to anm×n matrix of ones(zeros). Further,
the equalities and inequalities are performed element wisefor vectors.



III. L OAD INTERFERENCEFUNCTION

We define I(p) = [I1(p), . . . , IM+K(p)] : R
M+K
+ →

R
M+K
++ to be the vector of theLoad Interference Functions:4

Ii(p) =







piFi(ρ,p) for p > 0,
∑

j∈Ui

⋃
Ri

∑

d∈Ii

rj(pdgd,jρd+σj)
bigi,j

otherwise,

(8)
whereIi refers to the set of interfering cells to celli.

Lemma 1. Ii(p) is a well definedpositive continuous func-
tion: R

n
+ → R++. Furthermore, ifIi(p) is an SIF as in

Definition 1 forp > 0, it is also an SIF forp ≥ 0.

Proof (sketch): Ii(p) is positive and continuous forp >
0 by assuming the continuity of the load vectorρ with respect
to p (details of proof omitted in this paper). Then, we follow
L’ Hospital’s rule for pi = 0 :

lim
pi→0+

Ii(p) = lim
pi→0+

∑

j∈Ui

⋃
Ri

rj(1 +
gi,jpi∑

d∈Ii
pdgd,jρd+σj

)

bi
gi,j

(
∑

d∈Ii
pdgd,jρd+σj)

= Ii(p)|pi=0 > 0.

Thus, Ii(p) is a positive continuous function forp ≥ 0.
Moreover, it can be justified due to continuity that, if the two
properties of the SIF defined as in Definition 1 hold forp > 0,
they also hold forp ≥ 0.

Hence, in order to prove thatI(p) is a vector of SIF
functions for allp ≥ 0, it is sufficient to prove thatIi(p)
satisfies the two properties forp > 0.

Definition 1 (SIF [6]). Let z ∈ R
n
+ for arbitraryn ≥ 1. A

positive functionf : Rn
+ → R++ is an SIF if:

• Scalability:∀z≥0 ∀α>1, αf(z) > f(αz),
• Monotonicity: if z ≥ z′ ≥ 0, thenf(z) ≥ f(z′).

In the following, we prove that the load interference func-
tion is SIF for allp > 0 under both thestatic and thedynamic
interference assumption. Note that (6) is used to computeρ in
(8) for the static interference model while (5) is applied tothe
dynamic interference model. First, we formulate a sufficient
condition for the monotonicity property:

Lemma 2. Let z ∈ R
n
+ for arbitraryn ≥ 1. The monotonicity

property is fulfilled if f : R
n
+ → R++ is continuously

differentiable overz ∈ R
n
++ with only non-negative gradients:

∇f(z) ≥ 0 for all z ∈ R
n
++.

Proof (sketch): Let x, z ∈ R
n
++ be arbitrary and,

without loss of generality, assume thatx ≤ z. Now let
y(i) = (0, . . . , 0, zi − xi, 0, . . . , 0), 1 ≤ i ≤ n, is a vector
with zeros everywhere except for thei-th position which is
equal tozi − xi. Since∇f(z) ≥ 0 for all z ∈ R

n
++, we

have f(x) ≤ f(x + y(1)) ≤ f(z + y(1) + y(2)) ≤ . . . ≤
f(x+

∑

i=1,...,n y
(i)) = f(z)

Proposition 1. I(p) is an SIF assuming static interference.

4Throughout this paper, the inequalities are all element wise comparisons.

Proof (sketch): According to (6), we have the analytical
form of (8) under the static interference model by inserting
a constant load vector. Sincerj , bi and gi,j are all positive
constants, it suffices to prove that̃Ii(p) = pi/log(1 +

pi∑
d∈Ii

pd+σj
) satisfies Definition 1.

For scalability, It can verified that∂Ĩi(p)/∂σj > 0. Thus,

Ĩi(αp) =
αpi

log(1 + pi∑
d∈Ii

pd+σj/α
)

<
αpi

log(1 + pi∑
d∈Ii

pd+σj
)
= αĨi(p).

For monotonicity, we show that Lemma 2 is satisfied since
the gradient of̃Ii(p) is non-negative for allp > 0. Details of
the proof are omitted due to the space limitation.

Lemma 3. There exists an explicit functionρ = G(p) :
R

M+K
+ → R

M+K
+ that takes power vectorp as argument.

Furthermore, ifα ≥ 1, G(αp) < G(p) element wise.

