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Objective: The aim of this study is to simulate speech perception with 
combined electric-acoustic stimulation (EAS), verify the advantage of 
combined stimulation in normal-hearing (NH) subjects, and then com-
pare it with cochlear implant (CI) and EAS user results from the authors’ 
previous study. Furthermore, an automatic speech recognition (ASR) 
system was built to examine the impact of low-frequency information 
and is proposed as an applied model to study different hypotheses of the 
combined-stimulation advantage. Signal-detection-theory (SDT) models 
were applied to assess predictions of subject performance without the 
need to assume any synergistic effects.

Design: Speech perception was tested using a closed-set matrix test 
(Oldenburg sentence test), and its speech material was processed to 
simulate CI and EAS hearing. A total of 43 NH subjects and a custom-
ized ASR system were tested. CI hearing was simulated by an aurally 
adequate signal spectrum analysis and representation, the part-tone-
time-pattern, which was vocoded at 12 center frequencies according 
to the MED-EL DUET speech processor. Residual acoustic hearing was 
simulated by low-pass (LP)-filtered speech with cutoff frequencies 200 
and 500 Hz for NH subjects and in the range from 100 to 500 Hz for the 
ASR system. Speech reception thresholds were determined in ampli-
tude-modulated noise and in pseudocontinuous noise. Previously 
proposed SDT models were lastly applied to predict NH subject perfor-
mance with EAS simulations.

Results: NH subjects tested with EAS simulations demonstrated the 
combined-stimulation advantage. Increasing the LP cutoff frequency 
from 200 to 500 Hz significantly improved speech reception thresh-
olds in both noise conditions. In continuous noise, CI and EAS users 
showed generally better performance than NH subjects tested with 
simulations. In modulated noise, performance was comparable except 
for the EAS at cutoff frequency 500 Hz where NH subject performance 
was superior. The ASR system showed similar behavior to NH subjects 
despite a positive signal-to-noise ratio shift for both noise conditions, 
while demonstrating the synergistic effect for cutoff frequencies ≥300 
Hz. One SDT model largely predicted the combined-stimulation results 
in continuous noise, while falling short of predicting performance 
observed in modulated noise.

Conclusions: The presented simulation was able to demonstrate the 
combined-stimulation advantage for NH subjects as observed in EAS 
users. Only NH subjects tested with EAS simulations were able to take 
advantage of the gap listening effect, while CI and EAS user performance 
was consistently degraded in modulated noise compared with perfor-
mance in continuous noise. The application of ASR systems seems fea-
sible to assess the impact of different signal processing strategies on 
speech perception with CI and EAS simulations. In continuous noise, 
SDT models were largely able to predict the performance gain without 
assuming any synergistic effects, but model amendments are required 
to explain the gap listening effect in modulated noise.

Key words: Automatic speech recognition, Cochlear implant, Electric-
acoustic stimulation, Modeling, Signal detection theory, Simulation, 
Speech perception.
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INTRODUCTION

Combined electric-acoustic stimulation (EAS) comprises 
electrical stimulation by a cochlear implant (CI) and acoustic 
stimulation of low-frequency residual hearing in the same ear. 
First described by von Ilberg et al. (1999), EAS was made pos-
sible by advances in the surgical approach and electrode arrays 
designed to minimize trauma of the delicate cochlear structures, 
thus allowing the preservation of acoustic low-frequency hear-
ing after implantation (Gantz & Turner 2003; Gantz & Turner 
2004; Helbig et al. 2011; review in von Ilberg et al. 2011). EAS 
is now established as a therapeutic treatment for people with 
severe-to-profound hearing loss but remaining low-frequency 
hearing although optimizations of its clinical application are still 
being discussed (Gifford & Dorman 2012; Incerti et al. 2013).

EAS users generally have significantly better scores on 
speech intelligibility tests, especially in complex noise situa-
tions, than do bilateral CI users (review in Dorman & Gifford 
2010; Rader et al. 2013). This effect is often described as the 
“combined-stimulation advantage” and was generally studied 
by direct comparison of CI and EAS user performance or by 
using simulations with normal-hearing (NH) subjects. Further-
more, the underlying mechanisms were discussed on the basis 
of perceptual models, primarily assessing the apparently syner-
gistic effect of EAS and how it could be explained.

Different modes of combining electric and acoustic stimula-
tion must be distinguished when comparing user performance. 
Apart from combined electric and acoustic stimulation in the 
same ear (henceforth called EAS), some people receive a stan-
dard CI with a fully inserted electrode and a hearing aid on the 
contralateral ear, which is termed bimodal stimulation. The lat-
ter group was also shown to benefit from low-frequency acoustic 
hearing in the contralateral ear (e.g., Gifford et al. 2007; Cul-
lington & Zeng 2010). While EAS and bimodal users receive 
different types of information (Ching et al. 2007), both groups 
outperform CI users in speech intelligibility tests (Dorman & 
Gifford 2010). In our previous study (Rader et al. 2013), perfor-
mance of EAS users with a hearing aid in the contralateral ear 
(bimodal EAS) was compared with performance of bilateral CI 
users using the Oldenburg sentence test (OLSA; Wagener et al. 
1999a, 1999b, 1999c) in a multisource noise field. Gap listening 
(or “glimpsing”), bilateral interactions, and frequency fine struc-
ture were discussed with regard to the benefit of EAS. The results 
indicated that binaural interaction between EAS and contralateral 
acoustic hearing enhances speech perception in complex noise 
situations similar to a cocktail party scenario. However, neither 
bilateral CI nor bimodal EAS users were able to benefit from gap 
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listening, contrary to what was observed in NH subjects listening 
to acoustic simulations (Li & Loizou 2008).

