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Abstract

The description of certain evolution equations as Wasserstein gradient flows attained great inter-

est in the mathematical community in recent years, and opened new perspectives in analytical

and numerical treatments of many problems with physical importance. In this thesis, a La-

grangian formulation is used to derive numerical schemes for a wide class of second and fourth

order equations. The aim is to construct numerical solvers that inherit as many structure from

the continuous flows as possible. This yields efficient, stable and easy-to-implement numerical

schemes and further enables a successful study of the schemes’ convergence, long-time asymp-

totics of discrete solutions and other qualitiative issues.

Zusammenfassung

Die Interpretation zahlreicher physikalisch interessanter Evolutionsgleichungen als Wasserstein-

Gradientenflüsse wurde in den letzten Jahren mit großem Interesse in der mathematischen

Fachwelt wahrgenommen, nicht zuletzt weil dies das Verständnis vieler physikalischer Prozesse

verbesserte. In dieser Arbeit werden numerische Verfahren für eine weite Klasse von Gleichungen

zweiter und vierter Ordnung beschrieben, welche auf eine Lagrange-Formulierung dieser Wasser-

stein Gradientenflüsse basieren. Bei der Diskretisierung wird insbesondere darauf geachtet die

Struktur der Gradientenflüsse in den numerischen Verfahren beizubehalten, was zu effizienten

und stabilen numerischen Schemata führt, die zusätzlich einfach zu implementieren sind. Der

Erhalt von Struktureigenschaften der Gleichungen ermöglicht insbesondere die Konvergenz der

Schemata, das Langzeitverhalten von diskreten Lösungen oder andere qualitative Eigenschaften

zu untersuchen.
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CHAPTER 1

Introduction

The history of Wasserstein gradient flows began a long time ago when Monge formulated his op-

timal transportation problem in 1781. This problem quickly became popular and the Academy

of Sciences in Paris (“l’Académie des Sciences”) even offered a reward for its solution, which was

then claimed by Appell [App86]. A relaxed formulation of Monge’s problem was later intro-

duced by Kantorovich in the forties of the 20th century [Kan42,Kan04]. In 1975, he received

the Nobel Prize in Economic Science for his research on this topic. However, Kantorovich’s

representation of the optimal transportation problem initiated the definition of a metric on the

set of (probability) measures — the Wasserstein distance.

It took another three decades until a link between certain evolution equations and the

notion of optimal transportation was found. A first step in this direction was provided by

the extensive work of De Giorgi, who studied time-discrete variational approaches for several

evolution equations on general metric spaces, see for instance [DG93]. Then in [JKO98],

Jordan, Kinderlehrer and Otto stated a semi-discrete (in time) variational scheme for the Fokker-

Planck equation. The key observation was that the equation’s evolution can be understood as

a steepest descent for the free energy with respect to the Wasserstein distance. The geometric

intuition has then been established and used for a rigorous analysis of the porous medium

equation by Otto [Ott01] and was received with great interest in the mathematical community.

The underlying idea for the temporal approximation in both works [DG93] and [JKO98] is

the same, although they have been developed independently of each other. That is why the

scheme was later known as the JKO-scheme (Jordan, Kinderlehrer and Otto) or the minimizing

movement scheme (De Giorgi). In recent years, more and more evolution equations have been

successfully reformulated as Wasserstein gradient flows, and the minimizing movement scheme

became a popular tool for deriving fully discrete numerical schemes for a wide class of equations.

Optimal transportation and the Wasserstein distance

In what follows, we want to give a formal introduction into the topic of optimal transportation.

For a more detailed explanation we refer to [Vil03, Vil09], which constitutes the main guide

for this introductive section.

Let Ω1,Ω2 be two open domains in Rd, d P N, and µ, ν two probability measures defined on

Ω1 and Ω2, respectively. For the purposes of illustration, let us imagine that µ describes the

allocation of some goods in Ω1, whereas ν represents the needs of those goods in Ω2. In order

to satisfy the needs, we are interested in moving all goods from Ω1 to Ω2, but any transport

is associated with some effort described by a convex cost function c : Ω1 ˆ Ω2 Ñ R Y t`8u.
This means, heuristically spoken, that one has to “pay” cpx, yq for the transport of a single good

1



2 1. INTRODUCTION

lying at x P Ω1 to a point y P Ω2. The optimal transportation problem is now formally stated

as follows: How can we transport all goods from Ω1 to Ω2 with minimal total cost?

This problem can be written in a proper mathematical way that is known as the Kantorovich

optimal transportation problem:

Minimize Ipπq :“

ż

XˆY
cpx, yqdπpx, yq for π P Πpµ, νq. (1.1)

Here, Πpµ, νq is the set of all transport plans connecting µ and ν, which means that π is a

measure on X ˆ Y with marginals µ and ν,

πpAˆ Ω2q “ µpAq and πpΩ1 ˆBq “ νpBq for any measurable A Ď Ω1, B Ď Ω2. (1.2)

The restrictions in (1.2) assure that any good is transported from Ω1 to Ω2 by π P Πpµ, νq.

Ω1 Ω2

µ ν

x y

Figure 1.1. A schematic picture of the optimal transportation problem: How
is it possible to transport all goods from Ω1 to Ω2 with minimal total cost?

In this thesis we are only considering the quadratic cost functional cpx, yq :“ |x´ y|2, which

shall be fixed from now on. We further consider the case that both domains are equal, hence

Ω “ Ω1 “ Ω2. Let us assume in the following that the allocations of goods and of needs in Ω

can vary. Then the above minimization problem can be formulated in terms of µ and ν, and the

minimal cost transporting µ to ν can be interpreted as a value of the measures’ distance:

Definition 1.1. The L2-Wasserstein distance between two probability measures µ, ν on Ω is

defined by

W2pµ, νq
2 “ inf

πPΠpµ,νq
Ipπq, (1.3)

where Ipπq is given as in (1.1) with cpx, yq “ |x´ y|2.

If µ and ν are absolutely continuous with respect to a fixed measure on Ω with densities u

and v, then we henceforth write — by abuse of notation — W2pu, vq instead of W2pµ, νq.

As the definition suggests, one can analogously define Lp-Wasserstein distances for p ě 1

and even for p “ `8. However, we are always considering the case p “ 2 and call the metric in

(1.3) the L2-Wasserstein distance or just Wasserstein distance.
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L2-Wasserstein gradient flows

In the forthcoming section, we want to give a brief and very formal introduction to L2-Wasserstein

gradient flows and motivate a link to solutions u to the continuity equation, i.e.

Btu` div
`

uv
˘

“ 0 in p0,`8q ˆ Ω

with an arbitrary velocity field v. The section’s content is mostly inspired by the introductive

Chapter 1.3 of [AGS05] that is essentially based on [Amb95] by Ambrosio. To motivate the

connection between L2-Wasserstein gradient flows and the continuity equation we mainly follow

the ideas of [Ott01], which we recommend to the more interested reader.

Let us start with the Euclidean space Rd equipped with the scalar product x¨, ¨y and the norm

} ¨ }2, which is the simplest setting for introducing the notion of gradient flows. We furthermore

consider a smooth function E : Rd Ñ R. Then the gradient ∇E of E can be defined by validity

of

d

dt
E
`

vptq
˘

“

B

∇E
`

vptq
˘

,
d

dt
vptq

F

(1.4)

for any regular curve v with values in Rd. We then say that a curve u : p0,`8q Ñ Rd is a

gradient flow along E , if it is a solution to

d

dt
uptq “ ´∇E

`

uptq
˘

. (1.5)

From the geometrical point of view, a gradient flow always follows the direction in which E
decreases at most, which is why uptq is also called a curve of steepest descent or a curve of

maximal slope.

If one is interested in extending the notion of gradient flows to the more general setting of

metric spaces, the characterization in (1.5) turns out to be disadvantageous, since a definition

of a gradient as in (1.4) or of a time derivative is not available in general. Therefore we observe

that a solution to (1.5) admits the equivalent representation

d

dt
E
`

uptq
˘

ď ´
1

2

›

›

›

d

dt
uptq

›

›

›

2

2
´

1

2

›

›

›
∇E

`

uptq
˘

›

›

›

2

2
. (1.6)

This is more convenient for a generalization, since the first norm on the right-hand side of (1.6)

can be replaced by the metric derivative |u1| of u and the second one by a strong upper gradient

g for E , which are both purely metric objects. If V is a metric space and E is a functional

defined on V , we then call an absolutely continuous curve u : p0,`8q Ñ V a curve of maximal

slope for E with respect to the strong upper gradient g, if

d

dt
E
`

uptq
˘

ď ´
1

2

ˇ

ˇu1
ˇ

ˇ

2
ptq ´

1

2
gptq2 (1.7)

for almost every t P p0,`8q. We are going to discuss the above objects and the resulting metric

formulation of curves of maximal slopes more detailed in Section 3.5.

The link between L2-Wasserstein gradient flows and the continuity equation. In this

thesis we denote by PrpΩq the set of all positive and integrable density functions on a certain

domain Ω Ď Rd, d P N, with a fixed mass M ą 0. For the sake of simplicity, let us assume
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in this section that M “ 1, hence densities in PrpΩq are probability densities. The set PrpΩq

is known to be a differentiable manifold. Without going into any details, let us think of the

tangent vector space on PrpΩq at any point u P PrpΩq as follows

Tanu PrpΩq “

"

s : Ω Ñ R, such that

ż

Ω
s dx “ 0

*

.

To define a L2-Wasserstein gradient flow along a functional E : PrpΩq Ñ RYt`8u, one can

exploit the metric structure of pPrpΩq,W2q and use (1.7). But in order to link L2-Wasserstein

gradient flows with the continuity equation, we want to motivate another approach. To this end,

we are going to introduce a metric tensor g. There are infinitely many choices for g and any

of them possibly induces another metric on PrpΩq, hence another gradient flow. An important

obervation in [Ott01] was that one can choose a metric tensor g that induces the L2-Wasserstein

distance: Define the metric tensor gu : Tanu PrpΩq ˆ Tanu PrpΩq at the point u P PrpΩq, such

that

gups1, s2q “

ż

Ω
x∇p1,∇p2yudx,

where each tangent vector s P Tanu PrpΩq can be represented by a function p : Ω Ñ R through

the identity

s “ ´divpu∇pq.

The set of probability densities PrpΩq equipped with the metric tensor g is known to form a

Riemannian manifold, which is the required structure to define the notion of gradient flows.

Consider for the moment an entropy/energy functional E : PrpΩq Ñ RY t`8u that is assumed

to be of the form

Epuq “
ż

Ω
φpuq dx

with an integrand φ : r0,`8q Ñ R that satisfies sufficient regularity assumptions, which we

won’t specify in this section. Following Otto’s calculus in [Ott01], a gradient flow along E with

respect to the L2-Wasserstein distance is now formally written as

Btu “ ´ gradW2
Epuq, (1.8)

where the gradient is defined by the metric tensor and the (first) variational derivative of E
through the identity

gu
`

gradW2
Epuq, s

˘

“
δEpuq
δu

rss :“

ż

Ω
φ1puqsdx

for any s P Tanu PrpΩq. Note that this definition of the gradient is of the same kind as (1.4),

since the variational derivative of E in direction s is attained by differentiating Epuptqq along

curves of the form uptq “ u ` ts. In terms of the metric tensor, the gradient flow equation in

(1.8) has to be read as

gu pBtu, sq “ ´gu
`

gradW2
Epuq, s

˘

for any s P Tanu PrpΩq.
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Explicitly, using the representation s “ ´divpu∇pq, the gradient flow equation has the form
ż

Ω
Btu pdx´

ż

Ω
φ1puqdivpu∇pq dx “ 0. (1.9)

This representation of the L2-Wasserstein gradient flow equation is the starting point of the in-

vestigations in this thesis. Indeed, (1.9) is nothing else than a weak formulation of the continuity

equation with a special choice of the velocity field,

Btu` div
`

uvpuq
˘

“ 0, (1.10)

which is going to be the equation of our main interest in this thesis. The velocity field vpuq is

a gradient field depending on the first variational derivative of E evaluated at u,

vpuq “ ´∇
ˆ

δEpuq
δu

˙

. (1.11)

Approximation of Wasserstein gradient flows by minimizing movement. We already

mentioned [JKO98] by Jordan, Kinderlehrer and Otto, who derived a time-implicit semi-discrete

scheme for a wide class of second order evolution equations by employing the equations’ varia-

tional structure. Under certain assumptions on the functional E , their scheme can be applied to

equations that have the form of the continuity equation (1.10) with a velocity field as in (1.11).

E

PrpΩq

u0

uptq

u8

uτ

uτ̃

Figure 1.2. Schematic representation of a L2-Wasserstein gradient flow and its
approximations through the minimizing movement scheme

To this end, let τ ą 0 be a fixed time step size. Then the minimizing movement scheme,

or JKO-scheme, for the continuity equation (1.10) can be formulated as follows: Starting with

an initial datum u0 P PrpΩq, define recursively a sequence of density functions punτ q
8
n“0 as the

solutions of the following minimization problem

unτ :“ arg min
uPPrpΩq

1

2τ
W2pu, u

n´1
τ q2 ` Epuq. (1.12)

To guarantee the well-posedness of the minimizing movement scheme one has to guarantee

the existence of a sequence that solves the minimization problem in (1.12). The solvability of

the minimization problem is mostly attained by assuming a certain convexity property for the
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entropy/energy functional E , but even this does not always have to be required, as one can see

in some examples for fourth order equations.

Evolution equations with Wasserstein gradient flow structure

By now, many evolution equations with an important physical meaning have been shown to carry

an underlying Wasserstein gradient flow structure. In this thesis, we are especially interested in

second and fourth order equations as listed below. The gradient flow structure of the following

equations is going to be discussed later in the corresponding chapters.

Drift-diffusion equation. In the case of second order evolution equations, we are considering

a wide class of drift-diffusion equations, which are given by

Btu “ ∆Ppuq ` divpu∇V q.

The function P is in general assumed to be smooth with (super-) linear growth and V denotes

a certain drift-potential. The most popular examples for equations of this form are the heat

equation or porous medium equations. Nowadays, equations of this kind are well studied and

results for existence or long-time behaviour can be found in almost every book about partial

differential equations, we refer for instance to [Eva10].

The heat equation, which is the above equation with Ppuq “ u and mostly formulated

without drift-potential V , describes the diffusion of heat in a homogeneous medium. If the

observed domain Ω is bounded, solutions to the heat equation are known to attain a steady

state that describes a total equilibration of the heat in the medium. Otherwise, if Ω “ Rd,
solutions of the heat equation propagate with infinite speed: For an initial distribution of heat

u0 at t “ 0 that is possibly concentrated on a compact region, the solution uptq immediately

becomes strictly positive on the whole domain as t ą 0. Moreover, solutions asymptotically

diverge like Gaussians as time goes to infinity.

For Ppuq “ um with m ą 1, which turns the above equation into a porous medium equation

with slow diffusion, the model describes the diffusion of gas in a porous medium, for instance.

Similar to the heat equation before, solutions move towards an equilibrium in a bounded domain,

but the asymptotic behaviour changes tremendously in case of an unbounded domain because

of the solutions’ finite speed of propagation. This can be exemplified in more detail studying a

special class of self-similar solutions, the so-called Barenblatt profiles, which can be imagined as

reversed paraboloids that are extended by zero in regions where the paraboloids are negative.

For the reader more interested in this topic, we refer to [Váz92] which provides a mathematical

overview about the theory of porous medium equations.

The asymptotic behaviour of the above equations is interesting insofar as certain fourth order

equations share the same behaviour. This is going to be discussed in more detail in Chapter 4.

DLSS equation. The DLSS equation — also known as quantum-drift-diffusion equation —

was first analyzed by Derrida, Lebowitz, Speer and Spohn in [DLSS91a, DLSS91b] and is



EVOLUTION EQUATIONS WITH WASSERSTEIN GRADIENT FLOW STRUCTURE 7

given by

Btu` div

ˆ

u∇
ˆ

∆
?
u

?
u
` V

˙˙

“ 0,

where V denotes a certain drift-potential. It rises from the Toom model [DLSS91a,DLSS91b]

in one spatial dimension on the half-line r0,`8q and was used to describe interface fluctuations

therein. Moreover, the DLSS equation also finds application in semi-conductor physics, namely

as a simplified model (low-temperature, field-free) for a quantum drift diffusion system for

electron densities, see [JP00].

From the analytical point of view, a big variety of results in different settings has been

developed over the last few decades. For results on existence and uniqueness, we refer for instance

to [BLS94,Fis13,GJT06,GST09,JM08,JP00], and to [CCT05,CT02a,CDGJ06,GST09,

JM08,JT03,MMS09] for qualitative and quantitative descriptions of the long-time behaviour.

For the reader unfamiliar with the numerous analytical results on the DLSS equation, we refer

to the review article [JM10] of Jüngel and Matthes, where the authors mentioned especially the

existence of a nonnegative weak solution to the DLSS equation in higher dimension. The main

reason that makes the research on this topic so nontrivial is the lack of comparison/maximum

principles as available in the theory of second order equations. Unfortunately, the absence

of these analytical tools should not be underestimated, as the work [BLS94] by Bleher et al.

demonstrates. In [BLS94], the authors show that as long as a solution u to the DLSS equation is

strictly positive, one can prove that it is even C8-smooth, but there are no results for regularity

available from the moment when u touches zero. The question if strict positivity of the initial

datum u0 already implies strict positivity of solutions at any time is a difficult task and remains

open until now, despite much effort and some recent progress in that direction, see [Fis14]. In

order to deal with more general initial data, alternative theories for nonnegative weak solutions

consistently gain in importance. Take for instance [GST09, JM08], where existence of weak

solutions to the DLSS equation is shown on grounds of the a priori regularity estimate

?
u P L2

locpr0,`8q;H
2pTqq

(T stands for the torus in Rd), by just considering nonnegative initial functions u0 with finite

Boltzmann entropy.

Thin film equation. The mathematical and physical literature devotes great attention to the

family of thin film equations due to its physical importance. The general representation with a

(potentially nonlinear) mobility function m is

Btu` div
`

mpuq∇∆u` u∇V
˘

“ 0.

Equations of this form give a dimension-reduced description of laminar flow with a free liquid-

air-interface [ODB97]. In case of linear mobility mpuq “ u — which is the situation we are

going to consider in this thesis — the thin film equation can also be used to describe the pinching

of thin necks in a Hele-Shaw cell in one spatial dimension, hence it is sometimes referred to as

the Hele-Shaw flow.
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The analytical treatment of the fourth order degenerate thin film equations is far from

trivial, but there exists a rich literature on this topic: One of the first results available in the

mathematical literature was provided by Bernis and Friedman [BF90]. Later on a vast number

of results to numerous mobility functions of physical meaning was treated in [BDPGG98].

A major problem in the equations’ analysis is the lack of comparison/maximum principles,

similar to the situation of the DLSS equation: In zones on which the solution u is strictly

positive, the usage of classical parabolic theory yields C8-regularity. But there is no guarantee

that solutions stay strictly positive, unfortunately. This is why one is typically interested in

solutions that are not strictly positive but have a compact, time-dependent support. In the

analysis of such nonnegative solutions the framework of energy and entropy methods play a key

role, see for instance [CU07, CT02b, GO01, LMS12]. Using energy/entropy estimates, the

gained regularity is usually something of the type L8locpr0,`8q;H
1pΩqq XL2

locpr0,`8q;H
2pΩqq,

but no better. However, there are several other references to this topic, for instance Grün et

al. [BG15,DPGG98,Grü04], concerning long-time behaviour of solutions and the nontrivial

question of spreading behaviour of the support.

Aim of the thesis

In this thesis, the focus is on deriving structure-preserving and convergent numerical schemes for

the second and fourth order evolution equations discussed above, which respect the equations’

variational structure. For this purpose, I make use of the well-known fact that the equations’

underlying L2-Wasserstein gradient flows can be equivalently written as L2-gradient flows using

a Lagrangian formalism. The procedure in (1.12) then turns into a minimization problem on

the set of transport maps. The main idea for deriving full discretizations for the evolution equa-

tions is to study the new “Lagrangian” minimization problem restricted to a finite-dimensional

subspace of transport maps. The resulting Lagrangian numerical schemes provide an alter-

native perspective to “classical” Eulerian approaches: Instead of studying the differences in

the altitude of discrete densities at fixed positions, the discrete evolution of fixed mass pack-

ages is considered, which is in accordance with the notion of optimal transport. Furthermore,

discrete solutions to the presented particle schemes inherit various structural properties from

the continuous flows by construction, like dissipation of the entropy/energy, mass and positivity

preservation. The conservation of those properties and the preserved variational structure of the

schemes (that basically results from the sophisticated adaptation of the minimizing procedure

(1.12) in terms of transportation maps) are crucial for the analysis of convergence or long-time

behaviour of discrete solutions. For instance, the dissipation of the respective entropy/energy

easily yields at least a weak (with respect to the L2-Wasserstein distance) compactness result

following essentially the standard procedure developed in [JKO98].

In this thesis, I try to derive results for the convergence, the long-time behaviour or other

qualitative properties of the schemes’ solutions by exploiting the preserved variational structure.

I am able to derive strong convergence of solutions to the schemes towards weak solutions of the

respective equations at least in one spatial dimension, where I make use of one or more Lyapunov

functionals to gain the essential a priori estimates. Also results on the long-time asymptotic
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of discrete solutions are going to be presented. In higher spatial dimensions, the variational

formulation of the scheme and the preserved convexity of the considered entropies yield at least

a stability result for the numerical approximation.

General notations and preliminary remarks

In this thesis, we always denote by Ω an open and especially connected subset of Rd, d ě 1,

and call Ω a spatial domain. In addition we define for any given mass M ą 0 the mass domain

M :“ r0,M s. Furthermore, N denotes the set of all positive natural numbers and we write

N0 “ NY t0u.

Derivatives. Fix two integers p, d P N. In general, we denote by f 1 or d
dsf the first and by f ppq

or dp

dsf the pth derivative of a real-valued function s ÞÑ fpsq that is defined on a certain open

subset of R. If f is defined on a one-dimensional spatial domain Ω, then we sometimes use the

notation fx for the first derivative of f to specify that f only depends on the one-dimensional

spatial domain Ω. Higher order derivations are then denoted by fxx, fxxx and so on.

Let us now consider a real-valued function px1, . . . , xdq ÞÑ fpx1, . . . , xdq defined on an open

subset of Rd. Then we denote by Bx1f, . . . , Bxdf the partial derivatives of f with respect to the

associated component. For notational simplicity, we will also write sometimes fxk or Bkf for

Bxkf . For higher order partial derivatives, we use the notations

Bpxkf or Bxk . . . xk
looomooon

p times

f

for k P t1, . . . , du.

Let us now consider functions f : Ω Ñ R and v “ pv1, . . . ,vdq
T : Ω Ñ Rd on a spatial

domain Ω Ď Rd and write x “ px1, . . . , xdq
T for x P Ω. Then the spatial derivative of f is

denoted by D f and we write Dp f for higher order derivatives. Of course, the gradient ∇f of f

and the divergence of divpvq of v are given by

∇f “ pBx1f, . . . , Bxdfq
T and divpvq “

d
ÿ

k“1

Bxkvk, (1.13)

and we write ∆f “ divp∇fq for the Laplacian of f . We finally note that if f or v in addition

depend on a time variable t P p0,`8q, then the operators in (1.13) are understood to act only

on the spatial variable x P Ω.

Spaces and norms. Let an arbitrary integer d P N be given. Then we denote by x¨, ¨y the

standard inner product of two vectors, which induces the Euclidean norm }~x}2 “
a

x~x,~xy on Rd.
We further write }~x}8 “ maxt|xk| : k “ 1, . . . , du for the maximum norm on Rd.

For an arbitrary positive and integrable function u : Ω Ñ r0,`8q we introduce for any

vector-valued function f : Ω Ñ Rd the weighted Lp-norm

}f}LppΩ;uq :“

ˆ
ż

Ω
}fpxq}p2 upxq dx

˙1{p

for any p P r1,`8q.
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All such functions with finite norm form the set LppΩ;uq. For p “ `8 we furthermore introduce

analogously the set of essentially bounded functions L8pΩq with the norm

}f}L8pΩq :“ ess sup
xPΩ

}fpxq}8.

In the special case p “ 2 the weighted L2-norm is induced by the weighted scalar product

xf, gyu :“

ż

Ω
xfpxq, gpxqyupxqdx for all f, g : Ω Ñ Rd.

To simplify the notation, we write x¨, ¨y1, } ¨}LppΩq and LppΩq, if the density u is equal to 1, hence

if one integrates with respect to the Lebesgue measure. We further introduce the set H1pΩq of

functions with finite H1-norm that is defined for any function f : Ω Ñ R by

}f}H1pΩq :“
´

}f}2L2pΩq ` }Bxf}
2
L2pΩq

¯1{2
.

Furthermore, we denote for any p P N0Yt`8u by CppA;Bq the set of all p-times continuously

differentiable functions mapping A Ď Rd on B Ď R. We also use CpA;Bq for p “ 0. If B “ R,

we just write CppAq. In addition we write f P Cpc pAq, if f is compactly supported in A and

f P CppAq.

Let us now consider continuous functions f that are defined on an interval I Ď R and have

values in a metric space X equipped with a metric d. We introduce for α P p0, 1q the set CαpI;Xq

of α-Hölder continuous (or just Hölder continuous) functions f that satisfy

}f}CαpI;Xq :“ sup
xPI

dpfpxq, gq ` sup
x,yPI:x‰y

dpfpxq, fpyqq

}x´ y}α2
ă `8

for an arbitrary g P X. Note that the boundedness of a function f with respect to } ¨ }CαpI;Xq
is independent of the choice of g. If the metric space X is equal to the Euclidean space Rd and

I “ Ω for a one-dimensional spatial domain Ω, we set g “ 0 and simply write } ¨ }CαpΩq and

CαpΩq.

Next, we assume any time interval I Ď r0,`8q, a certain vector space V with norm } ¨ }V

and take a function f that depends on time and admits values in V . Then we write f P LppI;V q,

if

}f}LppI;V q :“

ˆ
ż

I
}fptq}pV dt

˙1{p

ă 8.

In addition to the above spaces, we write f P LplocpΩq, f P H1
locpΩq or f P CαlocpΩq, if

f P LppKq, f P H1pKq or f P CαpKq is satisfied for any compact subset K Ď Ω. Furthermore, if

I is again a time interval and f P LppK;V q is fulfilled for any compact subset K Ď I, then we

write f P LplocpI;V q. Analogously we write f P CαlocpI;Xq or f P LplocpI;V q, if f P CαpK;Xq or

f P LppK;V q, respectively, for any compact subset K Ď I.
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We recall that the total variation of a function f P L1pa, bq defined on an interval pa, bq with

a, b P RY t˘8u, a ă b, is given by

TV rf s :“ sup

"
ż b

a
fpxqϕ1pxqdx : ϕ P Lippa, bq, compactly supported with sup

xPpa,bq
|ϕpxq| ď 1

*

,

(1.14)

where Lippa, bq is the set of all Lipschitz-continuous functions. An analogue definition — most

appropriate for functions f : pa, bq Ñ R that are piecewise smooth on intervals and only have

jump discontinuities — is

TV rf s “ sup

#

J´1
ÿ

j“1

|fprj`1q ´ fprjq| : J P N, a ă r1 ă r2 ă ¨ ¨ ¨ ă rJ ă b

+

. (1.15)

We further introduce the notation

JfKx̄ :“ lim
xÓx̄

fpxq ´ lim
xÒx̄

fpxq

for the height of the jump in the value of fpxq at x “ x̄.

L2-Wasserstein distance and the push-forward operator. Assume that a certain mass M ą 0 is

fixed. Then we introduce the set of regular densities with mass M ,

PrpΩq :“

"

u : Ω Ñ r0,`8q :

ż

Ω
upxq dx “M

*

. (1.16)

In addition, we define the set of regular densities with mass M and finite second moment as

follows:

u P Pr
2pΩq ðñ u P PrpΩq and

ż

Ω
|x|2 upxq dx ă `8. (1.17)

Note that in order to guarantee more flexibility in the numerical experiments we do not fix a

certain mass M for the whole thesis. Nevertheless, we neglect M in the notation of PrpΩq and

Pr
2pΩq to simplify the heavy notation in the forthcoming chapters. Instead, we mention at the

beginning of each chapter the considered mass to clarify which M is used in (1.16) and (1.17).

The Wasserstein distance on PrpΩq is defined as in Definition 1.1 with the difference that

we allow an arbitrary mass M ą 0. Without going into any details about the topology on

PrpΩq that is induced by the Wasserstein distance W2, let us give a useful characterization of

convergence in the metric space pPrpΩq,W2q: A sequence of densities uk converges towards u

with respect to W2, if

lim
kÑ8

ż

Ω
|x|2ukpxq dx “

ż

Ω
|x|2upxq dx and lim

kÑ8

ż

Ω
ϕpxqukpxq dx “

ż

Ω
ϕpxqupxq dx

for any continuous and bounded function ϕ : Ω Ñ R. We also say that uk converges weakly

towards u. We refer to [AGS05].

In this thesis a transport map or transportation map is always assumed to be a map from Ω

to Ω that is at least measurable.

Next, let us introduce the push-forward operator: Let an arbitrary density w P PrpΩq and

a transportation map T : Ω Ñ Ω be given. Then the push-forward T#w of w P PrpΩq through
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T is defined by validity of
ż

TpΩq
ϕpxqT#wpxqdx “

ż

Ω
ϕ
`

Tpxq
˘

wpxq dx (1.18)

for all continuous and bounded functions ϕ : Ω Ñ R. If the map T : Ω Ñ Ω is in addition

injective and differentiable such that det D Tpxq ą 0 for almost every x P Ω, then equation

(1.18) allows an explicit representation for the push-forward,

T#w “
w

det D T
˝T´1 (1.19)

for almost every x P Ω.

Reader’s guide

The thesis is partitioned into two parts:

In Part 1, we assume the spatial domain Ω to be one-dimensional. In the introductive

Chapter 2 we especially explain the Lagrangian formulation of Wasserstein gradient flows in one

spatial dimension and introduce the general discrete setting that is required for our numerical

schemes.

We start our numerical investigations by studying a class of second order evolution equations

in Chapter 3 and provide three convergence results, each different in its nature: First, we gain

a compactness result exploiting the dissipation of the entropy along discrete solutions, which

suffices to pass to the limit in a discrete weak formulation. The main content of this proof is

already published in a joint work with my PhD-supervisor Daniel Matthes [MO14a]1. Second,

a natural generalization of gradient flows in the setting of metric spaces — the notion of curves

of maximal slopes — is translated and analyzed in the fully discrete case. We can show that

solutions to our scheme for second order equations converge in this alternative formalism, using

the framework of Γ-convergence. The third convergence result is based on a “consistency-

stability”-argument.

Afterwards, we extend the numerical scheme to a family of fourth order equations in Chap-

ter 4. The dissipation of entropy and energy functionals along discrete solutions and the long-

time behaviour is analyzed, and the convergence of discrete stationary solutions to the respective

continuous ones is proven. Chapter 4 is essentially based on a paper [Osb14] that I published

online and have submitted. Furthermore, we show convergence of the scheme for the DLSS equa-

tion using both the entropy and energy dissipation under very weak assumptions on the initial

density, see Chapter 5. The results of Chapter 5 are again joint work with my PhD-supervisor

Daniel Matthes and can be found online [MO14b]. The paper [MO14b] is submitted and in

revision.

Finally, an alternative numerical scheme for the thin film equation is presented in Chapter 6.

Again by making use of two Lyapunov functionals, we obtain convergence of discrete solutions

towards a weak formulation of the thin film equation. Chapter 6 is based on a submitted paper

that is joint work with my PhD-supervisor Daniel Matthes.

1 The journal can be found online at http://journals.cambridge.org/action/displayJournal?jid=MZA or
http://www.esaim-m2an.org/
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In the shorter Part 2, we are interested in the numerical treatment of evolution equations

in two and higher dimensions. A scheme for a wide class of second order equations that is

again based on a Lagrangian formulation of the minimizing movement scheme is derived, see

Chapter 7. The presented approach is shown to preserve many structural properties from the

continuous equations and a proof of the scheme’s stability is provided. The presented content of

Chapter 7 is part of recent research with Oliver Junge and my PhD-supervisor Daniel Matthes.

Among some concluding remarks in Chapter 8, a numerical scheme for fourth order equations

on a two-dimensional domain is sketched. The basic idea is the same as in Chapter 4 for the

one-dimensional case.





Part 1

One-dimensional case





CHAPTER 2

Preliminaries and Notation

In the first part of this thesis we are considering the case of a one-dimensional spatial domain

Ω Ď R that satisfies either Ω “ pa, bq with ´8 ă a ă b ă `8 or Ω “ R. Hence we set a “ ´8

and b “ `8 in the second case.

For the one-dimensional case, this preliminary chapter is intended to introduce some funda-

mental results about the L2-Wasserstein distance and gradient flows in Lagrangian coordinates

and provides the main idea for the ansatz of our discretization that is used in this thesis. An

important observation that is one of our main motivations to introduce the Lagrangian point of

view is, that the L2-Wasserstein distance between two density functions possesses a convenient

representation in terms of the densities’ pseudo-inverse distribution functions, see Lemma 2.1

below. Therefore, we use Lagrangian coordinates to derive discrete submanifolds of Pr
2pΩq, and

the explicit representation of the L2-Wasserstein distance then paves the way for various natural

and easy-to-handle choices of discrete metrics on these submanifolds, see Section 2.2. Equipped

with a suitable discretization of the space of density functions and the L2-Wasserstein distance,

continuous gradient flows can be translated into the discrete setting, which further leads to

numerical schemes for the respective evolution equations, see Section 2.3.

2.1. Lagrangian coordinates

For each density u in the set of nonnegative density functions Pr
2pΩq with total mass M , one

defines its distribution function U : Ω Ñ r0,M s by

Upxq “

ż x

a
upyq dy. (2.1)

For densities u that are not strictly positive, the distribution function U is not invertible. How-

ever, it makes sense to define the pseudo-inverse distribution function X : M Ñ Ω on the

mass-domain M “ r0,M s for u P Pr
2pΩq by

Xpξq “ inf tx P Ω : Upxq ą ξu for all ξ PM, (2.2)

since it allows for a comfortable representation of the L2-Wasserstein distance in one spatial

dimension, see for instance [Vil03, Theorem 2.18]:

Lemma 2.1. Let u0, u1 P Pr
2pΩq have pseudo-inverse distribution functions X0,X1 : M Ñ Ω.

Then their Wasserstein distance amounts to

W2pu0, u1q “ }X0 ´X1}L2pMq. (2.3)

17
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We also name X a Lagrangian or Lagrangian map. A characteristic property of a Lagrangian

map is the validity of the following change of variables formula,
ż

Ω
ϕpxqupxqdx “

ż

M
ϕ
`

Xpξq
˘

dξ, (2.4)

that is fulfilled for every bounded and continuous test function ϕ.

Assume further u P Pr
2pΩq to be a strictly positive density function. Then its correspond-

ing pseudo-inverse distribution function is the well-defined inverse function of its distribution

function. Thus X “ U´1, and X is an element of

X :“
 

X P LippM; Ωq : a ď Xp0q ă XpMq ď b, X strictly increasing
(

,

where LippM; Ωq is the set of locally Lipschitz-continuous functions on M with values in Ω.

Owing to the Lipschitz-continuity of U and X, we can differentiate the identity U ˝Xpξq “ ξ at

almost every ξ PM and obtain the relation

upXpξqqXξpξq “ 1 for almost every ξ PM. (2.5)

2.1.1. The gradient flow in Lagrangian coordinates. As already mentioned in the in-

troductive chapter before, we are interested in deriving fully discrete numerical schemes for

evolution equations that carry a L2-Wasserstein gradient flow structure.

In this part of the thesis we will consider integral functionals E : Pr
2pΩq Ñ RY t`8u of the

form

Epuq “
ż

Ω
hpx, u, uxqdx (2.6)

with an integrand h : Ω ˆ r0,`8q ˆ R Ñ R which is assumed to carry enough regularity to

justify all the computations that follow. The variational derivative of the above functional E at

u P Pr
2pΩq is then given by (assuming u smooth enough)

δEpuq
δu

“ hrpx, upxq, uxpxqq ´
`

hppx, upxq, uxpxqq
˘

x
,

where px, r, pq denote the variables of h. For such a functional E , we want to find a discretization

for the continuity equation in (1.10) with the associated velocity field from (1.11). In one spatial

dimension, (1.10) reads as follows: Find u : p0,`8q ˆ Ω Ñ r0,`8q such that

Btu` Bxpuvpuqq “ 0 for t ą 0 and x P Ω, where vpuq “ ´Bx

ˆ

δEpuq
δu

˙

. (2.7)

The starting point for our numerical approach of equation (2.7) is its Lagrangian representation.

The reasons for using the Lagrangian point of view are essentially twofold: On the one hand, the

Lagrangian representation of the L2-Wasserstein distance from Lemma 2.1 allows an convenient

calculation of the distance between arbitrary densities. On the other hand, the L2-Wasserstein

gradient flow for E turns into an L2-gradient flow for EpXq :“ Epu ˝Xq that is

BtXpt, ξq “ vpuq ˝Xpt, ξq for pt, ξq P p0,`8q ˆM, (2.8)



2.1. LAGRANGIAN COORDINATES 19

which might be more convenient to handle as the original gradient flow, we refer for instance

to [CT04] by Carrillo and Toscani. To make this nontrivial issue more comprehensible, let us

link equation (2.7) and equation (2.8) by the following formal calculation:

Since each solution u of (2.7) is of mass M , its Lagrangian map X : p0,`8qˆMÑ Ω maps

the mass domain M into Ω, so that

ξ “

ż Xpt,ξq

a
upt, xq dx, (2.9)

for each ξ PM and for any time t. Note especially that the left-hand side of (2.9) is independent

of t. Applying a time derivative in equation (2.9) and using that u is a solution of the continuity

equation in (2.7) hence yields

0 “ BtXpt, ξqupt,Xpt, ξqq `

ż Xpt,ξq

a
Btupt,Xpt, ξqqdx

“ BtXpt, ξqupt,Xpt, ξqq ´

ż Xpt,ξq

a
Bxpuvpuqqpt, xqdx

“
`

BtXpt, ξq ´ vpuq ˝Xpt, ξq
˘

upt,Xpt, ξqq,

which induces (2.8).

2.1.2. Discretization in time. To study solutions to (2.8), one can for instance use a time

discretization of (2.8) using Euler’s implicit scheme, which turns out to be de facto equivalent

to the minimizing movement scheme in (1.12).

To this end, it is necessary to introduce a decomposition of the real and nonnegative timeline

r0,`8q, which shall be provided as follows: Fix a positive value τ ą 0 and introduce varying

time step sizes τ “ pτ1, τ2, . . .q with τn P p0, τ s. Then a temporal decomposition of r0,`8q with

maximal step width τ is defined by

t0 “ t0 ă t1 ă . . . ă tn ă . . .u , where tn :“
n
ÿ

j“1

τj , (2.10)

In addition we assume the time decomposition to be quasi-uniform, hence there exists a τ -

independent constant α1 P R, such that

τ{τ ă α1, where τ :“ min
nPN

τn. (2.11)

Henceforth, a temporal decomposition is always declared by the vector of time step sizes τ ,

which induces a partition of the time interval r0,`8q by (2.10). For a fixed temporal decompo-

sition with time step sizes τ “ pτ1, τ2, . . .q, a semi-discretization in time of (2.8) is attained by

exploiting Euler’s implicit scheme. This yields an approximative sequence of Lagrangian maps

pX0
τ ,X

1
τ , . . .q recursively defined by

Xn
τ :“ arg min

X
Eτ pτn,X,X

n´1
τ q, (2.12)
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where the minimum is taken over all measurable transports mapping the mass domain M onto

the spatial domain Ω, and

Eτ pσ,X,X
˚q :“

1

2σ
}X´X˚}2L2pMq ` EpXq. (2.13)

Especially in one spatial dimension, in which one has a close relation between the L2-norm of

Lagrangian maps and the L2-Wasserstein distance of the associated density functions via (2.3),

this minimization procedure turns out to yield a practical ansatz for deriving numerical schemes.

For later purposes, we introduce for a given temporal decomposition τ a time interpolation

as follows: If pqnq
8
n“0 is a sequence with entries in an arbitrary metric space V , then its time

interpolation tquτ : r0,`8q Ñ V with respect to the decomposition τ is defined by

tquτ ptq :“

$

&

%

q0 for t=0,

qn for t P ptn´1, tns.
(2.14)

2.2. Spatial discretization – Ansatz space and discretized metric

Inside the space X of inverse distribution functions, we define the finite-dimensional subspace

Xξ of those functions, which are piecewise affine with respect to a given partition ξ of M into

sub-intervals that depend on a spatial decomposition parameter K P N. Correspondingly, there

is a finite-dimensional submanifold Pr
2,ξpΩq of Pr

2pΩq consisting of those densities, whose inverse

distribution functions belong to Xξ. Densities in Pr
2,ξpΩq are piecewise constant.

2.2.1. Ansatz space. Since we shall work simultaneously in the spaces Pr
2,ξpΩq and Xξ, we

need to introduce various notations. The notation in later sections becomes easier using the

following sets of integers and half-integers between 0 and K that are

I`K “ t1, 2, . . . ,K ´ 1u, IK “ I`K Y t0,Ku and I1{2K “

!1

2
,
3

2
, . . . ,K ´

1

2

)

.

We will now introduce the notations for our decomposition of the mass domain M “ r0,M s

and the spatial domain Ω. A vector ξ “ pξ0, . . . , ξKq with entries ξj such that

0 “ ξ0 ă ξ1 ă ¨ ¨ ¨ ă ξK´1 ă ξK “M

defines a partition of the mass domain M into K-many sub-intervals. We denote the lengths of

the intervals by

δk´ 1
2
“ ξk ´ ξk´1 for all k “ 1, . . . ,K.

We further set δ “ min
κPI1{2K

δκ and δ “ max
kPI1{2K

δκ. Let us further assume that δ and δ satisfy

the following constraint on the mesh-ratio: There exists a K-independent constant α2 P R, such

that

αξ :“ δ{δ ă α2,

hence ξ is always chosen to be a quasi-uniform decompostion of the mass domain M.
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For a discretization of Ω, two situations arise depending on the boundedness of Ω:

(1) If Ω is a bounded domain, decompositions are given by the (non-equidistant) grids from

xξ “
 

~x “ px1, . . . , xK´1q : a ă x1 ă . . . ă xK´1 ă b
(

Ď ΩK´1.

By definition, ~x P xξ is a vector with K ´ 1 components, but we shall frequently use

the convention that

x0 “ a and xK “ b. (2.15)

(2) If Ω “ R, we consider decompositions that are (non-equidistant) grids from

xξ “
 

~x “ px0, . . . , xKq : ´8 ă x0 ă . . . ă xK ă `8
(

Ď ΩK`1.

Compared to the previous situation, we just do not fix x0 and xK but let them move

arbitrarily in R. Consequently the number of degrees of freedom rises, hence ~x P xξ is

a vector with K ` 1 components.

In any case, one obtains decompositions of Ω with xξ Ď Ωℵ, where the number of degrees of

freedom ℵ P N is given by

ℵ :“

$

&

%

K ´ 1 for bounded Ω,

K ` 1 for Ω “ R.

In the convex set X of inverse distribution functions, we single out the ℵ-dimensional open and

convex subset

Xξ :“
 

X P X : X piecewise affine on each rξk´1, ξks, for k “ 1, . . . ,K
(

.

There is a one-to-one correspondence between grid vectors ~x P xξ and inverse distribution func-

tion X P Xξ, explicitly given by

X “ Xξr~xs “
ÿ

kPIK

xkθk, (2.16)

where the θk : MÑ R are the usual affine hat functions with θkpξ`q “ δk,`, i.e.

θkpξq “

$

’

’

’

&

’

’

’

%

pξ ´ ξk´1q{δk´ 1
2
, if 1 ď k ď K and ξ P rξk´1, ξks,

pξk`1 ´ ξq{δk` 1
2
, if 0 ď k ď K ´ 1 and ξ P pξk, ξk`1s,

0, otherwise.

Due to this particular relation between the set xξ and the Lagrangian maps in Xξ, we are going

to call vectors in ~x P xξ Lagrangian vectors. Furthermore, the locally constant density function

uξr~xs P Pr
2pΩq associated to Xξr~xs is

uξr~xspxq “
ÿ

κPI1{2K

zκ1px
κ´ 1

2
,x
κ` 1

2
spxq, (2.17)
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where we define

~z “ zξr~xs “ pz1{2, . . . , zK´1{2q with weights zκ “
δκ

xκ` 1
2
´ xκ´ 1

2

. (2.18)

The choice of ~z is such that each interval pxκ´ 1
2
, xκ` 1

2
s contains a total mass of δκ. The function

1 in (2.17) denotes the indicator function given by

1Apxq “

$

&

%

1 for x P AX Ω,

0 for x R AX Ω,

for any subset A of R. Depending on the domain Ω, we introduce the following convention:

z´ 1
2
“

$

&

%

z 1
2

for bounded Ω,

0 for Ω “ R
and zK` 1

2
“

$

&

%

zK´ 1
2

for bounded Ω,

0 for Ω “ R
. (2.19)

This convention reflects the no-flux boundary conditions in case of a bounded domain Ω, whereas

it mimics the compact support of the locally constant density uξr~xs if Ω “ R.

We finally introduce the associated ℵ-dimensional submanifold

Pr
2,ξpΩq :“ uξrxξs “ tu P Pr

2pΩq : u “ uξr~xs for some ~x P xξu Ď Pr
2pΩq

as the image of the injective map uξ : xξ Ñ Pr
2,ξpΩq.

upxq

x

Xpξq

ξ
x0 x1 x2 x3 x4

δ 1
2

δ 3
2

δ 5
2

δ 7
2

x0

x1

x2

x3

x4

0 ξ1 ξ2 ξ3 M

Figure 2.1. A typical density function u P Pr
2,ξpΩq (left) with inverse distribu-

tion function X P Xξ (right).

2.2.2. A metric on the ansatz space. Below, we illustrate the idea for definitions of

“Wasserstein-like” metrics dξ on the ansatz space Pr
2,ξpΩq. The restriction of the genuine L2-

Wasserstein distance W2 to Pr
2,ξpΩq appears as a natural candidate for dξ. Due to the convenient

representation of W2 in one spatial dimension, see Lemma 2.1, the reduction of W2 on the dis-

crete submanifold Pr
2,ξpΩq induces a homogeneous quadratic form in terms of xξ. More precisely,

one attains the following result:
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Lemma 2.2. Fix a discretization ξ, and let u0, u1 P Pr
2,ξpΩq have representations u0 “ uξr~x

0s

and u1 “ uξr~x
1s with ~x0,~x1 P xξ, respectively. Then

W2pu
0, u1q2 “ p~x0 ´ ~x1qTW2p~x

0 ´ ~x1q (2.20)

with a symmetric tridiagonal matrix W2 P Rℵˆℵ. The coefficients rW2skl of W2 are given by

rW2skl “

ż

Ω
θkpξqθlpξqdξ “

1

6

$

’

’

’

&

’

’

’

%

2pδk` 1
2
` δk´ 1

2
q, l “ k

δk` 1
2
, l “ k ` 1

0, else

, (2.21)

for any l ě k with

k, l P IℵK “

$

&

%

I`K for bounded Ω,

IK for Ω “ R.

We further use the convention that δ´ 1
2
“ δK` 1

2
“ 0 in (2.21). Moreover, W2 satisfies

1

6

ÿ

kPIℵK

pδk´ 1
2
` δk` 1

2
qv2
k ď vTW2v ď

1

2

ÿ

kPIℵK

pδk´ 1
2
` δk` 1

2
qv2
k. (2.22)

for every v P Rℵ

Proof. The first statement of this lemma follows by straight-forward calculations. To prove

(2.22), we consider that ℵ “ K ` 1, since the other case then easily follows by restriction. So

let v P RK`1 be given and observe that

3vTW2v “
K
ÿ

k“0

pδk´ 1
2
` δk` 1

2
qv2
m `

K
ÿ

k“1

δk´ 1
2
vkvk´1.

Applying Young’s inequality to the second sum yields together with a rearrangement of the sums

´
1

2

K
ÿ

k“0

pδk´ 1
2
` δk` 1

2
qv2
k ď

K
ÿ

k“1

δk´ 1
2
vkvk´1 ď

1

2

K
ÿ

k“0

pδk´ 1
2
` δk` 1

2
qv2
k.

�

The above result points out that

dξpu
0, u1q “ p~x0 ´ ~x1qTWp~x0 ´ ~x1q for any u0 “ uξr~x

0s and u1 “ uξr~x
1s (2.23)

with W “ W2 is obviously the most natural choice for dξ, since it gives the right value for the

L2-Wasserstein distance between two locally constant density functions. Nevertheless, we are

going to see in later chapters that another choice for W in (2.23) can also lead to a satisfying

metric on Pr
2,ξpΩq, as long as W satisfies

c1~v
TW~v ď ~vTW2~v ď c2~v

TW~v (2.24)

for any ~v P Rℵ and ξ-independent constants c1, c1 ą 0. Such a condition for W is crucial for the

study of weak compactness (with respect to the L2-Wasserstein distance) of dξ-bounded subsets

of Pr
2,ξpΩq.
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In particular, we are going to study two different options for dξ in this thesis:

(1) In case of second order evolution equations (Chapter 3), we consider a non-equidistant

mass decomposition ξ, and choose the metric dξ induced by the tridiagonal matrix

defined in (2.21).

(2) In case of fourth order evolution equations (Chapter 4-6), we are always going to

consider an equidistant mass decomposition of the form

ξ “ p0, δ, . . . , pK ´ 1qδ,Mq (2.25)

with δ “MK´1 for a certain integer K P N, and choose dξ induced by W “ δI. Here,

I P Rℵˆℵ denotes the identity matrix.

Considering an equidistant mass decomposition as in (2.25), it is easy to check by a slight change

of the proof of (2.22) in Lemma 2.2 that W “ δI satisfies (2.24) with the constants c1 “
1
6 and

c2 “ 1.

Once one has fixed a matrix W P Rℵˆℵ as mentioned above, one can define a metric dξ

on Pr
2,ξpΩq through (2.23). With the rescaled scalar product x¨, ¨yξ and norm }¨}ξ defined for

~v, ~w P Rℵ by

x~v, ~wyξ “ ~v
TW~w and }~v}ξ “ x~v,~vy

1{2
ξ , (2.26)

the distance dξ is conveniently written as

dξpuξr~x
0s,uξr~x

1sq “
›

›~x1 ´ ~x0
›

›

ξ
.

Note that

1

6

›

›~x0 ´ ~x1
›

›

ξ
ď

›

›Xξr~x
1s ´Xξr~x

0s
›

›

L2pMq
ď

›

›~x0 ´ ~x1
›

›

ξ
,

is then trivially satisfied for both choices W “ W2 and W “ δI. Therefore, the metrics W2 and

dξ are equivalent in Pr
2,ξpΩq, i.e.

1

6
dξpu

0, u1q ďW2pu
0, u1q ď dξpu

0, u1q (2.27)

for any u0, u1 P Pr
2,ξpΩq.

We shall not elaborate further on the point in which sense the thereby defined metric dξ

depending on W is a good approximation of the L2-Wasserstein distance on Pr
2,ξpΩq. However,

the respective results in the following chapters validate our choices a posteriori. For results

concerning the Γ-convergence of discretized transport metrics to the Wasserstein distance see

[GM13].

2.2.3. Functions on the metric space pPr
2,ξpΩq,dξq. When discussing functions on the sub-

manifold Pr
2,ξpΩq in the following, we always assume that these are given in the form f : xξ Ñ R.

We denote the first derivative of f by B~xf : xξ Ñ Rℵ and the second one by B2
~xf : xξ Ñ Rℵˆℵ,

where the components are given through

rB~xfp~xqsk “ Bxkfp~xq and rB2
~xfp~xqsk,l “ BxkBxlfp~xq. (2.28)
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Example 2.3. Each component zκ of ~z “ zξr~xs is a function on xξ, and

B~xzκ “ ´z
2
κ

eκ` 1
2
´ eκ´ 1

2

δκ
. (2.29)

Here, ek P Rℵ denotes the kth canonical unit vector, hence

xek,~yy “ yk for any vector ~y P Rℵ with entries yk and k P IℵK . (2.30)

If Ω is bounded, hence ℵ “ K ´ 1, we use the convention e0 “ eK “ 0.

Assume for the moment that a matrix W P Rℵˆℵ is fixed and take the associated rescaled

scalar product x¨, ¨yξ as defined in (2.26). Then we introduce the gradient

∇ξfp~xq “ W´1B~xfp~xq,

where the scaling by W´1 is chosen such that

x~v,∇ξfp~xqyξ “
ÿ

kPIℵK

vkBxkfp~xq

for arbitrary vectors ~v P Rℵ.

2.3. The basic idea for a numerical scheme

In the following section, we first want to discuss the general strategy of deriving numerical

schemes to (2.7) in this Part 1, see Subsection 2.3.1 below. We then present in Subsection 2.3.2

some preliminary results for solutions to the schemes that inherit the special structure of the

chosen approach.

2.3.1. Fully discretization. The general idea for deriving numerical schemes — indepen-

dently of the equation’s order — is a discretization of the minimizing movement scheme in

Lagrangian coordinates.

So fix a pair ∆ “ pτ ; ξq, consisting of a temporal decomposition τ described as in (2.10),

and a spatial decomposition ξ of the mass domain M as before in Section 2.2. We further fix a

discrete metric dξ on Pr
2,ξpΩq as mentioned above in the Subsection 2.2.2, which is induced by

a matrix W satisfying (2.24).

In view of (2.13), it is hence necessary to find a discretization E of the entropy E in terms

of Lagrangian vectors xξ. The choice of such a functional strongly depends on the specific

character of E. Take for instance an entropy of the form EpXq “
ş

M ψpBξXq dξ for any function

ψ : p0,`8q Ñ R, then a natural candidate for E is the restriction Ep~xq “ EpBξXξr~xsq for any

~x P xξ. But we will also consider entropies with integrands depending on higher derivatives of

X that call for a more sophisticated choice of E.

However, let us assume for the moment that an adequate discretization of E : X Ñ R is

given by the functional E : xξ Ñ R. Furthermore, fix a discrete metric dξ accordingly to the

previous Section 2.2. Then a natural discretization of the minimizing movement scheme in

terms of Lagrangian maps is gained by the following iterative procedure: Starting from a given

~x0
∆ P xξ, we define recursively a sequence ~x∆ “ p~x0

∆,~x
1
∆, . . .q by choosing each vector ~xn∆ as a
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global minimizer of ~x ÞÑ E∆pτn,~x,~x
n´1
∆ q with E∆ : p0, τ s ˆ xξ ˆ xξ defined by

E∆pσ,~x,~x
˚q “

1

2σ
}~x´ ~x˚}2ξ `Ep~xq. (2.31)

It is ad hoc not clear, if the functional ~x ÞÑ E∆pτn,~x,~x
n
∆q even possesses a global minimizer,

but this can mostly be guaranteed by choosing τ ą 0 sufficiently small. However, for the

sake of simplicity, let us assume for the rest of this section the existence of τ ą 0, such that

~x ÞÑ E∆pσ,~x,~x
˚q attains at least one global minimizer for any ~x˚ P xξ and σ P p0, τ s.

In practice, one wishes to define ~x∆ as — preferably unique — solution of the system of

Euler-Lagrange equations associated to E∆pτn, ¨,~x
n´1
∆ q, which leads to the implicit Euler time

stepping:

~x´ ~xn´1
∆

τn
“ ´∇ξEp~xq. (2.32)

If a solution ~x∆ of iteratively defined minimizers of (2.31) indeed solves the system of Euler-

Lagrange equations (2.32) is strongly dependent on the choice of E and on the maximal time

step size τ , and is a highly nontrivial claim.

2.3.2. Entropy dissipation and weak compactness. Let us assume in this subsection that

~x∆ “ p~x
0
∆,~x

1
∆, . . .q is a sequence of Lagrangian vectors that successively solve the minimization

problem (2.31). Furthermore, denote by u∆ “ puξr~x
0
∆s,uξr~x

1
∆s, . . .q its corresponding sequence

of density functions.

The above minimization procedure turns out to carry many powerful properties which pos-

itively effect the analysis of iteratively defined sequences of minimizers ~x∆. As a direct conse-

quence one can even prove compactness of the corresponding sequence of density functions u∆,

at least in a weak sense.

But before we come to this, let us show the following.

Lemma 2.4. The sequence ~x∆ “ p~x
0
∆,~x

1
∆, . . .q of iteratively defined minimizers of the functional

~x ÞÑ E∆pτn,~x,~x
n´1
∆ q satisfies

Ep~xn∆q ď Ep~x0
∆q for all n ě 0, (2.33)

›

›~xn∆ ´ ~x
n
∆

›

›

2

ξ
ď 2Ep~x0

∆q ptn ´ tnq for all n ě n ě 0. (2.34)

If in addition ~x∆ solves the system of Euler-Lagrange equations (2.32), then for any N P N

N
ÿ

n“1

τn

›

›

›

›

›

~xn∆ ´ ~x
n´1
∆

τn

›

›

›

›

›

2

ξ

“

N
ÿ

n“1

τn }∇ξEp~x
n
∆q}

2
ξ ď 2Ep~x0

∆q. (2.35)

Proof. The monotonicity (2.33) follows (by induction on n) from the definition of ~xn∆ as mini-

mizer of E∆pτn, ¨,~x
n´1
∆ q:

Ep~xn∆q ď
1

2τn

›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ
`Ep~xn∆q “ E∆pτn,~x

n
∆,~x

n´1
∆ q ď E∆pτn,~x

n´1
∆ ,~xn´1

∆ q “ Ep~xn´1
∆ q.
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Moreover, summation of these inequalities from n “ n` 1 to n “ n yields

n
ÿ

n“n`1

τn
2

«
›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ

τn

ff2

ď Ep~x
n
∆q ´Ep~xn∆q ď Ep~x0

∆q.

For n “ 0 and n Ñ 8, we immediately get (2.35) using (2.32). If instead we combine the

estimate with Jensen’s inequality, we obtain

›

›~xn∆ ´ ~x
n
∆

›

›

ξ
ď

n
ÿ

n“n`1

τn

›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ

τn
ď

ˆ n
ÿ

n“n`1

τn

«
›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ

τn

ff2
˙1{2

`

tn ´ tn
˘1{2

,

which leads to (2.34). �

Throughout Part I of this thesis, we are going to use for a sequence ∆ “ pτ ; ξq consisting of

a temporal decomposition τ and a spatial decomposition ξ the short-hand notation

∆ Ñ 0,

meaning that τ Ñ 0 and δ Ñ 0 in the limit. For the sake of notational simplicity, denote

henceforth by ~x∆ and u∆ not only the sequences of vectors ~xn∆ and densities un∆, respectively,

but also the sequences defined by the assignements ∆ Ñ ~x∆ and ∆ Ñ u∆.

Proposition 2.5. Assume that Ep~x0
∆q ď E uniformly in ∆ for a fixed constant E ą 0. Then

for any T ą 0, there exists a function u˚ P C
1{2pr0, T s;Pr

2pΩqq and a subsequence of ∆ (still

denoted by ∆), such that tu∆uτ ptq Ñ u˚ptq in Pr
2pΩq uniformly with respect to time t P r0, T s

as ∆ Ñ 0.

Proof. Fix any T ą 0. We can use the same techniques as in [AGS05, Theorem 11.1.6] thanks

to the result in (2.27): By connecting every pair of sequenced discrete values un´1
∆ , un∆ with a

constant speed geodesic, i.e.

xu∆yτ ptq :“ uξ

„

t´ tn´1

τn
~xn∆ `

tn ´ t

τn
~xn´1

∆



for t P ptn´1, tns,

we obtain a family of Lipschitz-continuous curves satisfying for any s, t P ptn´1, tns

W2pxu∆yτ psq, xu∆yτ ptqq
2

“

ż

M

ˇ

ˇ

ˇ

ˇ

ˆ

s´ tn´1

τn
Xn

∆ `
tn ´ s

τn
Xn´1

∆

˙

´

ˆ

t´ tn´1

τn
Xn

∆ `
tn ´ t

τn
Xn´1

∆

˙ˇ

ˇ

ˇ

ˇ

2

dξ

“

ˆ

s´ t

τn

˙2 ż

M

ˇ

ˇXn
∆ ´Xn´1

∆

ˇ

ˇ

2
dξ “

ˆ

s´ t

τn

˙2

W2pu
n
∆, u

n´1
∆ q2.

