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Abstract—The integration of variable renewable energy
sources leads to an increased cycling of conventional power plants,
necessitating a detailed model of the start-up process. Based
on the recently developed temperature formulation for start-
up costs in Unit Commitment, we model the off-time-dependent
start-up times of thermal units by limiting temperature increase
and heating. Numerical results indicate that limiting heating
speed is more efficient and leads only to a moderate increase
in computational time.

Index Terms—Unit Commitment, Start-up Times, Power Plant
Temperatures, Integration of Renewables

NOMENCLATURE
Indices and Sets
t ∈ T Time periods, T = [1 .. T ]
i ∈ I Generating units
l ∈ N Cooling time

Parameters
Lt Electricity demand [MW]
Pmax
i Maximum power output [MW]
Pmin
i Minimum power output [MW]
Bi Variable production cost [cost/MWperiod]
Ai Fixed cost while online [cost/period]
λi Heat-loss coefficient, λi ∈ (0, 1) [1/period]
Vi Variable start-up cost [cost]
Hmax
i Maximum heating

∆tempmax
i Maximum temperature increase

Fi Fixed start-up cost [cost]
PDi Offline periods prior to first period [period]

Variables
vti State of power plant, vti ∈ {0, 1}
pti Power output [MW]
tempti Temperature, normalized to [0, 1]
hti Heating, normalized to [0, 1]
zti Start-up status, zti ∈ {0, 1}
cpti Production costs [cost]

I. INTRODUCTION

A. Motivation

The intermittent nature of electricity production from re-
newable energy sources, mainly wind and solar, is leading to
a higher number of start-ups of conventional thermal power
plants [1], [2]. As the impact of the start-ups on the production
planning rises, an accurate modeling of the start-up process
becomes increasingly important for efficient system operation.

An important aspect of the start-up process is the required
start-up time, which depends on the preceding offline time.
Especially power plants based on steam cycles require a
significant time of up to 12 hours for a cold start [3]. Moreover,
when planning under uncertainty, operators may choose to keep
units at operational temperature during off-time [4], or may be
required to abort or vary the heating during the start-up process.
Both facts emphasize the importance of modeling power plant
temperatures and heating.

In [5], power plant temperatures were included as an
additional variable to model start-up costs more efficiently.
Based on this approach, we employ the temperature variable to
model start-up times depending on the preceding offline time.

B. Literature Review

In a wide variety of Unit Commitment problems (see e.g. [6]),
the start-up time is subsumed in the minimal downtime. In [7],
an explicit model of an off-time-independent start-up process
was introduced. This was extended by [8] to multiple start-up
types for different offline times, including synchronization time,
soak phase, and power trajectories. In [9], the formulation was
further tightened, resulting in better computational performance.
Finally, [10] utilizes the shut-down and start-up times to model
an off-time dependent start-up time.

Instead of classifying the start-ups into types, [5] models
the start-up costs based on the temperature of a unit. In line
with this approach, we present a model of the start-up time
based on limiting the heating of a unit.

C. Contribution and Paper Organization

After introducing the temperature formulation in Section II,
our contributions are introduced as follows.

Section III presents two methods for modeling start-up
times: by limiting heating (Section III-A) and by limiting
the temperature increase (Section III-B). In both cases, the
necessary constraints and the resulting start-up time and
start-up costs functions are derived, which are compared in
Section III-D.

Section IV considers the computational performance of the
introduced models, as well as the effect of the start-up time
on system costs.

Finally, we draw conclusions and give an outlook to future
research in Section V.



II. THE TEMPERATURE FORMULATION

We base our contribution on a Unit Commitment formu-
lation which models the start-up costs by introducing power
plant temperatures as in [5], without including the residual
temperature inequalities.

A. Base Model
Generally, the problem is to minimize costs while the sum

of the productions pti has to meet the demand Lt. The costs
are divided into production costs cpti and start-up costs cuti,
leading to

min
∑

i∈I,t∈T
cpti + cuti, s.t. (1)∑

i∈I
pti = Lt ∀ t ∈ T . (2)

The production costs are modeled as a linear function of
the binary operational state vti and the production pti as in
[11], with coefficients Ai and Bi. From [6], we further adopt
the constraints of thermal power plants regarding the minimal
production Pmin

i , the maximum production Pmax
i , maximum up

and down ramping speeds RUi and RDi, as well as maximum
ramping at start-up SUi and shutdown SDi.