To investigate the psychophysical mechanisms of the 
combined-stimulation advantage, NH subjects were tested with 
EAS simulations, which have consistently demonstrated the 
combined-stimulation advantage in comparison with CI simula-
tion (i.e., vocoded speech). This advantage was mainly investi-
gated by evaluating speech intelligibility in noise and inspecting 
the role of fundamental frequency (F0) and temporal fine-struc-
ture information (Qin & Oxenham 2006; Kong & Carlyon 2007; 
Brown & Bacon 2010). It was suggested that low-frequency 
speech signals provide cues to differentiate target-related and 
masker-related information, which results in a synergistic effect 
of combining low-frequency and vocoded speech signals. In a 
study comparing different models of the combined-stimulation 
advantage, Micheyl and Oxenham (2012) referred to this as the 
“super-additivity hypothesis.” A different supposition was that 
important phonetic cues in low-frequency speech signals can 
supplement limited cues in vocoded speech (Qin & Oxenham 
2006; Kong & Carlyon 2007; Brown & Bacon 2010). Micheyl 
and Oxenham (2012) therefore suggested that having access 
to two sources of information can account for the combined-
stimulation advantage, without the need for synergistic inter-
actions between low-frequency and vocoded speech. They 
referred to this as the “simple-additivity hypothesis.”

Mathematical and perceptual models have therefore been 
applied to validate different psychophysical hypotheses. To 
predict subject performance, Kong and Carlyon (2007) used 
the probability-summation model, which was derived from 
the probability of occurrence of either or both of two indepen-
dent and not mutually exclusive events, i.e., identifying low-
frequency and vocoded speech. This model, however, typically 
underpredicted subject performance. On the other hand, signal-
detection-theory (SDT) models were largely able to predict 
subject performance, without assuming any synergistic effects 
from combining low-frequency and vocoded speech (Seldran et 
al. 2011; Micheyl & Oxenham 2012).

In contrast to perceptual models that are commonly stud-
ied to explain the psychophysical processes, automatic speech 
recognition (ASR) is aimed to provide a human–machine inter-
face that translates spoken words into text. ASR systems con-
vert relevant spectral information into quantifiable acoustic 
features to reduce speech signal variability and ensure robust 
ASR performance. Such acoustic features are often based on 
the spectral envelope of the short-term speech spectrum, e.g., 
mel-frequency cepstral coefficients. Cong-Thanh Do et al. 
(2010) used spectrally reduced speech, which was synthesized 
from a filter bank simulating the motion of the basilar mem-
brane, to evaluate hidden Markov model (HMM)-based ASR. 
Results showed that 16 frequency subbands were sufficient for 
the ASR system to achieve significantly high word recognition 
accuracy. This demonstrated that spectrally reduced speech can 
yield sufficient information for stable speech recognition, thus 
motivating the application of ASR to further inspect the syner-
gistic effect of EAS.

In conclusion, the combined-stimulation advantage is well 
established and supported by the majority of data comparing CI 
with EAS user performance. However, its psychophysical mech-
anism remains to be explained and its principal components need 
to be determined. In the present study, we established a simu-
lation of speech perception with EAS to verify the synergistic 

effect in NH subjects and compared it with results of bilateral 
CI and bimodal EAS users from our previous study (Rader 
et al. 2013). To this end, the simulation was based on OLSA 
speech material and tested in pseudocontinuous and in ampli-
tude-modulated noise. We then used two approaches, an applied 
ASR model and two SDT models, to further explain the perfor-
mance gain observed in our EAS simulations. The ASR system 
was built to investigate the impact of low-frequency informa-
tion conveyed by F0 and lower harmonics on the recognition of 
spectrally reduced speech; it is hereby proposed as an applied 
model to isolate psychophysical parameters and study different 
hypotheses of the combined-stimulation advantage. SDT model 
predictions were compared with our simulation data to discuss 
the apparently synergistic effect of combined stimulation.

MATERIALS AND METHODS

NH Subjects
Data were collected in three separate sessions with different 

sets of subjects, with a total n = 43 (ages between 22 and 27 
years). Speech tests were conducted with unprocessed speech in 
a control group (n = 21) and with simulated speech in a differ-
ent group (n = 22). All subjects were native German language 
speakers and had NH, which was defined as having pure-tone 
audiogram deviances ≤20 dB relative to the standard hearing 
threshold (Zwicker & Heinz 1955; ISO 7029:2001) over the 
frequency range 0.2 to 24 Bark (20–15,500 Hz). Audiograms 
were measured using Bekesy tracking as implemented by See-
ber et al. (2003). All sessions were conducted at the Institute 
for Human-Machine Communication of the Technical Univer-
sity in Munich as part of a workshop for students, thus sample 
sizes for different experimental conditions depended on student 
attendance.

ASR System
The ASR model approach was built using the HMM Tool-

kit (HTK, version 3.4.1; University of Cambridge), which 
was mainly designed for HMM-based speech processing tools 
(Young et al. 2006). For this purpose, HTK assumes that speech 
is a sequence of symbols in which language is encoded. A 
stream of continuous speech is regarded as stationary for inter-
vals of about 10 msec and thus divided into short time seg-
ments. These segments are each coded as parametrical speech 
vectors that constitute an observation sequence in series. This 
abstraction allows an ASR system to be implemented based on 
discrete statistical models such as HMMs. Multiple utterances 
of the same speech data (e.g., phonemes) are assigned to a Mar-
kov chain and then the probability of each observation sequence 
being generated by that chain is algorithmically maximized and 
hence the adaption of the model parameters to the speech vec-
tors. For an unknown observation sequence, the likelihood of 
each chain generating that sequence is computed and the most 
likely is translated back to the corresponding speech symbols. 
This study incorporates recommended parameters to construct 
a small vocabulary continuous speech recognizer in HTK (Ver-
tanen 2006; Young et al. 2006), while omitting refinements not 
applicable to the German language.

