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Abstract
In this work, we propose a framework of learning with preferences, which combines some neurophysiological findings,
prospect theory, and the classic reinforcement learning mechanism. Specifically, we extend the state representation of
reinforcement learning with a multi-dimensional preference model controlled by an external state. This external state is
designed to be independent from the reinforcement learning process so that it can be controlled by an external process
simulating the knowledge and experience of an agent while preserving all major properties of reinforcement learning.
Finally, numerical experiments show that our proposed method is capable to learn different preferences in a manner
sensitive to the agent’s level of experience.
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1 Introduction
The expected utility hypothesis is commonly used to model human’s decision making behavior in scenarios with un-
certain outcomes, such as gambling. However, situations where preferences of individuals among the same choices are
important, are not handled properly by the classic expected utility theory of Bernoulli. The Prospect Theory (PT), pro-
posed by Kahneman and Tversky [7] introduces the concept of reference point to the expected utility theory of Bernoulli.
This reference point enables to model preferences of individuals among same choices. It means that an internal reference
point for a specific decision is essential to model the decision making behavior of people. Meanwhile, in psychology,
a similar concept of affective states plays an important role in describing human’s behavior. The human affect system
is responsible to regulate the perception and assessment of events. It is able to assign rapidly emotions to occurring
situations. This affective representation is then used to influence the decision making process, cf. [6].

Recently, it is considered that both affective and cognitive systems are essential in future smart systems, cf. [8]. The
work in [2] also hypothesizes that rational decisions of humans are primarily influenced by so-called somatic markers, i.e.
the positive or negative feeling towards a specific situation. Therefore, it is vitally important to consider both affective
component and cognitive component, in order to design an autonomous and rational decision making agent. Because
of these inseparable components involved in the human decision making system, we propose to integrate an externally
controlled affective state into autonomous decision making. This results in a simulated emotional and rational experience
of a reinforcement learning agent. There are examples (c.f. Section 3) where the level of experience influences the outcome
of a task.

2 Related Works and Motivations
There are numerous works about the integration of affective and subjective components into Reinforcement Learning
(RL) agents. We selected those, which have influenced our idea of integrating an internal affective state into RL.

First of all, the work of Kenji Doya describes neuromodulatory systems and the (global) signals that regulate the (rein-
forcement) learning mechanisms of the human brain [3]. He argues that specific signals control and regulate the meta-
parameters (like randomness, action selection, reward prediction error, speed of memory update) for the reinforcement
learning process. But there is no clear hypothesis regarding how the brain generates those signals. It seems to be a pro-
cess separated of the actual learning running in different brain areas. This suggests that the brain has the capability of
dynamically adjusting these metaparameters towards new or dynamically changing environments.

Besides these neurophysiological findings, the Prospect Theory shows the psychological influence of external and inter-
nal signals on the decision making behavior of human. In the Prospect Theory, a value function is described which is
sensitive to deviations of the outcome (reward) according to a reference point in case of a risky choice. The reference
point thereby is set by the current decision problem and depends rather on the losses and gains than on the final net
asset value. This is also the reason why the framing of a choice problem becomes critical. The framing of the problem
results in an external shift of the reference point which alters obviously the decision behavior [10].

A concrete combination of Reinforcement Learning and Prospect Theory is described by Ahn [1]. He has extended
the conventional framework of RL for Markov decision processes (MDPs) with PT-based subjective value functions to
model experienced-utility and predicted-utility functions. Furthermore, these functions vary dynamically according to
the affective state of the decision maker (agent). This enables the agent to choose an action according to different risk
attitudes and action tendencies on the basis of subjectively evaluated previous outcomes of decisions. The performance
of his algorithm appears to be very good in the selected domains, but are difficult to reproduce due to the parameter
dependence (which were additionally optimized for each domain). Moreover, the reference point of the PT value function
is set automatically by the algorithm and an external control is not intended. Both, the external control as well as a strict
separation of the reference point from the learning process seem to be important, if we consider the framing hypothesis
and neurophysiological findings.

A third topic which has influenced our idea were preferences and biases. As preferences are fundamental for the hu-
man choice behavior, they are also an important component in learning. Human decision making is based on both, an
objective and a subjective component [2]. Both components mainly depend on the emotional experience of a person.
That means that decisions are evaluated in terms of objective and subjective rewards. The subjective rewards base on
experienced feelings and emotions of previous outcomes of actions and decisions. Over time, specific situations and
their past outcomes are associated with particular emotions (and their corresponding bodily changes). During decision
making, these emotion-situation pairs are used as physiological signals (or somatic markers) to bias decision making to-
wards certain policies while avoiding others. The whole set of somatic markers can be seen as the (emotional) experience
of a human and is gathered during life. Regarding the development of artificial life-long learning agents such an emo-
tional component is still a side issue. Therefore, the introduction of an experience-driven learning agent with specific
preferences and aversions is vitally important to build more human like agents [12, 11].

