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Abbreviations

CryoPAD cryogenic polarization analysis device
Eq(s) Equation(s)
FD fluctuation-disordered
FL fermi-liquid
FM ferromagnetic
INSE intensity modulated NSE
LMIEZE longitudinal MIEZE
LNRSE longitudinal NRSE
MIEZE modulation of intensity with zero effort
MiniMuPAD mini mu-metal polarization analysis device
MuPAD mu-metal polarization analysis device
NRSE neutron resonance spin echo
NSE neutron spin echo
PM paramagnetic
PO partial order
QCP quantum critical point
QPT quantum phase transition
Ref(s) Reference(s)
Sec(s) Section(s)
TAS triple axis spectrometer
TCP tricritical point
TMIEZE transversal MIEZE
TNRSE transversal NRSE
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Introduction

Fluctuations at phase transitions often stabilize new forms of complex electronic and
magnetic order and are the heart of numerous important discoveries in modern solid
state science, such as high-Tc superconductivity [1, 2], topological spin order [3] or
the breakdown of the standard model to describe electrons in metals, namely - the
Fermi liquid theory [4–6]. The understanding of these phenomena is directly linked
to a precise examination of the relevant fluctuations, which can be realized with neu-
tron scattering. Neutron scattering allows to directly measuring the correlation of the
fluctuations in space and time.

To describe the transition from one phase to another phase, an order parameter
can be introduced that is finite in the ordered and zero in the disordered phase. A
distinction is drawn between phase transitions where the order parameter vanishes
discontinuously, i.e. first-order transitions (cf. Fig. 0.1 (a)) and phase transitions
where the order parameter vanishes continuously, i.e. second and higher order phase
transitions (cf. Fig. 0.1 (e)). The discontinuous jump of the order parameter at
first-order phase transitions is accompanied by latent heat while the system transits
from one local minimum of the free energy landscape to another one (b)-(c). Fluc-
tuations of the order parameter are usually irrelevant. In contrast, at second-order
phase transitions strong fluctuations of the order parameter occur, due to the flat
free energy landscape. The system evolves continuously from one minimum in the
free energy to another one (f)-(h). Close to the transition, fluctuations extend over
increasing length and time scales. The corresponding correlation lengths in space and
time diverge according to universal scaling laws, depending only on the symmetry of
the order parameter and not on the microscopic interactions [7]. A plethora of critical
fluctuations may change a second-order phase transition to first-order. The theory
for such fluctuation-induced first-order transitions was put forward by Brazovskii [9]
and since then proposed for numerous different systems like liquid crystals [10], pion
condensation in nuclear matter [11], spin-orbit coupled Bose-Einstein condensates [12]
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Figure 0.1.: Order parameter u and free energy F at a first (top row) and second
(bottom row) order phase transition. At first-order or discontinuous phase
transitions the order parameter u exhibits a step as function of the control
parameter x (a) and the system jumps from one local minimum in the
free energy to another local minimum (b)-(d). The order parameter at
a second-order or continuous phase transition vanishes continuously (e)
and the system experiences strong order parameter fluctuations due to
the flat free energy landscape (f)-(h). The figure is taken from Ref. [8].

and Rayleigh-Bernard convection [13]. In a recent study the zero field transition from
paramagnetism to helimagnetism in the cubic helimagnetic MnSi is explained within
the framework of this theory [14, 15].

Particularly, phase transitions occurring at zero temperature are very interesting.
In contrast to finite temperature phase transitions which are driven by thermal fluctu-
ations, these quantum phase transitions (QPT) are driven by quantum fluctuations.
Commonly, finite temperature phase transitions are suppressed by a non-thermal
control parameter x, like hydrostatic pressure, magnetic field or doping, as shown
in Fig. 0.2 (a) [20]. The influence of such zero temperature transitions can be felt
in a characteristic V-shaped region of the x-T phase diagram, where quantum fluc-
tuations govern the properties of the system, leading to novel physics. Continuous
phase transitions that are suppressed to zero temperature are called quantum critical
points (QCP) and the presence of a QCP is believed to be the key in understanding
fundamental phenomena in physics, e.g. magnetically mediated superconductivity in
CePd2Si2 (cf. Fig. 0.2 (b)) [17], UGe2 (cf. Fig. 0.2 (c)) [21] or other materials [22, 23].
Also the breakdown of the Fermi liquid theory, the standard model to describe the
conduction electrons in metals, in e.g. NbFe2 [24, 25] or YbRh2Si2 (cf. Fig. 0.2 (d))
[19], is considered to be triggered by a QCP. In contrast to the preceding examples,
MnSi exhibits an extended region of non-Fermi liquid behavior above the critical
pressure where the magnetic order is suppressed [4, 26], accompanied by a non-trivial
topology, i.e. a real space spin structure that cannot be continuously transformed
into a ferromagnet [27].
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Figure 0.2.: Quantum phase transitions in different systems. Panel (a) shows a
schematic phase diagram as function of temperature T and control pa-
rameter x, taken from Ref. [16]. (b) Emerging superconducting dome in
CePd2Si2. The antiferromagnetic order is suppressed by pressure. The
inset shows the drop of the resistivity at Tc. Figure is taken from Ref.
[17]. (c) Coexistence of ferromagnetism an superconductivity in UGe2.
Figure taken from [18]. (d) Suppression of the antiferromagnetic order in
YbRh2Si2 by a magnetic field along the crystalline c-axis. In the orange
shaded V-shaped region non-Fermi liquid behavior is observed [19].

To directly measure the evolution and the fluctuations of the order parameter neu-
tron scattering is a powerful tool. Diffraction allows measuring the correlation length
of the fluctuations and inelastic techniques to address their life time. Critical slowing
down as expected at continuous phase transitions makes an ultra-high energy reso-
lution indispensable for such studies. Neutron spin echo (NSE) proposed by Mezei
[28, 29] in 1972 uses the precession of the neutron spin to reach the highest energy
resolution within the field of neutron spectrometry. In all spin echo techniques the
energy resolution is decoupled from the width of the used wavelength band making
high flux and high resolution available at the same time, being the perfect combina-
tion for such studies. The accessible time window spreads from ps to µs and hence
from µeV to neV. Another variant of NSE is neutron resonance spin echo (NRSE)
developed by Golub and Gähler [30–32], where resonant flips are employed to realize
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the spin precession. The field geometry in NRSE allows to tilt the field boundaries
and therefore to measure excitations with a finite dispersion [33]. Nevertheless, the
main application for spin echo is in quasielastic scattering experiments, studying slow
relaxation processes on large length scales. An example is the spin dynamics in spin
glasses, where NSE was applied to numerous different systems to access the key pa-
rameters of the relaxation processes [34–37]. Another prototypical example is the
study of second-order phase transitions. Spin echo allows proofing the validity of
the present day understanding of critical phenomena on very large length and time
scales [38]. Many of the most pressing scientific issues, as the magnetic systems dis-
cussed above, require measurements with the high resolution achievable with NSE
spectroscopy, however, under more demanding conditions such as very large magnetic
fields or strongly depolarizing samples. Modulation of IntEnsity with Zero Effort
(MIEZE) [32, 39, 40] allows to overcome these restrictions as for example already
shown for the combination of sub-µeV resolution with strong magnetic fields at the
sample [41]. MIEZE will allow the investigation of e.g. quantum phase transitions in
transverse Ising magnets [42] or field-induced Bose-Einstein condensation of magnons
[43, 44] with spin echo resolution.

The scientific work presented in this thesis focuses on the investigation of the spa-
tial and temporal evolution of fluctuations at the border to novel types of magnetic
order. The thesis is organized in the following way.

Chapter 1 gives a short introduction into the fundamental concepts of neutron
scattering and a description of the neutron scattering techniques employed within
this thesis. The nuclear and magnetic scattering cross sections are explained, fol-
lowed by a description of small angle neutron scattering (SANS), spherical neutron
polarimetry (SNP), neutron spin echo (NSE), neutron resonance spin echo (NRSE)
and modulation of intensity with zero effort (MIEZE).

Chapter 2 focuses on the different instrumental methods developed within this
thesis. A new generation of the SNP device, MiniMuPAD, is introduced, that is
optimized for small scattering angles. During the course of this thesis several as-
pects of the beamline RESEDA have been improved, a new resonant spin echo option
namely -longitudinal NRSE- was setup, a new secondary spectrometer arm for SANS
and MIEZE studies was built and first proof of principle experiments in very high
magnetic fields were performed. At the end of the chapter a description of the mea-
surement procedure and the treatment of the spin echo data is given.

Chapter 3 reports a comprehensive MIEZE study of the critical dynamics above
and below the Curie temperature TC in the archetypal ferromagnet iron. The criti-
cal fluctuations above the Curie point are in excellent agreement with scaling theory
reported by Frey and Schwabl, considering a Heisenberg model taking dipolar inter-
action into account. In the ferromagnetic phase, well defined inelastic excitations are
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observed in agreement with standard magnon theory. MIEZE proofs to be a very
powerful technique to study critical fluctuations by combining large q-coverage and
high energy resolution, while being insensitive to depolarizing effects at the sample
position. This combination allows to go beyond the Heisenberg model and to inves-
tigate weaker interactions such as dipolar interactions, anisotropies, etc. The results
proof that MIEZE and classical NSE give the very same results.

Chapter 4 is concerned with the cubic chiral helimagnets MnSi, Mn1−xFexSi and
Mn1−xCoxSi. After a short introduction to these non-centrosymmetric compounds
the focus is on the critical spin-flip scattering at the paramagnetic to helimagnetic
transition in MnSi. A SNP study shows that the spin resolved critical scattering at
the phase transition is in very good agreement with a fluctuation-induced first-order
transition in a so called Brazovskii scenario. SNP confirms a previously performed
unpolarized SANS study and shows that there is no need for a more complex model
to describe the transition. In the next part, the magnetic field evolution of the
Brazovskii scenario in MnSi is investigated by a combination of SANS and MIEZE
measurements. We find that the fluctuation-induced first-order transition changes to
second-order at a tricritical point, proofing the validity of the Brazovskii scenario in
MnSi. The last part of this chapter accounts for the suppression of the magnetic order
by substitutional doping in Mn1−xFexSi and Mn1−xCoxSi, addressed by a combination
of SANS and NRSE measurements. The SANS measurements show an increase of the
helical modulation vector and a reduction of the cubic anisotropy with increasing
doping. Moreover an unconventional orientation of the helical domains is observed.
We find a transition from an elastic to a fluctuating ground state in Mn1−xFexSi
(x = 12%), accompanied by a topological Hall effect [45]. This observation may be
understood as a new type of a topological spin liquid.
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CHAPTER 1

Neutron Scattering and Neutron Scattering Techniques

In this chapter the fundamental equations describing the neutron scattering from -
especially- magnetic samples are presented. Thereafter the experimental techniques
used in this thesis are introduced. The magnetic structures and the corresponding
fluctuations studied in this text have relatively large length scales, therefore all in-
vestigations took place at small scattering angles, employing the small angle neutron
scattering (SANS) technique. SANS measurements give directly access to the en-
ergy integrated scattering function S(q) and therefore allow to study the magnetic
structure of the sample. More complex magnetic structures can be investigated by
spherical neutron polarimetry (SNP). SNP measures the full spin dependent scat-
tering cross section and allows analyzing magnetic structures that are untraceable
with other techniques. Neutron spin echo techniques, in particular neutron spin echo
(NSE), neutron resonance spin echo (NRSE) and modulation of intensity with zero
effort (MIEZE) are used to study the lifetime of the magnetic fluctuations. These
techniques measure the intermediate scattering function S(q,τ) directly in the time
domain.

The chapter is organized as follows, at the beginning a short introduction to mag-
netic neutron scattering is given followed by a basic description of SANS, SNP, NSE,
NRSE and MIEZE.

1.1. Neutron scattering

Neutron scattering is a very powerful technique, particularly in solid state physics,
in order to study the structure and dynamics of the nuclear and magnetic structures
of the sample. The strength of this technique is due to the specific characteristics
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of the neutron and its interaction with matter. The most prominent properties,
especially in contrast to widely complementary techniques like X-Ray scattering, can
be summarized as follows:

• Neutrons are uncharged and therefore, hence able to easily penetrate the elec-
tron shell, as there is no Coulomb barrier to overcome. The penetration depth is
very large allowing studying the bulk sample and not only the surface. Moreover,
due to different nuclear interactions neutrons are able to distinguish between
different isotopes of the same element. The strength of the interaction can be
very high even for light elements like hydrogen, making it observable within a
matrix of other elements.

• The energy of cold and thermal neutrons ranging from 0.1meV to 100meV
is comparable to low energy excitations of the nuclear and magnetic system of
interest, enabling not only to study the structure but also the excitations within
the sample.