The ASR system was trained and tested using speech data 
and a given task. Here, the task grammar of the closed-set Old-
enburg sentence test (OLSA) was defined and used for training 
context-dependent three-state left-to-right triphone HMMs. The 
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unprocessed speech data of OLSA consisted of 20 lists with 30 
sentences each, which were used in conjunction with a pronun-
ciation dictionary to provide phone-level transcriptions needed 
to initialize the HMM training process. For this purpose, a com-
prehensive German language pronunciation dictionary was used, 
which was part of a work concerning large vocabulary continu-
ous speech recognition based on the machine-readable phonetic 
alphabet SAMPA (Wells 1997; Weninger et al. 2010). Speech data 
were coded as mel-frequency cepstral coefficient vectors using a 
mel-scale filter bank with 26 channels limited to 8 kHz. This cor-
responds to the upper cutoff frequency of the DUET speech pro-
cessor, with which EAS users in the previous study were fitted 
(Rader et al. 2013). The robustness of trained HMMs relies, for 
the most part, on the phoneme distribution of speech data. If a 
phoneme does not occur frequently, then the corresponding HMM 
is more susceptible to mistakes. Although OLSA speech data were 
unevenly distributed, the closed-set sentence test provided a con-
sistent basis for comparison. In addition, ASR evaluation using 
unprocessed OLSA in quiet yielded 99.9% words correct, there-
fore validating the model for the specific study purpose.

Speech Material
OLSA was used to test speech intelligibility (see Speech 

Test), and its speech material was used to simulate CI and EAS 

speech perception. The general schematic of the applied signal 
processing is shown in Figure 1 and is elaborated below.
CI Simulation  •  OLSA speech material was processed using 
an aurally adequate signal spectrum analysis and representa-
tion, the part-tone-time-pattern (PTTP; Heinbach 1988; Bau-
mann 1995). First, a Fourier-t-transformation (Terhardt 1985) 
was carried out with analysis bandwidths proportional to the 
critical bands of the ear. Second, frequency and phase were ana-
lyzed and a magnitude spectrum was calculated. Last, maxima 
detection was conducted to obtain the PTTP of the input signal. 
The graphical PTTP signal representation (or “maxigram”) of 
the German sentence “Stefan gewann zwölf grüne Blumen” 
(Stefan won twelve green flowers) is shown in Figure 2A. To 
simulate hearing by means of a CI, the continuous frequency 
spectrum was divided into 12 band-pass filter channels with 
cutoff frequencies corresponding to these of the DUET speech 
processor (Table 1). The filter bank was limited to 8 kHz with 
a lower cutoff frequency of 500 Hz, which is the typical fre-
quency range that most people with a DUET speech processor 
use. Resynthesis was then realized using a 12-band sinusoidal 
vocoder that matched signal phase at sampling points, that is, 
with phasing continuity. Vocoder frequencies were set to the 
respective channel center frequencies of the DUET speech 
processor filter bank, which were determined by the fitting 

FTT (window adjusted to center frequencies)

analysis of frequency and phase

magnitude spectrum  

maxima detection (defined criteria)

sinusoidal vocoder (phasing continuity)

LP

filterbank (DUET speech processor)

summation of power in each band

analysis
input signal

part-tone-time-pattern

resynthesis

output signal

“electric” hearing

“acoustic” hearing

CI simulation

EAS simulation

cutoff

Fig. 1. Schematic of signal processing to simulate cochlear implant (CI) and electric-acoustic stimulation (EAS) hearing using the part-tone-time-pattern (PTTP). 
First, the input signal was analyzed and converted to the PTTP domain. For CI simulation, pitch information of each frequency band of the DUET speech pro-
cessor (Table 1) was collapsed and then mapped to the respective center frequency. For EAS with residual acoustic low-frequency hearing, the low-pass (LP)-
filtered PTTP signal with variable cutoff frequency was added to the CI simulation. Finally, the output signal was generated using resynthesis with a sinusoidal 
vocoder. FTT indicates Fourier-t-transformation.
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software CI.STUDIO+ (MED-EL, Innsbruck, Austria). It is 
safe to assume that no sidebands were formed in the resyn-
thesis although amplitude fluctuations might occur if several 
harmonics fall into the same frequency band of a respective 
part-tone component. Nevertheless, part tones are not synchro-
nously resynthesized so that the final signal of each part tone 
would show no modulation in the F0 range. The resulting signal 
simulated CI-processed speech (i.e., electric hearing) contain-
ing only amplitude information at the 12 channels, but without 
fine-structure frequency information. This is comparable with 
the continuous interleaved sampling strategy of CIs. The cor-
responding PTTP signal representation is shown in Figure 2B.
EAS Simulation  •  To simulate EAS speech perception, addi-
tional speech information must be provided as per low-fre-
quency residual hearing (i.e., acoustic hearing). To this end, the 
speech signal was low-pass (LP) filtered in the PTTP domain 
at cutoff frequencies f

LP
 = 100 to 500 Hz in steps of 100 Hz 

with a slope of −60 dB per octave to map different degrees of 
residual hearing (e.g., LP

100
 for f

LP
 = 100 Hz). Adding this signal 

to the CI simulation allowed for EAS with different amounts 
of low-frequency information to be simulated, where the cutoff 
frequency of the LP-filtered speech is indicated by a subscript 
(e.g., EAS

100
 for the addition of LP

100
 to the CI simulation). 

Figure 2C and D shows the PTTP signal representation for 
EAS

200
 and EAS

500
, respectively.

Audio samples, which are provided in Supplemental Digital 
Content 1 (http://links.lww.com/EANDH/A190), demonstrate 
the LP

500
, CI simulation, EAS

500
 simulation, and the unprocessed 

signal conditions for the English sentence “Thomas wants nine 
cheap bags” (original sample from Zokoll et al. 2013).

Noise Characteristics
Two types of competing noise signals were used in the 

speech tests:

	 1.	 Pseudocontinuous noise of the Oldenburg sentence test 
(OL-noise): this noise signal is generated by an aver-
aging process of 30 time-shifted OLSA test sentences 
(Wagener et al. 1999a, 1999b, 1999c). The frequency 
power spectrum closely resembles the short-term power 
spectrum of each OLSA test sentence and is restricted to 
frequencies below 12.6 kHz. In addition, temporal mod-
ulation is nearly absent, and cues for gap listening are 
not available. As a result of the high masking efficacy 
of OL-noise, the speech discrimination function is very 
steeply sloped (17.1% per 1 dB) and allows efficient and 
exact estimations of individual speech reception thresh-
olds (SRT).

