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The saddest aspect of life right now is that science gathers
knowledge faster than society gathers wisdom.

— Isaac Asimov

What we know is a drop, what we don’t know is an ocean.
— Isaac Newton





A B S T R A C T

With the invention of traditional Sanger sequencing, genome analysis
opened a wide field of research aiming at unveiling and understand-
ing the genomic sequence of many organisms. Since then the sequenc-
ing methods have been improved, they have become automatised and
are now capable of producing a large number of long reads at compa-
rably low cost. In this thesis we wanted to harness the technology of
next generation sequencing (NGS) to examine virus evolution, detect
expression of viral remnants integrated in the human genome and
provide an expression database to aid T cell engineering.

In the first part of this work we analysed the evolution of norovi-
ral genomes within chronically infected hosts. By using longitudinal
data, we could determine mutation rates and find traces of positive
selection. The high resolution of next generation sequencing enabled
us to reconstruct the different viral variants present in our samples
and track their dynamics over time.

The second and third part of this thesis analyse expression of hu-
man endogenous retroviruses (HERVs) in different cell types. By ex-
tracting HERVs from cancer and matched healthy tissues and subject-
ing them to NGS, we wanted to identify all loci that were expressed
in each sample and determine differences between cancerous and nor-
mal cells. We find however, that the expressed loci seem to depend
more on the individual patient than the disease state. Additionally,
to reveal the background expression level of HERVs in various tis-
sues and cell types, we analysed RNA sequencing data from the EN-
CODE project with regard to HERV expression and performed differ-
ential expression analysis to reveal cell specific patterns. The study
revealed two samples that show very uncharacteristic expression pro-
files which imply a potential change in the state of the cell.

The last part of this work introduces Expitope, a web server that
provides in silico prediction of potential off-target effects of engi-
neered T cell receptors used in immunotherapy. It enables users to
search for a peptide of interest in a protein database and obtain all
exact and approximate hits sorted by an adapted scoring function.
We can show that known cases of fatal off-target reactions can be
identified with Expitope’s functionalities.

Overall this thesis presents four studies which are only feasible
through the availability of next generation sequencing technologies.
NGS makes it possible to examine mutational dynamics even in low
frequency viral variants, to detect transcripts that only comprise a
small fraction of the complete amount of cellular RNA and to identify
mRNAs which are only scarcely expressed but still vital to a cell.
With the ongoing improvement of sequencing technologies, further
advancements to the fields of virology and oncology are approaching
swiftly.
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K U R Z Z U S A M M E N FA S S U N G

Die Erfindung der traditionellen Sanger-Sequenzierung hat der Ge-
nomanalyse ein weites Feld an Möglichkeiten eröffnet, um Genome
verschiedenster Organismen aufzuklären und zu verstehen. Seither
sind die Sequenzierungsmethoden stetig verbessert worden; inzwi-
schen laufen sie automatisiert ab und sind fähig, eine große Anzahl
langer Reads zu vergleichbar geringen Kosten zu produzieren. In
dieser Arbeit haben wir die Technologie der Next-Generation Sequen-
zierung (NGS) genutzt, um Evolution in Viren zu untersuchen, die Ex-
pression von viralen Überbleibseln im menschlichen Genom aufzude-
cken und eine Expressions-Datenbank zur Unterstützung von T-Zell
Therapien zu entwerfen.

Im ersten Teil dieser Arbeit haben wir die Evolution von Norovirus
Genomen innerhalb chronisch infizierter Patienten analysiert. Durch
den Einsatz von longitudinalen Daten konnten wir die Mutations-
rate bestimmen und Anzeichen für positive Selektion entdecken. Die
hohe Auflösung von Next-Generation Sequenzierung hat es uns er-
möglicht, die verschiedenen Varianten des Virus in unseren Proben
zu rekonstruieren und ihre Veränderungen im Laufe der Zeit zu ver-
folgen.

Der zweite und dritte Teil dieser Dissertation analysieren die Ex-
pression von humanen endogenen Retroviren (HERVs) in verschiede-
nen Zelltypen. Indem HERVs aus Krebs- und zugehörigem gesun-
dem Gewebe extrahiert und NGS unterzogen wurden, wollten wir
alle Loci identifizieren, die in den verschiedenen Proben expremiert
waren und Unterschiede zwischen Tumor- und normalen Zellen fest-
stellen. Allerdings kamen wir zu dem Ergebnis, dass die expremierten
Loci mehr von dem jeweiligen Patienten, als vom Krankheitszustand
abzuhängen scheinen. Zusätzlich haben wir RNA Sequenzierungs-
daten aus dem ENCODE Projekt im Bezug auf HERV Expression
analysiert, um die grundlegenden Expressions-Level von HERVs in
verschiedenen Geweben und Zelltypen festzustellen und eine Differ-
ential Expression Analysis durchgeführt, um zellspezifische Expres-
sionsmuster aufzudecken. Die Studie hat gezeigt, dass zwei Proben
sehr uncharakteristische Expressionsprofile haben, was auf eine ver-
meintliche Änderung im Zustand der Zelle hindeutet.

Der letzte Teil dieser Arbeit stellt Expitope vor, ein Webserver der
eine in-silico Vorhersage von potentiellen Nebeneffekten von zur Im-
muntherapie künstlich erzeugten T-Zell-Rezeptoren zur Verfügung
stellt. Er ermöglicht es dem Benutzer, nach einem bestimmten Peptid
in einer Protein-Datenbank zu suchen und alle exakten und Nähe-
rungstreffer, sortiert nach einer angepassten Scoring-Funktion, zu er-
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halten. Wir konnten zeigen, dass bereits bekannte, tödlich verlaufende
Nebeneffekte mit Expitopes Fähigkeiten identifiziert werden können.

Zusammengefasst präsentiert diese Dissertation vier Studien, die
ohne die Verfügbarkeit von Next-Generation Sequenzierungs-Techno-
logien nicht möglich wären. NGS ermöglicht es, Mutations-Verläufe
selbst in Virus Varianten mit geringer Häufigkeit zu untersuchen,
Transkripte zu finden, die nur einen geringen Anteil der gesamten
zellulären RNA ausmachen, und mRNAs zu identifizieren, die nur
in geringer Menge expremiert werden, aber dennoch entscheidend
für die Zelle sind. Durch die andauernde Verbesserung der Sequen-
zierungstechnologien ist damit zu rechnen, dass es bald noch weitere
bedeutende Fortschritte in den Feldern der Virologie und Onkologie
geben wird.
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Part I

I N T R A I N D I V I D U A L N O R O V I R U S E V O L U T I O N

In this part of the thesis we analysed the evolution of
norovirus genomes. Noroviruses are the most prevalent
non-bacterial cause of gastroenteritis and the reason for
many costly outbreaks every year. By means of next gen-
eration sequencing and the acquisition of viral samples
from chronically infected patients, we were able to trace
the changes within the norovirus genome over time in the
same host. This enabled us to perform many interesting
analyses which are impossible or very challenging to do
in acute infections.

This work is the result of a collaboration with the Insti-
tute of Virology at the Klinikum rechts der Isar, Techni-
sche Universität München.

Excerpts and figures from this part of the thesis have been
published previously in the following forms:

poster Haase K, Frishman D: Intraindividual norovi-
ral evolution analysed by next generation sequencing,
presented at the RECESS Retreat 2013, Venice, Italy,
2013

presentation Haase K: NGS technology opens new
insights into virus evolution, presented at the RE-
CESS Retreat 2013, Venice, Italy, 2013





1
I N T R O D U C T I O N

1.1 norovirus

Norovirus is the most common cause of gastroenteritis worldwide
[62] and is, among Rotavirus, the most often found to be causative
of cases in children. Estimates place the number of infections with
fatal consequences at over 200,000 a year in children under five from
developing nations [136]. Deaths caused by norovirus are usually due
to dehydration and occur either in very young or very old patients.
Healthy individuals normally recover after 3 to 5 days of showing
symptoms [171]. A norovirus

infection in healthy
individuals usually
persists for less than
a week

The strong medical relevance of noroviruses is based on the com-
plete absence of effective anti-viral agents or of a satisfying vaccina-
tion strategy. In fact, not even a cleared previous infection confers last-
ing immunity, thus it is possible to acquire the virus multiple years in
a row. The causes for the severe infectivity of this virus family are its
high survival rate of viral particles outside the host and the low num-
ber of particles needed to established an infection. Studies showed
that norovirus particles can survive at least 12 days on surfaces and
that as few as 18 particles are sufficient to set up an infection [181].
The very high mutation rate, even compared to other ribonucleic acid
(RNA) viruses [192], enables the virus genome to undergo so many
changes within the patient or between outbreak waves that lasting
immunity is nearly impossible to create.

All these combined features make it possible for noroviruses to
cause large outbreaks every year around the globe, resulting in large
efforts to contain and clear up the infection [88]. Due to the high in-
fectivity, epidemic waves usually start in confined spaces such as care
facilities, schools or cruise ships where the virus can quickly spread
from person to person via the fecal-oral route [131]. As noroviruses
usually spread most rapidly in the colder months of the year, it is
often termed by the reporting media as “winter vomiting disease”.

1.1.1 Discovery and Structure

The first isolate of Norovirus was obtained in 1972 by Kapikian et al.
[91] from an outbreak in an elementary school in Norwalk, Ohio. The
original name of the isolated particle was hence “Norwalk virus”. Noroviruses are also

commonly known as
“Norwalk-Virus”

Norovirus is a member of the caliciviridae family. The particle is
non-enveloped and icosahedral with a diameter of ≈ 38 nanometres.
The genome is organised in an approximately 7.5 kb long RNA frag-
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ment and belongs to group IV of the Baltimore system [7], meaning
it is a single-stranded positive sense molecule that does not use a
DNA intermediate when producing mRNA. The norovirus genome
contains three open reading frames (ORFs) that encode all proteins
the virus requires to replicate its genome and to assemble new parti-
cles. The first ORF (≈5 kb) is translated into a polyprotein consisting
of six non-structural proteins needed for genome replication. These
are an RNA-dependent RNA-Polymerase, p48, nucleoside triphos-
phatase, p22, viral genome-linked protein and the protease to auto-
cleave the polyprotein.

ORF2 is 1.8 kb in length and encodes the major structural capsid
protein, viral protein 1 (VP1). VP1 is divided into two domains, the
shell domain and the protruding domain, whereas the latter is further
divided into two subdomains known as P1 and P2. ORF3 is ≈ 0.6 kb
in length and encodes a minor basic structural protein, VP2, that is
integrated in smaller numbers during capsid formation. [44]

The virus particle is formed by 180 copies of VP1 which first dimeri-
ses and then forms a closed casing with icosahedral symmetry. As P2

is the part of VP1 extending the farthest away from the particle body,
it provides the receptor-binding region and the sites of antigenic vari-
ation. Hence, VP1 is the target of the host’s immune system and re-The P2 domain of

VP1 provides the
receptor-binding

region and is
hypervariable

sponsible for the survival of the virus which is the reason why it
shows the highest mutation rate within the viral genome. Especially
the P2 subdomain of the protruding region is known to be hypervari-
able [44]. For a depiction of the genome organisation please see figure
1.

1.1.2 Classification

Based on the sequences of the major capsid protein, noroviruses can
be divided into genogroups and genotypes. At the moment there
are five genogroups defined, labeled with the roman numbers I-V.
Each group contains a different amount of known genotypes, dis-
tinguished with an arabic number. The most prevalent cluster that
causes outbreaks in humans is GII.4. In order to categorise newlyThe most prevalent

outbreak causing
cluster in humans is

GII.4

identified sequences, their distance to existing strains is assessed. Two
sequences belonging to the same genotype should conform to each
other in at least 80% of positions. [209]

So far, only members of the genogroups I, II and IV could be shown
to infect humans [209]. Genogroup III contains bovine virus strains
[132] and genogroup V the murine noroviruses which, until very re-
cently, were the only subgroup that could be cultured in vitro [202].
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Figure 1: Genome organisation and capsid structure.
a The norovirus genome is composed of three open reading frames.
ORF1 (≈ 5 kb) is located in the first two-thirds of the genome and
encodes a polyprotein that is auto-processed. ORF2 is 1.8 kb in
length and encodes the 57 kDa major structural capsid protein, vi-
ral protein 1 (VP1). ORF3 is ≈ 0.6 kb in length and encodes a 22

kDa minor basic structural protein, VP2.
b The structure of the VP1 monomer is shown. Yellow: shell do-
main; blue: P1 domain; red: P2 domain.
c Two capsid protein monomers form the A-B dimer (indicated
with the A monomer in lighter shades and the B monomer in
darker shades), which allows the P2 domain to protrude from the
viral particle.
d The virus-like particle is formed of 180 monomers of the capsid
protein that assemble through different dimers.
Taken from Donaldson et al. [44].

1.1.3 Tropism

The receptors used by noroviruses to enter cells remained elusive for
a long time. More recent studies revealed that histo-blood group anti-
gens (HBGAs) expressed in epithelium cells of the small intestines
are a very likely candidate [83]. However, there seemed to be yet
unknown co-receptors, as no cell culture could be established from
HBGAs alone.

In December of 2014 a publication by Jones et al. [89] finally intro-
duced a possibility to culture noroviruses in vitro. They showed that
the virus could in fact infect B cells, as long as HBGAs were present,
either free or in form of HBGA-expressing bacteria. Additionally to a
new infection model, this study also opens the possibility of impair-
ing a successful norovirus infection by depleting intestinal microbiota
instead of targeting the virus directly. [89]

The histo-blood group antigens can be grouped into ABO-, Lewis-
and secretory antigens of which all three can be bound by noroviruses,
although they exhibit certain preferences [177]. The high incidence of
genotype GII.4 seems to be founded in its capability to bind all differ-
ent HBGAs [79].
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1.1.4 Quasispecies

When an organism becomes infected by a virus, it is usually not just
one particle initiating the infection, but multiple of them. Thus, not
one single genome starts to replicate within the host but many simul-
taneously. These founding sequences are very rarely identical, but
differ due to the high mutation rate of viruses, especially the ones
carrying an RNA genome. After multiplication within the host, the
genomes start to accumulate even more changes, leading to a whole
population of coexisting viral sequences, commonly referred to as
quasispecies [16].

Quasispecies populations are extremely dynamic, as different vari-
ants can have varying fitness with regard to immune escape, lead-
ing to some species’ depletion while other variants might flourish
[41]. Certain events in a virus replication cycle pose bottleneck events
for quasispecies evolution, such as the infection of a new organism.
Only variants with a genome sequence that is adapted to the encoun-
tered immune system will be able to replicate, hence the population
is strongly diminished and the consensus sequence over all genomes
might change [42]. For a schematic example of a viral quasispecies
population, see figure 2.

With traditional Sanger sequencing, usually only a small number of
clones was created from a given viral sample. As most clones revealed
different sequences, every single one was regarded as a quasispecies
from the population pool. However, exact frequencies could not be
determined in this manner and only the higher frequency variants
were likely to be picked up this way. With the rise of next generation
sequencing and ultra deep coverage, it has become much easier to
get an insight into a nearly complete viral population, including low
frequency species [144].Next generation

sequencing
technologies enable

us to reconstruct
nearly complete

viral populations of
quasispecies

An important step when reconstructing the underlying quasispecies
distribution from a set of sequencing reads is the differentiation be-
tween bona fide variant separating mutations and sequencing errors
introduced by the applied methodology. This distinction is a crucial
step to understanding quasispecies evolution dynamics and hence,
multiple tools have been implemented in recent years to solve the
problem for different sequencing technologies and viruses [207, 145,
6, 143].

1.2 sequencing

At the time of its invention the costs of traditional Sanger sequencing
were very high and the process took a long time and manual labour,
even for short sequences. Additionally, the nucleotides needed for
the technique had to be radioactively labelled demanding high care
in handling and laboratory safety [162]. So improvements were made
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Figure 2: Schematic quasispecies distribution.
The left panel shows a schematic of a complete viral population,
with symbols representing mutations.
The middel panel reveals the quasispecies distribution, after sort-
ing all sequences by their shared, species defining, mutations.
Some variants do have additional, individual mutations or se-
quencing errors.
The right side visualises the proportion each species takes up from
the overall population.
Taken from Domingo et al. [42].

to conquer this drawbacks. This resulted in three major methods that
were introduced by different companies in the beginning of the 21st
century.

One of these technologies, advancing the sequencing of DNA, is
the so called pyrosequencing. It was first described in 1996 by Ron-
aghi et al. [157] and marketed in 2003 by the company 454 Life Sci-
ences which now belongs to Roche. Pyrosequencing does not use
dideoxynucleotides to determine a sequence, but instead applies “se-
quencing by synthesis”. It starts by fragmenting the sequence of inter-
est into pieces of 300 to 800 base pair length. These are rendered sin-
gle stranded and to both ends specific adaptors are ligated. With one
of these adaptors the strand is bound to a bead, which is located in-
side an enclosed reaction space, called a “microreactor”. This microre-
actor contains all reagents that are needed to amplify the captured
template. After this process, an identical fragment of DNA is bound
to the bead surface millions of times. Afterwards all sequence coated
beads are loaded onto a “PicoTiterPlate” by placing one bead in each
well. The plate is then exposed to a sequential flow of nucleotides,
one base at a time. A mixture from sulfurylase and luciferase that
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is included in the wells emits a light signal whenever a nucleotide
is incorporated in a well. With a special camera this emission can be
recorded and thus the sequence for each well reconstructed [157, 159].

The great advantage of this method is its speed. It manages to se-
quence about one million reads per run, while taking approximately
six hours. Thereby it is able to yield good results for reads with a
mean length of 500 nt. A disadvantage of the method is its problem
with homonucleotide repeats. If a certain base is incorporated more
than twice or trice subsequently, the detected light emission can not
be correlated to the correct count.

Due to its very long read length 454 is often chosen for de novo-
sequencing, as it alleviates the assembly afterwards and its speed
is also highly helpful for this appliance. In 2014, Roche ceased the
support for pyrosequencing, as no further improvements could be
achieved with regard to quality or cost reduction and the second next
generation of sequencing technologies is slowly taking over [107].

1.2.1 Amplicon Sequencing

Most modern sequencing technologies follow the goal to reveal com-
plete new genomes or to re-sequence them to find variants specific
to individuals or conditions. For these aims an even distribution of
reads among the genome is desirable in order to obtain a uniform
whole genome coverage. The primers used in this scenario are usu-
ally random hexamers to achieve unbiased binding. Although there
are still notable biases, in most cases a sufficient coverage along the
complete sequence is reached [69].

In other cases, however, only a small excerpt of a genome is of
interest, for example, when a single gene is in the focus of a study.
For these studies, the specific region needs to be targeted effectively
and can then be analysed very deeply with next generation sequenc-
ing. The only requirement for this approach is that the surrounding
regions of the fragment of interest are known, so that two primers
framing the amplicon region can be designed [33].An amplicon is a

small region of
interest that can be

amplified using a
known forward and

reverse primer

The accomplished high coverage over the region of interest makes
it possible to even detect low frequency variants in a mixture of se-
quences, with a sensitivity that can not be reached by whole genome
approaches. This makes amplicon sequencing especially valuable for
viral analysis studies, as there are usually multiple quasispecies pre-
sent in single sample which can be analysed in great detail with an
amplicon sequencing approach. The only obstacle that has to be over-
come, is to define primers that are strongly conserved, which can be
hard to find in a viral genome, especially in the highly variable virus
families. A solution is the choice of slightly degenerative primer se-
quences or very lenient PCR settings, although the amplification of
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off-target sequences should at the same time be kept to a minimum
[45].

1.3 motivation

Noroviruses are a severe hardship for public health with multiple
outbreaks every year. While fatal cases can mostly be prevented in the
developed world, there are still reported deaths, mostly among very
old, young or immunocompromised patients. However, there are still
no effective anti-viral drugs or vaccination strategies available that
could cure or prevent infection. Furthermore, not even the complete
tropism of noroviruses could be revealed yet.

We wanted to contribute to the ongoing task of understanding
more about the evolutionary dynamics of noroviruses and shed light
on its interaction with the immune system. As a longitudinal study
is the best way to trace mutational patterns in viral genomes over
time, we needed to obtain temporally spaced samples which are very
hard to get from a normally only week-long infection. Fortunately, the
Klinikum rechts der Isar had collected multiple samples from chroni-
cally infected patients with varying interim times. These pose a great
opportunity to not only reveal the selection pressure acting on the
virus or the phylogeny between agents infecting different hosts, but
also to apply NGS techniques to analyse viral sequences.

The ultra high coverage that can be achieved by applying next gen-
eration sequencing to a comparably short region of interest makes it
possible to identify viral variants that make up only a small fraction
of the overall virus population. This way, we can trace changes in
the quasispecies dynamics and might gain insights into the fitnesses
associated to different variants.

With this study we want to integrate approaches to norovirus anal-
ysis that have not been presented in this way before. By using data
collected from chronically infected patients, we hope to obtain a more
detailed evolutionary time line as opposed to using only major out-
break strains. At the same time, applying NGS instead of traditional
Sanger sequencing will enable us to reconstruct the complete virus
population within one sample and not restrict ourselves to the con-
sensus sequence or few major variants.





2
M E T H O D S

2.1 norovirus samples

2.1.1 Cohort 2012

In our first cohort from 2012, norovirus sequences were extracted
from stool samples of three patients. All three individuals had pre-
viously received a bone marrow transplant and were treated with im-
mune suppressants to prevent a rejection of said transplant. During
the course of their treatment the patients also acquired a norovirus
infection. Due to their suppressed immune system, a normally only
week-long infection could persist in their organism for up to 15 month.

A region of interest in the norovirus genome was amplified with
two primers, one forward and one reverse, which targeted an ampli-
con of 760 nt length. These region is located in the second noroviral
ORF and contains the complete hypervariable P2 domain.

The patients provided four or five samples over the course of their
infection with interim times between 54 and 206 days. After extraction Study subjects are

bone marrow
transplant recipients
who acquired a
norovirus infection
while being treated
with immune
suppressants

and amplification of the region of interest, all fragment libraries were
sequenced on a GS FLX+ pyrosequencer. To facilitate multiplexing,
the sequences originating from one time point were marked by a four
nucleotide long barcode for identification. Patient 1 has six associated
barcodes although only five samples were collected from this subject.
The stool from the last time point has been treated with two different
extraction methods, so that our downstream analysis can identify, if
these different approaches yield varying results.

All patients in the study have undergone HLA-genotyping, mean-
ing their MHC alleles are known. Furthermore, the previous and cur-
rent blood type of all subjects is recorded, as a conversion occurs due
to the bone marrow transplant from the recipient’s to the donor’s
type. All data available for the three study subjects can be found in
table 2.

2.1.2 Cohort 2013

In a second study from the year 2013, we obtained sequences from
five patients, although this time they provide less longitudinal data
as only two, three or, in one case, four time points have been sampled.
These study subjects are also bone marrow transplant recipients who
have acquired a norovirus infection while undergoing treatment with
immune suppressants.

11
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Patient
Blood

MHC Alleles Tag Date
Group

ACAC 08.01.2008

HLA-A 0101/0201

AGAG 11.03.2008

Donor: A
HLA-B 5101/1302

ATAT 05.05.2008

Recipient: O
HLA-Cw 1502/0602

AGCT 04.10.2008

HLA-DRB1 0402/1303

ATGA 05.02.2009
∗

1

HLA-DQB1 0302/0301

TCAG 05.02.2009
∗

HLA-A 2601/6801

HLA-B 5101/3501

CGCG 15.01.2008

Donor: B
HLA-Cw 0401/1502

CTCT 19.05.2008

Recipient: A
HLA-DRB1 1601/1001

CACA 11.12.2008

2

HLA-DQB1 0502/0501

CTAG 16.04.2009

HLA-A 0201/3301

HLA-B 07/3503

CATG 20.05.2008

Donor: A
HLA-Cw 0401/0702

TATA 15.09.2008

Recipient: O
HLA-DRB1 1101/1501

TCTC 04.12.2008

3

HLA-DQB1 0301/0602

TGTG 25.02.2009

Table 2: Norovirus samples from 2012.
The table shows all available information of the patients and their
corresponding samples. The last column gives the date of stool sam-
ple collection, the second to last column the corresponding barcode
used in the sequencing run.
For all patients the five HLA alleles A, B, Cw, DRB1 and DQB1 are
known.
∗: Same sample treated in two different ways.

Samples were obtained from the patients with interim times be-
tween 48 and 470 days and marked with the same 14 four nucleotide
long barcodes as in the study from 2012. Unlike for the first cohort,
we do not have any information on blood type or MHC genotypes for
this group of patients. All data available for the five patients involved
in the 2013 cohort can be found in table 3.

2.1.3 Second Cohort 2013

A third batch of reads, consisting of two or three samples each col-
lected from five infected individuals, had been prepared and sent
away for sequencing. Unfortunately, the sequencing run resulted in
very few reads and the following mapping step could in some cases
not even place 2% of the remaining ones onto a norovirus reference.
Upon further inspection it was revealed that the library had been
contaminated with sequences of prokaryotic origin and hardly any
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Patient Tag Date

ACAC 08.04.2010

AGAG 06.01.2011

ATAT 25.05.2011

1

AGCT 12.07.2011

ATGA 03.02.2010

CGCG 26.05.20102

CTCT 21.07.2010

CTAG 23.04.2010

3

CACA 24.06.2010

TATA 09.04.2010

4

CATG 23.07.2011

TCTC 24.06.2010

TCAG 30.09.20105

TGTG 18.08.2011

Table 3: Norovirus samples from 2013.
The table shows all available information of the patients and their
corresponding samples. The last column gives the date of stool sam-
ple collection, the second to last column the corresponding barcode
used in the sequencing run.

noroviral material was included. Thus, we omitted these data from
downstream analysis.

2.2 sequencing reads

2.2.1 Quality Control

All samples were prepared for sequencing at the Klinikum rechts der
Isar and handed over to an external company that performed the py-
rosequencing. As a result we obtained three files for every barcode,
one containing the sequenced reads, another the corresponding quali-
ties in phred encoding and the last file contained the flow information.
We converted all flowgrams to fastq files with sff2fastq version 0.8.0.

We used an in-house processing pipeline developed by Jonathan
Hoser [78] and extended for the purpose of our analysis to trim away
the read ends until the mean quality in a window of 100 nt reached
a quality of above 20. We furthermore discarded all reads that had a
mean quality below 20, contained Ns or were shorter than 50 nt.
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2.2.2 Read mapping

As reference norovirus strain for an initial mapping, we chose Gen-
Bank entry AY502023.1. It was submitted in 2003, contains the com-
plete noroviral genome and belongs to genogroup II, which is the
most prevalent in human infections and thus likely to be the causative
agent in our study subjects.

Because RNA viruses have very high mutation rates, we expect
many differences between our isolates and every already known se-
quence. Hence, we planned to do an initial mapping against an ex-
isting strain, then creating a consensus sequence from the resulting
alignment, which can afterwards be used as reference for a second
round of mapping. Therefore, the filtered reads were first mapped
to AY502023.1 with Mosaik [106] using the unique alignment method
(reads with multiple possible hits are only assigned to one). We set
the maximum allowed mismatch percentage to the very lenient value
of 15% to be able to align reads over regions of high variability.