Then for arbitrary s, t P r0, T s, s ă t and n,m P N such that s P ptn´1, tns and t P ptm, tm`1s,

we get together with (2.34) and the metric equivalence (2.27)

W2pxu∆yτ psq, xu∆yτ ptqq ďW2pxu∆yτ psq, u
n
∆q `W2pu

n
∆, u

m
∆q `W2pu

m
∆ , xu∆yτ ptqq

ď
tn ´ s

τn
W2pu

n´1
∆ , un∆q `W2pu

n
∆, u

m
∆q `

t´ tm
τm`1

W2pu
m
∆ , u

m`1
∆ q

ď
?
s´ tC,

(2.36)
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where C ą 0 just depends on E . Analogously one proves

W2ptu∆uτ ptq, xu∆yτ ptqq ď
?
τC for any t P r0, T s

with another ∆-independent constant C ą 0. We can therefore invoke the Arzelà-Ascoli Theo-

rem A.1, which yields the relative compactness of the family xu∆yτ in C0pr0, T s;Pr
2pΩqq. Hence

there exists u˚ P C
1{2pr0, T s;Pr

2pΩqq, such that

sup
tPr0,T s

W2pxu∆yτ ptq, u˚ptqq ÝÑ 0

and

sup
tPr0,T s

W2ptu∆uτ ptq, u˚ptqq ď
?
τC ` sup

tPr0,T s
W2pxu∆yτ ptq, u˚ptqq ÝÑ 0

as ∆ Ñ 0. This proves the claim. �



CHAPTER 3

Second order drift-diffusion equation

The contents of Sections 3.1–3.4 of this chapter and especially the main results in Theorem

3.3 and Theorem 3.4 are already published in a joint work with my PhD-supervisor Daniel

Matthes [MO14a]1

3.1. Introduction

In the following chapter, we propose and study a fully discrete Lagrangian scheme for the

following nonlinear drift-diffusion equation with no-flux boundary conditions on the bounded

interval Ω “ pa, bq,

Btu “ BxxPpuq ` BxpuVxq for t ą 0 and x P Ω, (3.1)

BxPpuq ` uVx “ 0 for t ą 0 and x P BΩ, (3.2)

u “ u0 ě 0 at t “ 0, (3.3)

where V : Ω Ñ R is assumed to be in C2pΩq and P : r0,`8q Ñ r0,`8q is a nonnegative and

monotonically increasing function that satisfies the following assumptions:

‚ One can find a strictly convex function φ : r0,`8q Ñ R with φp0q “ 0, such that

Pprq “ rφ1prq ´ φprq. (3.4)

‚ r ÞÑ Pprq is linear or has superlinear growth. In addition, we assume the existence of

an integer p ě 1 and of constants c, c, d, d P p0,`8q, such that

Pprq2 ě crp ´ d and Pprq{r ď crp ` d. (3.5)

for any r P p0,`8q.

Typical examples for P satisfying the above conditions are Pprq “ r (heat equation) or Pprq “ rm

for m ą 1 (porous medium equation with slow diffusion).

Furthermore, the initial datum u0 is assumed to be integrable with total mass M ą 0, i.e.
ż

Ω
u0pxqdx “M,

which shall be fixed for the rest of this chapter. This means especially that u0 P Pr
2pΩq with

Pr
2pΩq as defined in (1.17).

Remark 3.1. The technical assumptions in (3.5) are only minor restrictions for the choice of

P. In fact, these assumptions mainly assure that Pprq does not behave “too badly” close to r “ 0,

1 The journal can be found online at http://journals.cambridge.org/action/displayJournal?jid=MZA or
http://www.esaim-m2an.org/

29
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and that P does not increase exponentially fast as r Ñ `8. However, one can get rid of (3.5) by

considering a CFL-condition for the temporal and spatial decompositions, which fixes a relation

between τ and δ. A proof including such a CFL-condition was done in [MO14a]. This is why

we are going to present an alternative approach that involves the assumptions (3.5), which are

less restrictive than a CFL-condition.

Studies on Lagrangian schemes for (3.1) are widespread in the literature. MacCamy and

Sokolovsky [MS85] presented already a discretization that is almost identical to ours, for (3.1)

with Ppuq “ u2 and V ” 0. Another pioneering work in this direction is the paper by Russo

[Rus90], who compares several (semi-)Lagrangian discretizations in the linear case Ppuq “ u;

extensions to two spatial dimensions are also discussed. Later, Budd et al. [BCHR99] used a

moving mesh to capture self-similar solutions of the porous medium equation on the whole line.

We further refer to [BCW10] by Burger et al., describing a numerical scheme for nonlinear

diffusion equations using a mixed finite element method.

The connection between Lagrangian schemes and the gradient flow structure of equation

(3.1) was investigated by Kinderlehrer and Walkington [KW99] and in a series of unpublished

theses [Roe04,Lev02]. In a recent paper by Westdickenberg and Wilkening [WW10], a similar

scheme for (3.1) is obtained as a by-product in the process of designing a structure preserving

discretization for the Euler equations.

In the aforementioned works, numerical schemes are defined and used in experiments; qual-

itative properties and convergence are not studied analytically. Some analytical investigations

have been carried out by Gosse and Toscani [GT06a]: For a Lagrangian scheme with explicit

time discretization, they prove comparison principles and rigorously discuss stability and con-

sistency.

Similar approaches are also available for chemotaxis systems [BCC08], for non-local aggre-

gation equations [CM10,CW], and for convolution-diffusion equations [GT06b].

3.1.1. Gradient flow structure. The link between equation (3.1) and the continuity equation

in (2.7) (or (1.10), respectively) is given by the entropy

Epuq “
ż

Ω
φpupxqqdx`

ż

Ω
upxqV pxq dx, (3.6)

which corresponds to (2.6) using the integrand hpx, r, pq “ φprq ` rV pxq. The induces velocity

field is then given in terms of the first variational derivative of E by

vpuq “ ´Bx
`

φ1puq ` V
˘

“ ´

ˆ

BxPpuq

u
` Vx

˙

. (3.7)

As we have mentioned in the introduction, this means that a solution to (3.1) satisfying the

no-flux boundary condition (3.2) can be interpreted as a L2-Wasserstein gradient flow in the

potential landscape of the entropy E , see [Ott01]. Written in terms of Lagrangian coordinates
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X, the L2-Wasserstein gradient flow for E turns into an L2-gradient flow for

Epu ˝Xq “

ż

M
φ

ˆ

1

BξXpξq

˙

BξXpξqdξ `

ż

M
V
`

Xpξq
˘

dξ

“

ż

M
ψ
`

BξXpξq
˘

dξ `

ż

M
V
`

Xpξq
˘

dξ,

with the integrand ψ : p0,`8q Ñ R defined by ψpsq “ sφp1{sq. Here we used the change of

variables x “ Xpξq and relation (2.5) under the integral in (3.6). Using that BtX “ vpuq ˝X, see

(2.8) from Section 2.1.1, it is easily verified that this L2-gradient flow has the form

BtX “ Bξψ
1pBξXq ´ VxpXq. (3.8)

Indeed, using that ψ1ps´1q “ ´Ppsq, which follows from (3.4), one achieves

BtX “ vpuq ˝X “ ´

ˆ

BxPpuq

u
` Vx

˙

˝X “ ´BξPpu ˝Xq ´ VxpXq “ Bξψ
1pBξXq ´ VxpXq.

Let us finally remark that the functional E is λ-convex along geodesics in W2 with

λ “ min
xPΩ

Vxxpxq, (3.9)

which has been first observed by McCann [McC97]. Consequently, the L2-Wasserstein gradient

flow is λ-contractive.2 Hence, two solutions u, v converge (λ ą 0) or diverge (λ ă 0) at most at

an exponential rate of λ with respect to W2, i.e.,

W2puptq, vptqq ďW2pu
0, v0qe´λt for all t ą 0. (3.10)

3.1.2. Description of the numerical scheme. We are now going to present a numerical

scheme for (3.1) using the gradient flow representation in (3.8), which is practical, stable and

easy to implement.

Before we come to the proper definition of the numerical scheme, we fix a spatio-temporal

discretization parameter ∆ “ pτ ; ξq as follows: For a given τ ą 0, introduce varying time

step sizes τ “ pτ1, τ2, . . .q with τn P p0, τ s, then a time decomposition of r0,`8q is defined by

ptnq
8
n“0 with tn :“

řn
j“1 τj as in (2.10). As spatial discretization, fix K P N and introduce an

arbitrary but quasi-uniform spatial decomposition ξ “ pξ0, . . . , ξKq of the mass domain M as

in Subsection 2.2.1. Furthermore, fix the discrete metric dξ on Pr
2,ξpΩq that is induced by the

matrix W2 from (2.21), hence dξpu, vq “ W2pu, vq for any locally constant density functions

u, v P Pr
2,ξpΩq.

Our numerical scheme is now defined as a discretization of equation (3.8):

Numerical scheme. Fix a discretization parameter ∆ “ pτ ; ξq. Then a numerical scheme for

(3.1) is defined as follows:

(1) For n “ 0, fix an initial sequence of monotone values ~x0
∆ :“ px0

1, . . . , x
0
K´1q P xξ and

set x0
0 “ a and x0

K “ b by convention. The vector ~x0
∆ describes a non-equidistant

decomposition of Ω “ ra, bs.

2 Note that λ-contractivity with λ ă 0 is a weaker property than contractivity of the flow. Indeed, trajectories may
diverge, but not faster than in (3.10).
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(2) For n ě 1, recursively define Lagrangian vectors ~xn∆ “ px
n
1 , . . . , x

n
K´1q P xξ as solutions

to the K ´ 1 equations

1

τn

“

W2p~x´ ~x
n´1
∆ q

‰

k
“ψ1

ˆ

xk`1 ´ xk
δk` 1

2

˙

´ ψ1
ˆ

xk ´ xk´1

δk´ 1
2

˙

´

ż

M
Vx

`

Xξr~xspξq
˘

θkpξq dξ,

(3.11)

with k “ 1, . . . ,K ´ 1. We later show in Proposition 3.9 that the solvability of the

system (3.11) is guaranteed.

The above procedure p1q´ p2q yields a sequence of monotone vectors ~x∆ :“ p~x0
∆,~x

1
∆, . . . ,~x

n
∆, . . .q,

and each entry ~xn∆ defines a spatial decomposition of the compact interval rxn0 , x
n
Ks Ď Ω, n P N.

Fixing an index k P t1, . . . ,Ku, the sequence n ÞÑ xnk defines a discrete temporal evolution of

spatial grid points in Ω, and if one assigns each interval rxnk´1, x
n
k s a constant mass package

δk´ 1
2
, the map n ÞÑ rxnk´1, x

n
k s characterizes the temporal movement of mass. Hence ~x∆ is

uniquely related to a sequence of locally constant density functions u∆ :“ pu0
∆, u

1
∆, . . . , u

n
∆, . . .q,

where each function un∆ : Ω Ñ R` fulfills

un∆pxq “ uξr~x
n
∆s “

ÿ

κPI1{2K

δ

xn
κ` 1

2

´ xn
κ´ 1

2

1px
κ´ 1

2
,x
κ` 1

2
spxq,

according to the definition of uξ in (2.17).

Remark 3.2. In order to satsify the initial condition that up0, ¨q “ u0 in (3.3), a suitable choice

of the initial grid ~x0
∆ is required. One can for instance define ~x0

∆ such that each grid point

satisfies

ξk “

ż x0
k

x0
k´1

u0pxq dx

for k “ 1, . . . ,K ´ 1. It is easy to verify that the corresponding local density converges towards

u0 with respect to the L2-Wasserstein distance, see for instance Lemma 3.24.

At the first glance, it seems unclear in which sense (3.11) is a discretization of the L2-gradient

flow from (3.8). To motivate the above approach, multiply (3.8) by a locally affine hat function

θk and integrate with respect to ξ, then integration by parts yields
ż

M
BtXθk dξ “ ´

ż

M
ψ1pBξXqBξθk dξ ´

ż

M
VxpXqθk dξ

“
1

δk` 1
2

ż ξk`1

ξk

ψ1pBξXqdξ ´
1

δk´ 1
2

ż ξk

ξk´1

ψ1pBξXq dξ ´

ż

M
VxpXqθk dξ.

For this equation, we apply a finite element discretization by replacing X with a discrete La-

grangian map Xξr~xs. Then a discretization of the time derivative using the respective difference

quotient, and the identity rW2skl “
ş

M θkθl dξ immediately yields (3.11).

Note that there are infinitely many (and maybe more “obvious”) ways to discretize the

right-hand side in (3.8). However, the one in (3.11) can be derived as a natural restriction of

the L2-Wasserstein gradient flow in the potential landscape of the original entropy E , and hence
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provides the crucial a priori estimate for the discrete-to-continuous limit using the dissipation of

the entropy along discrete solutions. This circumstance is going to be discussed later in Section

3.2.1.c in more detail.

From now on we denote a solution to the above scheme by ~x∆ “ p~x0
∆,~x

1
∆, . . .q and its

corresponding sequence of densities by u∆ “ pu0
∆, u

1
∆, . . .q, where the components ~xn∆ and un∆

correlate through the map u∆ : xξ Ñ Pr
2,ξpΩq.

3.1.3. Main results. For the moment, fix a discretization parameter ∆ “ pτ ; ξq.

Let us further introduce a “discretized” version of the entropy E on the set of Lagrangian

vectors xξ by

Ep~xq :“ Epuξr~xsq “
ÿ

κPI1{2K

δκψ

ˆxκ` 1
2
´ xκ´ 1

2

δκ

˙

`

ż

M
V
`

Xξr~xspξq
˘

dξ, (3.12)

which is nothing else than the restriction of E to the set of piecewise constant density functions

in the language of Lagrangian vectors.

Our first result pictures the qualitative properties of discrete solutions to (3.11).

Theorem 3.3. Assume that τ´1`λ ą 0. From any initial density u0
∆ “ uξr~x

0
∆s with Lagrangian

vector ~x0
∆, a sequence ~xn∆ satisfying (3.11) can be constructed by inductively defining ~xn∆ as the

unique global minimizer of

~x ÞÑ
1

2τn

›

›~x´ ~xn´1
∆

›

›

2

ξ
`Ep~xq. (3.13)

The sequence of associated densities u∆ “ pu
0
∆, u

1
∆, . . .q with entries un∆ “ uξr~x

n
∆s then has the

following properties:

‚ Positivity and conservation of mass: For each n P N, un∆ is a strictly positive function

and has mass equal to M .

‚ Dissipation: The entropy E is dissipated, i.e. Epun∆q ď Epun´1
∆ q.

‚ Contraction: If v∆ is another sequence solving recursively (3.13), then

W2pu
n
∆, v

n
∆q ď e´

λ
1`λτ

tnW2pu
0
∆, v

0
∆q. (3.14)

Positivity, conservation of mass, and dissipation of the entropy follow immediately from the

scheme’s construction, while the contraction property and even well-posedness are nontrivial

claims.

The main theorem of this chapter is the proof of convergence, which can be formulated as

follows.

Theorem 3.4. Let a strictly positive initial density u0 be given. Furthermore, choose Lagrangian

vectors ~x0
∆ such that u0

∆ “ uξr~x
0
∆s converges to u0 weakly in L1pΩq as ∆ Ñ 0 and

E :“ sup
∆

Epu0
∆q ă `8. (3.15)
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For each ∆, construct a discrete approximation ~x∆ according to the procedure described in

(3.11). Then there exist a subsequence of u∆ (still denoted by ∆) and a limit function u˚

in C
1{2
loc pr0,`8q;P

r
2pΩqq such that:

‚ tu∆uτ converges to u˚ strongly in L1
locpr0,`8q ˆ Ωq.

‚ u˚ satisfies the following weak formulation of (3.1):
ż 8

0

ż

Ω
u˚Btϕdx dt`

ż 8

0

ż

Ω
Ppu˚qBxxϕ´ u˚VxBxϕdx dt “ 0, (3.16)

for any test function ϕ P C8pp0,`8q ˆ Ωq with compact support in p0,`8q ˆ Ω and

Bxϕpt, aq “ Bxϕpt, bq “ 0.

Remark 3.5. The consistency and stability calculations in Section 3.6, see especially Proposi-

tion 3.32, provide a rate of convergence of order τ ` δ
2
, if solutions to (3.1) are assumed to be

sufficiently smooth, see Remark 3.30. Numerical experiments confirm the analytically observed

rate, see Section 3.7.

At this point we want to remark that the above convergence result even holds true if one

neglects the strict positivity of the initial density u0. For this, one has to choose strictly positive

density functions u0
∆ that converge weakly towards u0 and satisfy an upper bound as in (3.15).

The resulting sequence of strictly positive densities u∆ that is gained by the numerical scheme

then still converges strongly towards a density u˚ solving the weak formulation of (3.1). As the

proof of Theorem 3.4 will show, one of the main ingredients of the compactness results is the

uniform boundedness of the initial approximation u0
∆. A more detailed argumentation can be

found in [MO14a].

Furthermore, using the abstract notion of Γ-convergence we show in in Section 3.5 that the

limit curve u˚ is a curve of maximal slope, which constitutes the natural generalization of a

gradient flow in the setting of metric spaces [AGS05,ALS06,Ort05,Ser11].

Theorem 3.6. In addition to the assumptions in Theorem 3.4, assume that λ as defined in

(3.9) satisfies λ ě 0. Then the limit curve u˚ P C
1{2
loc pr0,`8q;P

r
2pΩqq of Theorem 3.4 is a curve

of maximal slope for E, hence u˚ especially satisfies

1

2

ż t

0

ˇ

ˇu1˚
ˇ

ˇ

2
prqdr `

1

2

ż t

0
|BE |2 pu˚prqqdr “ Epu˚p0qq ´ Epu˚ptqq

for any t P r0,`8q. The proper definitions of |u1˚|, |BE | pu˚prqq and of the notion of curves of

maximal slope are listed in Definition 3.20, see Section 3.5.

3.1.4. Key estimates. In what follows, we give a formal outline for the derivation of the main

a priori estimate for the fully discrete solutions.

The first main estimate is related to the gradient flow structure of (3.1): It is the potential

flow of the entropy E with respect to the L2-Wasserstein distance W2. The consequences, which

are immediate from the abstract theory of gradient flows [AGS05], are that t ÞÑ Epuptqq is

monotone, and that each solution “curve” t ÞÑ uptq is globally Hölder-1
2 -continuous with respect

to W2. In order to carry over these properties to our discretization, the latter is constructed
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as a gradient flow of a flow potential E with respect to a particular metric dξ on the space of

locally constant density functions, see Section 3.2.1.c below for more details.

The second main estimate is a discrete interpretation of the following a priori estimate, which

is essential in the continuous theory of well-posedness of (6.1): Solutions to (3.1) dissipate the

entropy E and the respective estimate is formally derived by an integration by parts (assuming

V “ 0),

´
d

dt
Epuq “ ´

ż

Ω
φ1puqBxxPpuq dx “

ż

Ω
u
`

Bxφ
1puq

˘2
dx,

where we again use the identity (3.4). Adapting this estimate in terms of locally constant density

functions, the best one can hope for is a control on the total variation instead of the derivative,

see Proposition 3.13. Nevertheless, this is the perfect regularity estimate to obtain our main

compactness result stated in Proposition 3.16.

3.2. Discretization in space and time

3.2.1. Properties of the entropy — continuous and discrete case.

3.2.1.a. The entropy in Lagrangian coordinates. To study the scheme’s properties, it is essential

to get an idea of the continuous entropy E rewritten in terms of Lagrangian coordinates. As

already mentioned in Section 3.1.1 before, a change of variables x “ Xpξq under the integral of

E yields Epuq “ EpXq for any density u P Pr
2pΩq with pseudo-inverse distribution function X,

where

EpXq :“

ż

M
ψ
`

BξXpξq
˘

dξ `

ż

M
V
`

Xpξq
˘

dξ, (3.17)

and ψpsq “ sφp1{sq. Due to the requirements on P and φ, it turns out that ψ satisfies

ψ1psq “ φps´1q ´ s´1φ1ps´1q “ ´Pps´1q, and ψ2psq “ s´2P1ps´1q ą 0. (3.18)

Thus ψ is a strictly convex function. Furthermore, ψ gets arbitraryly large close to zero, i.e.

lim
sÓ0

ψpsq “ ψp1q ` lim
sÓ0

ż 1

s
Ppσ´1qdσ “ ψp1q ` lim

rÑ8

ż r

1

Ppρq

ρ2
dρ “ `8, (3.19)

where the last equality is a result of the linearity of P, respectively of P’s superlinear growth.

This behaviour of ψ is crucial to prove the well-posedness of (3.11), but before we come to this,

we are going to show the following lemma.

Lemma 3.7. The functional E is bounded from below,

EpXq ě E :“M

ˆ

ψ
´b´ a

M

¯

` λ

˙

, (3.20)

and it is λ-convex on X with the λ given in (3.9), i.e.

E
`

p1´ sqX0 ` sX1
˘

ď p1´ sqEpX0q ` sEpX1q ´
λsp1´ sq

2
}X0 ´X1}2L2pMq (3.21)

for all X0,X1 P X and every s P r0, 1s.



36 3. SECOND ORDER DRIFT-DIFFUSION EQUATION

Proof. Since ψ is convex, the lower bound follows by Jensen’s inequality:

EpXq ěMψ

ˆ
ż

M
BξXpξq

dξ

M

˙

`

ż

M
min
xPΩ

V pxqdξ.

By definition of λ, this yields (3.20). Next, let X0,X1 P X and s P r0, 1s be given. Again by the

convexity of ψ : p0,`8q Ñ R, it follows in particular that
ż

M
ψ
`

p1´ sqBξX
0pξq ` sBξX

1pξq
˘

dξ ď p1´ sq

ż

M
ψ
`

BξX
0pξq

˘

dξ ` s

ż

M
ψ
`

BξX
1pξq

˘

dξ.

By using Taylor expansions, one gets for arbitrary y, z P Ω and s P r0, 1s

V pyq ěV
`

p1´ sqy ` sz
˘

` sVx
`

p1´ sqy ` sz
˘

py ´ zq `
λ

2
s2py ´ zq2 and

V pzq ěV
`

p1´ sqy ` sz
˘

` p1´ sqVx
`

p1´ sqy ` sz
˘

pz ´ yq `
λ

2
p1´ sq2py ´ zq2.

Adding the first inequality multiplied by p1´ sq to the second multiplied by s yields

V
`

p1´ sqy ` sz
˘

ď p1´ sqV pyq ` sV pzq ´
λ

2
sp1´ sqpy ´ zq2.

In combination, this implies inequality (3.21). �

3.2.1.b. The discretized entropy. The restriction of the energy E from (3.17) to the subspace

Xξ is naturally associated to the functional E : xξ Ñ R with

Ep~xq “ EpXξr~xsq “ Epuξr~xsq,

which was already defined in (3.12). Rememeber the explicit representation of E,

Ep~xq “
K
ÿ

k“1

δk´ 1
2
ψ

ˆ

xk ´ xk´1

δk´ 1
2

˙

`

ż

M
V
`

Xξr~xspξq
˘

dξ,

for every ~x P xξ. Note especially that by the linearity of the map ~x ÞÑ Xξr~xs, the functional E

inherits the boundedness and convexity from E. It is further easy to verify that the gradient

vector B~xEp~xq “
“

BxkEp~xq
‰K´1

k“1
P RK´1 is given by

“

B~xEp~xq
‰

k
“ ´ψ1

ˆ

xk`1 ´ xk
δk` 1

2

˙

` ψ1
ˆ

xk ´ xk´1

δk´ 1
2

˙

`

ż

M
Vx

`

Xξr~xspξq
˘

θkpξqdξ. (3.22)

Using once again that ψ1ps´1q “ ´Ppsq and ~z “ uξr~xs, a more compact representation of the

gradient is provided by

B~xEp~xq “
ÿ

κPI1{2K

δκPpzκq
eκ´ 1

2
´ eκ` 1

2

δκ
`

ÿ

kPI`K

´

ż

M
Vx

`

Xξr~xspξq
˘

θkpξq dξ
¯

ek, (3.23)

where ek P RK´1 denotes the kth canonical unit vector with the convention e0 “ eK “ 0, as

in Example 2.3. The Hessian matrix B2
~xEp~xq “

“

BxmxkEp~xq
‰K´1

m,k“1
P RpK´1qˆpK´1q is symmetric
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with

B2
~xEp~xq “

ÿ

κPI1{2K

δκP1pzκqz
2
κ

ˆeκ´ 1
2
´ eκ` 1

2

δκ

˙ˆeκ´ 1
2
´ eκ` 1

2

δκ

˙T

`
ÿ

k,lPI`K

´

ż

M
Vxx

`

Xξr~xspξq
˘

θkpξqθlpξq dξ
¯

eke
T
l

(3.24)

Lemma 3.8. E is bounded from below by E defined in (3.20). Further, it is λ-convex with

respect to the quadratic structure induced by W2, i.e., B2
~xEp~xq´λW2 is positive semi-definite for

arbitrary ~x0 P xξ. Consequently,

@

~x1 ´ ~x0,∇ξEp~x
1q ´ B~xEp~x0q

D

ξ
ě λ

›

›~x1 ´ ~x0
›

›

2

ξ
(3.25)

is satisfied for every ~x0,~x1 P xξ.

Proof. Boundedness from below is a consequence of (3.20) and the definition of E by restriction

of E. Convexity is a direct consequence of the convexity (3.21) of E, taking into account (2.20)

and (2.21), and that ~x ÞÑ Xξr~xs is a linear map. The estimate (3.25) is obtained by Taylor

expansion. �

3.2.1.c. Interpretation of the scheme as a discrete Wasserstein gradient flow. Throughout this

section, we fix a pair ∆ “ pτ ; ξq consisting of a spatial decomposition ξ of the mass domain M
and varying time step sizes τ “ pτ1, τ2, . . .q that induces a temporal decomposition of r0,`8q

by

t0 “ t0 ă t1 ă . . . ă tn ă . . .u , where tn :“
n
ÿ

j“1

τj ,

with τn P p0, τ s and τ ą 0.

Starting from the discretized entropy E we approximate the spatially discrete gradient flow

equation

Bt~x “ ´∇ξEp~xq (3.26)

also in time, using minimizing movements. For each ~y P xξ, introduce the Yosida-regularized

entropy E∆p¨, ¨,~yq : r0, τ s ˆ xξ by

E∆pσ,~x,~yq “
1

2σ
}~x´ ~y}2ξ `Ep~xq. (3.27)

A fully discrete approximation ~x∆ “ p~x0
∆,~x

1
∆, . . .q of (3.26) is now defined inductively from a

given initial datum ~x0
∆ by choosing each ~xn∆ as a global minimizer of E∆pτn, ¨,~x

n´1
∆ q. Below, we

prove that such a minimizer always exists (see Proposition 3.9).

For practical applications, one would like the sequence ~x∆ to be the unique solution of the

Euler-Lagrange equations associated to E∆pτn, ¨,~x
n´1
∆ q, which leads to the implicit Euler time

stepping

~x´ ~xn´1
∆

τn
“ ´∇ξEp~xq, (3.28)
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which is exactly the same as (3.11) from the defintion of our scheme in Section 3.1.2. Equivalence

of (3.28) and the minimization problem is guaranteed at least for sufficiently small τ ą 0, as the

following Proposition shows.

Proposition 3.9. Assume that τ´1`λ ą 0 with λ P R defined in (3.9), and let u0
∆ “ uξr~x

0
∆s in

Pr
2,ξpΩq be given. Then there are sequences u∆ “ pu

0
∆, u

1
∆, . . .q and ~x∆ “ p~x

0
∆,~x

1
∆, . . .q, uniquely

related by the map uξ : xξ Ñ Pr
2,ξpΩq from (2.17), such that un∆ P Pr

2,ξpΩq is the unique minimizer

of Eτ pτn, ¨, un´1
∆ q on Pr

2,ξpΩq, and ~xn∆ is the unique minimizer of E∆pτn, ¨,~x
n´1
∆ q, for every n P N.

Moreover, ~xn∆ is the unique solution in xξ to the system of Euler-Lagrange equations

1

τn
p~x´ ~xn´1

∆ q “ ´∇ξEp~xq, (3.29)

with B~xEp~xq explicitly given in (3.22).

Proof. Fix n P N. It suffices to prove that ~x ÞÑ E∆pτn,~x,~x
n´1
∆ q has a unique minimizer in the

open set xξ. To this end, observe that

E∆pτn,~x,~x
n´1
∆ q “ Ep~xq ´

λ

2

›

›~x´ ~xn´1
∆

›

›

2

ξ
`

1

2
pτ´1
n ` λq

›

›~x´ ~xn´1
∆

›

›

2

ξ

for every ~x P xξ. From Lemma 3.7, we know that the sum of the first two terms on the right-hand

side constitutes a convex function in ~x P xξ. Since τ´1
n ` λ ą 0 for any n P N, and since W2 is

positive definite by Lemma 2.2, the last term is strictly convex. Thus, E∆pτn, ¨,~x
n´1
∆ q possesses

at most one critical point in xξ.

Let further p~xjq8j“0 be a minimizing sequence for E∆pτn, ¨,~x
n´1
∆ q in xξ. Since each of the K´1

components xjk belongs to the compact interval Ω, we may assume without loss of generality

that ~xj converges to some ~x˚ P Ω
K´1

. It remains to prove that ~x˚ P xξ. Since p~xjq8j“0 is a

minimizing sequence, E∆pτn,~x
j ,~xn´1

∆ q is bounded. Hence one obtains for arbitrary ι P I1{2K by

Jensen’s inequality that

C ě
1

2τn

›

›~xj ´ ~xn´1
∆

›

›

2

ξ
`

ÿ

κPI1{2K

δκψ

ˆxj
κ` 1

2

´ xj
κ´ 1

2

δκ

˙

`

ż

M
V
`

Xξr~x
jspξq

˘

dξ

ě διψ

ˆxj
ι` 1

2

´ xj
ι´ 1

2

δι

˙

` pM ´ διqψ

¨

˝

b´ a´ pxj
ι` 1

2

´ xj
ι´ 1

2

q

M ´ δι

˛

‚`Mλ.

Since ψpsq Ñ 8 for s Ó 0, this implies that xj
ι` 1

2

´ xj
ι´ 1

2

ě εδι ą 0 with some ε ą 0 for all j,

and thus also x˚
ι` 1

2

´ x˚
ι´ 1

2

ě εδι ą 0, implying ~x˚ P xξ. By continuity of E∆pτn, ¨,~x
n´1
∆ q on xξ,

it follows that ~x˚ is a minimizer. Consequently, E∆pτn, ¨,~x
n´1
∆ q possesses a unique critical point

in xξ, thus the corresponding Euler-Lagrange equations (3.29) are uniquely solvable. �

Remark 3.10. The above proof especially shows that ~x ÞÑ E∆pσ,~x,~yq is pσ´1 ` λq-convex for

any σ P p0, τ s and any ~y P xξ.
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3.2.1.d. Metric contraction. The above results show impressively the importance of the scheme’s

structural preservation, and as we are going to prove in this section, the inherited convexity of E

from E is the key-ingredient for the discrete analogue (3.14) of the metric contraction in (3.10).

The following proposition is a first step towards (3.14) of Theorem 3.3,

Proposition 3.11. If v∆ “ pv
0
∆, v

1
∆, . . .q is any other discrete solution of the numerical scheme,

then

p1` 2λτnqW2pu
n
∆, v

n
∆q

2 ďW2

`

un´1
∆ , vn´1

∆

˘2
(3.30)

for all n P N.

Proof. For ~x∆, ~y∆ such that un∆ “ uξr~x
n
∆s, and vn∆ “ uξr~y

n
∆s for any n P N, we know by

Proposition 3.9 that

W2p~x
n
∆ ´ ~x

n´1
∆ q “ ´τnB~xEp~xn∆q, and W2p~y

n
∆ ´ ~y

n´1
∆ q “ ´τnB~xEp~yn∆q.

Substracting these equations, we obtain

W2p~x
n
∆ ´ ~y

n
∆q ` τn

`

B~xEp~xn∆q ´ B~xEp~yn∆q
˘

“ W2p~x
n´1
∆ ´ ~yn´1

∆ q. (3.31)

Since W2 is a positive-definite and symmetric matrix, one can find a symmetric and again

positive-definite matrix denoted by W
1{2
2 — its square root — such that W

1{2
2 W

1{2
2 “ W2. As

a next step, we multiply (3.31) with W
´1{2
2 and take the norm on both sites in (3.31), then we

obtain

p~xn∆ ´ ~y
n
∆q

TW2p~x
n
∆ ´ ~y

n
∆q ` 2τnp~x

n
∆ ´ ~y

n
∆q

T
`

B~xEp~xn∆q ´ B~xEp~yn∆q
˘

ď p~xn´1
∆ ´ ~yn´1

∆ qTW2p~x
n´1
∆ ´ ~yn´1

∆ q.

Combining this with the convexity property (3.25), we arrive at the recursive relation

p1` 2λτnqp~x
n
∆ ´ ~y

n
∆q

TW2p~x
n
∆ ´ ~y

n
∆q ď p~x

n´1
∆ ´ ~yn´1

∆ qTW2p~x
n´1
∆ ´ ~yn´1

∆ q.

Iteration of this estimate and application of (2.21) yields (3.30). �

This result establishes the basis for the proof of the exponential decay rate given in Theo-

rem 3.3. Effectively, (3.14) is just an application of the following version of the dicrete Gronwall

lemma: Assume pcnq
8
n“0 and pynq

8
n“0 to be sequences with values in p0,`8q, which satisfy

p1` cnqyn ď yn´1 for any n P N. Then

yn ď y0e
´
řn´1
k“0

ck
1`ck for any n P N.

This statement can be easily proven by induction. Therefore, one attains (3.14) and together

with Proposition 3.9 all claims of Theorem 3.3 are proven.

3.3. A priori estimates and compactness

Throughout this section, we consider a sequence ∆ “ pτ ; ξq of discretization parameters such

that δ Ñ 0 and τ Ñ 0 in the limit, formally denoted by ∆ Ñ 0. Furthermore, we assume that

a fully discrete solution ~x∆ “ p~x
0
∆,~x

1
∆, . . .q is given for each ∆-mesh, defined by (3.11).
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3.3.1. Entropy inequalities. The following estimates for the entropy E are immediate con-

clusions from Lemma 2.4.

Lemma 3.12. Let ~x∆ be a solution of the numerical scheme. Then for every N P N,

N
ÿ

n“1

1

2τn

›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ
ď Ep~x0

∆q ´Ep~xN∆q, (3.32)

N
ÿ

n“1

τn
2
}∇ξEp~x

n
∆q}

2
ξ ď Ep~x0

∆q ´Ep~xN∆q. (3.33)

3.3.2. Bound on the total variation. Below, we derive a bound on the time-integrated total

variation of the considered discrete solution u∆ which is independent of the discretization ∆.

This bound provides the key a priori estimate for the convergence proof in the next section.

The use of total variation (instead of Sobolev norms) is natural in our context, since it can be

directly evaluated on the piecewise constant profiles un∆.

Recall the definition (1.14) of the total variation of a function f P L1pΩq. If f is a piecewise

constant function, taking values fk on intervals pxk´1, xks, with our usual convention a “ x0 ă

x1 ă ¨ ¨ ¨ ă xK “ b, then the integral in (1.14) amounts to

ż

Ω
fpxqϕ1pxqdx “

K
ÿ

k“1

“

fpxqϕpxq
‰xk´0

x“xk´1`0
“

K´1
ÿ

k“1

pfk ´ fk`1qϕpxkq,

where we have used that ϕpaq “ ϕpbq “ 0. Consequently, for such f the supremum in (1.14)

equals

TV rf s “
K´1
ÿ

k“1

|fk`1 ´ fk| (3.34)

and is attained for every ϕ P LippΩq with ϕpxkq “ sgnpfk ´ fk`1q at k “ 1, . . . ,K ´ 1.

Proposition 3.13. Assume u∆ to be a solution of the numerical scheme. Then
ż T

0
TV rPptu∆uτ qs

2
ď CpT q, (3.35)

for every time horizon T ą 0, where

CpT q “ 2M2
“

2pE ´ Eq ` T sup
xPΩ

|Vxpxq|
2
‰

. (3.36)

Proof. Fix a time index n. Furthermore, let ~y P RK´1 with components yk P r´1, 1s be given,

where we use the convention that y0 “ yK “ 0. Then, in view of (3.23), we have for ~zn∆ “ uξr~x
n
∆s

that

x∇ξEp~x
n
∆q,~yyξ “

ÿ

κPI1{2K

δκPpznκq
yκ´ 1

2
´ yκ` 1

2

δκ
`

ÿ

kPI`K

´

ż

M
Vx

`

Xξr~xspξq
˘

θkpξq dξ
¯

yk

“
ÿ

kPI`K

`

Ppzn
k` 1

2

q ´ Ppzn
k´ 1

2

q
˘

yk `
ÿ

kPI`K

´

ż

M
Vx

`

Xξr~xspξq
˘

θkpξq dξ
¯

yk,

(3.37)
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remember y0 “ yK “ 0. Respecting that }~y}ξ ď M}~y}8 we can take the supremum over all ~y

with }~y}8 ď 1 in (3.37). Then the Cauchy-Schwarz inequality yields

sup
}~y}8ď1

ÿ

kPI`K

`

Ppzn
k` 1

2

q ´ Ppzn
k´ 1

2

q
˘

yk ďM }∇ξEp~x
n
∆q}ξ `M sup

xPΩ
|Vxpxq|,

where the supremum on the left-hand side is attained for the vector ~y P RK´1 with components

yk “ sgnpPpzn
k` 1

2

q ´ Ppzn
k´ 1

2

qq at k “ 1, . . . ,K ´ 1. Due to (3.34) and

un∆ “
ÿ

κPI1{2K

znκ1pxn
κ´ 1

2

,xn
κ` 1

2

spxq,

we conclude that

TV rPpun∆qs ďM }∇ξEp~x
n
∆q}ξ `M sup

xPΩ
|Vxpxq|.

To obtain (3.35), take the square on both sides, sum the resulting inequalities from n “ 1 to

n “ N with a sufficiently large integer N P N with T ą
řN
n“1 τn, and apply the energy estimate

(3.33). �

The above result yields in combination with (3.5) the following corollary for the time inter-

polation tu∆uτ of u∆, remember definition (2.14).

Corollary 3.14. Assume u∆ to be a solution of the numerical scheme. Then for any T ą 0 one

can find a constant C ą 0 independent of ∆, such that Pptu∆uτ q{ tu∆uτ is uniformly bounded

in L1pr0, T s ˆ Ωq.

Proof. Fix any time horizon T ą 0. First note that the above bound on the total variation

of Pptu∆uτ q in (3.35) yields the uniform boundedness of Pptu∆uτ q in L2pr0, T s;L8pΩqq, hence

there exists a constant C ą 0 such that
ż T

0
}Pptu∆uτ q}

2
L8pΩq dt ď C.

Due to the first assumption on P in (3.5), we immediately get that

c

ż T

0
} tu∆uτ }

p
L8pΩq dt ď

ż T

0
}Pptu∆uτ q}

2
L8pΩq dt` T pb´ aqd ď C ` T pb´ aqd, (3.38)

hence tu∆uτ is uniformly bounded in Lppr0, T s;L8pΩqq. Finally apply the second inequality in

(3.5), then
ż T

0

›

›

›

›

Pptu∆uτ q

tu∆uτ

›

›

›

›

L8pΩq

dt ď c

ż T

0
} tu∆uτ }

p
L8pΩq dt` T pb´ aqd.

This shows the assumption due to the (3.38). �
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3.3.3. Convergence of time interpolant. In this section, we prove Theorem 3.4. Let an

arbitrary time horizon T ą 0 and an initial condition u0 P Pr
2pΩq with Epu0q ă 8 be given.

Accordingly, we denote by Nτ is the smallest integer with
řNτ
n“1 τn ą T . Throughout this

section, we assume all the hypotheses of Theorem 3.4:

‚ The initial conditions u0
∆ P Pr

2,ξpΩq converge to u0 weakly in L1pΩq.

‚ Uniform boundedness with respect to the discretization ∆,

αξ ď α2 ă 8, Epu0
∆q ď E ă 8.

Denote by u∆ the corresponding discrete solutions obtained as in Proposition 3.9, then the

following weak convergence result is a well-known consequence of the energy estimate (3.32).

Proposition 3.15. Every subsequence of tu∆uτ contains a sub-subsequence that converges lo-

cally uniformly with respect to time in W2 to a limit curve u˚ P C
1{2
loc pr0,`8q;P

r
2pΩqq.

Proof. Fix T ą 0, then we can apply Proposition 2.5 due to the entropy estimates in (3.32)

and (3.33), which yields the locally uniform convergence of tu∆uτ with respect to time t P r0, T s

in W2 to a limit curve uT P C
1{2pr0, T s;Pr

2pΩqq. Clearly, the argument applies to every choice

of T ą 0. Using a diagonal argument, one constructs a limit curve u˚ P C
1{2
loc pr0,`8q;P

r
2pΩqq

such that uT is the restriction of u˚ to r0, T s.

�

A stronger compactness result is needed for the convergence proof.

Proposition 3.16. Every subsequence of tu∆uτ contains a sub-subsequence (still denoted by

tu∆uτ ), such that for any T ą 0

tu∆uτ ÝÑ u˚ strongly in L1pr0, T s ˆ Ωq,

Pptu∆uτ q ÝÑ Ppu˚q strongly in L1pr0, T s ˆ Ωq,

where u˚ is the limit curve from Proposition 3.15.

The proof of this proposition is an application of the Aubin-Lions compactness principle.

Specifically, we use:

Theorem 3.17. [Adapted from Theorem 2 in [RS03]] Assume for any time horizon T ą 0

that:

(1) There is a normal coercive integrand F : L1pΩq Ñ r0,8s, i.e., F is measurable, lower

semi-continuous and has compact sublevels in L1pΩq, for which the following is true:

sup
∆

ż T

0
F
`

tu∆uτ ptq
˘

dt ă 8. (3.39)

(2) The tu∆uτ are integral equicontinuous with respect to W2,

lim
hÓ0

sup
∆

ż T´h

0
W2

`

tu∆uτ pt` hq, tu∆uτ ptq
˘

dt “ 0. (3.40)

Then the sequence ptu∆uτ q∆ is relatively compact in L1
locpr0,`8q ˆ Ωq.
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Let F : L1pΩq Ñ R Y t`8u be given by Fpuq “ TV rPpuqs2 — possibly `8 — if u is

nonnegative with
ş

Ω upxq dx “M , and by `8 otherwise.

Lemma 3.18. F is lower semi-continuous and has relatively compact sublevels.

Proof. Let AC :“ F´1pp´8; csq Ď L1pΩq be a sublevel of F. By [Giu84, Theorem 1.19], the

set BC :“ tPpuq |u P ACu is relatively compact in L1pΩq; here we use the fact that our domain

Ω is an interval, so that TV rPpuqs2 ď C and
ş

Ω upxqdx “ M induce a uniform bound on

the BV-norm of Ppuq. Thus, if pu`q
8
`“0 is a sequence in AC , converging to u0 in L1pΩq, then

also pPpu`qq
8
`“0 converges to Ppu0q in L1pΩq. By lower semi-continuity of the total variation

TV r¨s [Giu84, Theorem 1.9], the lower semi-continuity of F follows.

To conclude compactness of AC , it suffices to prove that the mapping u ÞÑ Ppuq is L1pΩq-

continuously invertible. For that, let a sequence pf`q
8
`“0 in BC be given, which converges to

some f0 in L1pΩq. Since the map r ÞÑ Pprq is strictly increasing, positive, and continuous

with superlinear growth it possesses a strictly increasing, positive and continuous inverse with

sublinear growth. Hence, there is a uniquely determined sequence of functions u` P AC such

that Ppu`q “ f` for all ` P N, and a unique u0 P AC with Ppu0q “ f0. We wish to show that u`

converges to u0 in L1pΩq. By standard arguments, we can assume without loss of generality that

the f` converge to f0 pointwise a.e. By continuous invertibility of r ÞÑ Pprq, the ul converge to

u0 pointwise a.e. Moreover, by construction,

sup
`PN

ż

Ω
Ppu`pxqqdx “ sup

`PN

ż

Ω
f`pxqdx ă 8,

so we can invoke Vitali’s Theorem — recall the superlinear growth of P — to conclude strong

convergence of u` to u0. �

Proof of Proposition 3.16. Fix any arbitrary time horizon T ą 0. It suffices to show that

every subsequence of tu∆uτ contains a sub-subsequence which is relatively compact. In view

of Proposition 3.15, we may thus assume — without loss of generality — that tu∆uτ converges

uniformly with respect to t P r0, T s in Pr
2pΩq to a curve u˚ P C

1{2pr0, T s;Pr
2pΩqq. The verification

of (3.40) is easily gained by following the analogue proof of [DFM14, Proposition 4.8] step-

by-step. Furthermore, the estimate in (3.39) is a direct consequence of the regularity estimate

(3.35). Thus Theorem 3.17 provides relative compactness of tu∆uτ in L1pr0, T s ˆ Ωq. Since

L1-convergence implies weak convergence, it actually follows that tu∆uτ converges to u˚ in

L1pr0, T s ˆ Ωq. Without loss of generality, we may even assume that tu∆uτ converges to u˚

a.e. on r0, T s ˆ Ω. By continuity of P, also Pptu∆uτ q converges to Ppu˚q a.e. on r0, T s ˆ Ω.

Furthermore, (3.34) implies

ż T

0

ż

Ω
P
`

tu∆uτ pt, xq
˘2

dx dt ď 2pb´ aq
Nτ
ÿ

n“1

τn

”

P
´ M

b´ a

¯2
` TV rPpun∆qs

2
ı

,

which is ∆-uniformly bounded because of the regularity estimate (3.35). We can finally invoke

Vitali’s Theorem to conclude that Pptu∆uτ q tends to Ppu˚q in L1pr0, T sˆΩq, due to the growth

property of P. l
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3.4. Weak formulation and the limit equation

It is easily verified by applying integration by parts that a weak formulation of (3.1) with the

no-flux boundary conditions can be stated as follows: Find u : r0,`8q ˆ Pr
2,ξpΩq, such that

ż 8

0

ż

Ω
uρη1 dx dt`

ż 8

0

ż

Ω
Ppuqρ2η ´ uVxρ

1η dx dt “ 0, (3.41)

for any test function ρ P C8pΩq with ρ1paq “ ρ1pbq “ 0 and any η P C8c pp0,`8qq. Note

especially that the weak formulation (3.16) is equivalent to (3.41). Simply observe that any

ϕ P C8pp0,`8q ˆ Ωq can be approximated by linear combinations of products ηptqρpxq with

functions η P C8pp0,`8qq and ρ P C8pΩq.

An alternative way to derive this weak formulation is obtained by studying the variation

of the entropy E along a Wasserstein gradient flow generated by an arbitrary test function ρ,

which describes a transport along the velocity field ρ1. The corresponding entropy functional is

Φpuq “
ş

Ω ρpxqupxq dx.

The aim of this section is to show that the limit curve u˚ from Proposition 3.16 satisfies this

weak formulation and attains the initial datum u0 weakly as t Ó 0. To this end, the idea from

the continuous case can be adapted to derive a discrete analogue of the weak formulation for

our variational numerical scheme. Henceforth, fix an arbitrary spatial test function ρ P C8pΩq

with ρ1paq “ ρ1pbq “ 0 and choose $ ą 0, such that

}ρ}C4pΩq “

4
ÿ

k“0

}ρpkq}C0pΩq ď $. (3.42)

As already mentioned, we can use the same variational methods as in [MO14a] to show

that tu∆uτ inherits a discrete analogue to the weak formulation (3.41). Hence, we study the

variations of the entropy E along the vector field ~vp~xq generated by the potential

Φp~xq “

ż

M
ρpXξr~xsqdξ

for any arbitrary smooth function ρ P C8pΩq with ρ1paq “ ρ1pbq “ 0. That is why we define

~vp~xq “ ∇ξΦp~xq, where
“

B~xΦp~xq
‰

k
“

ż

M
ρ1pXpξqqθkpξqdξ, k “ 1, . . . ,K ´ 1. (3.43)

Later on, we will use the compactness results from Proposition 3.16 to pass to the limit, which

yields our main result in Theorem 3.4.

The proof of this theorem will be treated in two essential steps

(1) We show the validity of a discrete weak formulation for tu∆uτ , using a discrete flow

interchange estimate.

(2) Then we pass to the limit using Proposition 3.16.

Lemma 3.19 (discrete weak formulation). For any ρ P C8pΩq with ρ1paq “ ρ1pbq “ 0 and

η P C8c pp0,`8qq, the solution ~xn∆ with un∆ “ uξr~x
n
∆s of the minimization problem (3.13) fulfills

8
ÿ

n“0

τnηptnq
Φp~xn∆q ´Φp~xn´1

∆ q

τn
´ ηptnq

@

∇ξEp~x
n
∆q, ρ

1p~xn∆q
D

ξ
“ Opτq `Opδ

1
2 q, (3.44)
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where we use the short-hand notation

ρ1p~xq :“
`

ρ1px1q, . . . , ρ
1pxK´1q

˘

.

Proof. As a first step, we prove that both vectors ρ1p~xq and ~vp~xq almost coincide for any ~x P xξ,

i.e.
›

›~vp~xq ´ ρ1p~xq
›

›

2

ξ
ď δ$2α2pb´ aq

2. (3.45)

Hence, denote by X “ Xξr~xs the corresponding Lagrangian map of ~x and choose any k “

1, . . . ,K ´ 1, then a Taylor expansion shows that

ρ1
`

Xξr~xspξq
˘

“ ρ1pxkq ` ρ
2px̂qpxk ´ xk´1qθk´1pξq (3.46)

“ ρ1pxk´1q ` ρ
2px̌qpxk ´ xk´1qθkpξq (3.47)

for all ξ P rξk´1, ξks, where x̂, x̌ P Ω denote suitable intermediate values depending on ξ. Multiply

(3.46) by θk, multiply (3.47) by θk´1, and sum these up to obtain that

ρ1
`

Xξr~xspξq
˘

“ ρ1pxkqθkpξq ` ρ
1pxk´1qθk´1pξq `Rkpξq (3.48)

where the error term Rk fulfills, recalling (3.42),
ż

M
|Rkpξq|dξ ď $pxk ´ xk´1q

ż ξk

ξk´1

θkpξqθk´1pξqdξ `$pxk`1 ´ xkq

ż ξk`1

ξk

θkpξqθk`1pξq dξ

ď
$δ

6

`

pxk ´ xk´1q ` pxk`1 ´ xkq
˘

. (3.49)

Furthermore, define the vector ~µ “ W2p~vp~xq ´ ρ
1p~xqq, then each component of ~µ is given by

µk “

ż ξk`1

ξk´1

ˆ

ρ1
`

Xξr~xs
˘

´

k`1
ÿ

j“k´1

ρ1pxjqθj

˙

θk dξ,

due to rW2sk,j “
ş

M θkθj dξ. Substitute (3.48) and (3.49) into the integral, then Young’s

inequality yields the bound

|µk|
2 ď

$2δ
2

18

`

pxk ´ xk´1q
2 ` pxk`1 ´ xkq

2
˘

for every k “ 1, . . . ,K´1. Recalling the lower estimate on W2 in (2.22), it follows for ν “ W´1
2 µ

that

›

›~vp~xq ´ ρ1p~xq
›

›

2

ξ
“ µTW´1

2 µ ď
6

δ

K´1
ÿ

k“1

µ2
k ď δ

$2α2

3

K´1
ÿ

k“1

`

pxk ´ xk´1q
2 ` pxk`1 ´ xkq

2
˘

ď δ$2α2pb´ aq
2,

proving our claim (3.45).

Let us now invoke the proof of (3.44). A Taylor expansion of ρ for X,X1 P X yields

ρpXq ´ ρpX1q ´
$

2
pX´X1q2 ď ρ1pXqpX´X1q,
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which implies for X1 “ Xξr~x
n´1
∆ s and X “ Xξr~x

n
∆s by integration

Φp~xn∆q ´Φp~xn´1
∆ q ´

$

2

›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ
ď

K´1
ÿ

k“1

r~xn∆ ´ ~x
n´1
∆ sk

ż

M
ρ1pXξr~x

n
∆sqθkpξq dξ

“
@

~xn∆ ´ ~x
n´1
∆ ,∇ξΦp~x

n
∆q

D

ξ

“ τn x∇ξEp~x
n
∆q,∇ξΦp~x

n
∆qyξ .

(3.50)

Owing to (3.45), the last term can be estimated as follows,

x∇ξEp~x
n
∆q,∇ξΦp~x

n
∆qyξ “

@

∇ξEp~x
n
∆q, ρ

1p~xn∆q
D

ξ
`
@

∇ξEp~x
n
∆q,~vp~x

n
∆q ´ ρ

1p~xn∆q
D

ξ

ď
@

∇ξEp~x
n
∆q, ρ

1p~xn∆q
D

ξ
` }∇ξEp~x

n
∆q}ξ

›

›~vp~xn∆q ´ ρ
1p~xn∆q

›

›

ξ

ď
@

∇ξEp~x
n
∆q, ρ

1p~xn∆q
D

ξ
`

a

δ$pb´ aq }∇ξEp~x
n
∆q}ξ .

(3.51)

Inequality (3.50) in combination with (3.51) then yields after multiplication with ηptnq and

summation over n P N,
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“1

τnηptnq

˜

Φp~xn∆q ´Φp~xn´1
∆ q

τn
´
@

∇ξEp~x
n
∆q, ρ

1p~xn∆
D

ξ

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď}η}C0pr0,`8q

Nτ
ÿ

n“1

τn
$

2

›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ
` }η}C0pr0,T sq

a

δ$pb´ aq
Nτ
ÿ

n“1

τn }∇ξEp~x
n
∆q}ξ .

The right-hand side is of order Opτq`Opδ
1
2 q, due to (3.32) and (3.33). An analogue calculation

replacing ρ with ´ρ leads finally to (3.44). �

Proof of Theorem 3.4. It still remains to prove that the limit curve from Proposition 3.16

complies with the weak formulation in (3.16)

To this end, we want to pass to the limit in the discrete weak formulation in (3.44). As an

immediate observation, we note that

8
ÿ

n“1

τnηptnq
Φp~xn∆q ´Φp~xn∆q

τn
“

8
ÿ

n“1

τnηptnq

ż

M

ρpXn
∆q ´ ρpX

n´1
∆ q

τn
dξ

“´

8
ÿ

n“1

τn
ηptn`1q ´ ηptnq

τn

ż

Ω
ρpxq tu∆uτ ptn, xq dx

ÝÑ´

ż 8

0

ż

Ω
η1ptqρpxqu˚pt, xq dx dt,

as ∆ Ñ 0. So the proof of Theorem 3.4 is done, as soon as we know that

8
ÿ

n“1

τnηptnq
@

∇ξEp~x
n
∆q, ρ

1p~xn∆q
D

ξ
ÝÑ ´

ż 8

0

ż

Ω
Ppu˚qρ

2η ´ u˚Vxρ
1η dx dt, (3.52)
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as ∆ Ñ 0. So assume supp η Ď r0, T s for any T ą 0, and fix Nτ P N such that
řNτ
n“1 τn ą T .

First observe that (3.22) implies for any integer n “ 1, . . . , Nτ

@

∇ξEp~x
n
∆q, ρ

1p~xn∆q
D

ξ
“ ´

K´1
ÿ

k“1

„

ψ1
´xnk`1 ´ x

n
k

δk` 1
2

¯

´ ψ1
´xnk ´ x

n
k´1

δk´ 1
2

¯



ρ1pxnkq

`

ż

M
Vx

`

Xξr~x
n
∆s
˘

K´1
ÿ

k“1

ρ1pxnkqθk dξ “ An1 `A
n
2 .

We consider both terms on the right-hand side separately. Using that ψ1p1{rq “ ´Pprq and that

ρ1paq “ ρ1pbq “ 0, we see that the first term equals

An1 “
K
ÿ

k“1

ψ1
´xnk ´ x

n
k´1

δk´ 1
2

¯

`

ρ1pxnkq ´ ρ
1pxnk´1q

˘

“ ´

K
ÿ

k“1

ż xnk

xnk´1

P
´ δk´ 1

2

xnk ´ x
n
k´1

¯

ρ2px̂kq dx,

with a suitable x̂k P px
n
k´1, x

n
kq by the intermediate value theorem. Multiplying An1 with τnηptnq

and summing over n “ 1, . . . , N yields

Nτ
ÿ

n“1

τnηptnqA
n
1 “

Nτ
ÿ

n“1

τnηptnq

ż

Ω
P
`

un∆
˘

ρ2pxq dx dt`R1, (3.53)

where the residuum fulfills due to |ρ2px̂kq ´ ρ
2pxq| ď $pxnk ´ x

n
k´1q for any x P pxnk´1, x

n
kq

|R1| ď $}η}C0pr0,T sq

Nτ
ÿ

n“1

τn

K
ÿ

k“1

Ppun∆qpx
n
k ´ x

n
k´1q

2

ď δ$}η}C0pr0,T sq

ż T

0

ż

Ω

Pptu∆uτ q

tu∆uτ
dx dt.

Here we used that

un∆pxq “ zn
k´ 1

2

“
δk´ 1

2

xnk ´ x
n
k´1

for any x P pxnk´1, x
n
k s and k “ 1, . . . ,K. Hence the residuum vanishes as ∆ Ñ 0, due to

Corollary 3.14. For the second term An2 , we perform a change of variables:

ż ξnk

ξnk´1

Vx
`

xnkθk ` x
n
k´1θk´1

˘`

ρ1pxnkqθk ` ρ
1pxnk´1qθk´1

˘

dξ “

ż xnk

xnk´1

Vxpxqρ
1px̌q

δk´ 1
2

xnk ´ x
n
k´1

dx,

with some intermediate value x̌ P pxnk´1, x
n
kq. Summation over k “ 1, . . . ,K again provides due

to a Taylor expansion ρ1 in x̌

Nτ
ÿ

n“1

τnηptnqA
n
2 “

Nτ
ÿ

n“1

τnηptnq

ż

Ω
Vxpxqρ

1pxqun∆pxqdx`R2, (3.54)

with a residuum that is bounded by

|R2| ď $T pb´ aq}η}C0pr0,T sqmax
xPΩ

|Vx|.

Combining (3.53), (3.54), and the compactness result in Proposition 3.16 finally gives (3.52). l
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3.5. An alternative proof using Γ-convergence

In this section, we are going to discuss an alternative proof of convergence for the special case

λ ě 0 that can be obtained by exploiting the equation’s variational structure more deeply. In

particular, the theory on perturbed λ-contractive gradient flows developed by Serfaty [Ser11]

and Ortner [Ort05] indicates an alternative route towards the same goal, making use of the

machinery of Γ-convergence.

Before we can claim the main result of this section, we have to define an equivalent notion

of solutions to the L2-Wasserstein gradient flow equation, see [AGS05, Theorem 11.1.3].

Definition 3.20. We call a function u : r0,`8q Ñ Pr
2pΩq a curve of maximal slope for E if it

satisfies the following two conditions:

(1) u is (locally) absolutely continuous: There exists a function A P L2
locpr0,`8qq, such

that

W2pupsq, uptqq ď

ż t

s
Aprqdr,

for all s, t P r0,`8q

(2) u fulfills

d

dt
Epuptqq ď ´1

2

ˇ

ˇu1
ˇ

ˇ

2
ptq ´

1

2
|BE |2 puptqq, (3.55)

where |u1| is the metric derivative of u and |BE | puq is the local slope of E at u,

ˇ

ˇu1
ˇ

ˇ ptq :“ lim
hÑ0

W2pupt` hq, uptqq

h
and |BE | puq :“ lim sup

vÑu

`

Epuq ´ Epvq
˘`

W2pu, vq
.

The formalism of curves of maximal slope constitutes the natural generalization of a gradient

flow in the setting of metric spaces [AGS05, Theorem 11.1.3], and is well studied for the non-

discretized set Pr
2pΩq, see for instance [AGS05,ALS06,Ort05,Ser11] and others.

Our definition of a curve of maximal slope slightly differs from the typical one from the

literature, see for instance [AGS05, Definition 1.3.2], where a strong upper gradient for E is

used in (3.55) instead of the local slope. However, one can show that the local slope |BE | is

a strong upper gradient for E due to the λ-convexity of E and the additional assumption that

λ ě 0. More precisely, the local slope |BE | satisfies

ˇ

ˇEpupsqq ´ Epuptqq
ˇ

ˇ ď

ż t

s
|BE | puprqq

ˇ

ˇu1
ˇ

ˇ prqdr (3.56)

for any locally absolutely continuous curve u : r0,`8q Ñ Pr
2pΩq and for any s, t P r0,`8q

with s ă t, which essentially is the definition of a strong upper gradient according to [AGS05,

Defintion 1.2.1]. This inequality is a nontrivial result that is a consequence of [AGS05, Theorem

2.4.9] and [AGS05, Theorem 1.2.5]: The first theorem guarantees that the local slope and the

global slope coincide if E is λ-convex with some λ ě 0. Since the global slope is not needed in

this thesis, we refer to [AGS05, Definition 1.2.4] for a proper definition. The second theorem

shows that the global slope of E is a strong upper gradient for E in terms of (3.56), if E is
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lower semi-continuous. Note that the lower semi-continuity of E results from the continuity of

its integrand φ, see [AGS05, Remark 9.3.8].

As a consequence of (3.56) one obtains in particular that

Epupsqq ´ Epuptqq ď 1

2

ż t

s

ˇ

ˇu1
ˇ

ˇ

2
prqdr `

1

2

ż t

s
|BE |2 puprqqdr (3.57)

for any locally absolutely continuous curve u : r0,`8q Ñ Pr
2pΩq and for s, t P r0,`8q with

s ă t.

Remark 3.21. If u is a curve of maximal slope for E, then one has equality in (3.55) owing to

(3.57).