	 2.	 Amplitude-modulated Fastl-noise: based on the noise sig-
nal developed by the “Comité Consultatif International 
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Fig. 2. Maxigram (graphic representation of the part-tone-time-pattern, part-tone level is color-coded from low in blue to high in red) of the German sentence 
“Stefan gewann zwölf grüne Blumen” (Stefan won twelve green flowers). A, Unprocessed signal. B, Cochlear implant simulation. C, Electric-acoustic simula-
tion with low-pass (LP) cutoff frequency fLP = 200 Hz. D, electric-acoustic simulation with fLP = 500 Hz.

http://links.lww.com/EANDH/A190
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Télégraphique et Téléphonique” noise (according to 
ITU-T Rec. G.227 [11/88] conventional telephone signal), 
Fastl-noise aims to represent the temporal characteristics 
of speech (Fastl 1987). Comité Consultatif International 
Télégraphique et Téléphonique noise was amplitude 
modulated at a randomly varying modulation frequency 
with a distribution peak at 4 Hz, correlating with the 
amplitude modulation statistics of the German language. 
Fastl-noise offers no informational masking and, because 
of its slow temporal modulation, provides the opportunity 
to take advantage of gap listening (or “glimpsing”). Con-
sequently, the speech discrimination function has a flatter 
slope with Fastl-noise—an estimated 8% per 1 dB—than 
with OL-noise (Fastl & Zwicker 2007).

Experimental Setup
Tests with NH subjects were conducted using a computer 

equipped with a high-quality 24-bit 8-channel AD/DA converter 
and a headphone amplifier (RME Hammerfall DSP Multiface 
II). Stimuli were presented binaurally using circumaural head-
phones (Sennheiser HDA 200). The test was run by a MATLAB 
(The MathWorks, Inc.) procedure with a graphical user interface 
for subject feedback. The speech signal was presented at a fixed 
sound pressure level (SPL) of 65 dB; the noise level was adaptively 
adjusted depending on the number of correctly discriminated 
words in the sentence. Calibration was accomplished in reference 
to dB SPL with a B&K (Brüel & Kjær, Nærum, Denmark) 4153 
artificial ear and a B&K 0.5-inch 4134 microphone, a B&K 2669 
preamplifier, a B&K 2690 measuring amplifier, and an NTi (NTi 
Audio AG, Schaan, Liechtenstein) AL1 sound level meter.

An equivalent procedure was implemented for the ASR sys-
tem using a MATLAB script conjoined with the software inter-
face of HTK. The same stimuli used with NH subjects were 
given as input to the ASR system, and the recognized words 
were fed back to the adaptive test procedure.

Speech Test
The closed-set OLSA was used to test speech intelligibility 

of NH subjects and the ASR system. In the closed-set mode, 

subjects indicated which speech items were understood on a 
touchscreen (5 words and 10 possibilities per word). Conse-
quently, the options were available to subjects in advance. The 
adaptive test procedure yielded SRTs defined as the signal-
to-noise ratio (SNR) at 50% correct speech recognition. The 
speech signal was presented at a fixed level of 65 dB SPL; the 
noise level was adaptively adjusted depending on the number 
of correctly recognized words in the sentence from each trial. 
Initial step sizes were 5, 3, 1, −1, −3, and −5 dB SNR for 0, 1, 
2, 3, 4, and 5 correct words, respectively. The starting SNR was 
set to 0 or 5 dB, and the step sizes were adjusted according to 
the number of reversals as suggested by Brand and Kollmeier 
(2002). The SRT was then calculated as the mean of the last 
10 reversals. Further details are provided in our previous study 
(Rader et al. 2013).
NH Subjects  •  Speech tests for NH subjects were conducted in 
the following conditions: (1) unprocessed, (2) CI simulation, (3) 
LP-filtered speech LP

200
 and LP

500
, and (4) EAS

200
 and EAS

500
 

simulations (see Speech Material). The unprocessed condition 
indicates an OLSA test with its original speech material, which 
served as a control. The CI simulation then assessed subject 
performance with spectrally reduced speech. The LP-filtered 
speech was tested as a reference for the information provided by 
lower harmonics alone. Finally, the impact of adding LP-filtered 
speech to the CI simulation was examined using EAS simula-
tions at different cutoff frequencies. NH subjects were trained 
in each condition with a single OLSA list of 20 sentences in the 
respective condition before each test.
ASR System  •  The ASR system was also tested in the afore-
mentioned conditions, that is, (1) unprocessed, (2) CI simula-
tion, (3) LP-filtered speech LP

100
 to LP

500
, and (4) EAS

100
 to 

EAS
500

 simulations, whereas the cutoff frequencies were set to 
f
LP

 = 100 to 500 Hz in steps of 100 Hz (see Speech Material). 
Because the test was automated, it was possible to examine a 
larger set of parameters, while still limited by the extended pro-
cessing time due to the adaptive procedure. In contrast to NH 
subjects, the ASR system can be viewed as a deterministic sys-
tem for a given set of speech material; thus, evaluations of the 
ASR system were also conducted at fixed SNR levels. This was 
done by computing the total percentage of correct word recog-
nition for 20 OLSA lists, with 30 sentences each.

RESULTS

Speech Discrimination Functions
As a control, 21 NH subjects were tested with unprocessed 

OLSA speech material. In continuous OL-noise, the mean SRT 
was −6.6 dB SNR with standard deviation ±0.8 dB SNR compa-
rable with the OLSA evaluation data (Wagener et al. 1999a). In 
modulated Fastl-noise, the mean SRT was −14.3 dB SNR with 
standard deviation ±3.5 dB SNR.