• The neutron exhibits a magnetic moment, allowing in a unique way to study the
magnetic structure and excitations of the samples. In particular, when using
polarized neutrons, magnetic structures can be resolved that are untraceable
with other techniques. This can be used to study, for instance, the chirality of
magnetic structures as in cubic helimagnets like MnSi.

In the following section the basic concepts of neutron scattering are introduced fol-
lowing the standard textbooks [46–48]. The basis of neutron scattering is to measure
the probability that a neutron with wave vector ki and spin state σi is scattered into
a state with wave vector kf and spin state σf while the sample changes its state from
λi to λf . The probability can be evaluated in lowest order perturbation theory given
by Fermi’s Golden Rule. This probability can be described by the double differential
scattering cross-section, when normalizing the probability to the incoming neutron
flux and multiplying it by the number of final states of the neutron. The double
differential scattering cross-section then reads

d2σ

dΩdω
=
( mn

2π~2

)2 kf
ki

∑
λf ,σf

∑
λi,σi

pλipσi

∣∣∣〈kf ,σf ,λf |Û |ki,σi,λi〉∣∣∣2·δ(~ω+Eλi−Eλf ). (1.1)

Here mn is the neutron mass, ~ the Planck constant divided by 2π, λf and λi are
the final and initial state of the sample, pλi and pσi are the probability to find the
sample in state λi and the neutron spin state to be σi. Û , is a potential describing
the interaction between the neutron and the sample. The cross-section gives the
number of neutrons scattered into a solid angle dΩ, with a energy transfer dω. For
the scattering process both energy and momentum are conserved. The energy transfer
to the sample is given by

~ω =
~2

2mn
(k2

i − k2
f ) (1.2)

8



1.1 Neutron scattering

and the momentum transfer by the scattering vector Q

~Q = ~(ki − kf ). (1.3)

The interaction potential Û depends on the specific scattering process, which can be
nuclear or magnetic. The nuclear interaction potential is short range (∝ 1/r3) while
the magnetic interaction is not short range but weak, therefore Fermi’s Golden Rule
is valid in both cases.

1.1.1. Nuclear neutron scattering

The nuclear interaction of the neutron at position r with a nucleus at position Rj is
described by the Fermi pseudo potential

Û =
2π~2

mn

∑
j

bjδ(r−Rj). (1.4)

The scattering length bj depends on the specific nuclei and is of the order 10−12 cm. To
further evaluate the scattering cross-section, we consider an unpolarized neutron beam
and describe the incoming and outgoing neutrons by plane waves |ki〉 = eiki·r, |kf〉 =
eikf ·r. Introducing Heisenberg operators allows expressing the nuclear scattering cross-
section for unpolarized neutrons by

d2σ

dΩdω
=
kf
ki

1

2π~
∑
j,j′

bjbj′

∫ ∞
−∞

〈
e−iQR̂j′ (0)e−iQR̂j(t)

〉
e−iωtdt. (1.5)

In this representation Eq. (1.5) contains the intermediate pair correlation function or
intermediate scattering function

I(Q,t) =
1

N

∑
j,j′

〈
e−iQR̂j′ (0)e−iQR̂j(t)

〉
, (1.6)

which is the spatial Fourier transform of the van Hove correlation function [49]. The
van Hove function describes the density-density correlation in the system. A time
Fourier transform of the intermediate scattering function yields the dynamical struc-
ture factor S(Q,ω)

S(Q,ω) =
1

2π~

∫
I(Q,t)e−iωtdt. (1.7)

Comparing Eq. (1.7) with equation (1.5) shows that the double differential scatter-
ing cross-section is proportional to the dynamical structure factor through a simple
coupling constant. In nuclear scattering this constant is the square of the scattering
length while in magnetic scattering it is (γnr0)2, where r0 = 2.8179 · 10−15 m is the
classical electron radius.

9
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1.1.2. Magnetic neutron scattering

Magnetic neutron scattering to first order takes place due to the dipole-dipole inter-
action between the unpaired electron spins of the target with the magnetic moment
of the neutron. The magnetic moment operator µ̂n of the neutron can be described
by

µ̂n = −γnµN σ̂, (1.8)

where γn = 1.913 is a positive constant and µN = (e~)/(2mP ) is the nuclear Bohr
magneton, given by the elementary charge e and the proton mass mP . σ̂ is the Pauli
spin operator described in more detail in Sec. 1.1.3. The interaction between the
magnetic moment of the neutron and the local magnetic field H in the sample can be
described by

Û = −µ̂n ·H (1.9)

As described above we want to focus onto the interaction between the neutrons and the
electrons of the sample. Therefore we have to evaluate the magnetic field generated
by a single unpaired electron with velocity ve, which is given by

H = ∇×
(
µe ×R

|R|3

)
− e

c

ve ×R

|R|3
(1.10)

where the first term describes the magnetic field due to the magnetic moment µe
of the electron and the second term arises from the orbital motion. The magnetic
moment operator µ̂e = −2µBŝ is given by the spin operator of th electron ŝ and the
Bohr magneton µB = 9.274 ·10−24 J/T. R is the distance between the electron and the
point where the magnetic field is measured and c = 2.998·108 m/s is the speed of light.
To evaluate the magnetic scattering cross-section one has to calculate the interaction
potential. Therefore the magnetic field of a single electron given by Eq. (1.10) must
be inserted into the equation for the scattering potential Eq. (1.9) and then into the
general scattering cross-section equation (1.1). For a detailed evaluation we refer to
Ref. [48]. The result is given by

d2σ

dΩdω
= (γnr0)2kf

ki
F 2(Q)e−2W (Q)

∑
α,β

(
δα,β −

QαQβ

Q2

)
Sαβ(Q,ω), (α,β = x,y,z),

(1.11)
where the magnetic scattering function Sαβ(Q,ω), the magnetic form factor F (Q)
and the Debye-Waller factor e−2W (Q) are introduced. The magnetic scattering cross-
section has a much more complex structure compared to the nuclear cross-section
Eq. (1.5). The former depends on the relative alignment between the scattering vec-
tor and the magnetic moments in the sample. Neutrons can only couple to magnetic
moments which are perpendicular to Q. The strength of the coupling is given by
(γnr0)2 ≈ 10−25 cm2 and therefore in the same order as the nuclear scattering.
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1.1 Neutron scattering

All information about the magnetic structure of the sample is contained in the
magnetic scattering function Sαβ(Q,ω) which can be evaluated to

Sαβ(Q,ω) =
1

2π~
∑
j,j′

∫ ∞
−∞

eiQ(Rj−Rj′ )〈Ŝαj (0)Ŝβj′(t)〉e
−iωtdt (1.12)

with the effective spin operator

Ŝαj′ =
1

2
gĴαj . (1.13)

The effective angular momentum operator Ĵαj combines the spin and orbital angular
momentum (S and L), g is the Landé factor. The brackets 〈〉 denote the thermal av-
erage of the time dependent spin operators. Sαβ(Q,ω) correlates a magnetic moment
j′ at position Rj′ and time t = 0 with another magnetic moment j at position Rj and
time t. It gives the probability, when finding j′ with a specific value, to find j with
another specific value. In this sense it is similar to the van Hove correlation function
introduced for the density density correlations.

The correspondence to the van Hove correlation functions allows to connect the
magnetic scattering function with the generalized susceptibility tensor χαβ(Q,ω) using
the fluctuation-dissipation theorem

Sαβ(Q,ω) =
N~
π

(
1− e−

~ω
kBT

)−1

Imχαβ(Q,ω), (1.14)

with N being the total number of magnetic ions. This can be understood when
considering the neutron to be a perturbing magnetic field Hβ(Q,ω), and the scattered
intensity is the response of the system Mα(Q,ω)

Mα(Q,ω) = χα,β(Q,ω)Hβ(Q,ω). (1.15)

1.1.3. Neutron beam polarization

The following section follows Ref. [50] and references therein.

Polarization of a neutron and of a neutron beam

The spin operator Ŝ = (Sx,Sy,Sz) representing the observable of the neutron spin-1
2

has two eigenvalues ±~/2 with respect to an arbitrary quantization direction e. The
eigenvalue equation reads,

Ŝ|χ〉 = ±~
2
|χ〉, (1.16)
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Neutron Scattering and Neutron Scattering Techniques

with |χ〉 describing a pure spin state and Ŝ being the spin operator. Ŝ can be repre-
sented with the help of the Pauli Spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1.17)

which allow mapping of the two dimensional spin system on to the surface of a three
dimensional sphere in real space. Enabling the Pauli Spin matrices the spin operator
reads

Ŝ =
~
2
σ̂, (1.18)

with σ̂ = (σx,σy,σz). To describe the spin state a two component spinor can be used

χ = aχ↑ + bχ↓ = a

(
1
0

)
+ b

(
0
1

)
(1.19)

where χ↑ and χ↓ are the eigenvectors of the two dimensional Hilbert space. These
eigenvectors can be imagined as spin up and down. To satisfy the normalization
condition for χ the coefficients a and b must fulfill

χ†χ = |a|2 + |b|2 = 1. (1.20)

The polarization is defined as the expectation value of the spin operator 〈σ̂〉. Hence
it reads

P =
2

~

〈
Ŝ
〉

= 〈σ̂〉 . (1.21)

For a single neutron as described in equation (1.19) fulfilling the normalization con-
dition Eq. (1.20), the polarization will always be |P | ≡ 1. In neutron scattering
experiments there is not only one single neutron, but an ensemble of neutrons. To
describe the spin state of the ensemble one introduces the density matrix formalism
[51]. This formalism allows also to describe so called mixed states, which leads to a
polarization |P | < 1. The density matrix ρ̂ for a two level system is defined by

ρ̂ = χχ† =

(
|a|2 ab∗

ba∗ |b|2
)
. (1.22)

With the density matrix formalism the average of an arbitrary operator Ô can be
calculated as the trace over the product of the density operator and Ô, in detail
〈Ô〉 = Tr(ρ̂Ô) = Tr(Ôρ̂). ρ̂ can be expanded in terms of the unit matrix 12 and the
Pauli matrices σ̂i (i = x,y,z). This allows to define ρ̂ as

ρ̂ =
1

2
(12 + Pσ) (1.23)

12



1.1 Neutron scattering

and hence the polarization is given by

P =

 2Re(a∗b)
2Im(a∗b)

|a|2 − |b|2

 =

sin θ cos Φ
sin θ sin Φ

cos θ

 , (1.24)

where θ and φ are the polar and azimuthal angles, respectively.

Larmor Precession

Larmor precession describes the precession of the neutron spin about an external
magnetic field B. The expectation value of the spin operator 〈σ̂〉 can be replaced in
the classical picture by the vector sn. In the classical picture the spin sn and the anti-
parallel magnetic dipole moment µ precess about the field direction B. This motion
is called Larmor precession and can be traced back to a torque which is exerted on
the spin.

G = µn ×B = γLsn ×B (1.25)

From dL/dt = M it follows that the time evolution of the spin in the external field is
given by

ds
dt

= γLsN ×B. (1.26)

Applying an external field along the z-axis allows calculating the time evolution for
each component of the spin

dsx
dt

= γLsyB,
dsy
dt

= γLsxB,
dsz
dt

= 0. (1.27)

The solutions of these differential equations are given by

sx = sx(0) sin(ωLt+ φ0), sy = sy(0) cos(ωLt+ φ0), sz = sz(0) (1.28)

and directly show a rotation in the xy-plane perpendicular to the external magnetic
field while the spin component sz parallel to the field stays constant. The precession
frequency is called Larmor frequency ωL, namely

ωL = γL ·B. (1.29)

Larmor precession can be used to manipulate and control the neutron spin direction.
This is realized by applying fields of different strength B and length l along the flight
pass of the neutron with wavelength λ. The precession angle depends on the time t
the neutron stays in the field. With λ = h/(mnv) the precession angle is given by

φ(rad) = ωL · t = 2π · 2916 ·B(Gs)
l(m)

(vm
s )

= 4.631 ·B(Gs)l(m)λ(Å). (1.30)

13



Neutron Scattering and Neutron Scattering Techniques

The preceding equation only describes the consequences of a constant magnetic field
onto the spin. Special attention has to be drawn on regions where the field directions
change and the neutron moves from an area of field B into a magnetic field B′. The
response depends on the transition frequency ωH , with which B changes to B′. One
distinguishes between

Adiabatic transition: For slow changes of the field ωL � ωH an adiabatic transition
takes place. The neutron spin follows the direction of the changing field. Hence
if the spin is aligned along B before the transition it will be aligned along B′

afterwards (cf. Fig. 1.1 (a)).