Proof (sketch): In [11, Prop.1], we have proven that there
exists an explicit function that takes the assignments as input
argument. Similarly, the existence ofρ = G(p) with power
vector as input can be proven. Without loss of generality, we
assume the same noise power in the network. Then, we extend
load functionsG(p) andF(ρ,p) as functions of both powerp
and noiseσ, such thatρ = G(p, σ) andF(ρ,p) = F(ρ,p, σ).
Further, we define the implicit function

F̃(ρ,p, σ) , ρ− F(ρ,p, σ). (9)

According to the implicit function theorem,5

Jσ
G(ρ,p, σ) = −J

ρ

F̃
(ρ,p, σ)−1Jσ

F̃(ρ,p, σ). (10)

According to [11, Prop.2], the inverse ofJρ

F̃
(ρ,p, σ) exists

with only non-negative elements. Moreover, it can be easily
verified that∂Fi/∂σ is positive and∂F̃i/∂σ (which is thei-th
entry in Jσ

F̃(ρ,p, σ)) is negative. Thus,Jσ
G(ρ,p, σ) > 0 for

σ > 0, indicating a monotonically increasing property onσ.
Therefore, forα > 1, G(αp, σ) = G(p, σ/α) < G(p, σ).

Proposition 2. I(p) is an SIF assuming dynamic interference.

Proof (sketch): For pi > 0 we can rewrite the load inter-
ference function asIi(p) = piGi(p) according to Lemma 3.

For scalability, ifα > 1, using Lemma 3 we have easily
Ii(αp) = αpiG(αp) < αpiG(p) = αIi(p).

For monotonicity, we use the implicit function defined in
(9) and calculate the Jacobian with respect top as

J
p

G(ρ,p, σ) = −J
ρ

F̃
(ρ,p, σ)−1J

p

F̃
(ρ,p, σ). (11)

Following the proof in Lemma 3: we know from [11, Prop.2]
that Jρ

F̃
(ρ,p, σ)−1 is non-negative andJp

F̃
(ρ,p, σ) is non-

positive. Therefore,Jp

G(ρ,p, σ) exists as a matrix with only
non-negative elements for allp > 0. Thus, ∂Ii(p)/∂pj =
Gi(p)

∂pi

∂pj
+ pi

∂Gi

∂pj
≥ 0 which yields monotonicity ofIi(p)

according to Lemma 2.

5Throughout this paper, we denoteJx

F
(·) as the Jacobien of functionF(·)

with respect tox. Furthermore, thei-th row and the an entryi, j in J
x

F
(·)

are denoted asJx

Fi
(·) andJ

xj

Fi
(·), respectively



IV. D ISTRIBUTED POWER CONTROL

With the load interference function in hand, we proceed
along similar lines as [3], [5] and formulate the distributed
power control algorithm with active cell protection as follows:

pi(t + 1) =

{
δIi(p(t)) for i ∈ At,

δpi(t) = δ(t+1)pi(0) for i ∈ Dt,
(12)

where we denote the active (ρi ≤ 1) and inactive (ρi > 1)
sets of cells at time instance t asAt andDt, respectively. If
pi > 0, this can be written in a more compact way as

pi(t + 1) = δpi(t)ρ̄i(p(t)), (13)

whereρ̄i is the real load as defined in (7). The algorithm can
be understood as first scaling transmission power by the real
load and then multiplying with a power incrementalδ.

Remark 1. The proposed algorithm becomes the ALP algo-
rithm in [5], if only one UE is associated with each BS. In this
case, celli is active if: rj

bi log(1+τi,j)
≤ 1, which is equivalent

to the SINR threshold:τi,j ≥ erj/bi − 1.

Remark 2. In the previous works [3], [5], [6], the ALP
property is considered only forδ > 1. In this paper, the
ALP/ACP is also valid forδ = 1, however, indicating a power
reduction control scheme. The proof is simple: Forδ = 1 and
ρ̄ ≤ 1 we havep(t+1) ≤ p(t) and hence, due to monotonicity,
I(p(t+1)) ≤ I(p(t)). Then, [5, Prop.2 and 3] proves the ACP.

Remark 3. SinceI(p) is a vector of SIFs, all properties of the
power control scheme in [5] hold also here for the algorithm
in (12) or (13).

A. Admissibility and Convergence

The system is feasible, if there existsp ∈ P with P
denoting the feasible power region of the system, such that:

0 ≤ ρ ≤ 1. (14)

Similarly to [5], we distinguish three different cases for
the feasibility of a full admission. Firstly, we consider the
unlimited case, i.e.,P = R

M+K
+ .