The aim of this section is to proof Theorem 3.6, which was essentially formulated as follows.

Theorem 3.22. In addition to the assumptions in Theorem 3.4, assume that E is λ-convex

according to the definition in (3.21) with λ ě 0. Then the limit curve u˚ P C
1{2
loc pr0,`8q;P

r
2pΩqq

of Theorem 3.4 is a curve of maximal slope for E, hence u˚ especially satisfies for any t P r0,`8q

the equality

1

2

ż t

0

ˇ

ˇu1˚
ˇ

ˇ

2
prqdr `

1

2

ż t

0
|BE |2 pu˚prqqdr “ Epu˚p0qq ´ Epu˚ptqq. (3.58)

Remark 3.23. Note that Theorem 3.22 is essentially a conclusion of the strong convergence

result in Theorem 3.4 and [AGS05, Theorem 11.1.3]. Nevertheless, it is interesting from the

analytical point of view to apply the notion of Γ-convergence directly to solutions of our scheme,

which demonstrates once more the particular structural preservation of our approximation.

The proof of Theorem 3.22 is discussed in the following two subsections. Before we can

treat the content of the above theorem, we introduce a discrete local slope for the entropy E
in terms of Lagrangian vectors in Subsection 3.5.1 and prove its lower semi-continuity. Making

use of this new object, we can show that a solution to our numerical scheme indeed converges

towards a curve of maximal slope. For this purpose, a similar strategy as developed in [Ser11]

and [Ort05] is applied, see Subsection 3.5.2.

3.5.1. Lower semi-continuity of the entropy and discrete local slope. Lower semi-

continuity is one of the main ingredients for any kind of Γ-convergence proof. It turns out that

under the assumptions on the entropy, E and BE accomplish this essential property, i.e. for any

u P Pr
2pΩq and arbitrary sequence pukq

8
k“0 of density functions converging towards u in W2, one

obtains

lim inf
kÑ8

Epukq ě Epuq and lim inf
kÑ8

|BE | pukq ě |BE | puq. (3.59)

The lower semi-continuity of E results from the continuity of its integrand φ, see [AGS05,

Remark 9.3.8]. We further refer to Section 4.1 of [ALS06] and especially to Example 4.4

within. However, for our purpose we just need the lower semi-continuity of E .

All attempts to translate a Γ-convergence proof into the discrete case stand or fall by trans-

ferring those powerful properties to the discrete case. One of the main questions in this context
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is the following: Is it even possible to approximate each density function u P Pr
2pΩq by functions

of the discrete submanifolds Pr
2,ξpΩq? The following lemma gives a positive answer.

Lemma 3.24. Let us denote by
Ť

ξ Pr
2,ξpΩq the union of all finite-dimensional submanifolds

Pr
2,ξpΩq Ď Pr

2pΩq with spatial decompositions ξ as described in Section 2.2. Then
Ť

ξ Pr
2,ξpΩq

is dense in Pr
2pΩq with respect to the L2-Wasserstein distance. In particular, for any density

u P Pr
2pΩq an approximating sequence ~xξ of Lagrangian vectors in xξ can be explicitly given by

~xξ P xξ with components that satisfy

ż xk

xk´1

upsqds “ δk´ 1
2
, (3.60)

so that uξr~xξs Ñ u with respect to the L2-Wasserstein distance as δ Ñ 0.

Proof. To prove the above assertion, we will reformulate it in terms of Lagrangian coordinates.

For any decomposition ξ introduce a projection map πξ : X Ñ Xξ on the space of Lagrangian

maps, such that for all X P X.

πξrXs “
ÿ

kPIK

xkθkpξq, with xk “ Xpξkq, k “ 1, . . . ,K ´ 1, and x0 “ a, xK “ b.

Note that πξ : X Ñ Xξ is well-defined, although X P X does not have to be continuous. The

reason for this is the possibility to evaluate any function X P X at least at any point ξ P r0,Mq,

thanks to definition (2.2). If we can show

}pid´πξqX}L2pMq ď

a

δpb´ aq (3.61)

for any X P X, then the lemma is proven, since the associated sequence uξ of density functions

with Lagrangian maps πξrXs fulfills

W2pu, uξq “ }πξrXs ´X}L2pMq ÝÑ 0

as δ Ñ 0, due to (2.3). For the proof of (3.61), note first that X and πξrXs are monotonically

increasing. Thus, for any ξ P pξk´1, ξks

|Xpξq ´ πξrXspξq| ď

$

’

’

&

’

’

%

`

Xpξkq ´Xpξk´1q
˘

, k “ 2, . . . ,K ´ 1,
`

Xpξ1q ´ a
˘

, k “ 1,
`

b´XpξK´1q
˘

, k “ K.

.

Therefore one obtains |Xpξq ´ πξrXspξq| ď pb´ aq for any ξ PM, which further yields

}pid´πξqX}
2
L2pMq “

K
ÿ

k“1

ż ξk

ξk´1

|Xpξq ´ πξrXspξq|
2 dξ

ď δpb´ aq

«

K´1
ÿ

k“2

`

Xpξkq ´Xpξk´1q
˘

`
`

Xpξ1q ´ a
˘

`
`

b´XpξK´1q
˘

ff

“ δpb´ aq2.

This proves (3.61) and closes the proof. �
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For the forthcoming calculations we want to introduce a discrete counterpart to the local

slope of |BE |: For any ~x P xξ, define the discrete local slope |BξE| of E at ~x by

|BξE| p~xq “ lim sup
~yPxξ:~yÑ~x

`

Ep~xq ´Ep~yq
˘`

}~x´ ~y}ξ
, (3.62)

The main challenge in this section is now to prove that the discrete local slope |BξE| of E satisfies

a discrete formulation of the lower semi-continuity similar to the one in (3.59). Therefor, we are

going to derive an alternative representation to (3.62) for the discrete local slope, which is more

convenient for analytical treatments as (3.62).

For this purpose we first analyze |BE |: Note that the functional u ÞÑ Eτ pσ, u, vq given by

Eτ pτ, u, vq “
1

2σ
W2pu, vq

2 ` Epuq

is pσ´1 ` λq-convex for any v P Pr
2pΩq and any σ P p0, τq, which is a consequence of the λ-

convexity of E and the representation

Eτ pσ, u, vq “ Epuq ´ λ

2
W2pu, vq

2 `
1

2
pσ´1 ` λqW2pu, vq

2.

This property allows the alternative representation of the local slope |BE | puq through

|BE | puq “ sup
vPPr2 pΩq:v‰u

ˆ

Epuq ´ Epvq
W2pu, vq

`
λ

2
W2pu, vq

˙`

. (3.63)

A proof of this claim can be found in [AGS05, Theorem 2.4.9] and can be easily adapted to

the discrete setting. Indeed, the pσ´1 ` λq-convexity of the functional ~x ÞÑ E∆pσ,~x,~yq for any

~y P xξ and σ P p0, τq (see Remark 3.10) and the metric equality }~x´ ~y}ξ “ W2puξr~xs,uξr~ysq

from (2.20) yield that one can repeat the proof [AGS05, Theorem 2.4.9] step-by-step to show

that

|BξE| p~xq “ sup
~yPxξ:~y‰~x

˜

Ep~xq ´Ep~yq

}~x´ ~y}ξ
`
λ

2
}~x´ ~y}ξ

¸`

. (3.64)

To verify (3.64), one can also argue as follows: Since Theorem 2.4.9 in [AGS05] is stated for

arbitrary metric spaces, it is in particular applicable to the space pPr
2,ξpΩq,dξq.

The proof of the following lemma relies on the method used in [Ort05, Proposition 13].

Lemma 3.25. For any u P Pr
2pΩq, there exists a sequence of Lagrangian vectors ~xξ, such that

uξr~xξs “ uξ Ñ u with respect to the L2-Wasserstein distance and

Epuξq ÝÑ Epuq (3.65)

as δ Ñ 0. Moreover, the discrete local slope is lower semi-continuous with respect to the L2-

Wasserstein distance in the following sence: If uξr~xξs Ñ u with respect to the L2-Wasserstein

distance for any sequence ~xξ, then

lim inf
δÑ0

|BξE| p~xξq ě |BE | puq. (3.66)



52 3. SECOND ORDER DRIFT-DIFFUSION EQUATION

Proof. To prove (3.65) we take any u P Pr
2pΩq with Epuq ă `8 — otherwise the proof is trivial.

So for any arbitrary decomposition ξ, define a sequence ~xξ with components as in (3.60), then

the corresponding sequence of densities uξ “ uξr~xξs converges towards u w.r.t W2, see Lemma

3.24. Therefore we get

Epuξq “
K
ÿ

k“1

ż xk

xk´1

φ

ˆ

δk
xk ´ xk´1

˙

dx “
K
ÿ

k“1

pxk ´ xk´1qφ

˜

1

xk ´ xk´1

ż xk

xk´1

upsq ds

¸

ď

K
ÿ

k“1

ż xk

xk´1

φ
`

upsq
˘

ds “ Epuq,

using Jensen’s inequality. Taking the lim sup of both sides yields lim supδÑ0 Epuξq ď Epuq and

since E is lower semi-continous, we especially obtain limδÑ0 Epu∆q “ Epuq.
To prove (3.66) it is essential to use the representation of the local slope as in (3.63), which

guarantees the existence of a sequence pvjq
8
j“0 that satisfies

|BE | puq “ lim
jÑ8

ˆ

Epuq ´ Epvjq
W2pu, vjq

`
λ

2
W2pu, vjq

˙`

.

Furthermore, define sequences ~xξ and ~yj,ξ according to Lemma 3.24, such that uξr~xξs converges

to u and uξr~yj,ξs to vj for any j P N, both with respect to the L2-Wasserstein distance. By

means of (3.65) and the equality W2puξr~xξs,uξr~yj,ξsq “ }~xξ ´ ~yj,ξ}ξ we get

|BE | puq “ lim
jÑ8

˜

lim infδÑ0 Ep~xξq ´ limδÑ0 Ep~yj,ξq

limδÑ0 }~xξ ´ ~yj,ξ}ξ
` lim
δÑ0

λ

2
}~xξ ´ ~yj,ξ}ξ

¸`

ď lim
jÑ8

lim inf
δÑ0

˜

Ep~xξq ´Ep~yj,ξq

}~xξ ´ ~yj,ξ}ξ
`
λ

2
}~xξ ´ ~yj,ξ}ξ

¸`

.

For further estimation, note that

lim inf
δÑ0

˜

Ep~xξq ´Ep~yj,ξq

}~xξ ´ ~yj,ξ}ξ
`
λ

2
}~xξ ´ ~yj,ξ}ξ

¸`

ď lim inf
δÑ0

sup
jPN

˜

Ep~xξq ´Ep~yj,ξq

}~xξ ´ ~yj,ξ}ξ
`
λ

2
}~xξ ´ ~yj,ξ}ξ

¸`

for any j P N,

so taking the limit with respect to j in the last inequality we get due to (3.64)

|BE | puq ď lim inf
δÑ0

sup
jPN

˜

Ep~xξq ´Ep~yj,ξq

}~xξ ´ ~yj,ξ}ξ
`
λ

2
}~xξ ´ ~yj,ξ}ξ

¸`

ď lim inf
δÑ0

|BξE| p~xξq.

�

3.5.2. The convergence result. A reader familiar with the theory in [AGS05, Part 1] or

[Ser11,Ort05] will observe that the strategy used below is closely related to the one in [Ser11]

and [Ort05].
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From now on, we will always make the following assumptions, which are essentially the same

as in Theorem 3.3 and 3.4:

‚ We assume τ fine enough, i.e.

τ´1 ` λ ą 0. (3.67)

‚ We suppose that the initial discretization u0
∆ of u0 is chosen such that

W2pu
0
∆, u

0q ÝÑ 0, Epu0
∆q ÝÑ Epu0q, (3.68)

as ∆ Ñ 0 and Epu0
∆q ď E for fixed E ą 0.

Note that the first point (3.67) guarantees the existence of minimizers. The second one is an

essential tool for the proof of the subsection’s main theorem.

In this subsection, let ~x∆ be a solution of the numerical scheme in (3.11), which especially

satisfies (3.13) from Theorem 3.3. Furthermore, denote by u∆ the respective sequence of locally

constant density functions, which converges towards a limit curve u˚ P C
1{2
loc pr0,`8q;P

r
2pΩqq as

∆ Ñ 0, see Theorem 3.4.

Before we can formulate the next lemma, we have to introduce some additional notation for

the solution ~x∆:

Definition 3.26 (discrete metric derivative and discrete De Giorgi’s variational in-

terpolation). Suggest ~x∆ to be a solution of our scheme in (3.11). Then for any n P N and

t P ptn´1, tns, the discrete metric derivative of ~x∆ is given by

X

~x1∆
\

ptq :“

›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ

τn
. (3.69)

Moreover, define the De Giorgi’s variational interpolation by

~xt∆ :“ arg min
~xPxξ

E∆pt´ tn´1,~x,~x
n´1
∆ q for t P ptn´1, tns, n P N, (3.70)

and introduce similarly to the discrete metric derivative the map G∆ : p0,`8q Ñ R`,

G∆ptq “

›

›~xt∆ ´ ~x
n´1
∆

›

›

ξ

t´ tn´1
for any t P ptn´1, tns. (3.71)

Lemma 3.27. Suppose that ~x∆ is a solution to our scheme in (3.11), thus especially solves

successively the discrete minimizing movement scheme in (3.11). Then

1

2

ż tn

tn´1

X

~x1∆
\2
ptqdt`

1

2

ż tn

tn´1

|G∆ptq|
2 dt ď Ep~xn´1

∆ q ´Ep~xn∆q (3.72)

for any t P
`

pn ´ 1qτ, nτ s, n P N. Furthermore, there exists a subsequence of ~x∆, not relabeled,

a non-increasing function ϕ : r0,`8q Ñ r´8,8s and functions A,G P L2
locpr0,`8qq, such that

for any T ą 0
X

~x1∆
\

ÝÑ A weakly in L2pr0, T sq and A ě
ˇ

ˇu1˚
ˇ

ˇ almost everywhere, (3.73)

Ept~x∆uτ ptqq ÝÑ ϕptq ě Epuptqq for any t P r0, T s, (3.74)

|BξE| pt~x∆uτ ptqq ÝÑ G weakly in L2pr0, T sq (3.75)
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as ∆ Ñ 0. Here, u˚ denotes the limit curve from Proposition 3.16 that is in addition locally

absolutely continuous, i.e. W2pu˚psq, u˚ptqq ď
şt
sAprqdr for any s ă t.

Proof. Equation (3.72) immediately follows from (A.3), see Lemma A.5, and the previous

definitions of the discrete metric derivative (3.69) and of G∆ in (3.71).

Summing over n P N in (3.72) yields

1

2

ż 8

0

X

~x1∆
\2
ptq dt`

1

2

ż 8

0
|G∆ptq|

2 dt ď E ´ E ,

where E is the lower bound of E (and therefore of E and E as well), see (3.20). Hence t~x1∆u

is uniformly bounded in L2pr0,`8qq. Therefore a weakly convergent subsequence and a limit

function A P L2
locpr0,`8qq exist, such that the first statement in (3.73) is satisfied. Furthermore,

the above estimate can be combined with the definition of G∆ in (3.71) and the slope estimate

(A.2) from Lemma A.5. This yields

1

2

ż 8

0
|BξE| pt~x∆uτ ptqqdt ď E ´ E ,

and proves the existence of G P L2
locpr0,`8qq, such that (3.75) holds true. On top of that, one

can apply Helly’s Theorem A.2 on the sequence of non-increasing functions t ÞÑ Ept~x∆uτ ptqq,

which guarantees the existence of a non-increasing function ϕptq with the limit property in

(3.74). That especially proves (3.74) due to the lower semi-continuity of E .

It still remains to prove the estimate A ě |u1˚|. For this, introduce for any time t P r0,`8q

n´∆ptq “ maxtj : t ě

j
ÿ

n“1

τnu and n`∆ptq “ mintj : t ď

j
ÿ

n“1

τnu.

Then (2.20) and the definition of t~x1∆u yield for any s ă t

W2ptu∆uτ psq, tu∆uτ ptqq ď

n`∆ptq
ÿ

j“n´∆psq`1

W2pu
j
∆, u

j´1
∆ q “

n`∆ptq
ÿ

j“n´∆psq`1

τj

›

›

›
~xj∆ ´ ~x

j´1
∆

›

›

›

ξ

τj

“

ż t
n`

∆
ptq

t
n´

∆
psq

X

u1∆
\

prq dr.

Passing to the limit on both sides as ∆ Ñ 0 yields W2pu˚psq, u˚ptqq ď
şt
sAprqdprq. �

Owing to the above convergence results and the lim/lim inf-properties in (3.65) and (3.66),

we can now give a proof of the main convergence result of this section, Theorem 3.22.
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Proof of Theorem 3.22. Making use of the above results in Lemma 3.27 and the lower

semi-continuity of the discrete slope in (3.66) yield for any t P r0,`8q

1

2

ż t

0

ˇ

ˇu1˚
ˇ

ˇ

2
prqdr `

1

2

ż t

0
|BE |2 pu˚prqqdr ` Epu˚ptqq

ď
1

2

ż t

0
A2prqdr ` lim inf

∆Ñ0

1

2

ż t

0
|BξE|

2
pt~x∆uτ prqqdr ` ϕptq

ď lim inf
∆Ñ0

ˆ

1

2

ż t

0

X

~x1∆
\2
prq dr `

1

2

ż t

0
|G∆prq|

2 dr `Ept~x∆uτ ptqq

˙

ď lim sup
∆Ñ0

ˆ

1

2

ż t

0

X

~x1∆
\2
prqdr `

1

2

ż t

0
|G∆prq|

2 dr `Ept~x∆uτ ptqq

˙

“ lim sup
∆Ñ0

Ept~x∆uτ p0qq “ lim sup
∆Ñ0

Epuξr~x
0
∆sq “ Epu0q.

(3.76)

Furthermore, one has that

Epu0q ´ Epu˚ptqq ď
ż t

0
|BE |2 pu˚prqqdr `

ż t

0

ˇ

ˇu1˚
ˇ

ˇ

2
prqdr,

due to (3.57). This yields equality in (3.76) and consequently (3.58). l

3.6. Consistency and stability

In the following, we are going to show that our numerical scheme is consistent and stable. This

can further be used to prove an alternative convergence result to the one we already stated in

Theorem 3.4.

For the rest of this section we fix an arbitrary time horizon T ą 0 and define for any temporal

decomposition τ an integer Nτ P N such that T ď
řNτ
n“0 τn ď pT ` 1q is fulfilled.

As a first step, we prove the scheme’s consistency which means in particular the following:

Proposition 3.28. Assume X P Cppr0, T s ˆMq with p ě 4 to be a smooth solution of the

Lagrangian formulation of (3.1), i.e.

BtX “ Bξψ
1pBξXq ´ VxpXq. (3.77)

Let ∆ “ pτ ; ξq be a family of discretization parameters, such that any spatial decomposition ξ

satisfies

δk` 1
2
´ δk´ 1

2
“ Opδ2

q for any k “ 1, . . . ,K ´ 1. (3.78)

Furthermore, denote by ~y∆ the restriction of X to the respective meshes, given by ynk “ Xptn, xkq

for any n P N0 and k “ 1, . . . ,K ´ 1.

Then ~y∆ satisfies the system of Euler-Lagrange equations (3.29) with an error of order

Opτq ` Opδ2
q ` Opδp{τq. More precisely, the sequence of vectors ~γ∆ “ p~γ1

∆, . . . , ~γ
Nτ
∆ q with

~γn∆ P RK´1 and components

γnk :“
ynk ´ yn´1

k

τn
`
“

∇ξEξp~y
n
∆q

‰

k
,
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satisfies

err :“
Nτ

max
n“1

}~γn∆}ξ ď Cpτ ` δ
2
` δ

p
{τq, (3.79)

with δ “ max
kPI1{2K

δκ and τ “ minnPN τn as defined in (2.11)

Remark 3.29. Note that the requirement (3.78) is naturally induced by the smoothness of

solution X, if one chooses ξ such that the initial grid ~y0
∆ on Ω is uniform, i.e. δx :“ py0

k´ y0
k´1q

is independent of k. Then a Taylor expansion on the associated distribution function U of X

around the point x0
k yields due to (2.1) and (2.9)

δk` 1
2
´ δk´ 1

2
“ Upy0

k`1q ´ 2Upy0
kq `Upy0

k´1q “ δ2
xU2py0

kq `Opδ3
xq “ Opδ2

q,

since the smoothness of BξXp0, ξkq yields δx “ Opδq

Remark 3.30. The term Opδp{τq in err indicates a certain CFL-condition for the temporal and

spatial decompositions, but this can be neglected for sufficiently smooth solutions X of (3.77).

To make the proof of the above claim more readable, we introduce the following — more

technical — lemma.

Lemma 3.31. Consider the same assumption as before in Proposition 3.28. Then for any

k “ 1, . . . ,K ´ 1 and n “ 1, . . . , Nτ the residuum

Rn :“
δk` 1

2
` δk´ 1

2

2
BtXptn, ξkq `

“

B~xEp~yn∆q
‰

k
(3.80)

fulfills |Rn| ď Cδ
3
.

Proof. In view of equation (3.77), the claim that |Rn| ď Cδ
3

is equivalent to

“

B~xEp~yn∆q
‰

k
“ ´

δk` 1
2
` δk´ 1

2

2

`

Bξψ
1pBξXqptn, ξkq ´ VxpXptn, ξkqq

˘

`Opδ3
q (3.81)

With this in mind, remember the explicit representation of B~xEp~yn∆q in (3.22), that is

“

B~xEp~yn∆q
‰

k
“ ´ψ1

ˆ

ynk`1 ´ ynk
δk` 1

2

˙

` ψ1
ˆ

ynk ´ ynk´1

δk´ 1
2

˙

`

ż

M
Vx

`

Xξr~y
n
∆spξq

˘

θkpξq dξ

for each k “ 1, . . . ,K ´ 1 and n “ 1, . . . , Nτ . Let us treat both terms separately. First note

that the definition of ~x∆ and a Taylor expansion yield

~ynk˘1 ´ ~y
n
k

δk˘ 1
2

“ BξXptn, ξkq ˘
δk˘ 1

2

2
B2
ξXptn, ξkq `

δ2
k˘ 1

2

6
B3
ξXptn, ξkq `Opδ3

q,
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hence

´ ψ1
ˆ

ynk`1 ´ ynk
δk` 1

2

˙

` ψ1
ˆ

ynk ´ ynk´1

δk´ 1
2

˙

“´ ψ1

¨

˝BξXptn, ξkq `
δk` 1

2

2
B2
ξXptn, ξkq `

δ2
k` 1

2

6
B3
ξXptn, ξkq `Opδ3

q

˛

‚

` ψ1

¨

˝BξXptn, ξkq ´
δk´ 1

2

2
B2
ξXptn, ξkq `

δ2
k´ 1

2

6
B3
ξXptn, ξkq `Opδ3

q

˛

‚.

(3.82)

A further Taylor expansion for the function ψ1 then shows that

ψ1

¨

˝BξXptn, ξkq ˘
δk˘ 1

2

2
B2
ξXptn, ξkq `

δ2
k˘ 1

2

6
B3
ξXptn, ξkq `Opδ3

q

˛

‚

“ψ1pBξXptn, ξkqq ˘ ψ
2pBξXptn, ξkqq

¨

˝

δk˘ 1
2

2
B2
ξXptn, ξkq `

δ2
k˘ 1

2

6
B3
ξXptn, ξkq `Opδ3

q

˛

‚

`
1

2
ψ3pBξXptn, ξkqq

¨

˝

δk˘ 1
2

2
B2
ξXptn, ξkq `

δ2
k˘ 1

2

6
B3
ξXptn, ξkq `Opδ3

q

˛

‚

2

`Opδ3
q

“ψ1pBξXptn, ξkqq ˘
δk˘ 1

2

2
ψ2 pBξXptn, ξkqq B

2
ξXptn, ξkq `

δ2
k˘ 1

2

6
ψ2 pBξXptn, ξkqq B

3
ξXptn, ξkq

`

δ2
k˘ 1

2

8
ψ3 pBξXptn, ξkqq pB

2
ξXq

2ptn, ξkq `Opδ3
q,

(3.83)

Combining (3.82) with (3.83), we obtain due to the assumption on the decomposition ξ in (3.78)

that

´ ψ1
ˆ

ynk`1 ´ ynk
δk` 1

2

˙

` ψ1
ˆ

ynk ´ ynk´1

δk´ 1
2

˙

“´
δk` 1

2
` δk´ 1

2

2
ψ2 pBξXptn, ξkqq B

2
ξXptn, ξkq ´

δ2
k` 1

2

´ δ2
k´ 1

2

6
ψ2 pBξXptn, ξkqq B

3
ξXptn, ξkq

´

δ2
k` 1

2

´ δ2
k´ 1

2

8
ψ3 pBξXptn, ξkqq pB

2
ξXq

2ptn, ξkq `Opδ3
q

“ ´
δk` 1

2
` δk´ 1

2

2
Bξψ

1pBξXqptn, ξkq `Opδ3
q,

(3.84)

where the last term corresponds to the first term in (3.81).

For the second term of B~xEp~yn∆q we once again use the smoothness of X and a Taylor

expansion,
ż

M
Vx

`

Xξr~y
n
∆spξq

˘

θkpξqdξ “

ż

M

´

VxpXptn, ξkqq ` VxxpXptn, ξkqq
`

Xξr~y
n
∆spξq ´Xptn, ξkq

˘

`
1

2
Vxxxpx̌q

`

Xξr~y
n
∆spξq ´Xptn, ξkq

˘2
¯

θkpξq dξ
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where x̌ lies between Xptn, ξk´1q and Xptn, ξk`1q. Due to

ż

M
θkpξqdξ “

δk` 1
2
` δk´ 1

2

2

we further obtain the representation
ż

M
Vx

`

Xξr~y
n
∆spξq

˘

θkpξqdξ “
δk` 1

2
` δk´ 1

2

2
VxpXptn, ξkqq (3.85)

` VxxpXptn, ξkqq

ż

M

`

Xξr~y
n
∆spξq ´Xptn, ξkq

˘

θkpξq dξ (3.86)

`

ż

M

1

2
Vxxxpx̌q

`

Xξr~y
n
∆spξq ´Xptn, ξkq

˘2
θkpξq dξ. (3.87)

The first term in (3.85) is the second term in (3.81) and it is easly seen by a Taylor expansion

that the third term in (3.87) has to be of order Opδ3
q. Therefore we have to study the second

term (3.86). To this aim, note that the locally affine function Xξr~y
n
∆s satisfies

Xξr~y
n
∆spξq “

$

&

%

Xptn, ξkq `
`

Xptn, ξk´1q ´Xptn, ξkq
˘

θk´1pξq for ξ P rξk´1, ξks,

Xptn, ξkq `
`

Xptn, ξk`1q ´Xptn, ξkq
˘

θk`1pξq for ξ P pξk´1, ξks,

and therefore

Xξr~y
n
∆spξq ´Xptn, ξkq “

$

&

%

`

Xptn, ξk´1q ´Xptn, ξkq
˘

θk´1pξq for ξ P rξk´1, ξks,
`

Xptn, ξk`1q ´Xptn, ξkq
˘

θk`1pξq for ξ P pξk´1, ξks.
(3.88)

Furthermore, another Taylor expansion shows that

Xptn, ξkq ´Xptn, ξk˘1q “ ¯δk˘ 1
2
BξXptn, ξkq `Opδ2

q. (3.89)

Hence inserting (3.88) and (3.89) into the second term (3.86), one attains

VxxpXptn, ξkqq

ż

M

`

Xξr~y
n
∆spξq ´Xptn, ξkq

˘

θkpξqdξ

“VxxpXptn, ξkqq

ż ξk

ξk´1

`

Xptn, ξk´1q ´Xptn, ξkq
˘

θk´1pξqθkpξq dξ

` VxxpXptn, ξkqq

ż ξk`1

ξk

`

Xptn, ξk`1q ´Xptn, ξkq
˘

θk`1pξqθkpξqdξ

“VxxpXptn, ξkqq

¨

˝

δ2
k` 1

2

´ δ2
k´ 1

2

6
BξXptn, ξkq

˛

‚`Opδ3
q,

(3.90)

where we used in the last equation that
ż

M
θkpξqθk˘1pξqdξ “

δk˘ 1
2

6
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for any k P t1, . . . ,K ´ 1u. Putting all results for the terms (3.85) - (3.87) together, we finally

conclude that
ż

M
Vx

`

Xξr~y
n
∆spξq

˘

θkpξqdξ “
δk` 1

2
` δk´ 1

2

2
VxpXptn, ξkqq `Opδ3

q,

which in particular shows in combination with (3.84) the claim in (3.81). �

Proof of Proposition 3.28. To get the required rate on the error, one has to investigate

“

W2~γ
n
∆

‰

k
“

1

τn

“

W2p~y
n
∆ ´ ~y

n´1
∆ q

‰

k
`
“

B~xEp~yn∆q
‰

k
.

The main challenge is to simplify the term
“

W2p~y
n
∆ ´ ~y

n´1
∆ q

‰

k
. For this purpose, remember the

definition of the matrix W2 in (2.21) which satisfies for arbitrary ~y P xξ

6rW2~ysk “

$

’

’

’

&

’

’

’

%

δk´ 1
2
yk´1 ` 2pδk` 1

2
` δk´ 1

2
qyk ` δk` 1

2
yk`1 for k “ 2, . . . ,K ´ 2,

2pδ 3
2
` δ 1

2
qy1 ` δ 3

2
y2 for k “ 1,

δK´ 1
2
yK´2 ` 2pδK´ 1

2
` δK´ 3

2
qyK´1 for k “ K ´ 1.

(3.91)

Let us first fix an index k P t2, . . . ,K ´ 2u. Furthermore, define the intermediate point

ξ̄k :“ ξk `
δk` 1

2
´ δk´ 1

2

3
P rξk´1, ξk`1s,

which is chosen such that

δk´ 1
2
pξk´1 ´ ξ̄kq ` 2pδk` 1

2
` δk´ 1

2
qpξk ´ ξ̄kq ` δk` 1

2
pξk`1 ´ ξ̄kq “ 0. (3.92)

Then a Taylor expansion yields for any n “ 1, . . . , Nτ

Xptn, ξq “ Xptn, ξ̄kq ` BξXptn, ξ̄kqpξ ´ ξ̄kq `

p´1
ÿ

l“2

BlξXptn, ξ̄kq

l!
pξ ´ ξ̄kq

l `Opδpq (3.93)

remember X P Cppr0, T s ˆMq. Let us now consider W2~y
n
∆ for any n “ 1, . . . , Nτ , then one

attains due to (3.91)

6rW2~y
n
∆sk “ δk´ 1

2
Xptn, ξk´1q ` 2pδk` 1

2
` δk´ 1

2
qXptn, ξkq ` δk` 1

2
Xptn, ξk`1q.

Applying (3.92) and (3.93) further yields

6
“

W2~y
n
∆

‰

k
“ δk´ 1

2

˜

Xptn, ξ̄kq ` BξXptn, ξ̄qpξk´1 ´ ξ̄kq `

p´1
ÿ

l“2

BlξXptn, ξ̄kq

l!
pξk´1 ´ ξ̄kq

l

¸

` 2pδk` 1
2
` δk´ 1

2
q

˜

Xptn, ξ̄kq ` BξXptn, ξ̄qpξk ´ ξ̄kq `

p´1
ÿ

l“2

BlξXptn, ξ̄kq

l!
pξk ´ ξ̄kq

l

¸

` δk` 1
2

˜

Xptn, ξ̄kq ` BξXptn, ξ̄qpξk`1 ´ ξ̄kq `

p´1
ÿ

l“2

BlξXptn, ξ̄kq

l!
pξk`1 ´ ξ̄kq

l

¸

`Opδp`1
q

“ 3pδk` 1
2
` δk´ 1

2
qXptn, ξ̄kq `A

n
k `Opδp`1

q
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with

Ank “ 2pδk` 1
2
` δk´ 1

2
q

p´1
ÿ

l“2

BlξXptn, ξ̄kq

l!
pξk ´ ξ̄kq

l

` δk´ 1
2

p´1
ÿ

l“2

BlξXptn, ξ̄kq

l!
pξk´1 ´ ξ̄kq

l ` δk` 1
2

p´1
ÿ

l“2

BlξXptn, ξ̄kq

l!
pξk`1 ´ ξ̄kq

l.

The same calculation can be done for n´ 1 instead of n, thus one obtains

1

τn

“

W2p~y
n
∆ ´ ~y

n´1
∆ q

‰

k
“
δk` 1

2
` δk´ 1

2

2τn

`

Xptn, ξ̄kq ´Xptn´1, ξ̄kq
˘

`
Ank ´A

n´1
k

6τn
`Opδp`1

{τq.

(3.94)

First note, that one can apply Taylor expansions with respect to time in each summand of Ank ,

which yields

Ank ´A
n´1
k

6τn
“ Opδ3

q. (3.95)

Next, another two Taylor expansions lead to

Xptn, ξ̄kq ´Xptn´1, ξ̄kq

τn
“ BtXptn, ξkq ` pξ̄k ´ ξkqBtBξXptn, ξkq `Opτq `Opδ2

q. (3.96)

Combining (3.94), (3.95) and (3.96) with the identity ξ̄k ´ ξk “
δ
k` 1

2
´δ

k´ 1
2

3 in (3.92) yields

“

W2~γ
n
∆

‰

k
“

1

τn

“

W2p~y
n
∆ ´ ~y

n´1
∆ q

‰

k
`
“

B~xEp~yn`1
∆ q

‰

k

“
δk` 1

2
` δk´ 1

2

2
BtXptn, ξkq `

δ2
k` 1

2

´ δ2
k´ 1

2

2
BtBξXptn, ξkq `

“

B~xEp~yn`1
∆ q

‰

k

`Opδτq `Opδ3
q `Opδp`1

{τq.

An analogue calculation shows the same result for the indices k “ 1 and k “ K ´ 1. Therefore,

as a result of Lemma 3.31 and the assumption on the spatial decomposition ξ in (3.78), we

conclude that

}W2~γ
n
∆}8 ď Cpδτ ` δ

3
` δ

p`1
{τq

independently of n. Gerschgorin’s Theorem yields 2δ
3 ď µ ď δ for any eigenvalue µ of W2 and

therefore }W
´ 1

2
2 }2 ď

b

3
2δ . As an immediate consequence, one obtains

}W
1
2
2 ~γ

n
∆}2 “ }W

´ 1
2

2 W2~γ
n
∆}2 ď

c

3

2δ

?
K ´ 1}W2~γ

n
∆}8 ď

c

3

2
α2pτ ` δ

2
` δ

p
{τq

for any n P N and furthermore by Cauchy-Schwarz inequality

err “
Nτ

max
n“1

}~γn∆}ξ ď
Nτ

max
n“1

b

@

~γn∆,W2~γn∆
D

ď
Nτ

max
n“1

}W
1
2
2 ~γ

n
∆}2 ď

c

3

2
α2pτ ` δ

2
` δ

p
{τq.

l
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Proposition 3.32 (Stability). Let ∆ “ pτ ; ξq be a family of discretization parameters, such

that any spatial decomposition ξ satisfies (3.78) and any temporal decomposition τ is chosen

fine enough, i.e. 1` λτn ‰ 0 for any n “ 1, . . . , Nτ . For each ∆, assume u∆ to be a solution of

the numerical scheme as described in Section 3.1.2. Furthermore, let u : r0, T s ˆ Ω Ñ r0,`8q

be a smooth solution of (3.1) such that X P Cppr0, T s ˆMq with p ě 4 solves (3.77). Moreover,

define the sequence u∆ “ puξr~y
0
∆s,uξr~y

1
∆s, . . .q with ~y∆ defined as in Proposition 3.28. Then

W2pu∆, u
n
∆q

2 ď

ˆ

W2pu
0
∆, u

0
∆q

2 ` tn
1` τ

1` 2τλ
err2

˙

e
tn

1´2λ
1`2τλ , (3.97)

where err is the error of consistency defined in (3.79) and τλ :“ infnPNpλτnq. Moreover,

sup
tPr0,T s

W2ptu∆uτ , tu
n
∆uτ q ď Cpτ ` δ

2
` δ

p
{τq (3.98)

is satisfied as long as W2pu
0
∆, u

0
∆q ď Cδ

2
.

Proof. The proof follows the same idea as the one of (3.30). From Proposition 3.9 and Propo-

sition 3.28, we know that

~yn∆ ´ ~y
n´1
∆ ` τn∇ξEp~y

n
∆q “ τn~γ

n
∆ and ~xn∆ ´ ~x

n´1
∆ ` τn∇ξEp~x

n
∆q “ 0.

Multiply both equations with W
1{2
2 and substract them, then

W
1{2
2 p~yn∆ ´ ~x

n
∆q ` τnW

´1{2
2

`

B~xEp~yn∆q ´ B~xEp~xn∆q
˘

“ W
1{2
2 p~yn´1

∆ ´ ~xn´1
∆ q ` τnW

1{2
2 ~γn∆.

As a next step, take the norm on both sides, then the convexity property (3.25) and Young’s

inequality yield

p1` 2λτnq }~y
n
∆ ´ ~x

n
∆}

2
ξ ď

›

›~yn´1
∆ ´ ~xn´1

∆

›

›

2

ξ
` τ2

n }~γ
n
∆}

2
ξ ` 2τn

@

~yn´1
∆ ´ ~xn´1

∆ , ~γn∆
D

ξ

ď p1` τnq
›

›~yn´1
∆ ´ ~xn´1

∆

›

›

2

ξ
` τnp1` τnq }~γ

n
∆}

2
ξ .

Due to the elemental equality 1`τn
1`2λτn

“ 1` τnp1´2λq
1`2λτn

, we finally conclude that

}~xn∆ ´ ~y
n
∆}

2
ξ ď

ˆ

1`
τnp1´ 2λq

1` 2τnλ

˙

›

›~xn´1
∆ ´ ~yn´1

∆

›

›

2

ξ
`
τnp1` τnq

1` 2τnλ
}~γn∆}

2
ξ

ď
›

›~x0
∆ ´ ~y

0
∆

›

›

2

ξ
`

n´1
ÿ

k“0

τk`1
p1´ 2λq

1` 2τkλ

›

›

›
~xk∆ ´ ~y

k
∆

›

›

›

2

ξ
`

n´1
ÿ

k“0

τk`1
p1` τkq

1` 2τkλ

›

›

›
~γk`1

∆

›

›

›

2

ξ
,

which proves (3.97) due to the discrete Gronwall Lemma A.3. The statement in (3.98) is a

consequence of (3.97) and the order of consistency (3.79). �

This result provides an alternative proof of convergence, since we have already seen in

Lemma 3.24 that tu∆uτ converges towards the smooth solution u of (3.1) with respect to the

L2-Wasserstein distance, at least pointwise in time.
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3.7. Numerical results

In all numerical experiments below, we used an equidistant time decomposition τ , i.e. τn “ τ

for all n P N.

3.7.1. Implementation.

3.7.1.a. Choice of the initial condition. The numerical scheme is phrased in Lagrangian coor-

dinates: The discretization ξ “ pξ0, ξ1, . . . , ξKq of the reference domain M is fixed, whereas the

corresponding grid points ~xn “ pxn1 , . . . , x
n
K´1q P xξ on the interval Ω evolve in (discrete) time.

In the numerical experiments that follow, our choice for the discretization of the initial condition

is to use an equidistant grid ~x0 with K vertices on Ω,

x0
k “ a` kpb´ aq{K,

and an accordingly adapted mesh ξ on M, with

ξk “ U0px0
kq, where U0pxq “

ż x

a
u0pyq dy for all x P Ω

is the initial datum’s distribution function. This discretization has the property that
ż x0

k

x0
k´1

u0pxqdx “

ż x0
k

x0
k´1

u0
∆pxq dx for all k “ 1, . . . ,K.

3.7.1.b. Time stepping. Each time step in the numerical scheme consists of solving the system

of Euler-Lagrange equations (3.11). In practice, this is done with a damped Newton method,

which guarantees that the constraint ~xn∆ P xξ — i.e. that a ă xn1 ă ¨ ¨ ¨ ă xnK´1 ă b — is

propagated from the n ´ 1st to the nth iterate. Remember that we are looking for the unique

root in xξ of the functional

B~xE∆pτ,~x,~x
n´1
∆ q “

1

τ
W2p~x´ ~x

n´1
∆ q ` B~xEp~xq,

which defines the nth time iterate ~xn∆. For the evaluation of B~xE∆pτ,~x,~x
n´1
∆ q and its Jacobian

B2
~xE∆pτ,~x,~x

n´1
∆ q “

1

τ
W2 ` B

2
~xEp~xq,

an explicit expression for the integrals

Bxk

ˆ
ż

M
V ˝Xξr~xsdξ

˙

“

ż

M
Vx ˝Xξr~xsθkpξq dξ

is needed. Denoting by V an anti-derivative of V , one finds after integration by parts that
ż ξk

ξk´1

Vx ˝Xξr~xsθkpξqdξ “
δk´ 1

2

xk ´ xk´1

ż xk

xk´1

Vxpxq
x´ xk´1

xk ´ xk´1
dx

“
δk´ 1

2

xk ´ xk´1

ˆ

V pxkq ´
Vpxkq ´Vpxk´1q

xk ´ xk´1

˙

,
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and an analogue expression for the integral from ξk to ξk`1. In combination, we obtain

Bxk

ż

M
V ˝Xξr~xspξq dξ “

´δk´ 1
2

pxk ´ xk´1q
2

`

Vpxkq ´Vpxk´1q
˘

`
δk` 1

2

pxk`1 ´ xkq2
`

Vpxk`1q ´Vpxkq
˘

` V pxkq

˜

δk´ 1
2

xk ´ xk´1
´

δk` 1
2

xk`1 ´ xk

¸

,

and furthermore for any k,m P t1, . . . ,K ´ 1u,

BxmBxk

ˆ
ż

M
V ˝Xξr~xsdξ

˙

“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

2δ
k´ 1

2
pxk´xk´1q

3

`

Vpxkq ´Vpxk´1q
˘

`
2δ
k` 1

2
pxk`1´xkq3

`

Vpxk`1q ´Vpxkq
˘

´2V pxkq

ˆ

δ
k´ 1

2
pxk´xk´1q

2 `
δ
k` 1

2
pxk`1´xkq2

˙

´ Vx

ˆ

δ
k´ 1

2
pxk´xk´1q

2 ´
δ
k` 1

2
pxk`1´xkq2

˙

, m “ k

´
2δ
k´ 1

2
pxk´xk´1q

3

`

Vpxkq ´Vpxk´1q
˘

`
δ
k´ 1

2
pxk´xk´1q

2 pV pxkq ` V pxk´1qq , m “ k ´ 1

0, otherwise.

This enables an explicit representation for the Hessian B2
~xE∆pτ,~x,~x

n´1
∆ q, using (3.24).

3.7.2. Numerical experiments. The following numerical experiments are performed for the

porous medium equation with quadratic nonlinearity,

Btu “ Bxxu
2 ` BxpVxuq,

on the interval Ω “ pa, bq “ p´1, 1q. For the potential V , we choose V pxq “ ´ 1
π cospπxq, and as

initial datum, we take the following function of unit mass M “ 1:

u0pxq “ C
`

´ cosp2πxq ` 1.5
˘`

px` 0.5q4 ` 1
˘

with C “
240´ 280π2 ` 423π4

80π4
. (3.99)

3.7.2.a. Reference Solution. Our numerical reference resolution is calculated with K “ 5000

spatial grid points and a time step size τ “ 10´2. Figure 3.1/left shows snapshots of the

reference solution’s spatial density after the first couple of time steps. One observes the typical

behaviour for nonlinear drift diffusion equations: On a very short time scale, diffusion reduces

the extrema of the initial mass distribution; subsequently, the drift dominates and transports

the mass towards the equilibrium (dotted line) on a longer time scale. Figure 3.1/right displays

the corresponding particle trajectories in the Lagrangian picture, i.e. how the points xnk move

with (discrete) time n for fixed k.

3.7.2.b. Fixed τ . In a first series of experiments, we fix the time step τ “ 10´2 and vary the num-

ber of spatial grid points K. In Figure 3.2/left, the corresponding L1-distances to the reference

solution uref obtained in 3.7.2.a above are shown as a function of time. Figure 3.2/right shows

the L1-errors at T “ 0.2. The observed convergence rate is of order K´2, which corresponds to

the analytically observed rate from Section 3.6.

3.7.2.c. Fixed K. Next, we study the decay of the L1-error under refinement of the temporal

discretization for fixed K “ 400. In Figure 3.3/left, the error is plotted at the fixed terminal
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Figure 3.1. Left: evolution of the (reference) solution u∆ with initial condition
(3.99) at times t “ 0, τ, . . . , 20τ “ 0.2, with time step size τ “ 10´2 and K “ 5000
grid points. The dotted line shows the stationary solution. Right: associated
particle trajectories.
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Figure 3.2. Numerical error analysis with fixed time step τ “ 10´2, using
K “ 25, 50, 100, 200, 400, 800, 1600 grid points. Left: evolution of the L1-error
} tu∆uτ ptq´urefptq}L1pΩq. Right: order of convergence at terminal time T “ 0.2.

time T “ 0.2 for various choices of τ . The observed order of convergence is τ , which is again in

agreement with the consistency result in Section 3.6.

3.7.2.d. Weakly convergent initial datum. In order to illustrate that it sufficies to approximate

the original initial condition u0 by its discretizations u0
∆ just weakly in L1pΩq, we use perturbed

discrete initial data u0
∆,ε that are biased by high-frequency oscillations of fixed amplitude 0.1, as

indicated in Figure 3.3/right. As expected, the perturbation already becomes almost invisible

after the first time step, and the discrete solution u∆,ε is indistinguishable from the one computed

with unperturbed initial conditions u0
∆.
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Figure 3.3. Left: numerical error analysis with fixed K “ 400. We analyze
the L1-error } tu∆uτ pT q ´ urefpT q}L1pΩq at terminal time T “ 0.2 using τ “

10´4, 5 ¨10´4, 10´3, 5 ¨10´3, 10´2, 5 ¨10´2, 10´1. Right: initial condition u0
∆,ε with

high frequency perturbation.

3.7.2.e. A discontinuous initial datum. For the last two series of experiments, we change the

initial condition u0. This first series is carried out with the discontinuous inital datum

u0pxq “

$

&

%

0.1, if |x| ą 0.75 or |x| ă 0.25,

0.9, otherwise.
(3.100)

As in experiment 3.7.2.b we fix a time step size that is τ “ 5 ¨ 10´3 and vary the number of grid

points K. Figure 3.4/right displays the observed L1-error at final time T “ 0.2. In contrast

to experiment 3.7.2.b, the approximation error is zero initially, since the step function u0 can

be discretized exactly. However, the error jumps to a positive value in the first time step and

shows a very similar qualitative behaviour to that in experiment 3.7.2.b. Although the observed

error at final time T “ 0.2 is slightly larger than the one of experiment 3.7.2.b, the order of

convergence is again K´2.

3.7.2.f. A merely nonnegative initial datum. For this last series of experiment, we consider the

initial condition

u0pxq “
`

´ cosp2πxq ` 1.5
˘`

px` 0.5q4 ` 1
˘

ˆ

$

&

%

´px´ 0.5qpx` 0.5q for |x| ď 0.5

0 for |x| ą 0.5,
(3.101)

which vanishes outside of the subinterval r´0.5, 0.5s Ď Ω. The numerical scheme is not directly

applicable to u0, but to any of its strictly positive approximations u0`ε, see Figure 3.5/left. As

already mentioned in Section 3.1.3 one can expect the sequence of solutions with initial densities

u0 ` ε to converge towards the solution of (3.1) with the nonpositive density u0 as ε Ñ 0 and

∆ Ñ 0. The qualitative numerical results at T “ 0.6 for various choices of ε ą 0 are given in

Figure 3.5/right.
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Figure 3.4. Left: evolution of the solution u∆ with initial condition (3.100) at
times t “ 0, τ, . . . , 40τ “ 0.2, with time step τ “ 5 ¨ 10´3 and K “ 5000 grid
points. Right: numerical error analysis for discrete solutions with the discontin-
uous initial datum from (3.100), using a fixed time step 5 ¨ τ “ 10´3 and varying
K “ 25, 50, 100, 200, 400, 800, 1600.
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Figure 3.5. The merely nonnegative initial condition u0 from (3.101) is ap-
proximated by strictly positive data u0 ` ε. Left: discrete initial profiles for
ε “ 10´1, 10´2, 10´3, 10´4, 10´5. Right: qualitative behaviour of corresponding
discrete solutions at T “ 0.6, using τ “ 10´3, K “ 200.



CHAPTER 4

A family of fourth order equations

The content of this chapter is based on a submitted paper, see [Osb14] for a preprint. The

proof of Theorem 4.4 is based on a submitted paper that is joint work with my PhD-supervisor

Daniel Matthes [MO14b]. This paper is currently in revision.

4.1. Introduction

In this chapter, we are going to study a fully discrete Lagrangian scheme for a family of nonlinear

fourth order equations of the type

Btu` Bx
`

uBxpu
α´1Bxxu

αq
˘

` λBxpxuq “ 0 for t ą 0 and x P Ω, (4.1)

u “ u0 ě 0 at t “ 0. (4.2)

We are going to study both cases for the spatial domain Ω as discussed in Chapter 2, hence

Ω “ pa, bq is bounded or Ω “ R. In case of a bounded domain Ω “ pa, bq we consider in addition

no-flux boundary conditions which are

Bxu “ 0, u uBxpu
α´1Bxxu

αq ` λxu “ 0 for t ą 0 and x P BΩ. (4.3)

The initial density u0 ě 0 is assumed to be integrable with total mass M ą 0, and we assume

that M “ 1 for reasons of simplification. Depending on the spatial domain, we consider the

following additional requirements for the initial density:

(1) If Ω is bounded, then we assume u0 to be strictly positive.

(2) If Ω “ R, then we suppose that u0 is compactly supported and strictly positive on its

support supppu0q, which is assumed to be an interval.

In any case, we have that u0 P Pr
2pΩq by means of (1.17).

We are especially interested in the long-time behaviour of discrete solutions and their rate

of decay towards equilibrium. For the exponent in (4.1), we consider values α P r12 , 1s, and

assume λ ě 0. The most famous examples for parabolic equations described by (4.1) are the

so-called DLSS equation for α “ 1
2 , (first analyzed by Derrida, Lebowitz, Speer and Spohn

in [DLSS91a,DLSS91b] with application in semiconductor physics) and the thin film equation

for α “ 1 — indeed, for other values of α, references are very rare in the literature, except the

paper [MMS09] by Matthes, McCann and Savaré.

Due to the physically motivated origin of equation (4.1) (especially for α “ 1
2 and α “ 1), it is

not surprising that solutions to (4.1) carry many structural properties as for instance nonnegativ-

ity, the conservation of mass and the dissipation of (several) entropy functionals. In Section 4.2.1,

we are going to list more properties of solutions to (4.1). For the numerical approximation of

67
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solutions to (4.1), it is hence natural to ask for structure-preserving discretizations that inherit

at least some of those properties. A minimum criteria for such a scheme should be the preserva-

tion of nonnegativity, which can already be a difficult task, if standard discretizations are used.

So far, many (semi-)discretizations for certain equations described by (4.1) have been proposed

in the literature, and most of them keep some basic structural properties of the equation’s un-

derlying nature. Take for example [BEJ14,CJT03,JP01,JV07], where positivity appears as

a conclusion of Lyaponov functionals — a logarithmic/power entropy [BEJ14,CJT03,JP01]

or some variant of a (perturbed) information functional. But there is only a little number of

examples, where structural properties of equation (4.1) are adopted from the discretization by

construction. A very first try in this direction was a fully Lagrangian approach for the DLSS

equation by Düring, Matthes and Pina [DMM10], which is based on its L2-Wasserstein gradient

flow representation and thus preserves nonnegativity and dissipation of the Fisher information.

4.1.1. Gradient flow structure. As in the case of second order equations described in Chap-

ter 3, there is a natural connection between the continuity equation (2.7) and the equations in

(4.1) that is given by the α-dependent family of perturbed information functionals

Fα,λpuq “
1

2α

ż

Ω

`

Bxu
α
˘2

dx`
λ

2

ż

Ω
|x|2upxq dx. (4.4)

So if we consider the functional E “ Fα,λ in (2.6), hence hpx, r, pq “ α
2 r

2pα´1q|p|2 ` λ
2 |x|

2r, then

the induced velocity field for the continuity equation in (2.7) is given by

vpuq “ Bxpu
α´1Bxxu

αq ` λx (4.5)

and the continuity equation equals (4.1). Therefore, solutions to (4.1) can be interpreted as

L2-Wasserstein gradient flows in the potential landscape of the entropies Fα,λ, see [DM08]

by Denzler and McCann. This issue was further considered by Gianazza, Savaré and Toscani

[GST09] in the case α “ 1
2 , and by Giacomelli and Otto [GO01,Ott98] for α “ 1.

Similar to the second order equations in Chapter 3, the L2-Wasserstein gradient flows along

Fα,λ further allow an interpretation as L2-gradient flows along the functionals

Fα,λpu ˝Xq “
1

2α

ż

M

„

Bξ

ˆ

1

BξX

˙α2
1

BξX
dξ `

λ

2

ż

M
X2 dξ,

where X is the pseudo-inverse distribution function of u. Those L2-gradient flows have the form

BtX “
2α

2α` 1
Bξ
`

Zα`
3
2 BξξZ

α` 1
2

˘

` λX, where Zpt, ξq :“
1

BξXpt, ξq
“ u

`

t,Xpt, ξq
˘

. (4.6)

This identity is formally verified using that BtX “ vpuq ˝ X, see (2.8) from Section 2.1.1: The

explicit representation of vpuq from (4.5) yields

BtX “ vpuq ˝X “ Bxpu
α´1Bxxu

αq ˝X` λX “ Bξppu ˝Xqα´1pBxxu
αq ˝X

˘

Z` λX

“ Bξ
`

ZαBξ
`

BξpZ
αqZ

˘˘

Z` λX.

From this point on, elementary calculations show that this equation is equivalent to (4.6).
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4.1.2. Description of the numerical scheme. The following family of numerical schemes

for the highly nonlinear equations (4.1) is based on a finite element discretization of (4.6) with

local linear spline interpolants, so it is kind of the simplest discretization procedure possible.

Note in addition that the schemes’ formulations are almost the same for both situations, bounded

domain or Ω “ R, and just differ by means of (2.19). However, we are going to show later in

Section 4.2.2.b that our numerical approximation is equivalent to a natural restriction of a L2-

Wasserstein gradient flow in the potential landscape of the discretized version of the perturbed

information functional Fα,λ.

Let us fix a spatio-temporal discretization parameter ∆ “ pτ ; ξq in the following way: Given

τ ą 0, introduce varying time step sizes τ “ pτ1, τ2, . . .q with τn P p0, τ s, and define a time de-

composition ptnq
8
n“0 of r0,`8q as in (2.10). As spatial discretization we fix K P N and introduce

an equidistant spatial decomposition of the mass domain M, so one gets ξ “ pξ0, . . . , ξKq with

ξk “ kδ for any k “ 0, . . . ,K and the k-independent mesh size δ “ MK´1. We further fix the

discrete metric dξ on Pr
2,ξpΩq that is induced by the matrix W “ δI P Rℵˆℵ, hence we especially

have

x~v, ~wyξ “ δ x~v, ~wy and }~v}ξ “
a

δ x~v,~vy,

for any ~v, ~w P Rℵ. Further introduce the central first and second order finite difference operators

D1
ξ and D2

ξ that associate difference quotients depending on an extended “doubled-grid” in the

following way: For each vector of the form ~y “ py´ 1
2
, y0, y 1

2
, y1, . . . , yK´1, yK´ 1

2
, yK , yK` 1

2
q we

have

rD1
ξ ~ysk “ pyk` 1

2
´ yk´ 1

2
q{δ for k “ 0, . . . ,K and

rD2
ξ ~ysκ “ pyκ`1 ´ 2yκ ` yκ´1q{δ

2 for κ “
1

2
, . . . ,K ´

1

2
.

(4.7)

Our numerical scheme is now defined as a standard discretization of equation (4.6):

Numerical scheme. Fix a discretization parameter ∆ “ pτ ; ξq. Then for any pα, λq P r12 , 1s ˆ

r0,`8q a numerical scheme for (4.1) is recursively given as follows:

(1) For n “ 0, fix an initial Lagrangian vector ~x P xξ Ď Ωℵ. If Ω is bounded, then we fix

x0 “ a and xK “ b in accordance with (2.15).

(2) For n ě 1, recursively define Lagrangian vectors ~xn∆ P xξ as solutions to the system with

a number of ℵ equations given by

xnk ´ x
n´1
k

τn
“

2α

p2α` 1q
D1

ξ

”

pznqα`
3
2 rD2

ξp~z
nqα`

1
2 s

ı

k
` λxk, (4.8)

where k P IℵK . The values zn
`´ 1

2

ě 0 are defined as in (2.18) with convention (2.19). We

later show in Proposition 4.6 that the solvability of the system (4.8) is guaranteed.

From now on we denote a solution to the above scheme by ~x∆ “ p~x0
∆,~x

1
∆, . . .q and its

corresponding sequence of densities by u∆ “ pu0
∆, u

1
∆, . . .q, where the components ~xn∆ and un∆

correlate through the map uξ : xξ Ñ Pr
2,ξpΩq.



70 4. A FAMILY OF FOURTH ORDER EQUATIONS

We will see later in Section 4.2.1, that the information functional Fα,λ can be derived using

the dissipation of the entropy

Hα,λpuq “

ż

Ω
ϕαpuqdx`

Λα,λ
2

ż

Ω
|x|2upxq dx, where ϕαpsq :“

$

&

%

Θα
sα`1{2

α´1{2 , α P p1
2 , 1s

Θ1{2s lnpsq, α “ 1
2

,

with constants Θα :“
?

2α{p2α` 1q and Λα,λ :“
a

λ{p2α` 1q. As replacements for the entropy

Hα,λ and the perturbed information functional Fα,λ, we introduce

Hα,λp~xq :“ δ
ÿ

κPI1{2K

fαpzκq `
Λα,λ

2
δ
ÿ

kPIK

|xk|
2, with fαpsq :“

$

&

%

Θα
sα´1{2

α´1{2 , α P p1
2 , 1s

Θ1{2 lnpsq, α “ 1
2

(4.9)

and

Fα,λp~xq :“ Θ2
αδ

ÿ

kPIK

˜

z
α` 1

2

k` 1
2

´ z
α` 1

2

k´ 1
2

δ

¸2

`
λ

2
δ
ÿ

kPIK

|xk|
2. (4.10)

Remember that x0 “ a and xK “ b are fixed if Ω is bounded.

4.1.3. Familiar schemes. As already mentioned before in Chapter 3, the idea to derive nu-

merical schemes respecting the Wasserstein gradient flow structure of second order equations is

not new in the literature.

This circumstance changes dramatically if one is interested in the numerical treatment of

fourth order equations as in (4.1). In fact, we are just aware of a little number of schemes

concerning the limiting cases α “ 1
2 and α “ 1. Especially, Lagrangian schemes for fourth order

equations are relatively rare.

For the quantum drift diffusion equation, α “ 1
2 , we mention the paper [DMM10] by

Düring, Matthes and Pina. The fully discrete scheme described therein is — as far as we know

— the only one available in the literature that inherits the equations gradient flow structure.

The authors translate (4.1) for α “ 1
2 into its Lagrangian formulation and generate a proper

solution of the minimizing movement scheme on a submanifold of the set of density functions.

Hence the scheme produces a discrete mass-preserving solution at any time iteration, which

dissipates the Fisher information and adapts the naturally given L2-Wasserstein gradient flow

structure from the continuous into the discrete setting. Another work that contains at least

some parallels to the above approach is [PU99], where a scheme for the bipolar (stationary)

quantum drift-diffusion model is presented, which is based on a quasi-gradient method.

In case of α “ 1, alternative Lagrangian discretizations for (6.1) or related thin film type

equations have been proposed in [CN10,GT06b], but only dissipation of the energy has been

studied there, and no rigorous convergence analysis has been carried out. As far as we know,

there is only a little number of publications that make use of the dissipation of more than one

entropy/energy functional to gain compactness results. Take for instance [Grü03,GR00,ZB00],

where the authors even prove convergence in higher dimensions, but only on regions where the

obtained limit curve is strictly positive.
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4.1.4. Main results. In this section, fix a discretization ∆ “ pτ ; ξq with τ, δ ą 0.

All analytical results that will follow, arise from the very fundamental observation that

solutions to the scheme defined in Section 4.1.2 can be successively derived as minimizers of the

discrete minimizing movement scheme

~x ÞÑ
1

2τn

›

›~x´ ~xn´1
∆

›

›

2

ξ
` Fα,λp~xq, (4.11)

see Proposition 4.6. An immediate consequence of the minimization procedure is that solutions

~xn∆ dissipate the functional Fα,λ.