B. The Temperature Model
If started up after an offline time l, a thermal unit incurs a

start-up cost of Kl
i , which according to [12], [13] is defined as

Kl
i = Vi (1− e−λil)︸ ︷︷ ︸

variable cost

+ Fi︸︷︷︸
fixed cost

∀ i ∈ I, l ∈ N. (3)

Here, the fixed start-up costs Fi include labor costs as well as
time-independent wear and tear costs. The variable costs Vi
originate from the reheating process at start-up, where fuel
needs to be burned and where the unit experiences thermal
stress. Parameters are chosen such that the costs for a complete
cold start equal Vi + Fi.

The term (1− e−λil) in (3) is proportional to the heat loss
caused by the exponential decay of the power plant temperature
while offline. The temperature formulation in [5] models this
loss by explicitly capturing the temperature of a unit as the
new state variable tempti and the amount of heating as the new
variable hti,

tempti, h
t−1
i ∈ R≥0 ∀ i ∈ I, t ∈ T . (4)

The operational temperature is expressed as

vti ≤ tempti ∀ i ∈ I, t ∈ T , (5)

enforcing a temperature of 1 during operation. The development
of the temperature is modeled as

temp1i = e−λiPDi + h0i ∀ i ∈ I, (6)
tempti = e−λi tempt−1i + (1− e−λi)vt−1i + ht−1i (7)

∀ i ∈ I, t ∈ [2 .. T ].

In combination with the start-up status zti (see [14]), the start-up
costs in (3) can be modeled as

cuti := Vih
t−1
i + Fiz

t
i ∀ i ∈ I, t ∈ T , (8)

and substituted in the objective function in (1).

III. MODELING START-UP TIMES

This chapter presents two approaches to integrate start-up
times in the temperature formulation. As noted in Section II,
the start-up costs of a unit stem from its need to re-heat at
start-up. Moreover, the heating speed is bounded, either due
to limited heating capacity or due to the need for preventing
strong material tensions induced by temperature gradients [4].
For typical thermal units, this restriction is the main cause of
the start-up time.

After considering the temperature development during heat-
ing, we present the additional constraints necessary to model
• units with limited heating speed in Section III-A, and
• units with limited temperature increase in Section III-B.

For both types of units, we derive the resulting start-up time
and costs, which we compare in Section III-D. The start-up
time, which is defined as the number of periods during which
the unit heats up, is denoted by SUTi(l). The sum of the
variables hti during start-up is denoted by THi(l), such that
Vi · THi(l) equals the variable start-up costs in (8).

We start by modeling the development of the temperature
of a unit in a continuous model. The offline time can be split
in two phases: first, the unit cools down and, subsequently, it
is reheated before the start-up takes place (c.f. Fig. 1).

During the entire offline time, the unit continuously loses heat
at a rate of λitempti. As shown in [5], the modeled temperature
of unit i equals e−λil after l offline periods. During heating, the
temperature is increased by supplying heat at a rate of hi(t).
Assuming the heating phase starts at t = 0, the continuous
temperature tempi(t) while heating with speed hi(t) may be
modeled as

tempi(0) = e−λil,

dtempi(t)
dt

= −λitempi(t) + hi(t).
(9)

While heating, the unit continues to lose further heat.
Therefore, units heat as fast as possible in a cost-minimal
solution. In [5], unbounded heating is assumed which models
the typical start-up costs (3). As noted, the following two
sections consider the effect of limiting the heating speed and
the temperature increase.

A. Limited Heating

The start-up time of a unit may stem from its limited ability
to heat (c.f. Fig. 1). Assuming a heating speed of at most Hmax

i ,
the continuous model for cost-minimal heating in (9) can be
simplified by substituting hi(t) with Hmax

i . Considering the
initial temperature of tempi(0) = e−λil, its solution is

tempi(t) = e−λi(l+t) +
Hmax
i

λi
(1− e−λit). (10)

This function fulfills the recursion

tempi(t+ 1) = e−λi tempi(t) +
1− e−λi

λi
Hmax
i . (11)

Since the temperature development in (7) is modeled as

tempti = e−λi tempt−1i + (1− e−λi)vt−1i + ht−1i ,



the limit on the heating speed may be expressed as

hti ≤
1− e−λi

λi
Hmax
i ∀ i ∈ I, t ∈ [0 .. T−1] (12)

in our Unit Commitment formulation. During heating, the
variables tempti thus discretize the continuous tempera-
ture tempi(t).