(C.1) Fully admissible: there existsp ∈ P such that0 ≤
F(1,p) ≤ 1/δ or 0 ≤ G(p) ≤ 1/δ;

(C.2) δ-incompatible: (C.1) is not feasible but there existsp ∈
P such that0 ≤ F(1,p) ≤ 1 or 0 ≤ G(p) ≤ 1;

(C.3) Not fully admissible: (C.1) and (C.2) are not feasible.
Note that for the worst-case interference modelF(1,p) ap-
plies, whileG(p) is used for the dynamic interference system.

Proposition 3. In case of (C.1), for every celli, limt→∞ ρi =
1/δ and limt→∞ pi < ∞; In case of (C.2), for every celli,
1/δ < limt→∞ ρi < 1 and pi → ∞; In case of (C.3),for
i ∈ At, limt→∞ ρi = 1, whereaslimt→∞ ρi > 1 for i ∈ Dt.
Further, for alli, pi → ∞.

Proof (sketch): It follows directly [5, Prop. 4-6].
Now that there are two different interference models, we

point out the performance differences of the two models with
respect to admissibility and convergence.

Proposition 4. If (C.1) holds for worst-case interference, it
also holds for dynamic interference assumption. If (C.2) holds
for worst-case interference, (C.1) or (C.2) holds for dynamic
interference assumption.

Proof (sketch): If (C.1) holds for worst-case model,
there existsp(1) such thatG(p(1)) = F(G(p(1)),p(1)) ≤
F(1,p(1)) ≤ 1/δ; if (C.1) or (C.2) holds for worst-case model,
there existsp(2) satisfying G(p(2)) = F(G(p(2)),p(2)) ≤
F(1,p(2)) ≤ 1.

Proposition 5. If the system is admissible for dynamic in-
terference (i.e., (C.1) or (C.2)), it is also admissible forthe
worst-case interference model.

Proof (sketch): If (C1) or (C2) holds for dynamic
interference, there existsp(1), such that0 ≤ G(p(1)) ≤ 1.
Applying δ = 1 and using Proposition 3, the system converges
to the power vectorp(2) < ∞ such thatG(p(2)) = 1. Hence
G(p(2)) = F(1,p(2)) = 1 and the system is admissible also
for worst-case interference models withp(2).

Proposition 4 and Proposition 5 indicate that the two in-
terference models differ only when it is (C.2) for the worst-
case model and (C.1) for the dynamic interference model.
This difference vanishes as the power incrementalδ goes to
1, indicating the equivalence of (C.1) and (C.2).

B. Power Constraints and Implementation

In practical systems, the transmission powers are limited.To
take the power limit into account for (C.1)-(C.3), we denotethe
power limit by p̂ ∈ R

M+K
+ and denoteP = {p|0 ≤ p ≤ p̂}.

In this paragraph, we still refer to (C.1)-(C.3) as the three
levels of admissibility but under power constraints. It hasbeen
pointed out in [5] that full admission can not be guaranteed
for (C.2) in power constrained cases since it requires infinite
power for convergence. This requires asmaller δ to avoid
(C.2) in a limited power scenario. In particular, from Propo-
sition 4 and Proposition 5, we know that (C.2) happens more
frequently under the worst-case interference model. On the
other hand, in [4], it is well understood that largerδ trades-
off convergence speed with energy consumption. In this work,
energy consumption is not the optimization objective. Hence,
we can optimize the convergence speed of the algorithm by
using large values of δ as long as the power constraint is
not violated. Based on all these observations, we propose an
algorithm that dynamically controlsδ as

pi(t + 1) = δ(t)pi(t)ρ̄i(p(t)), (15)

where positive initial powers, i.e.0 < p(0) ≤ p̂ and

δ(t) = mini
p̂i

pi(t)ρ̄i(t)
, for i ∈ B

⋃

R. (16)

Remark 4. Suppose the system power is bounded by0 ≤
p ≤ p̂. First, pk(t + 1) = mini

p̂i

pi(t)ρ̄i(t)
pk(t)ρ̄k(p(t)) ≤

p̂kpk(t)ρ̄k(p(t))
pk(t)ρ̄k(t)

= p̂k. Then, the algorithm in (16) chooses the
largestδ(t) at time t. This can be proven by formulating the
feasible set ofδ(t) which is

⋂

i∈B
⋃

R{δ|1 ≤ δ ≤ p̂i

pi(t)ρ̄i(t)
}.
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Fig. 1. Load and power performance in (C.1), (C.2), and (C.3)

Choosing the largestδ(t) leads to best robustness and speed
of convergence according to the trade-off study in [4] to.
Moreover, δ(t) = mini

p̂i

pi(t)ρ̄i(t)
≤ p̂k

pk(t)ρ̄k(t)
= p̂k

pk(t)
, for

k ∈ Dt. As long asδ(t) > 1, pk(t) will increase until reaching
the power bound̂pk andδ(t) goes to 1. This means, as long as
a cell stays inactive,δ(t) converges to 1. Thus, if the system
is not (C.3), the algorithm in (15) ensures full admission.