4.1.4.a. Results for Ω “ R. Concerning the long-time behaviour of solutions ~x∆, remarkable

similarities to the continuous case appear, if Ω “ R. Assuming first the case λ ą 0, it turns

out that the unique minimizer ~xmin
ξ of Hα,λ is even a minimizer of the discrete information

functional Fα,λ, and the corresponding set of density functions umin
ξ “ uξr~x

min
ξ s converges for

δ Ñ 0 towards a Barenblatt-profile bα,λ or Gaussian b1{2,λ, respectively, that is defined by

bα,λ “
`

a´ b|x|2
˘1{pα´1{2q

`
, b “

α´ 1{2
?

2α
Λα,λ for α ą 1{2 and (4.12)

b1{2,λ “ ae´Λ1{2,λ|x|
2

for α “ 1{2, (4.13)

where a P R is chosen to conserve unit mass. Beyond this, solutions ~xn∆ satisfying (4.8) converge

as nÑ8 towards a minimizer ~xmin
ξ of Fα,λ with an exponential decay rate which is “asymptot-

ically equal” to the one obtained in the continuous case. The above results are merged in the

following theorems:

Theorem 4.1. For λ ą 0, any sequence of vectors ~x∆ satisfying (4.11) dissipates the entropies

Hα,λ and Fα,λ at least exponentially, i.e.

Hα,λp~x
n
∆q ´Hmin

α,λ ď
`

Hα,λp~x
0
∆q ´Hmin

α,λ

˘

e´
2λ

1`λτ
tn , and (4.14)

Fα,λp~x
n
∆q ´ Fmin

α,λ ď
`

Fα,λp~x
0
∆q ´ Fmin

α,λ

˘

e´
2λ

1`λτ
tn , (4.15)

with Hmin
α,λ “ Hα,λp~x

min
ξ q and Fmin

α,λ “ Fα,λp~x
min
ξ q. The associated sequence of densities u∆

furthermore satisfies

}un∆ ´ u
min
ξ }2L1pΩq ď cα,λ

`

Hα,λp~x
0
∆q ´Hmin

α,λ

˘

e´
2λ

1`λτ
tn (4.16)

for any time step n P N, where cα,λ ą 0 depends only on α, λ.

Theorem 4.2. Assume λ ą 0. Then the sequence of minimizers umin
ξ satisfies

umin
ξ ÝÑ bα,λ, strongly in LppΩq for any p ě 1 (4.17)

as δ Ñ 0.

Let us now consider the zero-confinement case λ “ 0. In the continuous setting, the long-

time behaviour of solutions to (4.1) with λ “ 0 can be studied by a rescaling of solutions to

(4.1) with λ ą 0. We are able to translate this method into the discrete case and derive a

discrete counterpart of [MMS09, Corollary 5.5], which describes the intermediate asymptotics

of solutions that approach self-similar Barenblatt profiles as tÑ8.
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Theorem 4.3. Assume λ “ 0 and take a sequence of vectors ~xn∆ satisfying (4.11). Then there

exists a constant cα ą 0 depending only on α, such that

}un∆ ´ bn∆,α,0}L1pΩq ď cα

b

Hα,1p~x0
∆q ´Hmin

α,1 pR
n
∆q
´1, with Rn∆ :“

`

1` aτ p2α` 3qtn
˘

1
bτ p2α`3q ,

where bn∆,α,0 is a rescaled discrete Barenblatt profile and aτ , bτ ą 0, such that aτ , bτ Ñ 1 for

τ Ñ 0, see Section 4.3.3 for more details.

In view of the results about the long-time behaviour of discrete solutions, we want to point

out that the ideas for the proofs of Theorem 4.1 and 4.3 are mainly guided by the techniques

developed in [MMS09]. The remarkable observation in this chapter is the fascinating structure

preservation of our discretization, which allows us to adapt nearly any calculation from the

continuous theory for the discrete setting.

4.1.4.b. Results for bounded Ω “ pa, bq. In the special case that α “ 1
2 and Ω is bounded, we

can even prove convergence of the discrete solution towards a weak solution of (4.1) under very

weak requirements on the initial datum.

Theorem 4.4. Fix α “ 1
2 and let a nonnegative initial condition u0 with H1{2,λpu

0q ă 8 be

given. Choose initial conditions ~x0
∆ such that u0

∆ converges to u0 weakly as ∆ Ñ 0, and

Hα,λ :“ sup
∆

H1{2,λp~x
0
∆q ă 8 and lim

∆Ñ0
pτ ` δqF1{2,λp~x

0
∆q “ 0.

For each ∆, construct a discrete approximation ~x∆ according to the procedure described in (4.8)

above. Then, there are a subsequence with ∆ Ñ 0 and a limit function u˚ P Cpp0,`8q ˆ Ωq

such that:

‚ tu∆uτ converges to u˚ locally uniformly on p0,`8q ˆ Ω,

‚
?
u˚ P L

2
locpp0,`8q;H

1pΩqq,

‚ u˚ satisfies the following weak formulation of (4.1) with α “ 1
2 :

ż 8

0

ż

Ω
Btϕu˚ dx dt`

ż

Ω
ϕp0, xqu0pxqdx`

ż 8

0
Npu˚, ϕq dt “ 0,

with

Npu, ϕq :“
1

2

ż

Ω
Bxxxϕ Bxu` 4Bxxϕ

`

Bx
?
u
˘2

dx,

for every test function ϕ P C8pr0,`8qˆΩq that is compactly supported in r0,`8qˆΩ

and satisfies Bxϕpt, aq “ Bxϕpt, bq “ 0 for any t P r0,`8q.

The proof of this theorem is long and contains many technical difficulties, this is why we are

going to treat it in the subsequent Chapter 5.

4.2. Discretization in space and time

In this section, we try to get a better intuition of the scheme in Section 4.1.2. Foremost, we will

derive (4.8) as a discrete system of Euler-Lagrange equations of a variational problem that rises

from a L2-Wasserstein gradient flow restricted to a discrete submanifold Pr
2,ξpΩq of the space of

probability measures Pr
2pΩq on Ω. This is why the numerical scheme in Section 4.1.2 satisfies
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several discrete analogues of the structural properties of equation (4.1), which are going to be

discussed in the subsequent section. We will point out that some of the inherited properties

are obtained by construction (for instance preservation of mass and dissipation of the entropy),

where others are caused by the underlying dicsrete gradient flow structure and the smart choice

of the discrete L2-Wasserstein distance.

If Ω “ R, it is possible to prove that the entropy and the information functional share the

same minimizer even in the discrete case, and solutions to the discrete gradient flow converge with

an exponential rate to this stationary state. The proof of this observation is more sophisticated,

that is why we dedicate an own section (Section 4.3) to the treatment of this special property.

4.2.1. The information functionals as the auto-dissipation of the entropies. The

family of fourth order equations (4.1) carries a bunch of remarkable structural properties. The

most fundamental one is the conservation of mass, i.e. t ÞÑ }upt, ¨q}L1pΩq is a constant function

for t P r0,`8q and attains the value M “ }u0}L1pΩq. This is a naturally given property, if

one interprets solutions to (4.1) as gradient flows in the potential landscape of the perturbed

information functional

Fα,λpuq “
1

2α

ż

Ω

`

Bxu
α
˘2

dx`
λ

2

ż

Ω
|x|2upxq dx, (4.18)

equipped with the L2-Wasserstein distance W2. As an immediate consequence, Fα,λ is a Lya-

punov functional, and one can find infinitely many other (formal) Lyapunov functionals at least

for special choices of α — see [BLS94, CCT05, JM06] for α “ 1
2 or [BG15, CT02b, GO01]

for α “ 1. Apart from Fα,λ, one of the most important of such Lyapunov functionals is given

by the Λα,λ-convex entropy

Hα,λpuq “

ż

Ω
ϕαpuqdx`

Λα,λ
2

ż

Ω
|x|2upxq dx, ϕαpsq “

$

&

%

Θα
sα`1{2

α´1{2 , α P p1
2 , 1s

Θ1{2s lnpsq, α “ 1
2

. (4.19)

It turns out that the functionals Fα,λ and Hα,λ are not just Lyapunov functionals, but share

numerous remarkable similiarities. One can indeed see (4.1) as a higher order extension of the

second order porous media/heat equation [JKO98]

Bsv “ ΘαBxxpv
α`1{2q ` Λα,λBxpxuq, (4.20)

which corresponds to the L2-Wasserstein gradient flow of Hα,λ. But in view of our numerical

approximation, the most interesting connection between the functionals Fα,λ and Hα,λ is the

following: The unperturbed functional Fα,0, i.e. λ “ Λα,λ “ 0, equals the dissipation of Hα,0

along its own gradient flow,

Fα,0pvpsqq “ ´
d

ds
Hα,0pvpsqq, (4.21)

where Bsv “ ΘαBxxpv
α`1{2q. In view of the gradient flow structure, this relation makes equation

(4.1) the “big brother” of the porous media/heat equation (4.20), and implies many structural

consequences, see for instance [DM08, MMS09]. For instance, the λ-convexity of Hα,λ in

combination with (4.21) paves the way for useful a priori estimates that lead to compactness
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results as in [MMS09]. Another astonishing common feature that is a direct corollary from

(4.21) is the correlation of Fα,λ and Hα,λ by the so-called fundamental entropy-information

relation in case that Ω “ R. This relation allows to study the long-time behaviour of solutions

to (4.1) in a graceful way, and even to prove that the stationary solutions of (4.1) are identically

equal to the ones of (4.20). We are going to discuss the fundamental entropy-information relation

and its consequences more deeply in Section 4.3.

4.2.2. Structure-preservation of the numerical schemes.

4.2.2.a. Ansatz space and discrete entropy/information functionals. The entropies Hα,λ and

Fα,λ as defined in (4.19) and (4.4) are functionals on Pr
2pΩq. If we first consider the zero-

confinement case λ “ 0, one can derive in analogy to Chapter 3 the discretization in (4.9) of

Hα,0 just by restriction to the finite-dimensional submanifold Pr
2,ξpΩq of Pr

2pΩq. Thus using ϕα

and fα from (4.9) and (4.19), a change of variables x “ Xξr~xs, and the definition (2.18) of the

~x-dependent vectors ~z, one attains

Hα,0p~xq “ Hα,0puξr~xsq “

ż

Ω
ϕα

`

uξr~xs
˘

dx “ δ
ÿ

κPI1{2K

fαpzκq.

Note that this is perfectly compatible with (4.9). Obviously, one cannot derive the discrete

information functional Fα,0 in the same way, since Fα,0 is not defined on Pr
2,ξpΩq. So instead of

restriction, we mimic property (4.21) that is

Fα,0p~xq “ x∇ξHα,0p~xq,∇ξHα,0p~xqyξ (4.22)

for any ~x P xξ. Using furthermore the calculation in (2.29) one gains the explizit representation

of the gradient B~xHα,λp~xq,

B~xHα,0p~xq “ Θαδ
ÿ

κPI1{2K

z
α` 1

2
κ

eκ´ 1
2
´ eκ` 1

2

δ
, (4.23)

remember Example 2.3 and (2.30) within, where we defined ek as the kth canonical unit vector

with the convention e0 “ eK “ 0 in case of bounded Ω. In analogy, one can write for the

discretized information functional

Fα,0p~xq “ }∇ξHα,0p~xq}
2
ξ “ Θ2

αδ
ÿ

kPIK

˜

z
α` 1

2

k` 1
2

´ z
α` 1

2

k´ 1
2

δ

¸2

.

In the case of positive confinement λ ą 0, we note that the drift potential u ÞÑ
ş

Ω |x|
2upxq dx

fulfills an equivalent representation in terms of Lagrangian coordinates that is

X ÞÑ

ż

M
|Xpξq|2 dξ. (4.24)
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In our setting, the simplest discretization of this functional is hence attained by summing over

all values xk weighted with δ. This yields

Hα,λp~xq “ Hα,0p~xq `
Λα,λ

2
δ
ÿ

kPIK

|xk|
2 and Fα,λp~xq “ Fα,0p~xq `

λ

2
δ
ÿ

kPIK

|xk|
2

as an extension to the case of positive λ, which is nothing else than (4.9) and (4.10).

A first structural property of the above simple discretization is convexity retention from the

continuous to the discrete setting:

Lemma 4.5. The functional ~x ÞÑ Hα,λ is Λα,λ-convex, i.e.

Hα,λ

`

p1´ sq~x` s~y
˘

ď p1´ sqHα,λp~xq ` sHα,λp~yq ´
Λα,λ

2
p1´ sqsδ

ÿ

kPIK

|xk ´ yk|
2, (4.25)

for any ~x,~y P xξ and s P p0, 1q.

Proof. The statement in (4.25) is essentially a corollary of Lemma 3.8 replacing W2 by δI, and

due to the Λα,λ-convexity of ~x ÞÑ
Λα,λ

2 δ
ř

kPIK |xk|
2. �

4.2.2.b. Interpretation of the scheme as a discrete Wasserstein gradient flow. Starting from

the discretized information functional Fα,λ we approximate the spatially discrete gradient flow

equation

Bt~x “ ´∇ξFα,λp~xq (4.26)

also in time, using minimizing movements. Remember the temporal decomposition of r0,`8q

given by

t0 “ t0 ă t1 ă . . . ă tn ă . . .u , where tn :“
n
ÿ

j“1

τj ,

using time step sizes τ :“ pτ1, τ2, . . .q with τn ď τ and τ ą 0. For each ~y P xξ, introduce the

Yosida-regularized information functional Fα,λ
∆ p¨, ¨,~yq : r0, τ s ˆ xξ Ñ R by

Fα,λ
∆ pσ,~x,~yq “

1

2σ
}~x´ ~y}2ξ ` Fα,λp~xq. (4.27)

A fully discrete approximation ~x∆ “ p~x0
∆,~x

1
∆, . . .q of (4.26) is now defined inductively from a

given initial datum ~x0
∆ by choosing each ~xn∆ as a global minimizer of Fα,λ

∆ pτn, ¨,~x
n´1
∆ q. Below,

we prove that such a minimizer always exists (see Proposition 4.6).

In practice, one wishes to define ~xn∆ as — preferably unique — solution to the Euler-Lagrange

equations associated to Fα,λ
∆ pτn, ¨,~x

n´1
∆ q, which leads to the implicit Euler time stepping:

~x´ ~xn´1
∆

τn
“ ´∇ξFα,λp~xq. (4.28)

Using the explicit representation of B~xFα,λ, it is immediately seen that (4.28) is indeed the

same as (4.8). Equivalence of (4.28) and the minimization problem is guaranteed at least for

sufficiently small τ ą 0, as the following proposition shows.
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Proposition 4.6. For each discretization ∆ and every initial condition ~x0 P xξ, the sequence of

equations (4.28) can be solved inductively. Moreover, if τ ą 0 is sufficiently small with respect to

δ and Fα,λp~x
0q, then each equation (4.28) possesses a unique solution with Fα,λp~xq ď Fα,λp~x

0q,

and that solution is the unique global minimizer of Fα,λ
∆ pτn, ¨,~x

n´1
∆ q.

The proof of this proposition is a consequence of the following rather technical lemma.

Lemma 4.7. Fix a spatial discretization ξ and a bound C ą 0. Then for every ~y P xξ with

Fα,λp~yq ď C, the following are true:

‚ For each σ ą 0, the function Fα,λ
∆ pσ, ¨,~yq possesses at least one global minimizer ~x˚ P xξ

which satisfies the system of Euler-Lagrange equations

~x˚ ´ ~y

σ
“ ´∇ξFα,λp~x

˚q.

‚ There exists a τC ą 0 independent of ~y such that for each σ P p0, τCq, the global

minimizer ~x˚ P xξ is strict and unique, and it is the only critical point of Fα,λ
∆ pσ, ¨,~yq

with Fα,λp~xq ď C.

Proof. Fix ~y P xξ with Fα,λp~yq ď C, and define the nonempty (since it contains ~y) sublevel

set AC :“
`

Fα,λ
∆ pσ, ¨,~yq

˘´1
pr0, Csq Ă xξ. If Ω is bounded, it is clear that any ~x P AC lies in the

interval ra, bs. So if Ω “ R, then any ~x P AC satisfies }~y ´ ~x}ξ ď
?

2σC due to Fα,λ ě 0. This

implies that

y0 ´

c

2σC

δ
ď x0 ă xK ď yK `

c

2σC

δ
. (4.29)

Hence, there is an interval r´L,Ls, such that all components of an arbitrary ~x P AC lie in

r´L,Ls, independent of the boundedness of Ω.

Let ~z “ zξr~xs, and observe that zκ ě δ{p2Lq for each z P I1{2K . From here, it follows further

that

z
α` 1

2
κ ´

ˆ

δ

2L

˙α` 1
2

ď
ÿ

kPIK

|z
α` 1

2

k` 1
2

´ z
α` 1

2

k´ 1
2

| ď

˜

ÿ

kPIK

δ

¸
1
2

¨

˚

˚

˝

δ
ÿ

kPIK

¨

˚

˝

z
α` 1

2

k` 1
2

´ z
α` 1

2

k´ 1
2

δ

˛

‹

‚

2
˛

‹

‹

‚

1
2

(4.30)

This implies that the differences xκ` 1
2
´ xκ´ 1

2
“ δ{zκ have a uniform positive lower bound

on AC . In combination with (4.29) it follows that AC is a compact subset in the interior of

xξ. Consequently, the continuous function Fα,λ
∆ pσ, ¨,~yq attains a global minimum at ~x˚ P xξ.

Since ~x˚ P AC lies in the interior of ~x, it satisfies B~xFα,λ
∆ pσ,~x˚,~yq “ 0, which is the system of

Euler-Lagrange equations. This proves the first claim.

Since Fα,λ : xξ Ñ R is smooth, its restriction to the compact set AC is λC-convex with some

λC P R, i.e., B2
~xFα,λp~xq ě λCI P Rℵˆℵ for all ~x P AC . Independently of ~y, we have that

B2
~xFα,λ

∆ pσ,~x,~yq “ B2
~xFα,λp~xq `

δ

σ
I,
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which means that ~x ÞÑ Fα,λ
∆ pσ,~x,~yq is strictly convex on AC if

0 ă σ ă τC :“
δ

p´λCq
.

Consequently, each such Fα,λ
∆ pσ, ¨,~yq has at most one critical point ~x˚ in the interior of AC , and

this ~x˚ is necessarily a strict global minimizer. �

Lemma 4.8. If Ω “ pa, bq is bounded, then

pznκq
α` 1

2 ďM1´1{q

¨

˚

˝

δ
ÿ

kPIK

¨

˚

˝

z
α` 1

2

k` 1
2

´ z
α` 1

2

k´ 1
2

δ

˛

‹

‚

q˛

‹

‚

1{q

`

ˆ

M

b´ a

˙α` 1
2

(4.31)

for any n P N, any κ P I1{2K and q ě 1. Consequently

pznκq
α` 1

2 ď Θ´1{2
α

`

MFα,0p~x
n
∆q

˘1
2`

ˆ

M

b´ a

˙α` 1
2

for all κ P I1{2K . (4.32)

Proof. In case of a bounded domain, any component of ~xn∆ lies in ra, bs, one can hence inter-

change 2L by pb´ aq in (4.30) from the previous proof. The estimate in (4.31) is then attained

by a simple modification of the estimate in (4.30). The second claim (4.32) immediately follows

by (4.31) for q “ 2 and the definition of Fα,0. �

4.3. Analysis of the long-time behaviour and equilibria for Ω “ R

Henceforth, let Ω “ R for the rest of the chapter. In the following, we will analyze the long-

time behaviour in the discrete setting and will especially prove Theorem 4.1, Theorem 4.2, and

Theorem 4.3.

As already shown in [MMS09], a key-ingredient for the analysis of the equations‘ equilibria

and long-time behaviour is the correlation of Fα,λ and Hα,λ by the so-called fundamental entropy-

information relation: For any u P Pr
2pΩq with Hα,λpuq ă 8, one obtains

Fα,λpuq “ | gradW2
Hα,λ|

2 ` p2α´ 1qΛα,λHα,λpuq, for any λ ě 0, (4.33)

see [MMS09, Corollary 2.3]. In addition, a typical property of diffusion processes like (4.1)

or (4.20) with positive confinement λ,Λα,λ ą 0 is the convergence towards unique stationary

solutions u8 and v8, respectively, independent of the choice of initial data. It is maybe one of

the most surprising facts that both equations (4.1) and (4.20) share the same steady state, i.e.

the stationary solutions u8 and v8 are identical. Those stationary states are solutions of the

elliptic equations

´Bxx
`

Ppuq
˘

` Λα,λBxpxuq “ 0, (4.34)

with Ppsq :“ Θαs
α`1{2, and have the form of Barenblatt profils or Gaussians, respectively, see

definition (4.12) and (4.13). This was first observed by Denzler and McCann in [DM08], and

further studied in [MMS09] using the Wasserstein gradient flow structure of both equations

and their remarkable relation via (4.21).
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As a further conclusion of our natural discretization, we get a discrete fundamental entropy-

information relation analogously to the continuous one in (4.33).

Corollary 4.9. For any λ ě 0 and every ~x P xξ with Hα,0p~xq ă 8, we have

Fα,λp~xq “ }∇ξHα,λp~xq}
2
ξ ` p2α´ 1qΛα,λHα,λp~xq for α P p1

2 , 1s and

F1{2,λp~xq “
›

›∇ξH1{2,λp~xq
›

›

2

ξ
` Λ1{2,λ for α “ 1

2 .
(4.35)

Remark 4.10. At first glance, it seems that there is a discontinuity of α ÞÑ Fα,λ at α “ 1
2 , but

this is a fallacy. For α ą 1
2 , the second term on the right-hand side of (4.35) is explicitly given

by

p2α´ 1qΛα,λHα,λp~xq “ p2α´ 1qΛα,λ

¨

˚

˝

Θαδ
ÿ

κPI1{2K

z
α´1{2
κ

α´ 1{2
`

Λα,λ
2
}~x}2ξ

˛

‹

‚

“ 2Λα,λΘαδ
ÿ

κPI1{2K

zα´1{2
κ ` p2α´ 1q

Λα,λ
2
}~x}2ξ .

For α Ó 1
2 , one gets Λα,λ Ñ Λ1{2,λ, Θα Ñ

1
2 and especially δ

ř

κPI1{2K
z
α´1{2
κ Ñ M “ 1. The

drift-term vanishes since p2α´ 1q Ñ 0.

Proof of Corollary 4.9. Let us first assume α P p1
2 , 1s. A straight-forward calculation using

the definition of }.}ξ, ∇ξ and B~xHα,λ in (4.23) yields

}∇ξHα,λp~xq}
2
ξ “ δ´1 xB~xHα,λp~xq, B~xHα,λp~xqy

“ }∇ξHα,0p~xq}
2
ξ ´ 2ΘαΛα,λδ

ÿ

κPI1{2K

z
α´ 1

2
κ ` Λ2

α,λδ
ÿ

kPIK

|xk|
2. (4.36)

Here we used the explicit representation of B~xHα,λp~xq, see (4.23),

B~xHα,λp~xq “ Θαδ
ÿ

κPI1{2K

z
α` 1

2
κ

eκ´ 1
2
´ eκ` 1

2

δ
` Λα,λδ

ÿ

kPIK

xkek,

and especially the definition of (2.18), which yields

δ´1

C

Θαδ
ÿ

κPI1{2K

z
α` 1

2
κ

eκ´ 1
2
´ eκ` 1

2

δ
,Λα,λδ

ÿ

kPIK

xkek

G

“ ΘαΛα,λδ
ÿ

κPI1{2K

z
α` 1

2
κ

xκ´ 1
2
´ xκ` 1

2

δ

“ ´ΘαΛα,λδ
ÿ

κPI1{2K

z
α´ 1

2
κ

Since α ‰ 1
2 , we can write 2Θα “ p2α ´ 1q Θα

α´1{2 . Further note that the relation Λα,λ “
a

λ{p2α` 1q yields

Λ2
α,λ “

λ

2α` 1
“
λ

2

ˆ

1

α` 1{2

˙

“
λ

2

ˆ

1´
α´ 1{2

α` 1{2

˙

“
λ

2

ˆ

1´
2α´ 1

2α` 1

˙

.
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Using this information and the definition of Hα,0, we proceed in the above calculations by

}∇ξHα,λp~xq}
2
ξ “ Fα,0p~xq ´ p2α´ 1qΛα,λHα,0p~xq `

λ

2

ˆ

1´
2α´ 1

2α` 1

˙

δ
ÿ

kPIK

|xk|
2

“ Fα,0p~xq ´ p2α´ 1qΛα,λHα,0p~xq `
λ

2
δ
ÿ

kPIK

|xk|
2 ´ p2α´ 1q

Λ2
α,λ

2
δ
ÿ

kPIK

|xk|
2

“ Fα,λp~xq ´ p2α´ 1qΛα,λHα,λp~xq.

In case of α “ 1
2 , we see that Θ1{2 “

1
2 , and Λ1{2,λ “

a

λ{2. We hence conclude in (4.36) that

›

›∇ξH1{2,λp~xq
›

›

2

ξ
“

›

›∇ξH1{2,0p~xq
›

›

2

ξ
´ Λ1{2,λδ

ÿ

κPI1{2K

z0
κ `

λ

2
δ
ÿ

kPIK

|xk|
2 “ Fα,λp~xq ´ Λ1{2,λ.

l

For the following reason, the above representation of Fα,λ is indeed a little miracle: From

a naive point of view, one would ideally hope to gain a discrete counterpart of the fundamen-

tal entropy-information relation (4.33), if one takes the one-to-one discretization of the L2-

Wasserstein distance, which is (in the language of Lagrangian vectors) realized by ~x ÞÑ x~x,W2~xy

with W2 from (2.21) instead of our simpler choice ~x ÞÑ }~x}ξ. Indeed, with this ansatz, the above

proof would fail at the moment at which one tries to calculate the scalar product of B~xHα,0 and

B~x x~x,W2~xy “ 2W2~x. This is why our discretization of the L2-Wasserstein distance by the norm

}¨}ξ seems to be the right choice, if one is interested in a structure-preserving discretization.

Let us proceed in the analysis of the schemes’s long-time behaviour. For this purpose, we

are going to prove first the existence of minimizers of Hα,λ:

Lemma 4.11. For each α P r12 , 1s, the functional Hα,λ admits a unique minimizer ~xmin
ξ P xξ. If

we further assume Λα,λ ą 0, then

Λα,λ
2

›

›~x´ ~xmin
ξ

›

›

2

ξ
ď Hα,λp~xq ´Hα,λp~x

min
ξ q ď

1

2Λα,λ
}∇ξHα,λp~xq}

2
ξ (4.37)

for any ~x P xξ

Proof. To prove that the convexity of Hα,λ, see (4.25), implies the existence of a minimizer of

Hα,λ we first have to guarantee that ~x ÞÑ Hα,λp~xq is bounded from below. Since this is trivially

valid for α ą 1{2, we consider α “ 1{2 and refer the result in Lemma A.7, which eventually

shows that

H1{2,λp~xq ě ´
2
?
π

e

´

M ` }~x}2ξ

¯1{2
`
λ

2
}~x}2ξ ě ´

2
?
π

e

´?
M ` }~x}ξ

¯

`
λ

2
}~x}2ξ .

One can hence find two constants cλ ą 0 and dλ ą 0 depending on λ, such that H1{2,λp~xq ě

cλ }~x}
2
ξ ´ dλ, which further shows that Hα,λ are bounded from below at least by ´dλ for all

α P p1
2 , 1s. Further take C ą 0 such that AC :“ H´1

α,λpr´dλ, Csq is not empty, then

}~x}8 ď
}~x}ξ
δ
ď

c

2

λδ
pC ` dλq.
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Hence, there is an interval r´L,Ls, such that all components of Ac lie in r´L,Ls. From this

point on, one can proceed as in Proposition 3.9 to show that Hα,λ has a unique minimizer.

Deviding (4.25) by s ą 0 and passing to the limit as s Ó 0 yields

Hα,λp~xq ´Hα,λp~yq ď x∇ξHα,λp~xq,~x´ ~yyξ ´
Λα,λ

2
}~x´ ~y}2ξ .

The second inequality of (4.37) now follows from Young’s inequality |pq| ď ε|p|2 ` p2εq´1 1
2 |q|

2

with ε “ p2δΛα,λq
´1, and even holds true for arbitrary ~y P xξ.

To get the first inequaltiy of (4.37), we set ~x “ ~xmin
ξ and again devide (4.25) by s ą 0, then

Hα,λ

`

p1´ sq~xmin
ξ ` s~y

˘

´Hα,λp~x
min
ξ q

s
ď Hα,λp~yq ´Hα,λp~x

min
ξ q ´

Λα,λ
2
p1´ sq

›

›~xmin
ξ ´ ~y

›

›

2

ξ
,

where the left-hand side is obviously nonnegative for any s ą 0. Since s ą 0 was arbitrary, the

statement is proven. �

Corollary 4.12. The unique minimizer ~xmin
ξ P xξ of Hα,λ is a minimizer of Fα,λ. Furthermore,

one has

Fα,λp~xq ´ Fα,λp~x
min
ξ q ď

2α` 1

2
}∇ξHα,λp~xq}

2
ξ (4.38)

for any ~x P xξ

Proof. Equality (4.35) and 2α ´ 1 ě 0 shows that ~x ÞÑ Fα,λp~xq is minimal, if one has that

}∇ξHα,λp~xq}ξ “ 0 and Hα,λp~xq is minimal. This is the case for ~x “ ~xmin
ξ . The representation in

(4.35) further implies

Fα,λp~xq ´ Fα,λp~x
min
ξ q

“ }∇ξHα,λp~xq}
2
ξ ´

›

›∇ξHα,λp~x
min
ξ q

›

›

2

ξ
` p2α´ 1qΛα,λ

`

Hα,λp~xq ´Hα,λp~x
min
ξ q

˘

“}∇ξHα,λp~xq}
2
ξ ` p2α´ 1qΛα,λ

`

Hα,λp~xq ´Hα,λp~x
min
ξ q

˘

ď

ˆ

1`
2α´ 1

2

˙

}∇ξHα,λp~xq}
2
ξ ,

where we used (4.37) in the last step. �

4.3.1. Entropy dissipation – the case of positive confinement λ ą 0. In this section,

we pursue the discrete rate of decay towards discrete equilibria and try to verify the statements

in Theorem 4.1 to that effect. That is why we assume henceforth λ ą 0.

Lemma 4.13. A solution ~x∆ to the discrete minizing movement scheme (4.11) dissipates the

entropies Hα,λ and Fα,λ at least exponentially, i.e.
`

1` 2τnλ
˘ `

Hα,λp~x
n
∆q ´Hmin

α,λ

˘

ď Hα,λp~x
n´1
∆ q ´Hmin

α,λ and (4.39)
`

1` 2τnλ
˘ `

Fα,λp~x
n
∆q ´ Fmin

α,λ

˘

ď Fα,λp~x
n´1
∆ q ´ Fmin

α,λ (4.40)

for any time step n ě 1.

Proof. Due to (4.35), the gradient of the information functional Fα,λ is given by

B~xFα,λp~xq “ 2δ´1pB~xHα,λp~xqq
T B2

~xHα,λp~xq ` p2α´ 1qΛα,λB~xHα,λp~xq,
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which yields in combination with the Λα,λ-convexity of Hα,λ and (4.28)

Hα,λp~x
n´1
∆ q ´Hα,λp~x

n
∆q

ěτn x∇ξFα,λp~x
n
∆q,∇ξHα,λp~x

n
∆qyξ

ě2τn
@

∇ξHα,λp~x
n
∆q, B

2
~xHα,λp~xq∇ξHα,λp~x

n
∆q

D

ξ
` τnp2α´ 1qΛα,λ }∇ξHα,λp~x

n
∆q}

2
ξ

ě2τnΛα,λ }∇ξHα,λp~x
n
∆q}

2
ξ ` τnp2α´ 1qΛα,λ }∇ξHα,λp~x

n
∆q}

2
ξ ě τnp2α` 1qΛα,λ }∇ξHα,λp~x

n
∆q}

2
ξ .

(4.41)

Using inequality (4.37), we conclude that
`

1` 2τnp2α` 1qΛ2
α,λ

˘ `

Hα,λp~x
n
∆q ´Hα,λp~x

min
ξ q

˘

ď Hα,λp~x
n´1
∆ q ´Hα,λp~x

min
ξ q

for any n P N. Since p2α` 1qΛ2
α,λ “ λ, this shows (4.39).

To prove (4.40), we proceed as follows: First introduce for σ ą 0 the vector ~xσ P xξ as the

unique minimizer of

~y ÞÑ
1

2σ
}~y ´ ~xn∆}

2
ξ `Hα,λp~yq,

which is further a solution to the system of Euler-Lagrange equations, hence

~xσ ´ ~x
n
∆

σ
“ ´∇ξHα,λp~xσq.

This especially induces by passing to the limit as σ Ó 0 that

lim
σÓ0

~xσ ´ ~x
n
∆

σ
“ ´∇ξHα,λp~x

n
∆q. (4.42)

Furthermore, note that ~xn∆ is a minimizer of ~x ÞÑ Fα,λ
∆ pτn,~x,~x

n´1
∆ q by definition of ~x∆ as a

solution to the numerical scheme. This implies in particular that

1

2τn

›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ
` Fα,λp~x

n
∆q ď

1

2τn

›

›~xσ ´ ~x
n´1
∆

›

›

2

ξ
` Fα,λp~xσq,

and therefore

Fα,λp~x
n
∆q ´ Fα,λp~xσq ď

1

2τn

´

›

›~xσ ´ ~x
n´1
∆

›

›

2

ξ
´
›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ

¯

ď
1

2τn
}~xσ ´ ~x

n
∆}ξ

´

›

›~xσ ´ ~x
n´1
∆

›

›

ξ
`
›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ

¯

.

We now devide both side by σ and pass to the limit as σ Ó 0, then we get

x∇ξFα,λp~x
n
∆q,∇ξHα,λp~x

n
∆qyξ ď

1

τn
}∇ξHα,λp~x

n
∆q}ξ

›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ
, (4.43)

due to (4.42). Furthermore, we have seen in (4.41), among other estimates, that

τnp2α` 1qΛα,λ }∇ξHα,λp~x
n
∆q}

2
ξ ď τn x∇ξFα,λp~x

n
∆q,∇ξHα,λp~x

n
∆qyξ .

This yields in combination with (4.43)

τnp2α` 1qΛα,λ }∇ξHα,λp~x
n
∆q}

2
ξ ď }∇ξHα,λp~x

n
∆q}ξ

›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ
.
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As a consequence, we get two types of inequalities, namely

τn
a

p2α` 1qλ }∇ξHα,λp~x
n
∆q}ξ ď

›

›~xn∆ ´ ~x
n´1
∆

›

›

ξ
and

2τ2
nλ

`

Fα,λp~x
n
∆q ´ Fα,λp~x

min
ξ q

˘

ď
›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ
,

(4.44)

where we used Λα,λ “
a

λ{p2α` 1q and (4.38). To get the desired estimate, fix ~xn´1
∆ and denote

now by ~xnσ a minimizer of

~y ÞÑ
1

2σ

›

›~y ´ ~xn´1
∆

›

›

2

ξ
` Fα,λp~yq

for σ P p0, τns. Then ~xnσ connects ~xn´1
∆ and ~xn∆ and the monotonicity of σ ÞÑ Fα,λp~x

n
σq and (4.44)

yields for any σ P p0, τ s

2σ2λ
`

Fα,λp~x
n
∆q ´ Fα,λp~x

min
ξ q

˘

ď 2τ2
nλ

`

Fα,λp~x
n
σq ´ Fα,λp~x

min
ξ q

˘

ď
›

›~xnσ ´ ~x
n´1
∆

›

›

2

ξ
.

(4.45)

Now apply (A.3) from Lemma A.5, which induces in this special case

Fα,λp~x
n
∆q `

›

›~xn∆ ´ ~x
n´1
∆

›

›

2

ξ

2τn
`

ż τn

0

›

›~xnσ ´ ~x
n´1
∆

›

›

2

ξ

2σ2
dσ “ Fα,λp~x

n´1
∆ q.

Inserting (4.45) in the above equation then finally yields

p1` 2τnλq
`

Fα,λp~x
n
∆q ´ Fα,λp~x

min
ξ q

˘

ď Fα,λp~x
n´1
∆ q ´ Fα,λp~x

min
ξ q,

and the claim is proven. �

Remark 4.14. In the continuous situation, the analogue proofs of (4.39) and (4.40) require

a deeper understanding of variational techniques. An essential tool in this context is the flow

interchange lemma, see for instance [MMS09, Theorem 3.2]. Although one can easily proof a

discrete counterpart of the flow interchange lemma, it is not essential in the above proof, since

the smoothness of ~x ÞÑ Hα,λp~xq allows an explict calculation of its gradient and hessian.

Lemma 4.13 paves the way for the exponential decay rates of Theorem 4.1. Effectively, (4.14)

and (4.15) are just applications of the following version of the discrete Gronwall lemma: Assume

pcnq
8
n“0 and pynq

8
n“0 to be sequences with values in r0,`8q, satisfying p1` cnqyn ď yn´1 for any

n P N, then

yn ď y0e
´
řn´1
k“0

ck
1`ck for any n P N.

This statement can be easily proven by induction. Furthermore, inequality (4.16) is then a

corollary of (4.14) and a Csiszar-Kullback inequality, see [CJM`01, Theorem 30].

4.3.2. Convergence towards Barenblatt profiles and Gaussians. Let us again assume

λ ą 0. As already mentioned, the stationary solutions u8 and v8 of (4.1) and (4.20), respecively,
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are identical. Those stationary states have the form of Barenblatt profils or Gaussians, respec-

tively,

bα,λ “
`

a´ b|x|2
˘1{pα´1{2q

`
, b “

α´ 1{2
?

2α
Λα,λ for α ą 1{2 and

b1{2,λ “ ae´Λ1{2,λ|x|
2

for α “ 1{2,

where a P R is chosen to conserve unit mass.

To prove the statement of Theorem 4.2, we are going to show that the sequence of functionals

Hξ
α,λ : Pr

2pΩq Ñ p´8,`8s given by

Hξ
α,λpuq :“

$

&

%

Hα,λpuq for u P Pr
2,ξpΩq,

`8 for u R Pr
2,ξpΩq

Γ-congerves towards Hα,λ. More detailed, for any u P Pr
2pΩq the following points are satisfied:

(i) lim infδÑ0 Hξ
α,λpuξq ě Hα,λpuq for any sequence uξ with limδÑ0 W2puξ, uq “ 0.

(ii) There exists a recovery sequence uξ of u, i.e. lim supδÑ0 H
ξ
α,λpuξq ď Hα,λpuq and

limδÑ0 W2puξ, uq “ 0.

The Γ-convergence of Hξ
α,λ towards Hα,λ is a powerful property, since it implies convergence of

the sequence of minimizers umin
ξ “ uξr~x

min
ξ s towards bα,λ or b1{2,λ, repsectively, with respect

to the L2-Wasserstein distance, see [Bra02]. To conclude even strong convergence of umin
ξ at

least in LppΩq for arbitrary p ě 1, we proceed similarly as in [MO14a, Proposition 18]. To

understand this, recall that the definition of the total variation of a function f P L1pΩq in (1.14)

that is

TV rf s “ sup

"
ż

Ω
fpxqϕ1pxq dx

ˇ

ˇ

ˇ

ˇ

ϕ P LippΩq with compact support, sup
xPΩ

|ϕpxq| ď 1

*

. (4.46)

If f is a piecewise constant function with compact support rx0, xKs, taking values fk´ 1
2

on

intervals pxk´1, xks, then the integral in (4.46) amounts to

ż

Ω
fpxqϕ1pxq dx “

K
ÿ

k“1

“

fpxqϕpxq
‰xk´0

x“xk´1`0
“

K´1
ÿ

k“1

pfk´ 1
2
´ fk` 1

2
qϕpxkq ` f 1

2
ϕpx0q ´ fK´ 1

2
ϕpxKq.

Consequently, for such f , the supremum in (4.46) equals

TV rf s “
K´1
ÿ

k“1

|fk` 1
2
´ fk´ 1

2
| ` |f 1

2
| ` |fK´ 1

2
| (4.47)

and is attained for every ϕ P LippΩq with values ϕpxkq “ sgnpfk ´ fk`1q at k “ 1, . . . ,K ´ 1,

ϕpx0q “ sgnpf 1
2
q and ϕpxKq “ ´ sgnpfK´ 1

2
q.

Lemma 4.15. For any α P r12 , 1s, assume ~xmin
ξ P xξ to be the unique minimizer of Hα,λ and

declare the sequence of functions umin
ξ “ uξr~x

min
ξ s. Then

umin
ξ ÝÑ bα,λ, strongly in LppΩq for any p ě 1 (4.48)

as δ Ñ 0.
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Proof. We will first prove the Γ-convergence of Hξ
α,λ towards Hα,λ. The first requirement piq

is a conclusion of the lower semi-continuity of Hα,λ.

For the second point piiq, we fix u P Pr
2pΩq and assume X : M Ñ r´8,`8s to be the

Lagrangian map of u. If there exists an bounded interval I Ď Ω such that the whole mass of u is

concentrated in I, i.e.
ş

I udx “M , then one can introduce an interpolation uξ of u analogously

to Lemma 3.24 by pointwise evaluation of the pseudo-inverse distribution function X, such that

piiq holds true. So let us assume that there is no such interval, hence
ş

K udx ă M for any

compact subset K Ď Ω, and further assume without loss of generality that the center of mass is

at x “ 0, i.e.
ş0
´8

upxq dx “ M{2. Then one can find for any ε ą 0 a compact set of the form

K “ rL1, L2s with L1 ă 0 ă L2, and an integer K P N, such that
ż

ΩzK
|x|2upxq dx ă ε, and

ż L1

´8

upxq dx “

ż `8

L2

upxqdx “ δ :“MK´1 (4.49)

The first statement is valid due to the boundedness of the second momentum of u, and the last

one is satisfied since one can choose K P N arbitrarily large. An immediate consequence of the

above choises is that 2δL2 ă ε for L “ maxt|L1|, |L2|u due to

2pL2
1 ` L

2
2qδ “ L2

1

ż L1

´8

upxqdx` L2
2

ż `8

L2

upxq dx ď

ż

ΩzK
|x|2upxq dx ă ε.

Using δ “ MK´1 we define an equidistant decomposition ξ of the mass domain M. We

furthermore declare x0 “ ´2L, xK “ 2L and xk “ Xpξkq for any k “ 1, . . . ,K´1 and introduce

the locally constant density uξ P Pr
2,ξpΩq that corresponds to the Lagrangian map Xξr~xs. This

procedure defines a sequence of densities uξ, since ε ą 0 was arbitrary, and we are going to

prove that uξ is the right choice for the recovery sequence. To prove the convergence in the

L2-Wasserstein distance, we fix ε ą 0. Then the last property of u in (4.49) yields especially

that x1 “ L1 and xK´1 “ L2 Furthermore, since X and Xξr~xs are monotonically increasing, one

obtains for any ξ P rξ1, ξK´1s that

|Xpξq ´Xξr~xspξq| ď
`

Xpξkq ´Xpξk´1q
˘

ď 2L, with ξ P rξk´1, ξks, k “ 2, . . . ,K ´ 1.

Therefore

}X´Xξr~xs}
2
L2prξ1,ξK´1sq

ď 2δL
K´1
ÿ

k“2

`

Xpξkq ´Xpξk´1q
˘

ď 2δL2 ă ε, (4.50)

where we used x1 “ L1 and xK´1 “ L2. As a next step, we note that |x1|, |xK´1| ď L and

|x0| “ |xK | “ 2L, which yields

}Xξr~xs}
2
L2pMzrξ1,ξK´1sq

“

ż

rx0,xK szrx1,xK´1s

|x|2uξpxq dx

“
δ

xK ´ xK´1

ż xK

xK´1

|x|2 dx`
δ

x1 ´ x0

ż x1

x0

|x|2 dx

ď
2δ

3

`

x2
K ` x

2
K´1 ` x

2
1 ` x

2
0

˘

ď
40

3
δL2 ă 7ε,

(4.51)
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where we used the elementary equality pa3 ´ b3q “ pa ´ bqpa2 ` b2 ` abq. Combining (4.49),

(4.50), and (4.51), and the fact that XpMzrξ1, ξK´1sq “ ΩzK, we finally conclude

W2pu, uξq “ }X´Xξr~xs}L2pMq ď }X´Xξr~xs}L2prξ1,ξK´1sq
` }X´Xξr~xs}L2pMzrξ1,ξK´1sq

ď
?
ε` }Xξr~xs}L2pMzrξ1,ξK´1sq

` }X}L2pMzrξ1,ξK´1sq

ď
?
ε`

?
7ε`

˜

ż

ΩzK
|x|2upxq dx

¸1{2

ă 4
?
ε.

This shows uξ Ñ u in L2-Wasserstein as δ Ñ 0. The second point in piiq easily follows by using

Jensen’s inequality,

Hξ
α,λpuξq “ Hα,λpuξq “

ÿ

κPI1{2K

ż x
κ` 1

2

x
κ´ 1

2

ϕα

˜

δ

xκ` 1
2
´ xκ´ 1

2

¸

dx

“
ÿ

κPI1{2K

pxκ` 1
2
´ xκ´ 1

2
qϕα

¨

˝

1

xκ` 1
2
´ xκ´ 1

2

ż x
κ` 1

2

x
κ´ 1

2

upsq ds

˛

‚

ď
ÿ

κPI1{2K

ż x
κ` 1

2

x
κ´ 1

2

ϕα
`

upsq
˘

ds “

ż xK

x0

ϕα
`

upsq
˘

ds.

Taking the limes superior on both sides proves lim supδÑ0 H
ξ
α,λpuξq ď Hα,λpuq. Since Hα,λ is

lower semi-continuous, we especially obtain limδÑ0 Hξ
α,λpuξq “ Hα,λpuq.

To conclude the convergence of umin
ξ towards bα,λ with respect to W2 and the conver-

gence of Hα,λp~x
min
ξ q towards Hα,λpbα,λq, we invoke [Bra02, Theorem 1.21]. Therefore note

that infuPPr2 pΩqH
ξ
α,λpuq “ Hα,λp~x

min
ξ q by definition of Hξ

α,λ, hence the minimum of Hξ
α,λ is umin

ξ .

Furthermore, each functional Hξ
α,λ has precompact sublevels which is a consequence of λ ą 0

and Prokhorov’s Theorem, see for instance [AGS05, Theorem 5.1.3]. Since Hξ
α,λ Γ-converges

towards Hα,λ, all requirements for [Bra02, Theorem 1.21] are satisfied.

Let us finally prove (4.48). The convergence of Hα,λp~x
min
ξ q to Hα,λpbα,λq yields on the one

hand the uniform boundedness of Hα,λp~x
min
ξ q with respect to the spatial discretization parameter

δ, and on the other hand the uniform boundedness of Fα,λp~x
min
ξ q, which is a conclusion of (4.35)

and ∇ξHα,λp~x
min
ξ q “ 0. One can now proceed analogously to the proof of Proposition 3.13

to verify that the term Fα,λp~x
min
ξ q is an upper bound on the total variation of Ppumin

ξ q with

Ppsq :“ Θαs
α`1{2. Take any arbitrary ~y P RK`1 with }~y}8 ď 1. Then

@

∇ξHα,0p~x
min
ξ q,~y

D

ξ
“

@

∇ξHα,λp~x
min
ξ q,~y

D

ξ
´ Λα,λ

@

~xmin
ξ ,~y

D

ξ
, (4.52)

and the left-hand side can be reformulated, using (4.23),
@

∇ξHα,0p~x
min
ξ q,~y

D

ξ
“

ÿ

κPI1{2K

Ppzκqpyκ´ 1
2
´ yκ` 1

2
q

“
ÿ

kPI`K

`

Ppzk` 1
2
q ´ Ppzk´ 1

2
q
˘

yk ` Ppz 1
2
qy0 ´ PpzK´ 1

2
qyK .
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Respecting that }~y}ξ ď M}~y}8 we can take the supremum over all ~y with }~y}8 ď 1 in (4.52).

Then the Cauchy-Schwarz inequality and the representation of TV r¨s in (4.47) yields

TV
“

Ppumin
ξ q

‰

ďM
›

›∇ξHα,λp~x
min
ξ q

›

›

ξ
` Λα,λM

›

›~xmin
ξ

›

›

ξ
,

which is uniformly bounded from above due to (4.35) and the uniform boundedness of Fα,λp~x
min
ξ q.

This proves the uniform boundedness of TV
”

Ppumin
ξ q

ı

. Further note that the superlinear growth

of s ÞÑ Ppsq especially yields that u ÞÑ Ppuq is LppΩq-continuously invertible for any p ě 1, which

can be shown by adapting the prove of Lemma 3.18. Together with [Giu84, Proposition 1.19],

we conclude (4.48) �

4.3.3. Entropy dissipation – the case of zero confinement λ “ 0. We will now consider

equation (4.1) in case of vanishing confinement λ “ 0, hence

Btu “ ´Bx
`

uBxpu
α´1Bxxu

αq
˘

for pt, xq P p0,`8q ˆ Ω, (4.53)

and up0q “ u0 for arbitrary initial density u0 P Pr
2pΩq. From the continuous theory, it is known

that solutions to (4.53) or (4.20) with Λα,λ “ 0 branches out over the whole set of real numbers

Ω “ R, hence converges towards zero at almost every point. This matter of fact makes rigorous

analysis of the long-time behaviour of solutions to (4.53) more difficult as in the case of positive

confinement. However, the unperturbed functionals Hα,0 and Fα,0 satisfy the scaling property,

see again [MMS09],

Hα,0pdruq “ r´p2α´1q{2Hα,0puq and Fα,0pdruq “ r´p2α`1qFα,0puq, (4.54)

for any r ą 0 and drupxq :“ r´1upr´1xq with u P Pr
2pΩq. Due to this, it is possible to find weak

solutions to a rescaled version of (4.53) by solving problem (4.1) with λ “ 1. More precisely,

the following lemma is satisfied, see for instance [MMS09, Lemma 5.4]:

Lemma 4.16. A function u P L2
locpp0,`8q;W

2,2pΩqq is a weak solution to (4.1) with λ “ 1, if

and only if

wpt, ¨q “ dRptquplogpRptqq, ¨q, with Rptq :“
`

1` p2α` 3qt
˘1{p2α`3q

(4.55)

is a weak solution to (4.53).

A consequence of the above lemma is that one can describe how a solution w to (4.53)

vanishes asymptotically as t Ñ 8, although the gained information is not very strong and

useful: In fact, the first observation (without studying local asymptotics in more detail) is,

that w decays to zero with the same rate as the rescaled (time-dependent) Barenblatt-profile

b˚α,0 defined by b˚α,0pt, ¨q :“ dRptqbα,1, with Rptq of (4.55). It therefore exists a constant C ą 0

depending only on Hα,0pw
0q “ Hα,0pu

0q with

}wpt, ¨q ´ b˚α,0pt, ¨q}L1pΩq ď CRptq´1, (4.56)

for any t ą 0. In [MMS09], this behaviour was described using weak solutions constructed by

minimizing movements. We will adopt this methods to derive a discrete analogue of (4.56) for

our discrete solutions ~x∆ of (4.27).
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First of all, we reformulate the scaling operator dr for fixed r ą 0 in the setting of monoton-

ically increasing vectors ~x P xξ. Since drupxq :“ r´1upr´1¨q for arbitrary density in Pr
2pΩq, the

same can be done for uξ “ uξr~xs, hence

druξpxq “
K
ÿ

k“1

r´1δ

xk ´ xk´1
1px

κ´ 1
2
,x
κ` 1

2
spr
´1xq “

K
ÿ

k“1

δ

rxk ´ rxk´1
1prx

κ´ 1
2
,rx

κ` 1
2
spxq “ uξrr~xspxq

for any x P Ω. The natural extension of dr to the set xξ is hence

dr~x :“ r~x, with corresponding dr~z “ zξrdr~xs “ r´1~z.

As a consequence of this definition, we note that a discrete scaling property for Hα,0 and Fα,0

is valid, i.e. for any r ą 0 and ~x P xξ,

Hα,0pdr~xq “ r´p2α´1q{2Hα,0p~xq and Fα,0pdr~xq “ r´p2α`1qFα,0p~xq. (4.57)

The first equality is fulfilled due to Hα,0p~xq “ Hα,0puξr~xsq and the scaling property (4.54) of

the continuous entropy functions. The analogue claim for Fα,0 in (4.57) follows by inserting dr~x

into B~xHα,0 and using dr~z “ r´1~z, then

B~xHα,0pdr~xq “ Θαδ
ÿ

κPI1{2K

`

dr~zκ
˘α` 1

2

eκ´ 1
2
´ eκ` 1

2

δ
“ r´pα`1{2qB~xHα,0p~xq

ùñ Fα,0pdr~xq “ }∇ξHα,0pdr~xq}
2
ξ “ r´p2α`1q }∇ξHα,0p~xq}

2
ξ “ r´p2α`1qFα,0p~xq.

This scaling properties can now be used to build a bridge between solutions of discrete

minimizing movement schemes with λ “ 0 and those with positive confinement. The following

Lemma is based on the proof of Theorem [MMS09, Theorem 5.6], but nevertheless, it is an

impressive example for the powerful structure-preservation of the numerical scheme.

Lemma 4.17. Assume ~x˚ P xξ and fix τ ą 0 and R ą S ą 0. Then ~x P xξ is a minimizer of

~y ÞÑ Fα,λ
∆ pτ,~y,~x˚q “

1

2τ
}~y ´ ~x˚}2ξ ` Fα,0p~yq `

λ

2
}~y}2ξ , (4.58)

if and only if dR~x P xξ minimizes the functional

~w ÞÑ Fα,pλ
∆ ppτ , ~w, dS~x

˚q “
1

2pτ
}~w ´ dS~x

˚}
2
ξ ` Fα,0p~wq `

pλ

2
}~w}2ξ , with

pτ “ τSR2α`2, pλ “
Sp1` λτq ´R

pτR
.

(4.59)

Proof. To simplify the proof, we first show that we can assume S “ 1 without loss of generality,

which is because of the following calculation: If for R ą S ą 0 the vector dR~x minimizes (4.59),
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then the linearity of }¨}ξ and (4.57) yield

Fα,pλ
∆ ppτ , dR~x, dS~x

˚q “
S2

2pτ

›

›S´1dR~x´ ~x
˚
›

›

2

ξ
` S´2α`1Fα,0pS

´1dR~xq ` S
2
pλ

2

›

›S´1dR~x
›

›

2

ξ

“ S´p2α`1q

˜

1

2pτS´p2α`3q

›

›d
rR
~x´ ~x˚

›

›

2

ξ
` Fα,0pd

rR
~xq ` S2α`3

pλ

2

›

›d
rR
~x
›

›

2

ξ

¸

“ S´p2α`1qFα,rλ
∆ prτ , d

rR
~x,~x˚q,

with rR “ R
S ą 1 ą 0 and the new constants

rτ “ τSR2α`2S´p2α`3q “ τ rR2α`3 and rλ “ S2α`3 p1` λτq ´R{S

pτR{S
“
p1` λτq ´ rR

rτ rR
,

hence d
rR
~x minimizes Fα,rλ

∆ prτ , d
rR
~x,~x˚q.

So assume S “ 1 and R ą 1 in (4.59) from now on. Further introduce the functional

g : xξ ˆ RÑ R

gp~y, rq :“
1

2
}dr~y ´ ~x

˚}
2
ξ ` rτFα,0p~yq `

r

2
p1` λτ ´ rq }~y}2ξ ,

then by definition

τ´1gp~y, 1q “ Fα,λ
∆ pτ,~y,~x˚q and pτR2α`2q´1gp~y, Rq “ Fα,pλ

∆ ppτ , dR~y,~x
˚q. (4.60)

For fixed ~y P xξ, a straight-forward calculation shows that the derivative of r ÞÑ gp~y, rq satisfies

Brgp~y, rq “ xdr~y ´ ~x
˚,~yyξ ` Fα,0p~yq ´

r

2
}~y}2ξ `

1

2
p1` λτ ´ rq }~y}2ξ

“ ´x~x˚,~yyξ ` Fα,0p~yq `
1

2
p1` λτq }~y}2ξ “

1

2
}~y ´ ~x˚}2ξ ´

1

2
}~x˚}2ξ ` Fα,0p~yq `

λτ

2
}~y}2ξ

“ gp~y, 1q ´
1

2
}~x˚}2ξ .

Hence, if ~x minimizes (4.58), then the same vector minimizes ~y ÞÑ gp~y, 1q and furthermore

~y ÞÑ Brgp~y, rq for any r ą 0. By integration one attains

gp~y, rq ´ gp~y, 1q “

ż r

1
Bsgp~y, sq ds “ pr ´ 1qpgp~y, 1q ´

1

2
}~x˚}2ξq

ùñ gp~y, rq “ rgp~y, 1q ´ pr ´ 1q
1

2
}~x˚}2ξ

for any r ą 1 and ~y P xξ. This means especially that for arbitrary r ą 1, the function gp~y, rq is

minimal if and only if gp~y, 1q is so. In combination with (4.60) this proves that dR~x is a minimizer

of (4.59). By integration of Bsgp~y, sq over rr´1, 1s, r ą 1, one can analogously prove that if p~x P xξ

is a minimizer of (4.59), the rescaled vector dR´1
p~x has to be a minimizer of (4.58). �

Before we prove the claim of Theorem 4.3, let us introduce the rescaled discrete Barenblatt-

profile. Define inductively for n ě 0

S0
τ :“ 1, Snτ “ p1` τnqS

n´1
τ . (4.61)
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Further take the minimizer ~xmin
ξ P xξ of the functional ~x ÞÑ Hα,1p~xq. Then denote the scaled

vector ~bn∆,α,0 :“ dSnτ ~x
min
ξ and define its corresponding density function bn∆,α,0 “ uξr

~bn∆,α,0s. This

function can be interpreted as a self-similar solution of (4.59) with initial density uξr~x
min
ξ s, pλ “ 0

and with time steps pτn inductively defined by pτn :“ τnS
n´1
τ pSnτ q

2α`2.

Proof of Theorem 4.3. As already mentioned above, we define a sequence of functions Snτ
inductively through (4.61) and declare a new partition of the time scale r0,`8q by

t0 “ ŝ0 ă ŝ2 ă . . . ă ŝn ă . . .u, where ŝn :“
n
ÿ

k“1

pτk and pτk :“ τkS
k´1
τ pSkτ q

2α`2, (4.62)

and we write pτ “ ppτ1, pτ2, . . .q. As a first consequence of the iterative character of the above

object, we note that p1` xq ď ex causes Snτ ď etn for any n ě 0. Moreover,

ŝn “
n
ÿ

k“1

τkS
k´1
τ pSkτ q

2α`2 “

n
ÿ

k“1

τkp1` τkq
2α`2pSk´1

τ q2α`3 ď p1` τq2α`2
n
ÿ

k“1

τke
p2α`3qtk´1 .

This is an useful observation, insofar as the right-hand side is a lower sum of the integral

p1` τq2α`2
ştn
0 ep2α`3qs ds, hence

ŝn ď p1` τq
2α`2p2α` 3q´1

“

ep2α`3qtn ´ 1
‰

ùñ e´tn ď
`

1` aτ ŝnp2α` 3q
˘´1{p2α`3q

,
(4.63)

with aτ “ p1 ` τq´p2α`2q converging to 1 as τ Ñ 0. For a given solution ~x∆ of (4.58) with

λ “ 1 and fixed discretization ∆ “ pτ ; ξq, it is not difficult to check that the recursively defined

sequence of vectors dSnτ ~x
n
∆ is a solution to (4.59) for S “ Sn´1

τ , R “ Snτ , pλ “ 0 and pτ “ pτn

defined in (4.62). Henceforth, we write ~xn
p∆
“ dSnτ ~x

n
∆ with the discretization p∆ “ ppτ ; ξq. We can

hence use the discrete scaling property of Hα,λ and invoke (4.39) of Lemma 4.13, then

p1` 2τnqpS
n
τ q

2α´1
2

`

Hα,1p~x
n
p∆
q ´Hα,1p~b

n
∆,α,0q

˘

ď pSn´1
τ q

2α´1
2

`

Hα,1p~x
n´1
p∆
q ´Hα,1p~b

n´1
∆,α,0q

˘

ùñ p1` 2τnqp1` τnq
2α´1

2

`

Hα,1p~x
n
p∆
q ´Hα,1p~b

n
∆,α,0q

˘

ď Hα,1p~x
n´1
p∆
q ´Hα,1p~b

n´1
∆,α,0q

ùñ p1` 2τnq
`

Hα,1p~x
n
p∆
q ´Hα,1p~b

n
∆,α,0q

˘

ď Hα,1p~x
n´1
p∆
q ´Hα,1p~b

n´1
∆,α,0q,

(4.64)

where we used in the last step p1 ` τnq ą 1. As before in the proof of (4.14) of Theorem 4.1,

this yields for any n ě 1

Hα,1p~x
n
p∆
q ´Hα,1p~b

n
∆,α,0q ď

`

Hα,1p~x
0
p∆
q ´Hα,1p~x

min
ξ q

˘

e´
2tn

1`2τ

ď
`

Hα,1p~x
0
p∆
q ´Hα,1p~x

min
ξ q

˘`

1` aτ ŝnp2α` 3q
˘´ 2

bτ p2α`3q ,

with bτ “ 1` 2τ , due to (4.63). Theorem 4.3 is proven, using bn∆,α,0 “ uξr
~b∆,α,0s and a Csiszar-

Kullback inequality, see [CJM`01, Theorem 30]. l
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4.4. Numerical results

In view of the next chapter, the implementation of the numerical scheme is explained for both

cases ℵ “ K ˘ 1, although the numerical experiments in this chapter are formulated only on

Ω “ R, hence ℵ “ K ` 1.