To obtain the consensus sequences for every sample which would
serve as references for the second mapping, we used an adjusted sam-
tools [109] pipeline. At first, a pileup is created to list the read coverageWe use a two-step

mapping approach
to compensate for

the extremely high
variability of RNA

viruses

of the reference sequence position wise. At this step it is important to
set the read depth to a high enough value, as per default the depth
used to analyse variants is rather small to save computing time. But
because our coverage is very high, we want to use all aligned reads for
the examination. Thus, the maximum read depth is dynamically set
to the overall number of reads in the corresponding sample. As out-
put the bcf format is chosen, a binary file that contains information
about the variance of every alignment position. The samtools func-
tionality bcftools is applied to call SNPs from the initial alignment. We
used a likelihood based SNP calling which suppresses genotype in-
formation, as it per default assumes a diploid organism. We used a
flat bayesian prior for this step, as we do not have any initial informa-
tion on the mutation distribution. In a last step we used the created
vcf file to get a consensus fastq output with the tool vcf2fq which also
belongs to the samtools framework. We modified its function, so that
in case of two possible nucleotides at a position not the ambiguity
code is used, but the major variant.

The above described mapping steps are then repeated with the con-
sensus fasta for each sample instead of AY502023.1.

2.3 phylogeny

Every consensus sequence was translated into an amino acid sequence
as well. From both sets of sequences, the nucleotide and amino acid
version, we constructed multiple sequence alignments (MSAs) with
ClustalW2 (version 2.1) and calculated phylogenetic trees to recon-
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struct the sequence inherent relationships between the samples. For
this purpose we used the phylogeny package PHYLIP [52] (version
3.69), specifically its tool seqboot, to create 100 bootstrap samples from
our initial MSAs and then used the programs DnaML and ProML to
create maximum likelihood trees for all replicates. In a last step the
tool consense merged all created trees into a consensus bootstrap tree.
The resulting trees were visualised via Newick utilities [90].

2.4 mutation analysis

2.4.1 Evolutionary distance

For most virus families the common mutation rates are known and
for noroviruses it has been estimated to lie between 1.21× 10−2 to
1.41× 10−2 changes per site per year which is a high amount even for
an RNA virus [192]. We compared these values to the ones observed
in our datasets by counting the substitutions occurring between two
consecutive time points and normalising by sequence length and in-
terim time.

2.4.2 Trajectories

From the previously prepared MSAs on amino acid level, we cre-
ated minimal versions, that only contained those positions per pa-
tient which changed at least once over the course of our study. We
implemented a colour encoding of these mutation trajectories based
on how often a certain position mutates or reverts back to the initial
variant observed at a previous analysed time point.

A publication of Bok et al. [21] examined evolutionary dynamics of
noroviruses, especially GII.4. They list multiple sites in the genome We compare the

intraindividual
mutations against a
list of sites
associated with
important
interactions and
outbreak waves

that either show great variability or conservation and name positions
that are responsible for receptor interaction or are connected to epi-
demic waves. We compared all these given sites against our set of
positions which showed variability in our samples.

2.4.3 Selection pressure

We analysed all reconstructed consensus sequence with regard to oc-
currence of selection pressure. For this purpose we used the tool paml
[203](version 4.4b). As input for its selection analysis the program
needs a codon alignment which can be created by the included perl
script pal2nal. The needed input files for the construction of a codon
alignment are the already created MSA of amino acid sequences and
all corresponding nucleotide sequences in fasta format. The program
codeml was used to calculate dN/dS ratios between all samples in
our data set from the codon alignment and the maximum likelihood
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tree of amino acid sequences. The number of non-synonymous sub-
stitutions per non-synonymous site compared against the number of
synonymous substitutions per synonymous sites is supposed to be
an indicator of the overall selective direction of a sequence. Is the re-
sulting value large, i.e. greater than one, the sequence is assumed to
be under positive selection. A result less than one implies purifying
selection and a result close to one is a pointer at neutral selection. [98]A dN/dS ratio > 1:

positive selection;
< 1: purifying

selection;
≈ 1: neutral

selection

Especially for our viral sequences an overall dN/dS calculation
is not a necessarily a sufficient measurement for positive selection
as only certain regions are usually subject to selection due to their
interaction with the host’s immune system. Thus, we additionally
implemented a more local analysis. It uses the same tools as men-
tioned above but applies two selection models to the complete set of
input sequences, one checks the assumption of neutrality, the other
for positive selection. Instead of taking into account every nucleotide
or amino acid position, it calculates the rates for every codon. With
this approach the tool can statistically identify the form of evolution
corresponding to every codon.

2.5 quasispecies reconstruction

A great challenge when analysing deep sequencing data is the recon-
struction of viral quasispecies from the sets of reads. Due to the high
mutation rate and improper error correction of the RNA-dependant
polymerase used in norovirus replication, a patient is usually not in-
fected by agents with identical sequences, but rather with a popula-
tion of viruses that differ from each other.

Obviously these population diversity is ignored when construct-
ing the overall representative consensus. In traditional sequencing ap-
proaches the identification of different quasispecies was hardly pos-
sible and limited to the types with the highest prevalences. Each in-
dividual clone was usually regarded as one species and thus only
between ten and twenty of them were obtained in one study. With
the rise of the next generation technologies and their inherent high
coverage of amplicon regions, it becomes possible to find even low
frequency quasispecies.Next generation

sequencing enables
the identification of

low frequency
quasispecies

2.5.1 Existing tools

To assess the reconstruction problem, multiple tools have been pub-
lished since 2011. They have been compared and the problem of
quasispecies reconstruction has been described by Beerenwinkel and
Zagordi [11]. The publication lists six different approaches for the re-
construction, four of which have already been implemented. Of this
subset, three are able to perform a global assembly over the full-
length sequence, so we tried ShoRAH [207], ViSpA [6] and Predic-
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tHaplo [143]. One of the methods that had not been implemented
at the time of the review has been published as usable tool in the
meantime, thus we added QuRe [145, 146] to the list.

All these tools use different approaches to assemble and align the
sequencing reads as well as correct sequencing errors and estimate
relative frequencies of each species.

2.5.1.1 ShoRAH

The first tool we applied to our data to reconstruct quasispecies was
ShoRAH. Although it was only first published in 2011, it is often re-
ferred to as “state-of-the-art” by other publications addressing the
same issue.

ShoRAH allows the user to reconstruct quasispecies within a certain
window that should have the length of the average read length or to
do a global analysis which mainly concatenates multiple local analy-
sis. For the global analysis which we wanted to achieve, the software
provides a wrapper class that starts with aligning the sequencing
reads to a given reference and corrects all of the included sequenc-
ing errors with a clustering process. While using a parsimony prin-
ciple, the program then constructs a minimal set of quasispecies that
is able to explain all reads. Afterwards the frequency of these recon-
structions is estimated with an Expectation-Maximisation-Algorithm
(EM).

2.5.1.2 PredictHaplo

The next tool we applied to our data was PredictHaplo. It also imple-
ments an approach to explain all sequencing reads with a minimal
set of haplotypes. It does not correct the input reads beforehand but
instead extracts prior probabilities for local windows on which the
following global assembly is based. The authors state that reads that
were produced by PCR lead to a high rate of false positives that are
reconstructed by PredictHaplo.

2.5.1.3 ViSpA

The last reviewed tool for the reconstruction of quasispecies is ViSpA.
It is a java implementation that relies on the alignment tool segemehl
for the mapping step. The authors state in their publication that ViSpA
is able to outperform ShoRAH when applied to already corrected
reads. The tool iteratively updates the initial used reference sequence
with aligned reads to get an as correct as possible alignment. Then,
it constructs a read graph from the alignment which is afterwards
reduced and the frequencies are estimated with an EM-algorithm.
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2.5.2 In-house implementation

After the unsuccessful utilisation of the published tools, we decided
to reconstruct quasispecies ourselves. Therefore we used the read
pileup we had constructed to find the consensus sequences and ex-
tracted all variable positions. These are genome regions at which
at least two different nucleotides with a frequency above a certain
threshold are observed. We used a threshold of 1.5% for further anal-
ysis. Additionally, we only took positions into account that were cov-
ered by at least a given number of reads. This cutoff was set to ten.
It should be noted that the variable positions are not based on all
mapped reads but, due to the construction of the pileup, only on the
ones that have a certain quality.

Afterwards our program executes samtools to list every read sorted
by its start alignment position. Because our reads were created by an
amplicon sequencing with a forward and a reverse primer, all aligned
reads either start at the amplicon beginning or stop at the amplicon
end. For both classes of reads we created a tree in which we stored
the different kinds of reads which were beforehand corrected with
help of their cigar string.

The cigar string is a concatenation of numbers followed by a charac-
ter as for example 12M5I3M1D2M. This string describes a 22 nucleotide
long read with respect to its alignment position. It states that the first
twelve positions of the read match the reference. The M does not only
describe exact matches but rather serves as a distinction from inser-
tions and deletions, hence it also can contain substitutions. Then the
example read contains five nucleotides which have no counterpart in
the reference and are thus insertions. After three following matches
the read lacks one base which is present in the reference and hence
noted as deletion. In our pipeline deletions are corrected with Ns in
the reads because we know that the reference is completely coding
and viable, thus we can deduce that frameshifts are highly unlikely.

The created trees are rooted at the amplicon start and end and ev-
ery previously determined variable position is a potential node. The
first read added to our tree creates a path from the root to a leaf (rep-
resented by $) which denotes the end of a read. The following reads
create branches in the existing paths if they differ at one of the vari-
able positions. In this way we create two trees in which every $-leaf
represents one quasispecies. These trees are not balanced due to theIn our tree

construction, every
branch from root to
leaf represents one

distinct quasispecies

very varying length of the input reads. Furthermore is it not possible
to combine forward and reverse tree on their leafs as their overlap is
far to small. Because we only allow branching at the previously de-
fined high quality variable positions, we do not include sequencing
errors as species separating events.
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Each reconstructed species is assigned a frequency which shows
how many of the reads that are assigned to the corresponding root
reach the quasispecies-representing leaf.

2.5.3 QuRe

The last published tool we utilised was QuRe. The underlying statis-
tical methods had been published previously by Prosperi et al. [146]
before the group implemented the tool. It also expands local analy-
ses to an overall reconstruction with help of a heuristic algorithm. It
constructs multinomial distributions for defined windows and then
tries to combine adjacent ones. The error correction method of the
program is not specific to 454 reads but instead based on a Poisson
distribution.

We executed QuRe on all our read files and used the sequences of
GenBank entry AY502023.1 as a reference. As the tool is optimised on
read length of over 100 bp, it has default error probabilities for dif-
ferent sequencing technologies producing long reads. Thus, we used
the values for 454 which are specialised for correcting errors in ho-
mopolymer stretches.

To visualise the results, we took the most prevalent twenty quasis-
pecies of every time point and created a phylogenetic tree per patient
from these.





3
R E S U LT S

3.1 reads have a sufficient length and quality

After we filtered all sequencing reads by length, mean quality and un-
resolved sequence positions as well as trimmed away low quality read
ends, we were left with a mean length per read of around 390 nt for
the 2012 run and 440 nt for 2013. The mean quality is approximately
33 for the earlier cohort and 35 for the later. This improvement in
length and quality at the same time is probably caused by a change
in reagents used during the sequencing procedure. These are often
updated to facilitate the production of higher read length. Although
this is very helpful for our downstream analysis, it has not been com-
municated by the company conducting the sequencing which exact
changes lead to the quality improvement.

The distribution of the reads among the barcodes is in both co-
horts very uneven. In 2012 overall 96,352 reads were left after filter- Reads are

distributed very
uneven among
barcodes

ing, of which more than 15% belong to barcode ATGA, while only
1.9% originate from the sample tagged TCAG. In 2013 overall only
77,529 reads survived the filtering process, the most (20%) belonging
to barcode TCTC, the least (1.3%) originate from the CATG sample.
For an overview of the read statistics post filtering see tables 4 and 5.

In both cohorts most reads were lost in the filtering process due to
containing Ns. A mean quality below a phred score of 20 was only
observed in 17 reads from the 2012 run and in three reads from 2013.
As can be expected when looking at the average length of the two
cohorts, we lose much more reads in the filtering step which disposes
of reads shorter than 50 nt in the 2012 than in the 2013 cohort. The
statistics of the trimming and filtering process can be seen in table
A1.

The remaining reads have a more than sufficient quantity, quality
and length to perform all of our intended downstream analyses.

3.2 two-step mapping approach can position over 92%
of reads

In the first mapping round of all filtered reads against reference strain
AY502023.1 only about 80% of the reads from the 2012 run and 40%
of the reads from 2013 could be mapped. This result shows what a
big difference the slightly increased read length in the second cohort
can make, as the larger amount of sequence information makes it
much harder to place fragments onto the reference genome below the

21
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given mismatch threshold. The location among the norovirus genome
was exactly as intended, located between position 5727 and 6486 of
sequence AY502023.1 which contains the complete hypervariable P2

domain. We plotted the coverages for all first-round mappings per
sample and confirmed not only the covered positions but could also
observe the typical pattern of coverage caused by the amplicon se-
quencing. The forward and reverse reads start at the above mentioned
positions and overlap only for 100 - 150 bp in the middle of the re-
gion of interest. For an exemplary coverage plot, see figure A1. The
forward and reverse primers produced a varying fraction of the over-
all reads in a sample, usually with a slight preference for the forward
one.Read distribution

among the two
amplicon primer is
biased towards the

forward primer

After we reconstructed a preliminary consensus sequence from the
first mapping, we used the same mapping method to map all reads
per sample against the individual references. In this round we were
able to place more than 92% of reads in every sample and thus have
a large amount of positional sequence data for further mutation anal-
ysis. For all mapping statistics refer to table 6.

Patient Tag
% Aligned Reads

initial cons.

ACAC 84.15 92.15

AGAG 87.31 95.62

ATAT 84.25 94.42

AGCT 78.11 94.88

ATGA 96.08 99.77

1

TCAG 96.09 99.78

CGCG 88.07 96.89

CTCT 83.81 94.69

CACA 90.79 96.30

2

CTAG 93.35 97.95

CATG 74.70 96.77

TATA 74.05 97.40

TCTC 52.86 93.23

3

TGTG 44.60 96.90

(a) Run from 2012

Patient Tag
% Aligned Reads

initial cons.

ACAC 47.33 99.59

AGAG 39.06 99.17

ATAT 42.87 99.29

1

AGCT 34.75 99.07

ATGA 30.36 99.23

CGCG 60.97 99.542

CTCT 54.09 98.83

CTAG 51.16 99.66

3

CACA 58.47 99.70

TATA 47.74 99.58

4

CATG 40.71 98.71

TCTC 50.65 99.24

TCAG 41.29 98.915

TGTG 45.45 98.02

(b) Run from 2013

Table 6: Percentage of mappable reads.
The alignment mode used was unique and the maximum mismatch
percentage per read was set to 15%. Values for both, the initial
mapping against GenBank entry AY502023.1 and the second map-
ping against the preliminary consensus, are shown in the last two
columns.
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3.3 sequence relationship is only distinct on nucleotide

level

When constructing maximum likelihood trees from the MSAs of all
samples’ consensus sequences, we obtained very high bootstrap val-
ues for nearly all branches of the nucleotide trees, representing a very
stable topology. Especially some pairwise relationships between con-
secutive samples reach extremely high values.

When examining the amino acid sequence based trees of the same
samples, the bootstrap values are considerably lower. Furthermore,
we can still find pairs of sequences which are clustered together simi-
lar to the nucleotide tree but larger subtrees containing samples with
continuous numbers do not occur, except for patient 1 from 2012 and
patient 5 from 2013 (compare figure 3).

This phylogenetic make-up shows that although the nucleotide se-
quences are pretty diverse when compared between patients, the se-
quence space of the translated amino acids is actually limited and
thus similar among samples from different patients.

3.4 observed mutation rate is higher than previously

reported

We calculated the evolutionary distances between two consecutive
samples by counting all occurring substitutions and normalising by
alignment length and interim time between sample collections. The
obtained value then represents the rate of substitutions per site and
day and is thus very small. To increase the number and at the same
time make it comparable to the known noroviral mutation rate, we
multiplied it by 365 to calculate the evolutionary rate per year.

It can be observed that in nearly all cases the distance on protein
level is higher than on nucleotide level which could be a first sign
for existing positive selection. Furthermore, many of the transitions
have mutation rates on nucleotide level of 3× 10−2 which are much
higher than the previously reported rates between 1.21× 10−2 and
1.41× 10−2 [192]. It is possible that the discrepancy results from the We can observe

mutation rates of
over 10−1 per site
per year

fact that the mentioned publication derived the mutation rates from
multiple sequences in different outbreaks, whereas we are looking at
intraindividual dynamics.

Only in two cases do the consensus sequences of two consecutive
time points show no mutation at all, underlining the strong variation
of noroviruses. For all mutation rates compare table 7.

3.5 mutation tracing shows specific hot spots

We visualised all occurring mutations in the consensus sequences of
the different time points by minimising the alignments to only those
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Figure 3: Phylogenetic trees constructed from consensus MSAs.
100 bootstrap replicates were calculated to define the values at
branch points.
Colors are assigned to patient numbers as follows: 1 - magenta, 2 -
yellow, 3 - green, 4 - blue, 5 - red.
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Patient
Interval Distance on level

[days] Nucleotide Protein

63 0.0153 0.0458

54 0.0591 0.1525

152 0.0690 0.0380

124 0.0464 0.1047
∗

1

124 0.0464 0.1047
∗

124 0.0340 0.0568

206 0.0284 0.04892

125 0.0805 0.1731

118 0.0122 0.0367

80 0.1019 0.18033

83 0.0404 0.0869

(a) Run from 2012

Patient
Interval Distance on level

[days] Nucleotide Protein

273 0.0123 0.0264

138 0.0487 0.06271

48 0 0

111 0.0259 0.0650

2

56 0.0086 0.0258

3 62 0 0

4 470 0.0276 0.0522

98 0.0597 0.1379

5

322 0.0400 0.0761

(b) Run from 2013

Table 7: Evolutionary distances along the time scale.
The values in the cells show the number of base substitutions per
site per year (365 days) in the corresponding sequence pairs.
∗: Distances were calculated to the sequence of sample AGCT, not
to each other.
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positions which change at least once during the sample collections
from each patient. We regarded the sequence from the first available
time point as a founder sequence and indicated mutations away from
it by a darker colour. In the case of a back mutation, the colours
change back to the starting hue. As a reference for the residue num-
bers, we chose the associated capsid protein sequence of Genbank
entry AY502023.1, AAR97663.1.

For patient 3 of the 2013 cohort no trajectory was created, as no
mutations between the two consensus sequences were observed. The
only other step at which no changes occurred was the last in patient
1 of the 2013 group. The last two samples in patient 1 of 2012 are
identical, showing that the change in the sequence extraction protocol
did not have any influence on the consensus sequence.

Certain positions exhibit variation in multiple, even all patients
of the 2012 cohort, such as 297 and 393. Furthermore can clear hot
spots be identified, meaning regions that have around four consecu-
tive position that all show mutations throughout the time course. The
mentioned positions are both located within two of those mutational
centres.

The overall number of residues with variation is very diverse among
the different patients. While only six positions show changes over
three time points in patient 2 of 2013, patient 5 of the same cohort has
22 mutating amino acids. The most different residues at one position
we observed in our study are three. However, we can very often see
back mutations to a previous variant, or even “flip-flop” mutations,
where one position switches constantly between two amino acids. For“Flip-flop”

mutations could be
caused by a change

in the underlying
quasispecies
composition

these cases it is important to remember that we are working on con-
sensus sequences, meaning instead of a constant mutation we could
in fact be looking at a change in the underlying quasispecies dynam-
ics. As we use a majority rule for consensus sequence construction,
only a small change in frequency of a specific species could change
the overall fraction of a variant.

For all created mutation trajectories see figure 4.
Many of the residues shown by our trajectories to be variable over

the course of the study have also been mentioned in the publication
by Bok et al. [21] naming important capsid protein positions. The first
important site mentioned in the paper is 292-295 which showed the
conserved amino acids RVGI in sequences obtained before 1970. Later
it was replaced with the four residues HIVG and additional changes
at position 294. This is not consistent with our sequences, as although
positions 292 and 293 are conserved (except for patient 5 from 2013),
both 294 and 295 are variable in our samples.

When Bok et al. [21] searched for residues with positive selection,
they identified one site that is included in our samples, 395. The pos-
itive selection of this residue has been identified before by another
group [113]. In our samples this site belongs to the variable positions
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Figure 4: Mutation trajectories for all patients.
The alignments only contain the variable positions in the consen-
sus sequences for each patient and are sorted by the chronological
progression. The background colour of a residue gets darker the
more variation occurred at the corresponding position.
Residue numbering was taken from the associated capsid protein
sequence AAR97663.1 of norovirus strain AY502023.1.

of three patients but does not show up as significant in our analysis
of selection pressure.

The paper reports which part of the P2 region potentially interacts
with HGBA trisaccharides to mediate viral entry that is conserved
since the 1970s. In agreement with this finding, our samples do not
show any variance at the corresponding positions. But the authors
also describe a site that stabilises the interaction which is located at
positions 390-393 and 395. Interestingly, Bok et al. [21] claim that these
region also has been stable over time, except for positions 393-395.
Our sequences underline this statement, as although positions 393-
395 are all variable in our samples, positions 390-392 are conserved
in all patients but one (patient 4 from 2013). Our sequences show

mutations in a
region associated
with mediating viral
entry

Tan et al. [179] list additional residues that are sterically close to the
interaction site and hence can influence the binding to HBGA. One
finding is that changes in the positions 331, 346, 348 and 389 alter
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the binding pattern [180]. At position 389 either isoleucine or valine
could be found, depending on the outbreak cluster the corresponding
strain belonged to. Contrary to this statement, we can see the change
between isoleucine to valine at this position over the course of our
study within two patients.

The last mentioned sites in the report are two hot spots identified
by another group which impact the biochemical properties of the P2

domain and apparently change between epidemic waves [2]. These
regions are positions 296-298 and 393-395. At least one of these sites
and surrounding regions changes between samples in every patient,
underlining the importance of the two hot spots with regards to virus
evolution. But our finding also contradicts that the residues change
only between epidemic waves. Furthermore, the hot spots both seem
to be slightly longer than reported, as in our samples we also see
variation in sites in the direct vicinity.Two hot spots

responsible for the
biochemical

properties of the P2
domain are highly

variable in our
samples

A very recent publication by Zakikhany et al. [208] also found po-
sitions 296-298 and 393-395 to be highly variable and traced their
changes within next generation sequencing data obtained in London
in the last ten years and samples deposited in GenBank. In their over-
all 1,312 P2 domain sequences they found 82 different strains, when
only considering differences in the six positions of the hot spots. The
authors also state that these patterns change over time and one major
occurring motif is replaced between outbreaks. Years that showed an
overall high activity of norovirus were correlated to switches in the
surface type motif of the first hot spot or an increasing variability in
the second site.

3.6 every patient shows positive selection

At least at one time point transition per patient, the determined dN/dS
ratio infers positive selection by being larger than one. In patients 2, 4

and 5 from the 2013 cohort, this is even true for all analysed steps. In
three cases, exclusively non-synonymous mutations were observed,
with no occurring synonymous mutation.

In the patients in which also purifying selection can be seen, the
mutation pattern are different. In patients 1 and 3 from 2012, the
dN/dS ratio starts high, decreases at the middle time points, only to
increase again at the last transition. In patient 2 of 2012 however, the
rate gradually increases while it decreases over time in patient 1 of
2013.

The different stages at which the dN/dS ratios inferring positive
selection can be observed in the patients could reflect, when the virus
has to undergo the most changes in order to escape the immune re-
sponse.

For all calculated dN/dS ratios compare table 8.
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Patient
Interval
[days]

dN/dS

63 > 1∗

54 2.0857

152 0.3459

124 1.4359

1

124 1.4359

124 0.8173

206 0.88672

125 1.2740

118 > 1∗

80 0.69803

83 0.9502

(a) Run from 2012

Patient
Interval
[days]

dN/dS

273 2.3689

138 0.48451

48 †
111 2.3798

2

56 > 1∗

3 62 †
4 470 2.4611

98 1.7228

5

322 1.9455

(b) Run from April 2013

Table 8: Pairwise dN/dS ratios.
The pairwise ratio between non-synonymous mutations per non-
synonymous site and synonymous mutations per synonymous site
is shown for sequence pairs that were drawn consecutively.
∗: At these transitions all observed mutations were non-
synonymous and thus would call for a division by zero. As this
is not possible, we can only denote that the value would infer posi-
tive selection.
†: Here, no mutations were observed at all, thus no selection analy-
sis could be performed.

When analysing the consensus sequences codon wise to identify
the direct sites of acting selection, only three residues in patient 1

from 2012 reached a significant p-Value of > 0.95. These three sites
are 341, 357 and 393. That only results for this one patient could be
obtained is mostly due to a lack of data. The models can only be
applied to a set containing at least three sequences and the calcula-
tion becomes more statistically powerful, the more data is provided.
Codeml’s manual even states that its minimum number of sequences
for meaningful results is four to five.

3.7 our experimental design is incompatible with most

reconstruction algorithms

When we tried to apply the various published reconstruction algo-
rithms for viral quasispecies, we encountered multiple errors. The
tools ShoRAH, PredictHaplo and Vispa are all incompatible with the
amplicon sequencing design. Ideally, these tools expect the input
reads to originate from a sequencing approach in which the reads
are randomly distributed among the viral genome or region of inter-
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est. This method would produce a more or less equal coverage over
all bases. However, as discussed in section 3.2, due to our amplicon
approach, we have a high coverage in primer regions, nearly a dou-
bled amount in the overlap region and lower values in between. This
setup causes ShoRAH to reconstruct two different sets of species for
both halves of the amplicon, PredictHaplo to enter an infinity loop in
regions of decreased coverage and ViSpA to simply exit with an error
message. After correspondence with the authors, the group behindEstablished tools

expect a sequencing
design with

randomly
distributed reads

ShoRAH has subsequently published an amplicon specific method,
but unfortunately it requires the complete reconstructed region to be
covered by reads of both orientations. Thus, in our case it only creates
quasispecies in the approximately 150 bp long overlap region in the
middle of the amplicon.

The same outcome applies to our selfmade implementation. While
the construction of the trees rooted at both primers works well, a join-
ing of the leaves is not feasible as to many possibilities exist. We tried
to collapse the branches by elongating the very short ones. Now, if
such an early $-leaf has a non-$ sibling, we merge these two branches,
resulting in only one path. The frequency belonging to the $-leaf will
be added to its sibling. If the short branch has two non-$ siblings, its
frequency will be divided between the two of them in the same ra-
tio the two already have to each other. Thus, the pre-existing ratio is
preserved.

The problem of combining the forward and reverse tree unfortu-
nately still remains. The two possibilities we are left with would be
to either create all possible combinations of leaf overlaps or to ap-
ply a maximum parsimony approach and construct a complete tree
with a minimum number of branches explaining all reads. However,
the former approach would very likely create a large number of false
positives that were not present in our initial sample, while the latter
could disregard true positive species.