Non-Adiabatic transition: In case of an abrupt field change ωL � ωH a non-adiabatic
transition takes place. This means the spin precesses in the beginning around
B and after the transition about B′ (cf. Fig. 1.1 b)).

z

y

(a) Adiabatic Transition

(b) Non-Adiabatic Transition
z

yytrans

Figure 1.1.: Comparison between an adiabatic and a non-adiabatic field transition.
The black arrows denote the magnetic field and the blue ones display the
polarization. Figure (a) shows an adiabatic and figure (b) a non-adiabatic
transition from a magnetic field originally aligned along the z-axis onto
the y-axis. The non-adiabatic field change occurs at ytrans in figure (b).

1.1.4. Polarized neutron scattering

In the previous sections 1.1.1 and 1.1.2 an unpolarized neutron beam was considered.
To describe the scattering of a polarized neutron beam one has to account for the
spin states of the incoming and outgoing neutrons σi and σf in equation (1.1). The

14



1.1 Neutron scattering

following section follows Ref. [50] and references therein.

Introducing Heisenberg operators allows to transform the time evolution of the
sample states |λ〉 onto the operators. When also describing the neutrons by plane
waves one can rewrite equation (1.1) as

d2σ

dΩdω
=
( mn

2π~2

)2 kf
ki

∑
σi,σf

pσi〈σi|Û
†
Q(0)|σf〉〈σf |ÛQ(t)|σi〉 · exp(−iωt). (1.31)

Lovesey [48] has shown that the interaction potential of nuclear and magnetic scat-
tering can be written in the form

Û = β̂ + α̂σ̂ (1.32)

where β̂ and α̂ are operators having the dimension of length. They reflect the target
system. β̂ describes the spin independent and α̂ the spin dependent part of the inter-
action potential. Hence evaluating the scattering cross-section for polarized neutrons
it is sufficient to considering this general potential Eq. (1.32).

The crucial part is to calculate the average over all neutron spin states. This was
first done in the 1960s by various groups [52–55], using the density matrix formalism.
A detailed calculation is given in [48]. Here only some instructive steps are shown.
The spin dependent part of equation (1.31) is∑

σi

pσi
∑
σ′
i

〈σi|Û †Q(0)|σf〉〈σf |ÛQ(t)|σi〉. (1.33)

A diagonal density matrix ρ̂ is given by

ρ̂ =
∑
σ

pσ|σ〉〈σ| (1.34)

and one can evaluate equation (1.33) in the following way∑
σi

pσi
∑
σf

〈σi|Û †(Q)|σf〉〈σf |Û(Q)|σi〉 = TrÛ †Û ρ̂ = Trρ̂Û †Û (1.35)

Now inserting the general interaction potential Eq. (1.32) and calculating the trace
gives

Trρ̂V̂ †V̂ = α̂† · α̂+ β̂†β̂ + β̂†(α̂P ) + (α̂†P )β̂ + iP · (α̂† × α̂). (1.36)

In general the neutron spin state can also change during the scattering process. The
interaction potential V̂ transforms the initial polarization P to the final polarization
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Neutron Scattering and Neutron Scattering Techniques

P ′. Thus the final polarization is given by

P ′ =
Trρ̂Û †σ̂Û
Trρ̂Û †Û

. (1.37)

Inserting the general potential Eq. (1.32) and calculating the Trρ̂Û †σ̂Û gives

Trρ̂Û †σ̂Û =β̂†α̂+ α̂†β̂ + β̂†β̂P + α̂†(α̂ · P ) + (α̂† · P )α̂− P (α̂† · α̂)

− iα̂† × α̂+ iβ̂†(α̂× P ) + i(P × α̂†)β̂ (1.38)

By a closer look to the nuclear and the magnetic interaction potential one can calculate
the operators α̂ and β̂. In case of nuclear scattering only coherent scattering is
considered and therefore the nuclear scattering potential (1.4) is spin independent
and α̂ = 0. The spin independent part is given by

β̂ = 〈k′|V̂N(r)|k〉 = NQ. (1.39)

Magnetic scattering as described in section 1.1.2 is purely spin dependent leading to
β̂ = 0 and

α̂ = 〈k′|V̂M(r)|k〉 = (γr0)σ̂ ·M⊥Q. (1.40)

The complete potential which will be considered here is

V (Q) = NQ + (γr0)σ̂ ·M⊥Q. (1.41)

Inserting Eq. (1.39), (1.40) and (1.36), (1.33) in (1.35) gives the double differential
scattering cross-section

d2σ

dΩdE ′
=
k′

k

1

2π~

∫
dt [〈

NQN
†
Q

〉
pure nuclear contribution

+ (γr0)2
〈
M⊥QM

†
⊥Q

〉
pure magnetic contribution

+ (γr0)P
[〈
N †QM⊥Q

〉
+
〈
M †
⊥QNQ

〉]
nuclear-magnetic interference

− i(γr0)P
〈
M⊥Q ×M †

⊥Q

〉
chiral magnetic contribution

] exp(iωt). (1.42)

The change of the initial polarization P to the polarization after scattering P ′ is
given by Eq. (1.37). Inserting Eq. (1.39), (1.40) in (1.36), (1.38) and then everything
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1.1 Neutron scattering

in equation (1.37) gives

P ′ d2σ

dΩdE ′
=
k′

k

1

2π~

∫
dt [ P

〈
NQN

†
Q

〉
− (γr0)2P

〈
M⊥QM

†
⊥Q

〉
+ (γr0)2

〈
(PM †

⊥Q)M⊥Q

〉
+ (γr0)2

〈
M †
⊥Q(PM⊥Q)

〉
+ (γr0)

(〈
N †QM⊥Q

〉
+
〈
M †
⊥QNQ

〉)
+ i(γr0)P ×

(〈
M †
⊥QNQ

〉
−
〈
N †QM⊥Q

〉)
+ i(γr0)2

〈
M⊥Q ×M †

⊥Q

〉
] exp(−iωt). (1.43)

Equations (1.42) and (1.43) are called the Blume-Maleyev equations [53, 55]. The
first describes the energy transfer and the direction of the scattered neutrons while
the second describes the polarization of the scattered beam. These equations can be
rewritten in a tensor form as it is shown in [56, 57]. Considering a frame of reference
where Q is parallel to the x-axis. With the abbreviations given in table 1.1 the
scattering cross-section (1.42) can be rewritten.

σ ≡ d2σ

dΩdE ′
≡ N +My +M z − P xC + P yRy + P zRz (1.44)

The first term N is the pure nuclear contribution from eq. (1.42). My and M z de-
scribe the pure magnetic scattering. These contributions are polarization independent
and still present if an unpolarized beam is used. The term C which is linear in Px
describes the chiral magnetic contribution. There are two independent interactions
present in the sample, therefore scattered neutrons from these two interactions can
interfere leading to the nuclear-magnetic interference described by Ry and Rz.

Introducing the polarization tensor P and the polarization created in the scattering
process P ′′ allows to formulate the expression for the scattered polarization P ′ with
respect to the incident polarization P in a tensor equation.

P ′ = PP + P ′′ (1.45)

The polarization tensor P and the created polarization P ′′ are given by

σP =

(N −My −M z) −iIz iIy

iIz (N +My −M z) Mmix

−iIy Mmix (N −My +M z)

 , σP ′′ =

C
Ry

Rz

 .

(1.46)

This formalism describes how additional information about the magnetic structure
of some sample can be extracted from a scattering experiment. Therefore one has
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Table 1.1.: Description of the terms contained in 1.42 and 1.43 after [57]

term correlation functions description

N k′

k

〈
NQN†

Q

〉
ω

Nuclear contribution

My/z r20
k′

k

〈
M

y/z
⊥QM

†y/z
⊥Q

〉
ω

y− and z−components of the magnetic contri-
bution

Ry/z r0
k′

k

〈
N†

QM
y/z
⊥Q

〉
ω
+
〈
M

†y/z
⊥Q NQ

〉
ω

Real parts of the nuclear-magnetic interference
term

Iy/z r0
k′

k

〈
N†

QM
y/z
⊥Q

〉
ω
−
〈
M

†y/z
⊥Q NQ

〉
ω

Imaginary parts of the nuclear-magnetic inter-
ference term

C ir20
k′

k

(〈
My

⊥QM†z
⊥Q

〉
ω
+
〈
Mz

⊥QM†y
⊥Q

〉
ω

)
Chiral contribution

Mmix r20
k′

k

(〈
My

⊥QM†z
⊥Q

〉
ω
+
〈
Mz

⊥QM†y
⊥Q

〉
ω

)
Mixed magnetic contribution or magnetic-
magnetic interference term

to measure the polarization of the scattered beam. Such an experiment will allow
to measure the polarization matrix P̌ of the sample. P̌ connects the formalism in-
troduced by Blume and Maleyev with the experiment. The polarization matrix P̌ is
defined using equation (1.45) by

P̌ij = (PjP ji + P ′′i )/|P |, (1.47)

with i,j = x,y,z. The index i describes the direction of the outgoing polarization and
the index j the direction of the incoming polarization. In order to measure P̌ one has
to perform a polarization analysis experiment. This will be explained in Sec. 1.3.1.

1.2. Small angle neutron scattering

Small angle Neutron Scattering (SANS) is used to study large magnetic or nuclear
structures ranging from 50 to 2000Å. A schematic drawing of a typical SANS instru-
ment is shown in Fig. 1.2. The white neutron beam provided by the neutron source
enters the instrument from the left, where the mechanical velocity selector selects a
wavelength band from the cold spectrum. The wavelength band has typically a width
of ∆λ/λ = 0.05 − 0.20. In a SANS instrument the divergence of the neutron beam
is adjusted by the length of the collimation L1 with typical length of 2-20m. After
the collimation the neutron beam hits the sample and scatters into the detector ves-
sel. The detector is positioned at a distance L2 (typical 2-20m) from the sample. A
SANS detector is typically two dimensional. Both collimation and detector vessel are
evacuated in order to reduce absorption and scattering from air.
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detectorsample

sample
aperture

source
aperture

velocity
selector

L1 L2

r1 r2

neutron
guide

1

2

2θ

Figure 1.2.: Sketch of a typical small angle neutron scattering setup. The wavelength
distribution can be adjusted by the mechanical velocity selector. After-
wards the neutron beam enters the collimation were the divergence of
the beam is adjusted by two apertures, i.e. the source and the sample
aperture. After the sample the neutron beam enters the detector vessel.

1.2.1. Resolution function for small angle scattering

In a real experiment not only scattering with a scattering vector q contributes to the
measured signal but also scattering in a finite range around q̄. In the following text
we want to describe how to calculate the finite resolution of a SANS instrument due
to a finite wavelength spread and the collimation of the neutron beam. We follow the
description by Pedersen et al. [58]. The resolution can be described by the resolution
function R(q,q̄), where q̄ is the mean scattering vector. R(q,q̄) enters the expression
of the measured intensity I(q̄) through

I(q̄) =

∫
dσ(q)

dω
·R(q,q̄)dq. (1.48)

For our discussion all contributions to the resolution function R(q,q̄) are assumed to
have a Gaussian shape.

As described above the wavelength of a SANS instrument is typically defined by a
mechanical velocity selector, which gives a triangular shaped wavelength distribution.
For simplicity, this is approximated by a Gaussian distribution, with the full width
at half maximum (FWHM) σλ = ∆λ/(2

√
2 ln 2). The FWHM of the q distribution

due to the wavelength spread σw is then given by

σw = q̄
∆λ

λ̄

1

2
√

2 ln 2
. (1.49)

For the experimental resolution due to finite collimation, we consider the setup as
shown in figure 1.2. The collimation is defined by to apertures, the source aperture
at the beginning of the instrument and the defining aperture in front of the sample.
Both are considered to be of a circular shape with radius r1 and r2. The distance
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between the source aperture and the defining aperture is L1 and the later and the
detector is L2. We consider that both L1 and L2 are large compared to the radii r1

and r2. The half angular extent from one point of the detector to the source aperture
is α1 = r1/(L1 + L2) and to the sample aperture α2 = r2/L2.