In the continuous model, the start-up heating finishes at
time t∗ with tempi(t

∗) = 1. From (10) we can derive

t∗ =
1

λi
ln

(
1 +

1− e−λil

Hmax
i /λi − 1

)
,

which results in dt∗e periods of heating in the Unit Commitment
formulation, and hence in a start-up time of

SUTi(l) =

⌈
1

λi
ln

(
1 +

1− e−λil

Hmax
i /λi − 1

)⌉
. (13)

If t∗ is integral, and therefore SUTi(l) = t∗, the unit heats
at maximal speed in the Unit Commitment problem, and the
total heating equates to

THi(l) =
1− e−λi

λi
Hmax
i SUTi(l). (14)

If t∗ is not integral, and therefore SUTi(l) > t∗, the unit
needs to heat at sub-maximal speed in the first heat-up period
to reach a final temperature of exactly 1. As this is equivalent
to keeping the unit warm for the initial part of that period, it
results in a slightly higher total heating than THi(l). However,
the difference is generally small (c.f. Fig. 4).

B. Maximum Temperature Increase

Alternatively, a unit may have a maximally allowed temper-
ature change ∆tempmax

i (c.f. Fig. 2),

tempi(0) = e−λil

dtempi(t)
dt

= ∆tempmax
i ,

(15)

which is solved by

tempi(t) = e−λil + t∆tempmax
i . (16)

This function fulfills the recursion

tempi(t+ 1) = tempi(t) + ∆tempmax
i , (17)

and may be modeled as

tempti ≤ tempt−1i + ∆tempmax
i ∀ i ∈ I, t ∈ [2 .. T ] (18)

in our Unit Commitment formulation.
As the temperature after l offline periods equals e−λil, the

required start-up time can be derived as

SUTi(l) =

⌈
1− e−λil

∆tempmax
i

⌉
. (19)

Assume now that ∆tempmax
i divides 1 − e−λil evenly, i.e.

that the unit heats at maximal speed for the entire start-up time.
Then, the required heating in each period equals

hti = tempt+1
i − e−λi tempti = (1− e−λi)tempti + ∆tempmax

i .

cooling
heating

tempi(t)

1

Hmax
i

hti
1

vti1

Cooling time Heating time
t

Fig. 1. Cooling and heating during the offline time of a unit with limited
heating speed.
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Fig. 2. Cooling and heating during the offline time of a unit with limited
temperature increase per period.

Noting that the temperature in the j-th period of heating
equals e−λil+(j−1)∆tempmax

i , the sum of the heating variables
can be derived as

THi(l) = (1− e−λil)

(
1 +

1− e−λi

2

(
1 + e−λil

∆tempmax
i

− 1

))
. (20)

If ∆tempmax
i does not divide 1 − e−λil evenly, then the

effective total heating slightly surpasses THi(l); yet THi(l)
remains an excellent approximation (c.f. Fig. 4).

C. Objective Function

In (11) and (17) the continuous model of the heating process
in (9) was discretized using the period length 1. Choosing
a different period length f ∈ R>0 yields the same model,
albeit with scaled parameters λ̃i = fλi, H̃max

i = fHmax
i and

∆ ˜tempmax
i = f∆tempmax

i .
Apart from scaling and rounding, the resulting start-up

time ˜SUTi(l) matches the original start-up time SUTi(l), i.e.
f ˜SUTi(l/f) ≈ SUTi(l). The same however does not hold for
the total heating, which varies significantly depending on f .
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Fig. 3. Start-up times when limiting heating/temperature increase for a unit
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This discrepancy arises from the modeling of the variable hti,
which represents the temperature increase in period t due to
heating; In the context of start-up times however, one should
instead consider the heating speed hi(t) in (9).

A heat increase hti is equivalent to heating at speed

hi(t) =
λi

1− e−λi
hti

during period t. Introducing this factor in (8) as

cuti := Vi
λi

1− e−λi
ht−1i + Fiz

t
i ∀ i ∈ I, t ∈ T , (21)

results in start-up costs which remain approximately equal
for equivalent operational schedules, regardless of the period
length f .