Speech discrimination functions of the ASR system were 
computed using unprocessed OLSA speech material and are 
plotted in Figure 3. Performance improved monotonically with 
increasing SNR in both noise conditions. In continuous noise, 
performance increased from 9.4% to 99% correct in the range 
from −7 to +12 dB SNR, with an SRT level of 3.4 dB SNR. In 
modulated noise, the discrimination function exhibited a nega-
tive SNR shift of 10.9 dB, with an SRT level of −7.5 dB SNR. 
As with NH subjects, modulated noise evidently allowed gap 
listening, enabling the ASR system to achieve a better SRT than 

TABLE 1.  Channel numbers and cutoff frequencies of the filters 
used by default in maps with lower cutoff frequency set to 500 Hz 
in the MED-EL DUET speech processor and corresponding center 
frequencies used for resynthesis of the CI simulation

Channel  
Number

Cutoff Frequency (Hz)
Resynthesis  

Frequency (Hz)Lower Upper

1 500 637 567
2 638 807 717
3 808 1022 909
4 1023 1294 1150
5 1295 1639 1457
6 1640 2076 1845
7 2077 2628 2336
8 2629 3328 2958
9 3329 4215 3746
10 4216 5337 4743
11 5338 6759 6007
12 6760 7999 7606

CI, cochlear implant; EAS, electric-acoustic stimulation.
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in continuous noise. This 10.9-dB SNR improvement is compa-
rable with the mean 7.7-dB SNR improvement for NH subjects.

Linear slope approximations yielded 8.4% per dB SNR in 
continuous noise and 6.6% per dB SNR in modulated noise. 
Compared with slopes measured for NH subjects (17.1% per dB 
SNR in modulated and 8% per dB SNR in continuous noise), 
the speech discrimination functions are flatter for both noise 
conditions. In addition, the relatively steep slope measured for 
NH subjects in continuous OL-noise (Wagener et al. 1999a) 
was not observed, which results in degraded SRT measurement 
precision for the ASR system.

CI and EAS Simulation
For NH subjects, SRT results of CI, EAS

200
, and EAS

500
 

simulations are shown in Figure 4 and compared with bilateral 
CI and bimodal EAS user results from the study by Rader et al. 
(2013).

For the CI simulation in modulated noise, median SRT was 
6.2 dB SNR compared with 6.8 dB SNR for CI users, with no 
significantly different distributions (p = 0.69, Student’s t test). 
In continuous noise, however, median SRT was 5.1 dB SNR for 
CI simulation and −0.4 dB SNR for CI users, with significantly 
different distributions (p < 0.001). While CI user performance 
improved in continuous noise, performance of NH subjects 
listening to CI simulation showed no considerable difference 
between each noise condition.

Testing with LP-filtered speech did not yield valid SRT 
scores for LP

200
 (n = 8, range, 21–41.5 dB SNR). Limited results 

for LP
500

 (n = 4) had median SRT at 2.4 dB SNR in modulated 
noise and 3.15 dB SNR in continuous noise, which are not 
shown here.

The addition of LP-filtered speech resulted in significant 
SRT improvement when compared with CI simulation results; 
in modulated noise, median SRT was −0.4 dB SNR for EAS

200
 

and −10.1 dB SNR for EAS
500

. In continuous noise, median 
SRT was 2.1 dB SNR for EAS

200
 and −1.0 dB SNR for 

EAS
500

. Similarly, EAS users performed significantly better 
than CI users in modulated (p < 0.001) and in continuous  
(p = 0.031) noise. For NH subjects in modulated noise, results 
of EAS

200
 simulation were in fair agreement with EAS users, 

yet results of EAS
500

 simulation were significantly better  
(p < 0.001). In continuous noise, results of EAS

200
 simulation 

were significantly worse (p < 0.001) than EAS users, while 
EAS

500
 simulation results were comparable.

ASR System Performance
Speech recognition scores of the ASR system in quiet 

and at a fixed 0-dB SNR level for both noise conditions 
are shown in Figure 5. Scores are given as percentages of 
correctly recognized words for 20 OLSA lists, with 30 sen-
tences each.

For the CI simulation, a score of 26.3% was achieved in 
quiet, 16.3% in modulated noise, and 13.5% in continuous 
noise. As the speech recognition score in quiet was well below 
50%, a corresponding SRT level could not be determined. Like-
wise, testing the ASR system with LP-filtered speech in quiet 
yielded a score of 11.4% for LP

200
 and 22.3% for LP

500
. Conse-

quently, SRT levels could not be determined for either of these 
conditions. To underline the poor performance in these condi-
tions, consider that the task grammar of the closed-set OLSA 
was predefined (see ASR System); therefore, the probability of 
correctly recognizing a word by chance was 10% (i.e., 10 pos-
sibilities for each word).

While a score of only 32.5% was achieved for the EAS
100

 
simulation in quiet, clear improvements were observed for the 
EAS

200
 to EAS

500
 simulations and reached 99.5% for EAS

300
 

in quiet. Compared with 99.9% for the unprocessed condi-
tion, the positive effect of adding LP-filtered speech on speech 
recognition stability was evident. This was also observed in 
modulated noise at 0 dB SNR although the score in continuous 
noise was limited to 23.4% at 0 dB SNR for the unprocessed 
condition. Consistent with the results of EAS users and NH 
subjects tested with simulations, the “super-additive” effect 
was observed in the ASR results, where the recognition score 
for the combined signal exceeded the sum of scores for the CI 
simulation and the LP condition.

For a direct comparison with NH simulation SRTs (Fig. 
4), thresholds from an adaptive procedure in accordance with 
OLSA and scores at a large range of fixed SNR levels were 
computed. Corresponding ASR system SRTs can be found in 
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Table  2, where the aforementioned gain in performance for 
EAS

200
 to EAS

500
 simulations can be observed. However, com-

pared with NH speech discrimination functions, a general shift 
of +7.4 dB SNR was found in modulated noise and +10 dB SNR 
in continuous noise.

Comparison With Model Predictions
The synergistic (or “super-additive”) effect of combined 

stimulation has been more rigorously studied on the basis of 
perceptual models. Micheyl and Oxenham (2012) summa-
rized recent findings and compared the probability-summation 
model with two cases of a Gaussian SDT model of cue combi-
nation. The two cases were distinguished by the ratio of noise 
resulting from the combination of information cues (i.e., from 
LP-filtered and vocoded speech) to any additional noise (e.g., 
inattention). The late-noise model assumes that this additional 
noise (referred to as “late” noise) is the only significant source 
of noise-limiting performance. The independent noise model 
assumes that the contribution of additional noise is negligible.

