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ABSTRACT

In this paper, an approach for understanding natural speech by means of two stochastic knowl-
edge bases is presented: Within a given domain, the semantic model generates possible semantic
structures, which are semantic representations close to the word level. Corresponding to such a
semantic structure, the syntactic model generates word chains using hierarchical Hidden-Markov-
Models. Integrated into a speech understanding system, these stochastic knowledge bases can be
utilized for a ’top-down’-approach.
Keywords: speech recognition, language understanding, Hidden-Markov-Model, spoken human-
machine-dialogue

1 MODEL INTEGRATION INTO A 'TOP-DOWN'-RECOGNITION PROCESS

Speech understanding can be interpreted as mapping a sequence of observation vectors O of an ut-
terance [4] to its semantic content, in this paper represented by the semantic structure S. Given the
observation sequence O, the most likely S has to be found. To pursue this goal, the a-posteriori-
probability  has to be maximized. It can be transformed using the Bayes formula:

(1)

We choose to calculate the probabilities  and  by using stochastic methods [2] [5]
[6]. Due to the high variety of  and  the conditional probability  can not be estimated
directly from a set of training data. Therefore, additional representation levels are necessary.
Clearly defined is the word level W, which can be used to calculate  as follows:

(2)

 is irrelevant to the maximization, since it is constant for a given O. Hence, the search prob-
lem for the most likely semantic content  can be simplified to:

(3)

In the case of searching for the most likely combination of ,  and , the semantic struc-
ture  can be determined by the Viterbi decoding algorithm [9] and the sum in eq. (3) is substi-
tuted by a maximization:

(4)

Assuming statistical independence of ,  and , their product  represents
the joint probability for a certain pattern at each of the representation levels S, W and O. The pat-
tern for the observation sequence  is fixed, since it is given by preprocessing the speech signal
of the utterance. Fig. 1 shows the most import modules necessary for top-down decoding the se-
mantic structure  of the utterance. Within these modules, additional levels of representation
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might be required, for example the phonetic transcription inside the acoustic-phonetic models.
The main tasks of the system’s hierarchy are listed below:

• Semantic Model
Knowledge base for estimation of , the a-priori probability of the occurrence of the se-
mantic structure  within a particular domain of interest [3].

• Syntactic Model
Knowledge base for estimation of , the conditional probability of the occurrence of
the word chain W given the semantic structure S of the utterance.

• Acoustic-phonetic Models
Knowledge base for estimation of , the conditional probability of the occurrence of
the observation sequence O given the word chain W [8].

2 SEMANTIC STRUCTURE

The semantic content of possible utterances is unlimited. Therefore, it is suitable to have the se-
mantic structure , which is formed of smaller significant units, called semantic units (abbrevi-
ated semuns), which have limited variety.

2.1  Definition of the semantic structure

The connection of the semuns to a hierarchic tree structure is proposed. A higher level semun
should be specified by a lower level semun. As an example, fig. 2 shows the tree of such a seman-
tic structure S consisting of N = 8 semuns. The nodes are the semuns . The semun in the highest

Figure 1: Hierarchy of a system for extracting the semantic structure of an utterance
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level is denoted , the others are numerated from 2 to N in an optional manner. The edges form
the connections between these semuns.

A certain semun has X direct successors, connected by the edge ’ ’. ’ ’ marks the edge to
the semun  in the highest hierarchic level, ’ ’ a terminal edge. A terminal node does not
occur. In the upper example, there is  for  and  for all other semuns (terminal
edges count, too).

The connections between the semuns can be explained as follows:

In the farest sense, a single semun can be seen as an X-place predicate logic relation constant [1].
But the connection of single semuns to the semantic structure differs essentially from the repre-
sentation by predicate logic. However not so exact in the mathematical sense, the semantic struc-
ture offers some important advantages:

• The semantic structure is a representation of the semantic content close to the word level.
Since every semun  in S corresponds to one significant word w in the word chain W, it is pos-
sible to design a model for calculating  without any more representation levels.

• Connecting the semuns, there is only one mechanism, namely marking other semuns as so-
called successors. Designing the models for calculating the probabilities  and ,
only that way to connect the semuns must be taken into account. This restriction is a benefit for
designing consistent models.