Many factors make the quasispecies reconstruction a vague under-
taking. Obviously, if not all or at least most reads cover the complete
region of interest, one has always to use statistical measure to assign
reads which only overlap in short regions to different or the same
species. If they differ in their overlapping part, it is clear that they
stem from distinct variants, but if they are equal in the overlap part
and no information is available for the regions that are unique to one
of the reads, the assignment is an educated guess at best.Quasispecies

reconstruction relies
heavily on good

error correction and
solid statistics to

combine local,
read-sized analyses

Even in the regions that are observed to be different the problem of
differentiating between real differences and sequencing errors arises.
Although 454 mostly shows problems with inserations and deletions
in polynucleotide repeats, substitution errors can never be ruled out
completely. Thus, one needs a good error correction method that can
distinguish between these cases.
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While the above mentioned problems are at least addressable in
the resulting sequencing data, there are additional problems which
can not be observed. It is known that reverse transcription and PCR
can introduce errors in the sequences as well, two methods which
are both used to obtain the amplicon region. Furthermore can PCR
create so called chimera by combining two different strains into one
sequence. These in vitro created mixtures can afterwards not be told
apart from in vivo cross overs.

The PCR process can also distort the frequency analysis which is
applied to determine the ratio of the different quasispecies to each
other. Some sequences are biased to be multiplied more often than
others in the replication cycles, leading to in vitro changed ratios.

When considering all of the listed problems it becomes clear why
the implemented tools were all tested mainly on error free, engi-
neered reads rather than on real data comparable to ours.

3.8 many major quasispecies emerge from minor vari-
ants at previous samples

QuRe reconstructed between 1 (ACAC from 2012) and 109 (TCTC
from 2012) quasispecies for each sample. Nearly all possible develop-
ments with regard to changes in the population size can be observed:
Patient 3 from 2013 has nearly the same amount of species at both
measured time points, while the number progressively increases in
patient 5 of the same cohort. Other patients show a more wave-like
pattern. In patient 1 and 3 of 2012, as well as patient 2 of 2013, the
number of quasispecies increases at first and then drops back at the
later time points to numbers similar to the ones in the initial sample.
The opposite is true in patients 2 of 2012 and patient 1 of 2013, where
the amount of variants decreases at first, only to increase again at the
last samples.

Overall we can see that the amount of reconstructed quasispecies
strongly depends on the number of used sequencing reads. This be-
comes especially clear when comparing the samples barcoded ATGA
and TCAG of patient 1 from 2012 which originate from the same
sample. In all of the mutation analyses these two samples behave Number of input

reads strongly
influences the
amount of
reconstructed
quasispecies

identical or strongly similar, as we would expect given their origin,
but in the reconstruction, ATGA has twice the amount of associated
species than TCAG. The only difference between the two sets of reads
we found previously is their size, thus we can assume that the higher
number of input reads in ATGA lead to the larger amount of recon-
structed quasispecies (compare table 9).

When analysing the phylogeny of the reconstructed quasispecies
by patient, we could observe different dynamics. In patient 1 from
2012, only one species is present in the initial sample and many of
the species in the second sample, including the major variant seem
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Patient Tag # QS

ACAC 1

AGAG 53

ATAT 95

AGCT 60

ATGA 8

1

TCAG 4

CGCG 63

CTCT 44

CACA 5

2

CTAG 23

CATG 62

TATA 60

TCTC 109

3

TGTG 55

(a) 2012 cohort

Patient Tag # QS

ACAC 30

AGAG 4

ATAT 10

1

AGCT 34

ATGA 9

CGCG 262

CTCT 8

CTAG 14

3

CACA 17

TATA 45

4

CATG 36

TCTC 14

TCAG 525

TGTG 68

(b) 2013 cohort

Table 9: Number of reconstructed quasispecies per sample.
Shown is the amount of quasispecies reconstructed by QuRe for
each sample in both cohorts.

to directly derive from it. The third sample however, seems to have
evolved from it and is most closely related to a variant that only made
up 0.58% of the population in the second sample. The fourth and fifth
major variants have again evolved further and seem to origin from a
variant that was only present at 3% in the third sample. Additionally
to this observable timeline, there are a few branches that contain mi-
nor variants from all time points, showing that some species seem to
neither increase nor decrease their fitness over time.

In patient 2 of 2012 we can see some minor outlier species that have
a large mutational distance to most other sequences, that could either
be briefly existing real variants occurring at the time of sample collec-
tion, or false positives erroneously constructed by QuRe. Additionally,
it is hard to tell which quasispecies of the second time point lead to
the population in the third sample, as it is very distinctly clustered
in the tree. Patient 3 from the 2012 study shows a very straightfor-
ward phylogeny with only very few changes separating the different
species and only two minor outlier cluster. For the phylogenetic trees
of the 2012 cohort see figure 4.

The quasispecies reconstructed for the first time point in patient
1 from 2013 show a very strong variation among themselves. The
closest variant to the major species at the second sample collection is a
very minor one that only accounted for 0.46% of the initial population.
Between the first and last two time points a major break occurs that
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makes it hard to determine which early variant established the later
populations.

While the major variant of the second sample of patient 2 in 2013

directly emerged from the initial major species, the population of the
third obtained sample seems to have mostly arisen from very minor
variants.

Patients 3 and 4 from 2013, while both having only two time points,
show very diverse quasispecies dynamics. In Patient 3 the major vari-
ant of the first time point accounts for over 93% of that population
and is extremely closely related to the major species of the later time
point. That one, however, merely represents half of its population,
meaning the initial strong haplotype is in the process of being re-
placed by other upcoming species. In patient 4 all species from the
first time point are very uniform and show minor divergence from
each other and it is unclear which variant is most closely related to
the population of the second time point. Only smaller clusters show
a clear relationship to two minor variants of the first sample. The
species from the second sampling are also much more variable when
compared among each other.

Patient 5 also follows a very straightforward relationship between
the populations of the different time points. Most notably is only the
increasing internal variance of the quasispecies belonging to one sam-
ple. For all trees representing the relationship of the 2013’s cohort
quasispecies refer to figure 5.
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Figure 4: Quasispecies maximum likelihood tree for 2012 cohort.
Quasispecies were reconstructed using QuRe. The most abundant
20 species from every time point were used for tree construction.
The labels give the sequencing barcode, followed by a ranking
from zero (most abundant) to 19 (least abundant used species) and
the fraction the species makes up in the overall population in per-
cent. Symbols are a visual aid to recognise the time progression:
black circles - first sample, blue squares - second, green downward
triangle - third, yellow upwards triangle - fourth, cyan diamond -
fifth. Red symbols belong to the sample their shape indicates but
represent the major variant of the associated time point.
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Figure 5: Quasispecies maximum likelihood tree for 2013 cohort.
Quasispecies were reconstructed using QuRe. The most abundant
20 species from every time point were used for tree construction.
The labels give the sequencing barcode, followed by a ranking
from zero (most abundant) to 19 (least abundant used species) and
the fraction the species makes up in the overall population in per-
cent. Symbols are a visual aid to recognise the time progression:
black circles - first sample, blue squares - second, green triangle -
third, yellow diamond - fourth. Red symbols belong to the sample
their shape indicates but represent the major variant of the associ-
ated time point.
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C O N C L U S I O N

Our longitudinal study of norovirus sequences obtained from chron-
ically infected patients showed the great advantage of applying next
generation sequencing to viral samples. The large number of reads
covering a fairly small region of the norovirus genome leads to ex-
tremely high coverage and thus a large amount of data per nucleotide
to base the downstream analysis on. Furthermore, the quality of the
sequenced reads is very high, facilitating a very statistically stable
mutation analysis.

Although the mutation rate of noroviruses is very high and our
amplicon even especially targeted the hypervariable domain of its
capsid protein, we were able to map more than 92% of the reads in
every sample with a two-stage alignment approach.

The consensus sequences which we derived from the read map-
ping clustered in a phylogenetic tree according to their correspond-
ing patients when working on their nucleotide sequences. On amino
acid level, however, the patient relationship can not be reconstructed,
showing a limited sequence space of the translated protein.

The mutation rates we could observe in our data were in most
cases at least twice as high as the previously reported values for
noroviruses, in some cases up to ten times as much. This could either
result from the fact that we are only focusing on the hypervariable
region of the capsid protein as opposed to the complete genome, or
that we are looking at intraindividual dynamics, not comparing major
outbreak strains.

When comparing the non-synonymous mutations in all three pa-
tients, clear mutational “hot-spots” could be identified. These are
changes that occur in all patients along the course of the examination
and involve often multiple consecutive amino acids. Furthermore do
most of the observed variable regions correspond to important pro-
tein residues which have been previously described by other publi-
cations. These residues are mostly involved in the binding of HBGA
trisaccharides and the stabilisation of said interaction.

The calculated dN/dS ratio between successive samples resulted
in values greater one for multiple steps, hence representing positive
selection. A more detailed analysis for single codons only resulted in
three significantly positively selected positions in patient 1.

Reconstruction of viral quasispecies was extremely difficult given
our experimental design. As most established programs expect a ran-
dom distribution of reads, they were incompatible with input of am-
plicon origin. Even our own implementation, while working fine for
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each orientation of the amplicon, had trouble combining both sides
for a full-length quasispecies reconstruction.

We finally were able to use a recent update of a published tool
to obtain a set of complete species per sample. When analysing the
evolution of the most prevalent quasispecies within one patient, we
could observe very often, how a minor variant at a previous sample
rose to being the major species at a subsequent time point, hence
showing a fast paced evolution in the ongoing infection. However,
as discussed in section 3.7, quasispecies reconstruction is a hard to
solve problem and relies a lot on sound statistics. Thus, our current
analysis might not contain all true positive variants present in the
samples and might be influenced by library size, sequencing errors
or a replication bias.



5
O U T L O O K

5.1 study improvements

There are different ways in which our current study design could
be improved, if we were to repeat it. In the following we will touch
briefly on changes in the patient cohorts or used technologies which
would give additional insights into the intraindividual mutation dy-
namics.

5.1.1 Sequencing technology

In our herein presented study, we sequenced the libraries extracted
from the patient samples with 454 pyrosequencing which was the
method producing the longest read length at the time of realisation.
However, in the mean time PacBio has officially introduced their
Single-Molecule Real-Time (SMRT) sequencing technology [47] that
can produce reads of up to 15,000 nt long reads for prices compara-
ble to our 454 expenses. As each of the produced reads represents
a single input fragment with up to 99% accuracy, we would be able
to obtain quasispecies directly from the machine without any error
correction or sophisticated quasispecies reconstruction algorithm. SMRT sequencing

makes it possible to
obtain quasispecies
sequences directly
from the machine
without further
reconstruction

The only remaining difficulty to be overcome would be to distin-
guish between real representatives of the same species and PCR du-
plicates in the calculation of frequencies.

SMRT sequencing has already been applied to viral genomes and
could successfully identify and help in assembly of full-length strains
[186, 185].

5.1.2 Genotype associations

It has been established that the cellular receptors for noroviruses are
most likely histo-blood group antigens that are expressed in the ep-
ithelium cells of the small intestine [83, 112]. While there seem to be
additional co-receptors involved that have yet to be identified, there
have been hypothesis that varying blood types convey different lev-
els of susceptibility to a norovirus infection [156, 178]. Furthermore,
it could be shown for Hepatitis C virus that patients carrying specific
HLA alleles were either more likely to clear the virus or were espe-
cially slow and inefficient in mounting an immune response [204, 60].

It would have been very interesting to analyse both of these asso-
ciations between HLA- and blood type to the mutational changes in
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our samples in order to identify the genomic regions responsible for
interaction. It might further be possible to see how variation in recep-
tors or MHC structures leads to different mutations in the infecting
virus population. While we had MHC and blood type information for
our earlier cohort, three patients is a far too low number to perform a
meaningful correlation analysis. Thus, it would be of particular inter-
est to carry out our complete examination on a much larger patient
cohort.A larger patient

cohort would enable
association analyses
between mutations

and HLA- and blood
type information

However, this is a difficult undertaking as a chronic norovirus infec-
tion is hard to acquire and thus, a rare event. It might be interesting to
instead use patients with acute infection, which are more numerous.
With infection duration of approximately one week, the longitudinal
samples would need extremely short interim times. But we could also
observe a full-blown immune answer, not one that is strongly reduced
by transplant accompanying medication. Thus, it might be possible
to observe immune evading variants with respect to blood and HLA
type.

5.2 culturing

Until the end of last year, norovirus research was limited by the fact
that all sequences for research had to be extracted from infected indi-
viduals. Because there was no working cell culture system available,
studies involving genetic engineering of sequences or vaccine trials
could not be conducted.

In December of 2014 Jones et al. [89] published their study show-
ing that noroviruses can be grown in vitro in B cells, as long as there
are free HBGAs or HGBA-expressing bacteria added to the culture.
They are also formulating the assumption, that noroviruses are ca-
pable of entering B cells in vivo based on their observations. This
breakthrough discovery in norovirus research makes it finally possi-
ble to culture norovirus strains. Thus, certain hypothesis regarding
norovirus mutational behaviour can now potentially be tested in a
new infection model and are not limited to collected samples any-
more.



Part II

E X P R E S S I O N O F H U M A N E N D O G E N O U S
R E T R O V I R U S E S I N C A N C E R T I S S U E

In this part of the thesis we compared the expression of
selected HERV families in mammary and urothelium can-
cer. In tumour and matched normal samples of the same
patients, we analysed if there was a difference in the ma-
jor expressed loci between the two conditions. In order
to find annotated endogenous viral elements in the hu-
man genome, we used the most comprehensive HERV
database, HERVd, which was adapted and extended to
reference human genome assembly hg19.

This work is the result of a collaboration with the Institute
of Virology at the Helmholtz Zentrum Munich.

Excerpts and figures from this part of the thesis have been
published previously in the following form:

presentation Haase K: Expression of human en-
dogenous retroviruses in cancer tissue, presented at
the International Conference on Molecular and Evolution-
ary Oncology 2014, St Petersburg, Russia, 2014
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I N T R O D U C T I O N

6.1 retroviruses

6.1.1 Structure and Replication

The family of Retroviridae are enveloped viruses that carry their ge-
nome in RNA form while encapsidated, but rely on DNA in order to
replicate and produce new virus particles. In contrast to most virus
families which members enter a host organism and replicate by high-
jacking the host transcription and translation machinery to work with
their packaged genetic material, retroviruses need to perform the ad-
ditional step of integrating their genome into that of the infected or-
ganism.

While the complexity of retroviruses can be very diverse among
the different families, the basic structure is shared among all. The
unintegrated virus genome consists of three major classes of proteins
which are surrounded by repetitive sequences on both ends. When
the RNA gets reverse transcribed into DNA, these ends get copied so
that the 5

′ and 3
′ boundary of the HERV sequence become identical.

These end regions of the integrated retroviral genome, referred to as
provirus , are called long terminal repeats (LTR) [31]. Retrovirus

sequences that have
integrated into the
host’s DNA are
called provirus

The enzymes which are needed for reverse transcription and in-
tegration are encoded in the pol part of the retroviral genome, to-
gether with a protease which is responsible for cleavage of the re-
sulting polyprotein. The gag portion of the viral genome (short for
group-specific antigen) encodes multiple structural proteins which
are needed for assembly of the viral capsid. The last group of proteins
that are present in most retroviruses are env elements that consist of
glycoproteins which are integral in the virus envelope after assembly
[31].

To be able to transcribe all of the described proteins from the retro-
virus genome, stop codon skipping, splicing and proteasomal cleav-
age has to be used. Most commonly expressed are the gag proteins
which are needed in a higher amount than the enzymes because they
are structural proteins. In a fraction of translation processes, the termi-
nation signal following the gag sequence is suppressed and a gag-pol
precursor is transcribed. From this elongated sequence, the enzymes
are cleaved. In order to create the envelope proteins, the aforemen-
tioned gag-pol region has to be spliced from the viral mRNA and
different glycoproteins can be cleaved from the resulting translated
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polyprotein [31]. For a visualisation of the retrovirus structure and
replication, compare figure 6.

Figure 6: Schematic structure of a retrovirus genome.
Shown are the steps reverse transcription, integration and the
translation of the three retroviral genes gag, pol and env.
RNAPII: RNA polymerase II, MA: matrix protein, CA: capsid pro-
tein, NC: nucleocapsid protein, PR: protease, RT: reverse transcrip-
tase, IN: integrase, SU: surface proteins, TM: transmembrane pro-
teins.
Taken from Stoye [175].

6.1.2 Endogenisation

Unlike most other virus families, retroviruses have three means of
propagation. The first method is the horizontal transmission which
they share with other infectious agents. For this way of transmission
they need to be able to produce all parts to create new virus parti-
cles and to transcribe complete new copies of the viral genome. Due
to the provirus containing a functional reverse transcriptase, retro-
viruses are also capable of propagating further within the same host.
Through retrotransposition a copy of the integrated viral genome can
be inserted in other locations throughout the host’s DNA. For this
process, which can lead to a massive increase in copy number of the
provirus in question, no proteins needed for the virus envelope are
required.

The third way of propagation is vertical transmission. Retrovirus
integrations happening in somatic cells are limited to the infected in-



6.1 retroviruses 49

dividual unless external transmission occurs. However, if the provirus
is produced in a germ line cell, the retroviral genome gets added to
the inheritable DNA of the organism. By this mechanism retroviruses
are added to the overall genomic material of their host and can persist
in them over the course of evolution.

After a provirus has become fixed in the genome of the species it
used to infect, it is called endogenous retrovirus (ERV). These endo-
genised elements have become a fossil record, as they are extremely
helpful in phylogenetic analysis. On the one hand, comparing which
species share the same HERV families and loci can help to place the
integration event on a time scale with regard to speciation, on the
other hand, the LTRs can give a pretty accurate measurement of the
age of the ERV [64, 120]. This is due to the aforementioned fact that at
the time the retrovirus becomes a provirus in the host’s genome, the
LTRs on both ends are completely identical after reverse transcription. Directly after

reverse transcription
the 5′ and 3′ LTR
are identical in
sequence

Because the provirus is not under purifying selection, as its function-
ality is not necessary for the organism, the viral sequence decays over
time with neutral selection rate. Given this mutation rate and the cur-
rent difference of the 5

′ and 3
′ LTR, a good estimate of the integration

time point can be determined. [87]
Due to the deterioration of the integrated viral sequences, most

instances found in published genome sequences are incomplete, e.g.
do not consist of the 8-9kb long ERV sequence. Usually, the env gene
is the first to accumulate mutations and deletions, followed by the
other internal open reading frames of the provirus. Throughout ERV
carrying genomes, solitary LTRs are the most numerous instances
of viral origin [12]. As long as the ERVs still retain their enzymatic
activity, they are capable of further proliferating in the organism.

The many solitary LTRs are of particular interest, as they contain
a strong promoter which originally is supposed to facilitate a satisfy-
ing expression of the provirus, but in case of isolated elements, can
increase the expression of the genomic region in the direct vicinity.

ERVs have been found in all sequenced vertebrate genomes to date
and make up between four and ten percent of the overall genomic
sequence [142, 80]. The human endogenous retroviruses comprise 8%
of the human genome, which has been shown after the first draft of About 8% of the

human genome
sequence consists of
endogenous
retrovirus elements

the genome assembly has been finished. Furthermore, retroviruses
are counted towards the repetitive element content of the human se-
quence, which accounts for more than half of the size of the human
genetic material. [82]
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6.2 endogenous retroviruses

6.2.1 Evolution and Expression

The overall age of ERVs could be estimated, as mentioned, by com-
paring integration sites and LTR deviation. Although for integration
events dating back further than 200 million years ago an estimation is
unfeasible, the age of many ERV loci could be determined. It could be
seen that there are still very recent integrations in the human genome
sequence [61]. By comparing the human genome sequence to that
of Old World monkeys it was observed that most ERV families were
present across all species, dating their fixation at least 30 million years
ago [170].

The most recent integration into the human genome, HERV-K, has
shown to be replicationally active for an extended time period, al-
though it has accumulated random mutations [189]. The majority of
HERV proviruses does in fact not encode functional proteins any-
more, however, many of the loci are still being expressed. This ex-
pression was seen first in germline cells and placental tissue [153], but
has since been shown in different cell lines, as well as cancer tissue.
A specific microarray, containing HERV pol genes, has been designed
to identify retroviral sequences present in an analysed transcriptome
[168]. While these chips could successfully identify different HERV
families in a follow-up study [169], it is limited to transcripts which
still contain an undisrupted pol region. Furthermore, this approach
only gives an overview of different families present in a transcript
mixture and does not define the specific loci from which they origi-
nated.

6.2.2 Classification

HERVs are generally classified into three Genera, analogous to the
classification of exogenous retroviruses. The different families are dis-
tinguished based on sequence comparisons of the retroviral genes,
specifically the pol gene and the reverse transcriptase. HERVs with
the highest similarity to γ-retroviruses belong to class I, β-retrovirus
related HERVs are grouped into class II and HERVs most similar to
spuma-viruses are sorted into class III [85]. For a visualisation of the
retrovirus classes, see figure 7. It can be seen that the endogenous vi-HERV families are

named after the
tRNA which is used

to initiate reverse
transcription

ral sequences from primate genomes are in some cases more closely
related to those of bird and rodent genomes than to currently circu-
lating exogenous retroviruses infecting primates, e.g. HIV-1.

While HERV nomenclature is not standardised, most families are
named after the tRNA that is used to initiate reverse transcription
(e.g. HERV-W uses a tryptophan tRNA) [121].
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Figure 7: Neighbour joining dendrogram of retroviral pol sequences.
Shown is an unrooted neighbour joining dendrogram based on
pol sequences (500 bootstraps consensus) of seven retroviral gen-
era. The endogenous retroviral classes are indicated in the periph-
ery. The host species are indicated with symbols next to each tax-
onomic unit. The novel sequences are named according to their
chromosomal positions within respective genomes.
hg15 and 16: Human genome; gg01: Chicken genome and pt01:
chimpanzee genome.
Taken from Jern et al. [85].

6.2.3 Impact

The integration of the provirus into the host’s genome can lead to a
variety of consequences with regard to the surrounding genetic loci.
Due to promoter and enhancer sequences located in the LTR regions,
the expression patterns of neighbouring genes can be altered. This
could either be an increase in expression [32] or a change in tissue
specificity if the LTR provides a transcription factor binding side atyp-
ical for the normal localisation of the gene in question [184]. An ex-
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pression analysis of the youngest HERV family, HML2, showed that
at least half of the analysed LTRs do have strong promoter activity
[27]. Another way in which proviruses can affect host genes is via
creation of antisense transcripts. By expressing short transcripts that
are complementary to known genes, the mRNAs can be bound and
silenced [63].

HERVs not only introduce new promoter signals into the host’s
genome, they also carry polyadenylation and splicing signals which
can have influences on genes in close proximity. There are known
cases in which the splice signal of an integrated HERV creates a
shorter version of one of the host’s genes [81].

Besides these effects on the infected genome, some functions of
HERVs seem to be beneficial for their host. One proposed role of
HERVs is that they convey a certain resistance to other viral infections.
It could be shown in mice that a protein encoded by an otherwise
disrupted endogenous retrovirus can prevent an infection of murine
leukaemia virus, an exogenous retrovirus [14].

Furthermore, the family of HERVW retroviruses, which became
fixed in the genome after the separation of New and Old World mon-
keys [121], is essential for the placenta development in its hosts. Most
of the existing loci have deteriorated over time so that their protein
coding genes have become disrupted. One locus, however, positioned
one chromosome 7q21.2, still contains a full-length env gene from
which syncytin-1 can be transcribed. During placental morphogene-
sis syncytin is thought to facilitate membrane fusion [123].One locus of the

HERVW family is
essential for

placental
morphogenesis

Another HERV family with a known function that is beneficial
to the host organism is HERVH. It is important for stem cell de-
velopment, as it is suggested that HERVH can recruit pluripotency-
associated transcription factors [163, 116].

6.2.3.1 Potential involvement in carcinogenesis

HERVs have been associated with multiple diseases by a variety of
studies. The causation for these involvement has been named either
production of viral proteins, expression of viral transcripts, changes
in expression patterns through the mechanisms listed in section 6.2.3
or simply the disruption of a host gene by a retrotransposition into
the coding region.

While one locus of the HERVW family has proven beneficial to the
host, other viral sequences originating from HERVW proviruses have
been associated with multiple sclerosis (MS) [139]. Although the exact
mechanism in pathogenesis still needs to be revealed, the finding that
HERVW sequences are expressed in MS-patients could be reproduced
[102, 5]. HERV expression has also been linked to bipolar disorder
and schizophrenia when transcribed HML2 and HERVW sequences
could be isolated in brain tissue from affected patients [92, 54].
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Probably the most commonly reported association between HERV
expression and disease is for cancer. Different HERV families have
been reported as transcribed in various tumour types. A direct causa-
tive effect in carcinogenesis has so far only been shown in mice and
sheep [174, 172], while in the human organism studies aim at identi-
fying similar processes. Possible mechanisms how HERVs can influ-
ence tumour formation are via env proteins that facilitate cell fusion,
as seen in the case of syncytin in placental morphogenesis [176], or
via regulation of tumour suppressor genes, as over 1,500 LTRs in the
human genome have a nearly perfect p53 binding site [196].

For the aforementioned endogenous retroviruses involved in can-
cer pathogenesis in mice and sheep, exogenous counterparts still ex-
ist. As this is not the case for any of the known ERV elements in the
human genome, the most likely active candidate is HML2, as it is the HERV sequences are

more similar to
endogenous viruses
of other species than
to currently
circulating
exogenous viruses

youngest integration which still has many full-length proviruses and
can even produce viral particles [22]. HML2 particles could be seen in
teratocarcinomas, although they were found to be defective and hav-
ing no infectious potential [17]. Yet, studies found expressed RNA, as
well as gag and env proteins and in some patients increased antibody
levels for said proteins were measured [99].

The env genes of HERVK were also identified as expressed in mela-
noma cell lines and tissue [26] and multiple HERV families could be
identified in mammary tumour tissue with a microarray approach
[55].

6.3 motivation

While the molecular mechanism of retroviral replication and integra-
tion into host’s genomes is well studied and mostly understood, all
associations with diseases, especially cancer, are still spurious and
not yet linked to causation. Previous attempts in identifying viral se-
quences in a complete transcriptome were made by using PCR with
family specific primer sequences. While this approach can identify
the contained HERV families, it does not provide an overview of the
exact loci that contribute to the transcriptome.

We wanted to take a closer look at the different loci that still ex-
press endogenous viral sequences within the human genome and
compare this activity between healthy and cancer tissue. By applying
this approach to samples from multiple patients, we hope to identify
any systematic changes in loci usage that could potentially be liked
to tumour formation. Even if no change in transcript levels can be
reported, by using highly sensitive next generation sequencing tech-
niques, we will still be able to gain a detailed overview of all the
transcribed loci from the analysed HERV families.
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M E T H O D S

7.1 amplicon reads

7.1.1 Library Construction

7.1.1.1 Urothelium cancer

Tissue from healthy and malignant urothelium were provided from
the university hospital of the TU Munich, Klinikum rechts der Isar.
The healthy samples were extracted from the periphery of the tumour.
Overall 63 tissue samples were obtained, divided in 32 cancerous and
31 matched healthy probes from overall 32 patients. RNA extraction
was performed on all samples and reverse transcribed into cDNA.

Based on initial analysis with microarrays analysing differential ex-
pression, five patients and five HERV families were chosen for am-
plicon sequencing. Amplicons were generated using primers specific
for the five different HERV families ERV-9, HERV-E, HERV-W, HML2

and HML6. ERV-9 was chosen because it showed increased expres- The five HERV
families chosen for
the expression study
are ERV-9, HERV-E,
HERV-W, HML2
and HML6

sion in about 30% of tumour samples, HERV-E and HERV-W had
previously been shown to be expressed in urothelium tissue (HERV-
E [66]) and T cell lymphoma (HERV-W [119]) with potential carcino-
genic function. The two members of the HERV-K family, HML2 and
HML6, were chosen because there are multiple cases reported in the
literature showing increased HERV-K expression in tumours [205, 55].
For HML2 there was additional evidence in the microarray data hint-
ing at increased expression in the urothelial cancer samples.