One can distinguish two cases, first scattering at q̄ ≈ 0. In this case the scattering
is given by a delta function δ(q), hence the resolution function R(q,q̄) is given by the
direct beam profile. Second, we consider the case for scattering with q̄ 6= 0. The
angular distribution perpendicular to the scattering plane is given by

∆β1 =
2r1

L1

− 1

2

r2
2

r1

cos4 2̄θ

L2
2L1

for α1 ≤ α2 (1.50)

∆β1 = 2r2

(
1

L1

+
cos2 2̄θ

L2

)
− 1

2

r2
1

r2

L2

L1

1

cos2 2θ(L1 + L2/ cos2 2θ)
for α1 < α2. (1.51)

The distribution in the scattering plane is given by

∆β2 =
2r1

L1

− 1

2

r2
2

r1

cos2 2̄θ

L2
2L1

(
L1 +

L2

cos 2̄θ

)2

for α1 ≥ α2 (1.52)

∆β2 = 2r2

(
1

L1

+
cos 2̄θ

L2

)
− 1

2

r2
1

r2

L2

L1

1

cos 2θ(L1 + L2/ cos 2θ)
for α1 < α2 (1.53)

With the angular distributions one can calculate the FWHM of the q distribution for
both in plane and out of plane scattering

σC1 = k̄ cos θ̄
∆β1

2
√

2 ln 2
(1.54)

σC2 = k̄
∆β2

2
√

2 ln 2
. (1.55)

The resolution function due to finite collimation is given by the product of the in
plane and out of plane q distributions

RC(q,q̄) =
1

2πσC1σC2

exp

[
−1

2

(
(q1 − q̄)2

σ2
C1

+
q2

2

σ2
C2

)]
. (1.56)

The prefactor normalizes the resolution function to unity when integrating the two
dimensional q space.
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1.3. Spherical Neutron Polarimetry

1.3.1. Polarization Analysis

In a polarization analysis experiment the neutron beam polarization of the incoming
and outgoing beam is well defined. The first experiments making use of polarized neu-
trons were performed Nathans et al. [59] in 1959 to identify the magnetic structure
of nickel and iron. For this experiment the beam was either polarized up or down.
Ten years later the setup was improved by Moon and Riste [60] to the so called
longitudinal polarization analysis (Fig. 1.3 (a)). Using two spin flippers before and
after the sample allows to distinguish between spin flip and non-spin flip scattering
and therefore to separate magnetic and nuclear scattering by aligning the incoming
polarization parallel to Q. In this configuration all magnetic scattering is spin flip.
Separation of spin flip and non-spin flip scattering also allows distinguishing coherent
and incoherent scattering. For the XYZ-method the spin-flippers around the sam-
ple are replaced by field regions in which the field direction is adiabatically changed
to any direction (Fig. 1.3 (b)). All techniques discussed above utilize a guide field
at the sample position to maintain the polarization. Polarization components that
are not aligned parallel to this guide field are depolarized and cannot be measured.
These techniques only allow measuring the main diagonal of the polarization matrix
Eq. (1.47).

A full polarization analysis also accessing the off diagonal elements of the polar-
ization matrix can only be realized by a zero field region at the sample. In this so
called Spherical Neutron Polarimetry (SNP) [61] (Fig. 1.3 (c)) the manipulation of
the incoming Pin and outgoing Pout polarization takes place before and after the zero-
field region and the transition from guide field to zero field and back to guide field is
non-adiabatic.

1.3.2. Devices for Spherical Neutron Polarimetry

There are three different types of devices capable to perform a full SNP measurement,
CryoPAD, MuPAD and MiniMuPAD. CryoPAD (CRYOgenic Polarization Analysis
Device) was the first SNP device invented by Tasset et al. in 1989 [61, 62]. The zero
field at the sample is here realized by double cryogenic Meissner shielding made of
niobium and an additional MuMetal shielding. In the meantime a third generation
CryoPAD [63] with an accuracy of better than 0.5◦ exists. In Fig. 1.4 (a) a schematic
drawing of CryoPAD is shown.

An alternative device for spherical polarization analysis is the so called MuPAD
(MU-Metal Polarization Analysis Device). MuPAD was presented in 2004 by Janoschek
et al. [64]. In contrast to CryoPAD, MuPAD uses only a double mu-metal shielding
to maintain the zero field region between the up and downstream polarization ma-
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Figure 1.3.: The black arrows denote the guide field direction. Figure (a) shows a
setup for longitudinal polarization analysis. The guide-field is in one
direction through the whole setup. Figure (b) displays the XYZ-method.
In this method one can align the guide-field at the sample position along
any direction. The guide field in the rest of the setup is constant. The
change from the outer guide field to the field at the sample is conducted in
an adiabatic transition. Figure (c) displays an SNP setup. The guide field
ends non-adiabatically at some rotation device where the spin is aligned
in the desired direction (indicated by the blue reference frame). At the
sample region is no magnetic field. Behind the sample the spin performs
a non-adiabatic transition from zero-field into the rotation device. Here
the polarization is aligned from any arbitrary direction onto the guide
field of the instrument. The figure is taken from [50].
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1.3 Spherical Neutron Polarimetry

Figure 1.4.: Different Spherical Neutron Polarimetry (SNP) devices. (a) Schematic
drawing of CryoPAD taken from [62]. The figure shows the field ge-
ometry and the important components to manipulate the neutron spin
polarization. (b) Technical drawing of MuPAD taken from [57]. (1) Mu-
Metal, (2) primary immobile arm, (3) precession coils to manipulate the
incoming polarization, (4) coupling coil for incoming beam, (5) opening
for inserting the cryostat, (6) secondary movable arm, (7) precession coils
to manipulate the outgoing polarization and (8) the outgoing coupling
coil. (c) Picture of the MiniMuPAD, with front view (left), side view
(center) and back view.
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nipulation components. The shielding reduces the external fields to less than 1mG.
The polarization is coupled in and out of the shielded regions by coupling coils. An
overview of the main components of MuPAD is shown in Fig. 1.4 (b). MuPAD is
about 1.5m long from the beginning of the primary arm to the end of the secondary
arm.

CryoPAD and MuPAD exhibit some disadvantages concerning mechanical handling
and the effort for operation. The long flight paths of MuPAD and CryoPAD require a
lot of effort to control the polarization direction and allow only a small divergence of
the beam. To overcome these problems we have invented a very small and compact
device, the so called MiniMuPAD (MINI MU-Metal Polarization Analysis Device)
[15, 50]. The MiniMuPAD is shown in Fig. 1.4 (c). It is only 48mm in diameter and
is designed to be mounted within the cryostat. There is no extra magnetic shielding
to realize a zero field region at the sample position. Parasitic rotations are suppressed
by the Mu-Metal yokes around the precession coils and the fact, that the distance
between the coils is only about 12mm. Hence, a neutron with a wavelength of 1Å
precesses only about 1◦ in a field of 0.03mT as for example the earth’s magnetic field.
MiniMuPAD allows full SNP measurements with an accuracy better than 3◦.
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1.4. Neutron Spin Echo Techniques

Neutron Spin Echo (NSE) proposed in 1972 by Mezei [28, 29] measures the neutron
velocity difference before and after the scattering process by comparing the Larmor
precession phase of the neutron spin in exactly predefined magnetic field integrals.
NSE reaches the highest energy resolution of all neutron spectroscopy techniques.
Since 1972 several other Larmor techniques were reported, increasing the field of ap-
plication. In 1987 Golub and Gähler developed Neutron Resonance Spin Echo (NRSE)
[30] were the constant field regions of NSE are replaced by a combination of a constant
and an oscillating field. The magnetic field geometry in NRSE allows manipulating
the neutron spin phase across the beam cross section, to perform Larmor diffraction
or phonon focusing. Nevertheless, all these techniques do not allow depolarizing con-
ditions at the sample position, like strong magnetic fields or depolarizing samples.
Modulation of IntEnsity with Zero Effort (MIEZE) [32, 39, 40] overcomes this prob-
lem. In MIEZE all neutron spin manipulation is performed in front of the sample,
making the technique insensitive for beam depolarization at the sample.

In the following sections NSE, NRSE and MIEZE are introduced following Ref. [65].

1.4.1. Neutron Spin Echo (NSE)

Fig. 1.5 (a) shows a schematic depiction of a NSE spectrometer. The neutron beam
travels along the y-axis entering the spectrometer from the left hand side. First the
beam passes the polarizer were it is polarized along the z-axis. After the polarizer
the beam travels along the first precession region of distance L1 and magnetic field
B1

0 , the sample region and the second precession region of distance L2 and magnetic
field B2

0 . Before the beam reaches the detector it is analyzed along the z-axis.

Let us consider a single neutron with velocity v1 traveling through the spectrometer.
The neutron performs Larmor precession in the magnetic field and accumulates a spin
phase φ1. According to equation (1.29) and (1.30) φ1 is given by

φ1 = γB1
0 · t1 = γB1

0 ·
L1

v1

. (1.57)

After the scattering process at the sample the neutron has the velocity v2 and the
spin phase φ2 accumulated in the second precession region is given by

φ2 = γB2
0 · t2 = γB2

0 ·
L2

v2

. (1.58)

The total spin phase φ is

φ = φ1 + φ2 = γ

(
B1L1

v1

+
B2L2

v2

)
= γBL

(
1

v1

− 1

v2

)
(1.59)
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Figure 1.5.: (a) Schematic drawing of a NSE spectrometer. The neutron beam travels
along the y-axis passing the polarizer, the first precession field B1

0 , the
second precession field B2

0 and the analyzer until it reaches the detector.
(b) and (c) show the potential and kinetic energy of the eigenstates χ↑ and
χ↓ as function of the neutron flight path. In (d) the flight time difference
∆t of the eigenstates χ↑ and χ↓ as function of the neutron flight path.
The spin echo time τNSE is given by the flight time difference ∆t at the
sample position. Figure taken from Ref. [66].
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where in the last step we considered that L1 = L2 and B1 = −B2. In a quasielastic
scattering process the energy transfer between sample and neutron is small and hence
the velocity change, therefore one can define v2 = v1 + δv with δv � v1. This allows
to rewrite Eq. (1.59)

φ = γBL

(
1

v1

− 1

v1 + δv

)
= γBL

(
δv

v2
1 + v1δv

)
≈ γBL

δv

v2
1

. (1.60)

The energy transfer due to the scattering process is given by

~ω =
mn

2
((v1 + δv)2 − v2

1) =
mn

2
(2v1δv + δv2)

≈ mn

2
(2v1δv)

= mnv1δv. (1.61)

Now one can rewrite the total spin phase in terms of the transfered energy

φ = γBL
~ω
mnv3

1

=

(
γ~BL
mnv3

1

)
ω = τNSEω. (1.62)

In this expression the spin echo time τNSE is defined by

τNSE =

(
γ~BL
mnv3

1

)
, (1.63)

which is a measure for the resolution of the spin echo spectrometer. In order to reach
high resolution, which means large τNSE one needs large magnetic field integrals BL
and it is advantageous to use a large neutron wavelength.

The polarization of the neutron beam in the z direction is given by the average
over all spin phases φ present in the beam P =< σz >=< cosφ > (compare with
Eq. (1.21)). The spin phase depends on the energy transfer ~ω and the probability
that a neutron is scattered with this energy transfer is given by S(q,ω)dω, therefore
the polarization is given by

P =< σx >=< cosφ >=

∫
S(q,ω) cosωτNSEdω, (1.64)

which is nothing else then the intermediate scattering function I(q,τNSE).

Besides the classical description NSE can also be described in a semi-classical pic-
ture. For the semi-classical picture we choose the quantization axis to be along x.
The initial neutron polarization is considered to be along the z direction, being an
eigenstate of < σz >, given by χz↑. As the quantization axis is chosen to be along x i.e.
as defined by the field direction, the initial spin state can be described in eigenstates
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of < σx > by

χz↑ =
1√
2

(χx↑ + χx↓) =
1√
2

(
1
1

)x
. (1.65)

The semi-classical description considers the classical trajectories of the quantum me-
chanical eigenstates to explain the neutron spin echo principle. The up eigenstate χ↑
has a magnetic moment opposite to the constant magnetic field B0 and χ↓ a magnetic
moment parallel to B0. This leads to different potential energies in the precession
field regions as shown in figure 1.5 (b). The potential energy is given by

E
↑/↓
pot = ±µB. (1.66)

For the spin up state χ↑ the potential energy is decreased while the potential energy
of the down sate χ↓ is increased while entering the magnetic field regions. At the
same time the total energy is conserved as the magnetic field in the precession regions
is constant in time. Therefore the kinetic energy for each of the spin states has to
change accordingly in order to conserve the total energy. The kinetic energy is shown
in figure 1.5 (c) and the change of kinetic energy for the up and down state is given
by

E
↑/↓
kin = Eges ∓ E↑/↓pot = Eges

(
1∓

E
↑/↓
pot

Eges

)
. (1.67)

These different kinetic energies for each spin state can be translated to different veloc-
ities and associated with different times t↑/↓ needed to travel the precession regions.
The traveling time is given by

t↑/↓ =
L

v↑/↓
=
L

v0

∓ ~γBzL

2mv3
0

= t0 ∓
τNSE

2
. (1.68)

This expression shows that the delay between both spin states after the first precession
region is the spin echo time τNSE

t↓ − t↑ = τNSE. (1.69)

The time delay ∆t is also shown in figure 1.5 (d).