To apply these models to the simulation data, probabilities 
p of a correct response for different SNR levels were estimated 
from SRT results. To this end, mean SRTs, which correspond to 
p = 50%, were calculated for EAS

200
 and EAS

500
 simulations. 

Linear slope approximations (17.1% per dB SNR in modulated 
and 8% per dB SNR in continuous noise) were then used to 
estimate p values for the range −6 to +6 dB SNR from the mean 
SRT, for each of the following conditions: (1) LP

200
 and LP

500
, 

respectively, (2) CI simulation, and (3) EAS
200

 and EAS
500

 simu-
lation, respectively. Finally, a numerical solution of the model 
equation (m = 8000; Micheyl & Oxenham 2012) was used to 
estimate model predictions.

Results for both EAS simulations demonstrated similar 
trends. To avoid redundancy, Figure 6 shows only model predic-
tions for the EAS

500
 simulation, in modulated Fastl-noise and 

in continuous OL-noise. As expected from the conclusions of 
the study by Micheyl and Oxenham (2012), the probability-
summation model underpredicted subject performance in all 
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were fLP = 100 to 500 Hz in steps of 100 Hz, i.e., from EAS100 up to EAS500.
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cases. For the given data, only the late-noise Gaussian SDT 
model was largely able to predict performance in continuous 
noise. However, all models significantly underpredicted sub-
ject performance in modulated noise. This discrepancy could 
be attributed to gap listening, which was not accounted for in 
either of the two SDT model assumptions.

DISCUSSION

Gap Listening Effect in Modulated Noise
The ability to listen to short temporal gaps produced by 

temporal amplitude fluctuations in modulated noise is a well-
known capacity of the auditory system. A “glimpse,” according 
to Cooke (2006), is a “time–frequency region that contains a 
reasonably undistorted “view” of local signal properties.” For 
NH subjects, Li and Loizou (2008) found no difference between 
speech perception of CI and EAS simulations tested in a con-
tinuous speech-shaped noise condition. They used a 5-channel 
vocoder with added speech LP filtered to 600 Hz to simulate 
EAS, while adding 3 vocoder channels to substitute LP-filtered 
speech in the CI simulation. Improved speech recognition for 
the EAS simulation was only observed in a modulated noise 
condition (female voice serving as a competing talker).

Accordingly, NH subjects in this study showed significant 
improvement between the CI and EAS

200
 simulations in modu-

lated Fastl-noise, while such effect was smaller in continuous 
OL-noise. However, a clear advantage over EAS users was found 
when NH subjects were tested with the EAS

500
 simulation. EAS 

users presumably had a greater amount of low-frequency infor-
mation available to them when compared with NH subjects tested 

with EAS
200

 simulation (see pure-tone thresholds in the study by 
Rader et al. 2013). Still, EAS users achieved results similar to NH 
subjects in the EAS

200
 condition. It is thus evident that NH subjects 

are superior in taking advantage of the gap listening effect. This 
was confirmed by the further significant improvement between 
the EAS

200
 and EAS

500
 simulations, suggesting that the addition of 

lower harmonics (up to the third harmonic, compare Fig. 2C and 
D) is beneficial. However, the marked advantage of NH subjects 
could also be attributed to a shortcoming of simulating residual 
low-frequency hearing; LP-filtered speech does not incorporate 
suprathreshold deficits observed in hearing-impaired subjects 
(Reed et al. 2009, see Different Approaches of EAS Simulation).

Nevertheless, CI and EAS users were generally not able to 
take advantage of the gap listening effect, conversely having 
degraded performance when compared with their performance 
in continuous noise. The frequency resolution in current CI 
devices is very limited, and the harmonic structure of voiced 
speech signals is completely distorted. Although the harmonic 
structure might be preserved in the combined EAS condition 
because some of the lower harmonics can be detected by resid-
ual acoustic hearing (Faulkner et al. 1990; Green et al. 2012), 
EAS users usually have a steeply sloping hearing impairment. 
As reported by Rader et al. (2013), the median hearing loss of 
all ears using EAS was 78 dB HL at 500 Hz. Therefore, strongly 
degraded frequency and temporal resolution can be expected 
(Schorn & Zwicker 1990), which may originate from slow rates 
of recovery from forward masking (Glasberg et al. 1987).

In summary, EAS users have generally better speech per-
ception than do CI users in continuous and modulated noise. 
The improvement, however, is limited when considering the 
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TABLE 2.   SRT of the ASR system in modulated Fastl-noise and continuous OL-noise

SRT (dB SNR)

ASR NH

CI EAS100 EAS200 EAS300 EAS400 EAS500 Unprocessed Unprocessed

Modulated Fastl-noise n/a n/a 11.9 1.4 −2.2 −3.4 −7.5 −14.9
Continuous OL-noise n/a n/a 16.8 9.0 7.2 6.3 3.4 −6.6

SRT of the ASR system in modulated Fastl-noise and continuous OL-noise for the following conditions: (1) CI simulation and (2) EAS with LP cutoff frequencies fLP = 100 Hz to fLP = 500 Hz in 
steps of 100 Hz, i.e., EAS100 to EAS500, respectively. The CI and EAS100 conditions did not achieve 50% correct speech recognition scores, thus no corresponding SRTs were determined. For 
comparison, results of the unprocessed Oldenburg sentence test are shown for the ASR system, and for NH subjects in both noise conditions.
ASR, automatic speech recognition; CI, cochlear implant; EAS, electric-acoustic stimulation; LP, low pass; n/a, not applicable; NH, normal hearing; SNR, signal-to-noise ratio; SRT, speech 
reception threshold.
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combined-stimulation advantage observed with simulations for 
NH subjects. It is therefore suggested that residual hearing of 
EAS users cannot effectively extract acoustic cues.