The polymerase used for amplicon replication had a specific proof
reading function in order to prevent introduction of sequence errors
during polymerase chain reaction (PCR). During PCR the tempera-
ture was set lower than calculated as optimal in order to create less
stringent annealing conditions. With this approach we hoped to am-
plify sequences that do not have an exact match to the chosen primers.
All described wet lab tasks were performed by Ingmar Göttesdorfer
at the Institute of Virology at the Helmholtz Zentrum Munich and
are described in more detail in his dissertation [67].

The created library was sequenced on a GS FLX+ System by an
external company. To allow for the reads to be sequenced multiplexed
in one run, they were tagged with four nucleotide long barcodes to
distinguish the healthy and tumour samples per patient from each
other.

55
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7.1.1.2 Mammary cancer

The mammary tumour data comes from a study analysing 125 sam-
ples from 52 different female patients comprised of matched normal,
cancer and lymph tissue. Four subjects (patients 1, 11, 21 and 33)
were chosen for in-depth analysis with next generation sequencing.
To obtain an even higher resolution than in the urothelium study, this
time only two HERV families were selected for amplicon sequencing.
HML2 and HML6 were chosen, due to their often reported involve-
ment in breast cancer [198, 55, 34].

The experimental preparations, barcoding and library construction
were done analogously to the urothelial samples (compare section
7.1.1.1). Afterwards, the library was also sequenced on a GS FLX+
System.

7.1.2 Sample separation

The downloadable sequencing files provided by the sequencing com-
pany contained the data separated by barcodes. For every barcode a
fasta file (.fna), a quality file (.qual) and a file containing the standard
flowgram format (.sff) was provided. The latter contains all informa-
tion that are recorded during the sequencing run.

We converted the sff-files with the tool sff2fastq (version 0.8.0) into
fastq files which contain the sequences of all reads and their corre-
sponding qualities in phred encoding [50]. Phred defines the quality
as a logarithmic function depending on the error probability P in a
way that phred-score = −10 · log10(P). Thus, a phred-score of 30, forThe phred-score is a

logarithmic function
of error probability
P: −10 · log10(P)

example, describes an error probability of 1 in 1,000 and hence an
accuracy of 99.9%. Quality values between 0 and 40 are represented
by ASCII characters, thereby the quality of a read can by displayed
by a string of the same length as the nucleotide sequence.

We analysed the number of reads, their length and qualities before
sorting the reads into their corresponding samples and filtered and
trimmed them accordingly.

Although initially all samples from one patient and status (healthy/-
tumour for urothelium and healthy/lymph/tumour for breast) should
be distinguishable by a barcode added during library preparation,
this could not be done in all cases. Some of the HERV-family spe-
cific primers would have formed a secondary structure with some of
the prepared tags. Thus, some patients had more than one associated
barcode and some tags were used for multiple samples. To differenti-
ate the latter into their sets of origin, we had to additionally use the
primer sequencing for sorting. For a list showing the used primers
and barcodes in the urothelium study, refer to table A2. In the breast
cancer analysis only one barcode (GTGT) has been used for multiple
samples and needed to be separated by primer comparison (see table
A3).
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We were expecting that we would not to able to find the complete
primer sequences at the beginning of the reads, on the one hand due
to sequencing errors, on the other hand due to mutations which are
present in the genomic HERV loci. To be less stringent in our search
for the sequences, we took the first 21 bases (length of the shortest
primer) of every read in a barcode set and clustered them on 90%
sequence identity with cd-hit-est (version 4.5.4) [110]. In an ideal setup
this would result in as many clusters as samples are associated with
the analysed barcode, but in most cases we obtained more clusters
than expected and thus lost a few reads when splitting the reads into
the sample sets.

The separation steps resulted in one fastq files for each patient and
condition.

7.1.3 Quality analysis

In all resulting fastq files we afterwards removed the first 21 bases
for the urothelium samples and the first 24 bases for the breast sam-
ples to dispose of the primer sequences. We furthermore filtered all
reads that contained Ns, meaning unresolved sequence positions and
shortened the read ends until the quality reached a value of at least
20. In this way we counteract the normal quality decline of sequenc-
ing accuracy towards read ends. After the filtering and trimming we
removed all reads which were now shorter than 100 bp. All of the All reads containing

Ns and shorter 100
bp were discarded,
low quality read
ends and primer
sequences were
trimmed

trimming and filtering steps were carried out by the RawReadManipu-
lator implemented by Jonathan Hoser [78].

The stringent quality control steps are necessary as our analysis
is dependent on the exact mapping of reads to their locus of origin.
Because most HERV loci belonging to the same family share a high
similarity, especially among the youngest integrations, it is important
to decrease potential sequencing errors which could be mistaken for
sequence variation in the downstream analysis.

7.2 hervd

In order to map our obtained reads back to the HERV loci on the hu-
man genome, we used the currently most comprehensive collection
of annotated HERVs, the HERVd database [137, 138]. This database
contains 98,008 entries describing 139 different HERV families, from
full-length proviral elements to singular long terminal repeats (LTRs).
Since the HERVd annotation is based on the hg17 assembly of the
human genome we transferred all genomic coordinates to hg19 using
the liftOver tool [74]. A number of HERVd entries did not survive
the lifting process: 2,342 entries are completely or partially deleted
and another 24 entries are split in the latest hg19 assembly. We nev-
ertheless attempted to identify the location of these entries in hg19
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by sequence similarity searches using BLAT [96]. Similarity hits were
accepted as the origin of a given HERV if the corresponding align-
ments were gap free, covered the complete query sequence, and had
a minimum sequence identity of at least 98%. In the same fashion
we identified additional viral elements in hg19 by using all known
HERV sequences as query and accepting new origins when they met
the identity cutoff. The original HERVd database was obtained and
extended by Anja Mösch in the scope of her bachelor’s thesis [127].

The initial HERV data set contained 100,495 locations in hg19. WeOur extended and
updated version of

HERVd contains
100,495 HERV loci

on the human
genome assembly 19

created basic statistics on the HERVd data to see, which fraction of
each chromosome is taken up by endogenous viral sequences. Fur-
thermore, we analysed how many loci of the five HERV families of
interest are annotated in HERVd.

7.3 mapping

7.3.1 Mosaik

We mapped all reads against the human genome assembly (hg19)
with the Mosaik aligner (version 2.1.73) [106] which is optimised to
handle pyrosequencing reads. Instead of only mapping against the
HERV sequences stored in our HERVd database, we decided to per-
form an alignment against the complete human genome, so we could
identify potential HERV loci which are so far not annotated.

During the mapping we allowed a maximum mismatch percentage
of 2% relative to read length and chose the unique mapping mode.
Both settings are supposed to ensure the exact mapping of each read
to its genomic origin although many other loci share a high sequence
similarity.

7.3.1.1 Expression per chromosome bands

We compared the alignments of every sample against a list of our
HERVd entries and counted the number of mapped reads that over-
lapped every sample with bedtools coverage (v2.17.0) [148]. Because
the different samples were created using enrichment by PCR we can
not compare them quantitively. Thus, we acquired the cytoBand ta-
ble (for hg19) from UCSC table browser [93] and assigned all HERVd
entries their corresponding chromosome band using bedtools closest.
Afterwards, we calculated the fraction of reads in each sample that
is allotted to a certain band and compared theses values between
the different tissues of a patient based on HERV families. With this
approach we avoid performing a quantitative analysis and instead
evaluate which locus creates the most transcripts per family and can
investigate changes in the activity based on disease condition.
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7.3.2 Blat

Because the traditional mapping approach was only able to map
an unsatisfying fraction of the reads, we attempted to improve the
amount by using Blat [95]. This method has been reported to be suc-
cessful for HERV sequences [165, 166]. Hence, we converted the fil-
tered and trimmed reads to fasta format and mapped them to hg19

with Blat. As this results in many matches per read, we afterwards
examined the output and assigned every read one of the classes am-
biguously aligned, unambiguously aligned or not aligned. We only con-
sidered hits in this analysis if they covered more than a required
fraction of the read and if they were located on one of the canonical
chromosomes. If no match had less than a user defined number of
mismatches the read is considered unaligned. If it can be optimally
aligned, it is labelled unambiguously if the second best hit has at least
one mismatch more, otherwise it is ambiguously aligned. Reads with too

many mismatches
are not aligned,
reads that could be
mapped equally well
to more than one
locus are
ambiguously aligned
and all others are
unambiguously
aligned

Thus, two parameters have to be considered when analysing the
Blat output: covered fraction of the read and allowed number of mis-
matches. The former parameter is of importance as Blat does not
necessarily map the complete read to the reference but sometimes
only aligns fractions. To identify an ideal combination of parameters,
we calculated the fraction of all reads that would be unaligned, am-
biguously and unambiguously aligned for 88 coverage and mismatch
threshold combinations (the former ranging from 0.0 to 1.0, the latter
from 3 to 10).
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R E S U LT S

8.1 reads have sufficient length and quality but un-
equal distribution

8.1.1 Urothelium study

The urothelium sequencing run yielded 14,987 reads. Their distribu-
tion among the different used barcodes is very uneven, ranging from
2,292 reads for ATGC to only 9 for barcode AATT. However, this can
be explained with the different amount of samples that the barcodes
were used for. A total of 843 reads could not be assigned to a tag-
group because their first four bases did not exactly correspond to
one of the used barcodes. The obtained length and qualities of the
reads were very satisfying, with the former having its mean at 505

nucleotides (nt) and the quality having a mean phred score of about
32, thus an accuracy of over 99.9%. Table A4 shows the basic statistics
for all urothelium reads.

As some barcodes have been used for more than one patient and
condition (see table A2), we needed to separate those while referring
to the used primer sequences. As these are of 20 nt length and longer,
their probability of containing a sequencing error is higher than for
the short barcodes, making it harder to assign them without ambigu-
ity. Thus, we clustered the leading nucleotides of the reads starting
with GAGA, GCGC and GTGT barcodes. Every resulting cluster was
assigned a representative sequence which we then compared against
all the known primers and linked the corresponding cluster with a
patient and condition. All reads were then rearranged into files that
belonged to a certain patient and condition rather than a given bar-
code. Additionally, we filtered the reads for length and quality criteria
as described in section 7.1.3.

Ideally, when having nearly 15,000 from 10 samples, we should
see 1,500 reads per data set. However, the read distribution deviates
from this, by favouring certain conditions over others. Overall, the
most reads are being allotted to patient 1 and the least to patient 4.
The strongest difference between two conditions of the same patient
are seen in patient 5. The reason for this varying read number could
be an amplification bias due to the different used primers, or even
unforeseen secondary structure formation, leading to a low yield of
some primer-barcode combinations.

The mean length of the reads has decreased only slightly due to the
removal of the primer sequences and the end trimming. Although we
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filtered low quality reads, the mean quality has stayed the same, be-
cause we also removed the leading bases of all reads which usually
have the highest qualities. Table 10 shows the same statistics as ta-
ble A4, but this time for the filtered and to patients and conditions
assigned reads.

8.1.2 Breast study

In the mammary tumour analysis the sequencing run yielded 85,543

reads with lengths ranging between 41-744 nt and a peek at about 500

nt. The reached qualities were very satisfying as well, with a mean
phred score of about 33.

Unfortunately, when clustering the read starts of all sequences be-
ginning with the barcode GTGT, instead of three clusters, one rep-
resenting every corresponding sample, we obtained 21. But three of
these include the majority of reads, namely of all 4,800 reads starting
with GTGT, 4,643 are covered by clusters of size 505, 2,277 and 1,861

sequences. When comparing the cluster representative sequences to
the used primers, however, only the second and third cluster’s repre-
sentative can be found in the list of used primers. Although the rep-
resentative of the first cluster does also match a primer used in the
study (HML2 reverse primer 1, see table A3), according to the sample
list, it was not used in combination with the barcode GTGT. Thus, we
could only assign the two larger clusters to a patient and condition.
As non of the smaller clusters matched the missing barcode either,
we further investigated the already sorted reads and noticed, that the
primer in question, HML2 forward primer 2, can not be found in
any read. Hence, only three of the four primers used for HML2 loci
targeting were effective.One of the four

primers used to
amplify HML2

sequences did not
produce any reads

From the initial 85,543 reads we were able to assign 68,413 to a spec-
ified sample, the remaining 16,214 did not show a known barcode.
After filtering the reads have a mean length of 465 nt and a mean
quality of about 34. The amount of reads is very unevenly distributed
among the different patients and conditions. The highest fraction is
attributed to patient 1’s normal tissue with the second largest sam-
ple (patient 11’s tumour) having less than half the number of reads.
Patient 33 has the overall lowest read counts compared to the other
three patients (compare table 11).

When looking only at the read statistics from the mammary tumour
read statistics, the results seem very satisfying with regard to mean
length and quality. However, when we start to compare the results
to the previous urothelium study, especially because a similar library
preparation and the same sequencing method was used, two major
differences are striking. First, the length statistics differ drastically.
While the mean is only about 35 nt shorter in the mammary study, the
minimum length is 100 which means it is defined by our length filter-
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ing criteria. In the urothelium study this filter, while applied, was not
needed, as the shortest occurring reads were still over 350 nt in length.
Second, although the existence of the unusual short reads seems to
show that problems occurred in the mammary sequencing run, the
mean quality is still on average two units larger than in the urothe-
lium study. We can not say what exactly caused these performance
differences between our two cancer studies, as even troubleshooting
in cooperation with the sequencing company did not yield helpful
hints.

8.2 hervd covers approximately 3% of the genome

We wanted to analyse how our extended HERVd annotations are dis-
tributed among the human genome. For this purpose we counted all
bases which were covered by a HERV locus and divided the number
through the length of the respective chromosome. Overall, approx-
imately 2.9% of the genome are made up of HERVs. Chromosomes
which exceed this value by more than one standard deviation are chr4,
chr19 and the two gonosomes. The chromosomes 15-17 and chr22

show the least coverage by HERVs (compare figure 8).
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chromosomes
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Figure 8: HERVd coverage of the human genome.
Shown are the number of bases covered by a HERVd annotation
divided by chromosome length. The continuous line marks the
overall mean, the dashed lines the standard deviation.

It is striking that the overall fraction of 2.9% lies a lot lower than
the usual cited amount of 8% which is often given as percentage of
the human genome arising from viral elements. The 8% quote stems
from the publication accompanying the initial draft of the human
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genome sequence from 2001 [82], but they count all LTR-containing
sequences towards this number. Our annotations from HERVd do
not contain any mammalian apparent long terminal repeat retrotrans-
poson (MaLR) sequences, as these are non-autonomous and do not
contain internal viral sequences [137]. Furthermore, some prominent
HERV sequences, e.g. HML2 K111, are located in centromeric regions
[35] which are not completely reconstructed in the human genome
assembly due to their highly repetitive nature and are thus not con-
tained in HERVd.HERVd contains

annotations for
2.8% of the human

genome because
MaLRs and HERVs
in highly repetitive

regions are not
included

To examine how many loci are known in HERVd for our five anal-
ysed HERV families, we counted them chromosome wise. The previ-
ously analysed percentage is reflected in this values, as chromosomes
containing overall low amounts of HERVs, also only carry a smaller
number from the families of interest. An exception make the gono-
somes, as chrX does not contain a strikingly high amount of loci, but
chrY has nearly twice as many ERV9 and HML6 loci than any other
chromosome. When compared across all chromosomes, the most an-
notated loci in HERVd belong to ERV9 (442) and the least for HML6

(131). For the chromosome-wise family distribution see figure 9.
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Figure 9: Number of loci belonging to five analysed HERV families per chro-
mosome.
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Patient
Condition

healthy tumour

1 1070 (69.98) 1670 (72.42)

2 1226 (70.99) 741 (63.06)

3 684 (66.09) 1022 (71.87)

4 581 (65.35) 509 (70.50)

5 508 (65.30) 1467 (65.29)

Table 12: Mapped urothelium reads per sample.
Values in brackets show the percentage of mapped reads relative
to all reads entering the mapping process.

8.3 only a low fraction of reads can be mapped to the

genome

8.3.1 Urothelium study

With our initial mapping strategy, using a program specialised for
pyrosequencing reads, an allowed mismatch percentage of 2% and
the placement of unique reads only, we were able to map on average
65% of all reads. Table 12 shows the number of mapped reads in every
sample.
That only a comparably low amount of reads can be mapped can
mostly be due to two reasons. First, it is possible that our allowed
mismatch percentage of 2% is too strict and reads can not be placed
because they show a greater variance within the HERV loci compared
to the hg19 reference. Second, the reads could be matched equally
well to two or more loci, because members of the same family are
still very similar to each other and thus the mapping would not be
unique. Our analysis of the cause can be found in section 8.5.

The unambiguously mapped reads were then compared against
our HERVd annotations and we could assign all reads to one of the
five families of interest. We also checked for reads that had been
mapped onto hg19 but were not covered by a HERVd annotation and
found that only seven reads mapped in a region without a known
HERV locus. Because non of these seven reads were mapped to the
same region, we regarded them as too weak evidence to define a new
locus. Although all other reads could be assigned to a HERV family, Additionally to the

targeted HERV
families we also
found reads
mapping to HML9,
HERVH, HERV3
and HERVFb

some of them mapped to loci that were not targeted in the library
construction. We found reads mapping to HML9, HERVH, HERV3

and HERVFb. When analysing the distribution among the five HERV
families of interest, we noticed that despite equally sized libraries pre-
vious to sequencing, the produced reads were extremely unequally
distributed. HERVEa is hardly contained in any sample, taking up
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between 1 and 4% of all reads, while HML2 is favoured in replication
and being the source of up to 50% of all mapped reads. The other
three families show variations between samples, but not as strong as
the other two (compare table 13).
The strong differences in the number of mapped reads can either be
due to a preference in amplification during the sequencing process, or
the reads we were not able to map belong primarily to family HERVE.

8.3.2 Breast study

When mapping the reads originating from the breast cancer samples
with Mosaik to hg19, an on average even lower percentage than in
the urothelium study could be placed. While in one case (patient 11

tumour) more than 65% of all reads can be mapped under our applied
constraints, in two cases (patient 33 lymph and patient 11 normal) not
even half of the total set can be aligned (compare table 14).

Instead of continuing with the analysis analogous to the urothe-
lium samples, we decided to use a Blat mapping to assign the reads
to their loci, hoping to identify more fitting parameters and to un-
derstand why on average 45% of the reads could not be aligned. We
executed Blat runs with multiple combinations of the two parameters
read coverage, meaning fraction of the read involved in a calculated
alignment, and allowed mismatches. For each parameter pair we could
then count the number of reads that could not be mapped due to too
many mismatches, the ones that could be aligned to more than one
origin and the reads which could be unambiguously aligned. With
this approach we can determine, if the reads we lost in our initial
mapping were filtered out by the unique setting, or the maximum of
2% mismatches.

With a requested read fraction of 50% up to 90%, the read classifi-
cation solely depends on the number of allowed mismatches. It can
also be seen that if we request at least 50% of a read to be involved
in a match, even if we allow up to ten mismatches, we can not un-
ambiguously align more than 75% of the reads (compare figure 10).
This is in line with the previous Mosaik mapping, as ten mismatches
in an approximately 500 bp long read equates to 2%. At least 40% of
a read should be part of the match to keep the number of ambigu-
ously aligned reads considerably low. But even then, an amount of
mismatches between 8 and 16 per read would still lead to about 15%
of ambiguously mapped reads. This high percentage is probably due
to the young age of the two HERV families of interest and hence, their
high sequence similarity between loci.
To create alignments comparable to the Mosaik mapping, we chose
the parameter combination 10 mismatches and 80% read coverage to
carry out Blat runs. With this setting we were able to unambiguously
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Patient
Condition

lymph normal tumour

1 3447 (54.22) 9123 (55.35) 1354 (52.99)

11 2511 (56.58) 2434 (44.55) 5400 (67.25)

21 – 2333 (62.16) 3239 (62.86)

33 1048 (47.27) 678 (58.30) 784 (61.93)

Table 14: Mapped mammary reads per sample.
Values in brackets show the percentage of mapped reads relative
to all reads entering the mapping process.

map the majority of reads per sample, while keeping the ambiguous
mappings low.

The second most common class for all samples, except patient 21

tumour, are reads with more than 20 mismatches and the minority of
reads could only be mapped ambiguously. For the exact read classifi-
cation compare table 15.
When trying to determine what caused so many of our reads to be
un-mappable to the human genome, at least when requiring more
than half of the read to be involved, we found that our sets of reads
contained many chimaera. Through a Blast analysis of a selected sub-
set of reads, which were classified as not aligned in our Blat mapping,
with the chosen parameters and an alignment examination by eye, we
found that more than half of the tested reads showed two good local
alignments, each involving one half of the sequence. Thus, the multi-The high amount of

un-mappable reads
is probably due to

chimaera

ple rounds of amplification that were needed during library prepara-
tion and sequencing seem to facilitate the formation of chimaera.

8.4 loci usage more dependant on individual patient

than condition

8.4.1 Urothelium study

When analysing the differential usage of loci between the two tissue
conditions of each patient, it was striking that most variances in ex-
pression seemed to be specific for a particular patient, not for the
tumour state.

Overall we could identify 66 expressed HERV9 loci, 26 HML2 loci,
24 HERVW loci, 15 HML6 loci and although only very few reads
were remaining from the HERVE set, we still found 18 expressed loci
assigned to this family. For HERV9 we can observe that the three
most strongly expressed loci (2q33.2, 6p22.3 and 11q21) are the same
for all five patients and both disease states. While in the other four
patients, these three loci each mostly make up between 10 and 25% of
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Figure 10: Fraction of mammary reads being unambiguously, ambiguously
or not mapped.
The three classifications are assigned depending on the allowed
number of mismatches and the minimum fraction of a read in-
volved in a match.

the HERV9 reads, in patient 2 locus 6p22.3 is strongly favoured and
accounts for 32% in healthy tissue and 39% in the tumour sample.
While there are minor differences in loci usage when comparing the
two tissue types with each other, a significant switch can not be found
(compare figure 11 and A2).
In the case of HERVW the results are very similar than for HERV9,
as we can mostly see three prominently expressed loci in all patients.
Only for HERVW even the ranking of the three major loci is consistent
among the study subjects, except for one case. The locus from which
most reads are transcribed is Xq22.3, followed by 14q21.2 and 7q21.2.
The exception to this rule are the tumour samples from patients 2

and 4, as well as both tissues from patient 5. In the former two locus
7q36.1 is slightly stronger expressed than 7q21.2. In patient 3, how-
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Figure 11: Distribution of expressed HERV9 loci in patients 1 and 2.
The x-axis contains all HERV9 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
Only patients 1 and 2 are shown here as representatives, the plots
corresponding to the remaining three patients can be found in
figure A2.
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Patient Class
Assigned reads

lymph normal tumour

1

unambiguous 3503 (55.1) 11315 (68.7) 1388 (54.3)

ambiguous 986 (15.5) 518 (3.1) 404 (15.8)

not aligned 1868 (29.4) 4638 (28.2) 763 (29.9)

unambiguous 2488 (56.1) 3105 (56.9) 5906 (73.6)

ambiguous 752 (16.9) 286 (5.2) 579 (7.2)11

not aligned 1197 (27.0) 2069 (37.9) 1543 (19.2)

21

unambiguous – 2141 (57.1) 2669 (51.8)

ambiguous – 760 (20.3) 1370 (26.6)

not aligned – 849 (22.6) 1113 (21.6)

unambiguous 1416 (63.9) 636 (54.7) 668 (52.8)

ambiguous 43 (1.9) 231 (19.9) 280 (22.1)33

not aligned 758 (34.2) 296 (25.5) 317 (25.1)

Table 15: Mammary reads assigned to classes after Blat mapping.
Shown are the classification results, when requiring 80% of the
read to be involved in the match and allowing at most 10 mis-
matches.
Values in brackets show the percentages.

ever, the same locus is so highly expressed in healthy tissue, that it
provides 58% of all reads. Consistent with the results for HERV9, no
significant change in loci usage can be seen when comparing healthy
and tumour tissue (compare figure 12 and A3).
From the 26 identified HML2 loci showing expression in our data,
25 are expressed in varying degrees in all samples and make up be-
tween 0 and 20% of all HML2 reads. One locus is the major transcript
producer in all patients: 3q21.2. Although in patient 1 this transcrip- 3q21.2 is the major

HML2 locus in all
five patients

tion origin produces nearly twice the proportion in tumour than in
healthy tissue, this pattern is reversed in patient 5. Hence, also for
HML2 there is no clear cancer-associated locus (compare figure 13

and A4).
Our analysis of expressed HML6 loci revealed that in patients 3, 4, 5

as well as for the healthy tissue of patient 1 and the tumour sample
of patient 2 the strongest expressed locus is Xp11.21. In patient 4’s
tumour tissue this locus produces so many reads that nearly no other
expressed loci can be found (Xp11.21 accounts for 89%). When only
examining patient 1, a clear locus shift between healthy and tumour
tissue could be observed, with 14q24.2 being nearly exclusively ex-
pressed in the cancer sample and Xp11.21 and 19q13.41 being nearly
exclusively expressed in the healthy tissue. But when looking at the
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Figure 12: Distribution of expressed HERVW loci in patients 1 and 5.
The x-axis contains all HERVW loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
Only patients 1 and 5 are shown here as representatives, the plots
corresponding to the remaining three patients can be found in
figure A3.
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Figure 13: Distribution of expressed HML2 loci in patients 1 and 5.
The x-axis contains all HML2 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
Only patients 1 and 5 are shown here as representatives, the plots
corresponding to the remaining three patients can be found in
figure A4.

other four patients, these findings are revealed to be limited to patient
1 and not a general disease specificity (compare figure 14 and A5).
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Figure 14: Distribution of expressed HML6 loci in patients 1 and 4.
The x-axis contains all HML6 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
Only patients 1 and 4 are shown here as representatives, the plots
corresponding to the remaining three patients can be found in
figure A5.

Due to the small amount of reads which could be mapped to HERVE
loci, we decided that their distribution would not be representative
of the underlying mechanisms and did not analyse them further. For
reasons of completeness, the corresponding barplots can be found in
figure A6. HERVE is omitted

from further
analysis because of
sparse data8.4.2 Breast study

All reads which were unambiguously mapped by Blat were then over-
lapped with the HERVd hg19 annotation to obtain coverage values
for every HERV locus. We also ran bedtools coverage in the opposite
direction, with the reads as query, to control if every mapped read
was positioned inside a HERV locus. If reads were aligned to the
genome outside of HERVs, we compared their positions with bedtools
intersect against the GENCODE V17 annotation to see if the read can
be explained by a known transcript. For most patients and conditions
only between 0 and 6 reads fall outside the HERVd annotations, all
of which can be explained by GENCODE transcripts. An exception
are patient 21’s tumour and patient 1’s normal sample. In the former,
48 reads lie outside of HERV loci, 47 of which are contained in GEN-
CODE V17. The normal sample of patient 1, however, contains 125 Patient 1’s normal

sample contains
reads that can not be
mapped to a known
transcript

reads that map to hg19 but not within a known HERV locus. Only
113 of these transcripts can be explained by GENCODE. It might be
that the extreme amount of reads in patient 1’s normal sample orig-
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Patient
Assigned reads

Lymph Normal Tumour

HML2 HML6 HML2 HML6 HML2 HML6

1 1525

(43.53)
1954

(55.78)
1638

(14.48)
9523

(84.16)
523

(37.68)
850

(61.24)

11 1073

(43.13)
1396

(56.11)
450

(14.49)
2645

(85.19)
745

(12.61)
5146

(87.13)

21 – – 807

(37.69)
1316

(61.47)
1236

(46.31)
1363

(51.07)

33 49

(3.46)
1366

(96.47)
299

(47.01)
330

(51.89)
403

(60.33)
263

(39.37)

Table 16: Mammary reads assigned to HERV families.
Values in brackets show the percentage of reads assigned to the
corresponding family divided by all unambiguously aligned reads
for that sample.

inates from a less specific amplification during library construction
than in the other sample preparations.