D. Comparison of Approaches

Due to differing power plant technology, the choice of the
appropriate limitation depends on the individual unit, and some
units may even require both limitations. This section compares
the start-up time SUTi(l) and the total heating THi(l) for an
offline time l in both approaches.

Fig. 3 depicts the start-up time SUTi(l) for an exemplary
unit with parameters λi = 0.05 and Hmax

i = ∆tempmax
i = 3λi,

showing that limiting the heating leads to higher start-up times.
As defined, SUTi(l) equals the start-up time in the continuous
model, rounded up to the next integer.

Using the same example, Fig. 4 demonstrates that the
approximations THi(i) of the total heating given in (14) and
(20) closely match the actual values. Furthermore, the figure
shows that the required heating is highest when limiting the
heating speed, and both limitations result in higher variable
costs than the model with unbounded heating.
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IV. NUMERICAL EXAMPLES

This section describes the computational performance of the
proposed approaches as well as the effect of the restrictions
on the system costs. We compare both models to the model
without start-up time, i.e. with unbounded heating.

A. Scenario

We use a scenario representing the German power system,
and a forecast of demand and renewable generation in the
year 2025. The dataset is described in detail in [5], and is
available for download at [15]. To include different seasonal
and daily patterns, each experiment considers 14 time ranges
spread uniformly over the year 2025.

Depending on the examined approach, the maximum heating
speed Hmax

i and the maximum temperature increase ∆tempmax
i

of each unit i are set to Hmax
i = ∆tempmax

i = Mλi, where the
factor M is varied to highlight the impact of the strictness of
the limits Hmax

i and ∆tempmax
i .

B. Computational Efficiency

The introduction of either (12) or (18) leads to additional con-
straints, whose effect on the computational time is investigated
in the following. Fig. 5 shows the change of computational
time for time ranges with T = 72 and T = 144 periods, and
depending on the factor M . The figure indicates that the change
in computational time is not significant for small models, but
may increase significantly for larger models and strict limits
(small M ). The model with limited heating is more efficient
and only increases computational times moderately up to 200%
compared to the model with unbounded heating. In contrast,
the model with limited temperature increase may increase
computational times by up to 600% (M = 40).



0 5 10 15 20 25 30 35 40
0

500

1,000

1,500

2,000

Strictness of limits M

C
om

pu
ta

tio
na

l
tim

e
[s

]
Hmax
i , T=72 Hmax

i , T=144
∆tempmax

i , T=72 ∆tempmax
i , T=144

Fig. 5. Computational time with limited heating/temperature increase for test
cases of two sizes and parameters Hmax

i = Mλi or ∆tempmax
i = Mλi. While

restricting the heating speed has only a moderate impact on computational
times, limiting the temperature increase leads to an increase of up to 600%.

3 6 9 12 15
0

0.1

0.2

0.3

0.4

Strictness of limits M

In
cr

ea
se

in
sy

st
em

co
st

s
[%

]

Hmax
i , T=72 Hmax

i , T=144
∆tempmax

i , T=72 ∆tempmax
i , T=144

Fig. 6. Increase in system costs due to limited heating/temperature increase for
test cases of two sizes and parameters Hmax

i = Mλi or ∆tempmax
i = Mλi.

The additional system costs amount to less than 0.5%.

C. Effects on System Costs

As highlighted in Fig. 4, the required heating for a start-up
increases when modeling the start-up time. Fig. 6 analyzes
the resulting increase in system costs, depending on Hmax

i and
∆tempmax

i . The increase amounts to less than 0.5% even for
very strict limitations.

This observation applies only to a deterministic model; as
noted in Section I-A, in a stochastic model the start-up time
may force a unit to stay at operational temperature during
offline time, possibly increasing the system costs considerably.

V. CONCLUSION

This paper introduced start-up times to the temperature
formulation for the Unit Commitment problem. Two options
were proposed: limiting the heating speed and limiting the
temperature increase. Both approaches lead to different start-up
times and costs and are hence useful for different applications.
The approach with limited heating proved to be computationally
more efficient than the approach with limited temperature
increase, and raised computational times only moderately.

Apart from its computational efficiency, modeling start-up
times based on the temperature has a further advantage: it
allows units to remain at operational temperature during offline
time by heating continuously. This behaviour can be observed
in real power systems in situations of uncertain load, and may
be captured in a stochastic model.

A further aspect of the start-up process is power production.
Extending the temperature formulation to model start-up power
trajectories is part of the current research of the authors.
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