Impact of Low-Frequency Cutoff in Continuous Noise
In continuous OL-noise, NH subjects tested with CI simula-

tion (i.e., vocoded speech) achieved a median SRT of 5.1 dB 
SNR, whereas CI users achieved −0.4 dB SNR with significantly 
better performance distribution (p < 0.001). The same effect was 
true for SRT measured in EAS users compared with the EAS

200
 

simulation. Because only very limited training was conducted 
with NH subjects, these differences would likely decrease with 
further training (Faulkner 2006). Still, NH subjects tested with 
the EAS

500
 simulation in continuous noise achieved SRTs that 

were more comparable with EAS user results, as opposed to 
SRT results with EAS

200
 simulation. On the one hand, this can 

be again ascribed to the presumably greater amount of low-
frequency hearing available to EAS users compared with the 
EAS

200
 simulation (see pure-tone thresholds in the study by 

Rader et al. 2013). On the other hand, the gap listening effect 
observed for NH subjects showed that the extension of available 
low-frequency information from 200 to 500 Hz facilitated bet-
ter speech perception in modulated noise. Thus, in continuous 
noise, the broader acoustic frequency range may have provided 
familiar auditory cues to decode speech more effectively and 
counteract the oddity of the vocoded speech signal (see Supple-
mental Digital Content 1, http://links.lww.com/EANDH/A190).

Based on the data given by French and Steinberg (1947), 
an importance function for speech intelligibility was calcu-
lated on the basis of the articulation index (ANSI S3.5-1969) 
as per Fletcher and Galt (1950). In Figure 7, the weight w of the 
importance function depending on frequency is adopted from 
Terhardt (1998). Interestingly, w shows a strong increase start-
ing with w = 0 at f = 100 Hz, reaching a plateau at 700 Hz. 
Between 200 and 500 Hz, the importance function increases 
steeply from w = 0.1 to w = 0.36, whereas between 500 Hz and 
1 kHz, there is little change. In other words, the extension of 
available low-frequency information below 500 Hz can cer-
tainly have a positive impact on speech perception. Our results 
demonstrated this for NH subjects, where they had significant 
improvement in performance between the EAS

200
 and EAS

500
 

simulations in continuous noise. Still, importance functions can 
vary between different speech materials, especially when used 
in predictions for hearing-impaired subjects (Pavlovic 1986). 
While the articulation index successor, the Speech Intelligibility 

Index (ANSI S3.5-1997), attempted to correct this, individual 
importance functions have been shown to provide more reliable 
results (Whitmal & DeRoy 2011).

Impact of Low-Frequency Cutoff on ASR
Regarding the synergistic effect of combined EAS in quiet, 

results obtained with the ASR system demonstrated a similar 
behavior. As can be seen in Figure 5, LP-filtered speech with 
cutoff frequency f

LP
 = 500 Hz (i.e., LP

500
) yielded a speech rec-

ognition score of 22.3%, while vocoded speech (i.e., CI simula-
tion) yielded a recognition score of 26.3%. The combined signal 
consisting of LP-filtered and vocoded speech (i.e., EAS

500
) 

reached nearly perfect recognition (99.9%) in quiet. Even 
with lower cutoff frequencies, the “super-additive” effect was 
observable. However, this effect broke down for the lowest cut-
off frequency tested (i.e., EAS

100
), where a score of only 32.5% 

was reached. This is close to the recognition score obtained for 
the CI simulation without any complementary low-frequency 
acoustic information, which can be due to the fundamental fre-
quency range generally lying above 100 Hz for OLSA (Fig. 2).

The preprocessing of the ASR system applies a filter bank 
with a mel-scale distribution of band-pass center frequencies 
and bandwidths to code input signals into feature vectors. The 
mel-scale is a frequency-to-cochlear-position map where equal 
pure-tone pitch differences correspond to equal cochlear dis-
tances, as per Stevens and Volkmann (1940). This affects a set-
ting of narrower bandwidths for lower center frequencies and 
broader filters for higher frequencies, resulting in potentially 
higher frequency selectivity for signals with lower frequency 
content, thereby mimicking the characteristics of the human 
auditory system. Consequently, it was expected that the ASR 
system and NH subjects exhibit similar behavior, whereas EAS 
users are known to have reduced frequency selectivity at low 
frequencies (e.g., Moore et al. 1997).

Applied Model Based on ASR
Our customized ASR model scored 99.9% correct on word 

recognition with the closed-set OLSA speech material, justify-
ing our ASR model approach to study the effect of LP-filtered 
and vocoded speech on speech recognition stability. While the 
ASR system achieved better SRTs in modulated noise than in 
continuous noise, as observed in NH subjects, a general shift 
of the speech discrimination functions was found. This shift 
was +7.4 dB SNR in modulated noise and +10 dB SNR in con-
tinuous noise, which reflects the poor performance of current 
ASR implementations for speech in noise. A possible reason for 
these shifts could be degraded onset and offset detection due 
to competing noise. Supplemental state transitions were added 
to monophone HMMs to avoid erroneous transitions from 
impulsive noises. The monophone HMMs were then tied into 
three-state left-to-right triphone HMMs (Young et al. 2006). 
Broadband noise, however, still obscured word boundaries that 
the model struggled to separate context-dependent triphones.

The slope of the speech discrimination function obtained for 
the ASR system in continuous noise was flatter than the slope 
measured for NH subjects (8.4% versus 17.1% per dB SNR). 
Because the continuous noise consisted of the same (averaged) 
signal as the target speech, a performance bias was potentially 
introduced. Namely, HMM training was performed using OLSA 
speech material, while the continuous OL-noise was generated 
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Fig. 7. Importance w of spectral frequencies for the identification of sense-
less syllables (adopted from Terhardt 1998). Calculation based on articu-
lation index as per French and Steinberg (1947). Shaded area indicates 
relevant frequency range from 200 to 500 Hz as in the Oldenburg sentence 
test using electric-acoustic simulations for normal-hearing subjects.
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by an averaging process of 30 time-shifted OLSA test sentences 
(see Noise Characteristics). A better investigation of the OL-
noise composition in short time segments, which are relevant 
for coding the speech feature vectors, could result in better 
model composition.

The ASR system, despite a few drawbacks, has proven to 
be a useful tool for the applied model approach, mimicking 
subject performance for a given psychophysical task. It is fea-
sible that more robust and general models can be developed, 
allowing efficient preliminary assessments of perceptual model 
hypotheses.