Most reads that were unambiguously mapped to a HERV locus,
belonged to one of the families associated with either HML2 (HML2

or HERV-K) or HML6 (HML6, HERVK3 or HERVK3I). Only eight
other loci were covered: two HML9, one HERVK(II), one ERVL, one
HERVL, one MER9, one HERVK14Cl and one LTR5_Hs entry. The
distribution of reads between HML2 and HML6 loci is very biased
towards HML6, as in all samples more reads are assigned to HML6

than to HML2. The strongest case can be seen in patient 33’s lymph
sample, where nearly all reads (96.47%) originate from HML6 loci.
The overall assignment of reads to the HERV families HML2 and
HML6 can be seen in table 16.
When analysing the loci usage among the different samples of the
same patient, the observations are very similar to the results of the
urothelial study. In the overall 23 expressed HML2 loci no clear ex-
pression pattern can be found. While in some patients single loci pro-
duce the majority of reads in a condition (e.g. 3q12.3 in patient 1

normal), these events are limited to a patient and do not occur as
patterns (compare figure 15).
Of the 22 expressed HML6 loci only 3 to 5 make up a notable pro-
portion (>10%) of reads per patient. Besides 19p12 and 11p15.4 these
loci vary between the four analysed subjects. A strong difference in
expression between conditions can only be seen in patient 1, where
locus 11p15.4 is responsible for twice as much percentage of reads in
the normal than the tumour tissue and in the overall expression of
patient 11. Here, we can nearly find one locus associated with each of
the three analysed tissue types: 3p21.31 for normal, 19p12 for cancer
and Xp11.21 for lymph tissue. In all cases the denoted locus produces
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Figure 15: Distribution of expressed HML2 loci across chromosome bands
for BLAT alignments.
The x-axis contains all HML2 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
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the majority of reads in the respective tissue and is much less involved
in the other two tissue types. However, this association can only be
observed in patient 11 and thus, does not seem to be an universal
pattern.In patient 11 each

analysed tissue has a
preferred HML6

locus 8.5 unmapped urothelial reads have too many mismatches

We repeated the Blat approach, used to map the mammary tumour
reads to the genome, in order to identify why we also lost approxi-
mately 35% of the urothelium reads. We found, unsurprisingly, that
the number of unambiguously aligned reads increases with decreas-
ing fraction of the read involved in the match and increasing allowed
mismatches. But it is striking that with a requested read coverage of
40% up to 90%, the read classification solely depends on the number
of allowed mismatches. It can also be seen that if we require a min-
imum of 40% of a read to be involved in the match, no more than
5% of reads are aligned ambiguously. Thus, the reads we are not able
to map with our initial approach seem to have too many mismatches
compared to the reference rather than having to many possible ori-
gins (compare figure 17).
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Figure 16: Distribution of expressed HML6 loci across chromosome bands
for BLAT alignments.
The x-axis contains all HML6 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.



80 results

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

read
fraction

3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

allowed mismatches

co
ve

ra
ge

 th
re

sh
ol

d

(a) unambiguously aligned

0.05

0.10

0.15

read
fraction

3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

allowed mismatches
co

ve
ra

ge
 th

re
sh

ol
d

(b) ambiguously aligned

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

read
fraction

3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

allowed mismatches

co
ve

ra
ge

 th
re

sh
ol

d

(c) not aligned

Figure 17: Fraction of urothelium reads being unambiguously, ambiguously
or not mapped.
The three classifications are assigned depending on the allowed
number of mismatches and the minimum fraction of a read in-
volved in a match.



9
C O N C L U S I O N

We analysed HERV expression in urothelium and mammary cancer
tissue, as well as in matched normal and, for the breast study, lym-
phoid samples. In both cases specific HERV families, which had pre-
viously been shown to play a potential role in tumourigenesis were
extracted, amplified and sequenced.

We observed certain difficulties with the laboratory processes, as
barcoding was complicated by the capability of the long primers to
form secondary structures, which could hinder them from binding
to the target sequences efficiently. Furthermore, the multiple amplifi-
cation steps in PCR and the sequencing itself introduced biases into
the read distribution among patients, conditions and HERV families,
although their initial concentrations were deemed to be identical. An-
other problem arising from amplification is the high percentage of
chimeric reads, found especially in the breast cancer analysis. These
are probably produced by template switching due to the high simi-
larity of the analysed HERV loci.

We could also observe that the chosen sequencing technique yielded
extremely different results for the mammary and urothelial library.
Given that the samples were treated equally before they were send
off to the sequencing company, we can only assume that different set-
tings or reagents were used on their end that caused the much worse
quality in the breast cancer study.

To identify the genetic origins of the produced reads, we obtained
and extended the HERVd annotations, containing all known HERV
loci on the current human genome assembly. We found this resource
to be very comprehensive and only lacking some LTR sequences
which do not contain internal HERV elements (MaLRs).

When trying to map our obtained reads to the genome, we found
that only an unsatisfying low amount could be placed when enforcing
a unique positioning and a maximum of 2% or 10 mismatches per
read. After analysing the reason behind this, we found that mostly
too strong divergences of our reads from the hg19 reference were
causative and only a small percentage was rejected because it could
be mapped equally well to multiple origins. One of the reasons for the
mismatches were the discussed formation of chimaera during library
construction.

In our final comparison of loci usage within the same HERV fam-
ily between patients and conditions, we found that while in some
cases we could see a switch in the most commonly used loci in a pa-
tient between healthy and tumour sample, most evidence pointed at
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a very individual expression pattern of HERVs. Usually the variation
in expressed HERV loci depended more on the currently considered
patient than the disease state.



10
O U T L O O K

10.1 improve sequencing process

There are plans on repeating the described project, but applying a
newer sequencing technology. We plan to use the real-time sequenc-
ing approach developed by pacific biosciences [47] which has the
great advantage over pyrosequencing that it produces much longer
reads (on average 10,000 to 15,000 nt as of 10/2014 press release) and
that no additional replication step is needed in the sequencing pro-
cess, thus hopefully decreasing the amount of produced chimaera. All
reads are created as circular molecules, merging the fragments in for-
ward and reverse orientation by artificial connecting pieces. Through
this design the RNA polymerase, once attached, keeps iterating over
the same read multiple times, on both strands. Although the error
rate for each base is still around 15%, by calculating a consensus se-
quence from the multiple readings of the same position, an overall
accuracy of over 99% can be reached [29].

We will probably be able to map much more reads to the genome
when using this technique. The rejected reads due to mismatches will
be reduced through the increased accuracy and lower amount of chi-
maera and rejected reads due to ambiguity will be reduced by in-
creased read length. A higher number of mapped reads could help
us to identify potential expression patterns on a more solid statistical
basis.

10.2 herv expression map across various cell types

As many of the studies linking HERVs to carcinogenesis do so by re-
porting strong expression levels of viral elements in cancer tissue but
not necessarily comparing them to normal counterparts, we wanted
to get an overview of the background expression of HERVs in various
cell types. We are only able to define over- or under-expression of a
certain locus, when we have a clear picture what its normal level of
transcription is.

Although there are many whole RNA-Seq studies deposited in pub-
lic databases which we could in theory use easily for these analysis,
we were unsure whether HERV expression would provide a strong
enough signal for detection when admixed with the rest of the human
transcriptome. In an initial test we checked for eight whole RNA-Seq
cancer studies from the gene expression omnibus (GEO)[46], at what
number of reads in a dataset a saturation of detected HERVs would
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be reached. Therefore we counted the number of HERVs found in
all complete sets and then artificially lowered the coverages in each
sample with the tool downsampleSam from the picard tools package
[141]. It iterates over all reads in the original file and keeps every
one with a predefined chance (read pairs are discarded together). Af-
ter we decreased the initial amount in nine steps down to 10% we
could observe that no saturation with regard to HERV detection was
reached, but instead followed a nearly linear increase (compare fig-
ure 18). Thus, we decided to work on the largest available whole tran-
scriptome data sets as they would result in the most comprehensive
analysis of HERV loci.
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Figure 18: Identified expressed HERVs in down-sampled cancer studies.

Based on this preliminary examination, we decided to analyse HERV
expression in the different cell lines available in the Encyclopedia of
DNA Elements (ENCODE), as it is the largest whole transcriptome
RNA-Seq compilation across various cell types to date. The descrip-
tion of this study can be found in part iii of this thesis.



Part III

D I F F E R E N T I A L E X P R E S S I O N O F
E N D O G E N O U S V I R U S S E Q U E N C E S I N

E N C O D E R N A - S E Q D ATA

In this part of the thesis we describe a systematic study of
HERV expression patterns in a multitude of healthy and
cancerous cell types. We present a comprehensive differ-
ential analysis of HERV expression based on ENCODE
Tier 1 and Tier 2 RNA-Seq data produced by Cold Spring
Harbor Laboratories and the California Institute of Tech-
nology. Our study focuses on analysing the comparability
of the different laboratories contributing to ENCODE and
the expression patterns of HERV elements among tissues.

Excerpts and figures from this part of the thesis have been
published previously in the following form:

paper Haase K, Mösch A, Frishman D: Differential
expression analysis of human endogenous retroviruses
based on ENCODE RNA-seq data. BMC Medical Ge-
nomics, 8(71), 2015





11
I N T R O D U C T I O N

11.1 encode

In September of 2003 the National Human Genome Research Institute
(NHGRI) launched a research consortium named Encyclopedia Of
DNA Elements (ENCODE) [182] with the declared goal of identifying
all functional elements in the human genome. The Encyclopedia Of

DNA Elements
(ENCODE) wants
to identify all
functional elements
in the human
genome

The project started with a pilot phase that only focused on a small
portion of the genomic sequence (30 Mb ≈ 1%) in order to find opti-
mal suited methods to analyse multiple aspects of the genome. The
different tasks were distributed internationally among laboratories
and computational experts to combine various expertise [182]. At the
end of the pilot phase a solid toolbox was developed that makes it
possible to comprehensively analyse genomic data and search for its
functional elements in a high-throughput manner. A great public ben-
efit of the ENCODE project is that all produced data that adheres to
the quality standards, is released into freely available databases and
can thus be accessed by the interested research community. Among
the experiments of the pilot phase were microarray hybridisation and
reporter assays which helped to identify regulatory elements, epige-
netic modifications and replication sites. For an overview over the
different assays and the targeted functional elements see figure 19,
taken from the pilot phase’s publication.

Figure 19: Functional genomic elements being identified by the ENCODE
pilot phase.
Taken from The ENCODE Project Consortium: The ENCODE
(ENCyclopedia Of DNA Elements) Project. Science, 306(5696):636-
640, 2004. Reprinted with permission from AAAS.
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The pilot phase alone helped to uncover many previously unknown
functionalities in the human genome. One of the major findings was
how much of the genome is really associated with a transcript which,
contrary to former beliefs, was the majority of all bases. Further-
more, many non-coding transcripts could be identified, showing the
strong regulation between genomic elements. Another finding was
that histone-modification status was directly linked to the transcrip-
tion activity or silencing. [18]

With the introduction of more powerful sequencing technologies,
the possibilities for identification of functional elements increased
and new experiments were added to the ENCODE repertoire. The
second major ENCODE publication already describes results based
on 1,640 datasets from 147 different cell types. Because the more re-
cent studies did not focus on a small subset of the genome anymore,
statistics for the complete genome could be presented. They found
that 99% of the genome has a distance of less than 1.7kb to the closest
biochemical event analysed by ENCODE [183].ENCODE’s second

phase showed that
99% of the genome

is in < 1.7kb
vicinity of a

biochemical event

The second phase has added multiple new methods to the EN-
CODE experiment list, most notably sequencing approaches that take
advantage of the next generation technologies, such as RNA-Seq and
ChIP-Seq. The overall 25 kinds of experiments are applied to a de-
fined set of cell types in order to facilitate comparisons and integra-
tion of the results from different contributing laboratories. The Tiers
have associated levels of priority, starting with the most important
Tier 1 which only contains three cell types: K562, erythroleukemia
cells, GM12878, a B-lymphoblastoid cell line and the H1 embryonic
stem cell (H1-hESC) line. In order for a group to participate in the
ENCODE project, submission guide lines have to be fulfilled. For the
sequencing experiments these state, among other things, that at least
two biological replicates have to be provided which enables a more
statistically robust downstream analysis.

The launch of the modENCODE project [30] which focuses on the
identification of functional elements in the prominent model organ-
isms C. elegans and D. melanogaster makes it possible to apply very
detailed comparisons of the distantly related species human, fly and
worm. So far, large scale studies looking into the different transcrip-
tomes [58] and chromatin organisations [75] have been published.
Furthermore, in 2012 a parallel project to the successful human EN-
CODE was introduced, mouse ENCODE [173]. Its goal was to pro-
vide the same level of high sensitivity, integrated genome analysis
as in the human consortium to decode all functional elements in the
commonly used biomedical research model organism mus musculus.
The first results of mouse ENCODE were presented in the end of 2014

and showed that many mouse orthologs to human genes showed con-
siderable distinct expression profiles while the chromatin states were
highly similar [206]. Additionally to the studies conducted by the EN-
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CODE associated consortia, there have also been external groups that
used the provided resources to integrate or compare them to their
own samples or conducting meta-analyses across ENCODE cell lines
[39, 71, 133].

With the most recent data release, made available in September
2014, ENCODE incorporates 27 different kinds of experiments, con-
ducted by 26 research laboratories. There are 437 RNA-Seq studies
for human available, which in contrast to previous phases, now have
also been performed on tissue samples, in addition to various cell
lines. When we began our study there were a total of 151 RNA-Seq
experiments available, with 87 of them using small RNA-Seq (as of
September 2014).

11.2 herv differential expression analysis

As mentioned in section 6.2, multiple studies have linked HERVs to
diseases, most importantly cancer, by identifying transcripts of retro-
viral origin in affected patients. However, so far we are lacking a com-
prehensive analysis of HERV expression in healthy tissues in order
to know the base line of expressed HERV transcripts in an organism.
Even very early studies that only focused on a single HERV family
found a strong variation in expression between individuals and tis-
sue types and thus suggesting regulation of endogenous retrovirus
activity [4].

Previous attempts to create an overview of HERV expression pat-
terns in different tissues relied on a specifically designed microarray
with 52 representative captured retroviral pol sequences from 20 ma-
jor HERV families [168] and were thus limited to the subset of HERV
family members that still contain intact pol sequences. Nevertheless,
the study could show HERV expression in all of the 19 analysed
healthy human tissues. Some of the captured families were identi-
fied in nearly all tissue while others are restricted to a small subset.
[169] HERV expression

has already been
shown to exist
across multiple
tissues, different
disease states and
seems to be
regulated

In order to increase the number of covered retroviral elements, a
more comprehensive approach, capable of identifying the full-length
sequences would be required. RNA-Seq has become a method of
choice for addressing such problems [197] as it provides precise mea-
surements of transcript levels in the cell and thus makes it possible
to map all retroviral elements, both structurally intact and partial,
back to their genomic loci. However, such an expression analysis is
complicated by the fact that HERVs are repetitive elements spread
over the entire genome, which makes mapping of their transcripts
to genomic loci particularly challenging and requires an as exact as
possible method for read alignment.

ENCODE data has been used in multiple computational studies on
gene expression, but as of now transcriptome analyses spanning mul-
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tiple cell types aim at protein-coding genes or functional regulatory
RNAs [8, 70] while overlooking everything classified as repetitive ele-
ment. Examination of ENCODE RNA-Seq data with regard to HERV
expression has either been limited to single cell types [116] or covers
HERVs only as a very small subset of the overall analysis, usually
categorising them together with other transposable elements [37].

11.3 motivation

In part ii of this thesis we saw that expression of loci from certain
HERV families could vary quite a lot when compared between differ-
ent individuals. However, unlike many publications linking HERVs
to cancer were proposing, no clear association of HERV expression
and disease state could be observed.

Our findings were in line with a publication from Flockerzi et al.
[54] who reported that when comparing expressed sequence tags
originating from loci of the HML2 family, some contributed more
to the overall amount of transcripts than others and their distribu-
tion among tissues was different. But the authors also conclude that
expressed sequence tags are not sufficient to capture all of the tran-
scriptional activities of HERVs and that “A specialised (H)ERV Tran-
scriptome Project is needed”.Need for a HERV

Transcriptome
Project has already

been formulated

Thus, we attempted to comprehensively analyse RNA-Seq data cov-
ering all annotated HERV loci in a broad variety of cell lines, dis-
ease and developmental stages. We chose ENCODE to provide the
used RNA-Seq data as it contains various cell types and its studies
all adhere to quality guide lines that enable optimal comparisons.
We sought to gain an insight into the overall expression patterns of
HERV elements and to examine on a large scale if there are measur-
able differences in HERV activity between cancer and normal cells,
as already reported for individual tumor types. Furthermore, a major
goal of our study was to assess the consistency of different ENCODE-
contributing laboratories with regard to expression values from the
same cell lines.
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M E T H O D S

12.1 rna-seq data

When deciding which subset of the vast amount of data deposited
within ENCODE to use, we followed the importance ranking of cell
types into tiers. The first two Tiers, regarded as most important by
the project, contain only three and 14 cell lines, respectively but have
been used in a multitude of experiments. The third Tier contains a
large number of cell types, but for most of them only one to a handful
of experiments are available. Thus, we decided to limit our approach
to the RNA-Seq data from Tier 1 and Tier 2.

While it is possible to download the raw reads produced in each
sequencing run, we decided to obtain the ready-made alignments in
bam-format. The advantage of this format is that we do not need
to execute the mapping step ourselves and thus save a lot of com-
puting time. Furthermore, we can presume that the applied quality
measures and mapping processes are already very sophisticated due
to ENCODEs quality standards. The files contain the alignments of
all reads mapped against the latest human genome assembly (hg19)
and were obtained using the UCSC track download portal [158, 152].

Only samples from the ENCODE category long RNA extracts (>200

bp) were considered, as short RNA extractions aim at identifying
small non-coding RNAs while our proviral remnants of interest are
considerably longer (mean length of 928 nt in our HERVd compila-
tion). We further restricted the considered tracks to whole cell ex- We chose RNA-Seq

data in bam-format,
extracted from the
whole cell with a
length > 200 bp and
produced by CSHL
or Caltech for our
analysis

tracts, as we are interested in the overall analysis of HERV expression
in entire human cells rather than in individual compartments. We
focused on data produced by either the Cold Spring Harbor Labora-
tories (CSHL) or the California Institute of Technology (Caltech) (for
complete list see table 17) because these provide the most compre-
hensive coverage of (mostly) the same cell types, facilitating a direct
comparison of the results produced by these two groups.
Moreover, due to the fact that Caltech performed both single-end and
paired-end sequencing on a subset of cell types, expression analysis
results can also be compared between different library preparations.

12.2 herv annotation

As basis for the HERV loci annotation in the human genome we used
our extended HERVd database as described in section 7.2 of this the-
sis. From the initial 100,495 locations on hg19 we subtracted all entries
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Cell Type Tissue Cond.
CSHL Caltech

single- paired-

end end

A549 epithelium cancer 2 - -

B-cells CD20+ blood normal 2 - -

GM12878 blood normal 2 2 2

H1-hESC ESC normal 2 2 4

HUVEC blood vessel normal 2 2 2

HeLa-S3 cervix cancer 2 2 2

HepG2 liver cancer 2 2 2

IMR90 lung normal 2 - -

K562 blood cancer 2 2 2

MCF-7 breast cancer 2 - 3

Monocytes
CD14+

monocytes normal 2 - -

SK-N-SH brain cancer 2 - -

Table 17: ENCODE cell lines used in analysis.
Shown are the ENCODE RNA-seq tracks that remain when filter-
ing for the features view, alignment format, cell sample, RNA extract,
cellular compartment and producing laboratory.
The numbers in the last three columns denote the amount of repli-
cates available for the corresponding sample.

positioned on chromosome Y, as this chromosome is not covered by
all ENCODE datasets used in our study and would lead to artifi-
cial differential expression results when comparing Y containing sets
against the others. This filtering step left us with a total of 98,998

annotated HERV loci for which we could obtain read counts.

12.3 herv expression in encode rna-seq

We calculated the read coverage over the HERVd entries for every
RNA-Seq experiment using the featureCount tool of the subread pack-
age [111]. For every annotated viral element it returns the number of
reads mapped to it in every analysed sequencing run. The program
was executed with the primary option, which forces featureCount to
only take primary alignments into account, thus avoiding biased ex-
pression values through non-uniquely mapped reads.

12.3.1 Differential expression analysis

The coverage depth of HERV loci between the 25 ENCODE samples
(compare table 17) was compared using the R bioconductor [149, 57]
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package DESeq [3] which is specially designed for differential expres-
sion analysis. To achieve a better comparability between samples we
normalised their count data by library size and carried out a variance
stabilising transformation based on the inherent biological variabil-
ity between the replicates of the same condition. We then performed
a principal component analysis (PCA) and calculated the Euclidean
distances between the transformed expression values to detect overall
differences between the samples.

The following analyses were limited to the paired-end RNA-Seq
data as PCA revealed extensive differences between single- and paired-
end library preparations. Hence, to avoid introducing a bias in the dif-
ferential expression analysis, we excluded single-end data. The read
count value of every condition, normalised by the library size, was
compared in a pairwise fashion against every other condition, result-
ing in 171 differential expression analyses and the corresponding fold
changes. The DESeq implementation of the negative binomial test
was than used to find significant differences in the calculated expres-
sion values. The initial p-values were adjusted for multiple testing
using the Benjamini-Hochberg procedure [13].

In order to identify significantly differentially expressed HERVs
we filtered for loci whose absolute logarithmic fold change was at
least one and whose adjusted p-Value did not exceed 0.001 (which is
equivalent to a false discovery rate of 0.1%). For every analysed cell We regarded HERVs

as significantly
differentially
expressed when their
logarithmic fold
change > 1 and the
adjusted p-Value
< 0.001

type, we compiled a list of HERV loci up-regulated in at least one of
the pairwise comparisons. By considering the corresponding families
of loci, we sought to identify HERVs that are particularly active in
certain cell types and under certain conditions.

12.3.2 Validation on housekeeping genes

In order to ascertain that the differences in HERV expression be-
tween different conditions and library preparations reported in this
study are not due to computational or experimental biases specific
to endogenous viral elements, we repeated our analysis with a set of
housekeeping genes.

For this purpose we used the list of 3,804 genes compiled by Eisen-
berg and Levanon [48]. This list was created based on RNA-seq data
from 16 different human tissues by first identifying housekeeping ex-
ons, i.e. those exons expressed in all tissues, displaying low variance
between tissues, and showing no exceptional expression in any single
data set. Housekeeping genes were then defined as those genes, for
which at least one annotated RefSeq [147] transcript has more than
half of its exons classified as housekeeping.

When acquiring the annotation file for the housekeeping genes
from the UCSC genome browser, only 3,801 entries could be retrieved,
as three identifiers (NM_032937, NM_003926, NM_032560) had been
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removed from the RefSeq database. The assessment of coverage for
every housekeeping gene in all our selected ENCODE data sets was
carried out exactly as described above for HERVd (section 12.3.1), in-
cluding normalisation and principal component analysis.
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R E S U LT S

13.1 differential expression analysis shows strong dif-
ferences between sequencing technologies

The principal component analysis of the transformed expression val-
ues of all 25 samples shows that the strongest differences in HERV
expression result from variations of the sequencing technology used.

The first principal component (which captures 19.06% of the total
variance) clearly subdivides the Caltech samples into those analysed
by single- and paired-end sequencing. The second and third principal
components, accounting for 10.30% and 5.70% of the variance, respec-
tively, separate certain cell types from the rest of the datasets. While
the second component clusters together all eight embryonic stem cell
samples, the third component lets the six K562 samples stand out. Fi-
nally, the fourth component (5.01% of the variance) mostly reflects the
differences between normal and cancer cell types, with the exception
of the MCF-7 sample from Caltech where one replicate is clearly sepa-
rated from the other two and overlaps with a normal tissue (HUVEC).
For a visualisation of the PCA results, see figure 20.

Given that single-end datasets lead to very different results com-
pared to their paired-end counterparts, we decided to exclude them
from the further analyses to prevent them from introducing a bias
into the expression data. The paired-end data seems to give a better Single-end

sequenced datasets
are not reliable for
quantification and
are excluded from
further analysis

overview of the expression rates. Note that in the GEO summary of
the ENCODE Caltech RNA-Seq data, the single-end protocol which
is also strand-specific, is described as less reliable for quantification
[28].

13.2 housekeeping genes confirm strong differences in

encode expression data

Differences in expression of housekeeping genes were also mostly
due to the used library protocols. While the first principal compo-
nent (accounting for 30.67% of the variance) primarily divides the
CSHL cell lines into cancerous and normal ones (with the exception
of CSHL’s GM12878 and a small overlap involving SK-N-SH), the
samples provided by Caltech are neatly separated into paired- and
single-end protocols (compare figure 21).

The observed differences thus do not depend on the chosen tran-
script family, but are rather indeed an inherent pattern in the EN-
CODE datasets.
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Figure 20: Principal component analysis of normalised HERV expression
values in 25 ENCODE RNA-Seq data sets.
The first, second, third, and fourth principal components account
for 19.06%, 10.30%; 5.70%, and 5.01% of the variance, respectively.
Each data point represents one replicate.
Circles: normal cell lines; squares: cancer cells; filled symbols:
CSHL samples; empty symbols: Caltech; crosses in the symbols:
single-end sequencing.
Upper left panel: The first component separates single- and
paired-end libraries, while the second separates ESC samples
from all the others.
Upper right panel: The third component separates K562 from the
other cell types.
Bottom panel: The fourth component divides samples into nor-
mal and cancerous cell types.