A concrete approach combining RL with preferences is described by Fürnkranz et al. [5], where they combine preference
learning [4] with RL. They learn a preference model from qualitative feedback and use it for ranking different policies
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Figure 1: (a) Reinforcement Learning framework with integrated preference model and affective state regulation.
(b) Preference model using Gaussian distribution functions to add a reward bonus to a specific state or action according
to the experience level SA. In the depicted model there are three different experience levels. The actual preference in each
level is highlighted (orange) and results in a reward bonus with a higher mean than the average. The different reward
boni in each level are added up.

(fixed trajectory of a Markov process). The main drawback of this approach is the qualitative feedback which is used
to evaluate already learned policies. This external qualitative feedback is given by human experts. Also, the learning
process is directly interrelated with the preference model and there is no control how much the preference model affects
the decision.

As we have seen the human learning process depends on external signals like framing effects and on internal signals
generated by neurophysiological systems, preferences, and (emotional) experience. These are the influencing factors we
want to use in our algorithm to model an agent with experience based preferences. Therefore, we propose a framework
which should illuminate the role of an internal affective state (like an experience value) in the context of RL. We con-
structed this affective state so that it fulfills the Markov property, enabling the external control of the policy together
with a preference model. In parallel, the affective state could also be used to model reference points as proposed in the
prospect theory, enabling the agent to subjectively evaluate outcomes according to a (subjective) reference point. There
are possible applications in the field of artificial intelligence, human-computer interfaces, and decision-support systems
(recommender systems) where preferences of policies are needed and they are an essential aspect of rational autonomous
agents.

3 Reinforcement Learning with Preferences
Basic Reinforcement Learning assumes a scenario in which an agent acts in a (finite) state space by performing different
actions. A reward signal gives the agent feedback about its actions. The goal of RL is defined as maximizing the expected
total sum of rewards. The basic formulation of a RL problem builds on the notation of a Markov decision process [9]:

• A set of states S 2 {s
1

, s
2

, . . . , si} and a set of actions A(si) 2 {a
1

, a
2

, . . . , aj} which the agent can perform in a
particular state si.

• Transition probabilities Pa
ss0 = Pr{st+1

|st, at} which denote the probabilities that an action at in state st leads
to state st+1

.
• A reward function r(st, at) giving the agent reward according to the state and action performed.

We extended this basic RL framework with an additional state called affective state SA (Figure 1a). According to this state
the agent uses a preference model (Figure 1b) which gives a reward bonus to specific actions or states. In our experiment
we use a one-dimensional state representation for controlling the preference model. For representing more complex
affective states (e.g. general mood states) it would be possible to extend the state representation to a multi-dimensional
vector controlling different preference models.

The basic idea underlying our preference model are various reward functions which are selected according to an affective
state SA. The additional reward functions correspond to reward facets which an agent can only perceive with increased
experience or external feedback. The difference between our framework and approaches for multi-dimensional or dy-
namic reward environments surfaces in scenarios, where the agent first has to learn how the reward process works. For
example, as a novice in cooking someone tells you to cook fried eggs and gives you eggs, a pan, and all other necessary
equipment. You will start frying eggs until it looks like a fried egg. Now someone tastes and tells you that the yolk has
to be cooked through. Up to now, as a beginner in cooking you only judged fried eggs according to the appearance, but
now a new dimension is added: how the yolk has to be cooked. Next time cooking fried eggs (with an increased level of
experience), this dimension is also considered and evaluated.

Another example, more complex especially for machines is the taste of coffee. As a beginner in drinking coffee you only
judge your coffee according to the overall taste of bitterness or sweetness and probably the temperature. After drinking
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coffee regularly you start to taste different flavors within a specific kind of coffee. Consequently, your experience in
drinking coffee has added new dimensions of possible rewards to your preference model. As a coffee expert you choose
your coffee according to a variety of different tastes and ways of preparation.

So, our preference model consists of several levels of reward functions which are only visible or accessible to the agent
in a specific affective state (like a specific level of experience). We additionally introduce the constraint, that each level of
experience can only increase, hence the additional reward functions are always added and can never be removed again
(no-go-back-policy).