2.2  Definition of a single semun

A semun contains the semantic information of one significant word. For modelling the semun’s
meaning separated from the set of possible successors, every semun  is represented by its
type and its value :

• The type  lays down the number X of successor-types  and re-
stricts the set of possible successor-types. Furthermore, it makes an efficient selection of the
corresponding values.

• The value  shows the proper meaning of the word w, which corresponds
to the semun . Notice that there could be several words with exactly the same meaning, that
the semantic structure  will not change if one of these words are mutated.

For our first investigations, the number X of possible successors was limited to two, i.e. for the
present, there are semuns only with  or .

Figure 2: Connection of semuns to the tree of a Semantic Structure S
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2.3  Examples for understanding

For explaining the last two chapters, the semantic structure S is formed for two different utter-
ances, each given as a word chain W in German language. In this example, the utterances are com-
mands to control a simple graphic editor for three-dimensional objects on the screen.

W1 = ’lösche alle grünen quader’

W2 = ’zeichne bitte zwei kugeln und mache doch den roten kegel klein’

A set of possible types and values must exist to represent the semantic content of all possible ut-
terances within the current domain of interest as semantic structures. The following table lists
some semuns for a graphical editor. The table does not contain all possible semuns, which are nec-
essary for any conceivable utterance. But it elucidates that the semantic content of many utter-
ances can be represented only with a few types and values.

With the semuns proposed in tab. 1, the semantic structures  and  explaining the semantic
contents of the word chains  and  can be as follows:

type value possible successor-types X explanation

comm1 create,
delete

form, logic 1 action command with
one successor

comm2 change 1.: form, logic
2.: colour, size, pos, (terminal)

2 action command with
two successors

form sphere, cylinder,
cone, block

quant, colour, size, pos,
logic, (terminal)

1 object form

quant 1, 2, 3, ...,
many, all

size, pos, colour, (terminal) 1 object quantity

size big, small, normal pos, colour, (terminal) 1 object size

pos middle, up, down,
right, left

colour, (terminal) 1 object position

colour red, green, blue,
yellow

(terminal) 1 object colour

logic and, or 1./2.: form, size, pos, colour,
comm1, comm2

(Both the successors must
be of the same type!)

2 logical operation

Table 1: Examples for possible types and values for representing utterances to control a graphical editor

Figure 3: Semantic structures  and  corresponding to the word chains  and .
Every semun  is represented through a pair of type and value : .
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For standardisation of the likelihood calculation described in the following chapters, also the suc-
cessor-type (terminal) has to be included into the set of all existing types . That
type indicates an outgoing edge ’ ’, it does not define a semun, it has no value!

Notice that the insignificant words ’bitte’ and ’doch’ of the word chain  are not represented in
the semantic structure .

3 SEMANTIC MODEL AND SEMANTIC GENERATOR

The semantic generator (see fig. 1) has to generate all possible semantic structures S with their a-
priori-probabilities  which are imaginable within a certain domain of interest.

3.1  Probabilities of the semantic model

The knowledge base used by the semantic generator is the semantic model, which has to be built
of training data (these are many given semantic structures within a certain domain of interest).
However, the variety of  is too large to estimate  directly from a training corpus. It is not
feasible that all possible semantic structures can be seen in the training. The semantic model must
contain a limited number of parameters, which on one hand can be reliably estimated out of the
limited training material and on the other hand allow one to calculate the respective a-priori-
probability  of an unlimited set of semantic structures . Hence, the estimation of some
first order conditional probabilities is proposed:

• The begin probability

(5)

indicates the probability that there is a semun of the type  in the highest hierarchic level.

• The value probability
(6)

indicates the probability that a semun of the type  has the value .

• The succession probability

(7)

indicates the probability that a semun of the type  has X successor-types .

3.2  Calculation of P(S)

The estimation of the a-priori-probability  is explained with the following part of a seman-
tic structure.

• The begin edge to the semun  has the begin probability

. (8)

Figure 4: Part of a semantic structure S
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• Every node, i.e. every semun , has the value probability

. (9)

• All edges (also terminal ones), which are leaving a certain semun , have the succession
probability

. (10)

Assuming statistical independence of all terms in eq. (8)-(10), the a-priori-probability  is
the common product of the begin probability  with all succession and value probabilities of
the N semuns within the semantic structure :

(11)

Although the assumption of statistical independence is not given in practise, the rather simple
modelability justifies the use of eq. (11).  could be specified exactly, if conditional proba-
bilities of nth order with  instead of first order are used. Indeed, the number of the param-
eters which have to be trained grows exponentially with rising order, which, on one hand would
aggravate the training, on the other hand would produce a too large hypotheses search space
within a top-down semantic recognition.