13.3 two cell lines show behaviour atypical for their

disease and developmental stage

After excluding the single-end Caltech samples, we calculated the
Euclidean distances between the transformed expression vectors for
all remaining paired-end datasets and performed a hierarchical clus-
tering. As seen in figure 22, most replicates are highly similar to
each other with regard to HERV expression, with the exception of
IMR90 and the second replicate of Caltech’s MCF7 sequencing. ESCs
are clearly the most diverse among the differentiated cell types, serv-
ing as an out-group. Particularly striking is the clustering of CSHL’s
GM12878 replicates. While the same cell line, analysed by Caltech, is
branched together with two other healthy blood cell types, GM12878’s
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Figure 21: Principal component analysis of normalised expression values of
housekeeping genes in 25 ENCODE RNA-Seq data sets.
The first and the second principal components account for 30.67%
and 21.33% of variance, respectively.
Circles: normal cell lines; Squares; cancer data sets; Filled sym-
bols: CSHL; Empty symbols: Caltech; crosses in the symbols:
single-end sequencing.

expression vectors determined for CSHL cluster with all four exam-
ined blood cancer samples (K562). CSHL’s GM12878

cell line clusters
with blood cancer
samples instead of
other datasets
analysing the same
cell type

In addition to the global clustering presented above we also com-
pared every condition against every other condition in a pairwise
fashion, leading to 171 differential expression analyses. Following the
common practice [56, 115] we defined significantly differentially ex-
pressed HERV loci as those with an absolute value of the logarithmic
fold change of at least one and the adjusted p-value smaller than 0.001

(FDR of 0.1%).
The number of identified loci varied depending on the compared

samples. Pairwise analyses involving embryonic stem cells led to the
largest number of differences with up to 956 significant loci (Caltech
H1-hESC vs. CSHL HepG2). The smallest number of significantly dif-
ferentially expressed loci between two different cell types is three and
occurs three times (Caltech and CSHL HUVEC vs. IMR90 and Caltech
MCF-7 vs. CSHL HeLa-S3).

While the largest numbers of differentially expressed HERVs are
seen when ESCs are compared to the other cell types, it is remarkable
that Caltech’s HeLa-S3 line shows very few loci, which are significant
in comparison with both H1-hESC samples (compare figure 23).

13.4 caltech’s hela-s3 cell line shows a strong up-regulation

of hervh

Upon extracting all significantly over-expressed loci per cell type
from the pairwise comparisons and grouping them by their fam-
ily affiliation, we observed characteristic patterns for different sam-
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Figure 22: Hierarchical clustering of Euclidean distances between the trans-
formed expression values in paired-end ENCODE data sets.
Rn in the dataset identifier represents the replicate number n. Cir-
cles show normal, squares cancer cell lines. Samples analysed
by CSHL are drawn with filled symbols, those from Caltech are
drawn with blank symbols.

ples. The eight most often up-regulated HERV families are four in-
ternal and four LTR sequences. Internal regions that are most over-
expressed in the pairwise comparisons are ERVL, a very old endoge-
nous element that is found even outside of primates and shows high
similarity to foamy retroviruses [36] and its younger relative HERVL.The most commonly

up-regulated family
is ERVL

Additionally, two LTR sequences, LTR16C and LTR33, are also among
the eight most often over-expressed families, which belong to the
ERVL superfamily. The other two internal families are the pluripo-
tency marker HERVH and the young human endogenous viral ele-
ment, which is also the most active in terms of expression and trans-
position, HERVK [187]. The two additional often up-regulated LTR
sequences are LTR7, which is a long terminal repeat sequence of
HERVH, and LTR12, belonging to the HERV superfamily ERV1.

Overall, the same cell types analysed by any two laboratories show
a similar composition of HERV families, with the exception of GM12878

from CSHL, which exhibits a nearly double amount of significant
HERVs compared to its Caltech counterpart. Especially the large num-
ber of ERVL members in the CSHL sample is unmatched in the cor-
responding Caltech cell line. The only other cell types with a similar
large number of active HERVL loci is CSHL’s K562 sample, which is
also a blood cell type but, contrary to GM12878, cancerous.

Another cell line that exhibits an extremely deviant behaviour in
the laboratory comparison is HeLa-S3 from Caltech. It appears to
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Figure 23: Heatmap of significantly differentially expressed HERV loci.
Number of significantly (|log2 fold change| at least one, adjusted
p-value < 0.001) differentially expressed HERV loci in pairwise
comparisons.
Ice blue fields show comparisons yielding none or very few dif-
ferentially expressed loci, hot pink represents large numbers (up
to 956).

over-express an immense amount of HERVH family members (290

loci), which are only found in low numbers in all other specialised
cells. The over-expression is not as strong as in the embryonic stem
cells, but is higher than any other number of a single HERV family in
all other cell lines (compare figure 24 and table A5). Caltech’s HeLa-S3

cell line
over-expresses an
unusual amount of
HERVH loci

The difference between cancerous and normal cell lines revealed
by the principal component analysis could not be linked to a partic-
ular over-expressed HERV family. We were not able to identify any
expression patterns separating the six normal from the six cancer cell
lines on the basis of individual HERV families.
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Figure 24: Up-regulated HERV families in different cell types.
The plot shows HERV families that are significantly stronger ex-
pressed when comparing the indicated cell type against all others.
All families that have fewer than 20 members significantly over-
expressed in all samples are grouped together in the other class.
The exact numbers can be found in table A5.
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In this study we analysed the expression of known human endoge-
nous retroviral elements in RNA-Seq samples from the ENCODE
project. It is the first comprehensive examination of sequencing data
from a multitude of cell types and laboratories with regard to HERV
expression patterns.

Based on the analysis of 25 RNA-Seq samples from the ENCODE
project with regard to their HERV expression we find that datasets
created with different sequencing library methods (paired- vs single-
end) are not very easily comparable, because single-end samples achieve
less coverage. This is expected, as the sequencing technique used by
Caltech is strand specific and as such trades quantification against a
qualitative analysis.

Although a principal component analysis of the HERV expression
patterns in different cell types revealed the possibility to distinguish
cancerous from healthy samples based on HERV activity, we could
not link this difference to a specific HERV family. However, our study
revealed unexpected results regarding GM12878 from CSHL, which
showed hints of being a tumorous cell line in two different analyses.
First, a hierarchical clustering of all HERV loci expression grouped
this cell type with all four K562 (blood cancer) replicates instead of
the GM12878 samples from CSHL. Second, the composition of up-
regulated HERV families in this sample, when compared to all others,
is much more similar to that of K562, especially regarding the strong
activity of ERVL. A possible reason for this behaviour could be the
transformation of an initially normal cell line to a tumorous one prior
to experimental measurements. However, this explanation does not CSHL’s GM12878

cell line shows signs
of being cancerous

seem to be particularly plausible given that ENCODE imposes strict
data quality requirements, especially with regard to Tier 1 cell lines
to which GM12878 belongs.

The respective Caltech GM12878 RNA-Seq track has been accessi-
ble through the UCSC genome browser [74, 96] since August 2012

and so far no unusual features of this dataset, including a possible
progression towards a tumor line, have been reported. It is conceiv-
able that the change in HERV expression detected in our study, which
is the first comprehensive investigation of HERV expression in EN-
CODE samples, occurs very early in the transition from a normal to
a cancer cell type and hence remained undetected in studies focusing
on protein-coding gene expression, although we were able to detect
aberrant behaviour hinting at this change when performing PCA on
housekeeping genes. Further research is needed to verify this hypoth-
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esis, as it implies that unusual HERV expression could serve as an
early indication of oncogenic transformation and thus represent a
valuable diagnostic lead.

Another striking finding is the low amount of differentially ex-
pressed HERVs when comparing Caltech’s HeLa-S3 sample to the
ESCs. The strongest difference between HERV expression in ESCs
compared against specialised cell types is the very strong up-regula-
tion of HERVH family members. Because HERVH activity is also high
in Caltech’s HeLa cells, unmatched in any of the other differentiated
cell types, the difference in expression pattern to ESCs is understand-
ably small.

The HERVH family is known to play a vital role in embryonic stem
cells. In particular, since they can serve as a marker for pluripotency
due to their strong association with binding sites for the pluripo-
tency transcription factors NANOG, OCT4 and SOX2 [163]. Further-
more, it has been suggested that HERVH and its LTR7 can recruit
the transcription factors p300 and OCT4 to regulate the transcrip-
tion of pluripotency-associated transcripts [116]. Intriguingly, Santoni
et al. [163] also used ENCODE RNA-Seq data from Caltech to anal-
yse HERVs in hESCs, although they relied on the 2010 data release
whereas in this study we utilised the most recent data published in
2012.Unusual high

number of expressed
HERVH loci in

Caltech’s HeLa-S3
cell line could be a

sign for
pluripotency

For comparison with differentiated cells, Santoni et al. [163] also ob-
tained the 2010 data on corresponding HeLa-S3 cells and found that
“HERV-H expression is barely detectable in HeLa”, although it was
identified when using transient-transfection assays [167]. It is thus
apparent that there has been a significant change between the 2010

and 2012 HERV expression data submitted to the ENCODE project
by Caltech.

Santoni et al. [163] observed that the HERV expression strength in
ESCs diminishes during differentiation. Expression is highest at the
undifferentiated N0 stage, still observable during N1 (early initiation),
and only barely measurable during N2 (neural progenitor). Thus, a
conceivable explanation for the behaviour of Caltech’s HeLa-S3 cells
would be reprogramming towards pluripotency, although an under-
lying mechanism for this process remains enigmatic.



Part IV

E X P I T O P E : A W E B S E RV E R F O R E P I T O P E
E X P R E S S I O N

In this part of the thesis we will describe the implementa-
tion of Expitope, a web server that provides a first in sil-
ico prediction of potential off-target effects of engineered
T cell receptors used in immunotherapy. Our web server
enables the user to search for a peptide of interest in all an-
notated protein sequences and returns exact and approx-
imate matches together with their expression values in a
multitude of healthy human tissues which have been cal-
culated from RNA-Seq data. All results are scored based
on the probability of the corresponding peptide being cre-
ated by the different steps of epitope presentation. We
expect our web service to aid the exclusion of potential
targets with catastrophic side effects before entering the
much more expensive experimental phase of target selec-
tion.

This work is the result of a collaboration with the Immune
Monitoring Group at the Helmholtz Zentrum Munich and
Medigene Immunotherapies GmbH a subsidiary of Medi-
gene AG.

Excerpts and figures from this part of the thesis have been
published previously in the following forms:

poster Haase K, Raffegerst S, Schendel DJ, Frish-
man D: Expitope: Web server for epitope expression,
presented at the European Conference on Computational
Biology 2014, Track: Bioinformatics of Health and Dis-
ease, Straßburg, France, 2014

paper Haase K, Raffegerst S, Schendel DJ, Frishman
D: Expitope: a Web server for epitope expression. Bioin-
formatics, 31(11):1854–1856, 2015
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I N T R O D U C T I O N

15.1 immune response

The human immune system consists, like that of other vertebrates,
of two major components: the innate and adaptive immune response.
The innate immune system, also termed nonspecific immune response,
is the first line of defence against intruding pathogens. Its function is
mostly the recruitment of immune cells to the location of infection
and triggering of signalling pathways through cytokines. The innate
immune system is evolutionary much older than its adaptive counter-
part, as it exists throughout multiple kingdoms [84]. While the innate
response itself does not confer long lasting immunity or can invoke
a memory response to reoccurring infectious agents, one of its func-
tions in vertebrates is the activation of the adaptive immune response
which can fulfil this tasks.

The adaptive immune system, also termed specific immune sys-
tem, is able to produce memory cells which can induce a faster and
stronger immune response upon any subsequent infection with the
same pathogen, building the molecular basis for vaccination strate-
gies. Alongside the increased speed of reaction time comes a high
specificity tailored to the infectious agent. But the adaptive immune
system is also at fault in diseases like asthma or allergies, when
molecules introduced into the organism are wrongfully identified as
precarious antigens. Furthermore, despite a training stage in the thy-
mus where the cells of the adaptive immune response are trained
to distinguish self- from foreign-antigens, disruptions of this process
lead to autoimmune disorders, when the immune system starts to
attack self-antigens. [84]

The major agents of the adaptive immune system are a class of
white blood cells, called lymphocytes. One subclass of them, B-lym-
phocytes or B cells, activate immunoglobulin proteins which are also
known as antibodies. These proteins are distributed in the organ-
ism via the bloodstream and are able to bind their specific antigen
when encountering it, thus rendering it ineffective for binding to host
cells. The second subclass of lymphocytes are T cells, the cell me-
diated adaptive immune response. T cells can directly react to anti-
gens which are presented on host cell surfaces [1]. To facilitate the
recognition, it is of importance that peptides specific for the invading
pathogen are cleaved from their respective protein and processed by
the cell machinery, so that they can be presented on the outside of
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the cell. The steps facilitating this presentation will be discussed in
the following section.

15.1.1 Epitope Processing

While all T cells recognise cellular proteolysis products, there are
differences regarding the origin of the proteins. CD8

+ T cells, also
known as cytotoxic T cells, interact with the major histocompatibil-
ity complex I (MHC I) which presents foremost self-derived peptides,
meaning cleaved cellular proteins. CD4

+ T cells, on the other hand,CD8 and CD4 are
surface

glycoproteins
expressed on the

respective T cells
and serve as

co-receptor in MHC
binding

recognise the major histocompatibility complex II (MHC II) which
mostly presents foreign epitopes derived from organism-invading
pathogens.
The human genome encodes three genes for each complex, HLA-A,
-B and -C for MHC I and HLA-DR, -DQ and -DP for MHC II. Striking
is the extreme variance existing in all MHC loci, leading to a broad
range of peptides which can be bound by different HLA alleles [84].

The MHC molecules form a so called binding groove, in which the
presented peptide is confined by a β-sheet and two α-helices. While
the MHC II structure allows the ends of the bound peptide to be
unconstrained, in the MHC I complex the peptide is restricted on
both ends, leading to mostly 8-10 amino acid long fragments being
presented [20]. As for our Expitope web server the focus is on cellular
antigens, in the following we will concentrate on the creation of MHC
I epitopes.

In order for a T cell receptor (TCR) of a cytotoxic T cell to recog-
nise a peptide, it has to be cleaved from its protein by proteasomal
proteolysis, translocated from the cytosol into the endoplasmic retic-
ulum (ER) and mounted onto a MHC I complex to be presented on
the cell surface. Because in all these steps certain boundaries have
to be observed, not every part of a random protein can serve as epi-
tope. In rare cases exogenous peptides derived from pathogens can
enter this pathway, when they get into the cell by means of endo- or
phagocytosis. [20]

15.1.1.1 Proteasomal cleavage

Proteins not currently needed by the cell have to be degraded in or-
der to be able to control their function and to reuse their components.
Mainly two pathways are responsible for this degradation. Lysosomes
and endosomes, on the one hand, decompose mostly extracellular
and membrane proteins, thus this pathway produces peptides usu-
ally presented by the MHC II complex [122]. The other degradation
pathway is facilitated by the proteasomal complex, which marks pro-
teins to be degraded with ubiquitin and hydrolyses them via the 26S
proteasome [73]. The proteasome is made up from three catalytic
β subunits which each contains cleavage specificities. Nevertheless
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could it be shown that substrates can be cleaved after virtually every
amino acid [200]. Most common substrates for proteasomal cleavage
are defective ribosomal products (DRiPs) which are destroyed in or-
der to prevent faulty protein functions that could lead to a diseased
phenotype. The C-terminus is usually cleaved after a hydrophobic
or positively charged side chain to fulfil the preferences of the down-
stream processing via the transporter associated with antigen process-
ing (TAP) and MHC I [190]. While the C-terminus is in most cases
defined by the proteasome, the N-terminus is left unconstrained by
the cleavage and is only cut inside the ER [100].

15.1.1.2 Transporter associated with antigen processing

Because the previous degradation of proteins by the proteasome takes
place in the cytosol, the produced peptides have to be transported
into the ER where they are mounted onto the MHC I molecules. The
responsible transporter to introduce the peptides into the ER lumen
across the membrane is TAP. It belongs to the class of ATP binding
cassette transporter which require ATP as energy source in order to
fulfil their function. TAP binds the peptide with hydrophobic trans-
membrane domains and relocates it across the membrane through a
change in conformation for which ATP is consumed. [72]

Certain peptides are more likely to be transported into the ER than
others due to preferences of TAP for length and charge. Substrates
between 8 and 16 amino acids in length and with a hydrophobic or
positively charged C-terminus [124]. Most peptides are transported
into the ER in an N-terminal elongated form and only cleaved to
final length by ER aminopeptidases known as ERAP1 and ERAP2

after crossing the membrane [103],
Not all peptides which are presented by MHC I have to enter the

ER via TAP. Some ligands, mostly signal sequences reach the MHC
biosynthesis through a signal receptor pore [199].

15.1.1.3 Major histocompatibility complex synthesis

The major histocompatibility complex class I is a transmembrane gly-
coprotein heterodimer which consists of a heavy α chain and β2 mi-
croglobuline. The heavy chain forms three extracellular domains, α1,
α2 and α3, in which α1 and α2 bind the peptide. The function of α3 is
to interact with T cell co-receptors to facilitate recognition and ensure
specificity [19].

While the N- and C-terminus of the binding groove are highly
conserved among different MHC genes, the internal part is highly
polymorphic which enables the representation of a broad range of
peptides [151]. The binding of a peptide to the MHC is realised in
the peptide loading complex (PLC) which associates with the TAP
transporter. Through an interaction of the MHC I heavy chain and
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tapasin, a part of the peptide loading complex, the empty MHC com-
plex which is inherently unstable is stabilised and the binding groove
is brought in an optimal conformation for loading. In the case that a
suboptimal peptide finds its way onto the MHC, the whole complex
becomes a substrate for UGT1 which reglucosylates the heavy chain
and thus marking it for re-entry of the PLC. There the suboptimal
ligand is exchanged for a high-affinity peptide. [20]

After successful loading of the MHC, it is transported by exocytosis
via the Golgi apparatus to the cell surface where it can be recognised
by specific T lymphocytes. These can then in turn activate an immune
reaction cascade that most likely results in the induction of apoptosis
of the presenting cell. [160]

For a visualisation of all steps in the MHC class I synthesis see
figure 25 which is taken from Blum et al. [20].

Figure 25: MHC I biosynthesis and antigenic peptide binding.
Shown are the different pathways how antigens presented by
MHC I molecules are created and bound. The more common pro-
cessing of endogenous proteins as well as the cross-presentation
of exogenous peptides are depicted.
Taken from Blum et al. [20].
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15.1.2 Prediction Programs

Due to the fact that many steps in the aforementioned peptide pro-
cessing and MHC complex loading pathways have specific prefer-
ences regarding which parts of a protein are considered as epitope,
multiple prediction programs have been implemented for each step.
Most of them use a supervised learning approach, meaning the algo- Most of the

prediction tools for
different steps of
epitope processing
apply supervised
learning algorithms

rithms are trained on the data gathered so far to derive rules for yet
unknown proteins.

15.1.2.1 Proteasomal cleavage

The freely available tools for proteasomal cleavage prediction are
MAPPP (MHC I Antigenic Peptide Processing Prediction; based on
FRAGPREDICT) [77, 76], NetChop [94, 129] and PAProC (Prediction
Algorithm for Proteasomal Cleavages) [105, 130]. In addition to pro-
teasomal cleavage prediction, MAPPP also provides a binding pre-
diction to the MHC I complex. The module of MAPPP responsible
for calculating proteasomal cleavage probabilities is the older pro-
gram FRAGPREDICT. It starts with a statistical analysis to identify
cleavage-determining amino acid motifs. Afterwards, given the previ-
ously determined motifs, major proteolytic fragments are generated.
The algorithm uses a kinetic model of the 20S proteasome describing
time-depending degradation of substrates. [77, 76]

The core algorithm of netChop is implemented as a neural network
that has been trained on verified MHC class I ligands. As not all pro-
teasomal cleavage products are good binders to MHC, this approach
is biased towards the immune-relevant peptides. [94, 129]

PAProC provides prediction of proteasomes in humans and yeast.
The cleavage probabilities are calculated using the amino acids and
their sequence position with a stochastic hill-climbing algorithm. The
functionality has been trained on a set of experimentally determined
cleavage and non-cleavage sites. [105, 130]

Out of this three available methods, netChop is the only one that,
additionally to a web interface which exists for all presented tools,
also provides a command line version that makes it easier to integrate
its functionalities into other works. Furthermore, in a comparison re-
view by Saxová et al. [164] which compared the performance of all
three programs, netChop was identified as the most reliable predic-
tion tool in determining the C-terminus of an epitope. This could be
due to the fact that netChop’s neural network design is better in mod-
eling the complex specificity of the proteasome or that it uses a larger
training set to initialise the network. [164]
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15.1.2.2 TAP affinity

While there have been studies showing that the motifs of the trans-
porter associated with antigen processing can be sufficiently mod-
elled [25], not many approaches have been made available. The only
web service that predicts TAP binding affinity from an input sequence
is TAPPred [15]. The algorithm uses a support vector machine that
has been trained on the physicochemical properties of amino acids
and sequences of peptides which affinities were determined by bind-
ing essays. When validating the prediction results of TAPPred to
experimentally defined binding affinities, a correlation coefficient of
0.88 could be reached [15]. Unfortunately, TAPPred provides no stan-
dalone version, only a web interface which does not lend itself to
integration into other pipelines.

A method that can easier be adapted into other frameworks has
been published by Peters et al. [140]. They have assembled a 20× 9
consensus matrix for nonamer epitopes, giving for every peptide po-
sition and amino acid the positional log (IC50) value. The consensus
matrix is compiled from three input matrices, two being created for
peptide libraries of defined amino acid compositions, one is created
with the stabilised matrix method (SMM) which minimises the dis-
tance of predicted and experimentally determined IC50 scores. This
method yields the best results, when only taking the C-terminal posi-
tion and the three N-terminal positions into account while also con-
sidering N-terminal elongated peptides. With these adaptions, the
matrix method can reach a correlation coefficient of 0.79 when com-
paring experimental to predicted values. [140]

15.1.2.3 MHC affinity

Of all parts of the epitope processing pathway, predicting binding
affinity to the MHC complex is the most commonly attempted. Hence,
there are many different approaches available, for varying organisms
and both MHC classes. The most cited web service with integrated
database of more than 7000 MHC class I and II epitopes is SYFPEITHIThe name

SYFPEITHI
acknowledges the
first MHC-eluted
peptide that was

directly sequenced
by Falk et al. [51] in

1991

[150]. The underlying data is compiled exclusively from published
experimental data and used to derive binding motifs. Predictions are
made by scoring the giving sequence based on how often the residues
are found at the same position in the database entries.

Most published MHC affinity prediction tools function in a simi-
lar way, they derive position-specific rules combined with amino acid
properties and define a scoring function which can be applied to new
input sequences (e.g. BIMAS [134]). One of the most widely used
tools implementing this approach is netMHC [128, 117, 118]. It uses
an artificial neural network that has been trained on 78 human (HLA)
alleles representing all 12 HLA-A and B supertypes. Of all published
methods so far, netMHC uses the most comprehensive training set,
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as it combines the SYFPEITHI database with additional sources. Ad-
ditionally to its web service, netMHC is available as stand alone soft-
ware that can be used in other pipelines.

15.2 t cell therapy

As described in the previous section, T cells are able to recognise
invading pathogens. But research shows that they are also capable of
identifying cancer cells which present tumour-specific antigens. This
functionality has been used in the development of immunotherapies
which use T cells to specifically target cancer cells.

The most straightforward approach to immunotherapy is the use
of the host’s own T cells which have already shown to be tumour-
infiltrating lymphocytes. Another method is the genetical engineer-
ing of tumour-specific T cells. The T cells are in both cases expanded
ex vivo and then re-introduced into the patient, a treatment that is
called adoptive immunotherapy. In order to be effective, these ther-
apies are usually accompanied by lymphodepletion, to prevent the Lymphodepletion

describes the
temporary depletion
of the
immunesystem,
usually achieved
through
chemotherapy or
total body
irradiation

tumour from mounting excessive anti-immune defences.
The most critical step in designing an effective immunotherapy is

the choice of TCR and thus the recognised target antigen. The tar-
geted epitope should be available in a large enough fraction of tu-
mour cells in order to sufficiently decrease the mass of the lesions,
but on the other hand needs to be highly specific to the tumour, so
that no healthy tissue is targeted. In order to fulfil both limitations,
most immunotherapies so far tested target antigens that belong to
one of five classes: The first group are antigens derived from proteins
which play a role in tissue-differentiation. After their transformation,
most cells continue to express antigens which are specific for the tis-
sue they originated from. If this tissue of origin is non-essential, the
specific antigens are ideal targets for immunotherapy.
Another group are neo-antigens that are derived from proteins which
have obtained non-synonymous mutations in cancer cells and thus
provide new epitopes. Due to their mutation, these antigens are not
found in healthy cells, not even in the same tissue as the tumour site
of origin.
The third group of antigens which can be targeted with immunother-
apy are viral antigens. While these epitopes are only found in in-
fected cells and hence make the therapy highly specific, they also
limit treatment to cancer histologies associated with virus infections
like Epstein-Barr or human papillomavirus.
The fourth group of promising antigens are peptides derived from the
tumour micro-environment instead of the tumour itself. It has been
shown so far that a successful tumour formation also depends on a
tumour supporting cell environment where vasculature and stroma
have to aid the neoplasm formation. Thus, it has been proposed that
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targeting these cells might be as effective in tumour elimination as
attacking tumour cells directly [104].
The last group of target antigens for immunotherapy arise from epi-
genetic changes. Some tumours start expression of cancer germline
antigens, also known as cancer-testis antigens, through epigenetic
modifications. Theses genes are normally exclusively expressed in
testes and fetal ovaries but are also present in many different tumour
histologies. They pose one of the most promising therapeutic targets,
as their original cells do not express MHC complexes, thus would
be highly cancer specific. They have even been found in multiple dif-
ferent cancer types so that one therapy could be applied to many
patients. [154]

There are different ways in which T cells can be genetically engi-
neered to target a specific antigen of choice. One method is to iso-
late high-affinity TCRs from a patient who had a very effective anti-
tumour response. The corresponding genes are cloned into a viral
vector like a lenti- or retrovirus. These vectors can be used to infect
patients autologous T cells, given that they share the same HLA re-
striction elements with the patient the TCRs originated from [86]. In-
stead of using other human patients as a source for TCRs, mice can
also be used. So called humanised mice, meaning that the mouse is
able to express human MHC class I and II molecules, are immunised
with the tumour antigen of interest. Mouse T cells recognising said
antigen are then extracted and analogous to the above mentioned
method introduced into the patient via a viral vector [135]. Another
approach to genetically engineer T cells, is via chimeric antigen re-
ceptors. Here, the variable regions from antibodies are engineered to
encode a single chain which is fused to a TCR intracellular domain.
Through viral vectors the chimeric antigen receptor is introduced into
the patients T cells. Because the receptors have antibody-like specifici-
ties they are able to recognise MHC-nonrestricted peptides [161]. A
visualisation of the discussed strategies for T cell genetic engineering
can be seen in figure 26.

15.2.1 Off-target effects

Two different side-effects can cause unwanted reactions in patients
treated with engineered T cells. On the one hand, on-target effects
can occur, meaning that although the intended target is specifically
recognised by the TCR, it occurs not only in tumour cells, but is also
expressed in other tissue. On the other hand, off-target effects can
lead to devastating side effects, when the transduced TCRs recog-
nise different antigens additional to their intended target. While on-
target effects can mostly be prevented by pre-screening of expression
databases, off-target effects are harder to foresee, as it is not trivial
how different other epitopes can be while still being detected.
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Figure 26: Three strategies to genetically engineer T cells.
a: T cells from patients with good anti-tumour responses are
cloned and brought into autologous T cells via viral vectors. b:
Chimeric antigen receptors are generated by engrafting the vari-
able region of an antibody onto the TCR intracellular domain,
so they can recognise MHC-nonrestricted structures. c: TCRs are
isolated from mice expressing human MHC molecules and have
been immunised with tumour antigens. Specific T cells are ex-
tracted and cloned into a viral vector to infect autologous T cells.
Taken from Restifo et al. [154].