1.4.2. Neutron Resonance Spin Echo (NRSE)

Neutron resonance spin echo (NRSE) is a variant of the NSE where the precession
field regions are replaced by two resonant spin flipper coils separated by a distance L.
A schematic drawing of a NRSE spectrometer is shown in Fig. 1.6 (a). The resonant
spin flipper coils, called NRSE coils, consist of a constant B0 and a rotating magnetic
field Brf. The B0 field points along the x axis, perpendicular to the precession plane
x,y while Brf is in the precession plane, rotating with frequency ω. We consider the
neutron beam again being initially polarized along the z axis. The magnetic field

28



1.4 Neutron Spin Echo Techniques

(a)

z

y

x

n

polarizer

n

primary arm

B0,ω, Brf

L

sample secondary arm

−B0,−ω, Brf

L

analyzer
detector

(b)

Epot

y
χ↑

χ↓

(c)

Ekin

y
χ↑

χ↓

(d)
∆t

y

τNRSE

Figure 1.6.: (a) Schematic drawing of a NRSE spectrometer. The neutron beam en-
ters the spectrometer from the left side and passes the polarizer, the two
precession regions, and the analyzer until it reaches the detector. In con-
trast to NSE the precession regions consist of two resonant spin flippers
at the beginning and the end. In panel (b) and (c) the kinetic and poten-
tial energy of the eigenstates χ↑ and χ↓ as function of the neutron flight
path are shown. Panel (d) displays the flight time difference ∆t of the
eigenstates χ↑ and χ↓ as function of the neutron flight path. The spin
echo time τNSE is given by the flight time difference ∆t at the sample
position. Taken from Ref. [66].
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produced by the NRSE coil can be described by

B =

Brf cos(ωt)
Brf sin(ωt)

B0

 . (1.70)

When the neutrons enter the NRSE coil, they start to precess about B0. The effect
of the rotating field on the neutron spin can be understood in a coordinate frame
precessing with the spin. If the NRSE coil is at resonance, which means that the
Larmor frequency of the neutron precessing about B0 is the same as the frequency of
the rotating field γB0 = ωL = ω, there is no x component of the magnetic field left in
the rotating coordinate frame. The neutron now only experiences the constant field
Brf and the spin precesses about this field. Amplitude of the rotating field and flight
time inside the RF field, determines the precession angle and is adjusted for a ’π-flip’
to π = γBrf · t = γBrf · l/v, where l is the length of the rf-coil and v the neutron
velocity. Considering a neutron with spin along y-axis entering the NRSE-coil when
the rotating field is along the z-axis, then the effect of such a ’π-flip’ is to change the
spin to the −y axis. Back in the laboratory reference frame one can describe the effect
of a ’π-flip’ on a neutron with a general spin orientation in the precession plane given
by the angle φ0 to the z-axis by the resulting angle φ. This resulting angle, given in
terms of the spin phase φ, depends on the phase of the rf-field φ1 and the time spent
in the rf-field. It is given by

φ = φ0 + 2(φ1 − φ0) + ωt = 2φ1 + ωt− φ0 = 2ωt+ ω
l

v
. (1.71)

To determine the phase accumulated at the sample position one has to consider two
of these flippers with a distance L between each other. Therefore one has to insert
the phase accumulated after the first NRSE-coil as initial phase φ0 for the second
NRSE-coil. The phase after the primary spectrometer arm then reads

φA = 2φ2 + ωt− (2φ1 + ωt− φ0) = φ0 + 2(φ2 − φ1) (1.72)

and the phase change or precession angle is only given by the difference of the phases
of the oscillating field

∆φ = 2(φ2 − φ1). (1.73)

These phases are locked and therefore φ2 is given by the neutron flight time in the
precession region between the NRSE-coils. Thus, one can express the phase difference
by

∆φ = 2(φ2 − ω
L

v
)− 2φ1 = ω

L

v
= 2

γB0L

v
. (1.74)

Comparing with Eq. (1.57) shows that traveling through the precession region consist-
ing of two NRSE coils with constant fields B0 in distance L gives twice the precession
angle than traveling through a magnetic field region of length L and field strength
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B0, as in classical NSE. Therefore the description of NRSE is analogous to the case
of NSE when considering the double field integral and the spin echo time for the case
of NRSE can be written as

τNRSE =
2~γB0L

mv3
=

2~ωL
mv3

= 2τNSE (1.75)

1.4.3. Modulation of Intensity with Zero Effort (MIEZE)

Modulation of intensity with zero effort (MIEZE) is resonant spin echo technique.
The MIEZE setup, shown in Fig. 1.7 (a), consists of two NRSE coils (A and B) at
the beginning and the end of the primary precession region. In contrast to NRSE
these coils are run at different frequencies ωA and ωB and corresponding static fields
BA

0 and BB
0 , while still performing a ’π-flip’. The distance between the resonant coils

is given by L1, the distance between sample and detector by L2 and the distance
between the last NRSE-coil and the sample is given by LS. The neutron precession
angle before coil A is φA = 0 and after the coil given by

φA′ = 2ωAtA − φA = 2ωAtA, (1.76)

where tA is the time of arrival at the coil. The precession angle after the second coil
is then given by

φB′ = 2ωBtB − φB = 2ωB(tA +
L1

v
)− 2ωAtA = 2(ωB − ωA)tA + 2

ωBL1

v
. (1.77)

The spin phase after the second coil depends on both the time of arrival at coil A
and the velocity of each neutron, therefore a physical meaning of φB′ is not obvious.
However, by measuring φB′ at a certain point C at a distance L2 all velocity dependent
phase factors cancel out as mentioned before, and an oscillating signal is observed.
The time of arrival at C is given by

tC = tA +
L1 + L2

v
. (1.78)

And φB′ = φC can be expressed by tC as

φC = 2(ωB − ωA)

(
tC −

L1 + L2

v

)
+ 2

ωBL1

v

= 2(ωB − ωA)tC +
2

v
(ωBL1 − (ωB − ωA)(L1 + L2)) . (1.79)

By choosing
ωBL1 = (ωB − ωA)(L1 + L2) (1.80)

all velocity dependent phase factors cancel out and an oscillating signal is observed
when placing a spin analyzer somewhere between the second coil and the detector.
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Figure 1.7.: (a) Schematic drawing of a MIEZE spectrometer. The neutron beam
enters the spectrometer from the left side and passes the polarizer, the
precession region and the analyzer until it reaches the detector. Panel
(b) and (c) show the kinetic and potential energy of the eigenstates χ↑
and χ↓ as function of the neutron flight path. In panel (d) the flight time
difference ∆t of the eigenstates χ↑ and χ↓ as function of the neutron flight
path are shown. The spin echo time τMIEZE is given by the flight time
difference ∆t at the sample position. Taken from Ref. [66].
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The spin phase at position C is then given by

φC = 2(ωB − ωA)tC (1.81)

To measure the phase φC , one has to measure the intensity transmitted through the
analyzer. It is given by the cosine projection of the polarization on the analyzer axis.
Hence, the evolution of the spin phase in time is translated by the analyzer into a
intensity oscillation in time and can be written as

IC(t) =
I0

2
(cos 2(ωB − ωA)t+ 1) = I0 cos2(ωB − ωA)t. (1.82)

The distance dπ on which the phase of the oscillating signal described by Eq. (1.82)
changes by π is

dπ =
π

ωB − ωA
· v. (1.83)

In order to observe the oscillation in time the effective distance deff, on which neutrons
are converted in the detector, has to be much smaller than dπ.

For a monochromatic beam the oscillation Eq. (1.82) is not suppressed by an en-
velope and can be measured everywhere behind the analyzer. In case of a finite
wavelength distribution f(v) with a mean width ∆v, the intensity at a distance ∆
away from the focus point can be expressed by

IC(tC) =
I0

2

∫
dvf(v)

(
cos

(
2(ωB − ωA)

(
tC +

∆

v

))
+ 1

)
. (1.84)

For an estimate of the mean width ∆̄ of the envelope one assumes that 2(ωB −
ωA)∆/v ≈ π. Then the mean width is in first order given by

∆̄ =
πv

∆v
v

2(ωB − ωA)
. (1.85)

Now a sample described by the scattering law S(ω) behind the second NRSE coil
at a distance LS to the detector is introduced (figure 1.7). We assume quasi elastic
scattering with small energy transfers (~ω � 1

2
mv2). The small energy transfer results

in a change of the arrival time at the detector given by

∆t =
~ωLs
mv3

, (1.86)

thus reducing the contrast of the intensity oscillation. Compared to Eq. (1.82) one
obtains

IC(tC) =
I0

2

∫ (
cos 2(ωB − ωA)

(
tC +

~ωLs
mv3

)
+ 1

)
S(ω)dω. (1.87)
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The symmetry of S(ω) allows to rewrite Eq. (1.87) by

IC(tC) =
I0

2

∫ (
cos 2(ωB − ωA)tC + cos 2(ωB − ωA)

~ωLs
mv3

+ 1

)
S(ω)dω (1.88)

and therefore, as in the case of spin echo, to separate the instrumental and the sample
part. All information about the sample is contained in the the MIEZE contrast C in
the amplitude of the oscillation

C =

∫
S(q,ω) cos(ωτMIEZE)dω. (1.89)

Again one can define a characteristic time measuring the resolution of the spectrom-
eter, the MIEZE time τMIEZE which is given by

τMIEZE =
h

m
· LS(ωB − ωA)

v3
=

m2

πh2
· LS(ωB − ωA)λ3. (1.90)

In MIEZE, the contrast C takes the role of the polarization P in NSE or NRSE.
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CHAPTER 2

Experimental Methods

The measurements presented in this thesis were performed at two distinct SANS in-
struments: SANS-1 @ Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany
and SANS-II @ Paul Scherrer Institut (PSI) in Villigen, Switzerland. All studies with
polarized neutrons, especially spin echo measurements and additional SANS measure-
ments were carried out at the neutron resonance spin echo spectrometer RESEDA @
MLZ. RESEDA is not a distinct SANS instrument, therefore different modifications
were realized to improve the capability of performing experiments with small scatter-
ing angles. Furthermore, the RESEDA setup was improved to realize MIEZE mea-
surements in a standardized way. A new NRSE technique called longitudinal NRSE
was implemented to increase the dynamic range and the resolution of RESEDA. The
spherical neutron polarimetry device MiniMuPAD was improved to achieve higher
resolution and less background.

The chapter starts with a description of the new MiniMuPAD, followed by a dis-
cussion of the improvements realized at RESEDA and closes with a description of the
data treatment in spin echo.

2.1. Spherical Neutron Polarimetry with
MiniMuPAD

The MiniMuPAD (Mini Mu-Metal Polarization Analysis Device), introduced in Sec.
1.3.2 is a very small setup capable to perform full spherical neutron polarimetry
(SNP). Compared to the existing devices CryoPAD andMuPAD the complete MiniMuPAD
setup is very compact. MiniMuPAD was constructed to be used as an inset in a
standard top-loading Closed Cycle Cryostat (CCR) as used for experiments at the

35



Experimental Methods

Cryostat

PC2

PC1

PC4

PC3

S

Φ

NW

CB

MM

P
n A D

(a)

(b) (c)

Figure 2.1.: Schematic depiction of the miniaturized spherical neutron polarimetry
device MiniMuPAD. (a) Schematic overview of the complete setup with
cryostat, polarizer (P), analyzer (A), and detector (D). (b) Close-up view
of the SNP device, as composed of the coil bodies (CB) with their neu-
tron window (NW). The coils are surrounded by a µ-metal yoke (MM).
(c) Orientation of the precession coils (blue arrows), the resulting local
magnetic field (red arrow), and sample (S). The picture is taken from
Ref. [15].

MLZ. The design allows a very simple implementation of a SNP measurement option
at different polarized instruments and especially at imaging beam lines where small
distances between sample and detector are crucial in order to reach a high spatial
resolution.