4.4.1. Non-uniform meshes. An equidistant mass grid — as used in the analysis above —

leads to a high spatial resolution of regions where the values of u∆ are large, but provides a

very poor one if u∆ is small. Since we are interested in regions of low density, and especially

in the evolution of supports, it is natural to use a non-equidistant mass grid with an adapted

spatial resolution, like we did in Section 2.2: The mass discretization of M is determined by

a vector ξ̃ “ pξ0, ξ1, ξ2, . . . , ξK´1, ξKq, with 0 “ ξ0 ă ξ1 ă ¨ ¨ ¨ ă ξK´1 ă ξK “ M and we

accordingly introduce δk´ 1
2
“ ξk ´ ξk´1 for all k “ 1, . . . ,K. The piecewise constant density

function u P Pξ̃pΩq corresponding to a vector ~x P Rℵ is now given by u “ uξ̃r~xs with ~z “ zξ̃r~xs

that respects the convention as defined in (2.19), hence z´ 1
2
“ zK` 1

2
“ 0 if ℵ “ K ` 1, or

z´ 1
2
“ z 1

2
and zK` 1

2
“ zK´ 1

2
if ℵ “ K ´ 1, respectively. The Wasserstein-like metric (and its

corresponding norm) needs to be adapted as well: For this we introduce the diagonal matrix

W P Rℵˆℵ, with entries rWsk,k “
1

2
pδk` 1

2
` δk´ 1

2
q,

where k P IK or k P I`K , respectively. Here we use the additional convention that

δ´ 1
2
“ δK` 1

2
“ 0.

The scalar product x¨, ¨yξ̃ and its induced norm }¨}ξ̃ are then adapted in means of Section 2.2.2

using the diagonal matrix W. Hence the metric gradient of a function f : xξ̃ Ñ R at ~x P xξ̃ is

given by ∇ξ̃fp~xq “ W´1B~xfp~xq P Rℵ. Otherwise, we proceed as before just with the difference

that ∆ “ pξ̃; τ q: The entropy is discretized by restriction, and the discretized information

functional is the self-dissipation of the discretized entropy. Explicitly, the resulting fully discrete

gradient flow equation attains the form

~xn∆ ´ ~x
n´1
∆

τn
“ ´∇ξ̃Fα,λp~x

n
∆q. (4.65)

4.4.2. Implementation. To guarantuee the existence of an initial vector ~x0
∆ P xξ in case of

ℵ “ K ` 1, which “reaches” any mass point of u0, i.e. rx0
0, x

0
Ks “ supppu0q, one has to consider

initial density functions u0 with an interval as compact support. If ℵ “ K ´ 1, hence Ω “ pa, bq

is bounded, we set x0
0 “ a and x0

K “ b.

In the numerical experiments that follows, our choice for the discretization of the initial

condition is to use an equidistant grid ~x0 with K vertices on Ω, x0
k “ x0 ` kpxK ´ x0q{K, and

an accordingly adapted mesh ξ on M, with

ξk “

ż x0
k

x0
0

u0pyqdy.
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Starting from the initial condition ~x0
∆, the fully discrete solution is calculated inductively by

solving the implicit Euler scheme (4.65) for given ~xn´1
∆ . In each time step, a damped Newton

iteration is performed, with the solution from the previous time step as initial guess.

4.4.3. Numerical experiments. For the first series of numerical experiments, we consider

the initial density function

u0 “

$

&

%

0.25| sinpxq| ¨ p0.5` 1xą0pxqq, x P r´π, πs,

0, x P Rzr´π, πs.
(4.66)

We further perform all experiments with α “ 1.
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Figure 4.1. Evolution of a discrete solution u∆, evaluated at different times
t “ 0, 0.05, 0.1, 0.15, 0.175, 0.25 (from top left to bottom right). The red line is
the corresponding Barenblatt-profile bα,λ.

4.4.3.a. Evolution and exponential decay rates. As a first numerical experiment, we want to

analyze the rate of decay in case of positive confinement λ “ 5. For that purpose, consider

the initial density function (4.66). Figure 4.1 shows the evolution of the discrete density u∆ at

times t “ 0.05, 0.1, 0.15, 0.175, 0.225, using K “ 200. The two initially separated clusters quickly

merge, and finally change the shape towards a Barenblatt-profile (red line).

The exponential decay of the entropies Hα,λ and Fα,λ along the solution can be seen in Fig-

ure 4.2/left for K “ 25, 50, 100, 200, where we observe the evolution for t P r0, 0.8s. Note that we

write Hα,λptq “ Hα,λp~x
n
∆q and Fα,λptq “ Fα,λp~x

n
∆q for t P ptn´1, tns, and set Hα,λp0q “ Hα,λp~x

0
∆q

and Fα,λp0q “ Fα,λp~x
0
∆q. As the picture shows, the rate of decay does not really depend on the

choice of K, since the curves lie de facto on the top of each other. Furthermore, the curves are
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Figure 4.2. Left : numerically observed decay of Hα,λptq ´Hmin
α,λ and Fα,λptq ´

Fmin
α,λ along a time period of t P r0, 0.8s, usingK “ 200, in comparison to the upper

bounds H0
α,λ expp´2λtq and F0

α,λ expp´2λtq with H0
α,λ :“ pHα,λpu

0q´Hα,λpbα,λqq

and F0
α,λ :“ pFα,λpu0q ´Fα,λpbα,λqq, respectively. Right : convergence of discrete

minimizers umin
ξ with a rate of K´1.5.

bounded from above by pHα,λpu
0q´Hα,λpbα,λqq expp´2λtq and pFα,λpu0q´Fα,λpbα,λqq expp´2λtq

at any time, respectively, as (4.14) and (4.15) from Theorem 4.1 postulate. One can even rec-

ognize that the decay rates are bigger at the beginning, until the moment when u∆ finishes its

“fusion” to one single Barenblatt-like curve. After that, the solution’s evolution mainly consists

of a transversal shift towards the stationary solution bα,λ, which is reflected by a henceforth

constant rate of approximately ´2λ.

4.4.3.b. Rate of convergence towards equilibrium. Consider again a positive confinement with

λ “ 5 and the initial density as given in (4.66). Figure 4.3/right pictures the convergence of umin
ξ

towards bα,λ. We used several values for the spatial discretization, K “ 25, 50, 100, 200, 400, 800,

and plotted the L2-error. The observed rate of convergence is K´1.5.

4.4.3.c. Self-similar solutions. A very interesting consequence of Section 4.3.3 is, that the exis-

tence of self-similiar solutions bequeath from the continuous to the discrete case. In more detail,

this means the following: Set λ “ 0 and define for t P r0,`8q

b˚α,0pt, ¨q :“ dRptqbα,1, with Rptq :“
`

1` p2α` 3qt
˘1{p2α`3q

, (4.67)

then b˚α,0 is a solution of the continuous problem (4.53) with u0 “ b˚α,0p0, ¨q. In the discrete

setting, solutions to (4.65) with λ “ 0 are inductively given by an initial vector ~b0
∆,α,0 with

corresponding density u0
∆ “ uξ̃r

~b0
∆,α,0s that approaches b˚α,0p0, ¨q, and ~bn∆,α,0 “ dSnτ

~b0
∆,α,0 with

Snτ defined as in (4.61), for further n ě 1.

As Figure 4.3 shows, the resulting sequence of densities u∆ (black lines) approaches the con-

tinuous solution b˚α,0 of (4.67) (red lines) astonishingly well, even if the discretization parameters
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Figure 4.3. Snapshots of the densities b˚α,0pt, ¨q (red lines) and u∆ (black lines)

for the initial condition b˚α,0p0, ¨q at times t “ 0 and t “ 0.1 ¨ 10i, i “ 0, . . . , 3,

using K “ 50 grid points and the time step size τ “ 10´3.

are choosen quite rough. In this specific case we used K “ 50 and τ “ 10´3. The discrete and

continuous solutions are evaluated at times t “ 0, 0.1, 1, 10, 100.





CHAPTER 5

Proof of Theorem 4.4 — Fourth order DLSS equation

The content of this chapter is joint work with my PhD-supervisor Daniel Matthes. A preprint

of the submitted paper can be found online [MO14b]. The paper is currently in revision.

5.1. Introduction

In the following chapter, we are going to study the numerical scheme from Chapter 4 for equation

(4.1) in the special case that α “ 1
2 , λ “ 0, and Ω “ pa, bq is a bounded domain. More precisely,

we consider the no-flux boundary problem

Btu` Bx

ˆ

u Bx

ˆ

Bxx
?
u

?
u

˙˙

“ 0 for x P Ω and t ą 0, (5.1)

Bxu “ 0, u Bx

ˆ

Bxx
?
u

?
u

˙

“ 0 for t ą 0 and x P BΩ, (5.2)

u “ u0 ě 0 at t “ 0. (5.3)

Equation (5.1) is known as the DLSS equation, where the acronym refers to Derrida, Lebowitz,

Speer and Spohn. Originally, the four authors derived (5.1) on the half line p0,`8q to describe

fluctuations of the interface between regions of predominantly positive and negative splins in

the anchored Toom model [DLSS91a, DLSS91b]. This equation later rises from the field of

semiconductor physics as a low-temperature, field-free limit of the well-established quantum

drift diffusion model, see [DMR05,Jün09], and hence got more and more of great interest.

In view of the content in Subsection 4.1.1, let us remember that solutions to (5.1) can be

interpreted as a L2-Wasserstein gradient flow in the potential landscape of the so-called Fisher

information,

Fpuq :“ F1{2,0puq “

ż

Ω

`

Bx

a

upxq
˘2

dx.

5.1.1. Description of the numerical scheme and main result. For the sake of complete-

ness, let us shortly summarize the main aspects of the numerical scheme decribed in Section 4.1.2

with α “ 1
2 , and reformulate the main Theorem 4.4 from the previous chapter.

Fix a spatio-temporal discretization parameter ∆ “ pτ ; ξq, where τ consists of varying time

step sizes pτ1, τ2, . . .q with τn P p0, τ s, and ξ “ pξ0, . . . , ξKq provides an equidistant decomposition

of the mass domain M with constant mesh size δ “MK´1. Further remember that Pr
2,ξpΩq is

equipped with the discrete metric dξ that is induced by the matrix W “ δI P RpK´1qˆpK´1q, as

suggested in Section 2.2.2. Then the numerical scheme from Section 4.1.2 with α “ 1
2 yields at

95
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any time step n “ 1, 2, . . . a recursively defined vector ~xn∆ P xξ that is a solution to

xnk ´ x
n´1
k

τn
“

1

2δ

«

pzn
k` 1

2

q2

˜

zn
k` 3

2

´ 2zn
k` 1

2

` zn
k´ 1

2

δ2

¸

´ pzn
k´ 1

2

q2

˜

zn
k` 1

2

´ 2zn
k´ 1

2

` zn
k´ 3

2

δ2

¸ff

,

(5.4)

where the values zn
`´ 1

2

ě 0 are defined as in (2.18) with convention (2.19). The problem in (5.4)

is well-posed, remember Proposition 4.6, and a solution ~xn∆ of (5.4) is especially a solution to

the implicit Euler time stepping

~x´ ~xn´1
∆

τn
“ ´∇ξFp~xq. (5.5)

Here we use the simplified notation F “ F1{2,0 for the discretized Fisher information, that is

defined by the discrete auto-dissipation of the entropy H1{2,0. More precisely, we define the

discretized Boltzmann entropy H as the restriction of the Boltzmann entropy H,

Hpuq :“ 2H1{2,0puq “

ż

Ω
upxq ln

`

upxq
˘

dx,

to the set of locally constant densities, i.e. Hp~xq “ Hpuξr~xsq for any ~x P xξ. Then H “ 2H1{2,0

and F has the form

Fp~xq “
1

4
}∇ξHp~xq}

2
ξ “

δ

4

ÿ

κPI1{2K

ˆzκ` 1
2
´ zκ´ 1

2

δ

˙2

.

Furthermore, remember the definition of the K ´ 1 canonical unit vectors ek P RK´1 in Exam-

ple 2.3 in case of ℵ “ K ´ 1, then we obtain for the derivatives of H

B~xHp~xq “ δ
ÿ

κPI1{2K

zκ
eκ´ 1

2
´ eκ` 1

2

δ
(5.6)

B2
~xHp~xq “ δ

ÿ

κPI1{2K

z2
κ

ˆeκ´ 1
2
´ eκ` 1

2

δ

˙ˆeκ´ 1
2
´ eκ` 1

2

δ

˙T

(5.7)

and further

∇ξFp~xq “
δ´2

2
B2
~xHp~xqB~xHp~xq “

1

2

ÿ

κPI1{2K

z2
κ

ˆ

zκ`1 ´ 2zκ ` zκ´1

δ2

˙ˆeκ` 1
2
´ eκ´ 1

2

δ

˙

. (5.8)

The explicit representation of the gradient shows that the implicit Euler stepping in (5.5) equals

(5.4).

The aim of this chapter is to verify the following convergence result for solutions of the

numerical scheme in case of α “ 1
2 , λ “ 0, and the bounded domain Ω “ pa, bq, as already stated

in Theorem 4.4:
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Theorem 5.1. Let a nonnegative initial condition u0 with Hpu0q ă 8 be given. Choose initial

conditions ~x0
∆ such that u0

∆ converges to u0 weakly as ∆ Ñ 0, and

H :“ sup
∆

Hp~x0
∆q ă 8 and lim

∆Ñ0
pτ ` δqFp~x0

∆q “ 0. (5.9)

For each ∆, construct a discrete approximation ~x∆ according to the procedure described in (4.11)

from Chapter 4 before, i.e. ~x0
∆ gives an approximation of the initial datum u0 and ~xn∆ solves

(5.4) at any iteration n P N. Then there exist a subsequence with ∆ Ñ 0 and a limit function

u˚ P Cpp0,`8q ˆ Ωq such that:

‚ tu∆uτ converges to u˚ locally uniformly on p0,`8q ˆ Ω,

‚
?
u˚ P L

2
locpp0,`8q;H

1pΩqq,

‚ u˚ satisfies the following weak formulation of (5.1):
ż 8

0

ż

Ω
Btϕu˚ dx dt`

ż

Ω
ϕp0, xqu0pxqdx`

ż 8

0
Npu˚, ϕq dt “ 0, (5.10)

with

Npu, ϕq :“
1

2

ż

Ω
Bxxxϕ Bxu` 4Bxxϕ

`

Bx
?
u
˘2

dx, (5.11)

for every test function ϕ P C8pr0,`8qˆΩq that is compactly supported in r0,`8qˆΩ

and satisfies Bxϕpt, aq “ Bxϕpt, bq “ 0 for any t P r0,`8q.

Remark 5.2. (1) Quality of convergence: Since tu∆uτ is piecewise constant in space and

time, uniform convergence is obviously the best kind of convergence that can be achieved.

(2) Rate of convergence: Numerical experiments with smooth initial data u0 show that the

rate of convergence is of order τ ` δ2, see Section 5.4.

(3) Initial condition: We emphasize that our only hypothesis on u0 is Hpu0q ă 8, which

allows the same general initial conditions as in [GST09,JM08]. If Fpu0q happens to

be finite, and also sup∆ Fp~x0
∆q ă 8, then the uniform convergence of tu∆uτ holds up

to t “ 0.

(4) No uniqueness: Since our notion of solution is too weak to apply the uniqueness re-

sult from [Fis13], we cannot exclude that different subsequences of tu∆uτ converge to

different limits.

The claims of this theorem are proven separately: The first two points about the convergence

and the regularity of the limit curve are provided in the Propositions 5.11 and 5.13 from Sec-

tion 5.2, whereas the validity of the weak formulation is shown in Proposition 5.14, Section 5.3.

In most papers from the literature attending the DLSS equation from a variational point of

view, the domain Ω is considered to be R (or Rd for a higher-dimensional formulation of (5.1)),

see for instance [MMS09], hence no boundary conditions appear. Similar Neumann boundary

conditions as ours in (5.2) appear in [GST09], but instead of ux “ 0 the authors state the

condition p
?
uqx “ 0 on BΩ. Therefore we give a short justification why the definition of the

weak formulation in Theorem 5.1 suits problem (5.1) with boundary conditions (5.2): Assume

therefore u : r0,`8q ˆ Ω Ñ r0,`8q to be a sufficient smooth solution of (5.10) which satisfies

the boundary conditions (5.2). Then for any test function that complies with the requirements
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in Theorem 5.1, repetetive integration by parts yields

2Npu, ϕq “

ż

Ω
BxuBxxxϕ` 4pBx

?
uq2Bxxϕdx “

“

BxuBxxϕ
‰x“b

x“a
`

ż

Ω

`

´Bxxu` 4pBx
?
uq2

˘

Bxxϕdx

(5.2)
“

“ `

´Bxxu` 4pBx
?
uq2

˘

Bxϕ
‰x“b

x“a
`

ż

Ω
Bx

`

Bxxu´ 4pBx
?
uq2

˘

ϕx dx

“
“

Bx
`

uBxx lnu
˘

ϕ
‰x“b

x“a
´

ż

Ω
Bxx

`

upBxx lnuq
˘

ϕdx
(5.2)
“ ´

ż

Ω
Bxx

`

uBxx lnu
˘

ϕdx,

where we use the following identity:

Bx
`

uBxx lnu
˘

“ 2uBx

ˆ

Bxx
?
u

?
u

˙

. (5.12)

A further integration by parts with respect to the time derivative then shows that u is a solution

to (5.1).

5.1.2. Key estimates. In what follows, we give a formal outline for the derivation of the main

a priori estimates on the fully discrete solutions.

In the continuous theory of well-posedness of (5.1), two crucial a priori estimates are provided

by the dissipation of the Fisher information F and the Boltzmann entropy H. Formally, the

corresponding estimates are easily derived by an integration by parts:

´
d

dt
Fpuq “ 2

ż

Ω
Bx
?
u Bx

¨

˝

Bx

´

u Bx

´

Bxx
?
u

?
u

¯¯

?
u

˛

‚dx “ 2

ż

Ω
u

„

Bx

ˆ

Bxx
?
u

?
u

˙2

dx (5.13)

´
d

dt
Hpuq “ 1

2

ż

Ω
plnu` 1q Bxxpu Bxx lnuqdx “

1

2

ż

Ω
upBxx lnuq2 dx, (5.14)

where we again use the identity in (5.12).

In view of our numerical scheme, it turns out that the explicit estimate in (5.13) is useless

for our purpose. In fact, we are not able to give a useful meaning to the right-hand side of (5.13)

in the discrete setting. The only information from (5.13) that finds a discrete counterpart in the

later calculations is that F is a Lyapunov functional, but this is a trivial conclusion from the

gradient flow structure of (5.1). An even stronger implication from the gradient flow structure

is, that each solution t ÞÑ uptq is globally Hölder-1
2 -continuous with respect to W2, see [AGS05].

Fortunately, these properties are inherited to our discretization, remember Section 4.2.2.b from

Chapter 4, where we show that solutions to (5.4) are gradient flows of the flow potential F

(which approximates F in a certain sense) with respect to the particular metric dξ on the space

of piecewise constant density functions Pr
2,ξpΩq.

Conversely, an interpretation of (5.14) in terms of our discretization is possible. Using

Lagrangian coordinates and Z “ u ˝X, the above expression turns into

1

2

ż

Ω
upBxx lnuq2 dx “

1

2

ż

M
Z2 pBξξZq

2 dξ,

which we shall eventually work with, see Lemma 5.5. The formulation of an H2-estimate would

require a global C1,1-interpolation of the piecewise constant densities u∆ that respects positivity,

which seems impractical. Instead, we settle for a control on the total variation of the first
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derivative Bx
?
pu∆ of a simple locally affine interpolation pu∆, see Proposition 5.8. This TV-

control is a perfect replacement for the H2-estimate in (5.14) and is the source for compactness,

see Proposition 5.13.

5.1.3. Spatial interpolations. In the following, we fix a Lagrangian vector ~x P xξ and denote

its corresponding density uξr~xs by u and its Lagrangian map Xξr~xs by X. We furthermore write

~z “ zξr~xs. Recall that u P Pr
2,ξpΩq is piecewise constant with respect to the (non-uniform) grid

pa, x1, . . . , xK´1, bq. To facilitate the study of convergence of weak derivatives in the forthcoming

sections, we introduce also piecewise affine interpolations pz : MÑ p0,`8q and pu : Ω Ñ p0,`8q.

x
a x1 x2 x3 x4 b

x 1
2

x 3
2

x 5
2

x 7
2

x 9
2

I I I I I

pu

u

Figure 5.1. A density u P Pr
2,ξpΩq (dashed line in blue) with its associated

piecewise affine interpolation pu (red line).

In addition to ξk “ kδ for k P IK , introduce the intermediate points ξκ “ κδ for κ P I1{2K .

Accordingly, introduce the intermediate values for the vectors ~x and ~z:

xκ “
1

2

`

xκ` 1
2
` xκ´ 1

2
q for κ P I1{2K ,

zk “
1

2

`

zk` 1
2
` zk´ 1

2

˘

for k P I`K .
(5.15)

Now define

‚ pz : M Ñ R as the piecewise affine interpolation of the values pz 1
2
, z 3

2
, . . . , zK´ 1

2
q with

respect to the equidistant grid pξ 1
2
, ξ 3

2
, . . . , ξK´ 1

2
q, and

‚ pu : ra, bs Ñ R as the piecewise affine function with

pu ˝X “ pz. (5.16)

Our convention is that pzpξq “ z 1
2

for 0 ď ξ ď δ{2 and pzpξq “ zK´ 1
2

for M ´ δ{2 ď ξ ď M , and

accordingly pupxq “ z 1
2

for x P ra, x 1
2
s and pupxq “ zK´ 1

2
for x P rxK´ 1

2
, bs. The definitions have

been made such that

xk “ Xpξkq, zk “ pzpξkq “ pupxkq for all k P IK Y I1{2K . (5.17)
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Notice that pu is piecewise affine with respect to the “double grid” pa, x 1
2
, x1, . . . , xK´ 1

2
bq, but

in general not with respect to the subgrid pa, x1, . . . , xK´1, bq. By direct calculation, we obtain

Bxpu
ˇ

ˇ

px
k´ 1

2
,xkq

“
zk ´ zk´ 1

2

xk ´ xk´ 1
2

“
zk` 1

2
´ zk´ 1

2

xk ´ xk´1
“ zk´ 1

2

zk` 1
2
´ zk´ 1

2

δ
for k P IKzt0u,

Bxpu
ˇ

ˇ

pxk,xk` 1
2
q
“
zk` 1

2
´ zk

xk` 1
2
´ xk

“
zk` 1

2
´ zk´ 1

2

xk´1 ´ xk
“ zk` 1

2

zk` 1
2
´ zk´ 1

2

δ
for k P IKztKu.

(5.18)

Trivially, we also have that Bxpu vanishes identically on the intervals pa, x 1
2
q and pxK´ 1

2
, bq.

5.1.4. A discrete Sobolev-type estimate. The following inequality plays a key role in our

analysis, especially for the control of error terms in the weak formulation later in Section 5.3.

Recall the conventions (2.19) that z´ 1
2
“ z 1

2
and zK` 1

2
“ zK´ 1

2
.

Lemma 5.3. For any ~x P xξ,

δ
ÿ

kPI`K

ˆzk` 1
2
´ zk´ 1

2

δ

˙4

ď 9δ
ÿ

κPI1{2K

z2
κ

ˆ

zκ`1 ´ 2zκ ` zκ´1

δ2

˙2

. (5.19)

Proof. Due to the conventions on ~z, one can even sum over all k P IK on the left-hand side of

(5.19). By “summation by parts”

pAq “ δ
ÿ

kPIK

ˆzk` 1
2
´ zk´ 1

2

δ

˙4

“
ÿ

kPIK

pzk` 1
2
´ zk´ 1

2
q

ˆzk` 1
2
´ zk´ 1

2

δ

˙3

“ ´
ÿ

kPI1{2K

zκ

«

ˆ

zκ`1 ´ zκ
δ

˙3

´

ˆ

zκ ´ zκ´1

δ

˙3
ff

Using the elementary identity pp3 ´ q3q “ pp´ qqpp2 ` q2 ` pqq for arbitrary real numbers p, q,

and Young’s inequality, one obtains further

pAq “ ´δ
ÿ

κPI1{2K

zκ
zκ`1 ´ 2zκ ` zκ´1

δ2
ˆ

ˆ

«

ˆ

zκ`1 ´ zκ
δ

˙2

`

ˆ

zκ ´ zκ´1

δ

˙2

`

ˆ

zκ`1 ´ zκ
δ

˙ˆ

zκ ´ zκ´1

δ

˙

ff

ď
3δ

2

ÿ

κPI1{2K

ˇ

ˇ

ˇ

ˇ

zκ
zκ`1 ´ 2zκ ` zκ´1

δ2

ˇ

ˇ

ˇ

ˇ

«

ˆ

zκ`1 ´ zκ
δ

˙2

`

ˆ

zκ ´ zκ´1

δ

˙2
ff

ď
3

2

¨

˚

˝

δ
ÿ

κPI1{2K

z2
κ

„

zκ`1 ´ 2zκ ` zκ´1

δ2

2

˛

‹

‚

1{2
˜

4δ
ÿ

kPIK

ˆzk` 1
2
´ zk´ 1

2

δ

˙4
¸1{2

.

Note that the last sum above is again equal to pAq, hence deviding both sides with pAq1{2 yields

the desired estimate. �
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5.2. A priori estimates and compactness

Throughout this section, we consider a sequence ∆ “ pτ ; ξq of discretization parameters such

that δ Ñ 0 and τ Ñ 0 in the limit, formally denoted by ∆ Ñ 0. We assume that a fully

discrete solution ~x∆ “ p~x0
∆,~x

1
∆, . . .q is given for each ∆-mesh, defined by (5.4). The sequences

u∆, pu∆, pz∆ and X∆ of spatial interpolations are defined from the respective ~x∆ accordingly. For

notational simplification, we write the entries of the vectors ~xn∆ and ~zn∆ and their intermediate

values defined in (5.15) as xk, xκ and zk, zκ, respectively, whenever there is no ambiguity in the

choice of ∆ and the time step n.

For the sequence of initial conditions ~x0
∆, we assume that pu0

∆ Ñ u0 weakly in L1pΩq, that

there is some finite H with

Hp~x0
∆q ď H for all ∆, (5.20)

and that

pτ ` δqFp~x0
∆q Ñ 0 as ∆ Ñ 0. (5.21)

5.2.1. Energy and entropy dissipation. The following estimates for the discrete Fisher

information F are immediate conclusions from Lemma 2.4.

Lemma 5.4. The discrete Fisher information F is monotone, i.e. Fp~xn∆q ď Fp~xn´1
∆ q, and

furthermore
›

›~xn∆ ´ ~x
n
∆

›

›

2

ξ
ď 2Fp~x0

∆q ptn ´ tnq for all n ě n ě 0, (5.22)

8
ÿ

n“1

τn

›

›

›

›

›

~xn∆ ´ ~x
n´1
∆

τn

›

›

›

›

›

2

ξ

“

8
ÿ

n“1

τn }∇ξFp~x
n
∆q}

2
ξ ď 2Fp~x0

∆q. (5.23)

The key to our convergence analysis is a refined a priori estimate, which follows from the

dissipation of the entropy H along the fully discrete solution.

Lemma 5.5. The entropy H is monotone, i.e., Hp~xn∆q ď Hp~xn´1
∆ q, and furthermore

8
ÿ

n“1

τnδ
ÿ

κPI1{2K

pznκq
2

ˆ

znκ`1 ´ 2znκ ` z
n
κ´1

δ2

˙2

ď 2H. (5.24)

Proof. By convexity of H and the discrete evolution (5.5), we have

Hp~xn´1
∆ q ´Hp~xn∆q ě

@

∇ξHp~x
n
∆q,~x

n´1
∆ ´ ~xn∆

D

ξ
“ τn x∇ξHp~x

n
∆q,∇ξFp~x

n
∆qyξ

for each n ě 1. Evaluate the (telescopic) sum with respect to n and use that Hp~xq ě 0 for any

~x P xξ to obtain

8
ÿ

n“1

τn x∇ξHp~x
n
∆q,∇ξFp~x

n
∆qyξ ď Hp~x0

∆q.
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It remains to make the scalar product explicit, using (5.6) and (5.8). For any ~x P xξ one obtains

x∇ξHp~xq,∇ξFp~xqyξ

“
δ

2

ÿ

κPI1{2K , kPI`K

z2
κ

ˆ

zκ`1 ´ 2zκ ` zκ´1

δ2

˙ˆzk` 1
2
´ zk´ 1

2

δ

˙ ˆeκ` 1
2
´ eκ´ 1

2

δ

˙T

ek

“
δ

2

ÿ

κPI1{2K

z2
κ

´zκ`1 ´ 2zκ ` zκ´1

δ2

¯2
,

where we use that z´ 1
2
“ z 1

2
and zK` 1

2
“ zK´ 1

2
, according to our convention (2.19) in case of

ℵ “ K ´ 1. �

We draw several conclusions from (5.24). The first is an a priori estimate on the ξ-derivative

of the affine functions pzn∆, that is

8
ÿ

n“1

τn
›

›Bξpz
n
∆

›

›

4

L4pMq
ď 18H. (5.25)

The estimate is an immediate consequence of (5.19) and (5.24).

Remark 5.6. Morally, a bound on Bξpz in L4pMq corresponds to a bound on Bx
4
?
pu in L4pΩq.

The a priori estimate (5.25) is the basis for almost all of the further estimates. For instance,

the following control on the oscillation of the z-values at neighboring grid points is a consequence

of (5.25).

Lemma 5.7. One has

8
ÿ

n“1

τnδ
ÿ

kPI`K

„

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯4
`

´zn
k´ 1

2

zn
k` 1

2

´ 1
¯4


ď 36pb´ aq4H. (5.26)

Moreover, given T ą 0, then for each Nτ P N with T ď
řNτ
n“0 τn ď pT ` 1q, one obtains

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

„

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯2
`

´zn
k´ 1

2

zn
k` 1

2

´ 1
¯2


ď 6
?

2pb´ aq2pT ` 1q1{2H1{2
δ1{2. (5.27)

Proof. Due to the definition of zξr~xs, one has that zκ ě δ{pb ´ aq for all κ. Consider the first

term in the inner summation in (5.26):

δ
ÿ

kPI`K

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯4
“ δ

ÿ

kPI`K

´ δ

zn
k´ 1

2

¯4´z
n
k` 1

2

´ zn
k´ 1

2

δ

¯4
ď pb´ aq4}pzn∆}

4
L4pΩq.

The same estimate is attained for the second term. The claim (5.26) is now directly deduced

from (5.25) above. The proof of the second claim (5.27) is similar, using the Cauchy-Schwarz

inequality instead of the modulus estimate:

δ
ÿ

kPI`K

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯2
“ δ

ÿ

kPI`K

´ δ

zn
k´ 1

2

¯2´z
n
k` 1

2

´ zn
k´ 1

2

δ

¯2
ď

¨

˝δ
ÿ

kPI`K

´ δ

zn
k´ 1

2

¯4

˛

‚

1{2

}pzn∆}
2
L4pΩq.
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Use estimate (A.4), sum over n “ 1, . . . , Nτ , and apply the Cauchy-Schwarz inequality to this

second summation. This yields

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯2
ď δ1{2pb´ aq2

˜

Nτ
ÿ

n“1

τn

¸1{2 ˜
8
ÿ

n“1

τn}pz
n
∆}

4
L4pΩq

¸1{2

.

Invoking again (5.25) and recalling that
řNτ
n“0 τn ď pT ` 1q, we arrive at (5.27). �

5.2.2. Bound on the total variation. We are now going to prove the main consequence

from the entropy dissipation Hp~xn∆q ď Hp~x0
∆q, namely a control on the total variation of

a

pun∆.

This estimate is the key ingredient for obtaining strong compactness in Proposition 5.13. For

this purpose, recall that an appropriate definition of the total variation of a function f P L1pΩq

is given by (1.15), i.e.

TV rf s “ sup

#

J´1
ÿ

j“1

|fprj`1q ´ fprjq| : J P N, a ă r1 ă r2 ă ¨ ¨ ¨ ă rJ ă b

+

. (5.28)

Proposition 5.8. One has that

8
ÿ

n“1

τnTV
”

Bx

b

pun∆

ı2

ď 20pb´ aqH. (5.29)

Proof. Fix n. Observe that
a

pun∆ is smooth on Ω except for the points x 1
2
, x1, . . . , xK´ 1

2
, with

derivatives given by

Bx

b

pun∆ “
1

2
a

pun∆
Bxpu

n
∆, Bxx

b

pun∆ “ ´
1

4
a

pun∆
3

`

Bxpu
n
∆

˘2
ď 0. (5.30)

Therefore, Bx
a

ũn∆ is monotonically decreasing in between the (potential) jump discontinuities

at the points x 1
2
, x1, . . . , xK´ 1

2
. Furthermore, recall that

Bx

b

pun∆pxq “ 0 for all x P pa, a` δ{2q and all x P pb´ δ{2, bq. (5.31)

It follows that the supremum in (5.28) can be realized (in the limit ε Ó 0) for a sequence of just

J “ 2p2K ´ 1q many points rεj , chosen as follows:

rε2i´1 “ xi{2 ´ ε and rε2i “ xi{2 ` ε, for i “ 1, . . . , 2K ´ 1.

On the one hand,

lim
εÓ0

ˇ

ˇ

ˇ
Bx

a

pu∆pr
ε
2i´1q ´ Bx

a

pu∆pr
ε
2iq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

r
Bx

b

pun∆

z

xi{2

ˇ

ˇ

ˇ

ˇ

. (5.32)
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On the other hand, since Bx
a

pun∆ is monotone decreasing in between rε2i and rε2i`1, and vanishes

near the boundary by (5.31), we have that

lim
εÓ0

2K´2
ÿ

i“1

´

Bx

b

pun∆pr
ε
2iq ´ Bx

b

pun∆pr
ε
2i`1q

¯

“ lim
εÓ0

2K´1
ÿ

i“1

´

Bx

b

pun∆pr
ε
2iq ´ Bx

b

pun∆pr
ε
2i´1q

¯

ď
ÿ

kPI`K

ˇ

ˇ

ˇ

ˇ

r
Bx

b

pun∆

z

xk

ˇ

ˇ

ˇ

ˇ

`
ÿ

κPI1{2K

ˇ

ˇ

ˇ

ˇ

r
Bx

b

pun∆

z

xκ

ˇ

ˇ

ˇ

ˇ

. (5.33)

Summarizing (5.32) and (5.33), we obtain the estimate

TV
”

Bx

b

pun∆

ı

ď 2
ÿ

kPI`K

ˇ

ˇ

ˇ

ˇ

r
Bx

b

pun∆

z

xk

ˇ

ˇ

ˇ

ˇ

` 2
ÿ

κPI1{2K

ˇ

ˇ

ˇ

ˇ

r
Bx

b

pun∆

z

xκ

ˇ

ˇ

ˇ

ˇ

. (5.34)

Let us omit the index n in the forthcoming calculation. In view of (5.18), we have that

r
Bx

b

pun∆

z

xk
“

1

2
?
zk

pzk´ 1
2
´ zk` 1

2
q2

δ
for k P I`K ,

r
Bx

b

pun∆

z

xκ
“

1

2

?
zκ
zκ`1 ´ 2zκ ` zκ´1

δ
for κ P I1{2K .

Accordingly, using that 1{zk ď p1{zk` 1
2
`1{zk´ 1

2
q{2 by the arithmetic-harmonic mean inequality,

ÿ

kPI`K

ˇ

ˇ

ˇ

ˇ

r
Bx

b

pun∆

z

xk

ˇ

ˇ

ˇ

ˇ

“
δ

2

ÿ

kPI`K

pzk´ 1
2
´ zk` 1

2
q2

δ2
¨

1
?
zk

ď
1

2

¨

˝δ
ÿ

kPI`K

„zk´ 1
2
´ zk` 1

2

δ

4
˛

‚

1{2
ˆ

ÿ

kPI`K

δ

zk

˙1{2

“
1

2

›

›Bξpz
n
∆

›

›

2

L4pΩq
pb´ aq1{2,

(5.35)

and also
ÿ

κPI1{2K

ˇ

ˇ

ˇ

ˇ

r
Bx

b

pun∆

z

xκ

ˇ

ˇ

ˇ

ˇ

“
δ

2

ÿ

κPI1{2K

zκ

ˇ

ˇ

ˇ

ˇ

zκ`1 ´ 2zκ ` zκ´1

δ2

ˇ

ˇ

ˇ

ˇ

¨
1
?
zκ

ď
1

2

¨

˚

˝

δ
ÿ

κPI1{2K

z2
κ

„

zκ`1 ´ 2zκ ` zκ´1

δ2

2

˛

‹

‚

1{2

pb´ aq1{2.

(5.36)

Combine (5.35) with the L4pMq-bound from (5.25), and (5.36) with the entropy dissipation

inequality (5.24). Finally insert this into (5.34) to obtain the claim (5.29). �

5.2.3. Convergence of time interpolants. Recall that we require the a priori bound (5.20)

on the initial entropy, but only (5.21) on the initial Fisher information. This estimate improves

over time.



5.2. A PRIORI ESTIMATES AND COMPACTNESS 105

Lemma 5.9. For every n ě 1, one has that

Fp~xn∆q ď 3α1

ˆ

M

2
H
˙1{2

pnτq´1{2 , (5.37)

where α1 is defined in (2.11). Consequently, tFp~x∆quτ ptq is bounded for each t ą 0, uniformly

in ∆.

Proof. Since Fp~xn∆q is monotonically decreasing in n (for fixed ∆), it follows that

Fp~xn∆q ď
1

n

n
ÿ

j“1

Fp~xj∆q “
1

2n

n
ÿ

j“1

δ
ÿ

kPI`K

¨

˝

zj
k` 1

2

´ zj
k´ 1

2

δ

˛

‚

2

ď
1

2nτ

¨

˝

n
ÿ

j“1

τjδ
ÿ

kPI`K

1

˛

‚

1{2
¨

˚

˝

8
ÿ

j“1

τjδ
ÿ

kPI`K

¨

˝

zj
k` 1

2

´ zj
k´ 1

2

δ

˛

‚

4
˛

‹

‚

1{2

ď
1

2nτ
pnτMq1{2p18Hq1{2 “ 3α1

ˆ

M

2
H
˙1{2

pnτq´1{2,

where we used in the last step that τ{τ ă α1, see (2.11). �

The above estimate yields a ∆-uniform bound on tFp~x∆quτ ptq for any t ą 0, but remember

that tFp~x∆quτ p0q can even diverge for δ Ñ 0. This is why one cannot expect uniform con-

vergence on time intervals including the value t “ 0 in the convergence results below. In the

following, we denote by rt, ts Ď p0,`8q a time intervals with 0 ă t ă t ă 8.

Lemma 5.10. We have that, for each rt, ts Ď p0,`8q,

sup
tPrt,ts

}Bx tpu∆uτ ptq}L2pΩq ă 8, (5.38)

sup
tPrt,ts

} tpu∆uτ ptq ´ tu∆uτ ptq}L8pΩq ÝÑ 0, as ∆ Ñ 0 (5.39)

sup
tPrt,ts

} tpu∆uτ ptq}L8pΩq ă 8. (5.40)

Moreover, the functions tu∆uτ and tpu∆uτ are uniformly bounded on rt, ts ˆ Ω.

Proof. For each n P N,

›

›Bxpu
n
∆

›

›

2

L2pΩq
“

ÿ

kPI`K

„

pxn
k` 1

2

´ xnkq
´ zn

k` 1
2

´ znk

xn
k` 1

2

´ xnk

¯2
` pxnk ´ x

n
k´ 1

2

q

´ znk ´ z
n
k´ 1

2

xnk ´ x
n
k´ 1

2

¯2


ď δ
ÿ

kPI`K

zn
k` 1

2

` zn
k´ 1

2

2

´zn
k` 1

2

´ zn
k´ 1

2

δ

¯2
ď Fp~xn∆q max

κPI1{2K
znκ .

Now combine this with the estimates (5.37) from above and (4.32) from the previous chapter to

obtain (5.38). Estimate (5.39) follows directly from the elementary observation that

sup
xPΩ

|un∆pxq ´ pun∆pxq|
2 ď max

kPI`K

ˇ

ˇzn
k` 1

2

´ zn
k´ 1

2

ˇ

ˇ

2
ď δFp~xn∆q ď δFp~x0

∆q,
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and an application of (5.21). Finally, (5.40) is a consequence of (5.38) and (5.39). First, note

that

}tpu∆uτ ptq}L1pΩq ď } tu∆uτ ptq}L1pΩq ` } tpu∆uτ ptq ´ tu∆uτ ptq}L1pΩq ďM ` δFp~x0
∆q

is uniformly bounded. Now apply the interpolation inequality

} tpu∆uτ ptq}L8pΩq ď C}Bx tpu∆uτ ptq}
2{3
L2pΩq

} tpu∆uτ ptq}
1{3
L1pΩq

to obtain the bound in (5.40). �

Proposition 5.11. There exists a function u˚ : p0,`8q ˆ Ω Ñ r0,`8q with

u˚ P C
1{2
loc pp0,`8q;P

r
2pΩqq X L

8
locpp0,`8q;H

1pΩqq, (5.41)

and there exists a subsequence of ∆ (still denoted by ∆), such that, for every rt, ts Ď p0,`8q,

the following are true:

tu∆uτ ptq ÝÑ u˚ptq in Pr
2pΩq, uniformly with respect to t P rt, ts, (5.42)

tu∆uτ , tpu∆uτ ÝÑ u˚ uniformly on rt, ts ˆ Ω. (5.43)

Proof. Fix rt, ts Ď p0,`8q. From the discrete energy inequality (5.22), the bound on the Fisher

information in Lemma 5.9, and the equivalence (2.27) of dξ with the usual L2-Wasserstein dis-

tance W2, one can proceed analogously to the proof of Proposition 2.5 to conclude the existence

of a subsequence of tu∆uτ that converges to a limit curve ut P C
1{2prt, ts;Pr

2pΩqq at least uni-

formly with respect to t P rt, ts. Clearly, the previous argument applies to every choice of t ą 0.

Using a diagonal argument, one constructs a limit u˚ defined on all p0,`8q, such that ut is the

restriction of u˚ to rt,8q. Note especially that in addition to the weak convergence in (5.42),

one obtains that tX∆uτ ptq converges to X˚ptq in L2pMq, uniformly with respect to t P rt, ts,

where X˚ P C
1{2
loc pp0,`8q;L

2pMqq is the Lagrangian map of u˚. The reason for this is once

again (2.27).

For proving (5.43), it suffices to show that tpu∆uτ Ñ u˚ uniformly on rt, tsˆΩ: Indeed, (5.39)

implies that if tpu∆uτ converges uniformly to some limit, so does tu∆uτ . As an intermediate step

towards proving uniform convergence of tpu∆uτ , we show that

pu∆ptq ÝÑ u˚ptq in L2pΩq, uniformly in t P rt, ts. (5.44)

For t P rt, ts, we expand the L2-norm as follows:

} tpu∆uτ ptq ´ u˚ptq}
2
L2pΩq “

ż

Ω

”

`

tpu∆uτ ´ u˚
˘

tu∆uτ

ı

pt, xq dx

`

ż

Ω

”

`

tpu∆uτ ´ u˚
˘`

tpu∆uτ ´ tu∆uτ

˘

ı

pt, xq dx

´

ż

Ω

”

`

tpu∆uτ ´ u˚
˘

u˚

ı

pt, xq dx.
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On the one hand, observe that

sup
tPrt,ts

ż

Ω

”

`

tpu∆uτ ´ u˚
˘`

tpu∆uτ ´ tu∆uτ

˘

ı

pt, xqdx

ď sup
tPrt,ts

``

} tpu∆uτ ptq}L8pΩq ` }u˚ptq}L8pΩq
˘

} tpu∆uτ ptq ´ tu∆uτ ptq}L1pΩq

˘

which converges to zero as ∆ Ñ 0, using the conclusions from Lemma 5.10. On the other hand,

we can use property (2.4) to write
ż

Ω

”

`

tpu∆uτ ´ u˚
˘

tu∆uτ

ı

pt, xq dx´

ż

Ω

”

`

tpu∆uτ ´ u˚
˘

u˚

ı

pt, xq dx

“

ż

M

”

tpu∆uτ ´ u˚

ı

`

t, tX∆uτ pt, xq
˘

dξ ´

ż

M

”

tpu∆uτ ´ u˚

ı

`

t,X˚pt, ξq
˘

dξ.

We regroup terms under the integrals and use the triangle inequality. For the first term, we

obtain

sup
tPrt,ts

ˇ

ˇ

ˇ

ˇ

ż

M

`

tpu∆uτ

`

t, tX∆uτ pt, ξq
˘

´ tpu∆uτ

`

t,X˚pt, ξq
˘˘

dξ

ˇ

ˇ

ˇ

ˇ

ď sup
tPrt,ts

ż

M

ż tX∆uτ pt,ξq

X˚pt,ξq
|Bx tpu∆uτ | pt, yq dy dξ

ď sup
tPrt,ts

ż

M
}Bx tpu∆uτ }L2pΩq|X˚ ´ tX∆uτ |pt, ξq

1{2 dξ

ď sup
tPrt,ts

´

}Bx tpu∆uτ ptq}L2pΩq}X˚ptq ´ tX∆uτ ptq}
1{4
L2pMq

¯

.

A similar reasoning applies to the integral involving u˚ in place of tpu∆uτ . Together, this proves

(5.44), and it further proves that u˚ P L
8prt, ts;H1pΩqq, since the uniform bound on pu∆ from

(5.38) is inherited by the limit.

Now the Gagliardo-Nirenberg inequality (A.1) provides the estimate

} tpu∆uτ ptq ´ u˚ptq}C1{6pΩq ď C} tpu∆uτ ptq ´ u˚ptq}
2{3
H1pΩq

} tpu∆uτ ptq ´ u˚ptq}
1{3
L2pΩq

. (5.45)

Combining the convergence in L2pΩq by (5.44) with the boundedness in H1pΩq from (5.38), it

readily follows that pu∆ptq Ñ u˚ptq in C1{6pΩq, uniformly in t P rt, ts. This clearly implies that

tpu∆uτ Ñ u˚ uniformly on rt, ts ˆ Ω. �

Remark 5.12. In view of the above convergence proof, notice that we just used the convergence

of tpu∆uτ towards tu∆uτ in L1pΩq uniformly with respect to time t P rt, ts, instead of the stronger

result in (5.39).

Proposition 5.13. Under the hypotheses and with the notations of Proposition 5.11, we have

that
?
u˚ P L

2pp0,`8q;H1pΩqq, and
!

a

pu∆

)

τ
ÝÑ

?
u˚ strongly in L2prt, ts;H1pΩqq (5.46)

for any rt, ts Ď p0,`8q as ∆ Ñ 0.
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Notice that Bx
?
u˚ P L

2pr0, ts ˆ Ωq for each t ą 0, but strong convergence takes place only

on each rt, ts ˆ Ω.

Proof of Proposition 5.13. Fix rt, ts Ď p0,`8q. We are going to prove that for any ∆ and

n P N,
›

›

›
Bx

b

pun∆

›

›

›

2

L2pΩq
ď 2

›

›

›

b

pun∆

›

›

›

L8pΩq
TV

”

Bx

b

pun∆

ı

(5.47)

is satisfied. To this end, remember that
a

pun∆ is differentiable on any interval pxκ´ 1
2
, xκs for

κ P I`K Y I1{2K Y tKu, and that Bx
a

ũn∆ is monotonically decreasing due to (5.30). This implies

together with the fundamental theorem of calculus that
ż xκ

x
κ´ 1

2

|Bxx

b

pun∆| “ ´

ż xκ

x
κ´ 1

2

Bxx

b

pun∆ “ lim
xÓx

κ´ 1
2

Bx

b

pun∆pxq ´ lim
xÒxκ

Bx

b

pun∆pxq

for any κ P I`K Y I1{2K Y tKu. Further, recall that Bx
a

pun∆pxq “ 0 for all x P pa, a ` δ{2q and all

x P pb´ δ{2, bq. Therefore,

ÿ

κPI`KYI
1{2
K YtKu

ż xκ

x
κ´ 1

2

b

pun∆Bxx

b

pun∆ dx ď
›

›

›

b

pun∆

›

›

›

L8pΩq

ÿ

κPI`KYI
1{2
K YtKu

ż xκ

x
κ´ 1

2

|Bxx

b

pun∆| dx

ď

›

›

›

b

pun∆

›

›

›

L8pΩq
TV

”

Bx

b

pun∆

ı

.

(5.48)

By integration by parts and a rearrangement of the terms one obtains together with (5.48) that
›

›

›
Bx

b

pun∆

›

›

›

2

L2pΩq
“

ÿ

κPI`KYI
1{2
K YtKu

ż xκ

x
κ´ 1

2

Bx

b

pun∆Bx

b

pun∆ dx

“
ÿ

κPI`KYI
1{2
K YtKu

»

–

”
b

pun∆pxqBx

b

pun∆pxq
ıx“xκ´0

x“x
κ´ 1

2
`0
´

ż xκ

x
κ´ 1

2

b

pun∆Bxx

b

pun∆ dx

fi

fl

ď 2
›

›

›

b

pun∆

›

›

›

L8pΩq
TV

”

Bx

b

pun∆

ı

.

This shows (5.47). Take further two arbitrary discretizations ∆1,∆2 and apply the above result

to the difference
 a

pu∆1

(

τ
´
 a

pu∆2

(

τ
. Using that TV rf ´ gs ď TV rf s `TV rgs we obtain by

integration with respect to time that
ż t

t

›

›

›
Bx

!

a

pu∆1

)

τ
´ Bx

!

a

pu∆2

)

τ

›

›

›

2

L2pΩq
dt

ď pt´ tq1{2 sup
tPrt,ts

›

›

›

!

a

pu∆1

)

τ
´

!

a

pu∆2

)

τ

›

›

›

L8pΩq
ˆ

ˆ

˜

2

ż t

t
TV

”

Bx

!

a

pu∆1

)

τ

ı2
` TV

”

Bx

!

a

pu∆2

)

τ

ı2
dt

¸1{2

.
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This shows that
 ?

pu∆

(

τ
is a Cauchy-sequence in L2prt, ts;H1pΩqq, remember (5.29) and espe-

cially (5.39), and its limit has to coincide with
?
u˚ in the sense of distributions, due to the

uniform convergence of
 ?

pu∆

(

τ
to
?
u˚ on rt, ts ˆ Ω. l

5.3. Weak formulation of the limit equation

To close the proof of Theorem 5.1, we are going to verify that the limit curve u˚ obtained in

Proposition 5.11 is indeed a weak solution to (5.1) with no-flux boundary conditions (5.2). The

idea for this is the same as in Section 3.4 from Chapter 3 before:

(1) We first show the validity of a discrete weak formulation for tu∆uτ , using a discrete

flow interchange estimate.

(2) Using the results from Proposition 5.13, we pass to the limit in the discrete weak

formulation.

From now on, ~x∆ “ p~x
0
∆,~x

1
∆, . . .q with its derived functions u∆, pu∆, X∆ is a (sub)sequence

for which the convergence results stated in Proposition 5.11 and Proposition 5.13 are satisfied.

We continue to assume (5.20) and (5.21). The goal of this section is to prove the following.

Proposition 5.14. For every ρ P C8pΩq with ρ1paq “ ρ1pbq “ 0, and for every η P C8c pr0,`8qq,

the limit curve u˚ satisfies
ż 8

0
η1ptq

ˆ
ż

Ω
ρpxqu˚pt, xq dx

˙

dt` ηp0q

ż

Ω
ρpxqu0pxqdx`

ż 8

0
ηptqNpu˚, ρq dt “ 0, (5.49)

where the highly nonlinear term N from (5.11) is given by

Npu, ρq “
1

2

ż

Ω

“

ρ3pxqBxupt, xq ` 4ρ2pxq
`

Bx
?
upt, xq

˘2‰
dx. (5.50)

Note especially that the weak formulation (5.10) is equivalent to (5.49). Simply observe that

any ϕ P C8pr0,`8q ˆ Ωq that has a compact support in r0,`8q ˆ Ω and satisfies Bxϕpt, aq “

Bxϕpt, bq “ 0 for any t P r0,`8q, can be approximated by linear combinations of products

ηptqρpxq with functions η P C8pr0,`8qq and ρ P C8pΩq, which satisfies the requirements

formulated in Proposition 5.14.

For definiteness, fix a spatial test function ρ P C8pΩq with ρ1paq “ ρ1pbq “ 0, and a temporal

test function η P C8c pr0,`8qq with supp η Ď r0, T q for a suitable T ą 0. Denote again by

Nτ P N an integer with
řNτ
n“1 τn P pT, T ` 1q. Let $ ą 0 be chosen such that

}ρ}C4pΩq ď $ and }η}C1pr0,`8qq ď $. (5.51)

For convenience, we assume δ ă 1 and τ ă 1. In the estimates that follow, the non-explicity

constants possibly depend on Ω, T , $, and H, but not on ∆.

Lemma 5.15 (discrete weak formulation). A solution to the numerical scheme satisfies

8
ÿ

n“1

τnηptn´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ż

M

ρpXn
∆q ´ ρpX

n´1
∆ q

τn
dξ ´

@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
`

τFp~x0
∆q ` pδFp~x

0
∆qq

1{2
˘

,

(5.52)
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where we use the short-hand notation ρ1p~xq :“ pρ1px1q, . . . , ρ
1pxK´1qq for any ~x P xξ.

Proof. A Taylor expansion of the term in the inner integral yields

ρpXn
∆q ´ ρpX

n´1
∆ q

τn
“ ρ1pXn

∆q

˜

Xn
∆ ´Xn´1

∆

τn

¸

`
τn
2
ρ2prXq

˜

Xn
∆ ´Xn´1

∆

τn

¸2

, (5.53)

where rX symbolizes suitable intermediate values in M. We analyze the first term on the right-

hand side of (5.53): Using the representation (2.16) of X∆ in terms of hat functions θk, we can

write its integral as follows,

ż

M
ρ1pXn

∆q

˜

Xn
∆ ´Xn´1

∆

τn

¸

dξ “
ÿ

kPI`K

˜

xnk ´ x
n´1
k

τn

¸

ż ξk`1

ξk´1

ρ1pXn
∆qθk dξ. (5.54)

Moreover, since
ż ξk`1

ξk´1

θkpξqdξ “ δ, (5.55)

the validity of the system of Euler-Lagrange equations (5.5) yields that

´
@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ
“

C

ρ1p~xn∆q,
~xn∆ ´ ~x

n´1
∆

τn

G

ξ

“
ÿ

kPI`K

˜

xnk ´ x
n´1
k

τn

¸

ż ξk`1

ξk´1

ρpxnkqθkpξqdξ.

(5.56)

Finally, observing that

|Xn
∆pξq ´ x

n
k | ď px

n
k`1 ´ x

n
k´1q for each ξ P pξk´1, ξk`1q,

we can estimate the difference of the terms in (5.54) and (5.56) making use of the bound (5.51)

on ρ as follows:
ˇ

ˇ

ˇ

ˇ

ˇ

ż

M
ρ1pXn

∆q

˜

Xn
∆ ´Xn´1

∆

τn

¸

dξ ´
@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

kPI`K

ˇ

ˇ

ˇ

ˇ

ˇ

xnk ´ x
n´1
k

τn

ˇ

ˇ

ˇ

ˇ

ˇ

ż ξk`1

ξk´1

ˇ

ˇρ1pXn
∆pξqq ´ ρ

1pxnkq
ˇ

ˇθkpξqdξ

ď $δ
ÿ

kPI`K

ˇ

ˇ

ˇ

ˇ

ˇ

xnk ´ x
n´1
k

τn

ˇ

ˇ

ˇ

ˇ

ˇ

pxnk`1 ´ x
n
k´1q.

(5.57)
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Combining (5.53) and (5.57), the claim is proven due to

Nτ
ÿ

n“1

τn

˜

ˇ

ˇηptn´1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

M

ρpXn
∆q ´ ρpX

n´1
∆ q

τn
dξ ´

@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď$
Nτ
ÿ

n“1

τn

˜ ˇ

ˇ

ˇ

ˇ

ˇ

ż

M
ρ1pXn

∆q

˜

Xn
∆ ´Xn´1

∆

τn

¸

dξ ´
@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ

ˇ

ˇ

ˇ

ˇ

ˇ

`
$τn

2

ż

M

˜

Xn
∆ ´Xn´1

∆

τn

¸2

pξqdξ

¸

ď$2

¨

˝

8
ÿ

n“1

τnδ
ÿ

kPI`K

˜

xnk ´ x
n´1
k

τn

¸2
˛

‚

1{2 ¨

˝

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

pxnk`1 ´ x
n
k´1q

2

˛

‚

1{2

`
$2τ

2

8
ÿ

n“1

τn

›

›

›

›

›

Xn
∆ ´Xn´1

∆

τn

›

›

›

›

›

2

L2pMq

ď$2
`

2pb´ aq2T
˘1{2

pδFp~x0
∆qq

1{2 `$2pτFp~x0
∆qq,

where we used the energy estimate (5.23) and the bound (A.4) in the last step. �

In what follows, we are going to prove that the weak formulation (5.49) is indeed the limit

of the discrete weak formulation from Lemma 5.15, as ∆ Ñ 0. The two main steps for this

identification are to establish the following estimates, respectively:

e1,∆ :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ˆ

η1ptq

ż

Ω
ρpxq tu∆uτ pt, xq dx` ηptq

!

@

ρ1p~x∆q,∇ξFp~x∆q
D

ξ

)

τ
ptq

˙

dt

`ηp0q

ż

Ω
ρpxqu0

∆pxq dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
`

pδFp~x0
∆qq

1{2 ` pτFp~x0
∆qq

˘

,

(5.58)

and

e2,∆ :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0
ηptq

˜

1

2

ż

Ω

“

ρ3pxqBx tpu∆uτ pt, xq ` 4ρ2pxqBx

!

a

pu∆

)

τ
pt, xq2

‰

dx

´

!

@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ

)

τ
ptq

¸

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cδ1{4.

(5.59)

We proceed by proving (5.58) and (5.59). At the end of this section, it is shown how the claim

(5.49) follows from (5.58) and (5.59) on basis of the convergence for tu∆uτ obtained previously.

The first estimate in (5.58) is a consequence of Lemma 5.15:
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Proof of (5.58). Using that ηptnq “ 0 for any n ě Nτ , we obtain after “summation by parts”:

´

ż T

0
η1ptq

ˆ
ż

Ω
ρpxq tu∆uτ pt, xq dx

˙

dt “ ´
Nτ
ÿ

n“1

˜

ż tn

tn´1

η1ptqdt

ż

Ω
ρpxqūn∆pxqdx

¸

“ ´

Nτ
ÿ

n“1

τn

ˆ

ηptnq ´ ηptn´1q

τn

ż

M
ρ ˝Xn

∆pξq dξ

˙

“

Nτ
ÿ

n“1

τn

˜

ηptn´1q

ż

M

ρ ˝Xn
∆pξq ´ ρ ˝Xn´1

∆ pξq

τn
dξ

¸

` ηp0q

ż

M
ρ ˝X0

∆pξqdξ.

(5.60)

Finally observe that

R :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0
ηptq

!

@

ρ1p~x∆q,∇ξFp~x∆q
D

ξ

)

τ
ptqdt´

Nτ
ÿ

n“1

τnηptn´1q
@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝

Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

ˇ

1

τn

ż tn

tn´1

ηptq dt´ ηptn´1q

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1{2
˜

8
ÿ

n“1

τn$
2 }∇ξFp~x

n
∆q}

2
ξ

¸1{2

ď
`

pT ` 1q$2τ2
˘1{2

p2$2Fp~x0
∆qq

1{2 “ C 1Fp~x0
∆q

1{2τ,

using the energy estimate (5.23). We conclude that

e1,∆

(5.60)
ď R`

Nτ
ÿ

n“1

τn

˜

ˇ

ˇηptn´1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

M

ρ ˝Xn
∆pξq ´ ρ ˝Xn´1

∆ pξq

τn
dξ ´

@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď C 1τFp~x0
∆q

1{2 ` C
`

τFp~x0
∆q ` pδFp~x

0
∆qq

1{2
˘

,

where we used (5.52). l

The proof of (5.59) is treated essentially in 2 steps. In the first one we rewrite the term

x∇ξFp~x
n
∆q, ρ

1p~xn∆qyξ (see Lemma 5.16) and use Taylor expansions to identify it with the corre-

sponding integral terms of (5.50) up to some additional error terms, see Lemmata 5.17-5.19.

Then we use the strong compactness result of Proposition 5.13 to pass to the limit as ∆ Ñ 0 in

the second step.