Most immunotherapy studies that have gone into trial so far, have
been administered to patients suffering from melanoma. It is not
clear, why this type of cancer has shown the best response to nat-
ural tumour infiltrating T cells, but it has been proposed that the ex-
tremely high mutation rate of melanoma compared to other tumour
histologies plays a role [194]. Some of these studies could report very
good response rates und multiple patients who cleared their tumours,
e.g. in one trial targeting cancer-testis antigen NY-ESO1 seven out of
eleven patients showed a response, while no toxicities were reported
[155]. However, multiple immunotherapy trials have resulted in mi-
nor or devastating side-effects. A study targeting the differentiation
antigens MART-1 and gp100 lead to severe but treatable inflamma-
tion of skin, eyes and ears, even leading to hearing loss [86].
Two recent studies highlight that not only the expression of the direct
target has to be examined across all vital tissues, but also approxi-
mate sequences have to be considered. In one study, Morgan et al.
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[125] reported cross-recognition of a cancer-testis antigen MAGE-A3

TCR with a MAGE-A12 epitope that was later found to be expressed
in a subset of neurons in the human brain. The MAGE-A12 epitope
had one mismatch when compared to the initial target of the study,
but was apparently recognised by the TCR and the treatment lead
to changes in the mental status of the patients and two fell into
a coma and subsequently died [125]. In another trial, Linette et al.
[114] used a different MAGE-A3-specific TCR that was found to show
cross-recognition of an epitope present in titin, a protein expressed in
the heart. Although the titin-associated epitope had four mismatches
compared with the original MAGE-A3 epitope, it was recognised by
the TCR. Both patients participating in the trial suffered cardiac arrest
[114].

15.3 motivation

Adoptive T cell therapies based on introduction of new T cell recep-
tors (TCRs) into patient recipient T cells is a promising new treatment
for various kinds of cancers. A major challenge, however, remains the
choice of target antigens. If an engineered TCR can cross-react with
antigens in healthy tissue, the side-effects can be devastating. Hence,
we wanted to present the immunotherapy-community with an in sil-
ico tool for screening multiple healthy tissues for expression of their
target antigens of choice in order to exclude epitope sharing before
starting in vitro tests. In light of recent studies, highlighting the pos-
sibilities of TCRs recognising epitopes distinguished by multiple mis-
matches from the initial target, we wanted to search protein databases
not only for exact matches, but also approximate ones.

Instead of just providing researchers with all string matches to their
lead target, we wanted to integrate the biological processes involved
in epitope processing. All results should be sorted by a score, which
reflects the probability that the epitope is created by proteasomal
cleavage and its affinities to the TAP transporter and the MHC class
I alleles.

The single steps of these assessments have been available before,
but distributed over various web servers and research groups. We
wanted to integrate all searches, expression analysis and epitope scor-
ing in a single framework in order to make it easily accessible and
navigable for immunotherapy studies. With this framework we hope
to provide a helpful tool to exclude potential cross-reactivity in the
early stage of TCR selection for use in design of adoptive T cell im-
munotherapy.



16
M E T H O D S

16.1 rna-seq database

16.1.1 Illumina Human Body Map

As it is of utmost importance to provide the user with expression
data of as many healthy human tissues as possible, we searched for
a publicly available set of RNA-Seq data for multiple organ sites. Im-
portant factors in this search were the unrestricted distribution of the
datasets in order to enable us to integrate the data in a web server and
the fact that the origin of the samples was tissue as opposed to cell
lines, as the latter can behave differently in their expression patterns
due to the immortalisation they underwent.

While considering all of the above mentioned factors, we found the
Illumina Human Body Map 2.0 to be the most fitting set for our pur-
pose. It contains RNA-Seq data for 16 different normal tissues from
unrelated patients. All samples have been sequenced on an Illumina
HiSeq 2000 machine, which produces 50 bp long paired-end and 75

bp long single-end reads. While the raw data can be accessed easily
via the Gene Expression Omnibus (GEO) [46, 9] identifier GSE30611

or the ArrayExpress [101] ID E-MTAB-513, we decided to use the al-
ready mapped data provided by Ensembl [53, 38]. They obtained the
resulting fastq files directly from Illumina and used BWA 0.5.9 [108]
to align the reads against human genome assembly hg19. All created
bam files can be accessed via the Illumina Human Body Map section
of the Ensembl ftp server.

16.1.2 Encyclopedia of DNA Elements

Although the intended purpose of our Expitope web server is to pro-
vide expression values of potential off-targets in healthy tissue, we
decided to integrate a small number of cancer samples. This enables
the user to immediately validate by eye that their original target is
expressed in malignant cells. We decided to use RNA-Seq data from
the Encyclopedia of DNA Elements (ENCODE) [49] Consortium for
this purpose. Although these data sets originate from cell lines, we
are confident that they nevertheless serve as sufficient positive con-
trols. In fact, they might even obviate that expression values from
tissue could reflect the transcript levels in the individual cancer. Ad-
ditionally to cancer cell lines from liver, brain and colon tumours, we
also obtained the RNA-Seq data of normal skin and lung cell lines
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30611
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/


116 methods

from the ENCODE collection. The former was integrated as one of
the targets with which our server was initially tested was known to
be only expressed in cancer tissue and skin cells. The second serves
as a control to check for expression differences that are founded in
the lab of origin as opposed to the underlying diseases state. When
the lung cell line from ENCODE would not be in agreement with the
tissue values from the Illumina lung sample, we would know to look
for more fitting sequencing data.
As many different laboratories contribute to the ENCODE project, not
all of our samples originate from the same group. To keep the varia-
tion to a minimum, we took all RNA-Seq data from the Cold Spring
Harbor Laboratory (CSHL) except the colon cancer cell line (HCT-116)
which does belong to tier 3, meaning it is classified as a less impor-
tant cell line and is only provided by one lab, the California Institute
of Technology (Caltech). All bam files produced by CSHL contain 76

bp long paired-end reads produced on an Illumina GAIIx machine.
Due to the used library preparation protocol the strand of origin for
every read is known. For all sets Poly-A+ RNA extracted from the
whole cell was chosen for analysis. All resulting reads were mapped
to the hg19 reference with the mapping program Spliced Transcript
Alignment and Reconstruction (STAR) [40].

The sample produced by Caltech also used poly-A+ extracted RNA
from the whole cell and sequenced it on an Illumina Genome Ana-
lyzer GAI or GAIIx. The resulting 75 bp long paired-end reads were
mapped against hg19 using TopHat (version 1.0.14) [188]. Contrary
to the CSHL data set, Caltech’s reads are not strand oriented.

All bam files integrated into our database were obtained from the
ENCODE section of the University of California, Santa Cruz (UCSC)
download portal [158]. In concordance with ENCODE’s data quality
guide lines, all RNA-Seq sets have at least two replicates.

Table 18 summarises the information about the chosen datasets.

GEO id Tissue Karyotype # Reps Origin

GSM758575 liver
(HepG2)

cancer 2 CSHL ENCODE
RNA-Seq

GSM981253 brain
(SK-N-SH)

cancer 2 CSHL ENCODE
RNA-Seq

GSM958749 colon
(HCT-116)

cancer 2 Caltech
ENCODE
RNA-Seq

GSM981249 lung
(IMR90)

normal 2 CSHL ENCODE
RNA-Seq

GSM758562 skin (BJ) normal 2 CSHL ENCODE
RNA-Seq

Continued on next page
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Table 18 – continued from previous page

GEO id Tissue Karyotype # Reps Origin

GSM759490,
GSM759491

adipose normal 1 Illumina Human
Body Map 2.0

GSM759492,
GSM759493

adrenal normal 1 Illumina Human
Body Map 2.0

GSM759520,
GSM759522

blood normal 1 Illumina Human
Body Map 2.0

GSM759494,
GSM759495

brain normal 1 Illumina Human
Body Map 2.0

GSM759496,
GSM759497

breast normal 1 Illumina Human
Body Map 2.0

GSM759498,
GSM759499

colon normal 1 Illumina Human
Body Map 2.0

GSM759500,
GSM759500

heart normal 1 Illumina Human
Body Map 2.0

GSM759502,
GSM759503

kidney normal 1 Illumina Human
Body Map 2.0

GSM759504,
GSM759505

liver normal 1 Illumina Human
Body Map 2.0

GSM759506,
GSM759507

lung normal 1 Illumina Human
Body Map 2.0

GSM759508,
GSM759509

lymph normal 1 Illumina Human
Body Map 2.0

GSM759510,
GSM759511

ovary normal 1 Illumina Human
Body Map 2.0

GSM759512,
GSM759513

prostate normal 1 Illumina Human
Body Map 2.0

GSM759514,
GSM759515

skeletal
muscle

normal 1 Illumina Human
Body Map 2.0

GSM759516,
GSM759517

testes normal 1 Illumina Human
Body Map 2.0

GSM759518,
GSM759519

thyroid normal 1 Illumina Human
Body Map 2.0

Table 18: Datasets which constitute Expitope’s expression database.
The first column shows were the RNA-Seq samples can be found in
the Gene Expression Omnibus, the fourth shows how many repli-
cates are available for the corresponding sample.
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16.1.3 Additional brain tissue

The most vital tissue in which cross reaction of TCRs has to be ex-
cluded is the brain. Thus, we wanted to provide a broader spectrum
of brain tissues than only the one included in the Illumina Human
Body Map data. To fulfil this purpose we found a publication by
Wang et al. [195] which analysed isoform regulation in the transcrip-
tomes of nine different human tissues, five cell lines, two RNA refer-
ence compilations and, most importantly for integration in Expitope,
six cerebellar cortex samples from unrelated anonymous donors. The
authors provide the RPKM [126] values of all examined genes (23,115

Ensembl gene identifier) in their supplementary data. We integrated
these very valuable data into our expression database.

16.1.4 Genome Annotation

We compared every alignment file obtained from either ENCODE or
Illumina Human Body Map against the annotated transcripts of the
latest human genome assembly (hg19). For this purpose we used the
GenCodeV19 [70] annotation, with the coordinates for all exons of
each transcript isoform. With the bamutils tool count of the ngsutils
suite (version 0.5.5) [23] we extracted the number of reads/fragments
per sample which map to every annotated exon. As raw read counts
are not easily comparable between the different samples due to dif-
ferent library sizes, we obtained the normalisation FPKM (Fragments
per kilobase of exon per million fragments mapped) which takes the
read count per transcript, transcript length and overall number of
mapped reads in the sample into account. We actively searched for
a tool that is capable to distinguish between single- and paired-end
library preparations, because programs which only calculate RPKMs
would lead to an artificial doubled read count of paired-end samples.
Although at this point our database only contains paired-end reads,
we want to keep it extensible for additional data.

We made sure to use the parameter -library unstranded during read
counting for the samples from the Illumina Human Body Map and
Caltech, as these used an unstranded library preparation (contrary
to CSHL) and the default setting of bamutils is a forward-reverse
strandedness.

The created MySQL database contains one entry (row) for every
GenCodeV19 transcript and a column for every analysed RNA-Seq
sample. The cells contain the FPKM value for the given transcript in
the corresponding experiment. For a visualisation of how Expitope’s
expression database was created, compare figure 27.
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Figure 27: Schematic, showing the construction of Expitope’s expression
database.

16.2 epitope lookup

Our implementation of the epitope finding in all human proteins is
designed in a way that only requires the users target epitope (String
of amino acids in one letter code) and a number of allowed mis-
matches (integer value). We require the peptide to be at least seven
amino acids long as to avoid a large amount of matches with known
protein sequences by chance. The given number of mismatches has
to be smaller than half the size of the provided epitope for the same
reason.

We then search for occurrences of the given epitope in all available
proteins contained in the NCBI protein database [147], including all
annotated isoforms. All matches with zero up to the defined num-
ber of mismatches are reported and the corresponding protein ID is
stored.

All obtained protein identifiers from entries of interest are mapped
to Ensembl transcript identifiers via a lookup file downloaded from
UCSC table browser [93] by joining three tables. In this step the same
transcript ID can be reported for different protein IDs or a protein
ID can result in multiple transcript IDs. The first case is caused by
an ambiguous attribution of identifiers, the second is due to multiple
transcript isoforms being associated with the same protein entry.

The set of transcript IDs is used to query the previously set up
database for the expression values in all tissues. These results are pre-
sented to the user in a tab separated file which additionally contains
the exact epitope found in a certain protein and its position relative
to the complete amino acid sequence length.

The output file additionally lists proteins which contain the pro-
vided epitope but could not be matched to a transcript identifier.
These are usually automatically determined proteins (recognisable
through their XP_ identifier start instead of NP_) which real existence
is not proven yet.

16.3 scoring scheme

Not all of the found peptides which are similar to the initial epitope
will really be recognised by a T cell. The three important steps that
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will lead from full-length protein to a presented epitope are: Proteaso-
mal cleavage, TAP transport in the endoplasmic reticulum and bind-
ing to the MHC class I proteins.

In order to sort all peptides which match the queried input with at
most the given number of mismatches, we applied a scoring function
proposed by Keşmir et al. [94]. It defines a combined score Q as

Q =
P

ATAP ×AMHC

where P is the probability that the given peptide is cleaved from the
protein and the A-terms are affinities to the complexes in subscript.

If a queried peptide could not be used for MHC affinity predic-
tion due to reasons of length, the MHC affinity is set to one, so that
the combined score is only defined by TAP affinity and proteasomal
cleavage probability.

16.3.1 Proteasomal cleavage prediction

To calculate the first of the three terms that define the combined score
Q, we used the program NetChop 3.1 [94, 129] to define the probabil-
ity of the given epitope being created by proteasomal cleavage. For
this purpose we ran the program on all current RefSeq protein en-
tries and obtained a cleavage probability for every position. These
values were stored in an additional database table to avoid execut-
ing NetChop for every web server query. We are using the prediction
method C-term 3.0 which is a neural network trained on a database
containing 1,260 publicly available MHC class I ligands. It performs
best when predicting the boundaries of cytotoxic T cell (CTL) epi-
topes.

When calculating the cleavage probability for the current epitope,
we followed the original paper [94] and used the formula

P = Pc × Pcon

wherein Pc is the probability that the peptide is cleaved exactly at
the C-terminus and Pcon represents the probability of the rest of the
peptide staying intact:

Pcon =
∏
Oi>t

(1−Oi)

where Oi represents the output of the network for position i of the
peptide. The parameter t is replaced with 0.7 in the publication, thus
we use this value as default in our web server, but the user can replace
it with their own threshold. When substituting t for 1, only the C-
terminal probability defines the cleavage score.

Due to the overall cleavage probability being a product, it becomes
very small very quickly, especially for longer input sequences. Hence,
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it is advisable to only rely on this score for peptides in the range
of seven to eleven amino acids, as that is the epitope size for which
NetChop has been most extensively tested, although the calculation
itself does not limit the input to a certain length.

16.3.2 TAP affinity prediction

The IC50 value
gives the dose of the
peptide which
displaces 50% of a
competitive ligand

The second term that weighs into the calculation of the combined
score Q is the affinity of the peptide to TAP. Peters et al. [140] have
established a 9× 20 matrix that contains for each amino acid at every
possible epitope position (of length nine) a log(IC50) value which can
be summed up to obtain an IC50 (dose of peptide which displaces
50% of a competitive ligand) for the complete peptide. When testing
the divergence between predicted and experimentally tested IC50 val-
ues, the authors concluded that the following formula returned the
results with the best concordance:

tL,α = mat9,C +
α

L− 8

L∑
l=9

mat1,N1 +mat2,N2 +mat3,N3

Thus only the C-terminal residue and the first three N-terminal
residues are used for the affinity calculation. The parameter L repre-
sents the length of a potential precursor peptide, as it is hypothesised
that the peptide which is transported by TAP is in fact not the final
nonamer but a longer peptide with an elongated N terminus. Hence
the formula has a fixed term for the C-terminus but sums over differ-
ent precursor N-termini which can be weighted depending on their
importance to the final score. Peters et al. [140] conclude that their
experimentally determined best values for L is 10 and 0.2 for α.

As we do not expect the user to only subject nonamers to our web-
server, we have not implemented the regard for precursors and thus
do not require the parameter L. We do, however, allow for a weight
α of the N-terminus which can be changed by the user. Thus, the
formula used in the web server is:

tα = mat9,C +α · (mat1,N1 +mat2,N2 +mat3,N3)

In line with the original publication the default value for α is 0.2. If
only the C-terminus should be considered for the affinity prediction,
α can be set to zero.

Although it is technically possible to score peptides of all length
> 4 with this approach, it has to be kept in mind that the matrices
are constructed on the basis of nonamer epitopes and have also only
been extensively tested one those or with slightly longer precursors.
When analysing longer peptides the returned values might not reflect
the real affinity to TAP and it could be beneficial to exclude the N-
terminus in those cases.
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16.3.3 MHC binding prediction

The last term which goes into the combined score Q is the affinity of
the epitopes to the major histocompatibility complex. For the predic-
tion of this feature, we integrated the tool NetMHC 3.0 [128, 117, 118]
into our web server which can make affinity predictions for a large
range of HLA-alleles. The tool offers artificial neural networks trained
on 55 different MHC alleles (43 human, 6 mouse, 5 rhesus macaque
and 1 chimpanzee) and returns the affinity of a given peptide to the
specified alleles in nM IC50 values. Due to the size limitations im-
plemented in NetMHC, only peptides of a length between 8 and 14

amino acids can be used for affinity prediction. The authors want it
to be noted that predictions of peptides longer than eleven positions
have not been extensively validated and caution should be taken for
octamer predictions, as some alleles might not bind them to any sig-
nificant extend.

The user can submit a selection of multiple HLA types for affinity
prediction, between one and all; the default allele is A-0201 as it is
the most common MHC class I allele in Caucasian populations [24].
We report the exact IC50 values predicted by NetMHC back to the
user for every MHC type that was selected in the query, but only the
best (lowest) is used in the calculation of Q. The authors of NetMHC
define all peptides with an affinity value below 50 nM as strong and
all epitopes with a value below 500 nM as weak binders.By definition from

NetMHC, all
peptides with

affinity value < 50
nM are strong

binder, < 500 nM
weak binder

16.4 web server implementation

In order to provide the general public access to all of Expitope’s func-
tionalities, we integrated the above mentioned steps into a web site. It
is hosted on the server of the institute for genome-oriented bioinfor-
matics of the Technical University Munich and can be found under

http://webclu.bio.wzw.tum.de/expitope

The sorted list of output proteins as well as the corresponding expres-
sion values can either be viewed directly in the browser or can be
downloaded as a tabular file for further downstream analysis.

All steps implemented in the web site can be seen in figure 28.

16.5 differential expression

Our Webserver is currently used to examine certain epitopes of in-
terest in order to ensure that they are only expressed in cancerous
tissue or at least only in non vital ones. These potential antigens stem
from known cancer markers and are afterwards analysed in vitro to
prevent cross reactions.

http://webclu.bio.wzw.tum.de/expitope
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Figure 28: Workflow of Expitope’s functionality that is implemented in our
web server.

To take the bottom-up approach, we decided to perform an un-
usual differential expression analysis on our database. Instead of per-
forming pairwise comparisons between the tissues, we executed three
analysis, each comparing one of the three cancerous cell types against
all other healthy entries. With this approach, we will find all tran-
scripts which are significantly differently expressed between one can-
cer type and healthy tissue and can further filter those results to iden-
tify transcripts which are not expressed at all in healthy cell types.

For this undertaking we utilised the R bioconductor [149, 57] pack-
age DESeq [3] in an analysis design as described in section 12.3.1 of
this thesis.

To get an initial overview of all samples, we also normalised all
datasets by size and adjusted for biological variance using the repli-
cates. We again performed a PCA and calculated Euclidean distances
to get an impression of the diversity of expression values.

After analysing the data as a whole, we compared every three can-
cer cell types against all combined healthy samples. For every anno-
tated transcript we tested if its expression was significantly different
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between the two compared conditions. Therefore, we compared the
coverage values of the conditions normalised by the library sizes and
calculated the resulting fold change. We used a negative binomial test
to find significant differences in the expressions. The initial p-Values
are adjusted for multiple testing using the Benjamini-Hochberg [13]
procedure to control the false discovery rate (FDR). This multiple test-
ing correction is necessary because for every single transcript the hy-
pothesis of being differentially expressed is tested and thus we expect
to see many false positives through chance when testing thousands
of genes.

To filter the list of all features for the significantly expressed genes,
we applied a filtering for the logarithmic fold change and the adjusted
p-Value. The former had to be at least two and the latter should be
smaller than 0.001 (FDR of 0.1%).



17
R E S U LT S

17.1 expitope’s web site is frequently visited

The web site implemented to host all functionalities of Expitope has
been set up with input fields for all mandatory and optional parame-
ters that can or must be given by the user. Where applicable, they are
initialised with the published optimal values. For testing purposes,
we provide a well known example input from MAGE-A3 that was
used in a study where off-target recognition caused death of patients
[125]. Additional to the query site that starts a database request, we
provide tabs containing a help page explaining all methods given in
chapter 16, references, contact details and a disclaimer informing the
user that Expitope’s predictions are based on computational methods
and should not build the basis for treatment without further experi-
mental validation. A screenshot of the home page of Expitope can be
seen in figure 29.

Figure 29: Screenshot of Expitope’s homepage.

125
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The output is provided as a tab-separated text file for download
and as a neatly formatted html table for data inspection by eye. It
is sorted by ascending number of mismatches and descending com-
bined score Q.

The columns denote the RefSeq protein identifier to which the
matching peptide belongs and the exact sequence that matched the in-
put parameters. The column titled index gives the starting position of
the epitope in the full length RefSeq entry. The following columns de-
note number of mismatches which separate the current match from
the input sequence and the three scores corresponding to cleavage
probability, TAP affinity and MHC affinity as well as the resulting
combined score. For a view of the result page of our example MAGE-
A3 input compare figure 30.

Figure 30: Screenshot of Expitope’s output page defining the found targets.
Shown is the output for the implemented example input
KVAELVHFL from a study by Morgan et al. [125]. It can be seen that
while all peptides from the MAGE family do not have a good
cleavage score, they have very low IC50 values in the TAP and
MHC prediction, i.e. high affinities to both complexes.

The second part of the results table contains information regarding
the transcripts and their expression. Expitope first lists the ENSEMBL
transcript identifier corresponding to the protein, its official name, fol-
lowed by the RPKM values in all analysed tissues and cell lines (in
alphabetical order). For this part of the output table see figure 31. The
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two integrated samples of healthy lung (Illumina Human Body Map
lung and IMR90 from ENCODE) did not yield any conflicting results
so far. While their expression values are not identical, they show the
same trends for all transcripts we analysed until today. Thus it ap-
pears that our underlying expression value database is quite robust.

The results based on data from Wang et al. [195] are presented in
an extra table, following the same format as described above. When
comparing these data to our self-compiled database, it has to be kept
in mind, that the assignment of RPKMs to proteins (as it is done by
Wang et al. [195]) is slightly less exact than our own output, as only
one value per gene instead of per transcript is returned. This results
do not cover potential differences between multiple variants of the
same gene.

Additionally, Expitope lists proteins, which contain the provided
epitope but could not be matched to a transcript identifier. We felt
the need to include them in order to provide the user with as much
information as possible about potential cross-reactions.

To be able to adapt and improve Expitope based on the needs and
wishes of its users, we need to know the amount of visits the page
has to work with and the demographic of the site’s visitors. For this
purpose, we imbedded google analytics [65] web tracking snippet in
Expitope’s source code. With this implementation we obtain access to
general statistics like site visits, mean length of stay and bounce rate
(fraction of visitors not reaching the output page) as well as the in-
formation about the institutes where users are located. To Expitope’s
frequent visitors belong multiple international high ranking universi-
ties as well as immunotherapy companies. As of 12th of March 2015, In only six weeks

after publication,
Expitope had already
accumulated 1,595
page visits

five weeks after online publication of Expitope’s paper in Bioinfor-
matics [68], the web site had already registered 1,595 page visits with
a mean length of stay slightly under five minutes.

17.2 previous studies with detrimental side effects can

be understood with expitope

To test the capability of Expitope, we investigated two previous TCR
gene therapies in which unanticipated cross-recognition of healthy
tissues led to patient deaths (for details see section 15.2.1). The first
study, conducted by Morgan et al. [125], is integrated into the Expi-
tope web server as example input. It works with the nonamer peptide
KVAELVHFL from known cancer-testis antigen MAGE-A3 and one al-
lowed mismatch. All other parameters are set to their default values.
Additionally to the intended MAGE-A3 target, MAGE-A9B is iden-
tified to contain the peptide, but these two MAGE family members
were known to share the epitope. The reason for the fatal cases in
the study, MAGEA-12, is also returned by Expitope and although it
diverges in one position from the initial peptide (KMAELVHFL), it has
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Figure 31: Screenshots of Expitope’s output page listing the expression val-
ues.
All members of the MAGE family are not or barely (FPKM < 1)
expressed in all healthy tissues but MAGE-A3 shows strong ex-
pression in colon and brain cancer cell lines (HCT-116 and SK-N-
SH, respectively) and moderate expression in testes.
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a much better combined score due to its proteasomal cleavage prob-
ability being greater (p = 0.1520 vs. p = 0.0569) and the affinity to
MHC allele A0201 being higher (IC50 of 4 vs. 30). While MAGE-A3

and MAGE-A9B are only noteworthy expressed (FPKM > 0.1) in the
colon cancer and brain cancer cell line as well as in testes, all three
variants of MAGE-A12 show additional expression in brain tissue,
albeit very low, between 0.19 and 0.21 FPKM.

We also used the study of Linette et al. [114] in which they worked
on another epitope from MAGE-A3 (EVDPIGHLY). We used the target
they had engineered in their study as input peptide and allowed for
up to four mismatches. The HLA allele was set to A0101, as the corre-
sponding MAGE-A3 epitope is HLA-A1 restricted, all other variable
input parameters were left set to their default values.

Titin, the reason for the detrimental side effects in the cited study,
was found as a candidate for off-target effects by Expitope. Although
the sequence has four mismatches to the initial MAGE-A3 input,
the predicted affinity to MHC allele A0101 was even higher for the
Titin antigen (IC50 of 43 vs. 38 for MAGE-A3 and Titin, respectively).
Based on Expitope’s reported expression values, the cardiac arrest
two of the patients in Linette et al. [114]’s study suffered, can be un-
derstood. In line with the follow-up analysis in the original publica-
tion, Titin has a very high expression in the heart tissue from Illumina
Human Body Map (FPKM between 97 and 122 depending on the iso-
form, compare figure 32).

17.3 bottom-up search for potential candidates does

not reveal trivial targets

In an attempt to analyse, if our database set up lends itself to do a
bottom-up analysis, meaning instead of validating a candidate epi-
tope, identifying target peptides that are not expressed in healthy
tissue, we did a differential expression analysis on our RNA-Seq data
from the Illumina Human Body Map and ENCODE.

To be able to compare the very diverse data sets, we normalised
the read count data by library size and inherent biological variance
between all samples of the same condition. We performed a princi-
pal component analysis on these transformed values to get a first Principal

components are the
eigenvectors from
the covariance
matrix of the data

overview, how the data sets relate to each other (compare figure 33).
None of the first two components differentiates between cancerous
and healthy tissue, the first component instead very distinctively sep-
arates the two laboratories which produced the data. All data points
on the left hand side of the plot represent Illumina Human Body Map
samples, the right hand side is occupied by ENCODE data sets, can-
cerous as well as healthy.