The signal generation representing the level of experience seems to be a substantial question. There are several solu-
tions conceivable, like a monotonically increasing function according to the action taken by the agent or more advanced
approaches considering the gathered knowledge and external feedback. Furthermore, according to neurophysiology a
strict separation of the control signals for the learning process is desirable. That means, the internal affective signal (in
the actual case the level of experience) must be externally controlled and should only be based partially on the results of
the learned actions and outcomes. Ideally, it should base on past experiences, temporal effects, external feedback, and
cognitive biases (like framing effects). Therefore, we decided to use in this stage of the development a simple stepwise
function which increases the level of experience in three steps after a specific number of actions and does not inter-
fere directly with the reinforcement learning process. This might be a oversimplification but allows a clear and concise
formulation of the experiment.

4 Experiment

We conducted an experiment to investigate the properties of this extended reinforcement learning framework demon-
strating that additional reward functions which are controlled externally can introduce preferences to the learned policy.
In the experiment we simulated a three-armed bandit with Gaussian distributed rewards. At the beginning, each arm
returns the same Gaussian distributed reward rext with µj = 1 and �j = 1 for all arms j = 1, 2, 3. The experiment
was repeated independently 100 times and 300 trials were played. Afterwards, the results where averaged. In this
experiment, we used a simple affective state, which can be compared to a general level of experience. The state was
generated externally and was modelled as an exponential increasing process simulating a continuously increasing level
of experience.

We have used Q-learning with ✏-greedy exploration [9] to learn the optimal policy in this experiment (✏ = 0.05, ↵ = 0.8,
� = 0.4). The results depicted in Figure 2 show that with increasing experience level the policy changes. At the first
level (beginner, 0  SA  0.5), the agent is not able to differentiate the decisions and each action aj is taken equally.
After gaining some experience (intermediate, 0.5 < SA  0.95) a second layer or dimension of reward functions is
added to the learning process (second layer of Figure 1b). Now, the agent receives the original reward of the bandit
process and an additional reward bonus (in the current setting also Gaussian distributed) which is added to the actual
reward. In the intermediate level a preference model (or reward dimension) with µ

2,int = 15, µ
1,int = µ

3,int = 1

and �
1,int = �

2,int = �
3,int = 1 is added. So, a clear preference for action a

2

is introduced at this level of experience
and the agent starts to prefer this action. In the expert level (0.95 < SA  1), a preference model is added which
assigns a reward bonus, slightly higher than the one for action a

2

, to action a
3

(µ
3,exp = 15, µ

1,exp = µ
2,exp = 1 and

�
1,exp = �

2,exp = �
1,exp = 1). This results in a bias for action three which is therefore most frequently selected while the

probability for action one and two decreases. The total reward r for updating the Q-function can be denoted as

r(st, at, SA) = rext +

X

j2A,k2S
A

Xj,k, Xj,k ⇠ N (µj,k, �2

j,k), (1)

where SA denotes the set of experience levels, A the set of possible actions, and rext the external reward given by the
three-armed bandit. Xj,k is the reward bonus for a given action j in a specific affective state k which is in this example a
sample of a normal distribution N (µj,k, �2

j,k).

5 Results

The results of the experiment as depicted in Figure 2 are straight forward and meet our expectations. But they show
that the extension of the conventional RL framework with various reward process dimensions controlled by an external
affective state can introduce preferences to the learned policy. In the introduction we motivated this extension by psycho-
logical and neurophysiological findings. This enables developers of learning agents to use it for developing agents with
preferences, specific tastes and risk dispositions. The additional reward dimensions could be used e.g. for integrating
prospect theory value functions besides conventional (like Gaussian) reward functions to simulate rational componentes
of decision making (like risk aversion and attraction) while preserving the main underlying reward process maximizing
the expected utility.
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Figure 2: Learned policy for a simulated increasing level of experience. First, the agent acts like a beginner end selects
every action equally (the thickness of the bars corresponds to the frequency of selection). At trial 98 the agent enters
the intermediate state and can perceive an additional reward model with a preference for the second action (a

2

). In the
expert state, another reward model is added with a preference for action three (a

3

).

6 Conclusion

The basic premise of the paper is that traditional RL can be extended by a preference model which is controlled by a
single external state not interfering with the learning process. We also described in this paper the multi-dimensional
approach of constructing a preference model with various reward functions as well as the application of it to integrate
distinct preferences, biases, or cognitive frames into the framework of reinforcement learning.

In future studies we want to investigate the properties of such a framework regarding uncertainties in the reward pro-
cess, the exploration and exploitation trade-off, and learning different “flavors or tastes” of polices. The property of an
increasing reward function space would also be an interesting topic for further studies. Our vision is to build artificial
agents with human-like preferences and sensitivity towards framing effects.
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