Lemma 5.16. With the short-hand notation ρ1p~xq “ pρ1px1q, . . . , ρ
1pxK´1qq for any ~x P xξ, one

has that

´2
@

∇ξFp~x
n
∆q, ρ

1p~xn∆q
D

ξ
“ An1 ´A

n
2 `A

n
3 `A

n
4 , (5.61)
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where

An1 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2 ˜zn
k` 1

2

` zn
k´ 1

2

2

¸

ˆ

ρ1pxnk`1q ´ ρ
1pxnk´1q

δ

˙

,

An2 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
¨

˝

pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2

2zn
k` 1

2

zn
k´ 1

2

˛

‚ρ2pxnkq,

An3 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

¨

˝

pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2

2

˛

‚

ˆ

ρ1pxnk`1q ´ ρ
1pxnkq ´ px

n
k`1 ´ x

n
kqρ

2pxnkq

δ2

˙

,

An4 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

¨

˝

pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2

2

˛

‚

ˆ

ρ1pxnk´1q ´ ρ
1pxnkq ´ px

n
k´1 ´ x

n
kqρ

2pxnkq

δ2

˙

.

Proof. Fix some time index n P N (omitted in the calculations below). Recall the representation

of ∇ξF from (5.8). By a “summation by parts”, it follows that

´ 2
@

∇~xFp~x∆q, ρ
1p~x∆q

D

ξ
“ ´δ

ÿ

κPI1{2K

1

δ

ˆ

zκ`1 ´ zκ
δ

´
zκ ´ zκ´1

δ

˙

z2
κ

˜

ρ1pxκ` 1
2
q ´ ρ1pxκ´ 1

2
q

δ

¸

“ δ
ÿ

kPI`K

ˆzk` 1
2
´ zk´ 1

2

δ

˙

1

δ

ˆ

z2
k` 1

2

ρ1pxk`1q ´ ρ
1pxkq

δ
´ z2

k´ 1
2

ρ1pxkq ´ ρ
1pxk´1q

δ

˙

.

Using the elementary identity (for arbitrary numbers p˘ and q˘)

p`q` ´ p´q´ “
p` ` p´

2
pq` ´ q´q ` pp` ´ p´q

q` ` q´
2

,

we further obtain

´ 2
@

∇~xFp~x∆q, ρ
1p~x∆q

D

ξ

“ δ
ÿ

kPI`K

ˆzk` 1
2
´ zk´ 1

2

δ

˙

¨

˝

z2
k` 1

2

´ z2
k´ 1

2

2δ

˛

‚

ˆ

ρ1pxk`1q ´ ρ
1pxk´1q

δ

˙

(5.62)

` δ
ÿ

kPI`K

ˆzk` 1
2
´ zk´ 1

2

δ

˙

¨

˝

z2
k` 1

2

` z2
k´ 1

2

2

˛

‚

ˆ

ρ1pxk`1q ´ 2ρ1pxkq ` ρ
1pxk´1q

δ2

˙

. (5.63)

The sum in (5.62) equals An1 . In order to see that the sum in (5.63) equals ´An2 ` An3 ` An4 ,

simply observe that the identity

xk`1 ´ xk
δ

`
xk´1 ´ xk

δ
“

1

zk` 1
2

´
1

zk´ 1
2

“ ´
zk` 1

2
´ zk´ 1

2

zk` 1
2
zk´ 1

2

,

makes the coefficient of ρ2pxkq vanish. �
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Lemma 5.17. There is a constant C1 ą 0 expressible in Ω, T , B and H such that

R1 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An1 ´ 2

ż

M
Bξpz

n
∆pξq

2ρ2 ˝Xn
∆pξqdξ

ˇ

ˇ

ˇ

ˇ

ď C1δ
1{4.

Proof. First, observe that by definition of pzn∆,

ż

M
Bξpz

n
∆pξq

2ρ2 ˝Xn
∆pξqdξ “

ÿ

kPI`K

´zn
k` 1

2

´ zn
k´ 1

2

δ

¯2
ż ξ

k` 1
2

ξ
k´ 1

2

ρ2 ˝Xn
∆pξq dξ,

and therefore, by Hölder’s inequality,

R1 ď R
1{2
1a R

1{2
1b , (5.64)

with, recalling (5.25),

R1a “

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

´zn
k` 1

2

´ zn
k´ 1

2

δ

¯4
ď

8
ÿ

n“1

τn}pz
n
∆}

4
L4pΩq ď 9H, (5.65)

R1b “

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

”zn
k` 1

2

` zn
k´ 1

2

2

ρ1pxnk`1q ´ ρ
1pxnk´1q

δ
´

2

δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ2 ˝Xn
∆ dξ

ı2
. (5.66)

To simplify R1b, let us fix n (omitted in the following), and introduce x̃`k P rxk, xk`1s and

x̃´k P rxk´1, xks such that

ρ1pxk`1q ´ ρ
1pxk´1q

δ
“
ρ1pxk`1q ´ ρ

1pxkq

δ
`
ρ1pxkq ´ ρ

1pxk´1q

δ

“ ρ2px̃`k q
xk`1 ´ xk

δ
` ρ2px̃`k q

xk`1 ´ xk
δ

“
ρ2px̃`k q

zk` 1
2

`
ρ2px̃´k q

zk´ 1
2

.

For each k P I`K , we have that — recalling (5.55) —

zk` 1
2
` zk´ 1

2

2

´ρ2px̃`k q

zk` 1
2

`
ρ2px̃´k q

zk´ 1
2

¯

´
2

δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ2 ˝X∆ dξ

“
1

2

”´zk´ 1
2

zk` 1
2

` 1
¯

ρ2px̃`k q `
´zk` 1

2

zk´ 1
2

` 1
¯

ρ2px̃´k q
ı

´
2

δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ2 ˝X∆ dξ

“
1

2

”´zk´ 1
2

zk` 1
2

´ 1
¯

ρ2px̃`k q `
´zk` 1

2

zk´ 1
2

´ 1
¯

ρ2px̃´k q
ı

´
2

δ

ż ξ
k` 1

2

ξk

“

ρ2 ˝X∆ ´ ρ
2px̃`k q

‰

dξ ´
2

δ

ż ξk

ξ
k´ 1

2

“

ρ2 ˝X∆ ´ ρ
2px̃´k q

‰

dξ.

Since x̃`k lies in rxk, xk`1s and X∆pξq P rxk, xk` 1
2
s for each ξ P rξk, ξk` 1

2
s, one obtains that

|X∆pξq ´ x̃
`
k | ď xk`1 ´ xk, and therefore

2

δ

ż ξ
k` 1

2

ξk

ˇ

ˇρ2 ˝X∆pξq ´ ρ
2px̃`k q

ˇ

ˇ dξ ď 2$pxk`1 ´ xkq. (5.67)
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A similar estimate is satisfied for the other integral. Thus

R1b ď $2
Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

”´zn
k´ 1

2

zn
k` 1

2

´ 1
¯2
`

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯2
` 2pxnk`1 ´ x

n
k´1q

2
ı

.

Recalling the estimates (5.27) and (A.4), we further conclude that

R1b ď $2
`

6pb´ aq2pHpT ` 1qδq1{2 ` 4T pb´ aq2δ
˘

, (5.68)

remember
řNτ
n“1 τn P pT, T`1q. In combination with (5.64) and (5.65), this proves the claim. �

Lemma 5.18. There is a constant C2 ą 0 expressible in Ω, T , $ and H such that

R2 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An2 ´

ż

M
Bξpz

n
∆pξq

2ρ2 ˝Xn
∆pξq dξ

ˇ

ˇ

ˇ

ˇ

ď C2δ
1{4.

Proof. The proof is almost identical to (and even easier than) the one for Lemma 5.17 above.

Again, we have a decomposition of the form

R2 ď R
1{2
2a R

1{2
2b ,

where R2a equals R1a from (5.65), and

R2b “

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

”pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2

2zn
k` 1

2

zn
k´ 1

2

ρ2pxnkq ´
1

δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ2 ˝Xn
∆ dξ

ı2
.

By writing

pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2

2zn
k` 1

2

zn
k´ 1

2

“
1

2

´zn
k´ 1

2

zn
k` 1

2

´ 1
¯

`
1

2

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯

` 1,

and observing — in analogy to (5.67) — that

1

δ

ż ξ
k` 1

2

ξ
k´ 1

2

ˇ

ˇρ2 ˝X∆pξq ´ ρ
2pxkq

ˇ

ˇ dξ ď $pxk` 1
2
´ xk´ 1

2
q,

we obtain the same bound on R2b as the one on R1b from (5.68). �

Lemma 5.19. There is a constant C3 ą 0 expressible in Ω, T , $ and H such that

R3 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An3 ´
1

2

ż

M
Bξpz

n
∆pξqρ

3 ˝Xn
∆pξq dξ

ˇ

ˇ

ˇ

ˇ

ď C3δ
1{4.

Proof. Arguing like in the previous proofs, we first deduce — now by means of Hölder’s in-

equality instead of the Cauchy-Schwarz inequality — that

R3 ď R
1{4
3a R

3{4
3b ,
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where R3a “ R1a, and

R3b “

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2

2

˛

‚

ˆ

ρ1pxnk`1q ´ ρ
1pxnkq ´ px

n
k`1 ´ x

n
kqρ

2pxnkq

δ2

˙

´
1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ3 ˝Xn
∆ dξ

ˇ

ˇ

ˇ

ˇ

ˇ

4{3

.

Introduce intermediate values x̃`k such that

ρ1pxnk`1q ´ ρ
1pxnkq ´ px

n
k`1 ´ x

n
kqρ

2pxnkq “
1

2
pxnk`1 ´ x

n
kq

2ρ3px̃`k q “
δ2

2pzn
k` 1

2

q2
ρ3px̃`k q.

Thus we have that
¨

˝

pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2

2

˛

‚

ˆ

ρ1pxnk`1q ´ ρ
1pxnkq ´ px

n
k`1 ´ x

n
kqρ

2pxnkq

δ2

˙

´
1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ3 ˝Xn
∆ dξ

“
1

4

¨

˝

¨

˝

zn
k´ 1

2

zn
k` 1

2

˛

‚

2

` 1

˛

‚ρ3px̃`k q ´
1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ3 ˝Xn
∆ dξ

“
1

4

¨

˝

zn
k´ 1

2

zn
k` 1

2

` 1

˛

‚

¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚ρ3px̃`k q ´
1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

“

ρ3 ˝Xn
∆ ´ ρ

3px̃`k q
‰

dξ.

By the analogue of (5.67), it follows further that

R3b ď 2$4{3
Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

»

—

–

¨

˝

zn
k´ 1

2

zn
k` 1

2

` 1

˛

‚

4{3 ¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚

4{3

` pxnk`1 ´ x
n
k´1q

4{3

fi

ffi

fl

ď 2$4{3

¨

˝

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

¨

˝

zn
k´ 1

2

zn
k` 1

2

` 1

˛

‚

4˛

‚

1{3 ¨

˝

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚

2˛

‚

2{3

` 2$4{3pT ` 1qpb´ aq4{3δ,

where we used (A.4). At this point, the estimates (5.26) and (5.27) are used to control the first

and the second sum, respectively. �

Along the same lines, one proves the analogous estimate for A4 in place of A3. It remains

to identify the integral expressions inside R1 to R3 with those in the weak formulation (5.49).

Lemma 5.20. One has that
ż

M
Bξpz

n
∆pξqρ

3 ˝Xn
∆pξq dξ “

ż

Ω
Bxpu

n
∆pxqρ

3pxq dx, (5.69)

R5 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

ż

M
Bξpz

n
∆pξq

2ρ2 ˝Xn
∆pξq dξ ´ 4

ż

Ω

´

Bx

b

pun∆

¯2

pxqρ2pxqdx

ˇ

ˇ

ˇ

ˇ

ď C5δ
1{4. (5.70)
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Proof. The starting point is relation (5.16) that is

pzn∆pξq “ pun∆ ˝Xn
∆pξq (5.71)

for all ξ P M. Both sides of this equation are Lipschitz continuous in ξ, and are differentiable

except possibly at ξ 1
2
, ξ1, . . . , ξK´ 1

2
. At points ξ of differentiability, we have that

Bξpz
n
∆pξq “ Bxpu

n
∆ ˝Xn

∆pξqBξX
n
∆pξq.

Substitute this expression for Bξpz
n
∆pξq into the left-hand side of (5.69), and perform a change of

variables x “ Xn
∆pξq to obtain the integral on the right.

Next, take the square root in (5.71) before differentiation, then calculate the square and

divide by BξX
n
∆pξq afterwards. This series of calculations ends in

Bξpz
n
∆pξq

2

4pzn∆pξqBξX
n
∆pξq

“
`

Bx

b

pun∆
˘2
˝Xn

∆pξqBξX
n
∆pξq.

Performing the same change of variables as before, this proves that
ż

M

Bξpz
n
∆pξq

2

pzn∆pξqBξX
n
∆pξq

ρ2 ˝Xn
∆pξq dξ “ 4

ż

Ω

´

Bx

b

pun∆

¯2

pxqρ2pxq dx. (5.72)

It remains to estimate the difference between the ξ-integrals in (5.70) and in (5.72), respectively.

To this end, observe that for each ξ P pξk, ξk` 1
2
q with some k P I`K , one has BξX

n
∆pξq “ 1{zn

k` 1
2

and pz∆pξq P rzk´ 1
2
, zk` 1

2
s. Hence, for those ξ,

ˇ

ˇ

ˇ

ˇ

1´
1

pzn∆pξqBξX
n
∆pξq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1´
zn
k` 1

2

zn
k´ 1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

If instead ξ P pξk´ 1
2
, ξkq, then this estimate is satisfied with the roles of zn

k` 1
2

and zn
k´ 1

2

inter-

changed. Consequently, using once again (5.25) and (5.27),

Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

ż

M
Bξpz

n
∆pξq

2ρ2 ˝Xn
∆pξq dξ ´

ż

M

Bξpz
n
∆pξq

2

pzn∆pξqBξX
n
∆pξq

ρ2 ˝Xn
∆pξq dξ

ˇ

ˇ

ˇ

ˇ

ď $
Nτ
ÿ

n“1

τn

ż

M
Bξpz

n
∆pξq

2

ˇ

ˇ

ˇ

ˇ

1´
1

pzn∆pξqBξX
n
∆pξq

ˇ

ˇ

ˇ

ˇ

dξ

ď $

˜

8
ÿ

n“1

τn}Bξpz
n
∆}

4
L4pΩq

¸1{2
¨

˝

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

»

–

¨

˝1´
zn
k` 1

2

zn
k´ 1

2

˛

‚

2

`

¨

˝1´
zn
k` 1

2

zn
k´ 1

2

˛

‚

2fi

fl

˛

‚

1{2

ď 3H1{2`
6pb´ aq2T 1{2H1{2

δ1{2
˘1{2

,

since
řNτ
n“1 τn ď T ` 1 by hypothesis. This shows (5.70). �
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Proof of (5.59). Combining the discrete weak formulation (5.61), the change of variables

formula (5.69) and (5.70), and the definitions of R1 to R5, it follows that

e2,∆ ď $R5 `$
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

ˇ

1

2

ż

M

“

Bξpz
n
∆ρ

3 ˝Xn
∆pξq ` Bξpz

n
∆pξq

2ρ2 ˝Xn
∆pξq

‰

dξ ´
5
ÿ

i“1

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

ď $
5
ÿ

i“1

Ri ď $
5
ÿ

i“1

Ciδ
1{4.

This implies the desired inequality (5.59). l

We are now going to finish the proof of this section’s main result, Proposition 5.14. Un-

fortunately, one can not just apply the convergence results from Proposition 5.11 and Propo-

sition 5.13 “straight-forward”, since they are mostly stated for arbitrary, but compact time

intervals rt, ts Ď p0,`8q. To assure the convergence results for the respective time integrals

over p0, T q, repetitive applications of Vitali’s Theorem are needed.

Proof of Proposition 5.14. Owing to (5.58) and (5.59), we know that
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0
η1ptq

ż

Ω
ρpxq tu∆uτ pt, xqdx dt` ηp0q

ż

Ω
ρpxqu0

∆pxq dx

`

ż T

0
ηptq

1

2

ż

Ω

“

ρ3pxqBx tpu∆uτ pt, xq ` 4ρ2pxqBx

!

a

pu∆

)

τ
pt, xq2

‰

dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď e1,∆ ` e2,∆ ď C
`

pτFp~x0
∆qq ` pδFp~x

0
∆qq

1{2 ` δ1{4
˘

.

By our assumption (5.21) on Fp~x0
∆q, the expression on the right-hand side vanishes as ∆ Ñ 0.

To obtain (5.49) in the limit ∆ Ñ 0, we still need to show the convergence of the integrals to

their respective limits.

A technical tool is the observation that, for each p P r1, 4s,

Qp :“ sup
∆

Nτ
ÿ

n“1

τnδ
ÿ

κPI1{2K

pznκq
p ă 8,

thanks to the estimates (4.31) and (5.25). For the first integral, we use that tu∆uτ converges to

u˚ with respect to W2, locally uniformly on arbitrary rt, ts Ď p0,`8q. Thus clearly
ż

Ω
ρpxq tu∆uτ pt, xq dx ÝÑ

ż

Ω
ρpxqu˚pt, xq dx

for each t P p0, T q. In order to pass to the limit with the time integral, we apply Vitali’s Theorem.

To this end, observe that

ż T

0

ˇ

ˇ

ˇ

ˇ

η1ptq

ż

Ω
ρpxq tu∆uτ pt, xq dx

ˇ

ˇ

ˇ

ˇ

2

dt ď $2pb´ aq
Nτ
ÿ

n“1

τn

ż

Ω
un∆pxq

2 dx

“ $2pb´ aq
Nτ
ÿ

n“1

τnδ
ÿ

κPI1{2K

znκ ď Q1$
2pb´ aq.
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Next, using the strong convergence from (5.46), it follows that

Bx tpu∆uτ “ 2
!

a

pu∆

)

τ
Bx

a

pu∆ ÝÑ 2
?
u˚Bx

?
u˚ “ Bxu˚

strongly in L1pΩq for almost every t P p0, T q. Again, we apply Vitali’s Theorem to conclude

convergence of the time integral, on grounds of the following estimate:

ż T

0

ˇ

ˇ

ˇ

ˇ

ηptq

ż

Ω
ρ3pxqBx tpu∆uτ dx

ˇ

ˇ

ˇ

ˇ

2

dt ď $2pb´ aq
Nτ
ÿ

n“1

τn

ż

Ω

`

Bxpu
n
∆pxq

˘2
dx

“ $2pb´ aq
Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2 ˜zn
k` 1

2

` zn
k´ 1

2

2

¸

ď $2pb´ aq

¨

˝

8
ÿ

n“1

τn
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸4
˛

‚

1{2
¨

˚

˝

Nτ
ÿ

n“1

τnδ
ÿ

κPI1{2K

pznκq
2

˛

‹

‚

1{2

ď 9H1{2
Q

1{2
2 $2pb´ aq,

where we used (5.25). Finally, the strong convergence (5.46) also implies that
`

Bx tpu∆uτ

˘2
ÝÑ

`

Bx
?
u˚

˘2

strongly in L1pΩq, for almost every t P p0, T q. One more time, we invoke Vitali’s Theorem, using

that
ż T

0

ˇ

ˇ

ˇ

ˇ

ηptq

ż

Ω
ρ2pxqBx

!

a

pu∆

)2

τ
pt, xqdx

ˇ

ˇ

ˇ

ˇ

2

dt ď $2
Nτ
ÿ

n“1

τn

ż

Ω

´

Bx

b

pun∆

¯4

pxq dx

ď
1

2
$2

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
»

–

¨

˝1´
zn
k` 1

2

zn
k´ 1

2

˛

‚

2

`

¨

˝1´
zn
k´ 1

2

zn
k` 1

2

˛

‚

2fi

fl .

ď $2

¨

˝

8
ÿ

n“1

τnδ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸4
˛

‚

1{2 ¨

˝

8
ÿ

n“1

τnδ
ÿ

kPI`K

»

–

¨

˝1´
zn
k` 1

2

zn
k´ 1

2

˛

‚

4

`

¨

˝1´
zn
k´ 1

2

zn
k` 1

2

˛

‚

4fi

fl

˛

‚

1{2

.

The two terms in the last line are uniformly controlled in view of (5.25) and (5.27), respectively.

l

5.4. Numerical results

We fix Ω “ p0, 1q for all experiments described below, hence ℵ “ K ´ 1.

As in the numerical investigations of the previous chapter, we are going to use non-uniform

meshes for our numerical experiments in order to make our discretization more flexible. The

choice of non-uniform meshes, of initial grids ~x0
∆ and the scheme’s implementation are hence

analogue to Section 4.4.1 and 4.4.2.
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Figure 5.2. Left: snapshots of the densities u∆ for the initial condition (5.73)
at times t “ 0 and t “ 10i, i “ ´6, . . . ,´3, using K “ 200 grid points and the
time step size τ “ 10´6. Right: associated particle trajectories.

5.4.1. Numerical experiments. Our main experiments are carried out using the by now

classical test case from [BLS94] that is

u0pxq “ ε` cos16pπxq (5.73)

with ε “ 10´3.

5.4.1.a. Evolution of discrete solution. Figure 5.2 provides a qualitative picture of the evolution

with initial condition u0: The plot on the left shows the density function u∆ at several instances

in time, the plot on the right visualizes the motion of the mesh points txkuτ associated to the

Lagrangian maps X∆ in continuous time. It is clearly seen that the initial density has a very

flat minimum (which is degenerated of order 16) at x “ 1{2, which bifurcates into two sharper

minima at later times, and eventually becomes one single minimum again. This behaviour

underlines that no comparison principles are valid for the DLSS equation. Both figures have

been generated using K “ 200 spatial grid points and constant time step sizes τn ” τ “ 10´6.

5.4.1.b. Reference solution. To measure the quality of our numerical scheme, we compare all

our numerical results with those of the scheme described in [DMM10], which is fully variational

as well, but uses different ansatz functions for the Lagrangian maps. Even without a rigorous

result on uniqueness of weak solutions, it seems reasonable to expect that both schemes should

approximate the same solution. A technical issue with the comparison of our solution to the

reference solution is that both use a different way for the reconstruction of the density from

the Lagrangian map. This difference camouflages the true approximation error in the plain

L2-differences. For a fair comparison, we calculate the L2-difference of the linear interpolations

of the values for the density with respect to the nodes of the Lagrangian maps.

5.4.1.c. Fixed τ . In a first series of experiments, we study the decay of the L2-error under

refinement of the spatial discretization. For this purpose, we fix a time decomposition with
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Figure 5.3. Numerical error analysis for u0 from (5.73). Left: fixed time step
size τ “ 10´8 and K “ 25, 50, 100, 200 spatial grid points. The L2-errors are
evaluated at T “ 5 ¨ 10´6. Right: fixed K “ 800 using τ “ 10´5, 5 ¨ 10´6, 10´6, 5 ¨
10´7, 10´7, 5 ¨ 10´8. The error is evaluated at T “ 10´5.

constant time step sizes τn ” τ “ 10´8 and vary the number of spatial grid points, using

K “ 25, 50, 100, 200. Figure 5.3/left shows the corresponding L2-error between the solution to

our scheme and the reference solution, evaluated at time T “ 10´5. It is clearly seen that the

error decays with an almost perfect rate of δ29K´2.

5.4.1.d. Fixed K. For the second series of experiments, we keep the spatial discretization pa-

rameter K “ 800 fixed and run our scheme with the time step sizes τ “ 10´5, 5 ¨ 10´6, 10´6, 5 ¨

10´7, 10´7, 5 ¨ 10´8, respectively, where the time decompositions τ are always chosen to have

constant time step sizes τn ” τ . The corresponding L2-error at T “ 10´5 is plotted in Fig-

ure 5.3/right. It is proportional to τ .

5.4.1.e. Discontinuous initial data. One of the conclusions of Theorem 5.1 is that the discrete

approximations u∆ converge also for (a large class of) non-regular initial data u0. For illustration

of this feature, we consider the discontinuous initial density function

u0
discont “

$

&

%

1 for x P r0, 1
3 s Y r

2
3 , 1s,

10´3 for x P p1
3 ,

2
3q

(5.74)

instead of u0 from (5.73). According to our hypothesis (5.9), we need to use a sufficiently high

spatial and temporal resolution. In practice, this is done in an adaptive way: The K points of

the initial grid ~x0
∆ are not placed equidistantly, but with a higher refinement around the points

of discontinuity; the applied time steps τn are extremely small (down to 10´13) during the initial

phase of the evolution, and get larger (up to 10´9) at later times.

Figure 5.4 provides a qualitative picture of the fully discrete evolution for K “ 200 grid

points: Snapshots of the discrete density function u∆ are shown on the left, corresponding

snapshots of the logarithmic density are shown on the right. Note that within a very short time,
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Figure 5.4. Snapshots of the densities u∆ for the initial condition (5.74) at
times t “ 0 and t “ 10i, i “ ´13,´11, . . . ,´5,´3, using K “ 200 grid points
with linear (left) and logarithmic (right) scaling.
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Figure 5.5. Left: associated particle trajectories of u∆ using the initial condi-
tion (5.74). Right: Numerical error analysis for u0

discont from (5.74) with fixed
τ and K “ 25, 50, 100, 200 spatial grid points. The L2-errors are evaluated at
T “ 10´8.

peaks of relatively high amplitude are generated near the points where u0 is discontinuous. The

associated Lagrangian maps are visualized in Figure 5.5/left. Notice the fast motion of the grid

points near the discontinuities.

To estimate the rate of convergence, we performed a series of experiments using K “

25, 50, 100 and 200 spatial grid points. For comparison, we calculated a highly refined solu-

tion of the following semi-implicit reference scheme,

unref ´ u
n´1
ref

τn
“ ´∆2

`

un´1
ref ∆2 lnpunrefq

˘

,
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where ∆2 is the standard central difference operator ∆2. We use K “ 800 spatial grid point for

the reference scheme. An adaptive choice of the time steps τn needs to be made in order to avoid

that the reference solution uref breaks down because of loss of positivity. The L2-differences of

the densities and of their logarithms have been evaluated at T “ 10´8, see Figure 5.5/right. As

expected, the rate of convergence is no longer quadratic in δ9K´1; instead, the error decays

approximately linearly.





CHAPTER 6

The thin film equation — an alternative approach

The content of this chapter is joint work with my PhD-supervisor Daniel Matthes and is sub-

mitted. An online version of the paper is unfortunately not available so far.

6.1. Introduction

In this last chapter about the numerical treatment of evolution equations in one spatial dimen-

sion, we are going to study an alternative numerical approach to the one defined in Chapter 4

for equation (4.1) in the special case that α “ 1 and λ “ 0, but with an additional, more general

potential term. We further assume Ω “ pa, bq to be a bounded domain in this chapter. More

precisely, we consider the no-flux boundary problem

Btu “ ´Bx
`

uBxxxu
˘

` Bx
`

Vxu
˘

for t ą 0 and x P Ω, (6.1)

Bxu “ 0, upBxxxu´ Vxq “ 0 for t ą 0 and x P BΩ, (6.2)

u “ u0 ě 0 at t “ 0. (6.3)

The initial density is assumed to be integrable with total mass M ą 0, which is fixed for the rest

of this chapter. We further assume that the potential V P C2pΩq is nonnegative with bounded

second derivative,

V ě 0, Λ :“ sup
xPΩ

|Vxxpxq| ă 8, (6.4)

a typical choice being V pxq “ Λ
2 x

2.

6.1.1. Gradient flow structure. The gradient flow structure of (6.1) is quite the same as

the one of equation (4.1) with α “ 1 explained in Section 4.1.1, except for the drift-term: It is

well known that (6.1) can be written as a gradient flow in the energy landscape of the following

(modified) Dirichlet functional,

DV puq “ Dpuq ` Vpuq, with Dpuq “ 1

2

ż

Ω

`

Bxu
˘2

dx and Vpuq “
ż

Ω
V pxqupxqdx, (6.5)

with respect to the L2-Wasserstein distance [GO01]. Using DV for E in (2.6) (which corresponds

to hpx, r, pq “ 1
2 |p|

2`V pxqr), then the induced velocity field for the continuity equation (2.7) is

given by

vpuq “ Bxxxu´ Vx.

In analogy to the calculations in Section 4.1.1 of Chapter 4, the Hele-Shaw equation (6.1) can

be expressed in terms of X — remember that we denote by X the pseudo-inverse distribution

125
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function of u — by

BtX “
2

3
Bξ
`

Z
5
2 BξξZ

3
2

˘

` VxpXq, where Zpt, ξq :“
1

BξXpt, ξq
“ u

`

t,Xpt, ξq
˘

, (6.6)

which further equals the L2-gradient flow along the functional

DV pu ˝Xq “
1

2α

ż

M

„

Bξ

ˆ

1

BξX

˙2 1

BξX
dξ `

ż

M
V pXq dξ.

Since we are looking for an easy discretization of (6.6), it is advisable to reformulate the right-

hand side to get rid of the non-integer exponents. Elementary manipulations show that equation

(6.6) is equivalent to

BtX “ Bξ

ˆ

1

2
Z3BξξZ`

1

4
Z2Bξξ

`

Z2
˘

˙

` VxpXq. (6.7)

Note at this point that there are infinitely many equivalent ways to rewrite the right-hand

side of equation (6.6), and in view of the numerical scheme described in the next section,

there are accordingly infinitely many (non-equivalent!) central finite-difference discretizations.

The right choice of the representation of (6.6) strongly depends on the desired objective. The

convergence result which we are going to derive in this chapter only applies to the particular

finite-difference discretizations of (6.6), see (6.8), since only for that one, we obtain “the right”

Lyapunov functionals that provide the a priori estimates for the discrete-to-continuous limit.

The discretization of (6.7) in (4.8) from Chapter 4 allows an adequate analysis of the schemes

long-time behaviour, due to the interpretation of the discretized Dirichlet functional as the

auto-dissipation of the respective discrete entropy.

6.1.2. Description of the numerical scheme. As in the previous chapters, we define a

numerical scheme for (6.1) as a standard finite element discretization of (6.7) using local linear

spline interpolants. By the right choice for the discretization DV of the perturbed Dirichlet

functional DV , we are going to show later in Section 4.2.2.b, that the attained numerical scheme

equals a natural restriction of a L2-Wasserstein gradient flow in the potential landscape of DV .

Let us fix a spatio-temporal discretization parameter ∆ “ pτ ; ξq in the following way: Given

τ ą 0, introduce varying time step sizes τ “ pτ1, τ2, . . .q with τn P p0, τ s, and define a time de-

composition ptnq
8
n“0 of r0,`8q as in (2.10). As spatial discretization we fix K P N and introduce

an equidistant spatial decomposition of the mass domain M, so one gets ξ “ pξ0, . . . , ξKq with

ξk “ kδ for any k “ 0, . . . ,K and the k-independent mesh size δ “ MK´1. We further fix the

discrete metric dξ on Pr
2,ξpΩq that is induced by the matrix W “ δI P RpK´1qˆpK´1q, remember

that Ω “ pa, bq is assumed to be bounded, hence ℵ “ K ´ 1. That especially induces

x~v, ~wyξ “ δ x~v, ~wy and }~v}ξ “
a

δ x~v,~vy

for any ~v, ~w P RK´1. Furthermore, we introduce the central first and second order finite differ-

ence operators D1
ξ and D2

ξ in analogy to (4.7), see Chapter 4.
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Numerical scheme. Fix a discretization parameter ∆ “ pτ ; ξq. Then the numerical scheme

for (6.1) is defined as follows:

(1) For n “ 0, fix an initial Lagrangian vector ~x0
∆ :“ px0

1, . . . , x
0
K´1q P xξ with the usual

convention x0
0 “ a and x0

K “ b.

(2) For n ě 1, recursively define Lagrangian vectors ~xn∆ P xξ as solutions to the system

consisting of K ´ 1 equations

xnk ´ x
n´1
k

τn
“ D1

ξ

„

1

2
p~znq3 D2

ξr~z
ns `

1

4
p~znq2 D2

ξrp~z
nq2s



k

` Vxpxkq, (6.8)

where the values zn
`´ 1

2

ě 0 are defined as in (2.18) with convention (2.19). We later

show in Proposition 6.5 that the solvability of the system (6.8) is guaranteed.

From now on we denote a solution to the above scheme by ~x∆ “ p~x0
∆,~x

1
∆, . . .q and its

corresponding sequence of densities by u∆ “ pu0
∆, u

1
∆, . . .q, where the components ~xn∆ and un∆

correlate through the map uξ : xξ Ñ Pr
2,ξpΩq. Moreover, we introduce for any integer n P N0

piecewise affine interpolations pun∆ : Ω Ñ p0,`8q and pzn∆ : M Ñ p0,`8q of un∆ and un∆ ˝Xn
∆,

respectively, in analogy to Section 5.1.3 of Chapter 5. The associate sequences are then denoted

by pu∆ “ ppu
0
∆, pu

1
∆, . . .q and pz∆ “ ppz

0
∆, pz

1
∆, . . .q, respectively.

6.1.3. Main results. For the statement of our first result, fix a discretization parameter

∆ “ pτ ; ξq. On monotone vectors ~x P RK`1 with ~z “ zξr~xs, introduce the functionals

Hp~xq :“ δ
ÿ

κPI1{2K

logpzκq, DV p~xq :“
δ

2

ÿ

kPI`K

zk` 1
2
` zk´ 1

2

2

ˆzk` 1
2
´ zk´ 1

2

δ

˙2

`
ÿ

kPIK

Vxpxkq,

which are discrete replacements for the Boltzmann entropy and the modified Dirichlet energy

functionals, respectively.

Theorem 6.1. From any initial vector ~x0
∆ P xξ, a sequence of Lagrangian vectors ~xn∆ satisfying

(6.8) can be constructed by inductively defining ~xn∆ as a global minimizer of

~x ÞÑ
1

2τn

›

›~x´ ~xn´1
∆

›

›

2

ξ
`DV p~xq. (6.9)

This sequence of vectors ~xn∆ dissipates both the Boltzmann entropy and the discrete Dirichlet

energy in the sense that

Hp~xn∆q ď Hp~xn´1
∆ q ` τnΛM and DV p~xn∆q ď DV p~xn´1

∆ q.

To state our main result about convergence, recall the definition (2.14) of the time inter-

polant. Further, ∆ symbolizes a whole sequence of mesh parameters from now on, and we write

∆ Ñ 0 to indicate that τ Ñ 0 and δ Ñ 0 simultaneously.

Theorem 6.2. Let a nonnegative initial condition u0 P H1pΩq of finite second moment be given.

Choose initial approximations ~x0
∆ such that u0

∆ “ ur~x0
∆s Ñ u0 weakly in H1pΩq as ∆ Ñ 0, and

DV :“ sup
∆

DV p~x0
∆q ă 8, H :“ sup

∆
Hp~x0

∆q ă 8. (6.10)
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For each ∆, construct a discrete approximation ~x∆ according to the procedure described in

Theorem 6.1 above. Then, there are a subsequence with ∆ Ñ 0 and a limit density function

u˚ P Cpr0,`8q ˆ Ωq such that:

‚ tpu∆uτ converges to u˚ locally uniformly on r0,`8q ˆ Ω,

‚ u˚ P L
2
locpr0,`8q;H

1pΩqq,

‚ u˚p0q “ u0,

‚ u˚ satisfies the following weak formulation of (6.1):
ż 8

0

ż

Ω
Btϕu˚ dtdx`

ż 8

0
Npu˚, ϕq dt “ 0, (6.11)

with

Npu, ϕq :“
1

2

ż

Ω
Bxu

2Bxxxϕ` 3pBxuq
2Bxxϕdx`

ż

Ω
VxuBxϕdx (6.12)

for every test function ϕ P C8pp0,`8qˆΩq that is compactly supported in p0,`8qˆΩ

and satisfies Bxϕpt, aq “ Bxϕpt, bq “ 0 for any t P p0,`8q.

Remark 6.3. (1) Rate of convergence: Numerical experiments with smooth initial data u0

show that the rate of convergence is of order τ ` δ2, see Section 6.5.

(2) No uniqueness: Since our notion of solution is very weak, we cannot exclude that

different subsequences of tu∆uτ converge to different limits.

(3) Initial approximation: The assumptions in (6.10) are not independent: Boundedness

of DV p~x0
∆q implies boundedness of Hp~x0

∆q from above.

As in the proof of the respective result of Chapter 5 about the DLSS equation, the claims

of Theorem (6.2) are proven separately: The first two claims about the convergence and the

regularity of the limit curve are provided in the Propositions 6.12 and 6.13 from Section 6.3,

whereas the validity of the weak formulation is shown in Proposition 6.14, Section 6.4.

A similar weak formulation for (6.1) was formulated in [MMS09], but on the whole space

of real numbers, hence no boundary conditions appear. To motivate that (6.11) is a valid

choice for a weak formulation to the problem (6.1) with the no-flux boundary conditions in

(6.2), let us assume that u : r0,`8q ˆ Ω Ñ r0,`8q is a sufficiently smooth solution of (6.11)

satisfying the boundary conditions (5.2). Furthermore, choose any test function ϕ that satisfies

the requirements in Theorem 6.2, then repetetive integration by parts yields (for simplicity, we

assume V “ 0)

Npu, ϕq “
1

2

ż

Ω
Bxu

2 Bxxxϕ` 3pBxuq
2 Bxxϕdx

“
“

2uBxuBxxϕ
‰x“b

x“a
´

1

2

ż

Ω

`

2uBxxu´ pBxuq
2q Bxxϕdx

(6.2)
“ ´

1

2

“`

2uBxxu´ pBxuq
2q Bxϕ

‰x“b

x“a
`

ż

Ω
uBxxxu Bxϕdx

“
“

uBxxxuϕ
‰x“b

x“a
´

ż

Ω
BxpuBxxxuqϕdx

(6.2)
“ ´

ż

Ω
BxpuBxxxuqϕdx.



6.2. DISCRETIZATION IN SPACE AND TIME 129

A further integration by parts with respect to the time derivative then shows that u is a solution

to (6.1).

6.1.4. Key estimates. In what follows, we give a very formal outline for the derivation of the

main a priori estimates on the fully discrete solutions.

In the continuous theory of well-posedness of (6.1), two main a priori estimates are provided

by the dissipation of the (modified) Dirichlet functional DV and the Boltzmann entropy H, and

the respective estimates are formally derived by an integration by parts (assuming V “ 0):

´
d

dt
Dpuq “

ż

Ω
Bxu Bxxpu Bxxxuqdx “

ż

Ω
u pBxxxuq

2 dx, (6.13)

´
d

dt
Hpuq “

ż

Ω
plog u` 1q Bxpu Bxxxuq dx “

ż

Ω
pBxxuq

2 dx. (6.14)

Notice that energy dissipation does not provide L2pr0, T s;H3pRqq-regularity, due to the degen-

eracy.

In view of our numerical scheme, we are going to show in Section 6.2.1 that discrete so-

lutions to (6.8) are gradient flows of the discretized energy DV (which approximates DV in a

certain sense) with respect to the metric dξ, which is equivalent to the “real” L2-Wasserstein

distance restricted to Pr
2,ξpΩq. The corresponding fully discrete energy estimates are collected

in Proposition 6.8. Unfortunately, we cannot extract further information from the dissipation

of DV and a useful interpretation of (6.13) in the discrete setting is missing.

However, by convexity of ~x ÞÑ Hp~xq, we are able to give a meaning to (6.14) in terms of our

discretization. Using Lagrangian coordinates and Z “ u ˝X, the above expression turns into
ż

Ω
pBxxuq

2 dx “
1

4

ż

M
Z pBξξZ

2q2 dξ,

which is, unfortunately, algebraically more difficult to handle than the equivalent functional
ż

Ω
u2 pBxx log uq2 dx “

ż

M
Z3 pBξξZq

2 dξ, (6.15)

which we shall eventually work with, see Lemma 6.9. Obviously, piecewise constant densities

u∆ are impractical for the analytical treatment of an H2-estimate. Therefore we proceed as

before in Chapter 5 and study the total variation of the first derivative Bxpu∆, where pu∆ is a

locally affine interpolation of u∆. This TV-control is a perfect replacement for the H2-estimate

in (6.14), and is the source for compactness, see Proposition 6.13.

6.2. Discretization in space and time

6.2.0.a. Ansatz space and discrete entropy/information functionals. To derive a suitable dis-

cretization of D and DV from (6.5), we use a similar approach to that in Chapter 4. To this

end, note that the Dirichlet functional can be written as the dissipation of the quadratic Renyi

entropy Qpuq :“ 1
4

ş

Ω u
2 dx along the heat flow, which can be motivated by the formal calculation

d

dt
Qpvq “ ´1

2

ż

Ω
vBxx dx “

1

2

ż

Ω
pBxvq

2 dx, (6.16)
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where Btv “ Bxxv. That is why we introduce the functionals H,Q : xξ Ñ R as restrictions of H
and Q on xξ, i.e.

Hp~xq “ Hpuξr~xsq “

ż

Ω
uξr~xs log

`

uξr~xs
˘

dx “ δ
ÿ

κPI1{2K

logpzκq,

Qp~xq “ Qpuξr~xsq “
1

4

ż

Ω

`

uξr~xs
˘2

dx “
δ

4

ÿ

κPI1{2K

zκ.

Using (2.29), we obtain an explicit representation of the gradients,

B~xHp~xq “ δ
ÿ

κPI1{2K

zκ
eκ´ 1

2
´ eκ` 1

2

δ
, B~xQp~xq “

δ

4

ÿ

κPI1{2K

z2
κ

eκ´ 1
2
´ eκ` 1

2

δ
, (6.17)

and — for later references — also of the Hessians,

B2
~xHp~xq “ δ

ÿ

κPI1{2K

z2
κ

ˆeκ´ 1
2
´ eκ` 1

2

δ

˙ˆeκ´ 1
2
´ eκ` 1

2

δ

˙T

,

B2
~xQp~xq “

δ

2

ÿ

κPI1{2K

z3
κ

ˆeκ´ 1
2
´ eκ` 1

2

δ

˙ˆeκ´ 1
2
´ eκ` 1

2

δ

˙T

.

(6.18)

A key property of our simple discretization ansatz is the preservation of convexity of ~x ÞÑ Hp~xq

and ~x ÞÑ Qp~xq, which immediately follows by inspection of the Hessians in (6.18).

Following the discrete analogue to the calculation in (6.16), one attains a discretization for

the energy functional D from (6.5) that is

Dp~xq :“ x∇ξHp~xq,∇ξQp~xqyξ “
δ

2

ÿ

kPI1{2K

zκ` 1
2
` zκ´ 1

2

2

ˆzκ` 1
2
´ zκ´ 1

2

δ

˙2

. (6.19)

Remark 6.4. Although this discretization follows the same idea as the one of F1,0 “ D in

Chapter 4, that is “discretization by dissipation”, it is conceptually different in the sense that

the discrete flow along D dissipates H “ H1{2,0 instead of H1,0, see Lemma 6.9.

It remains to define a discrete counterpart for the potential V. A change of variables in the

definition in (6.5) yields

Vpuq “
ż

Ω
V pxqupxq dx “

ż

M
V pXq dξ,

Thus, a suitable discretization V of V is given by

Vp~xq “ δ
ÿ

kPIK

V pxkq.

In summary, our discretization DV of DV is

DV p~xq “ Dp~xq `Vp~xq “ x∇ξHp~xq,∇ξQp~xqyξ `Vp~xq.
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6.2.1. Interpretation of the scheme as a discrete Wasserstein gradient flow. We want

to discretize the spatially discrete gradient flow equation

Bt~x “ ´∇ξD
V p~xq (6.20)

also in time, using minimizing movements. To this end, fix a time step width τ ą 0; we combine

the spatial and temporal mesh widths in a single discretization parameter ∆ “ pτ ; ξq. For each

~y P xξ, introduce the Yosida-regularized Dirichlet functional DV
∆p¨, ¨,~yq : r0, τ s ˆ xξ Ñ R by

DV
∆pσ,~x,~yq “

1

2σ
}~x´ ~y}2ξ `DV p~xq.

A fully discrete approximation ~x∆ “ p~x0
∆,~x

1
∆, . . .q of (6.20) is now defined inductively from a

given initial datum ~x0
∆ by choosing each ~xn∆ as a global minimizer of DV

∆pτn, ¨,~x
n´1
∆ q. Below, we

prove that such a minimizer always exists, see Lemma 6.6.

In practice, one wishes to define ~xn∆ as — preferably unique — solution to the Euler-Lagrange

equations associated to DV
∆pτn, ¨,~x

n´1
∆ q, which leads to the implicit Euler time stepping:

~x´ ~xn´1
∆

τn
“ ´∇ξD

V p~xq “ ´
1

δ2

`

B2
~xHp~xq ¨ B~xQp~xq ` B2

~xQp~xq ¨ B~xHp~xq
˘

`∇ξVp~xq. (6.21)

Using (6.17) and (6.18), a straight-forward calculation shows that (6.21) is precisely the numer-

ical scheme (6.8) from the introduction. Equivalence of (6.21) and the minimization problem

for DV
∆ is guaranteed at least for sufficiently small τ ą 0.

Proposition 6.5. For each discretization ∆ and every initial condition ~x0 P xξ, the sequence of

equations (6.21) can be solved inductively. Moreover, if τ ą 0 is sufficiently small with respect

to δ and DV p~x0q, then each equation (6.21) possesses a unique solution with DV p~xq ď Dp~x0q,

and that solution is the unique global minimizer of DV
∆pτn, ¨,~x

n´1
∆ q.

The proof of this proposition is a consequence of the following rather technical lemma.

Lemma 6.6. Fix a spatial discretization parameter ξ and let C ą 0. Then for every ~y P xξ with

DV p~yq ď C, the following points are fulfilled:

‚ For each σ ą 0, the function DV
∆pσ, ¨,~yq possesses at least one global minimizer ~x˚ P xξ

which satisfies the system of Euler-Lagrange equations

~x˚ ´ ~y

σ
“ ´∇ξD

V p~x˚q.

‚ There exists a τC ą 0 independent of ~y such that for each σ P p0, τCq, the global

minimizer ~x˚ P xξ is strict, unique, and the only critical point of DV
∆pσ, ¨,~yq with

DV p~xq ď C.

Proof. Fix ~y P xξ with DV p~yq ď C, and define the nonempty (since it contains ~y) sublevel

set AC :“
`

DV
∆pσ, ¨,~yq

˘´1
pr0, Csq Ď xξ. From here, one can proceed analogously to the proof

of Lemma 4.7, if one can guarantee that the differences xκ` 1
2
´ xκ´ 1

2
“ δ{zκ have a uniform

positive lower bound on AC , for any ~x P AC . For this purpose, observe that zκ ě δ{pb ´ aq for
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each z P I1{2K and arbitrary ~z “ zξr~xs, hence

zκ ´
δ

b´ a
ď

ÿ

kPI`K

|zk` 1
2
´ zk´ 1

2
|

ď

¨

˝

ÿ

kPI`K

δ

zk` 1
2
` zk´ 1

2

˛

‚

1
2
¨

˝δ
ÿ

kPI`K

pzk` 1
2
` zk´ 1

2
q

ˆzk` 1
2
´ zk´ 1

2

δ

˙2
˛

‚

1
2

ď
`

2pb´ aq
˘1{2

DV p~xq1{2 ď p4pb´ aqCq1{2,

where we used (A.4). This shows the desired lower bound on xκ` 1
2
´ xκ´ 1

2
“ δ{zκ. �

6.2.2. A discrete Sobolev-type estimate. The following inequality plays a key role in our

analysis. Recall the definition of the intermediate value zk “
1
2pzk` 1

2
`zk´ 1

2
q and the conventions

z´ 1
2
“ z 1

2
and zK` 1

2
“ zK´ 1

2
from (2.19).

Lemma 6.7. For any ~x P xξ,

δ
ÿ

kPI`K

zk

ˆzk` 1
2
´ zk´ 1

2

δ

˙4

ď
9

4
δ

ÿ

κPI1{2K

z3
κ

ˆ

zκ`1 ´ 2zκ ` zκ´1

δ2

˙2

. (6.22)

Proof. Due to the conventions on ~z, one can even sum up over all k P IK on the left-hand side

of (6.22). By “summation by parts”

pAq “ δ
ÿ

kPIK

zk

ˆzk` 1
2
´ zk´ 1

2

δ

˙4

“ δ´3
ÿ

kPIK

zkpzk` 1
2
´ zk´ 1

2
q3pzk` 1

2
´ zk´ 1

2
q

“
δ´3

2

K
ÿ

k“1

zk´ 1
2

”

pzk´ 1
2
` zk´ 3

2
qpzk´ 1

2
´ zk´ 3

2
q3 ´ pzk` 1

2
` zk´ 1

2
qpzk` 1

2
´ zk´ 1

2
q3
ı

“
δ´3

2

K
ÿ

k“1

zk´ 1
2

”

pzk´ 3
2
´ zk´ 1

2
qpzk´ 1

2
´ zk´ 3

2
q3 ` pzk´ 1

2
´ zk` 1

2
qpzk` 1

2
´ zk´ 1

2
q3

` 2zk´ 1
2
pzk´ 1

2
´ zk´ 3

2
q3 ´ 2zk´ 1

2
pzk` 1

2
´ zk´ 1

2
q3
ı

.

Rearranging terms yields

pAq “ ´pAq ´ δ´3
ÿ

κPI1{2K

z2
κ

“

pzκ ´ zκ´1q
3 ´ pzκ`1 ´ zκq

3
‰

and further using the identity pp3 ´ q3q “ pp´ qqpp2 ` q2 ` pqq for arbitrary real numbers p, q,

pAq “ ´
δ´3

2

ÿ

κPI1{2K

z2
κ

“

pzκ ´ zκ´1q
3 ´ pzκ`1 ´ zκq

3
‰

“ ´
δ´1

2

ÿ

κPI1{2K

z2
κrD

2
ξ zsκ

”

pzκ ´ zκ´1q
2 ` pzκ`1 ´ zκq

2 ` pzκ ´ zκ´1qpzκ`1 ´ zκq
ı

.
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Invoke Hölder’s inequaltiy and the elementary estimate pq ď 1
2pp

2 ` q2q to conclude that

pAq ď
1

2

¨

˚

˝

δ
ÿ

κPI1{2K

z3
κrD

2
ξ zs

2
κ

˛

‹

‚

1
2
¨

˚

˝

δ
ÿ

κPI1{2K

zκ
9

4

«

ˆ

zκ ´ zκ´1

δ

˙2

`

ˆ

zκ`1 ´ zκ
δ

˙2
ff2
˛

‹

‚

1
2

ď
3

2

¨

˚

˝

δ
ÿ

κPI1{2K

z3
κrD

2
ξ zs

2
κ

˛

‹

‚

1
2
¨

˚

˝

δ
ÿ

κPI1{2K

zκ
2

«

ˆ

zκ ´ zκ´1

δ

˙4

`

ˆ

zκ`1 ´ zκ
δ

˙4
ff

˛

‹

‚

1
2

“
3

2

¨

˚

˝

δ
ÿ

κPI1{2K

z3
κrD

2
ξ zs

2
κ

˛

‹

‚

1
2

pAq
1
2 ,

where we have used an index shift and the conventions z´ 1
2
“ z 1

2
and zK` 1

2
“ zk´ 1

2
in the last

step. �

6.3. A priori estimates and compactness

Throughout this section, we consider a sequence ∆ “ pτ ; ξq of discretization parameters such

that δ Ñ 0 and τ Ñ 0 in the limit, formally denoted by ∆ Ñ 0. We assume that a fully

discrete solution ~x∆ “ p~x
0
∆,~x

1
∆, . . .q is given for each ∆-mesh, defined by inductive minimization

of the respective DV
∆. The sequences u∆, pu∆, pz∆ and X∆ of spatial interpolations are defined

from the respective ~x∆ accordingly. For the sequence of initial conditions ~x0
∆, we assume that

pu0
∆ Ñ u0 weakly in L1pΩq, and that the uniform boundedness of DV p~x0

∆q and Hp~x0
∆q is fulfilled

accordingly to (6.10).

6.3.1. Energy and entropy dissipation. The following estimates for the modified discrete

Dirichlet functional DV are immediate conclusions from Lemma 2.4.

Proposition 6.8. The discrete Dirichlet functional DV is monotone, i.e. DV p~xn∆q ď DV p~xn´1
∆ q.

Furthermore, one has
›

›~xn∆ ´ ~x
n
∆

›

›

2

ξ
ď 2DV p~x0

∆q ptn ´ tnq for all n ě n ě 0, (6.23)

8
ÿ

n“1

τn

›

›

›

›

›

~xn∆ ´ ~x
n´1
∆

τn

›

›

›

›

›

2

ξ

“

8
ÿ

n“1

τn
›

›∇ξD
V p~xn∆q

›

›

2

ξ
ď 2DV p~x0

∆q. (6.24)

The previous estimates were completely general. The following estimate is very particular

for the problem at hand. For convenience, assume that τ ă 1 in the following.

Lemma 6.9. One has that H satisfies Hp~xn∆q ď Hp~xn´1
∆ q ` τnΛM . Moreover, for arbitrary

T ą 0 and each Nτ P N with
řNτ
n“0 τn P pT, T ` 1q,

Nτ
ÿ

n“0

τnδ
ÿ

κPI1{2K

pznκq
3

ˆ

znκ`1 ´ 2znκ ` z
n
κ´1

δ2

˙2

ď C1pT,Hq (6.25)

is satisfied with the ∆-independent constant C1pt, hq :“ 4
`

h` ΛMpt` 1q
˘

.
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Proof. Fix T ą 0. Convexity of H implies that

Hp~xn´1
∆ q ´Hp~xn∆q ě

@

∇ξHp~x
n
∆q,~x

n´1
∆ ´ ~xn∆

D

ξ
“ τn

@

∇ξHp~x
n
∆q,∇ξD

V p~xn∆q
D

ξ
,

for each n “ 1, . . . , Nτ . Summation of these inequalities over n yields

Nτ
ÿ

n“1

τn
@

∇ξHp~x
n
∆q,∇ξD

V p~xn∆q
D

ξ
ď Hp~x0

∆q ´Hp~xNτ
∆ q. (6.26)

To estimate the right-hand side in (6.26), observe that Hp~x0
∆q ď H by hypothesis, and that

Hp~xNτ
∆ q is bounded from below, see Lemma A.7.

We turn to estimate the left-hand side in (6.26) from below. Recall that DV “ D`V. For

the component corresponding to V we find, using (6.17) and (6.4),

x∇ξHp~x
n
∆q,∇ξVp~x

n
∆qyξ “ δ

ÿ

κPI1{2K

zκ
Vxpxκ´ 1

2
q ´ Vxpxκ` 1

2
q

δ

ě

˜

´ sup
xPΩ

|Vxxpxq|

¸

δ
ÿ

κPI1{2K

ˇ

ˇ

ˇ

ˇ

zκ
xκ´ 1

2
´ xκ` 1

2

δ

ˇ

ˇ

ˇ

ˇ

ě ´ΛM.

This shows in particular Hp~xn∆q ď Hp~xn´1
∆ q`τnΛM due to (6.26). The component corresponding

to D is more difficult to estimate. Owing to (6.17) and (6.18), we have that

4 x∇ξDp~xq,∇ξHp~xqyξ

“ 4
@

∇ξHp~xq,∇2
ξQp~xq∇ξHp~xq

D

ξ
` 4

@

∇ξQp~xq,∇2
ξHp~xq∇ξHp~xq

D

ξ

“ 2δ
ÿ

κPI1{2K

z3
κ

ˆ

zκ`1 ´ 2zκ ` zκ´1

δ2

˙2

` δ
ÿ

κPI1{2K

z2
κ

ˆ

zκ`1 ´ 2zκ ` zκ´1

δ2

˙ˆ

z2
κ`1 ´ 2z2

κ ` z
2
κ´1

δ2

˙

for any ~x P xξ. Further estimates are needed to control the second sum from below. Observing

that

z2
κ`1 ´ 2z2

κ ` z
2
κ´1

δ2
“ 2zκ

zκ`1 ´ 2zκ ` zκ´1

δ2
`

ˆ

zκ`1 ´ zκ
δ

˙2

`

ˆ

zκ´1 ´ zκ
δ

˙2

and that 2pq ě ´3
2p

2 ´ 2
3q

2 for arbitrary real numbers p, q, we conclude that

4 x∇ξDp~xq,∇ξHp~xqyξ

ě

ˆ

4´
3

2

˙

δ
ÿ

κPI1{2K

z3
κ

ˆ

zκ`1 ´ 2zκ ` zκ´1

δ2

˙2

´
2δ

3

ÿ

κPIK

zk

ˆzk` 1
2
´ zk´ 1

2

δ

˙4

.

Now set ~x “ ~xn∆ and apply inequality (6.22). �

6.3.2. Bound on the total variation. The following lemma contains the key estimate to

derive compactness of fully discrete solutions in the limit ∆ Ñ 0. Below, we prove that from

the entropy dissipation (6.25), we obtain a control on the total variation of Bxpu
n
∆.
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For this purpose, recall that an appropriate definition of the total variation of a function

f P L1pΩq is given by (1.15), i.e.

TV rf s “ sup

#

J´1
ÿ

j“1

|fprj`1q ´ fprjq| : J P N, a ă r1 ă r2 ă ¨ ¨ ¨ ă rJ ă b

+

. (6.27)

Proposition 6.10. For any T ą 0 and Nτ P N with
řNτ
n“1 τn P pT, T ` 1q, one has that

Nτ
ÿ

n“1

τnTV rBxpu
n
∆s

2
ď pb´ aqC2pT,Hq, (6.28)

with the ∆-independent constant C2pt, hq :“ 25
2 C1pt, hq where C1pt, hq is given in Lemma 6.9.

Proof. Fix n ě 1. The function Bxpu
n
∆ is locally constant on each interval pxn

k´ 1
2

, xnkq. Therefore,

the total variation of Bxpu
n
∆ is given by the sum over all jumps at the points of discontinuity,

TV rBxpu
n
∆s “

ÿ

kPI`K

|JBxpun∆Kxk | `
ÿ

κPI1{2K

|JBxpun∆Kxκ | . (6.29)

In view of (5.18), one obtains by direct calculation for the derivative of pun∆ that

Bxpu
n
∆

ˇ

ˇ

pxn
k´ 1

2

,xnk q
“ zn

k´ 1
2

zn
k` 1

2

´ zn
k´ 1

2

δ
for k P IKzt0u,

Bxpu
n
∆

ˇ

ˇ

pxnk ,x
n

k` 1
2

q
“ zn

k` 1
2

zn
k` 1

2

´ zn
k´ 1

2

δ
for k P IKztKu.

Furthermore, Bxpu
n
∆ vanishes identically on the intervals pa, xn1

2

q and pxn
K´ 1

2

, bq. This implies

|JBxpun∆Kxk | “ δ

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2

for k P I`K ,

|JBxpun∆Kxκ | “ δznκ

ˆ

znκ`1 ´ 2znκ ` z
n
κ´1

δ2

˙

for κ P I1{2K .

We substitute this into (6.29), use Hölder’s inequality, and apply (6.22) to obtain as a conse-

quence of elementary estimates that

TV rBxpu
n
∆s

ďδ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2

` δ
ÿ

κPI1{2K

znκ
ˇ

ˇrD2
ξ~z

n
∆sκ

ˇ

ˇ

ď

¨

˝

ÿ

kPI`K

δ

znk

˛

‚

1
2
¨

˝δ
ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸4
˛

‚

1
2

`

¨

˚

˝

ÿ

κPI1{2K

δ

znκ

˛

‹

‚

1
2
¨

˚

˝

δ
ÿ

κPI1{2K

pznκq
3rD2

ξ~z
n
∆s

2
κ

˛

‹

‚

1
2

ď
5

2
p2pb´ aqq

1
2

¨

˚

˝

δ
ÿ

κPI1{2K

pznκq
3rD2

ξ~z
n
∆s

2
κ

˛

‹

‚

1
2

.
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We square both sides, multiply by τn, and sum over n “ 0, . . . , Nτ . An application of the

entropy dissipation inequality (6.25) yields the desired bound (6.28). �

6.3.3. Convergence of time interpolants. The a priori estimates from the previous sub-

sections implicate a series of results for solutions to the scheme:

Lemma 6.11. There is a constant C ą 0 just dependent on DV and Ω, such that the following

estimates are uniformly satisfied as ∆ Ñ 0:

sup
tPr0,`8q

}Bx tpu∆uτ ptq}L2pΩq ď C, (6.30)

sup
tPr0,`8q

} tpu∆uτ ptq ´ tu∆uτ ptq}L1pΩq ď Cδ, (6.31)

sup
tPr0,`8q

} tpu∆uτ ptq}L8pΩq ď C. (6.32)

Moreover, the functions tu∆uτ and tpu∆uτ are uniformly bounded on r0,`8q ˆ Ω.

Proof. For each n P N,

›

›Bxpu
n
∆

›

›

2

L2pΩq
“

ÿ

kPI`K

„

pxn
k` 1

2

´ xnkq
´ zn

k` 1
2

´ znk

xn
k` 1

2

´ xnk

¯2
` pxnk ´ x

n
k´ 1

2

q

´ znk ´ z
n
k´ 1

2

xnk ´ x
n
k´ 1

2

¯2


“
ÿ

kPI`K

„

xnk´1 ´ x
n
k

2

´zn
k` 1

2

´ zn
k´ 1

2

xnk´1 ´ x
n
k

¯2
`
xnk ´ x

n
k´1

2

´zn
k` 1

2

´ zn
k´ 1

2

xnk ´ x
n
k´1

¯2


“ δ
ÿ

kPI`K

zn
k` 1

2

` zn
k´ 1

2

2

´zn
k` 1

2

´ zn
k´ 1

2

δ

¯2
ď 2Dp~xn∆q.