The calculation of the Euclidean distances between the transformed
expression vectors underlined the previous finding that the two main
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(a) Affinities, MAGE

(b) Affinities, Titin

(c) Expression, MAGE

(d) Expression, Titin

Figure 32: Screenshots of Expitope showing expression of Titin.
We used the peptide from the study of Linette et al. [114]
(EVDPIGHLY) as input and allowed for up to four mismatches. The
HLA allele was set to A0101, all other variable input parameters
were left set to their default value. Notable is the higher affinity
of the Titin peptide to HLA-A0101 than that of the original input
from MAGE-A3 and the very high expression of Titin in heart
tissue (colour coded in subfigures c and d)
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Figure 33: Principal component analysis of the transformed and normalised
transcript expression values in all RNA-Seq data from our
database.
The first component accounts for 30.63% of the variance, the sec-
ond component for 11.78%.
Circles represent normal cell lines, squares depict cancer data sets;
filled symbols show data from the Illumina Human Body Map 2.0
series, bordered ones represent ENCODE samples.

clusters visible in the database are not healthy vs. cancerous cell lines
but instead depending on the laboratory of origin of the data sets.
Within the Illumina Human Body Map data it is striking that the
tissues testes, brain, skeletal muscles, liver and blood show greater
distances to all other tissues and are thus not part of the lowest level
cluster. In the ENCODE cluster, the three cell types which show the
greatest similarity are skin fibroblasts, healthy lung and brain cancer
(BJ, IMR90 and SK-N-SH, respectively). Thus not even within the EN-
CODE super cluster do tumour and healthy cell lines form their own
sub cluster (compare figure 34). All transcripts with

a logarithmic fold
change > 2 and an
adjusted p-value
< 0.001 were
classified as
significantly
differentially
expressed

After executing three differential expression analysis between each
of the three tumour cell lines and all combined healthy tissues, we fil-
tered the output for transcripts that showed a logarithmic fold change
greater than two and an adjusted p-value smaller 0.001 which repre-
sents a false discovery rate of 0.1%. The remaining transcript were
classified as significantly differentially expressed. We visualised these
lists in a heatmap to see how many genes pass the filtering process
and what their expression values are in the respective samples. It is
striking that all transcripts which pass the filtering are over expressed
in the cancer replicates and show lower expression in the healthy
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Figure 34: Heatmap showing the Euclidean distance between the trans-
formed expression values in the database samples.
The three cancer cell lines (SK-N-SH, HepG2 and HCT-116) do
not show the greatest similarity towards each other, but are clus-
tered in an ENCODE cluster together with normal lung (IMR90)
and skin (BJ) cell lines.

samples. It can be seen that the amount of significant differentially
expressed transcripts is lower for brain and colon cancer, but much
higher for the liver cancer (198, 190 and 781, respectively). Further-
more, the healthy tissue which shows the least distance to the cancer-
ous replicates is testes in the comparison with brain and colon cancer,
but the healthy liver in the liver cancer analysis (compare figure 35).
This could mean that the reason for the large number of identified
differentially expressed transcripts in the liver analysis is that tissue
specific genes are found. The identified transcripts in the other two
analyses seem to be cancer testis antigens, given that the most closely
related tissue with regard to their expression are testes.
In order to identify transcripts which are not only significantly dif-
ferentially expressed but also non-essential for most healthy tissues,
we further filtered the list for entries that showed a mean normalised
expression in all normal samples of below 0.3. We found 8, 8 and
20 transcripts in the analysis for brain, colon and liver cancer, respec-
tively. Most of these identified transcripts turned out to be non-coding
RNAs, most of them long non-coding RNAs (lncRNAs) and micro
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(a) brain cancer
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(b) colon cancer
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(c) liver cancer

Figure 35: Heatmap of the transformed expression values of all transcripts
which pass the filtering for adjusted p-Values (< 0.001) and loga-
rithmic fold change (> 2).

RNAs (miRNAs), some small nucleolar RNAs (snoRNAs) and small
nuclear RNAs (snRNAs), one transcript belongs to a ribosomal RNA
(rRNA) and one is classified as sense intronic transcript. However, Most transcripts

significantly
over-expressed in
cancer are
non-coding RNAs

one transcript in each brain and colon as well as three transcripts in
liver cancer list are protein coding. The protein coding transcript from
the colon sample stems from the same gene as one of the transcripts
from liver, nasopharyngeal carcinoma down-regulated gene protein
(NPCDR1). However, this gene does not have a corresponding pro-
tein sequence deposited in RefSeq, because it is classified by Uniprot
[10] as only having experimental evidence at transcript level, thus the ex-
istence of the amino acid sequence has yet to be shown on protein
level.
The other two protein coding transcripts with an over expression
in liver cancer belong to the same gene, neuropeptide S receptor
(NPSR1), a protein that is involved in the pathogenesis of asthma
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[191]. The only protein coding transcript in the brain cancer analysis
is pyrin domain-containing protein 2 (PYDC2). NPSR1 and PYDC2

both have associated RefSeq protein entries, NP_997055.1 and
NP_001076777.1, respectively. We obtained the amino acid sequences
of both proteins, split them in overlapping nonamer peptides and
calculated for each peptide the probability of being created by protea-
somal cleavage as described in subsection 16.3.1. We sorted the results
descending based on probability and chose a cutoff at 50% to exclude
the least probable peptides. This left us with 3 and 12 higher scoring
potential epitopes for PYDC2 and NPSR1, respectively. We used all 15

peptides as input for Expitope to query their affinities to TAP and the
MHC alleles A0101 and A0201 because these are the most common.
Non of the tested nonamers reached a satisfying combined score. All
reported values for MHC affinity were four-digit numbers, thus far
to high to be classified as a binder.

These results show, that our Expitope framework can easily be used
for a bottom-up analysis of the contained data and even identify dif-
ferentially expressed proteins. Yet, in order to determine TCR targets,
more background knowledge has to be integrated to find targets that
are likely to be produced by the antigen presenting machinery but at
the same time do not have detrimental off- or on-target effects.
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C O N C L U S I O N

Our herein presented Expitope web server provides the opportunity
for the user to combine many functionalities that otherwise have to
be combined by hand from many different tools or web sites. Our
service offers an exact and approximate string search as well as the
scoring of the potential target for probabilities and affinities of the
epitope presentation pathway all in one place.

We are convinced that it is a helpful service to researchers in the im-
munotherapy community, as is shown by its rising numbers of page
visitors and a high number of returning users (34% as of March 12th,
2015). The different backgrounds of the visitors represents that the
functionality of Expitope is of interest to academic and industrial re-
searchers alike.

As shown exemplary with the published cases of Linette et al. [114]
and Morgan et al. [125], Expitope is a powerful tool when used as a
first instance in TCR selection to identify potential detrimental off-
target effects. As the number of allowed mismatches is essential in
these searches and Expitope’s results are based on multiple predic-
tion steps, all of the obtained results should be verified experimen-
tally before being used in a clinical or therapeutical setting.

Our bottom-up analysis revealed that the different steps of Expi-
tope’s workflow can also be utilised independently or in a differ-
ent order. While this approach seemed promising at first, the results
showed that the choice of TCR target is not trivial and requires addi-
tional knowledge other than epitope scoring and expression analysis.
Yet, we are confident that Expitope’s services can be of great help to
the community working on cancer immunotherapy, especially since
its in silico approach is automated, faster and cheaper when com-
pared to clinical laboratory testing.
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O U T L O O K

Due to the numerous page visits and high rate of returning users,
we are convinced that Expitope is useful to the research community
and we should constantly maintain and update its functionalities and
web interface. In the following we will describe our visions for future
updates and enhanced performance.

19.1 expression database

19.1.1 RNA-Seq expression

A comprehensive database of RNA-Seq data is essential to provide
maximum functionality of our web service. Thus, we invested much
time and effort in finding a dataset which has a multitude of healthy
human tissue as opposed to cell lines which have already undergone
substantial molecular changes in order to immortalise them. We re-
quire the samples to be treated as similar as possible, to provide com-
parable expression values. Additionally, availability was of major im-
portance, as most tissue samples originating from patients underlie
identity protecting licenses that would prohibit us from integrating
it into a freely usable web server. At the time of Expitope’s imple-
mentation the Illumina Human Body data fitted all these criteria best.
Yet, we are still watching out for other data sources we could use for
future updates.

A future improvement of Expitope’s expression database is of im-
portance, as our currently used GENCODE annotation (V19) is the
last one to be provided for human genome assembly 19. With the
publication of the latest version, hg38, all new updates of GENCODE
will be referencing hg38 and no new annotations for hg19 will be pro-
duced. Thus, it might be advisable to move to RNA-Seq datasets that
have been mapped to the latest assembly of the human genome so
we can apply the most up-to-date annotations.

In this regard we plan to utilise the next round of the ENCODE
project, as the recently started phase has already begun to sequence
tissue samples additionally to cell lines. Given ENCODE’s free avail-
ability, this is the ideal future data source for Expitope’s expression
values, especially when more different tissue types have been se-
quenced by the same contributing lab.

Updating our expression database is fast, as all needed scripts have
been prepared to make Expitope easily expandable in case of updates
or specific requests by the users.
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19.1.2 Protein abundance

In our current Expitope setup, we search for a given input peptide
and report all exact and approximate hits in the whole of the hu-
man reference proteins. To define the incidence of a target protein
in healthy tissue, we map it to its corresponding transcript and use
expression values to define presence or absence. This approach relies
heavily on the assumption, that transcript expression gives a direct
measure of the abundance of protein in a tissue. Multiple publica-
tions have investigated this correlation and come to the consensus
that transcript expression and protein abundance are not perfectly
correlated [193, 59].

Two recent studies presenting an unprecedented comprehensive
human proteome [201, 97] would give us a great data source for in-
tegrating proteomics data into Expitope. However, the question re-
mains, if we want to use it to replace the transcript expression. On
the one hand, proteomics is still not as sensitive as RNA-Seq and thus
not covering the complete variety of human proteins; Wilhelm et al.
[201] are estimating that they include about 84% with evidence on
transcript level in their version. Due to the technicalities of mass spec-
trometry, the measure by which the proteome maps were constructed,
different isoforms of the same proteins can only be differentiated if a
very specific region of the protein is measured, hence most proteins
are only defined for their standard variant.
One the other hand, if we report protein abundance additionally to
transcript expression, the conflicting results, due to the low correla-
tion, might alienate some users. This effect might even be amplified
by the fact that the two measurements stem from different biological
samples and thus contain inherent differences.

Ideally, we would like to integrate protein abundance data that has
a matching set of RNA-Seq samples from the same background. With
the current rise of multi-omics projects we hope that this data will
become available in the foreseeable future.

19.2 text mining

Another enhancement we hope to add to Expitope’s functionalities in
the future is text mining. We imagine to search relevant publications
for the mentioning of the identified potential cross-reacting peptides
and/or their corresponding proteins. This way, we can provide the
users with information over the immunological importance of the
other targets and evaluate, if they have already been used for thera-
pies.

One open question regarding this improvement is how we define
relevant papers. Most openly available text mining tools, like GoP-
ubMed [43], only index the abstracts of their publication libraries in
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order to save computing space and time. Before implementing it into
the Expitope server we would need to determine whether abstracts
are sufficient to find papers of interest or if we require full-text in-
dexing when we want to search for peptide sequences. Because the
full-text variant has intensive system requirements, we would need
to find a trade-off to reduce it. Possibilities would be to either only
report text mining results for the top n peptide hits from Expitope, or
to use only a very limited number of journals which texts are indexed.
For the latter approach, we could query Expitope’s users which sub-
set would be of interest to them and what journals belong to the most
important in the field of immunotherapy.
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Figure A1: Example coverage of mapped reads to GenBank reference strain.
The x-axis shows the length of the complete noroviral genome,
reads are mapped between position 5727 and 6486. The sequenc-
ing design, two primers located at both ends of the region repli-
cating inwards, can be recognised based on the coverage on the
y-axis.
The plot shows the mapping result of all reads from the 2012

sample ATAT against GenBank reference AY502023.1.
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(a) Patient 3, HERV9
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(b) Patient 4, HERV9
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(c) Patient 5, HERV9

Figure A2: Distribution of expressed HERV9 loci in patients 3 to 5.
The x-axis contains all HERV9 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
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(c) Patient 4, HERVW

Figure A3: Distribution of expressed HERVW loci in patients 2 to 4.
The x-axis contains all HERVW loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
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Figure A4: Distribution of expressed HML2 loci in patients 2 to 4.
The x-axis contains all HML2 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.



Appendix 175

3p
21

.3
1

4q
21

.1

5p
14

.1

5q
13

.2

6p
22

.2

11
p1

5.
4

12
q2

4.
12

14
q1

2

14
q2

4.
2

19
p1

2

19
q1

3.
41

19
q1

3.
41

20
p1

1.
21

20
p1

3

X
p1

1.
21

normal
tumour

P
er

ce
nt

ag
e

0.0

0.2

0.4

0.6

0.8

(a) Patient 2, HML6

3p
21

.3
1

4q
21

.1

5p
14

.1

5q
13

.2

6p
22

.2

11
p1

5.
4

12
q2

4.
12

14
q1

2

14
q2

4.
2

19
p1

2

19
q1

3.
41

19
q1

3.
41

20
p1

1.
21

20
p1

3

X
p1

1.
21

normal
tumour

P
er

ce
nt

ag
e

0.0

0.2

0.4

0.6

0.8

(b) Patient 3, HML6

3p
21

.3
1

4q
21

.1

5p
14

.1

5q
13

.2

6p
22

.2

11
p1

5.
4

12
q2

4.
12

14
q1

2

14
q2

4.
2

19
p1

2

19
q1

3.
41

19
q1

3.
41

20
p1

1.
21

20
p1

3

X
p1

1.
21

normal
tumour

P
er

ce
nt

ag
e

0.0

0.2

0.4

0.6

0.8

(c) Patient 5, HML6

Figure A5: Distribution of expressed HML6 loci in patients 2, 3 and 5.
The x-axis contains all HML6 loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
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Figure A6: Distribution of expressed HERVEa loci across chromosome
bands.
The x-axis contains all HERVEa loci that are expressed in at least
one sample, the y-axis shows which fraction of all reads mapped
to members of the family arise from a specific locus.
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a.2 supplementary tables

Patient Barcode
# Reads Discarded Reads

Trimmed

before after Ns
qual length

NTs
< 20 < 50 nt

ACAC 4621 4051 518 3 49 432828

AGAG 7076 6319 689 2 66 677515

ATAT 9442 8208 1134 3 97 875091

AGCT 10819 8580 2129 1 109 914399

ATGA 16847 14895 1938 1 13 1592113

1

TCAG 2129 1842 286 0 1 196846

CGCG 5712 4752 932 1 27 498922

CTCT 12841 10893 1822 0 126 1154664

CACA 10809 8881 1876 2 50 939822

2

CTAG 4611 4047 560 0 4 427076

CATG 9014 7803 1124 0 87 827431

TATA 6860 5608 1084 1 167 605529

TCTC 6871 5834 990 3 44 617747

3

TGTG 5496 4639 798 0 59 491979

(a) Run from 2012

Patient Barcode
# Reads Discarded Reads

Trimmed

before after Ns
qual length

NTs
< 20 < 50 nt

ACAC 7007 6377 621 0 9 652424

AGAG 5723 4956 759 0 8 503269

ATAT 5985 5234 739 0 12 529935

1

AGCT 5352 4719 628 0 5 476723

ATGA 7426 6891 529 0 6 699441

CGCG 1712 1509 202 0 1 1553332

CTCT 7328 6570 750 0 8 669802

CTAG 8667 7897 762 0 8 807890

3

CACA 4156 3715 439 0 2 380863

TATA 1569 1418 149 1 1 144655

4

CATG 1179 1007 169 0 3 102724

TCTC 18487 15561 2902 1 23 1592388

TCAG 8676 8038 623 1 14 8281655

TGTG 4147 3637 502 0 8 373612

(b) Run from 2013

Table A1: Number of discarded reads and trimmed nucleotides per anal-
ysed sample.
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Family
H1-hESC GM12878 HUVEC K562 B-cells

CD20+
SK-N-

SH
MCF-7 HeLa-S3 A549 HepG2 IMR90 Mono-

cytes
CD14+

† ∗ † ∗ † ∗ † ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗

BaEV-int 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERVL 25 29 14 44 16 28 37 45 21 22 9 10 18 26 20 13 18 12 20

HERV15 2 1 1 1 1 2 0 0 0 1 0 0 0 1 0 1 1 0 0

HERV16 9 11 6 18 4 6 9 11 4 4 0 2 3 5 3 5 6 1 8

HERV17 5 6 2 4 2 1 5 3 0 2 1 2 1 2 4 1 1 1 1

HERV3 3 2 1 3 3 5 2 3 1 2 0 1 1 1 0 5 3 0 2

HERV30 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

HERV30I 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1

HERV9 4 6 1 3 3 5 7 4 1 1 0 1 2 2 4 10 11 0 3

HERVE 4 5 4 6 1 0 5 3 1 0 0 1 0 0 2 4 5 1 2

HERVFH19 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

HERVFH21 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0

HERVH 683 661 5 11 8 3 31 14 7 7 5 8 290 15 14 5 5 4 3

HERVH48 1 1 1 0 0 0 1 2 0 0 1 1 1 1 1 1 1 0 2

HERVI 8 6 1 3 2 2 0 0 0 0 0 0 1 0 2 1 2 0 0

HERVK 28 7 0 3 0 1 2 1 3 1 1 1 0 2 1 1 3 1 2

HERVK11 2 4 2 4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

HERVK13 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

HERVK14 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0

HERVK14C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Continued on next page
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Table A5 – continued from previous page

Family
H1-hESC GM12878 HUVEC K562 B-cells

CD20+
SK-N-

SH
MCF-7 HeLa-S3 A549 HepG2 IMR90 Mono-

cytes
CD14+

† ∗ † ∗ † ∗ † ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗

HERVK22 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 3 0 0

HERVK22I 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1

HERVK3 4 3 2 0 2 2 1 2 2 3 1 2 1 0 0 8 9 2 4

HERVK9 3 4 2 5 4 4 5 3 3 7 2 2 0 0 2 3 5 1 3

HERVKC4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0

HERVL 8 20 5 19 11 14 11 19 5 7 6 7 5 14 7 4 14 6 7

HERVL18 0 0 2 2 3 4 1 1 1 2 1 1 0 2 2 5 6 1 1

HERVL32 0 0 1 2 1 2 1 2 2 0 1 2 0 2 1 1 2 1 2

HERVL40 1 1 0 1 1 1 2 3 3 0 1 0 1 0 0 0 0 1 1

HERVL47 1 1 1 1 1 2 1 2 1 1 0 0 0 0 0 1 0 1 1

HERVL66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

HERVL74 1 1 3 8 2 3 4 5 2 3 1 1 0 0 2 1 1 3 4

HERVP71AI 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

HERVS71 9 8 1 2 0 1 4 2 2 2 1 1 1 1 1 0 1 0 1

LTR10A 0 0 1 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

LTR10B 4 4 0 0 0 1 1 2 1 1 1 1 0 0 0 1 0 0 0

LTR10C 3 3 1 1 0 1 4 2 4 1 1 2 3 1 2 1 1 1 1

LTR10D 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1

LTR10E 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0

Continued on next page
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Table A5 – continued from previous page

Family
H1-hESC GM12878 HUVEC K562 B-cells

CD20+
SK-N-

SH
MCF-7 HeLa-S3 A549 HepG2 IMR90 Mono-

cytes
CD14+

† ∗ † ∗ † ∗ † ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗

LTR11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

LTR12 18 33 8 15 6 20 40 24 27 14 7 4 7 7 8 29 28 5 20

LTR13 3 4 1 0 1 7 1 0 6 2 1 1 2 0 2 2 1 1 8

LTR14A 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2 2 0 0

LTR14B 0 0 0 1 0 2 1 1 1 0 0 0 0 0 0 1 1 0 3

LTR15 0 0 0 0 2 1 5 0 1 1 0 0 0 0 1 4 4 0 0

LTR16A 6 5 3 7 6 6 4 4 6 8 0 0 3 1 1 5 7 5 5

LTR16A1 2 0 2 1 6 5 4 5 4 1 0 0 2 3 1 4 2 1 7

LTR16B 4 2 2 6 5 7 4 3 1 3 1 1 2 1 1 6 6 1 4

LTR16C 11 7 7 23 4 6 7 6 17 7 0 0 2 4 2 7 9 8 17

LTR16D 1 1 0 1 1 1 1 1 0 1 0 0 1 3 1 1 1 2 2

LTR17 1 2 0 2 0 0 1 0 1 2 1 0 0 1 0 0 0 0 0

LTR18A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

LTR18B 0 0 0 1 2 2 1 0 0 1 1 1 1 0 0 2 2 0 1

LTR19-int 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LTR19A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

LTR19B 0 0 0 4 1 1 0 6 1 8 1 1 8 2 0 0 1 0 1

LTR19C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

LTR2 5 4 4 3 2 4 2 2 1 1 1 0 0 0 0 5 5 1 3

Continued on next page
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Table A5 – continued from previous page

Family
H1-hESC GM12878 HUVEC K562 B-cells

CD20+
SK-N-

SH
MCF-7 HeLa-S3 A549 HepG2 IMR90 Mono-

cytes
CD14+

† ∗ † ∗ † ∗ † ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗

LTR21A 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

LTR22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

LTR22A 1 1 0 3 1 2 0 6 3 6 0 0 0 0 0 0 0 0 0

LTR26 0 1 1 3 3 2 3 4 2 1 2 0 3 2 1 0 2 2 1

LTR26B 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 2

LTR26E 1 1 2 1 0 0 1 0 2 0 0 0 0 1 0 1 0 0 2

LTR2B 0 0 7 13 1 0 1 0 3 0 0 0 0 0 0 9 9 0 1

LTR2C 2 2 2 1 0 0 2 2 0 0 0 0 0 0 0 1 1 0 0

LTR30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

LTR32 1 1 1 2 2 3 1 1 2 1 0 0 0 0 1 2 3 1 1

LTR33 4 3 6 15 10 8 11 10 9 8 3 1 6 5 8 13 15 7 20

LTR33A 6 3 3 4 4 5 5 4 6 5 3 3 5 2 1 2 5 3 7

LTR3B 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

LTR4 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 1 0 0

LTR40A 0 0 2 2 1 1 0 1 0 0 0 0 2 2 0 3 4 0 0

LTR40B 1 1 3 2 0 3 1 1 1 4 1 0 1 2 2 0 0 3 1

LTR40C 0 0 1 2 1 1 2 2 1 0 2 0 1 2 4 4 6 0 2

LTR41 2 8 0 2 0 0 3 5 2 2 2 2 2 2 3 7 5 2 2

LTR42 1 0 2 1 0 0 0 0 2 0 0 0 0 1 0 1 2 1 1

Continued on next page
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Table A5 – continued from previous page

Family
H1-hESC GM12878 HUVEC K562 B-cells

CD20+
SK-N-

SH
MCF-7 HeLa-S3 A549 HepG2 IMR90 Mono-

cytes
CD14+

† ∗ † ∗ † ∗ † ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗

LTR47A 0 0 1 2 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1

LTR47B 0 0 1 1 0 0 0 0 2 0 0 0 1 1 2 0 0 1 1

LTR50 3 2 0 0 4 4 2 2 1 3 0 0 2 2 1 2 2 1 0

LTR53 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1

LTR57 0 0 2 3 3 1 3 2 1 1 0 0 1 0 0 2 1 1 2

LTR5B 6 8 2 1 2 3 5 6 3 8 5 4 5 2 6 8 9 2 3

LTR5_Hs 1 3 1 3 2 3 0 0 0 0 0 0 0 0 0 0 0 0 1

LTR61 1 0 1 1 1 0 1 1 0 0 1 1 1 2 0 1 0 0 2

LTR62 1 1 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0

LTR64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

LTR66 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

LTR67 3 5 2 8 1 2 2 2 7 5 0 0 0 1 1 3 1 1 6

LTR6A 8 1 6 4 4 1 10 3 1 2 4 1 6 1 1 11 3 0 1

LTR6B 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LTR7 44 25 1 4 2 2 2 2 3 0 0 1 3 2 1 5 2 1 2

LTR72 2 1 1 1 1 0 1 2 0 0 1 1 1 0 1 1 1 0 0

LTR75 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

MER11A 1 0 0 0 0 2 2 2 0 1 0 0 0 0 2 2 3 0 1

MER11B 0 0 1 3 0 2 1 0 0 0 1 1 0 0 1 0 0 1 3

Continued on next page
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Table A5 – continued from previous page

Family
H1-hESC GM12878 HUVEC K562 B-cells

CD20+
SK-N-

SH
MCF-7 HeLa-S3 A549 HepG2 IMR90 Mono-

cytes
CD14+

† ∗ † ∗ † ∗ † ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗

MER11C 3 2 1 2 3 3 2 2 1 0 0 1 0 0 1 3 3 1 4

MER11D 0 0 0 0 0 2 0 0 0 1 1 2 2 2 1 0 0 1 0

MER48 0 0 0 0 0 0 3 3 0 1 0 0 0 0 0 0 0 0 1

MER54A 1 1 2 5 6 4 6 6 2 7 1 0 0 0 7 2 1 2 1

MER54B 0 0 1 2 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1

MER70A 0 1 0 0 0 1 1 2 0 1 0 0 1 0 0 0 0 0 1

MER70B 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

MER73 0 0 1 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0 3

MER74A 4 4 1 2 1 1 2 3 1 0 0 0 2 1 1 3 2 1 3

MER74B 2 0 0 1 1 2 0 0 2 0 0 1 0 0 0 1 2 0 2

MER74C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

MER9 1 2 0 3 4 3 4 5 2 0 1 0 0 2 4 4 4 1 2

MLT2A1 2 3 0 5 4 3 1 2 4 0 0 0 2 1 0 0 0 1 3

MLT2A2 6 9 2 7 3 6 2 6 3 3 0 0 2 3 4 2 3 1 2

MLT2B1 0 0 1 8 2 1 6 7 1 3 0 0 2 1 3 3 5 0 1

MLT2B2 1 1 0 2 1 1 1 0 0 2 0 0 4 3 2 2 1 0 1

MLT2B3 4 7 3 7 2 3 7 5 3 4 3 1 1 1 3 4 2 4 4

MLT2B4 5 2 2 3 2 5 2 3 2 4 2 1 2 1 3 3 3 1 1

MLT2B5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Continued on next page
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Table A5 – continued from previous page

Family
H1-hESC GM12878 HUVEC K562 B-cells

CD20+
SK-N-

SH
MCF-7 HeLa-S3 A549 HepG2 IMR90 Mono-

cytes
CD14+

† ∗ † ∗ † ∗ † ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗

MLT2C1 2 3 1 3 3 2 2 1 3 0 2 0 5 3 2 2 5 2 1

MLT2C2 2 1 0 1 1 1 6 6 0 6 0 0 2 0 1 3 2 1 1

MLT2D 2 0 3 5 5 1 6 5 1 2 2 1 2 2 0 1 0 1 1

MLT2E 1 3 0 0 0 2 2 1 1 1 0 0 0 0 1 1 0 2 1

MLT2F 1 2 3 4 1 3 3 3 3 2 1 1 1 1 2 4 4 0 4

pTR5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Table A5: Over-expressed HERV loci per cell line.
The table shows for every HERVd family, how many loci are significantly over-expressed in the pairwise comparisons with all other cell
types.
∗ = CSHL, † = Caltech
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