2.1.1. First generation MiniMuPAD

The MiniMuPAD has a maximum diameter of 48mm and was designed to be inserted
directly into a cryostat with an internal diameter of 50mm. Fig 2.1 (a) gives an
overview of the setup. The polarized neutron beam can reach the MiniMuPAD and
the sample mounted inside, either through a zero field region or in a weak guide field.
For the spin manipulation two precession coils before (PC1 and PC2) and two after
the sample (PC3 and PC4) are used. The coils produce magnetic fields as indicated
by the blue arrows in Fig. 2.1 (c), perpendicular to the neutron beam. PC1, PC2 and
respectively PC3, PC4 are wound directly on top of each other. In this configuration
each coil assembly can produce a magnetic field of arbitrary strength and direction
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Figure 2.2.: Construction drawing of the second generation MiniMuPAD. In panel (a)
the MiniMuPAD with closed Mu-Metal housing is shown. The setup is
62mm high and the width is 60mm. In beam direction the MuMetal box
extends over 39mm. Panel (b) shows the bodies of the precession coils.

in the plane perpendicular to the neutron beam. Such a field allows to rotate the
incoming and outgoing polarization towards any direction [50]. Each of these two
coil sets is surrounded by a µ-metal yoke (cf. (MM) in Fig. 2.1 (b)), to shortcut the
magnetic fields of the coils and hence imitate infinite long coils. The sample region is
shielded from external stray fields or the earth magnetic field by the µ-metal yokes. A
distance of only 12mm between incoming and outgoing precession devices combined
with shielding, allows to perform polarization analysis with an accuracy of better
than 3◦.

2.1.2. Second generation MiniMuPAD

The design and simulation of the second generation MiniMuPAD was started during
the course of the Bachelor thesis of F. Haslbeck [67]. A newly available closed cycle
cryostat with a 80mm diameter sample tube allowed to increase the size of the setup
to a maximum diameter of 78mm. The basic concept focused on the optimization of
the setup towards SANS and imaging experiments. To increase the accuracy of the
spin alignment a full MuMetal housing was designed as shown in Fig. 2.2 (a) and
(b). The geometry of the MuMetal shielding is optimized by means of finite element
simulations using COMSOL [68]. In contrast to the first MiniMuPAD, the precession
coils are separated to allow an easier adjustment of the SNP measurement. All coils
are made of bare aluminum wire to reduce background from small angle scattering
and increase the transmission. We expect a reduction of the small angle scattering
background by factor of ten when comparing to the results presented later in Fig. 2.5
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for the rf-coils of the NRSE setup. The sample can be rotated between the precession
coils about the vertical axis in the available sample space of 50mm×50mm×10mm.
A neutron beam of maximum 26mm× 27mm can pass the setup.

2.1.3. Outlook

The third generation MiniMuPAD is planned to carry out SNP experiments under
large scattering angles 0 ≤ 2θ ≤ 100◦. The most crucial part for this setup is the
design of the curved precession coils as they cannot easily be wound. A first approach
uses spark erosion to produce these coils.

2.2. Improvements of RESEDA

TheREsonance SpinEcho forDiverseApplications beamline RESEDA [69] is located
in the neutron guide hall west of the Heinz Maier-Leibnitz Zentrum (MLZ). The neu-
tron guide NL5-S provides the instrument with a cold wavelength spectrum ranging
from 3 to 10Å. A tiltable mechanical velocity selector allows adjusting the width of the
triangular wavelength distribution from 10 to 20%. The original setup of RESEDA
consists of one primary and two secondary double MuMetal shielded spectrometer
arms, which allow to study two scattering vectors at once, up to qmax = 2.5Å−1. For
the quasielastic measurements NSE and transversal NRSE are employed, covering a
dynamic range of 0.001 to 5 ns. The constant B0-field used in the transversal NRSE
setup is aligned vertical, i.e. perpendicular to the neutron beam direction as origi-
nally proposed by Golub and Gähler. Recently, a so-called longitudinal NRSE option
was made available at RESEDA [41, 70] were the B0-field is applied parallel to the
neutron beam. This new technique increases the dynamic range at RESEDA by at
least three orders of magnitude.

2.2.1. Improvements of the longitudinal NRSE setup

The working principle of longitudinal NRSE was first demonstrated by W. Häußler
et al. by combining a NSE and a longitudinal NRSE spectrometer arm at IN11 (ILL)
[71, 72]. A first complete LNRSE spectrometer was realized at RESEDA as shown
in Fig. 2.3. The fundamental difference to transversal NRSE is the alignment of the
B0 field along the beam direction, reproducing the very same field configuration as
in classical NSE instruments. In this field configuration well established correction
elements from NSE, e.g. Fresnel and Pythagoras coils, can be used. These correction
elements allow to correcting for depolarizing effects due to field inhomogeneity and
beam divergence.

One of the biggest advantages compared to transversal NRSE and especially NSE
is the fact that non-divergent neutron beams do not require any correction for de-
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Figure 2.3.: Longitudinal NRSE setup as realized at RESEDA. The neutrons path the
spectrometer arm from left to right. Primary and secondary spectrometer
arm are identically. Each arm consists of two longitudinal NRSE coils
with solenoids in between. A longitudinal guide field is sustained by
several large copper coils. The analyzer is placed in the detector housing
on the right.
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polarizing effects originating from field inhomogeneity. The correction for divergent
beams is smaller than in NSE. Non-divergent neutrons passing a solenoid accumulate
different field integrals J(r) depending on the distance r to the symmetry axis of the
solenoid. To first order, the field integral is given by

J(r) ≈ B0L

(
1 +

r2

2RL

)
(2.1)

where B0 is the magnetic field strength at the symmetry axis of the solenoid, L its
length and R the radius. The largest differences in J for neutrons with different r are
accumulated at the entrance and exit of the solenoid. The difference between LNRSE
in NSE is that in LNRSE all neutrons experience a π flip at the center of the solenoid.
The solenoids are designed symmetrically with respect to the center, hence the field
integral accumulated on each side are the same for non-divergent neutrons. Due to
the π-flip in the center the inhomogeneity subtract each other in the accumulated
Larmor phase.

This self-correction allowed in the first test experiments already to measure a spin
echo at an effective field integral of Jeff = 240mTm without any correction elements.
Today’s state of the art spin echo spectrometers, e.g. IN15, IN11 and JNSE, are
operated at about twice the field integral. The longitudinal field geometry allows to
implement longitudinal guide fields between the NRSE coils, to conserve the precession
plane, hence there is no need for magnetic shielding. Furthermore, the method of field
integral subtraction can be applied [73] to reach infinitively small spin echo times.
This method is very important, as the resonant flip coils cannot be operated at very
small frequencies, without loss of polarization. LNRSE and TNRSE can be used in
MIEZE mode.

2.2.2. Improvements of the SANS setup

For MIEZE studies it is very important to improve measurements under small scatter-
ing angles. The setup at RESEDA was improved in terms of the beam collimation and
the small angle scattering background. To perform SANS and MIEZE measurements
a new secondary spectrometer arm has been constructed which allows to change the
sample to detector distance L2 as introduced in Fig. 1.2, from 0.5 to 5m. The new
arm is shown in Fig. 2.4 can also support the standard transversal NRSE modules.
Another step was to define the collimation, therefore new slits in front of the spec-
trometer arm have been mounted: two pinholes with a diameter of d = 5mm, 10mm
and a slit with 10mm · 40mm. The sample aperture can be adjusted by different
slits directly in front of the sample. In contrast to a dedicated SANS instrument the
length of the collimation is fixed at RESEDA as the precession region is required for
the quasielastic measurements. The collimation has a length of about 4m.
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Figure 2.4.: New modular spectrometer arm at RESEDA with MIEZE/SANS option
mounted. The two dimensional CASCADE detector is placed in the blue
box next to the sample position. A optical rail in the center of the arm
allows to change the sample to detector distance and to mount flight
tubes. The whole arm can be moved on air pads to allow large scattering
angles 0 ≤ 2θ ≤ 50◦.

A very important improvement was the reduction of parasitic background scatter-
ing in the small angle regime. Therefore a flight tube was installed in the primary
spectrometer arm between the NRSE coils. Within this flight tube a slit system com-
prised of cadmium pinholes with a diameter of d = 50mm at a distance of 300mm
from each other is mounted. These pinholes remove neutrons from the beam which do
not hit the sample position. Absorbing these neutrons furthermost from the sample
as possible reduces the possibility that they may lead to a background signal. To
ensure the absorption the inside of the tube is covered with cadmium and boron.

Besides the small angle scattering background generated from air scattering, the
contribution due to material in the beam is very important. While in a dedicated
SANS instrument the amount of material in the beam (i.e neutron windows) is re-
duced as much as possible, in case of RESEDA there are essential components like the
NRSE coils which have to be in the beam. The influence of the different components
strongly depends on the utilized material and position in the spectrometer. Back-
ground from components at the beginning of the precession region is already blocked
in the collimation, while the background from those components directly placed in
front of the sample, i.e. second NRSE coil, MEZEI flipper and for MIEZE spin ana-
lyzer cannot be absorbed easily. To quantify the contribution of these components to
the background, a small angle scattering study of different coils used at RESEDA was
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Table 2.1.: Parmeters of the different coils tested at SANS-1.

abbr. coil transmission description used in

N1 TNRSE coil 0.933± 0.002 new design, anodized aluminum, Kapton foil TNRSE

N2 TNRSE coil 0.864± 0.002 new design, aluminum coated with Paramicron,
Kapton foil

TNRSE

A1 TNRSE coil 0.958± 0.002 old design, uncoated aluminum, Kapton foil TNRSE

CC coupling coil 0.965± 0.002 coated aluminum TNRSE

RF rf-coil 1.001± 0.002 uncoated aluminum both

RFA rf-coill 0.992± 0.002 anodized aluminum both

MF Mezei flipper 0.966± 0.002 anodized aluminum LNRSE

SC Fresnel coil 0.901± 0.002 anodized aluminum, Kapton foil LNRSE

performed at SANS-1 @MLZ. The study covers a q-range from 0.01Å−1 ≤ q ≤ 0.1Å−1

using neutrons with a wavelength of λ = 6Å. In Tab. 2.2.2 a summary of all studied
coils and their transmission is given. Figure 2.5 shows the radial q dependence of the
scattering intensity. The intensities given are in absolute units per coil and pixel.

The scattering is very large in the regime up to about 0.03Å−1, while towards larger
q-values the scattering is governed by isotropic incoherent scattering and reduced by
a factor of 100. Concerning the small angle scattering longitudinal and transversal
NRSE differ in the point that the B0 coils of the former are not penetrated by the
neutron beam while in the later the windings are directly in the beam. Therefore
different TNRSE coils have been studied, especially the newest design, which also
allows large tilt angles. These coils N1 and N2 differ in their coating. The B0 coil
with anodized windings produces a factor of two less background for q < 0.03Å−1

than the coils with Paramicron coating. In case of the rf-coil the difference is even
larger, by using pure aluminum in contrast to anodized aluminum the scattering is
reduced by a factor 100. In a first step all rf-coils were replaced by coils wound from
pure aluminum wire.

In the longitudinal NRSE setup especially the Fresnel coils are important for very
high resolution. The Fresnel coils produce very strong small angle scattering back-
ground. It is very important to improve these coils or even to make them dispensable
by means of better main coils.

Another important improvement was the implementation of a data structure to
handle SANS measurements and software tools to treat these data. The software
package covers functions to allow an easy evaluation of radial q-scans or scans of
other typical parameters, i.e. temperature, field, or rocking angle in multi-dimensional
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Figure 2.5.: Radial q dependence of the small angle scattering from different coils. The
intensity is normalized to water and given as counts per pixel and coil.
N1 anodized new NRSE coil, N2 coated with paramicron new NRSE coil,
A1 anodized old NRSE coil, CC coupling coil made of coated aluminum
wire, RF rf-coil made of pure aluminum wire, RFA anodized aluminum
wire, MF Mezei flipper, SC Fresnel coil.

regions of interest.

2.2.3. Improvements of the MIEZE setup

The main difference for the equipment between a NRSE and a MIEZE setup is that for
MIEZE a detector with a high time resolution (better than ∆t = 1000 ns) is needed.
At RESEDA a position sensitive CASCADE detector [74, 75] with an active area of
200 × 200mm is used for the MIEZE measurements. In this detector six foils coated
with boron convert the neutrons. The thickness of the boron layers varies between 0.8
and 1.5 µm and their distance is of the order of 4.4mm. The electronic time resolution
is ∆t = 50 ns. Besides the time resolution which is even much better than demanded
also the thickness of the layers is important. Considering Eq. (1.83) the effective thick-
ness deff of the converting layer should be smaller than deff � 0.4mm for a neutron
wavelength of λ = 8Å and a MIEZE frequency of ωMIEZE = (ωB−ωA) = 2π ·600 kHz,
otherwise the MIEZE contrast cannot be observed.

The CASCADE detector allows to record a MIEZE signal on each foil separately
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which increases the efficiency when combining all foils to about 70% (λ dependent)
of that of a standard 3He-based detector. For the combination of the MIEZE con-
trast from different foils one has to consider that the MIEZE signal on different foils
has different phases. Furthermore the wavelength distribution at RESEDA with a
width between ∆λ/λ = 0.1 and 0.2 reduces the spatial extent of the MIEZE group
as described in Eq. (1.85). Considering a typical spin echo time with ωMIEZE =
(ωB−ωA) = 2π ·0.6 kHz and a wavelength spectrum centered at λ = 8Å with a width
∆λ = 0.1 − 0.2 the spatial extent varies from 2mm to 1mm. The spatial extent of
the MIEZE group is much smaller than the distance between the foils and therefore
will not allow measuring the MIEZE signal on all foils at the same time.