Prediction Model Based on SDT
As thoroughly explained in the study by Micheyl and Oxen-

ham (2012), the Gaussian SDT model provides a solution to an 
m-alternative forced-choice task. The subject’s task can be thus 
seen as identifying a speech item (e.g., a word) drawn from a 
set of m items. The numerically solved equation for the model 
comparison calculates the probability of a correct response as 
a function of m and d’, where d’ equals the ratio of the mean 
to standard deviation of a decision variable. Given that OLSA 
is a closed-set task with 50 items, we first applied the model 
for m = 50. The results, however, underpredicted user perfor-
mance for all conditions. Green and Birdsall (1958) suggested 
that when the stimulus set is large and not known to the subject 
beforehand, then performance is determined by the number of 
all possible responses and not limited by the number of alter-
natives presented. In this case, possible responses are limited 
only by the size of the subject’s active vocabulary, which Müsch 
and Buus (2001) estimated to be about 8000 words. While 
this estimation was not made for the German language, and 
although our results were better fitted for other m values (e.g., 
m = 5000), the overall model prediction remained comparable. 
Consequently, we preferred assessing our data with the previ-
ously used parameter m = 8000. Within the given framework, 
Gaussian SDT-based models were largely able to account for 
the “synergistic effect,” which was shown in continuous noise 
with the late-noise model, but not for the independent noise 
model. Furthermore, the gap listening effect was not accounted 
for in the model assumptions and thus all investigated models 
fell short of predicting the combined-stimulation advantage in 
modulated noise. While the SDT model falls in the category of 
prelabeling models, which assume that subjects combine infor-
mation across channels before making a decision, the “clean” 
information channels inherently provided by gap listening 
were not mapped in the current model assumptions. As previ-
ously suggested (Seldran et al. 2011), it might be necessary to 
include across-channel interactions in SDT models to resolve 
the observed discrepancies.

In conclusion, it is plausible that predictions based on SDT 
can explain the combined-stimulation advantage without the 
need to assume any synergistic effects. The simplified model 
assumptions, however, are not yet able to account for the per-
formance gain in modulated noise, which allowed gap listening 
in NH subjects tested with EAS simulations.

Different Approaches of EAS Simulation
The psychophysical mechanism of the combined-stimu-

lation advantage is often investigated by means of simulation 
studies; these evaluate speech intelligibility in noise for NH 

subjects tested with simulations of CI and EAS hearing (see 
Introduction). Consequently, such investigations depend on the 
appropriate simulation of electric hearing, on the simulation of 
residual acoustic hearing, and on the choice of competing noise.

The simulation of CI hearing commonly uses the temporal 
envelope of speech to modulate narrow frequency bands corre-
sponding to each CI channel. This can be achieved using sinu-
soidal vocoders or noise-band vocoders (Shannon 1995). While 
sine carriers form a rather simplified model of electric hearing, 
effects of intrinsic modulations in noise carriers are still debated 
regarding their use in research on speech perception. Other 
approaches constructed broadband signals with low intrinsic 
modulations after auditory filtering (Hilkhuysen & Macherey 
2014). Using such signal designs might prove more appropriate 
to simulate CI hearing for future studies.

Furthermore, presenting LP-filtered speech to simulate 
residual acoustic hearing does not incorporate suprathresh-
old deficits observed in hearing-impaired subjects (Reed et 
al. 2009), for example, loudness recruitment or the degraded 
ability to use temporal fine-structure information. Thus, NH 
subjects are expected to take the advantage of speech cues in 
LP-filtered speech more effectively than EAS users. It is sug-
gested that using simulations that mimic suprathreshold deficits 
in hearing-impaired subjects could provide better simulations 
of residual low-frequency hearing. Different modes of presenta-
tion can also influence simulation results; in the present study, 
NH subjects were presented with diotic EAS simulations and 
compared with bimodal EAS users. Depending on audiometric 
configuration and amplification characteristics, aided acoustic 
hearing in the contralateral ear can interfere with the informa-
tion provided by EAS. However, all bimodal EAS users dis-
cussed in this study showed no negative interference because 
their bimodal speech perception scores in noise were higher 
compared with results of the aided acoustic hearing alone.

Finally, the choice of competing noise can influence the 
observed combined-stimulation advantage; Turner et al. (2004) 
clearly demonstrated an advantage of combined EAS when tested 
in competing speech but showed nonsignificant advantage in con-
tinuous noise. However, in our previous study (Rader et al. 2013), 
we used the contrast of pseudocontinuous and amplitude-modu-
lated noise to examine aspects of gap listening and bilateral interac-
tion without introducing informational masking as per competing 
speech. In the present study, a significant advantage was shown for 
NH subjects in both noise conditions when comparing the CI simu-
lation with either EAS simulations. Between the two masker condi-
tions, improved performance in modulated noise substantiated the 
gap listening effect in the simulation and model comparison.

CONCLUSIONS

The results of the present study demonstrated the advan-
tage of combined EAS; NH subject performance significantly 
improved when vocoded speech simulating CI hearing was com-
plemented with LP-filtered speech. Increasing the LP cutoff fre-
quency from 200 to 500 Hz, and thereby increasing the amount 
of low-frequency acoustic information, significantly improved 
SRTs in pseudocontinuous and in amplitude-modulated noise. 
NH subjects were able to take advantage of the gap listening 
effect when tested with EAS simulations. In contrast, CI and 
EAS user performance was consistently degraded in modulated 
noise compared with their performance in continuous noise.
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A model approach based on a customized ASR system 
yielded better SRTs in modulated noise than in continuous noise. 
Thus, the gap listening effect observed in NH subjects was suc-
cessfully imitated by the ASR system. Results obtained with this 
model also demonstrated the positive effect of low-frequency 
spectral information, which supplemented vocoded speech of a 
male talker. Our results suggest that speech recognition stability 
significantly improves for LP cutoff frequencies ≥300 Hz.

While Gaussian SDT-based models were largely able to pre-
dict the combined-stimulation advantage in continuous noise 
without assuming any synergistic effects, model amendments 
are required to explain the performance gain generated by the 
gap listening effect in modulated noise.
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