The algorithm (13) or (15) is easy to implement in real
systems, since both current powerpi(t) and current load
ρi(t) are known or can be easily estimated at the celli. For
instance, in LTE, the UEs are able to measure the Reference
Signal Received Power (RSRP), which ispigi,j, and Reference
Signal Received Quality (RSRQ), which can be seen as
∑

d∈Ii
pdgd,j + σj . These can be fed back to the cells such

that ρi can be computed and the power control algorithm can
be carried out. One critical point for implementation is that the
value ofδ should be synchronized among all cells. Especially,
dynamical updating ofδ requires to exchange information
between the BSs.

V. PERFORMANCEEVALUATION

A nomadic relay network with 7 hexagon layout BSs, 50
randomly distributed RNs and 50 UEs is simulated. The other
system parameters are listed in Table I. A simple cell and
relay selection scheme is applied, where all UEs are either
connected to the BS or UE with the best RSRP. An RN is
seeking admission into the network with a certain rate QoS.
We compare our ACP algorithm with an intuitive algorithm
(Passive) : Active cells remain at the same power, whereas

TABLE I
SIMULATION CONFIGURATIONS

Transmission Parameters
initial transmission power 46 dBm for BS & 30 dBm for RN
available bandwidth 10 MHz for BS & 10 MHz for RN
antenna configuration 2 antennas for BSs, RNs and UEs
Channel and Noise Parameters in [dB]
path loss model for all links as in Table A.2.1.1.2-3 in [19]
noise figure 5 dB at UE & RN

inactive cells iteratively increase their transmission powers.

pi(t + 1) =

{
pi(t) for i ∈ At,
δpi(t) = δ(t+1)pi(0), for i ∈ Dt.

(17)

The weakness of the passive algorithm is that the active cells
can become inactive as the interfering power from the inactive
cells become critical.

The simulation results on the behavior of load and power
are shown in Fig 1 for a power unlimited scenario. We choose
to show the power and load performance of two representative
cells: a nomadic RN that seeks for admission and a BS that is
severely interfered by the RN. It can been seen that the RN is
iteratively joining the network until the loads converge inall
three cases. However, load violations can be observed within
the first iterations using the passive algorithm (marked with
stars), whereas the proposed algorithm ensures ACP in both
interference assumptions (marked with circles and diamonds).
Proposition 3 can be justified by examining the load and
power performance for each (C.1), (C.2) and (C.3) in Fig 1.
Furthermore, it is worth noting that a lower power convergence
value is expected for the dynamic interference model than that
for the worst-case model.
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Fig 2 illustrates the comparison of load behavior between
the worst-case and dynamic load assumption when the average
rate requirement is steadily increased. The two horizontal
lines separate the cases in which the system ends up with
under a certain average rate requirement. For instance, the
system is full admissible under both static and dynamic
interference for rate requirements lower than 0.9 Mbps. By
further increasing the rate requirement, the system under the
worst-case interference model turns to be (C.2) whereas it
is either (C.1) or (C.2) for the dynamic interference model.
This can be observed by the different load convergence values
for rate requirements between 0.9 Mbps and 1.1 Mbps, since
according to Proposition 3, the two models have the same load
convergence in (C.1), but different load convergences in (C.2).
Furthermore, both scenarios are not fully admissible for rates
equal or greater than 1.1 Mbps, since the loads converge to a
value that is larger than 1.

Finally, we compare the ACP algorithm in (15)-(16) with a
fixed delta algorithm in a power constrained scenario such that
pi(t + 1) = min{pi(t + 1), p̂i}. Fig 3 shows the importance
of choosing a suitableδ: A high δ is preferable for fast
convergence but can lead to (C.3). In contrast, a smallδ
implies a slow convergence speed. The proposed varyingδ
algorithm guarantees admission and achieves a high speed of
convergence.

VI. CONCLUSION

In this paper, a distributed power control algorithm with
active cell protection has been presented with the help of
the SIF property. We have proven the active cell protection
property of the algorithm and compared the convergence
under different interference assumptions. With the proposed

algorithm, the inactive cells can be gradually admitted into
the network without violating the other active cells. We have
also discussed the scenarios with limited powers and proposed
an algorithm that iteratively adjusts the power incremental for
performance enhancement. Simulation results have confirmed
that the algorithm can be applied to the activation procedures
of nomadic cells to protect the active cells.
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