In MIEZE all spin precession is carried out in the primary spectrometer arm, there-
fore no spin manipulating device has to be supported by the secondary spectrometer
arm. The only crucial requirement is the precise positioning in distance and orienta-
tion of the detector with respect to the second NRSE coil. A central optical rail on the
new modular SANS arm allows a precise and reproducible positioning of the detector.
The distance between the second NRSE coil and the detector, L2, can be adjusted
by better than 1mm. A vertical translation stage allows adjusting the detector in
height. The possibility to tilt and rotate the detector is planned.

Misalignments of the detector may result in flight path differences and therefore
phase differences of the MIEZE signal. These phase differences can reduce the contrast
when integrating over too large detector regions. Fig. 2.6 shows the phase of the
MIEZE signal for each pixel on the detector. The data were measured by placing a
standard graphite sample at the sample position and evaluating the MIEZE signal for
each pixel separately. A perfectly aligned detector will show circular rings. The width
of these rings decreases with increasing MIEZE frequency. The asymmetry of the
phase map presented in Fig. 2.6 may origin from different effects: (1) misalignment
of the detector, (2) sample shape and (3) a curvature of the detecting foil in the
detector.

As for the SANS measurements the software package available at RESEDA was
extended by a tool for the visualization of the MIEZE data. The MIEZE panel allows
to display the data with respect to all four dimensions of a typical MIEZE data set:
detector or pixel, foil, τMIEZE and time channel.

For future studies the MIEZE option at RESEDA has to be improved to carry out
measurements with a fixed phase of the MIEZE echo at all spin echo times. A fixed
MIEZE phase following follow the change of the phase due to the scattering process
at the sample and to improve the statistic and accuracy of measurements with low
contrast or count rate. In the latter case one can impose the phase for the fit of
the MIEZE echo. Fitting with a fixed phase significantly increases the accuracy of
the resulting contrast. To implement a phase fixation all four frequency generators
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Figure 2.6.: Typical phase map of a MIEZE measurement recorded at different MIEZE
frequencies: (a) 4 kHz, (b) 108 kHz, (c) 313 kHz and (d) 618 kHz.

have to be synchronized and operated in sync mode. The control software has to be
changed in order to send a burst signal before each MIEZE count.

2.2.4. MIEZE measurements in strong magnetic fields

As discussed in section 1.4 an outstanding advantage of the MIEZE technique with
respect to classical NSE is the possibility to perform measurements under depolariz-
ing conditions at the sample position, as for example strong magnetic fields. In case
of the magnetic systems studied within this thesis magnetic fields are very important
to tune their properties. A lot of effort was put to realize high resolution MIEZE
measurements with strong magnetic fields. First proof of principle experiments [41]
were performed using a cryogen free 5T magnet optimized for small angle scattering
with an active stray field compensation. This magnet can be used with magnetic
fields parallel and perpendicular to the neutron beam. It was combined with the
transversal MIEZE setup as shown in Fig. 2.7 (a). The second magnet used was a
17T helium cooled superconducting magnet [76] without stray field compensation.
This magnet only allows applying the magnetic field parallel to the neutron beam
and it was combined with the longitudinal MIEZE setup as shown in Fig. 2.7 (b).
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Figure 2.7.: MIEZE and magnetic field setup at RESEDA. (a) TMIEZE setup as com-
bined with an actively shielded 5T SANS magnet from the MLZ sample
environment group. (b) LMIEZE setup combined with the Birmingham
17T magnet [76].

First results from measurements in the direct beam with the 5T magnet are shown
in Fig. 2.8 with parallel (a) and perpendicular magnetic field (b). The distance
between both coils is L1 = 2.641m and the distance between the second coil and
the detector L2 = 3.08m. The sample detector position was LSD = 1.38m and the
neutron wavelength was set to λ = 8.33Å. A solenoid around the spin analyzer was
used for the longitudinal sample field to compensate the remaining stray fields which
disturb the coupling of the neutron spin at the exit of the mu-metal shielding. In
both geometries, with parallel and perpendicular field no reduction of the resolution
between zero field and the maximum field of 5T is observed. The MIEZE contrast
remains at the value observed in zero field.

The results of the measurements with the 17T magnet, in combination with the
longitudinal MIEZE setup are shown in Fig. 2.8 (c). These measurements were
performed using a neutron wavelength of 10.5Å. The distance between the LNRSE
coils was set to L1 = 1.925m, the distance between last coil and detector was set
to L2 = 5.000m and the sample to detector distance to LSD = 2.6m. The MIEZE
contrast shown in Fig. 2.8 (c) at the highest MIEZE time is well above the commonly
defined resolution limit of 1/e. Extrapolating towards this limit suggests a resolution
of about 20 ns. To reach these high MIEZE times frequencies slightly above 1MHz
and effective magnetic fields of B0 ≈ 70mT were applied in the LNRSE coils.
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2.3. Measuring and normalizing S(q,τ ) data sets

In the following section the reduction of spin echo data is discussed. At the begin-
ning a description of how the polarization or contrast is measured is given. Here it is
important to note that magnetic samples may lead to a more complex measurement
routine. In the next step different procedures to normalize the polarization or con-
trast are described to obtain S(q,τ)/S(q,0). The normalized intermediate scattering
function can be applied to a physical model after the instrumental resolution is con-
sidered. Furthermore a description is given how different data sets can be combined
or background can be subtracted and how to combine data on a position sensitive
detector.

2.3.1. Recording S(q,τ)

The central task of recording a S(q,τ) data set is to quantify either the polarization
P as in NSE and NRSE or the contrast C as for MIEZE. It is not possible to measure
polarization or contrast directly but the projection of the polarization/contrast onto
an analyzer axis. For the rest of this section polarization and contrast are used syn-
onymously. The intensity at the exit of the analyzer is connected to the polarization
by

I =
I0

2
(1 + P · cos(φ(∆J))) , (2.2)

and can be recorded as a function of the additional spin phase φ, introduced through a
field integral ∆J . The additional field integral ∆J is given by the field integrals in the
primary J1 and secondary J2 spectrometer arms through ∆J = J2−J1. The intensity
as function of the additional field integral is called spin echo group and can be recorded
in case of NSE/NRSE by an asymmetric scan of the field integral in one spectrometer
arm, while in MIEZE the frequency in one NRSE coil of the primary spectrometer
arm is changed. The so called spin echo point is the point where ∆J = 0. Using
Eq. (1.64) and considering the effect of the wavelength distribution of the incoming
neutron beam f(λ) on the polarization the spin echo group reads

I(τ,∆J) =
I0

2

1 +

∫
dλf(λ) · cos(φ(∆J))︸ ︷︷ ︸
envelope and spin echo

×
∫

dωS(q,ω) cos(ωτ)︸ ︷︷ ︸
sample physics

 . (2.3)

The integration over the wavelength distribution describes the envelope of the spin
echo group and the oscillation frequency is given by the the cosine of the additional
field integral. The physics of the sample is given by the second integral by defining
the amplitude of the oscillation i.e. the polarization. To discuss the effect of the
wavelength distribution we consider a purely elastic scattering process by setting the
second integral to unity. A monochromatic neutron beam results in a spin echo
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Figure 2.9.: Spin echo group for a monochromatic (a) and triangular shaped (b) wave-
length distribution. The triangular distribution is centered at λ = 5Å
with a width of ∆λ/λ = 0.1. The blue markers in both panels indicate
the points, separated by a phase of π/2, at which the intensities in the
4-point-method is measured.

group with no reduction of the amplitude as shown in Fig. 2.9 (a). At RESEDA
a mechanical wavelength selector is used to select a certain wavelength λ with a
wavelength distribution ∆λ/λ = 0.1 − 0.2. The transmitted wavelength distribution
has a triangular shape with a full width at half maximum ∆λ. Considering a triangular
shaped wavelength distribution the spin echo group is given by

I(∆J) =
I0

2

(
1 + cos(φ∗(∆J)λ0)

sin2(1
2
φ∗(∆J)∆λ)

(1
2
φ∗(∆J)∆λ)2

)
(2.4)

with φ∗(∆J) = φ(∆J)/λ0. Figure 2.9 (b) shows a spin echo group with a typical
width of the wavelength distribution ∆λ/λ = 0.1. Eq. (2.4) shows that with increas-
ing width of the wavelength distribution the width of the spin echo group is reduced.
To get access to the physics of the sample one has to precisely determine the ampli-
tude of the oscillation. The amplitude is observed by measuring several points on the
spin echo group and fitting a cosine to these points. In a standard measurement it
is not necessary and efficient to measure the full spin echo group as shown in Fig.
2.9. When considering statistical errors and the reduction of the amplitude due to
the wavelength distribution for large ∆J it is most efficient to use the so called 4-
point-method [77]. In this method four points separated by π/2 are measured starting
with φ(∆J) = −π/2 as shown by the blue circles in Fig. 2.9. The frequency of the
oscillation is defined by the mean wavelength λ0 and instrumental parameters and
therefore precisely known. This gives a reliable result on both the amplitude and the
phase of the spin echo group.

The determination of the echo amplitude is getting more difficult when magnetic
structures are studied which have polarizing effects as for example MnSi [77] or
Ba2CuGe2O7 [78]. In these cases the 4-point-method may not give accurate results.
Scattering from the helical order of MnSi polarizes the neutron beam, as will be
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discussed in Sec. 4.2. This changes the spin echo group in two ways: firstly the
maximum reachable polarization is only 50% of the initial polarization and secondly
the presence of a spin rotation group may interfere with the spin echo group. After
passing through the primary spectrometer arm, the polychromatic neutron beam is
completely depolarized. The sample repolarizes the beam and with gradually increas-
ing the field integral in the secondary spectrometer arm J2 the so called spin rotation
is recorded at the detector. When further increasing J2 the spin echo group occurs
at the spin echo point J1 = J2. Fig. 2.10 (a) shows the spin rotation and spin echo
group in MnSi where the blue curve is a fit to the data. The spin rotation group
does not depend on the spin echo time and does not contain information of the spin
dynamics. For small spin echo times the spin echo and the spin rotation group may
overlap resulting in a beating of the signal. In this case it is not possible to extract
a meaningful amplitude of the spin echo group by means of the 4-point-method. To
overcome this problem several points have to be measured and the fit parameters for
the spin rotation group have to be fixed for all τ .

An even more complex situation occurs when several magnetic peaks overlap due
to a coarse q resolution. This is the case for Ba2CuGe2O7 which has a cyclodial
antiferromagnetic ground state below ≈ 3K. The projection of this structure with
respect to the scattering vector Q has a helical contribution and therefore polarizes
the beam. In the ground state two pairs of incomensurate satellite reflections at (1±
ξ,∓ ξ,0) and (1∓ ξ,± ξ,0) with ξ = 0.0273 are observed. The small incumensarability
may not allow to separate all reflections in q space. The slightly different q of the
overlapping cycloidal domains results in slightly different oscillation frequencies and
therefore in a beating of both the spin rotation and spin echo group as shown in Fig.
2.10 (b). For more details see Ref. [78]. This complex structure of the spin echo
group does not allow using the 4-point-method.

2.3.2. Normalizing S(q,τ)

The expression “normalization” describes how the intermediate scattering function
S(q,τ)/S(q,0) is determined from the spin echo group as shown in Fig. 2.9. From the
fit to the echo group the amplitude A, the average count rate y0 and the echo phase
φ0 are obtained. Here we discuss three different methods to evaluate S(q,τ)/S(q,0).

The first procedure directly identifies the amplitude of the echo with the normal-
ized intermediate scattering function S(q,τ)/S(q,0) = A(τ). For this approach the
average count rate has to be the same for all spin echo times. This method has the
smallest statistical uncertainty and is often used to obtain a first overview of the data
and check their consistency.

In the second methods S(q,τ)/S(q,0) is defined as the polarization of the echo, i.e.
the amplitude divided by the average count rate S(q,τ)/S(q,0) = A(τ)/y0(τ). The
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Figure 2.10.: (a) Spin rotation and spin echo group in MnSi taken from [77]. (b) Spin
rotation and spin echo group of the cycloidal structure in Ba2CuGe2O7

taken from [78]. The blue curves are fits to the data.

polarization gives the most reliable results and is the normalization which is used for
all spin echo data discussed in this thesis.