4 WORD CHAIN GENERATOR AND SYNTACTIC MODEL

Using the syntactic model, the word chain generator has to produce all likely word chains  ex-
pressing a certain semantic structure S. The demands made on the word chain generator are listed
below:

1. Creation of one significant word  per semun  representing its meaning .

2. Insertion of additional, insignificant words.

3. Time alignment of all words in the word chain.

In our approach, a unique syntactic model  exists for every possible semantic structure , con-
strained by the condition:

(12)

The syntactic model represents a Hidden-Markov-Model [7], implying the superimposition of
two stochastic processes:

1. Change of states according to a set of transition probabilities.

2. Emission of words from selected states according to emission probabilities.

The probability of a certain state sequence , given the model , is the product of all transition
probabilities along :

(13)
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The probability of emitting the word chain  along the state sequence  is given by

. (14)

If we assume statistical independence of these two stochastic processes, the joint probability
for  and  is simply the product of the above two terms:

(15)

The probability of  (given the model), which is to be calculated, is obtained by summing this
probability over all possible state sequences :

(16)

An infinite set of likely semantic structures is in accordance with an infinite set of syntactic mod-
els as well. In contrast, the model parameters have to be extracted from a limited amount of train-
ing data (these are word chains describing many semantic structures). To avoid problems caused
by the lack of training data, the syntactic model is constructed from a limited set of smaller units,
in the following called elementary Hidden-Markov-Models (EHMMs). Starting from the seman-
tic structure as an adequate representation of the semantic content, it seems reasonable to include
exactly one EHMM for every semun . The EHMMs have to be linked with each other, associ-
ated to the edges in .

4.1  Parameters of an elementary Hidden-Markov-Model

As shown in fig. 5, the EHMMs contain three or four states , depending on the number of
successors X (for our first investigations we limit ). The EHMM appears to be a first
order Hidden-Markov-Model, but it contains some substantial distinctions:

• The state  emits one insignificant word.

• The state  emits one significant word, which represents the semantic content of the associ-
ated semun. This state has to be passed accurately one time. More detailed explanations con-
cerning the word emissions can be found in chap. 2.3.

• The states  and  symbolize the EHMMs associated with the successor semuns (one or
two). These sub-models have to be entered and left accurately one time.

An EHMM is described by the following parameters:

• Transition probabilities:
 is the probability of a transition from state  to :

(17)

Transitions to the states  and  represent transitions to the start point of the concerned sub-
model. Transitions from the states  and  represent transitions from the end point of the
concerned sub-model.

• Emission probabilities:
 is the probability of emitting the word w in state  or :

(18)
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To reduce the number of model parameters to be estimated, we assume that all parameters except
the emission probability  only depend on the type of the associated semun. Hence, the
number of required model parameter sets is equal to the number of semun types  defined for the
semantic structure.

4.2  Linking together various EHMMs

The construction of the syntactic model  as a network of linked EHMMs follows the definition
of the semantic structure S, which consists of single semuns . Hence,  incorporates accu-
rately one EHMMn for every node (i.e. every semun) in the tree of . Every edge in the tree of
causes a link of the associated EHMMs. The successors  and  of the semun  are inte-
grated into the syntactic model as sub-models EHMMn1 und EHMMn2. The states  and
serve as dummies for these sub-models.

Figure 5: Elementary Hidden-Markov-Models with three or four states

Figure 6: Layout of the syntactic model associated with a given semantic structure
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Fig. 6 shows a semun  with  successors  and  as a detail of a complete semantic
structure. On the right side, the associated part of the syntactic model is illustrated, which consists
of the EHMMn with its sub-models EHMMn1 and EHMMn2.

4.3  Word emissions

• State  emits exclusively insignificant words. The emission probability  only de-
pends on the type  of the associated semun .

• State  emits exclusively significant words. The emission probability  depends both
on the type  and on the value  of the associated semun .

Fig. 7 gives an example for possible emissions from the states  and , given the type
comm1 (taken from tab. 1):
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Figure 7: Emissions of significant and insignificant words with associated
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