This shows (6.30). For proving (6.31), we start with the observation that

|un∆pxq ´ pun∆pxq| ď |z
n
k` 1

2

´ zn
k´ 1

2

| for all x P rxn
k´ 1

2

, xn
k` 1

2

s,

which is a consequence of the definition of the piecewise affine function pun∆. Therefore,

}un∆ ´ pun∆}L1pΩq ď δ
ÿ

kPI`K

δ

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ

¨

˝

ÿ

kPI`K

δ

znk

˛

‚

1{2 ¨

˝δ
ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
˛

‚

1{2

ď δp2pb´ aqq1{2Dp~xn∆q
1{2,

which shows (6.31). Finally, (6.32) is a consequence of (6.30) and (6.31). First, note that

}tpu∆uτ ptq}L1pΩq ď } tu∆uτ ptq}L1pΩq ` } tpu∆uτ ptq ´ tu∆uτ ptq}L1pΩq ďM ` Cδ

is uniformly bounded. Now apply the interpolation inequality

} tpu∆uτ ptq}L8pΩq ď C}Bx tpu∆uτ ptq}
2{3
L2pΩq

} tpu∆uτ ptq}
1{3
L1pΩq

to obtain the uniform bound in (6.32). �
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Proposition 6.12. There exists a function u˚ : r0,`8q ˆ Ω Ñ r0,`8q with

u˚ P C
1{2
loc pr0,`8q;P

r
2pΩqq X L

8
locpr0,`8q;H

1pΩqq, (6.33)

and there exists a subsequence of ∆ (still denoted by ∆), such that for every r0, T s Ď r0,`8q

with T ą 0 the following assertions hold true:

tu∆uτ ptq ÝÑ u˚ptq in Pr
2pΩq, uniformly with respect to t P r0, T s, (6.34)

tpu∆uτ ÝÑ u˚ uniformly on r0, T s ˆ Ω. (6.35)

Proof. Fix T ą 0. The proof of (6.34) is a consequence of Proposition 2.5 and the entropy

estimates in (6.23) and (6.24). Note especially that in addition to the weak convergence in

(6.34), one has that tX∆uτ ptq converges to X˚ptq in L2pMq, uniformly with respect to t P r0, T s,

where X˚ P C
1{2
loc pr0,`8q;L

2pMqq is the Lagrangian map of u˚. The reason for this is once

again (2.27).

Following the proof of Proposition 5.11 in Chaper 5, we see that the convegence result in

(6.35) and the regularity stated in (6.33) for the limit curve u˚ can be attained, if the following

assumptions are fulfilled:

sup
tPr0,`8q

}Bx tpu∆uτ ptq}L2pΩq and sup
tPr0,`8q

} tpu∆uτ ptq}L8pΩq,

are ∆-uniformly bounded, and

sup
tPr0,`8q

} tpu∆uτ ptq ´ tu∆uτ ptq}L1pΩq ÝÑ 0

as ∆ Ñ 0, see Remark 5.12. Since these requirements coincide with the properties of u∆ shown

in Lemma 6.11, an one-to-one adaption of the proof of Proposition 5.11 completes the proof. �

Proposition 6.13. Under the hypotheses and with the notations of Proposition 6.12, we have

that

tpu∆uτ ÝÑ u˚ strongly in L2pr0, T s;H1pΩqq (6.36)

for any T ą 0, as ∆ Ñ 0.

Proof. Fix T ą 0. Remember that pun∆ is differentiable with locally constant derivatives on

any interval pxκ´ 1
2
, xκs for κ P I`K Y I1{2K Y tKu, and it especially fulfills Bxpu

n
∆pxq “ 0 for all

x P pa, a` δ{2q and all x P pb´ δ{2, bq. Therefore, integration by parts and a rearrangement of

the terms yield

}Bxpu
n
∆}

2
L2pΩq “

ÿ

κPI`KYI
1{2
K YtKu

ż xκ

x
κ´ 1

2

Bxpu
n
∆Bxpu

n
∆ dx “

ÿ

κPI`KYI
1{2
K YtKu

”

pun∆pxqBxpu
n
∆pxq

ıx“xκ´0

x“x
κ´ 1

2
`0

ď }pun∆}L8pΩqTV rBxpu
n
∆s .

Take further two arbitrary discretizations ∆1,∆2 and apply the above result to the difference

tpu∆1uτ´tpu∆2uτ . Using that TV rf ´ gs ď TV rf s`TV rgs we obtain by integration with respect
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to time that
ż T

0
}Bx tpu∆1uτ ´ Bx tpu∆2uτ }

2
L2pΩq dt

ď T 1{2 sup
tPr0,T s

}tpu∆1uτ ´ tpu∆2uτ }L8pΩq

ˆ

2

ż T

0
TV rBx tpu∆1uτ s

2
` TV rBx tpu∆2uτ s

2 dt

˙1{2

.

This shows that tpu∆uτ is a Cauchy-sequence in L2pr0, T s;H1pΩqq — remember (6.28) and es-

pecially the convergence result in (6.35) — and its limit has to coincide with u˚ in the sense of

distributions, due to the uniform convergence of tpu∆uτ to u˚ on r0, T s ˆ Ω. �

6.4. Weak formulation of the limit equation

To close the proof of Theorem 6.2, we are going to verify that the limit curve u˚ obtained

in Proposition 6.12 is indeed a weak solution to (6.1) with no-flux boundary conditions (6.2).

It seems that following the same strategy as applied in Chapter 3 or Chapter 5 is the right

method to attain this aim. Therefore, we are first going to show the validity of a discrete weak

formulation for tu∆uτ , using a discrete flow interchange estimate. Then the convergence result

of Proposition 6.13 suffices to pass to the limit in the discrete weak formulation, which shows

that the limit curve u˚ satisfies (6.11) from Theorem 6.2.

From now on, ~x∆ “ p~x
0
∆,~x

1
∆, . . .q with its derived functions u∆, pu∆, X∆ is a (sub)sequence

for which the convergence results stated in Proposition 6.12 and Proposition 6.13 are satisfied.

We continue to assume (6.10). The goal of this section is to prove the following:

Proposition 6.14. For every ρ P C8pΩq with ρ1paq “ ρ1pbq “ 0, and for every η P C8c pp0,`8qq,

the limit curve u˚ satisfies
ż 8

0

ż

Ω
Btϕu˚ dtdx`

ż 8

0
Npu˚, ϕq dt “ 0, (6.37)

where the highly nonlinear term N from (6.12) is given by

Npu, ρq “
1

2

ż

Ω
Bxpu

2qρ3 ` 3pBxuq
2ρ2 dx`

ż

Ω
Vxuρ

1 dx. (6.38)

Note that the weak formulation (6.11) is equivalent to (6.37). Simply observe that any

ϕ P C8pp0,`8q ˆ Ωq that has a compact support in p0,`8q ˆ Ω and satisfies Bxϕpt, aq “

Bxϕpt, bq “ 0 for any t P r0,`8q, can be approximated by linear combinations of products

ηptqρpxq with functions η P C8c pp0,`8qq and ρ P C8pΩq, which satisfies the requirements

formulated in Proposition 6.14.

For definiteness, fix a spatial test function ρ P C8pΩq with ρ1paq “ ρ1pbq “ 0, and a temporal

test function η P C8c pp0,`8qq with supp η Ď p0, T q for a suitable T ą 0. Denote again by

Nτ P N an integer with
řNτ
n“1 τn P pT, T ` 1q. Let $ ą 0 be chosen such that

}ρ}C4pΩq ď $ and }η}C1pr0,`8qq ď $. (6.39)

For convenience, we assume δ ă 1 and τ ă 1. In the estimates that follow, the non-explicity

constants possibly depend on Ω, T , $, and DV , but not on ∆.
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Lemma 6.15 (discrete weak formulation). A solution to the numerical scheme satisfies

8
ÿ

n“1

τnηptn´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ż

M

ρpXn
∆q ´ ρpX

n´1
∆ q

τn
dξ ´

@

∇ξD
V p~xn∆q, ρ

1p~xn∆q
D

ξ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
`

τ ` δ1{4
˘

, (6.40)

where we use the short-hand notation ρ1p~xq :“ pρ1px1q, . . . , ρ
1pxK´1qq for any ~x P xξ.

Proof. The proof follows the same idea as the one of Lemma 5.15. Here, we additionally use

that DV p~xn∆q is uniformly bounded by DV for any index n P N0, especially for n “ 0. �

As in the previous Chapter 5, the identification of the weak formulation in (6.37) with the

limit of (6.40) is splitted in two main steps: In the first one, we estimate the term that more or

less describes the error that is caused by approximating the time derivative in (6.37) with the

respective difference quotient in (6.40),

e1,∆ :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ˆ

η1ptq

ż

Ω
ρpxq tu∆uτ pt, xq dx` ηptq

!

@

∇ξD
V p~xn∆q, ρ

1p~xn∆q
D

ξ

)

τ
ptq

˙

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
`

τ ` δ1{2
˘

.

(6.41)

Since this temporal approximation does not demand the specific represenation of DV , one can

conveniently adapt the proof of (5.58) from the previous chapter to get the respective result in

(6.41), using in addition the energy estimates (6.23) and (6.24).

The second much more challenging step is to prove the error estimate

e2,∆ :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0
ηptq

˜

1

2

ż

Ω
ρ3pxqBxptu∆u

2
τ qpt, xq ` 3ρ2pxqBx tu∆u

2
τ pt, xqdx

`

ż

Ω
Vxpxq tu∆uτ ρ

1pxqdx´
!

@

∇ξD
V p~xn∆q, ρ

1p~xn∆q
D

ξ

)

τ
ptq

¸

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cδ1{4,

(6.42)

which, heuristically spoken, gives a rate of convergence of
!

@

∇ξD
V p~xn∆q, ρ

1p~xn∆q
D

ξ

)

τ
towards the

nonlinear term Npu˚, ρq from (6.38). The proof of (6.42) is treated essentially in 2 steps. In the

first one we rewrite the term
@

∇ξD
V p~xn∆q, ρ

1p~xn∆q
D

ξ
(see Lemma 6.16), and use Taylor expansions

to identify it with the corresponding integral terms of (6.38) up to some additional error terms,

see Lemmata 6.19-6.23. Then we use the strong compactness result of Proposition 6.13 to pass

to the limit as ∆ Ñ 0 in the second step.

Lemma 6.16. With the short-hand notation ρ1p~xq “ pρ1px1q, . . . , ρ
1pxK´1qq for any ~x P xξ, one

has that

´
@

∇ξD
V p~xn∆q, ρ

1p~xn∆q
D

ξ
“ An1 `A

n
2 `A

n
3 ´A

n
4 `A

n
5 `A

n
6 `A

n
7 , (6.43)
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where

An1 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
´

pzn
k` 1

2

q2 ` pzn
k´ 1

2

q2 ` zn
k` 1

2

zn
k´ 1

2

¯

ˆ

ρ1pxnk`1q ´ ρ
1pxnk´1q

2δ

˙

,

An2 “
δ

4

ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2

pzn
k` 1

2

q2
ˆ

ρ1pxnk`1q ´ ρ
1pxnkq

δ

˙

,

An3 “
δ

4

ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2

pzn
k´ 1

2

q2
ˆ

ρ1pxnkq ´ ρ
1pxnk´1q

δ

˙

,

An4 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
¨

˝

pzn
k` 1

2

q3 ` pzn
k´ 1

2

q3

2zn
k` 1

2

zn
k´ 1

2

˛

‚ρ2pxnkq,

An5 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

¨

˝

pzn
k` 1

2

q3 ` pzn
k´ 1

2

q3

2

˛

‚

ˆ

ρ1pxnk`1q ´ ρ
1pxnkq ´ px

n
k`1 ´ x

n
kqρ

2pxnkq

δ2

˙

,

An6 “ δ
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

¨

˝

pzn
k` 1

2

q3 ` pzn
k´ 1

2

q3

2

˛

‚

ˆ

ρ1pxnk´1q ´ ρ
1pxnkq ´ px

n
k´1 ´ x

n
kqρ

2pxnkq

δ2

˙

,

An7 “ δ
ÿ

kPI`K

V pxnkqρ
1pxnkq.

Proof. Fix some time index n P N (omitted in the calculations below). Recall the representation

of ∇ξD
V as

∇ξD
V p~xq “

1

δ2

`

B2
~xHp~xqB~xQp~xq ` B2

~xQp~xqB~xHp~xq
˘

with corresponding gradients and hessians in (6.17) and (6.18). Multiplication with ρ1p~x∆q then

yields

´
@

∇ξD
V p~xn∆q, ρ

1p~x∆q
D

ξ
“
δ

2

ÿ

κPI1{2K

z3
κ

˜

zκ` 1
2
´ 2zκ ` zκ´ 1

2

δ2

¸˜

ρ1pxκ` 1
2
q ´ ρ1pxκ´ 1

2
q

δ

¸

`
δ

4

ÿ

κPI1{2K

z2
κ

¨

˝

z2
κ` 1

2

´ 2z2
κ ` z

2
κ´ 1

2

δ2

˛

‚

˜

ρ1pxκ` 1
2
q ´ ρ1pxκ´ 1

2
q

δ

¸

` δ
ÿ

kPI`K

V pxkqρ
1pxkq.

Observing that

z2
κ`1 ´ 2z2

κ ` z
2
κ´1

δ2
“ 2zκ

zκ`1 ´ 2zκ ` zκ´1

δ2
`

ˆ

zκ`1 ´ zκ
δ

˙2

`

ˆ

zκ´1 ´ zκ
δ

˙2

,
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we further obtain that

´
@

∇ξD
V p~xn∆q, ρ

1p~x∆q
D

ξ
“ δ

ÿ

κPI1{2K

z3
κ

˜

zκ` 1
2
´ 2zκ ` zκ´ 1

2

δ2

¸˜

ρ1pxκ` 1
2
q ´ ρ1pxκ´ 1

2
q

δ

¸

`A2 `A3 `A7.

It hence remains to show that pAq “ A1 ´A4 `A5 `A6, where

pAq :“ δ
ÿ

κPI1{2K

z3
κ

˜

zκ` 1
2
´ 2zκ ` zκ´ 1

2

δ2

¸˜

ρ1pxκ` 1
2
q ´ ρ1pxκ´ 1

2
q

δ

¸

.

After “summation by parts” and an application of the elementary equality (for arbitrary numbers

p˘ and q˘)

p`q` ´ p´q´ “
p` ` p´

2
pq` ´ q´q ` pp` ´ p´q

q` ` q´
2

,

one attains

pAq “
δ

2

ÿ

kPI`K

ˆzk` 1
2
´ zk´ 1

2

δ

˙

¨

˝

z3
k´ 1

2

´ z3
k` 1

2

δ

˛

‚

ˆ

ρ1pxk`1q ´ ρ
1pxk´1q

δ

˙

`
δ

2

ÿ

kPI`K

ˆzk` 1
2
´ zk´ 1

2

δ

˙

¨

˝

z3
k´ 1

2

` z3
k` 1

2

δ

˛

‚

ˆ

ρ1pxk`1q ´ 2ρ1pxkq ` ρ
1pxk´1q

δ

˙

“ A1 `
δ

2

ÿ

kPI`K

ˆzk` 1
2
´ zk´ 1

2

δ

˙

¨

˝

z3
k´ 1

2

` z3
k` 1

2

δ

˛

‚

ˆ

ρ1pxk`1q ´ 2ρ1pxkq ` ρ
1pxk´1q

δ

˙

, (6.44)

where we additionally used the identity pp3´q3q “ pp´qqpp2`q2`pqq in the last step. In order

to see that the last sum in (6.44) equals to ´A4 `A5 `A6, simply observe that the identity

xk`1 ´ xk
δ

`
xk´1 ´ xk

δ
“

1

zk` 1
2

´
1

zk´ 1
2

“ ´
zk` 1

2
´ zk´ 1

2

zk` 1
2
zk´ 1

2

makes the coefficient of ρ2pxkq vanish. �

For the analysis of the terms in (6.43), we need some sophisticated estimates presented in

the following two lemmata. The first one gives a control on the oscillation of the z-values at

neighboring grid points:

Lemma 6.17. For any p, q P t1, 2u with p` q ď 3 one has that

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

p
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pzn
k˘ 1

2

qq

pzn
k¯ 1

2

qq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cδ1{4. (6.45)

Proof. Instead of (6.45), we are going to prove that

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

p
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k˘ 1

2

zn
k¯ 1

2

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

q

ď Cδ1{4 (6.46)
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is satisfied for any p, q P t1, 2u with p ` q ď 3, which implies (6.45) because of the following

considerations: The situation is clear for q “ 1, thus assume q “ 2 in (6.45). Then (6.46) is an

upper bound on (6.45), due to

pzn
k˘ 1

2

q2

pzn
k¯ 1

2

q2
´ 1 “

¨

˝

zn
k˘ 1

2

zn
k¯ 1

2

´ 1

˛

‚

2

` 2

¨

˝

zn
k˘ 1

2

zn
k¯ 1

2

´ 1

˛

‚

for any n “ 1, . . . , Nτ .

To prove (6.46), we first apply Hölder’s inequality,

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

p
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k˘ 1

2

zn
k¯ 1

2

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

q

“

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

p`q
¨

˝

δ

zn
k¯ 1

2

˛

‚

q

ď

¨

˝

Nτ
ÿ

n“1

τn
ÿ

kPI`K

δznk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸4
˛

‚

p`q
4

¨

˚

˝

δ
Nτ
ÿ

n“1

τn
ÿ

kPI`K

znk

¨

˝

δ

zn
k˘ 1

2

˛

‚

q
α

˛

‹

‚

α

,

(6.47)

with α “ 1´ p`q
4 . The first factor is uniformly bounded due to (6.22) and (6.25). For the second

term, we use (6.32) and (A.4) to achieve

δ
Nτ
ÿ

n“1

τn
ÿ

kPI`K

znk

¨

˝

δ

zn
k˘ 1

2

˛

‚

q
α

ď pT ` 1qδpb´ aq
q
α } tpuuτ }L8pr0,T sˆΩq ď CpT ` 1qδpb´ aq

q
α ,

which shows (6.46), due to α ě 1
4 . �

Lemma 6.18. For any p P t1, 2u one obtains that

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

2

pxnk`1 ´ x
n
k´1q

p ď Cδ1{2. (6.48)

Proof. Appling Hölder’s inequality,

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

2

pxnk`1 ´ x
n
k´1q

p

ď

¨

˝

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

4
˛

‚

1{2 ¨

˝

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk px
n
k`1 ´ x

n
k´1q

2p

˛

‚

1{2

.

The first sum is uniformly bounded thanks to (6.22) and (6.25), and the second one satisfies
¨

˝

Nτ
ÿ

n“1

τnδ
ÿ

kPI`K

znk px
n
k`1 ´ x

n
k´1q

2p

˛

‚

1{2

ď δ1{2pT ` 1q1{2} tpuuτ }
1{2
L8pr0,T sˆΩqpb´ aq

p,

where we used (6.32) and (A.4). �
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Lemma 6.19. There is a constant C1 ą 0 expressible in Ω, T , $ and DV such that

R1 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An1 ´ 3

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξq dξ

ˇ

ˇ

ˇ

ˇ

ď C1δ
1{4.

Proof. Let us introduce the term

Bn
1 :“ δ

ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
3

δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ2 ˝Xn
∆pξq dξ.

First observe that by definition of pzn∆,

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξq dξ “

ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
ż ξ

k` 1
2

ξ
k´ 1

2

pzn∆pξqρ
2 ˝Xn

∆pξqdξ,

hence we get for Bn
1

ˇ

ˇ

ˇ

ˇ

3

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξqdξ ´Bn

1

ˇ

ˇ

ˇ

ˇ

ď3$
ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
ż ξ

k` 1
2

ξ
k´ 1

2

ˇ

ˇ

pzn∆pξq ´ zk
ˇ

ˇ dξ ď 3$δ
ÿ

kPI`K

znk

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

zn
k´ 1

2

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

This especially implies, due to (6.45) that

Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

Bn
1 ´ 3

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξqdξ

ˇ

ˇ

ˇ

ˇ

ď Cδ1{4. (6.49)

For simplification of R1, let us fix n (omitted in the following), and introduce x̃`k P rxk, xk`1s

and x̃´k P rxk´1, xks such that

ρ1pxk`1q ´ ρ
1pxk´1q

2δ
“
ρ1pxk`1q ´ ρ

1pxkq

2δ
`
ρ1pxkq ´ ρ

1pxk´1q

2δ

“ ρ2px̃`k q
xk`1 ´ xk

2δ
` ρ2px̃`k q

xk`1 ´ xk
2δ

“
1

2

˜

ρ2px̃`k q

zk` 1
2

`
ρ2px̃´k q

zk´ 1
2

¸

.

Recalling that
ż ξk`1

ξk´1

θkpξqdξ “ δ, (6.50)
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one has for each k P I`K ,

pAq :“
1

2

´

z2
k` 1

2

` z2
k´ 1

2

` zk` 1
2
zk´ 1

2

¯´ρ2px̃`k q

zk` 1
2

`
ρ2px̃´k q

zk´ 1
2

¯

´
3

δ

ż ξ
k` 1

2

ξ
k´ 1

2

zkρ
2 ˝X∆ dξ

“
1

4
zk´ 1

2

˜

2`
zk´ 1

2

zk` 1
2

¸

ρ2px̃`k q `
1

4
zk` 1

2

¨

˝2`
z2
k´ 1

2

z2
k` 1

2

˛

‚ρ2px̃`k q

`
1

4
zk` 1

2

˜

2`
zk` 1

2

zk´ 1
2

¸

ρ2px̃´k q `
1

4
zk´ 1

2

¨

˝2`
z2
k` 1

2

z2
k´ 1

2

˛

‚ρ2px̃´k q ´
3

δ

ż ξ
k` 1

2

ξ
k´ 1

2

zkρ
2 ˝X∆ dξ

“
1

4

»

–zk´ 1
2

˜

zk´ 1
2

zk` 1
2

´ 1

¸

` zk` 1
2

¨

˝

z2
k´ 1

2

z2
k` 1

2

´ 1

˛

‚

fi

fl ρ2px̃`k q

`
1

4

»

–zk` 1
2

˜

zk` 1
2

zk´ 1
2

´ 1

¸

` zk´ 1
2

¨

˝

z2
k` 1

2

z2
k´ 1

2

´ 1

˛

‚

fi

fl ρ2px̃´k q

´
3

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

zk
“

ρ2 ˝X∆ ´ ρ
2px̃`k q

‰

dξ ´
3

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

zk
“

ρ2 ˝X∆ ´ ρ
2px̃´k q

‰

dξ.

Applying the trivial identity (for arbitrary numbers p and q)

q

ˆ

p2

q2
´ 1

˙

“ pp` qq

ˆ

p

q
´ 1

˙

,

the above term finally reads as

pAq “
1

4

«

zk´ 1
2

˜

zk´ 1
2

zk` 1
2

´ 1

¸

` 2zk

˜

zk´ 1
2

zk` 1
2

´ 1

¸ff

ρ2px̃`k q

`
1

4

«

zk` 1
2

˜

zk` 1
2

zk´ 1
2

´ 1

¸

` 2zk

˜

zk` 1
2

zk´ 1
2

´ 1

¸ff

ρ2px̃´k q

´
3

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

zk
“

ρ2 ˝X∆ ´ ρ
2px̃`k q

‰

dξ ´
3

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

zk
“

ρ2 ˝X∆ ´ ρ
2px̃´k q

‰

dξ.

(6.51)

Since x̃`k lies between the values xk and xk`1, and X∆pξq P rxk, xk` 1
2
s for each ξ P rξk, ξk` 1

2
s, we

conclude that |X∆pξq ´ x̃
`
k | ď xk`1 ´ xk, and therefore

3

2δ

ż ξ
k` 1

2

ξk

zk
ˇ

ˇρ2 ˝X∆pξq ´ ρ
2px̃`k q

ˇ

ˇ dξ ď
3

2
$zkpxk`1 ´ xkq. (6.52)
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A similar estimate is valid for the other integral over rξk´ 1
2
, ξks and for the integrals with ρ2px̃´k q.

Thus, combining (6.51) and (6.52) with zn
k˘ 1

2

ď 2znk and the definition of An1 , one attains that

|An1 ´B
n
1 | ď 2$

ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
»

–

¨

˝

zn
k` 1

2

zn
k´ 1

2

´ 1

˛

‚`

¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚

fi

fl

` 3$
ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2

pxnk`1 ´ x
n
k´1q,

and further, applying (6.45) and (6.48),

Nτ
ÿ

n“1

τn |A
n
1 ´B

n
1 | ď Cδ1{4. (6.53)

By triangle inequality, (6.49) and (6.53) provide the claim. �

Along the same lines, one proves the analogous estimate for An2 and An3 in place of An1 :

Lemma 6.20. There are constants C2 ą 0 and C3 ą 0 expressible in Ω, T , $ and DV such

that

R2 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An2 ´
1

4

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξqdξ

ˇ

ˇ

ˇ

ˇ

ď C2δ
1{4,

R3 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An3 ´
1

4

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξqdξ

ˇ

ˇ

ˇ

ˇ

ď C3δ
1{4.

Lemma 6.21. There is a constant C4 ą 0 expressible in Ω, T , $ and DV such that

R4 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An4 ´

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξq dξ

ˇ

ˇ

ˇ

ˇ

ď C4δ
1{4.

Proof. The proof is almost identical to the one for Lemma 6.19 above. As before, we introduce

the term

Bn
4 :“ δ

ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
1

δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ2 ˝Xn
∆pξq dξ

and get due to (6.45), analogously to (6.49), that

Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

Bn
4 ´

ż

M
pzn∆pξqBξpz

n
∆pξq

2ρ2 ˝Xn
∆pξqdξ

ˇ

ˇ

ˇ

ˇ

ď Cδ1{4. (6.54)

By writing

pzn
k` 1

2

q3 ` pzn
k´ 1

2

q3

2zn
k` 1

2

zn
k´ 1

2

“ znk

´zn
k´ 1

2

zn
k` 1

2

´ 1
¯

` znk

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯

` znk ,
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one obtains that

pzn
k` 1

2

q3 ` pzn
k´ 1

2

q3

2zn
k` 1

2

zn
k´ 1

2

ρ2pxnkq ´
1

δ

ż ξ
k` 1

2

ξ
k´ 1

2

zkρ
2 ˝Xn

∆pξq dξ

“znk

´zn
k´ 1

2

zn
k` 1

2

´ 1
¯

` znk

´zn
k` 1

2

zn
k´ 1

2

´ 1
¯

´
1

δ

ż ξ
k` 1

2

ξ
k´ 1

2

znk
“

ρ2 ˝Xn
∆pξq ´ ρ

2pxnkq
‰

dξ.

Observing — in analogy to (6.52) — that

1

δ

ż ξ
k` 1

2

ξ
k´ 1

2

znk
ˇ

ˇρ2 ˝Xn
∆pξq ´ ρ

2pxnkq
ˇ

ˇdξ ď $znk px
n
k` 1

2

´ xn
k´ 1

2

q,

we obtain the same bound on |An4 ´B
n
4 | as before on |An1 ´B

n
1 |, i.e.

|An4 ´B
n
4 | ď $

ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2
»

–

¨

˝

zn
k` 1

2

zn
k´ 1

2

´ 1

˛

‚`

¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚

fi

fl

`$
ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2

pxnk`1 ´ x
n
k´1q.

Again, applying (6.45) and (6.48), we get

Nτ
ÿ

n“1

τn |A
n
4 ´B

n
4 | ď Cδ1{4, (6.55)

and the estimates (6.54) and (6.55) imply the desired bound on R4. �

Lemma 6.22. There is a constant C5 ą 0 expressible in Ω, T , $ and DV such that

R5 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An5 ´
1

2

ż

M
pzn∆pξqBξpz

n
∆pξqρ

3 ˝Xn
∆pξqdξ

ˇ

ˇ

ˇ

ˇ

ď C5δ
1{4.

Proof. The idea of the proof is the same as in the previous proofs. Let us define similar to Bn
1

the term

Bn
5 :“ δ

ÿ

kPI`K

zn
k` 1

2

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

ρ3 ˝Xn
∆pξq dξ.

Note in particular that we weight the integral here with zn
k` 1

2

. Then

ˇ

ˇ

ˇ

ˇ

1

2

ż

M
pzn∆pξqBξpz

n
∆pξqρ

3 ˝Xn
∆pξq dξ ´Bn

5

ˇ

ˇ

ˇ

ˇ

ď
1

2
$

ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

ż ξ
k` 1

2

ξ
k´ 1

2

ˇ

ˇ

pzn∆pξq ´ z
n
k` 1

2

ˇ

ˇ dξ

ď
1

2
$δ

ÿ

kPI`K

zn
k` 1

2

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k` 1

2

´ zn
k´ 1

2

δ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

zn
k´ 1

2

zn
k` 1

2

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,
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where we used that by definition of pzn∆,

ż

M
pzn∆pξqBξpz

n
∆pξqρ

3 ˝Xn
∆pξq dξ “

ÿ

kPI`K

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

ż ξ
k` 1

2

ξ
k´ 1

2

pzn∆pξqρ
3 ˝Xn

∆pξqdξ.

This especially implies, due to (6.45) that

Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

Bn
5 ´

1

2

ż

M
pzn∆pξqBξpz

n
∆pξqρ

3 ˝Xn
∆pξqdξ

ˇ

ˇ

ˇ

ˇ

ď Cδ1{4. (6.56)

Furthermore, one can introduce intermediate values x̃`k such that

ρ1pxnk`1q ´ ρ
1pxnkq ´ px

n
k`1 ´ x

n
kqρ

2pxnkq “
1

2
pxnk`1 ´ x

n
kq

2ρ3px̃`k q “
δ2

2pzn
k` 1

2

q2
ρ3px̃`k q.

Using the identity
¨

˝

pzn
k` 1

2

q3 ` pzn
k´ 1

2

q3

2

˛

‚

1

2pzn
k` 1

2

q2
“

zn
k` 1

2

2
`

zn
k´ 1

2

4

¨

˝

pzn
k´ 1

2

q2

pzn
k` 1

2

q2
´ 1

˛

‚`

zn
k` 1

2

4

¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚,

we thus have — using again (6.50) — that
¨

˝

pzn
k` 1

2

q3 ` pzn
k´ 1

2

q3

2

˛

‚

ˆ

ρ1pxnk`1q ´ ρ
1pxnkq ´ px

n
k`1 ´ x

n
kqρ

2pxnkq

δ2

˙

´
1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

znk ρ
3 ˝Xn

∆ dξ

“

zn
k´ 1

2

4

¨

˝

pzn
k´ 1

2

q2

pzn
k` 1

2

q2
´ 1

˛

‚`

zn
k` 1

2

4

¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚´
1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

zn
k` 1

2

“

ρ3 ˝Xn
∆ ´ ρ

3px̃`k q
‰

dξ.

Observing — in analogy to (6.52) — that

1

2δ

ż ξ
k` 1

2

ξ
k´ 1

2

znk
ˇ

ˇρ2 ˝Xn
∆pξq ´ ρ

2pxnkq
ˇ

ˇdξ ď
$

2
zn
k` 1

2

pxn
k` 1

2

´ xn
k´ 1

2

q,

and zn
k` 1

2

ď 2znk , we obtain the following bound on |An5 ´B
n
5 |:

|An5 ´B
n
5 | ď

$

4

ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

»

–

¨

˝

pzn
k´ 1

2

q2

pzn
k` 1

2

q2
´ 1

˛

‚`

¨

˝

zn
k´ 1

2

zn
k` 1

2

´ 1

˛

‚

fi

fl

`$
ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸

pxnk`1 ´ x
n
k´1q.

Again, applying (6.45) and (6.48), we get

Nτ
ÿ

n“1

τn |A
n
5 ´B

n
5 | ď Cδ1{4, (6.57)

and the estimates (6.56) and (6.57) imply the desired bound on R5. �



148 6. THE THIN FILM EQUATION — AN ALTERNATIVE APPROACH

Arguing like in the previous proof, one shows the analogous estimate for An6 in place of An5 .

It remains to analyze the potential term An7 , where we instantaneously identify the ξ-integral

with the x-integral:

Lemma 6.23. There is a constant C7 ą 0 expressible in Ω, T and $ such that

R7 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

An7 ´

ż

Ω
Vxpxqu

n
∆pxqdx

ˇ

ˇ

ˇ

ˇ

ď C7δ.

Proof. Since the product Vxρx is a smooth function on the domain Ω, we can invoke the mean-

value theorem and find intermediate values x̃k, such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ
ÿ

kPI`K

Vxpx
n
kqρxpx

n
kq ´

ż

M
VxpX

n
∆pξqqρxpX

n
∆pξqqdξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ
ÿ

kPI`K

Bx
`

Vxρx
˘

px̃kqpx
n
κ` 1

2

´ xn
κ´ 1

2

q

ď δpb´ aq sup
xPΩ

ˇ

ˇVxpxqρxpxq
ˇ

ˇ.

The claim then follows by a change of variables. �

It remains to identify the integral expressions inside R1 to R5 with those in the weak for-

mulation (6.37).

Lemma 6.24. One has that
ż

M
pzn∆pξqBξpz

n
∆pξqρ

3 ˝Xn
∆pξqdξ “

1

2

ż

Ω
Bx
`

pun∆pxq
˘2
ρ3pxq dx, (6.58)

R8 :“
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

ż

M
pzn∆pξqpBξpz

n
∆q

2pξqρ2 ˝Xn
∆pξqdξ ´

ż

Ω
pBxpu

n
∆q

2pxqρ2pxq dx

ˇ

ˇ

ˇ

ˇ

ď C8δ
1{4 (6.59)

for a constant C8 ą 0 expressible in Ω, T , $ and DV .

Proof. The starting point is the relation (5.16) between the locally affine interpolants pun∆ and

pzn∆ that is

pzn∆pξq “ pun∆ ˝Xn
∆pξq (6.60)

for all ξ PM. Both sides of this equation are differentiable at almost every ξ PM, with

Bξpz
n
∆pξq “ Bxpu

n
∆ ˝Xn

∆pξqBξX
n
∆pξq.

Substitute this expression for Bξpz
n
∆pξq into the left-hand side of (6.58), and perform a change of

variables x “ Xn
∆pξq to obtain the integral on the right.

Next observe that the x-integral in (6.59) can be written as
ż

Ω
pBxpu

n
∆q

2pxqρ2pxq dx “

ż

M
pBξpz

n
∆q

2pξq
1

BξX
n
∆

ρ2 ˝Xn
∆pξq dξ, (6.61)

using (6.60). It hence remains to estimate the difference between the ξ-integral in (6.59) and

(6.61), respectively. To this end, observe that for each ξ P pξk, ξk` 1
2
q with some k P I`K , one has
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BξX
n
∆pξq “ 1{zn

k` 1
2

and pz∆pξq P rzk´ 1
2
, zk` 1

2
s. Hence, for those ξ,

ˇ

ˇ

ˇ

ˇ

1´
1

pzn∆pξqBξX
n
∆pξq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1´
zn
k` 1

2

zn
k´ 1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

If instead ξ P pξk´ 1
2
, ξkq, then this estimate is satisfied with the roles of zn

k` 1
2

and zn
k´ 1

2

inter-

changed. Consequently,
ˇ

ˇ

ˇ

ˇ

ż

M
pBξpz

n
∆q

2pξqpzn∆pξqρ
2 ˝Xn

∆pξqdξ ´

ż

M
pBξpz

n
∆q

2pξq
1

BξX
n
∆pξq

ρ2 ˝Xn
∆pξq dξ

ˇ

ˇ

ˇ

ˇ

ď$

ż

M
pBξpz

n
∆q

2pξqpzn∆pξq

ˆ

1´
1

pzn∆pξqBξX
n
∆pξq

˙

dξ

ď$δ
ÿ

kPI`K

znk

˜

zn
k` 1

2

´ zn
k´ 1

2

δ

¸2 ˜ˇ

ˇ

ˇ

ˇ

ˇ

zk` 1
2

zk´ 1
2

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

zk´ 1
2

zk` 1
2

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

,

which is again at least of order Opδ
1
4 q, as we have seen before in (6.45). �

Proof of (6.42). Combining the discrete weak formulation (6.43), the change of variables

formulae (6.58) and (6.59), and the definitions of R1 to R8, it follows that

e2,∆ ď $R8 `$
Nτ
ÿ

n“1

τn

ˇ

ˇ

ˇ

ż

M
pzn∆pξqBξpz

n
∆pξqρ

3 ˝Xn
∆pξq dξ `

3

2

ż

M
pzn∆pξqpBξpz

n
∆q

2pξqρ2 ˝Xn
∆pξqdξ

`

ż

Ω
Vxpxq tu∆uτ pxqρ

1pxq dx´
7
ÿ

i“1

Ani

ˇ

ˇ

ˇ

ď $
7
ÿ

i“1

Rni ď $
7
ÿ

i“1

Ciδ
1{4.

This implies the desired inequality (6.42). l

We are now going to finish the proof of this section’s main result, Proposition 6.14.

Proof of Proposition 6.14. Owing to (6.41) and (6.42), we know that
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0
η1ptq

ż

Ω
ρpxq tu∆uτ pt, xq dx` ηptq

1

2

ż

Ω
ρ3pxqBxptu∆u

2
τ qpt, xq ` 3ρ2pxqpBx tu∆uτ q

2pt, xq dx

`

ż

Ω
Vxpxq tu∆uτ pt, xqρ

1pxqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď e1,∆ ` e2,∆ ď C
`

τ ` δ1{4
˘

.

To obtain (6.37) in the limit ∆ Ñ 0, we still need to show the convergence of the integrals to

their respective limits, but this is no challenging task anymore: Note that (6.36) implies

Bx tu∆uτ ÝÑ Bxu˚ strongly in L2pr0, T s ˆ Ωq, (6.62)
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hence pBx tu∆uτ q
2 converges to pBxu˚q

2 in L1pr0, T s ˆ Ωq. Furthermore, we have that

Bxptu∆u
2
τ q “ 2 tu∆uτ Bx tu∆uτ ÝÑ 2u˚Bxpu˚q “ Bxpu

2
˚q (6.63)

in L2pr0, T s ˆ Ωq. Here we used (6.62) and that tu∆uτ converges to u˚ uniformly on r0, T s ˆ Ω

due to (6.35). Hence, (6.62) and (6.63) suffice to pass to the limit in the second integral. Finally

remember the weak convergence result in (6.34), tu∆uτ Ñ u˚ in Pr
2pΩq with respect to time,

hence the convergence of the first and third integral is assured as well.

l

6.5. Numerical results

We fix Ω “ p0, 1q for all experiments described below and furthermore use V ” 0 for the rest of

this section.

As in the numerical investigations of the previous two chapters, we are going to use non-

uniform meshes for our numerical experiments in order to make our discretization more flexible.

The choice of non-uniform meshes and the implementation of initial grids ~x0
∆ are hence analogue

to Section 4.4.1 and 4.4.2. Furthermore, the entropy is discretized by restriction, and the

discretized information functional is the dissipation of the discretized Renyi entropy along the

discretized heat flow. Explicitly, the resulting fully discrete gradient flow equation attaines the

form

~xn∆ ´ ~x
n´1
∆

τn
“ ´∇ξ̃D

V p~xn∆q “ ´W´1
`

B2
~xHp~xq ¨ B~xQp~xq ` B2

~xQp~xq ¨ B~xHp~xq
˘

, (6.64)

where W P RpK´1qˆpK´1q is the diagonal matrix with entries

rWsk,k “
1

2
pδk` 1

2
` δk´ 1

2
q, k “ 1, . . . ,K ´ 1.

To solve (6.64), a damped Newton scheme in analogy to Section 4.4.1 and 4.4.2 is applied.

6.5.1. Numerical experiments. In a paper of Gruen and Beck [BG15], the authors ana-

lyzed, among other things, the behaviour of equation (6.1) on the bounded domain p0, 1q with

Neumann-boundary conditions and the initial datum

u0pxq “ px´ 0.5q4 ` 10´3, x P Ω “ p0, 1q, with mass M “ 0.0135. (6.65)

This case is interesting insofar as the observed film seems to rip at time t “ 0.012.

6.5.1.a. Evolution of discrete solutions. Figure 6.1 shows the evolution of u∆ for K “ 400

and τ “ 10´7 at times t “ 0, 0.0022, 0.012, 0.04, the associated particle flow is printed in Fig-

ure 6.2/left. It is clearly seen that the strictly positive initial density has a minimum at x “ 1{2,

which bifurcates into two minima at later times, and eventually becomes one single minimum

again. As discussed in [BG15], the film seems to rip at time t “ 0.012. At later times, the ob-

served “degeneracy” alleviates and the film moves towards a stationary state, which is a constant

function with mass M .
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Figure 6.1. Evolution of a discrete solution u∆, evaluated at different times
t “ 0, 0.002, 0.012, 0.04 (from top left to bottom right)

6.5.1.b. Rate of convergence. For the analysis of the scheme’s convergence with initial datum

u0 from (6.65), we compare solutions of the scheme with uref , which is obtained by solving (6.64)

on a much finer grid, which is r∆ “ pξref ; τ refq. To define ξref , we introduce the equidistant grid

xk “ kK´1
ref on Ω “ p0, 1q, with k “ 0, . . . ,Kref and Kref “ 1600. Then the entries ξk are always

chosen, such that

ξk “

ż x0
k

x0
0

u0pyqdy,

for any k “ 0, . . . ,Kref . For the temporal discretization, we use τ ref with constant time step

sizes τn ” 5 ¨ 10´8.

To verify the scheme’s convergence at least numerically, we study the decay of the Lp-

errors, p P t1, 2,`8u, under refinement of the spatial discretization. For this purpose, we fix

a time decomposition with constant time step sizes τn ” τ “ 10´7 and vary the number of

spatial grid points, using K “ 25, 50, 100, 200, 400. Figure 6.2/right shows the corresponding

Lp-errors between the solution to our scheme and the reference solution uref , evaluated at time

T “ 10´4. Here, a time decomposition τ ref with constant time step sizes τn ” 5 ¨ 10´8 is used

for the reference solution. It is clearly seen that the errors decay with an almost perfect rate of

δ29K´2.
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Part 2

Two-dimensional case



Compared to the one-dimensional case discussed in the first part of this thesis, the degree of

difficulty of the L2-Wasserstein distance’s analysis instantaneously increases as soon as one con-

siders higher dimensions, unfortunately. The existence of solutions to the Kantorovich optimal

transportation problem, (1.1), is well studied and several proofs are available, see for instance

the content of Chapter 2 of [Vil03] for a duality-based proof. But the lack of an easy and prac-

tical representation of the L2-Wasserstein distance between two arbitrary densities — similar to

the one in Lemma 2.1 for one spatial dimension — seems to be the bottleneck for a convenient

numerical investigation of L2-Wasserstein gradient flows.

In the forthcoming chapter we describe a discretization of L2-Wasserstein gradient flows for

a family of second order evolution equations on the basis of the following fundamental result:

For any densities u, v P Pr
2pΩq the optimal transportation map pushing u to v is provided by

the gradient of a convex function. More precisely, there exists a transportation map ∇ϕ that is

the unique gradient (i.e. uniquely determined at almost every x P Ω Ď R2) of a convex function

such that v “ p∇ϕq#u and

W2pu, vq “

ż

Ω
|x´∇ϕpxq|2upxqdx.

A proof of this statement can be found for instance in [Vil03, Theorem 2.12]. The optimal

transportation map ∇ϕ is also called the Brenier map, which is due to Brenier’s achievements

in the field of optimal transportation, see in particular his work [Bre91] or Chapter 3 in [Vil03]

about Brenier’s polar factorization theorem.

Motivated by the above characterization of the L2-Wasserstein distance, we choose again a

Lagrangian formulation of the considered L2-Wasserstein gradient flows to derive a numerical

scheme. The underlying idea for our approach is the following: Fix a finite-dimensional set of

gradients of convex functions, which forms a set of “potential” optimal transportation maps.

Then we solve recursively the minimizing movement scheme (1.12) restricted to the subset of

density functions that can be reached by pushing the minimizer of the previous time step through

an arbitrary optimal transportation map from the fixed finite-dimensional set. A particular

property of the gained scheme is the consecutive change of the set of density functions, which

is used for solving the minimization problem, in each time step. This sounds impractical for

numerical implementations at the first glance, but as we are going to figure out in the following,

the Lagrangian reformulation of the minimizing movement scheme constitutes an appropriate

and convenient formulation for a numerical treatment.



CHAPTER 7

Second order drift-diffusion equation

This chapter provides joint work in progress with Oliver Junge and my PhD-supervisor Daniel

Matthes.

7.1. Introduction

In this chapter, we propose and study a fully variational numerical scheme of the following

second order equation with no-flux boundary condition on the spatial domain Ω “ p0, 1q2:

Btu “ ∆P
`

uq ` divpu∇V q for t ą 0 and x P Ω, (7.1)

x∇Ppuq ` u∇V,~ny “ 0 for t ą 0 and x P BΩ, (7.2)

u “ u0 ą 0 at t “ 0. (7.3)

Here, ~npxq denotes the outward normal vector at x P BΩ. The strictly positive initial density u0

is assumed to be in L1pΩq with unit mass M “ 1. The drift potential V : Ω Ñ R is assumed

to be at least in C2pΩq, and P : r0,`8q Ñ R is a nonnegative and monotonically increasing

function that satisfies the following assumptions:

‚ One can find a strictly convex function φ : r0,`8q Ñ R with φp0q “ 0, such that

Pprq “ rφ1prq ´ φprq. (7.4)

‚ r ÞÑ Pprq is linear or has superlinear growth, such that

r ÞÑ r´1{2Pprq is non-decreasing for r P p0,`8q. (7.5)

Common examples for second order equations that have the above form in (7.1) are the heat

equation (Ppuq “ u and usually with V “ 0) or porous medium equations with slow diffusion

(Ppuq “ um with m ą 1).

Under the given regulartiy assumptions, there are many possibilities to design appropriate

numerical schemes for (7.1), for instance by using finite elements/volume methods or finite

differences. The following approach is special insofar as it makes use of the equations underlying

gradient flow structure, which paves the way to derive a scheme that inherits several structural

properties of solutions to (7.1) by construction, for instance preservation of mass and positivity,

and dissipation of the entropy.

In what follows, we give a brief introduction to the equation’s gradient flow structure. For

the more intrested reader, we especially refer to [AGS05,ALS06,ESG05,Vil03].

7.1.1. Gradient flow structure. We summarize some basic facts about the variational for-

mulation of (7.1). The divergence form in combination with the no-flux boundary condition

155
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implies the conservation of mass and we shall consider M “ 1 from now on. Similar to Chap-

ter 3 we consider an entropy functional E given by

Epuq “
ż

Ω
φpupxqqdx`

ż

Ω
upxqV pxq dx (7.6)

for u P Pr
2pΩq. Using the entropy, equation (7.1) can be reformulated in terms of the continuity

equation

Btu` divpuvpuqq “ 0, (7.7)

where the velocity field vpuq is given by the gradient of the first variational derivative of E
evaluated at u, i.e.

vpuq “ ´∇
ˆ

δEpuq
δu

˙

“ ´∇
`

φ1puq ` V
˘

“ ´

ˆ

∇Ppuq

u
`∇V

˙

. (7.8)

Using the representation of equation (7.1) in (7.7), the no-flux boundary condition then reads

as

xvpupt, xqq, ~npxqy “ 0 (7.9)

for pt, xq P p0,`8q ˆ BΩ.

As we have already mentioned in the one-dimensional situation in Chapter 3, the functional

E is λ-convex along geodesics in W2 [McC97], where λ P R is chosen such that

D2 V ě λI. (7.10)

Here, I P R2ˆ2 denotes the identity matrix and D2 V is the hessian of V . The λ-convexity of E
is a powerful ingredient in several analytical applications, which is why we aim to inherit this

feature to our numerical scheme.

7.1.2. The gradient flow in Lagrangian coordinates. It is a well-known fact that the

L2-Wasserstein gradient flow turns into a L2-gradient flow for

T ÞÑ EpT#wq “

ż

Ω
ψ

ˆ

det D Tpxq

wpxq

˙

wpxq dx`

ż

Ω
V
`

Tpxq
˘

wpxqdx (7.11)

with ψpsq :“ sφps´1q. Here we used the explicit representation of the push-forward T#w of a

density w P Pr
2pΩq through a transportation map T : Ω Ñ Ω as given in (1.19). This special

relation was first observed by Evans, Gangbo and Savin [ESG05] and then further analyzed by

Ambrosio, Lisini and Savaré [ALS06]. A simple formal argument indicates (we refer to [ALS06]

for a proper proof of the following assumption) that the L2-gradient flow along the functional

T ÞÑ EpT#u
0q is a solution to the “ordinary differential equation”

BtT “ vpuq ˝T for pt, xq P p0,`8q ˆ Ω,

Tp0, xq “ x for x P Ω,
(7.12)

when u solves (7.1). Using (7.8), the right-hand side in (7.12) attains the explicit form

vpuq ˝T “ P1pu ˝Tq

„

∇u
u



˝T`
“

∇V
‰

˝T.
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Equation (7.12) means in particular that a solution u to the continuity equation (7.7) with the

velocity field in (7.8) has an one-to-one connection to a transportation map T that solves (7.12).

7.1.3. Description of the numerical scheme. Throughout this section, we fix a time step

size τ that induces a temporal decomposition of r0,`8q by

t0 “ t0 ă t1 ă . . . ă tn ă . . .u , where tn :“ nτ.

Unlike the notation used in the first part of this thesis, we denote by τ the temporal decompo-

sition parameter, which in particular shall emphasize the usage of a uniform decomposition of

the time line.

The derivation of our numerical scheme for (7.1) is once more based on a specific discretiza-

tion of the minimizing movement scheme, which works in the situation at hand as follows: Given

a time step τ ą 0, one defines inductively — starting from u0
τ “ u0 — approximations unτ of

upnτ, ¨q as minimizers in Pr
2pΩq of the “penalized entropy functional” Eτ p¨, un´1

τ q, given for n P N
by

unτ “ argmin
vPPr2 pΩq

Eτ pv, un´1
τ q, with Eτ pv, uq :“

1

2τ
W2pv, uq ` Epvq. (7.13)

To obtain a full spatio-temporal discretization of (7.1) we first introduce a spatio-temporal

discretization parameter ∆ “ pτ ;Kq, where K P N and τ is chosen as above. The idea is again to

perform the minimization in (7.13) on a ∆-dependent discrete submanifold of Pr
2pΩq. Compared

to the one-dimensional case the situation becomes more delicate in higher dimensions, since an

explicit formula of the L2-Wasserstein disctance between two arbitrary densities u, v P Pr
2pΩq

is not available. To circumvent this problem, remember that Monge’s optimal transportation

problem for two arbitrary densities u, v P Pr
2pΩq admits a solution that is always a gradient of

a certain potential function, i.e. v “ t#u with t P X, where

t P X :ðñ t “ ∇ϕ : Ω Ñ Ω, with a convex function ϕ that is

almost every differentiable with detpD2 ϕq ą 0 for almost every x P Ω.
(7.14)

Note that the condition detpD2 ϕq ą 0 for almost every x P Ω basically guarantees that v “ t#u

with t “ ∇ϕ is a regular density, see [AGS05, Lemma 5.5.3]. This motivates the following

derivation of a fully discrete numerical scheme for (7.1): Instead of solving (7.13) restricted to a

fixed time-independent discrete submanifold of Pr
2pΩq (as we did in one spatial dimension), we

restrict the set of admissible optimal transports X to a finite-dimensional subset XK dependent

on the spatial discretization parameter K P N, fix n P N, and minimize v ÞÑ Eτ pv, un´1
∆ q over

all densities v P Pr,n
2,KpΩq. Here, Pr,n

2,KpΩq is an iteratively defined submanifold of Pr
2pΩq, which

contains all densities v P Pr
2pΩq that can be reached by the pair pun´1

∆ , tq constituted by the

solution un´1
∆ of the previous time step pn´ 1q and an optimal transportation map t P XK , i.e.

Pr,1
2,KpΩq :“

 

v “ t#u
0
∆ : t P XK

(

and

Pr,n
2,KpΩq :“

!

v “ t#u
n´1
∆ : t P XK and un´1

∆ solves (7.13) restricted to Pr,n´1
2,K pΩq

) (7.15)
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for n ą 1. There are infinitely many admissible choices for XK , for instance one can choose

locally affine or quadratic spline interpolations of transportation maps in X. In this thesis we

use a Fourier-ansatz that is

XK :“

$

&

%

t “ id`
K
ÿ

k,l“0

zkl∇ϕkl : zkl P R, such that det D t ą 0

,

.

-

, (7.16)

with

ϕklpxq :“ ckl cospkπx1q cosplπx2q for x “ px1, x2q P Ω. (7.17)

The coefficients ckl ą 0 are chosen such that the vectors ∇ϕkl have unit L2pΩq-norm for pk, lq ‰

p0, 0q, see (7.34) for a proper definition. With this specific choice of XK — we are going to prove

in Lemma 7.6 that XK is indeed a finite-dimensional subspace of X — the numerical scheme

reads as follows:

Numerical scheme. Fix a spatio-temporal discretization ∆ “ pτ ;Kq consisting of a time step

size τ ą 0 and a parameter K P N. Then

(1) For n “ 0, fix an initial density function u0
∆ “ u0 P Pr

2pΩq.

(2) For n ě 1, recursively define densities un∆ as solutions to the minimization problem

un∆ “ argmin
vPPr,n2,KpΩq

Eτ pv, un´1
∆ q, (7.18)

where Pr,n
2,KpΩq changes with each time iteration as given in (7.15).

The above procedure p1q ´ p2q yields a sequence of densitiy functions that is going to be

denoted by u∆ “ pu0
∆, u

1
∆, . . .q from now on. Compared to other approaches that exploit the

equation’s underlying variational structure (for instance [CM10,CW,MO14a,Osb14,MO14b]

and many more), the finite-dimensional submanifold Pr,n
2,KpΩq does not only depend on the spa-

tial discretization K, but also on the previous evolution of un´1
∆ . Hence, our set of discrete

density functions Pr,n
2,KpΩq changes with every time step. Further note that our approach guar-

entees that two consecutively calculated discrete minimizers are always connected by an optimal

transportation map, without explicitely solving Monge’s optimal transportation problem.

We are going to prove later in Proposition 7.1 that the minimization problem (7.18) possesses

a unique solution for our choice of Pr,n
2,KpΩq under an additional assumption on the integrand of

the entropy E .

It is convenient for later purposes to introduce some additional notation. We define the set

of indices IK :“ tpk, lq P N2 : }pk, lq}8 ď Kuztp0, 0qu and write ~z “ pzklqpk,lqPIK for a vector

~z P RpK`1q2´1 with components zkl P R. Furthermore, define the map

~z P RpK`1q2´1 ÞÑ tKr~zs :“ id`
ÿ

pk,lqPIK

zkl∇ϕkl (7.19)

with ϕkl as in (7.17). Note that we exclude the index pk, lq “ p0, 0q since ϕ00 is a constant

function. Furthermore, we denote by B~zfp~zq the gradient of a function f : RpK`1q2´1 Ñ R with
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respect to ~z, i.e.

rB~zfp~zqspk,lq “
B

Bzkl
fp~zq

for any pk, lq P IK . If u∆ is a solution to the numerical scheme, let us finally introduce for any

index n P N0 the matrix Wn P RppK`1q2´1qˆppK`1q2´1q given by

rWnspklq,phjq :“

ż

Ω
x∇ϕkl,∇ϕhjyun∆ dx. (7.20)

7.1.4. Main results. Let us assume in the following that a spatio-temporal discretization

∆ “ pτ ;Kq consisting of a time step size τ ą 0 and a parameter K P N is fixed. We further

assume for the rest of this chapter the validity of the following general assumptions on the initial

density u0:

u0 ą 0 and Epu0q ă `8. (7.21)

The first result pictures the qualitative poperties of solutions to our numerical scheme:

Proposition 7.1. Assume that the temporal decomposition parameter satisfies τ´1 ` λ ą 0.

Furthermore, suppose that the integrand φ : r0,`8q Ñ R of the entropy E satisfies

s2φp1{sq Ñ `8 as s Ó 0. (7.22)

Then the numerical scheme described in Section 7.1.3 is well-posed. More precisely, the mini-

mization problem (7.18) possesses a unique solution for any n ě 1.

Moreover, a sequence of solution u∆ “ pu
0
∆, u

1
∆, . . .q to (7.18) satisfies the following proper-

ties:

‚ Conservation of mass and positivity: Any solution un∆ to (7.18) lies in Pr
2pΩq.

‚ Entropy dissipation: Epun∆q ď Epun´1
∆ q for any n ě 1.

Positivity, conservation of mass and dissipation of the entropy are trivial conclusions from

the scheme’s construction, whereas the statement of well-posedness is a nontrivial claim that

follows from Lemma 7.10. Note further that the condition (7.22) on the integrand of E seems to

be of a technical nature, since numerical experiments show that one can apply the scheme for

more general choices of φ, see Section 7.5.

The next result shows that solutions to the numerical scheme satisfy a discrete Euler-

Lagrange equation:

Proposition 7.2. Under the same requirements as in Proposition 7.1, there exists a unique

sequence t∆ “ pt0∆, t
1
∆, . . .q of optimal transportation maps tn∆ P X and a unique sequence of

vectors ~z∆ “ p~z
0
∆,~z

1
∆, . . .q with ~zn∆ P RpK`1q2´1, such that

tn∆ “ tKr~z
n
∆s, and tn∆ satisfies un∆ “ pt

n
∆ ˝ t

n´1
∆ ˝ . . . ˝ t0∆q#u

0

for any n P N0. Moreover, each vector ~zn∆ in ~z∆, n ě 1, is a solution to the system of discrete

Euler-Lagrange equations

1

τ
Wn´1~z` B~zE

´

`

tKr~zs
˘

#
un´1

∆

¯

“ 0. (7.23)
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The above result shows that solutions u∆ to the numerical scheme are uniquely related to a

sequence of vectors ~z∆ with entries that solve the system of Euler-Lagrange equations (7.23).

One can now ask for stability of the scheme at least in each time iteration. More precisely, we

are interested in an error estimate for the difference between an arbitrary vector ~y P RpK`1q2´1

and the “scheme’s solution” ~zn∆ at time step n P N. This error is expressible in terms of the

residuum ~γnr~ys defined by

~γnr~ys :“
1

τ
Wn´1~y ` B~zE

´

`

tKr~ys
˘

#
un´1

∆

¯

(7.24)

and we can prove the following stability result:

Proposition 7.3. Assume that u∆ is a solution to the numerical scheme and ~z∆ is the associated

sequence of vectors which solve the system of Euler-Lagrange equations (7.23) at any time step

n P N. Then

p1` 2λτq }tKr~z
n
∆s ´ tKr~ys}

2
L2pΩ;un´1

∆ q
ď τ2

@

~γnr~ys,W´1
n´1~γ

nr~ys
D

,

for any ~y P RpK`1q2´1, where ~γnr~ys is defined as in (7.24).

Unfortunatelly, we can not prove that discrete solutions to the scheme converge towards

solutions to (7.1), so far. However, note that the above stability result in combination with a

proof of the scheme’s consistency can possibly be used to gain a convergence result.

We finally remark that the numerical scheme and all the above results can be easily extended

for higher dimensions d ě 3, just by a slight adaptation of the set of Lagrangian maps XK in

(7.16), see Remark 7.9.

7.1.5. Related schemes. As we have already mentioned in Chapter 3, the construction of

numerical schemes for (7.1) as a solution of discrete Wasserstein gradient flows with Lagrangian

representation is not new in the literature. Especially in one spatial dimension, studies on

Lagrangian schemes for (7.1) that are familiar to our ansatz are popular, take for instance

[AB13,BCHR99,GT06a,KW99,MS85,MO14a,Roe04,WW10].

Based on the reformulation of (7.1) in terms of evolving diffeomorphisms [ESG05], Carrillo

and Moll [CM10] derived a Lagrangian discretization of aggregation equations in two space

dimensions. Another approach on basis of the gradient flow structure of (7.1) in dimension two

was formulated by Burger et al [BCW10], using the hydrodynamical formulation of the Wasser-

stein distance [BB00] instead of the Lagrangian approach. However, there are unfortunately no

analytical results concerning convergence or qualitative properties available for the numerical

schemes in the aforementioned works. We are indeed just aware of one paper about the second

order equation (7.1), the work [BCMO14] by Benamou, Carlier, Mérigot and Oudet, in which a

proof of convergence for the scheme therein is given: Similar to our approximation, the authors

define recursively a sequence of optimal transportation maps that is gained by minimizing the

perturbed entropy functional in terms of Lagrangian coordinates. The main difference to our

scheme is that the minimum is taken over a set consisting of Legendre-Fenchel transforms, which

makes an implementation of the scheme more sophisticated.
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7.2. Discretization in space and time

Before we discuss the properties of our approach in Subsection 7.2.2 and its connection to

the minimizing movement scheme in Subsection 7.2.3 in more detail, we want to study the

Lagrangian formulations of the L2-Wasserstein distance and the entropy E .

7.2.1. Lagrangian coordinates. Since we are interested in a Lagrangian description of equa-

tion (7.1), it is necessary to specify the relation between densities in Pr
2pΩq and transportation

maps T on Ω. This link is provided by the push-forward operator as defined in (1.18). In case

of differentiable and bijective maps T : Ω Ñ Ω, equation (1.18) allows an explicit representation

as

T#w “
w

det D T
˝T´1 for almost every x P Ω, (7.25)

see also (1.19). So starting from an arbitrary (regular) reference density w, its push-forward

T#w through the transportation map T declares a new density that occurs by transporting

mass packages distributed by w from a position x P Ω to Tpxq.

7.2.1.a. L2-Wasserstein distance in Lagrangian coordinates. In terms of Lagrangian coordi-

nates, the L2-Wasserstein disctance between two densities u, v P Pr
2pΩq is given by

W2pu, vq
2 “ min

"
ż

Ω
}x´ tpxq}22upxq dx : t : Ω Ñ Ω measurable with v “ t#u

*

. (7.26)

This minimization problem corresponds to the original formulation of Monge’s optimal trans-

portation problem, and possesses a solution— the optimal transportation map or Brenier map

connecting u and v — see for instance [AGS05,Vil03]. As already mentioned at the beginning

of Part 2, there exists in particular a function t : Ω Ñ Ω with v “ t#u, which is the gradient of

a convex potential function ϕ : Ω Ñ R, hence t P X.

Let us assume in the following that T : Ω Ñ Ω is an arbitrary transportation map and

t : Ω Ñ Ω is the gradient of a convex function, i.e. t P X. Then the above considerations

provide an explicit characterization of the L2-Wasserstein distance between the densities T#u
0

and pt ˝Tq#u
0 in a purely Lagrangian formalism, i.e.

dpt,Tq :“
›

›T´ t ˝T
›

›

L2pΩ,u0q
“W2

`

pt ˝Tq#u
0,T#u

0
˘

, (7.27)

where we use the explicit formula in (7.25).

7.2.1.b. The entropy in Lagrangian coordinates. As already mentioned, the entropy E can be

written in terms of Lagrangian coordinates using the push-forward operator,

T ÞÑ EpT#wq “

ż

Ω
ψ

ˆ

det D Tpxq

wpxq

˙

wpxq dx`

ż

Ω
V
`

Tpxq
˘

wpxqdx,

where w P Pr
2pΩq stands for an arbitrary reference density and ψpsq “ sφps´1q. The function

ψ is decreasing, strictly convex and satisfies ψpsq Ñ `8 as s Ó 0 due to the assumptions on

P, remember the calculations in (3.18) and (3.19) from Chapter 3. These properties of ψ are

crucial to proof the well-posedness of our numerical scheme. But before we come to this, we want

to state a purely Lagrangian formulation of the entropy functional, which reflects the iterative



162 7. SECOND ORDER DRIFT-DIFFUSION EQUATION

character of the above proceeding: Let t,T : Ω Ñ Ω be two transportation maps, then define

Ept,Tq :“ E
`

pt ˝Tq#u
0
˘

. (7.28)

Equipped with this notation, we are going to show that the λ-convexity of E yields an analogue

convexity result for the map t ÞÑ Ept,Tq. The preservation of this property is a key ingredient

for many results that will follow in the forthcoming sections. To this end, we first show the

following claim.

Lemma 7.4. The function r ÞÑ r2φpr´2q, r P p0,`8q, is non-increasing and convex.

Proof. Set fprq “ r2φpr´2q, then the first derivative satisfies

f 1prq “ 2rφpr´2q ´ 2r´1φ1pr´2q “ ´2r
`

r´2φ1pr´2q ´ φpr´2q
˘

“ ´2rPpr´2q ď 0,

due to the nonnegativity of P. For the second derivative, we further get

f2prq “ ´2Ppr´2q ` 4r´2P1pr´2q “ 4
`

r´2P1pr´2q ´
1

2
Ppr´2q

˘

.

Hence, convexity of f is equivalent to

sP1psq ě
1

2
Ppsq,

which is further fulfilled owing to (7.5). �

Lemma 7.5. Let T : Ω Ñ Ω be an arbitrary transportation map. Then t ÞÑ Ept,Tq is bounded

from below, i.e.

Ept,Tq ěM min
xPΩ

V pxq ` φpMq, (7.29)

for any t : Ω Ñ Ω. Furthermore, the restriction of t ÞÑ Ept,Tq to the set of optimal trans-

portation maps X is λ-convex in the following sense: For any t0, t1 P X and s P r0, 1s, one

obtains

E
`

p1´ sqt0 ` st1,T
˘

ď p1´ sqEpt0,Tq ` sEpt1,Tq ´ λ
sp1´ sq

2
}t0 ´ t1}2L2pΩ;T#u0q, (7.30)

where λ is defined as in (7.10).

Proof. Let T : Ω Ñ Ω be fixed. Due to the convexity of s ÞÑ φpsq the functional t ÞÑ Ept,Tq

satisfies,

Ept,Tq ěM min
xPΩ

V pxq `

ż

Ω
φ
`

pt ˝Tq#u
0
˘

dx ěM min
xPΩ

V pxq ` φ

ˆ
ż

Ω
pt ˝Tq#u

0 dx

˙

“M min
xPΩ

V pxq ` φpMq,

where we used Jensen’s inequality and (7.25). This shows the boundedness of t ÞÑ Ept,Tq from

below.

To prove (7.30), we proceed analogously to the proof of Proposition 9.3.9 in [AGS05]: First

note that for any s P r0, 1s and t0, t1 P X, the map ts :“ p1 ´ sqt0 ` st1 is the gradient of the

convex function p1´sqϕ0`sϕ1, where ∇ϕ0,1 “ t0,1. Therefore, ts P X for any s P r0, 1s. Since t0,1

are gradients of convex and almost everywhere differentiable functions such that detpD t0,1q ą 0
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for almost every x P Ω, D t0,1 are diagonalizable with strictly positive eigenvalues (by [AGS05,

Theorem 6.2.7]). Let us further define t10 :“ t1˝pt0q´1. Then the derivative D t10 is diagonalizable

with strictly positive eigenvalues as well, which induces that the map

s ÞÑ det
`

p1´ sqI` sD t10
˘

1
2 (7.31)

is concave on r0, 1s. For simplification let us first investigate the map s ÞÑ Epts,Tq under the

assumption that V ” 0. Then by a substitution with pt0 ˝Tq´1,

Epts,Tq “

ż

Ω
ψ

ˆ

det Dpts ˝Tq

u0

˙

u0 dx

“

ż

Ω
ψ

ˆ

det
`

p1´ sqI` sD t10
˘

¨

„

det Dpt0 ˝Tq

u0



˝ pt0 ˝Tq´1

˙„

u0

det Dpt0 ˝Tq



˝ pt0 ˝Tq´1 dx,

where we used

det Dpts ˝Tq “ det
`

D
“

p1´ sq id`st10
‰

˝ pt0 ˝Tq
˘

“
“

det
`

p1´ sqI` sD t10
˘‰

˝ pt0 ˝Tq ¨ det Dpt0 ˝Tq.

Using ψpsq “ sφps´1q and the definition of the push-forward, the function s ÞÑ Epts,Tq can be

reformulated as

Epts,Tq “

ż

Ω
φ

˜

pt0 ˝Tq#u
0

det
`

p1´ sqI` sD t10
˘

¸

det
`

p1´ sqI` sD t10
˘

dx.

Notice that for almost every x P Ω,

s ÞÑ φ

˜

pt0 ˝Tq#u
0

det
`

p1´ sqI` sD t10
˘

¸

det
`

p1´ sqI` sD t10
˘

is convex, since it can be interpreted as the composition of the convex and non-increasing map

r ÞÑ r2φpr´2q (Lemma 7.4) with the concave function in (7.31). In case of V ” 0, we conclude

that

E
`

p1´ sqt0 ` st1,T
˘

ď p1´ sqEpt0,Tq ` sEpt1,Tq.

If V ‰ 0, a Taylor expansion yields for s P r0, 1s

V
`

p1´ sqx` sy
˘

ď p1´ sqV pxq ` sV pyq ´ λ
p1´ sqs

2
|x´ y|2,

which shows (7.30) after integration of the inequality. �

7.2.1.c. The minimizing movement scheme in Lagrangian coordinates. Using the notation from

Section 7.2.1.a and Section 7.2.1.b, the minimization problem (7.13) can be reformulated as

follows:
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Given a time discretization consisting of a time step τ ą 0, an initial density function

u0 P Pr
2pΩq, and an initial transport map T0

τ “ id, define inductively a set of transport

maps pTn
τ q
8
n“0, such that Tn

τ “ tnτ ˝Tn´1
τ and tnτ solves

tnτ “ argmin
tPX

Eτ pt,T
n´1
τ q, with Eτ pt,Tq :“

1

2τ
dpt,Tq2 `Ept,Tq, (7.32)

for n ě 1.

It is immediately seen that unτ “ pT
n
τ q#u

0 is a solution of (7.13), hence the above procedure is

equivalent to the minimizing movement scheme as in Subsection 7.1.3. One can therefore apply

standard arguments from the literature (we once again refer to [AGS05]) to conclude that the

pτ´1 ` λq-convex functional t ÞÑ Eτ pt,Tq has a unique minimizer in X, hence (7.32) is uniquely

solvable. Furthermore, each tnτ from the sequence of minimizers pt1τ , t
2
τ , . . .q is a solution to

δEτ pt,T
n´1
τ q

δt
rws “ 0, for any smooth and admissible velocity field w. (7.33)

In this context we call w admissible for t P X, if t ` w is still a measurable map from Ω onto

itself, hence it especially does not cross the boundary BΩ.

7.2.2. Properties of the spatial discretization. In this subsection, we want to justify our

choice of the finite-dimensional space XK in (7.16) and discuss the resulting consequences and

properties for our scheme. To this end, remember that our ansatz functions are of the form

ϕkl P B :“ tckl cospkπx1q cosplπx2qu
8
k,l“0 , with ckl :“

$

&

%

2
π
?
k2`l2

, pk, lq ‰ p0, 0q,

1, else.
(7.34)

The coefficients ckl ą 0 are defined in such a way that }∇ϕkl}L2pΩq “ 1. Furthermore, note that

B is chosen such that any function ϕ in spanB satisfies the linear boundary constraint

x∇ϕpxq, ~npxqy “ 0 for any x P BΩ. (7.35)

Let us fix K P N for the rest of this section and introduce BK :“ tϕkl : }pk, lq}8 ď Ku.

Then the ppK ` 1q2 ´ 1q-dimensional space XK as defined in (7.16) satisfies

XK “

$

&

%

t “ id`
ÿ

pk,lqPIK

zkl∇ϕkl : ϕkl P BK and zkl P R such that det D t ą 0

,

.

-

. (7.36)

The condition det D t ą 0 is equivalent to strict convexity of the corresponding potential func-

tions. We further introduce the set of coefficients zK ,

zK :“

$

&

%

~z “ pzklqpk,lqPIK : id`
ÿ

pk,lqPIK

zkl∇ϕkl P XK

,

.

-

Ď RpK`1q2´1.

The set zK is closely related to X through the map tK defined in (7.19), since any optimal

transportation map t P XK can be written as tKr~zs for a certain vector ~z in zK .

The following lemma concludes that XK is indeed an affine subspace of the set of optimal

transportation maps X from Ω to Ω:
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Lemma 7.6. Any map t in XK is a diffeomorphism mapping Ω onto Ω.

Remark 7.7. This result is valid for any choice of BK , as long as functions in BK are smooth

and satisfy the linear boundary constraint in (7.35).

Proof of Lemma 7.6. We prove that any t P XK is a bijective map with values in Ω. Fix an

arbitrary t P XK given by t “ id`
ř

pk,lqPIK zkl∇ϕkl. Then the strict convexity of the respective

potential function yields that t is strictly monotone, i.e. there exists a constant c ą 0 such that

xtpxq ´ tpyq, x´ yy ě c}x´ y}22 (7.37)

for any x, y P Ω. Further note that the boundary condition x∇ϕ,~ny “ 0 for ϕ P B immediately

yields that each corner of Ω, p0, 0q, p0, 1q, p1, 0q, p1, 1q, is mapped on itself.

Next, we prove that values on the boundary BΩ remain on the boundary. For this we fix two

neighbouring vertices, for instance v1 “ p0, 0q and v2 “ p0, 1q. Then each intermediate value in

t0u ˆ r0, 1s is attained by λv1 ` p1´ λqv2 for any λ P r0, 1s and satisfies

0 “ xtpλv1 ` p1´ λqv2q, ~npλv1 ` p1´ λqv2qy “

B

tpλv1 ` p1´ λqv2q,

ˆ

´1

0

˙F

,

hence tpλv1 ` p1´ λqv2q P t0u ˆ r0, 1s. By the monotonicity of t in (7.37) and due to tpv1q “ v1

and tpv2q “ v2, this shows that the restriction of t to t0u ˆ r0, 1s is bijective with values in

t0u ˆ r0, 1s. One analogously shows the same statement for the other parts of the boundary.

As a next step, let us assume that there is a value x P Ω with tpxq R Ω. By continuity it

easily follows that

tε :“ id` ε
ÿ

pk,lqPIK

zkl∇ϕkl

is an element of XK for any ε P r0, 1s and that there exists a value ε̄ P r0, 1s such that tε̄pxq P BΩ.

Due to the behaviour on the boundary, there further exists a value yε̄ P BΩ with tε̄pyε̄q “ tε̄pxq,

but this contradicts the monotonicity since

0 “ xtε̄pxq ´ tε̄pyε̄q, x´ yε̄y ě c}x´ yε̄}
2
2 ą 0.

This shows that t : Ω Ñ Ω. Finally note that the injectivity is a consequence of the monotonicity

and surjectivity follows from the continuity and the fact that the boundary is mapped onto itself.

l

7.2.2.a. The restriction of d and E to XK . The one-to-one identification between optimal trans-

portation maps t P XK and vectors ~z P zK via the map tK leads to a new representation of the

L2-Wasserstein distance,

dptKr~zs,Tq
2 “ x~z,W2rTs~zy , with

“

W2rTs
‰

pklq,phjq
“

ż

Ω
rx∇ϕkl,∇ϕhjys ˝Tu0pxq dx. (7.38)

The matrix W2rTs depends on the transport T and the initial density u0, unfortunately, but it

allows an explicit evaluation of the L2-Wasserstein disctance between two densities T#u
0 and

pt ˝ Tq#u
0 just by calculating a “matrix-vector-matrix”-product. Note in addition, that the



166 7. SECOND ORDER DRIFT-DIFFUSION EQUATION

definition of ~z ÞÑ tKr~zs implies

@

~z0 ´~z1,W2rTsp~z
0 ´~z1q

D

“

ż

Ω
}tKr~z

0 ´~z1s ´ id }22 T#u
0 dx

“

ż

Ω
}tKr~z

0s ´ tKr~z
1s}22 T#u

0 dx

(7.39)

for any ~z0,~z1 P zK .

As the following lemma shows, our discretization even preserves one of the most important

properties from the continuous setting, namely λ-convexity of the entropy:

Lemma 7.8. Let T : Ω Ñ Ω be an arbitrary transportation map. Then ~z ÞÑ EptKr~zs,Tq

is bounded from below by the same bound as E in (7.29). Furthermore, ~z ÞÑ EptKr~zs,Tq is

λ-convex in the following sense: For arbitrary vectors ~z0,~z1 P zK and s P r0, 1s, one obtains

E
`

p1´ sqtKr~z
0s ` stKr~z

1s,T
˘

ďp1´ sqEptKr~z
0s,Tq ` sEptKr~z

1s,Tq ´ λ
sp1´ sq

2

@

~z0 ´~z1,W2rTsp~z
0 ´~z1q

D

,
(7.40)

where λ is defined by (7.10).

Proof. Fix T : Ω Ñ Ω. The boundedness of ~z ÞÑ EptKr~zs,Tq immediately follows from Lemma

7.5 and the definition of E in (7.28). To prove (7.40), note that the map ~z ÞÑ tKr~zs obviously

satisfies tKrp1´ sq~z
0` s~z1s “ p1´ sqtKr~z

0s ` stKr~z
1s for s P r0, 1s. Then (7.40) is a consequence

of (7.30), see again Lemma 7.5 and (7.39). �

Remark 7.9. The above ansatz for the spatial discretization is easily adaptable to the higher-

dimensional situation p0, 1qd, d ě 2: It suffices to replace the set of ansatz functions BK by its

multi-dimensional counterpart

BK “

!

ϕκ :“ Πd
j“1c̃κ cospκjπxjq

)

κPt0,...,Kud

with adapted coefficients c̃κ, where κ “ pκ1, . . . , κdq are multi-indices with components that satisfy

κj P t0, . . . ,Ku for j “ 1, . . . , d. It is easily verified that functions in BK still validate the no-

flux boundary condition. Furthermore, the above results (especially Lemma 7.6 and Lemma 7.8)

still hold true for the respective multi-dimensional extensions of XK and zK , and all results that

follow in the subsequent sections can be adapted as well.

7.2.3. The numerical scheme in Lagrangian coordinates. We have already seen in Sub-

section 7.2.1.c that the minimizing movement scheme (7.13) has an equivalent formulation in

terms of Lagrangian coordinates, see (7.32). It turns out that one can easily rewrite our numer-

ical scheme as introduced in Section 7.1.3 in the same way: Instead of minimizing (7.18) over

the time-dependent and discrete submanifolds Pr,n
2,KpΩq, we perform the minimization in (7.32)

with X replaced by XK . This yields the following Lagrangian representation of our numerical

scheme:
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Given a discretization ∆ “ pτ,Kq consisting of a time step τ ą 0, a spatial discretization

K, an initial density function u0 P Pr
2pΩq, an initial vector ~z0

∆ “ 0 P zK and the initial

transport T0
∆ “ id. Then define inductively a sequence of vectors ~z∆ “ p~z

0
∆,~z

1
∆, . . .q, such

that ~zn∆ solves

~zn∆ “ argmin
~zPzK

Eτ ptKr~zs,T
n´1
∆ q (7.41)

for n ě 1, and set Tn
∆ “ tKr~z

n
∆s ˝Tn´1

∆ . Further denote tn∆ “ tKr~z
n
∆s, u

n
∆ “ pT

n
∆q#u

0, and

we write ~z∆ “ p~z
0
∆,~z

1
∆, . . .q, t∆ “ pt

0
∆, t

1
∆, . . .q, u∆ “ pu

0
∆, u

1
∆, . . .q and T∆ “ pT

0
∆,T

1
∆, . . .q.

It is easily seen that this formulation is indeed equivalent to the original one in Section 7.1.3. The

main difference is, that the Lagrangian representation makes the dependence of Pr,n
2,KpΩq on the

previous solution un´1
∆ a dependence of Eτ on Tn´1

∆ . An immediate advantage of the Lagrangian

characterization in (7.41) is that it is much easier to handle for numerical applications, since

the set over which one performs the minimization is fixed and does not change with every time

iteration.

To show that the numerical scheme is well-posed, one has to guarantee that the minimization

problem in (7.41) is solvable. Compared to the analogue problem in Proposition 3.9 in one spatial

dimension, the situation becomes more complicated for higher dimensions. The reason for this

is that t ÞÑ Ept,Tq can even be bounded from above for transport maps t with degenerating

determinants if the set where detpD tpxqq “ 0 is small enough, although the integrand ψ of E has

the property that ψpsq Ñ `8 as s Ó 0. Nevertheless, we can at least guarantee the existence of

a minimizer of ~z ÞÑ Eτ ptKr~zs,Tq, if the integrand of entropies E increases faster at zeros than

s´1:

Lemma 7.10. Suppose that w “ T#u
0 ą 0 for an arbitrary transportation map T : Ω Ñ Ω and

Epwq ă C for a constant C ą 0. Further assume τ´1 ` λ ą 0. If the integrand of E satisfies

sψpsq Ñ `8 for s Ó 0, then the functional ~z ÞÑ Eτ ptKr~zs,Tq has a unique minimizer in zK .

Proof. Using the representation of the L2-Wasserstein disctance (7.38) in terms of the matrix

W2rTs, the functional ~z ÞÑ Eτ ptKr~zs,Tq attains the form

Eτ ptKr~zs,Tq “ Eptr~zs,Tq `
1

2τ
x~z,W2rTs~zy

“ Eptr~zs,Tq ´
λ

2
x~z,W2rTs~zy `

1

2

`

τ´1 ` λq x~z,W2rTs~zy .

Since ~z ÞÑ Eptr~zs,Tq is λ-convex, see Lemma 7.8, and τ´1`λ is supposed to be strictly positive,

one concludes that Eτ ptKr~zs,Tq is strictly convex. The boundedness of ~z ÞÑ Eptr~zs,Tq from

below further implies

Eτ ptKr~zs,Tq ě Eptr~zs,Tq ěM min
xPΩ

V pxq ` φpMq.

Thus,~z ÞÑ Eτ ptKr~zs,Tq attains at most one critical point in zK . Let further p~zjq8j“0 be a minimiz-

ing sequence ~zj for ~z ÞÑ Eτ ptKr~zs,Tq with ~zj P zK , which converges towards inf~zPzK Eτ ptKr~zs,Tq.
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Then there exists an index J P N, such that all vectors ~zj with j ą J have to satisfy

Eτ ptKr~z
js,Tq P

“

M min
xPΩ

V pxq ` φpMq, C
‰

.

The continuity of the map ~z ÞÑ Eτ ptKr~zs,Tq then yields the boundedness of the sequence ~zj in

RpK`1q2´1, this is why one can find a subsequence that converges to a vector ~z˚ P RpK`1q2´1

with detpD tKr~z
˚sq ě 0. It remains to show that ~z˚ is in zK , i.e. that detpD tKr~z

˚sq ą 0.

Remember the definition of ~z ÞÑ tKr~zs in (7.19). For any ~z P zK , the derivative of tKr~zs is

hence given by

D tKr~zs “ I`
ÿ

pk,lqPIK

zkl D
2 ϕkl with

D2 ϕkl “

˜

B2
1ϕkl B1,2ϕkl

B2,1ϕkl B2
2ϕkl

¸

“
2π

?
k2 ` l2

˜

´k2 cospkπx1q cosplπx2q kl sinpkπx1q sinplπx2q

kl sinpkπx1q sinplπx2q ´l2 cospkπx1q cosplπx2q

¸

,

and its determinant furthermore satisfies for any x P Ω

det
`

D tKr~zspxq
˘

“

¨

˝1´
ÿ

pk,lqPIK

zklB
2
1ϕkl

˛

‚

¨

˝1´
ÿ

pk,lqPIK

zklB
2
2ϕkl

˛

‚´

¨

˝

ÿ

pk,lq,ph,jqPIK

zklzhjB1,2ϕklB2,1ϕhj

˛

‚

“ 1´
ÿ

pk,lqPIK

zkl tr
`

D2 ϕkl
˘

`
1

2

ÿ

pk,lq,ph,jqPIK

zklzhj tr
`

cofpD2 ϕklqD2 ϕhj
˘

. (7.42)

Here we use the short-hand notations B1 and B2 for the partial derivatives with respect to the first

and second spatial component, respectively. Equation (7.42) especially shows that detpD tKr~zsq

is a trigonometric polynomial. Take again the minimizer ~z˚, which satisfies detpD tKr~z
˚sq ě 0.

So assume x̄ P Ω to be a point of degenerating determinant, i.e. detpD tKr~z
˚spx̄qq “ 0. Then one

can invoke for instance the power series definition of cosines and sines to see that the term in

(7.42) has maximal quadratic growth close to the root x̄ — in fact one just has to exclude that

(7.42) grows linearly at x̄, but this can be done since detpD tKr~z
˚sq would even attain negative

values in this case which would contradict to detpD tKr~z
˚sq ě 0. This is why one can assume

the existence of a constant c ą 0 and a sufficient small radius δ ą 0, such that

det
`

D tKr~z
˚spxq

˘

ď c}x´ x̄}22 for any x P Bδpx̄q “ tx P R2 : }x´ x̄}2 ă δu Ď Ω.

The above inequality can be used to show that the assumed existence of the root x̄ P Ω contra-

dicts the boundedness of Eτ ptKr~z
˚s,Tq: Set w “ T#u

0 and remember that ψ is a convex and de-

creasing function. One can hence apply Jensen’s inequality, which yields with Cr :“
ş

Br wpxq dx

C ąM min
xPΩ

V pxq `

ż

Br
ψ

ˆ

detpD tKr~z
˚sq

w

˙

w dx

“M min
xPΩ

V pxq ` Cr

ż

Br
ψ

ˆ

detpD tKr~z
˚sq

w

˙

w dx

Cr

ěM min
xPΩ

V pxq ` Crψ

ˆ

1

Cr

ż

Br
detpD tKr~z

˚sqdx

˙
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for any r P p0, δq. Since w is assumed to be strictly positive, one can find a constant w ą 0 with

w ě w, and further Cr ě wr2π. Due to the monotonicity of ψ, the above calculation yields for

r P p0, δq small enough

C ąM min
xPΩ

V pxq ` Crψ

ˆ

1

Cr

ż

Br
detpD tKr~z

˚sqdx

˙

ěM min
xPΩ

V pxq ` wr2πψ

ˆ

2πc

Cr

ż r

0
σ3 dσ

˙

ěM min
xPΩ

V pxq ` wr2πψ

ˆ

πcr4

2Cr

˙

ěM min
xPΩ

V pxq ` wr2πψ

ˆ

cr2

2w

˙

,

where the right-hand side tends to `8 as r Ñ 0. This proves ~z˚ P zK , which is the unique

minimizer of ~z ÞÑ Eτ ptKr~zs,Tq due to the convexity. �

The above result implies the well-posedness of our numerical scheme.

Proof of Proposition 7.1. The definition of ψpsq “ sφp1{sq obviously implies the relation

sψpsq “ s2φp1{sq,

which shows that the condition sψpsq Ñ 0 as s Ó 0 and (7.22) are equivalent. We have to prove

that the scheme in Section 7.1.3 has a unique solution at any time iteration n P N. Starting

with n “ 1, one can immediately apply Lemma 7.10 due to the strict positivity of u0 and

Epu0q ă `8, see (7.21). Hence there exists a unique minimizer ~z1
∆ P zK of ~z ÞÑ Eτ ptKr~zs,T

0
∆q

with T0
∆ “ id, and u1

∆ :“ pt1∆q#u
0, where t1∆ :“ tKr~z

1
∆s is the unique minimizer of (7.18). By

construction, u1
∆ satisfies Epu1

∆q ď Epu0
∆q with u0

∆ “ u0, and u1
∆ is strictly positive since u1

∆ is the

push-forward of the strictly positive density u0 through the transportation map t1∆ with striclty

positive determinant detpD t1∆q. Therefore, u1
∆ satisfies the requirements of Lemma 7.10 and one

can proceed as before. This proves by induction the existence of a sequence u∆ “ pu
0
∆, u

1
∆, . . .q

of strictly positive densities that solve (7.18) and satisfy Epun∆q ď Epun´1
∆ q for any n ě 1. l

Due to the above results, we know that the minimization problem in (7.41) has a unique

minimizer in zK at each time step n P N. From this observation, it is not far to conclude that

these minimizers satisfy the discrete Euler-Lagrange equation (7.23).

Proof of Proposition 7.2. Fix n P N. Remember that zK consists of vectors ~z in RpK`1q2´1

that satify detpD tKr~zsq ą 0. This yields by continuity of ~z ÞÑ detpD tKr~zsq that zK is an open

subset of RpK`1q2´1. Thus ~zn∆ is the root of the derivative of ~z ÞÑ Eτ ptKr~zs,T
n´1
∆ q, i.e. ~zn∆

satisfies

1

τ
Wn´1~z

n
∆ ` B~zEptKr~z

n
∆s,T

n´1
∆ q “ 0. (7.43)

Due to the definition of Wn´1 in (7.20) and the representation of the L2-Wasserstein distance

(7.38) in terms of Lagrangian maps, we conclude that Wn´1 “ W2rT
n´1
∆ s. Finally note that

E
´

`

tKr~zs
˘

#
un∆

¯

“ EptKr~zs,T
n
∆q.
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Therefore, the equations in (7.23) and (7.43) are identical, which proves the claim. l

Remark 7.11. The identity Wn´1 “ W2rT
n´1
∆ s provides an alternative representation of the

system of Euler-Lagrange equations in (7.23) or (7.43), which is the following:

1

τ
Wn´1~z

n
∆ ` B~zEptKr~z

n
∆s,T

n´1
∆ q “

δEτ pt
n
∆,T

n´1
∆ q

δt
r∇ϕkls “ 0, (7.44)

for all pk, lq P IK . This reflects in particular the variational character of our scheme, since

discrete solutions ~zn∆ to (7.41) can alternatively be found by variation of t ÞÑ Eτ pt,T
n´1
∆ q along

gradients ∇ϕkl of functions in BK .

7.3. Proof of the scheme’s stability

It remains to prove the scheme’s stability as formulated in Proposition 7.3. Therefore, take a

solution u∆ to the scheme with associated sequence of vectors ~z∆ which solves the system of

Euler-Lagrange equations due to Proposition 7.2. Our aim is to prove that

p1` 2λτq }tKr~z
n
∆s ´ tKr~ys}

2
L2pΩ;un´1

∆ q
ď τ2

@

~γnr~ys,W´1
n´1~γ

nr~ys
D

, (7.45)

for any ~y P RpK`1q2´1 and any n P N, where the residuum ~γnr~ys can be formulated as

~γnr~ys “
1

τ
Wn´1~y ` B~zEptKr~ys,T

n´1
∆ q.

The proof of (7.45) is essentially based on the preserved λ-convexity of ~z ÞÑ EptKr~zs,Tq.

Proof of Proposition 7.3. Fix n ě 1 and an arbitrary vector ~y P RpK`1q2´1. To simplify the

notation, we write ~γ “ ~γnr~ys in the following. Let us first conclude from the λ-convexity of the

functional ~z ÞÑ EptKr~zs,T
n´1
∆ q in (7.40) that

@

~z´ ~y, B~zEptKr~zs,T
n´1
∆ q ´ B~zEptKr~ys,T

n´1
∆ q

D

ě λ x~z´ ~y,Wn´1p~z´ ~yqy , (7.46)

for any ~z P zK , which is gained by Taylor expansion. Furthermore, ~zn∆ and ~y satisfy by definition

1

τ
Wn´1~z

n
∆ ` B~zEptKr~z

n
∆s,T

n´1
∆ q “ 0 and

1

τ
Wn´1~y ` B~zEptKr~ys,T

n´1
∆ q “ ~γ. (7.47)

since Wn´1 is a symmetric and positive definite matrix, one can define uniquely a symmetric and

positive definite matrix W
1{2
n´1 — its square root — such that W

1{2
n´1W

1{2
n´1 “ Wn´1. Multiply

both equations in (7.47) with τW
´1{2
n´1 and take the difference, then

W
1{2
n´1p~y ´~z

n
∆q ` τW

´1{2
n´1

`

B~zEptKr~ys,T
n´1
∆ q ´ B~zEptKr~z

n
∆s,T

n´1
∆ q

˘

“ τW
´1{2
n´1 ~γ.

Taking the norm on both sides yields the estimate

x~y ´~zn∆,Wn´1p~y ´~z
n
∆qy ` 2τ

@

~y ´~zn∆, B~zEptKr~ys,T
n´1
∆ q ´ B~zEptKr~z

n
∆s,T

n´1
∆ q

D

ď τ2
@

~γ,W´1
n´1~γ

D

. (7.48)

Due to the representation formula of Wn´1 in (7.38) and (7.39) one attains

x~y ´~zn∆,Wn´1p~y ´~z
n
∆qy “

ż

Ω
}tKr~ys ´ tKr~z

n
∆s}

2
2 u

n´1
∆ dx.
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Together with the convexity estimate in (7.46), we further conclude with (7.48) that

p1` 2λτq }tKr~z
n
∆s ´ tKr~ys}

2
L2pΩ;un´1

∆ q

ď}tKr~z
n
∆s ´ tKr~ys}

2
L2pΩ;un´1

∆ q
` 2τ

@

~y ´~zn∆, B~zEptKr~ys,T
n´1
∆ q ´ B~zEptKr~z

n
∆s,T

n´1
∆ q

D

ďτ2
@

~γ,W´1
n´1~γ

D

,

which proves the assumption. l

7.4. Implementation

The iterative character of our scheme — in form of the minimization procedure (7.41) or the

system of Euler-Lagrange equations (7.43) — requires an explicit computation of the terms

t ÞÑ dpt,Tn´1
∆ q and t ÞÑ Ept,Tn´1

∆ q at any time iteration n ě 1. Unfortunately, those integrals

cannot be evaluated explicitly for

Tn´1
∆ “ tn´1

∆ ˝ . . . ˝ t1∆,

which consists of successively iterated discrete optimal transportation maps. It is hence necessary

to apply some kind of integral quadrature:
ż

Ω
fpx, ρpxq,Tpxq, pt ˝Tqpxqqdx » Qζ

“

fpx, ρ,T, t ˝Tq
‰

,

where

Qζ

“

fpx, ρ,T, t ˝Tq
‰

:“

Kζ
ÿ

k,l“1

ωklfpxkl, ρpxklq,Tpxklq, pt ˝Tqpxklqq

with certain sample points ζ “ pxklq
Kζ

k,l“1 and weights pωklq
Kζ

k,l“1. In our numerical experiments

in Section 7.5, we are going to use an integral quadratures of the following kind:

Take Kb P N and decompose Ω “ r0, 1s2 using pKbq
2-many squares of the same size (quadrilateral

decomposition of Ω). Then an approximation of the integral on each square is gained by applying

a Gauß quadrature using pKsq
2-many weights per square, hence one has K2

ζ “ K2
b ¨K

2
s sample

points in total.

Fixing a suitable choice of integral quadrature Qζ , one can adopt the formulation of our

numerical scheme in (7.41) just by replacing the functions dpt,Tq and Ept,Tq from (7.28) and

(7.27) with

dζpt,Tq “
`

Qζ

“

|T´ t ˝T|2u0
‰˘

1
2 , and

Eζpt,Tq “ Qζ

„

ψ

ˆ

rdet Dptqs ˝T ¨ det D T

u0

˙

u0



.
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The resulting procedure then reads as follows:

Given a discretization ∆ “ pτ,K, ζq consisting of a time step τ ą 0, a spatial discretization

K and a ζ-dependend integral quadrature, an initial density function u0 P Pr
2pΩq, and

an initial transport map T0
∆ “ id P XK , define inductively a set of transportation maps

T∆ “ pT
0
∆,T

1
∆, . . .q, such that Tn

∆ “ tn∆ ˝Tn´1
∆ and tn∆ solves

tn∆ “ argmin
tPXK

1

2τ
d2
ζpt,T

n´1
∆ q `Eζpt,T

n´1
∆ q (7.49)

for n ě 1. Furthermore, set un∆ “ pT
n
∆q#u

0.

Of course, the above scheme is equivalently expressible in terms of vectors ~z P zK , analogously

to (7.41).

As before, this fully-discrete numerical scheme preserves important structural properties

from the continuous minimizing movement scheme in (7.13):

(1) Conservation of mass and positivity: This is a consequence of the choice of XK , which

is independent of the integral quadrature Qζ .

(2) Discrete entropy dissipation: Eζpt
n
∆,T

n´1
∆ q ď Eζpid,T

n´1
∆ q for n ě 1.

(3) Convexity: Following the proof of Lemma 7.8, it is clear that the integrand of Ept,Tq

itself is convex for almost every x P Ω. This implies the convexity of t ÞÑ Eζpt,Tq for

arbitrary T : Ω Ñ Ω. Especially the discretized perturbed entropy functional

~z ÞÑ
1

2τ
dζptKr~zs,T

n
∆q `EζptKr~zs,T

n´1
∆ q (7.50)

restricted to the convex set zK is λ-convex.

(4) Wasserstein-consistency: Dependent on the quadrature rule, there exists a rate α ą 0,

such that for arbitrary t,T

dζpt,Tq “W2ppt ˝Tq#u
0,T#u

0q `Opδαζ q

with maximal mesh width δζ “ maxt|xij ´ xi˘1,j˘1| : xij , xi˘1,j˘1 P ζu.

An iterative implementation of the above scheme (7.49) is now given by proceeding as follows:

‚ Choose a set of weights and sample points ζ for an integral quadrature.

‚ Start with n “ 0, set t0∆psq “ T0
∆psq “ s, rdet Dpt0∆ ˝ T0

∆qspsq “ 1 for all s P ζ and

save the evaluation vector S “ T0
∆pζq that describes the initial position of the sample

points, as well as Sdet “ rdet Dpt0∆ ˝T0
∆qspζq.

‚ Perform the following iteration:

(1) Set n “ n` 1

(2) Calculate tn P XK by solving the minimization problem in (7.49). For this, calcu-

late the variational derivative as in (7.43) and solve the system of Euler-Lagrange

equations.

(3) Set Sdet “ rdet D tn∆spSq ¨ Sdet and S “ tnpSq. The set S now pictures the

temporal evolution of the sample points at time t “ nτ .

(4) Stop if the final time is attained, otherwise go to p1q.

‚ Recover the set of density functions un∆ “
”

u0

det DTn∆

ı

˝ pTn
∆q
´1 for n ě 1.
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It is ad hoc not clear if one can indeed find a vector in zK that solves the system of Euler-

Lagrange equations, since the existence result of Proposition 7.1 (or Lemma 7.10, respectively)

is not applicable in the new situation. Numerically, one can solve the system of Euler-Lagrange

equations due to the convexity of (7.50) by using Newton’s method, but note that it is not

possible to guarantee that the gained solution tn lies in XK . The reason for this is that one

has just a finite number of points — the iteratively transported sample points Tn´1
∆ pζq — for

which one can check that detpD tnq is strictly positive. To circumvent this problem at least in

numerical applications, one can define in addition to the set of sample points ζ a large set of

random numbers ζrand with values in Ω. Then one can check the positivitiy of detpD tnq in each

Newton step on the iteratively transported set Tn´1
∆ pζrandq.

7.5. Numerical results

In all experiments below we choose Ppsq “ s2. Note that this choice is not covered from

Proposition 7.1 that guarentees the existence of solutions to the numerical scheme. However,

the numerical results indicate that one can neglect the conditions of Proposition 7.1 on P in

practical applications.

For the integral approximation as explained in Section 7.4, we always choose Kb “ 2K and

use a Gauß quadrature with four weights per square, which yields a total number of K2
ζ “ 16K2

sample points.

7.5.1. Numerical experiments.

7.5.1.a. Reference solution. To study the evolution of discrete solutions and the numerical

convergence, we compare our scheme with functions uref “ pu
0
ref , u

1
ref , . . .q, where each time step

unref , n ě 1, is a solution to the standard finite element scheme given by
ż

Ω

un ´ un´1
ref

τ
θkl dx “

ż

Ω

@

∇
`

unq2,∇θkl
D

` un x∇V,∇θkly dx, k, l “ 0, . . . ,Kref . (7.51)

We use the ansatz u “
řKref´1
k,l“1 uklθkl, where the functions θkl are tensor products of locally

affine functions θk : p0, 1q Ñ R that fulfill

θkpl ¨K
´1
ref q “

$

&

%

1 for k “ l,

0 for k ‰ l,

for any k “ 1, . . . ,Kref ´ 1. In order to satisfy the no-flux boundary condition, we further set

θ1pxq “ 1 for x P p0,K´1
ref q and θKref´1pxq “ 1 for x P p1´K´1

ref , 1q.

In all numerical experiments below, we use Kref “ 400 and τ “ 5 ¨ 10´4.

7.5.1.b. Evolution and decay of the entropy. In the first series of numerical investigations, we

consider the positive initial density

u0 “ C
`

0.1` x1

`

cosp4πx1q ´ 1.2
˘`

cosp2πx2q ´ 1
˘˘

, (7.52)
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where C ą 0 is such that u0 has unit mass, and study the discrete evolution of the numerical

scheme with Ppsq “ s2 and a “double-well”-like potential that is

V pxq “ ´λ
`

cosp2πx1q ´ 1
˘`

cosp4πx2q ´ 1
˘

(7.53)

for λ “ 0.75.

The evolution of the scheme’s solution u∆ and its corresponding transport map T∆ for

K “ 32 is plotted in Figure 7.1. Starting from the initial density that has 2 local maxima, the

solution shows a slow diffusion that is typical for a porous medium equation at the very first

time iterations, but then a certain “splitting” of the density arises that is caused by the influence

of the drift-potential V . Two elevations evolve and move towards the stationary solution with

increasing time.

Figure 7.2/right pictures the observed decay of the entropy Epun∆q compared with the one

gained by the standard finite element scheme using locally affine ansatz functions. As the figure

points out, both curves perfectly lie on top of each other.
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0 1
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y
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Figure 7.1. Evolution of the solution to the initial density (7.52) and its trans-
port maps T∆ at time t “ 0, 2.5 ¨ 10´3, 4 ¨ 10´3 and t “ 5 ¨ 10´2

7.5.1.c. Rate of convergence. For the next experiment, we again use the initial datum in (7.52),

and fix V ” 0. To study the convergence of the scheme, we run a series of numerical simulations

using the time step width τ “ 5 ¨ 10´4 and K “ 4, 8, 12, 16, 20, 24. The gained numerical

solutions u∆ are compared with the solution uref of the finite element scheme. To approximate

the L2-norm of the difference u∆ ´ uref , note that

}un∆ ´ urefpnτ, ¨q}
2
L2pΩq “

ż

Ω

›

›

›

›

u0pxq

det D Tn
∆

´ urefpnτ,T
n
∆q

›

›

›

›

2

2

detpD Tn
∆qdx,

for any n P N. This norm is numerically approximated by a Gauß quadrature using 400 sample

points. Figure 7.2/left shows the obtained L2-error that is evaluated at T “ 0.01. The observed

rate of convergence behaves approximately like K´3.

7.5.1.d. Convexity. It is a well-known fact from the continuous theory that two solutions u1

and u2 of a L2-Wasserstein gradient flow along a λ-convex entropy functional contract or diverge

as

W2pu1ptq, u2ptqq ďW2pu1p0q, u2p0qqe
´λt. (7.54)

Since convexity is just locally preserved by our scheme at any time step, see Lemma 7.8, it is ad

hoc not clear if (7.54) is valid, and even more, it is not clear how one can compare two numerical
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Figure 7.2. Left : numerically obtained L2-norm of the differences u∆ ´ uref

evaluated at final time T “ 0.01, using K “ 4, 8, 12, 16, 20, 25. Right : observed
decay of the entropy.
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Figure 7.3. The exponential decay of }Tn
∆,~ε ´ Tn

∆,~η}L2pΩ,u0q using K “ 12,

τ “ 10´3, n “ 0, . . . , 100 and the initial densities u0
∆,~ε and u0

∆,~η from (7.55).

solutions with different initial densities. To study (7.54) numerically, we choose V pxq “ λ
2 }x}

2
2

with λ “ 10 and fix the discretization parameters K “ 12 and τ “ 10´3. Furthermore, we

consider u0 “ 1 and take two perturbed densities u0
∆,~ε and u0

∆,~η, defined by

u0
∆,~ε “

´

id`
ÿ

pk,lqPIK

εkl∇ϕkl
¯

#
u0 and u0

∆,~η “

´

id`
ÿ

pk,lqPIK

ηkl∇ϕkl
¯

#
u0. (7.55)

The vectors ~ε and ~η have entries with random numbers with a maximal absolute value of

1.25 ¨ 10´5, but in order to enlarge the difference between both densities in (7.55), we randomly

add in each vector a single entry that has an absolute value of 5 ¨ 10´2. However, ~ε and ~η are

chosen such that the corresponding transport maps are still gradients of convex functions. We

then run the numerical scheme for both perturbed initial densities to get solutions u∆,~ε and
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u∆,~η. In the semi-logarithmic plot in Figure 7.3, one can see the time evolution of

}Tn
∆,~ε ´Tn

∆,~η}L2pΩ,u0q, n “ 0, . . . , 100, (7.56)

which is the best approximation to W2pu
n
∆,~ε, u

n
∆,~ηq we can accomplish with our method. Similar

to the continuous theory, the difference in (7.56) decays exponentially and satisfies the same

upper-bound as in (7.54).





CHAPTER 8

Concluding remarks

The last chapter of this thesis is intended to provide some concluding remarks to the presented

results and some ideas for possible extensions of the used methods.

Part 1. One-dimensional case. The results for our numerical schemes stated in one spa-

tial dimension are in general satisfiying and confirm the used approximations. For almost all

schemes, a proof of convergence is provided and several structural properties from the continuous

equations are preserved in the discrete setting.

The usage of piecewise constant density functions for the schemes’ derivations has its pros

and cons. On the one hand the resulting schemes are easy to implement and the handling

with piecewise constant functions makes the analytical investigation of the schemes relatively

convenient. But on the other hand a more sophisticated ansatz (for instance using spline inter-

polants with more regulartiy) would very likely yield to better rates of convergence. Take for

example the scheme for the DLSS equations by Düring, Matthes and Pina [DMM10], where

a locally quadratic spline interpolation is used for the approximation of Lagrangian maps with

corresponding continuous and differentiable density functions. Numerical experiments suggest

a better rate of convergence for the scheme in [DMM10] than for our scheme in Chapter 5.

Unfortunately, a proof of convergence for [DMM10] is still missing. For this purpose, I once

tried to proceed similarly as in Chapter 5 to derive a compactness result for discrete solutions

to the scheme in [DMM10], which turned out to be a difficult task that I haven’t solved yet.

Another point that calls for improvement is the usage of equidistant spatial decompositions

in the approaches for fourth order equations. It seems that all analytical results can be adapted

to non-equidistant meshes as well without changing the main ideas of proceeding. However, this

generalization is absent and could be the content of future considerations.

Part 2. Two-dimensional case. Unfortunately, there are many open questions for our scheme

in dimension two: The convergence result in Section 3.6 indicates that the obtained stability

result in combination with a consistency result can suffice to show convergence of the scheme

in Chapter 7, but a proof of consistency is still missing. Furthermore, it is not clear if one

can find useful a priori estimates that yield compactness of discrete solutions. Any effort to

exploit the variational structure of our scheme to find appropriate estimates as in the one-

dimensional situation in Chapter 3 failed so far, even for other choices of ansatz functions —

for instance, we attempted locally affine and quadratic spline interpolations of the Lagrangian

maps instead of the Fourier-ansatz presented in this thesis. A part from that, the approximation

of solutions to (7.1) starting with discontinuous initial density functions is unconvincing, since

strong oscillations occur along points of initial discontinuity because of the Gibbs phenomenon.
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But there are also many positive arguments that justify the way of our approximation.

Many important structural properties are preserved by construction, for example preservation

of mass, dissipation of the entropy and the λ-convexity of the entropy along discrete geodesics.

In addition, the preserved variational character of our scheme in Chapter 7 enables an extension

to fourth order equations in the same spirit as in Chapter 4 in the one-dimensional case. Take

for instance the Boltzmann entropy Hpuq “
ş

Ω u logpuq dx and define analogously to (7.28) the

Lagrangian representation

Hpt,Tq :“ H
`

pt ˝Tq#u
0
˘

for any density u0 and transportation maps t,T : Ω Ñ Ω with Ω “ p0, 1q2. Then a discrete

formulation of the auto-dissipation of the Boltzmann entropy according to the one-dimensional

definition in (4.22) would be (using the notation of Chapter 7)

~z ÞÑ FptKr~zs,Tq :“
@

B~zHptKr~zs,Tq,W2rTs
´1B~zHptKr~zs,Tq

D

,

which can be used as a discretization of the Fisher information Fpuq “
ş

Ω |∇
?
u|2 dx. Note

that this approach of the Fisher information is much easier to implement than for instance a

“straight-forward” restriction of F to XK , ~z ÞÑ FpptKr~zs ˝Tq#u
0q. A numerical scheme for the

DLSS equation on the domain Ω is then provided by the following recursively defined procedure,

where we again use the notation of Chapter 7:

Given a discretization ∆ “ pτ,Kq consisting of a time step τ ą 0, a spatial discretization

K, an initial density function u0 P Pr
2pΩq, an initial vector ~z0

∆ “ 0 P zK , and the initial

transport T0
∆ “ id. Then define inductively a sequence of vectors ~z∆ “ p~z

0
∆,~z

1
∆, . . .q, such

that ~zn∆ solves

~zn∆ “ argmin
~zPzK

1

2τ
dptKr~zs,T

n´1
∆ q ` FptKr~zs,T

n´1
∆ q (8.1)

for n ě 1, and set Tn
∆ “ tKr~z

n
∆s ˝Tn´1

∆ . Further denote tn∆ “ tKr~z
n
∆s, u

n
∆ “ pT

n
∆q#u

0, and

we write ~z∆ “ p~z
0
∆,~z

1
∆, . . .q, t∆ “ pt

0
∆, t

1
∆, . . .q, u∆ “ pu

0
∆, u

1
∆, . . .q and T∆ “ pT

0
∆,T

1
∆, . . .q.

The well-posedness of the above scheme is not studied so far, but initial numerical experiments

show that the above minimization procedure seems to be numerically solvable using Newton’s

method. A first comparison with solutions to the one-dimensional scheme of Chapter 5 further-

more indicates that solutions to the above numerical approximation have the same qualitative

behaviour: In Figure 8.1, we plot the evolution to solutions of the scheme in Chapter 5 and to

the scheme described in (8.1), using the initial densities

u0
1pxq “ C1p0.3` cos18pπxqq for x P p0, 1q, and

u0
2pxq “ C2p0.3` cos18pπx1q ` cos18pπx2qq for x “ px1, x2q P p0, 1q

2,
(8.2)

respectively. The constants C1, C2 ą 0 are chosen such that the initial densities have unit

mass. This first experiment motivates that the analysis of the scheme in (8.1) appears to be an

interesting issue for future researches.
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Figure 8.1. Solutions to the scheme in Chapter 5 (left) and to the scheme
in (8.1) (right) using the initial densities in (8.2) and evaluated at t “

0, 10´6, 10´5, 10´4. The plots on the right-hand side are cutted to improve the
visibility.





Appendix

A.1. General results from the literature

In this first section of the Appendix, we want to list some useful results from the literature which

are crucial for the convergence analysis of our numerical schemes in one spatial dimension.

First of all, we state one of many possible formulations of the well-known Arzelà-Ascoli

Theorem.

Theorem A.1 (Arzelà-Ascoli Theorem). Let Ω “ pa, bq be a bounded interval or Ω “ R.

Further let rt, ts Ď r0,`8q be a compact time interval, let K Ď Pr
2pΩq be a sequentially compact

set with respect to the L2-Wasserstein distance, and uk : rt, ts Ñ Pr
2pΩq be curves such that

ukptq P K for any k P N, t P rt, ts,

W2pukpsq, ukptqq ď C|t´ s|1{2 for any s, t P rt, ts, uniformly in k.

Then there exists a subsequence k1 of k and a limit curve u P C1{2prt, ts;Pr
2pΩqq, such that

uk1 Ñ u uniformly with respect to t P rt, ts as k1 Ñ8.

Proof. The claim of this theorem is a special case of [AGS05, Proposition 3.3.1]. �

The next result is about the convergence of non-increasing functions.

Theorem A.2 (Helly’s Theorem). Suppose pϕnq
8
n“0 to be a sequence of non-increasing func-

tions, such that ϕn : r0, T s Ñ r´8,`8s for any T ą 0. Then there exist a subsequence pϕn1q
8
n1“0

and a non-increasing function ϕ : r0, T s Ñ r´8,`8s such that ϕn1ptq Ñ ϕptq for any t P r0, T s

as n1 Ñ8.

Proof. See [AGS05, Lemma 3.3.3] �

Finally, let us formulate the following discrete Gronwall Lemma.

Lemma A.3 (Discrete Gronwall Lemma). Let qn P r0,`8q, n “ 0, . . . , N , such that

qn ď q0 `

n´1
ÿ

k“0

εk `
n´1
ÿ

k“0

Lkqk for any n “ 1, . . . , N,

where Lk P p0,`8q and εk P R for k “ 0, . . . , N ´ 1. Then

qn ď
`

q0 `

n´1
ÿ

k“0

εk
˘

exp
`

n´1
ÿ

k“0

Lk
˘

for any n “ 1, . . . , N.

Proof. A proof of this statement easily follows by induction. �

.
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A.2. Some technical lemmas for the one-dimensional case

In the last section of the Appendix, some technical results are provided.

Lemma A.4 (Gargliardo-Nirenberg inequality). For each interval Ω Ď R and f P H1pΩq,

one has that

}f}C1{6pΩq ď p9{2q
1{3}f}

2{3
H1pΩq

}f}
1{3
L2pΩq

. (A.1)

Proof. Assume first that f ě 0. Then, for arbitrary x ă y, x, y P Ω, the fundamental theorem

of calculus and Hölder’s inequality imply that

ˇ

ˇfpxq3{2 ´ fpyq3{2
ˇ

ˇ ď
3

2

ż y

x
1 ¨ fpzq1{2|f 1pzq|dz ď

3

2
|x´ y|1{4}f}

1{2
L2pΩq

}f 1}L2pΩq.

Since f ě 0, we can further estimate

|fpxq ´ fpyq| ď
ˇ

ˇfpxq3{2 ´ fpyq3{2
ˇ

ˇ

2{3
ď p3{2q2{3|x´ y|1{6}f}

1{3
L2pΩq

}f}
1{3
H1pΩq

.

This shows (A.1) for nonnegative functions f . A general f can be written in the form f “ f`´f´,

where f˘ ě 0. By the triangle inequality, and since }f˘}H1pΩq ď }f}H1pΩq,

}f}C1{6pΩq ď }f`}C1{6pΩq ` }f´}C1{6pΩq ď 2p3{2q2{3}f}
1{3
L2pΩq

}f}
1{3
H1pΩq

.

This proves the claim. �

For the forthcoming lemmata, we use the notation as introduced in Section 2.2 about the

spatial discretization. Therefore let us fix in the following a spatial decomposition ξ of the mass

domain M and denote by xξ the set of Lagrangian vectors with entries in Ω, which can be

bounded or equal to R. Furthermore, take a norm }¨}ξ as mentioned in Subsection 2.2.2 which

is induced by one of the matrices W2 or δI (in case of an equidistant mass decomposition), both

satisfying (2.24).

Lemma A.5. Take a functional E : xξ Ñ R and fix any ~x P xξ and τ ą 0. Furthermore, assume

that

~y ÞÑ E∆pσ,~y,~xq with E∆pσ,~y,~xq “
1

2σ
}~y ´ ~x}2ξ ` Ep~yq

attains a (not necessarily unique) minimizer for any σ P p0, τ s, which we denote by ~xσ. Further-

more, denote by

|BξE| p~xq “ lim sup
~yPxξ:~yÑ~x

`

Ep~xq ´Ep~yq
˘`

}~x´ ~y}ξ

the discrete local slope |BξE| of E at ~x.

Then for any σ P p0, τ s, the following points are satisfied:

‚ Discrete slope estimate: The discrete local slope |BξE| p~xq fulfills

|BξE| p~xσq ď
}~xσ ´ ~x}ξ

σ
. (A.2)
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‚ The map σ Ñ E∆pσ,~xσ,~xq is Lipschitz-continuous and

}~xσ ´ ~x}
2
ξ

2σ
`

ż σ

0

}~xr ´ ~x}
2
ξ

2r2
dr “ Ep~xq ´Ep~xσq. (A.3)

Proof. The following proof uses the same techniques as applied to Lemma 3.1.3 and Theorem

3.1.4 in [AGS05]. By definition of ~xσ one achieves

Ep~xσq ´Ep~yq ď
1

2σ

´

}~x´ ~y}2ξ ´ }~xσ ´ ~x}
2
ξ

¯

“
1

2σ
p}~x´ ~y}ξ ´ }~xσ ´ ~x}ξqp}~x´ ~y}ξ ` }~xσ ´ ~x}ξq

ď
1

2σ
}~xσ ´ ~y}ξ

´

}~x´ ~y}ξ ` }~xσ ´ ~x}ξ

¯

for any ~y P xξ, where we used the triangle inequality in the last step. Divide both sides by

}~xσ ´ ~y}ξ, then one attains the desired inequality since

|BξE| p~xσq ď lim sup
~yPxξ:~yÑ~xσ

1

2σ

´

}~x´ ~y}ξ ` }~xσ ´ ~x}ξ

¯

“
}~xσ ´ ~x}ξ

σ
.

To derive the Lipschitz-continuity of σ Ñ E∆pσ,~xσ,~xq, take any two σ0, σ1 P p0, τ s, σ0 ă σ1,

then E∆pσ0,~xσ0 ,~xq ď E∆pσ0,~xσ1 ,~xq yields

E∆pσ0,~xσ0 ,~xq ´E∆pσ1,~xσ1 ,~xq ď E∆pσ0,~xσ1 ,~xq ´E∆pσ1,~xσ1 ,~xq “
σ1 ´ σ0

2σ0σ1
}~xσ1 ´ ~x}

2
ξ .

Analogously one gets E∆pσ0,~xσ0 ,~xq ´E∆pσ1,~xσ1 ,~xq ě
σ1´σ0
2σ0σ1

}~xσ0 ´ ~x}
2
ξ and further

1

2σ0σ1
}~xσ0 ´ ~x}

2
ξ ď

E∆pσ0,~xσ0 ,~xq ´E∆pσ1,~xσ1 ,~xq

σ1 ´ σ0
ď

1

2σ0σ1
}~xσ1 ´ ~x}

2
ξ .

This yields the local Lipschitz continuity and passing to the limit as σ0 Ò σ and σ1 Ó σ for any

σ P p0, τ s, we obtain

d

dσ
E∆pσ,~xσ,~xq “ ´

}~xσ ´ ~x}
2
ξ

2σ2
.

Equation (A.3) then follows by integration. �

Lemma A.6. For each p ě 1 and ~x P xξ with ~z “ zξr~xs, one has that

ÿ

κPI1{2K

ˆ

δ

zκ

˙p

“
ÿ

κPI1{2K

pxκ` 1
2
´ xκ´ 1

2
qp ď pxK ´ x0q

p. (A.4)

Proof. The first equality is simply the definition (2.18) of zκ. Since one has trivially that

xκ` 1
2
´ xκ´ 1

2
ď xK ´ x0 for each κ P I1{2K , and since p´ 1 ě 0, one attains

ÿ

κPI1{2K

pxκ` 1
2
´ xκ´ 1

2
qp ď pxK ´ x0q

p´1
ÿ

κPI1{2K

pxκ` 1
2
´ xκ´ 1

2
q “ pxK ´ x0q

p. �

Lemma A.7 (Lower bound on Boltzmann entropy). For each ~x P xξ, one has that

Hp~xq ě ´
2
?
π

e

´

M ` }~x}2ξ

¯1{2
,
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where H : xξ Ñ R is the restriction of the Boltzmann entropy Hpuq “
ş

Ω u lnpuqdx to xξ, i.e.

Hp~xq “

ż

Ω
uξr~xs lnpuξr~xsqdx.

Proof. This statement is trivial if Ω “ pa, bq is a bounded domain, due to the convexity of

s ÞÑ s lnpsq and Jensen’s inequality:

Hpuq “ pb´ aq
ż

Ω
u lnu

dx

b´ a
ě pb´ aq

ˆ
ż

Ω
u

dx

b´ a

˙

ln

ˆ
ż

Ω
u

dx

b´ a

˙

“M ln

ˆ

M

b´ a

˙

.

This especially implies the boundedness of the restriction. Hence let us assume that Ω “ R
and let u P Pr

2pΩq be a nonnegative density of mass M with finite second moment. Since

´s log s ď 2e´1s1{2 for all s ą 0, one obtains

´

ż

Ω
u lnudx ď

2

e

ż

Ω

?
u dx

ď
2

e

ˆ
ż

Ω

dx

1` x2

˙1{2 ˆż

Ω
p1` x2qudx

˙1{2

“
2
?
π

e

ˆ

M `

ż

Ω
x2udx

˙1{2

.

In particular, this inequality is fulfilled for u “ uξr~xs with Lagrangian map Xξr~xs:

´Hp~xq ď
2
?
π

e

ˆ

M `

ż

M
Xξr~xs

2 dξ

˙1{2

.

Observing that
ż

M
Xξr~xs

2 dξ “ xW2~x,~xy ď }~x}
2
ξ

the claim follows. �
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[BCC08] Adrien Blanchet, Vincent Calvez, and José A. Carrillo, Convergence of the mass-transport steepest

descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal. 46 (2008), no. 2,

691–721. MR 2383208 (2009a:35113)

[BCHR99] C. J. Budd, G. J. Collins, W. Z. Huang, and R. D. Russell, Self-similar numerical solutions of the

porous-medium equation using moving mesh methods, R. Soc. Lond. Philos. Trans. Ser. A Math.

Phys. Eng. Sci. 357 (1999), no. 1754, 1047–1077. MR 1694702 (2000b:65168)

[BCMO14] Jean-David Benamou, Guillaume Carlier, Quentin Mérigot, and Edouard Oudet, Discretization of
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