The third procedure is also based on the polarization of the echo but all data
are additionally divided by the polarization at τ = 0. This procedure can be used
when the initial polarization of the measurement is different to the resolution. Po-
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larizing samples may lead to the half polarization in the echo, as discussed in the
previous section. The intermediate scattering function is given by S(q,τ)/S(q,0) =
(A(τ)/y0(τ))/(A(0)/y0(0)).

2.3.3. Correcting for instrumental resolution

The next step to extract S(q,τ)/S(q,0) from the measured data after the normaliza-
tion, as described in Sec. 2.3.2, is to correct for the instrumental resolution. The
instrumental resolution is the polarization or contrast observed when measuring an
elastic scatterer. A typical resolution curve recorded with the longitudinal MIEZE
setup is shown in Fig. 2.11 (a) (red circles). At large τ the resolution decreases due
to inhomogeneity in the precession field. The small dip at 0.1 ns is due to imperfect
tuning. In order to correct for these decreases and to obtain only the decay intro-
duced by the sample, the data (green boxes in panel (a)) have to be divided by the
resolution. The result is shown in panel (b).

Several effects influence the shape of the resolution curve. The reduction of contrast
and polarization at large spin echo times may be due to field inhomogeneity in the
B0 field of the resonant flip coils, divergence of the neutron beam, the phase front in
the beam cross section and in MIEZE the shape of the sample. The loss for the small
spin echo times may be due to fail of the rotating wave approximation [79] at small
frequencies. Therefore it is very important to perform the resolution measurement
under the same conditions as the measurements with the sample i.e. same wavelength,
slits and tuning of the spectrometer.

2.3.4. Summation and subtraction of data sets

The summation and subtraction of different data sets becomes important when dif-
ferent spin echo measurements are added due to low statistics or a background mea-
surement needs to be subtracted. There are in general two ways to add or subtract
spin echo data sets. Both methods can be applied to NSE, NRSE and MIEZE

The first method combines the raw counts and the spin echo is fitted to the data
after the summation. This approach is only possible if for both data sets the phase
of the spin echo is the same for each spin echo time τ . If this is not the case the
combination may destroy the cosine signal.

The second strategy to combine spin echo data sets is to first fit the spin echo data
to the raw counts and then afterwards combine the echo amplitude and the average
count rate according to the monitor count rate or measurement time of each data
set. This method is stable even if the phase of the spin echo signal varies between
data sets. It can only be applied if the statistic for each data set is already sufficient
enough to allow a reasonable fit to the spin echo.
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Figure 2.11.: Resolution correction of spin echo data. Panel (a) shows the resolution
curve measured with a graphite sample (red circles) and the critical
scattering from iron at TC (green squares). The data are measured with
the longitudinal MIEZE setup at RESEDA. Panel (b) shows the data
from iron shown in panel (a) after correcting for the resolution.
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2.3.5. Grouping regions when using a position sensitive
detector

For MIEZE measurements a position sensitive detector, e.g the CASCADE detector
as described in Sec. 2.2.3, can be employed to cover large q-regions. The study
of dynamic processes over large scattering vectors is very important at for example
second order phase transitions (compare Ch. 3) the q-dependence of the linewidth Γ
gives important informations about the critical behavior. To employ the full detector
area similar aspects as in the previous Sec. 2.3.4 have to be considered: (1) the count
rate in each pixel or region of interest has to be large enough to allow a reliable fit to
the spin echo group. (2) When combining several pixels to one region of interest the
phase of the spin echo should not vary to much, otherwise a fit will give zero contrast.
To account for these effects two types of “grouping” routines are implemented

pregrouping here the count rate of all pixels in one region of interest (or mask) are
summed, the spin echo is then fitted to the sum

postgrouping the spin echo is fitted in each pixel separately; all amplitudes and
averages of those pixels belonging to one region of interest or mask are summed.

Both routines can be combined to increase the statistics by first pregrouping the whole
detector in a certain array, e.g. 5×5 pixels or 10×10 pixels, and afterwards postgroup
the detector according to the desired q regions. It is important to note that the size
of the MIEZE group depends on the MIEZE frequency and therefore changes within
one MIEZE run as can be seen in Fig. 2.6.

2.4. Wavelength determination using resonance
spin echo

The spin echo time in all neutron spin echo techniques directly depends on the third
power of the mean neutron wavelength; therefore a precise determination is impor-
tant. Resonant spin echo techniques like NRSE and longitudinal MIEZE allow a very
accurate determination of λ by measuring the change of rf-frequency required for a
certain change in spin phase. For this measurement the spectrometer has to be set
to the spin echo point, meaning the phase accumulated in the primary spectrometer
arm φA has to be exactly the opposite of the phase accumulated in the secondary
spectrometer arm φB, i.e φA = φB. In NRSE this is realized by operating both spec-
trometer arms at the same frequency but with opposite B0-fields. For the MIEZE
setup the spin echo has to be realized within only the primary spectrometer arm.
Longitudinal MIEZE allows to use the resonant flip coils as in NRSE for the forth
precession φA and the field integral subtraction coil for the back precession φB. In
contrast to MIEZE measurements the resonant flip coils have to be operated at the
same frequency and the field integral subtraction coil between the NRSE coils is used
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as in standard NSE. The neutron spin phase change introduced by both resonant coils
(compare Eq. (1.74)) is described by

φA =
mn

h
nωALλ (2.5)

for both setups NRSE and longitudinal MIEZE. The parameter n is 2 for a π-flip
and standard NRSE coils and n = 4 for bootstrap coils (n = 1 for π/2 without
bootstrap). The phase change depends on the distance L between the NRSE coils,
their rf-frequency ωA, the neutron wavelength and on the fundamental constants i.e.
mass of the neutron mn and Planck constant h. φA can be increased to φ2π

A = 2π+φA
by increasing ωA to ω2π

A . The phase change of 2π is given by

2π = φ2π
A − φA =

mn

h
nLλ(ω2π

A − ωA) =
mn

h
nLλ∆ωA. (2.6)

This allows to determine the wavelength through

λ =
2πh

mnLn∆ωA
. (2.7)

Besides fundamental constants the wavelength determination depends only on the
measurement of the rf-coil distance L and the frequency needed for a phase change of
2π ∆ωA. The error in measuring L is of the order of σL ≈ 0.001m for typical distances
of L ≈ 2m and the error of the frequency measurement σ∆ωA

≈ 1 · 10−7 1/s. With
the given errors of the fundamental constants this allows to determine the neutron
wavelength at RESEDA with an accuracy of σλ ≈ 10−4 Å.
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CHAPTER 3

Critical fluctuations at the Curie point in Iron

Iron is the archetypal ferromagnet and a model system to study fundamental phenom-
ena like continuous phase transitions. This chapter reports a comprehensive study of
the critical dynamics around the transition from ferro- to paramagnetism in iron, em-
ploying the spin echo technique MIEZE. The results show that not only the exchange
interaction but also the dipolar interaction is needed to explain the critical dynamics
in iron. All measurements were performed at the beamline RESEDA at MLZ using
the longitudinal MIEZE option.

3.1. Introduction to the critical dynamics of dipolar
ferromagnets

The important tools to describe the critical dynamics at continuous phase transitions
are dynamical scaling theory [80, 81], mode coupling theory [82, 83] and renormaliza-
tion group theory [84]. Dynamical scaling theory directly predicts the inverse lifetime
of the critical fluctuations to assume the form Γ = Aqz, with the critical dynamic
exponent z and a constant A [85]. However, applying these concepts to the archety-
pal example of a second-order phase transition, the transition from paramagnetism
to ferromagnetism, only considering a simple Heisenberg model sometimes fails. In
isotropic bulk ferromagnets like EuO, EuS, Ni, and Fe the transition cannot be ex-
plained by only accounting for the exchange interaction. These systems exhibit a
distinct mismatch in Γ between theory and experimental results at small momentum
transfers. A deviation between theory and experiment may be overcome by not only
considering the short range isotropic ferromagnetic exchange interaction but also the
long-range dipolar interaction. The Anisotropic dipole-dipole interaction plays an im-
portant role for almost all ferromagnets, as it lifts the degeneracy between eigenmodes
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propagating longitudinal and transversal to their wave vector [86]. Large correlated
patches of spins cause an anisotropic demagnetization effect. The dipole-dipole inter-
action can be understood as a feed-back effect of the critical fluctuations for the long
wavelength limit.

Historically, the dipolar interaction was first treated as a very weak perturbation
of the simple Heisenberg Hamiltonian. The dynamic critical exponent of a three-
dimensional Heisenberg ferromagnet is z = 5/2, while the dipolar interaction leads
to z = 2 [85]. A crossover from isotropic fluctuations to fluctuations influenced
by the dipolar interactions was expected by theory, when approaching TC from the
paramagnetic phase. Evidence for such crossover was found in hyperfine interaction
experiments [87].

Nevertheless, the crossover of the critical exponent could not be observed in neu-
tron scattering experiments. All neutron scattering studies find a critical exponent
of z = 5/2. A spin echo study by Mezei et al. [38, 88, 89], extending to significantly
lower q and higher energy resolution than preceding studies, gave also no evidence for
a crossover and at the same time shows a clear deviation from the scaling function
described by P. Résibois and C. Piette [90], which considers only the exchange interac-
tion. The experimental results show a clear deviation of the temperature dependence
that cannot be explained.

Finally, E. Frey and F. Schwabl have investigated these problems by computing the
scaling functions for ferromagnets including the dipolar interaction in mode coupling
theory [91–93]. They found the cross over in the dynamical critical exponent for the
transverse linewidth from z = 2.5 to 2 to take place at smaller wave vectors than
expected and hence was not identified by neutron scattering.

The discussion of critical behavior in dipolar ferromagnets starts with an effective
Hamiltonian as introduced by Frey [94]. The Hamiltonian including short range
isotropic exchange and long range dipolar interactions reads

H =
∑
q

[
−J0 + Jq2a2 + Jg

qαqβ

q2

]
Sα−qS

β
q , (3.1)

with the lattice constant a, the exchange constant 2J and the Fourier-transform of
the spin operator given by

Sαq =
1√
N

∑
l

Sαl e
iq·xl . (3.2)

The dimensionless parameter g is the ratio of the dipolar energy (gLµB)2/a3 and the
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3.1 Introduction to the critical dynamics of dipolar ferromagnets

exchange energy 2J , multiplied by a constant factor 4πb2

g = 4πb2 (gLµB)2/a3

2J
∝ Dipolar Energy

Exchange Energy
(3.3)

with the Landè factor gL, the Bohr magneton µB and b depending on the lattice
structure: b = 1 (sc),

√
2 (bcc) and 2 (fcc). The dipolar interaction is expected

to be much smaller than the exchange interaction and therefore g � 1 [84]. The
dipolar interaction introduces an anisotropy to the spin fluctuations with respect to
their wave vector q and therefore lifts the degeneracy between the magnetization
modes propagating longitudinal to the spin direction S ‖ q and transversal to the
spin direction S ⊥ q. This effect becomes important in the region q2 + κ2 ≤ q2

D,
where κ = 1/ξ is the inverse correlation length and κ = κ0 ((T − TC)/TC)ν with
κ0 = 1.22Å−1[95] and ν = 0.627 for an isotropic 3d Heisenberg magnet [96, 97]. The
dipolar wavenumber qD measures the strength of the dipolar interaction and is given
by g = (qDa)2. The strength of the dipolar interaction qD can be inferred, e.g., from
the internal susceptibility at q = 0 χt(0,T ) = (qD/κ(T ))2 [86]. The susceptibilities for
the transversal and longitudinal magnetization modes are given by

χt = (q,T ) =
Ψ

κ2(T ) + q2
and χl = (q,T ) =

Ψ

κ2(T ) + q2 + q2
D

, (3.4)

respectively, where Ψ is a non-universal static amplitude

Ψ =
(gLµB)2

2Ja2
. (3.5)

Frey and Schwabl calculated the Heisenberg equation of motion for the two transversal
and one longitudinal modes [91] and developed a mode coupling theory. They were
able to calculate the two dimensional scaling function γα(x,y) (α =⊥ , ‖) as function of
the scaling variables x = κ/q and y = qD/q. The linewidth of the critical fluctuations
in dipolar ferromagnets obeys the scaling law

Γα(q,κ,g) = Aqzγα(x,y), (3.6)

with z = 5/2. A is a non-universal parameter which is related to the stiffness of the
spin waves. Fig. 3.1 shows the scaling function for the longitudinal and transverse
fluctuations as function of the single scaling variable x = κ/q. γα(x) is shown for
different values

ϕ = tan−1
(qD
κ

)
=
Nπ

40
(3.7)

with N = 0,1,2,...,19. The temperature dependence of N is introduced by the tem-
perature dependence of κ. Hence, increasing temperature corresponds to smaller N .
The curve with N = 1 is indistinguishable from N = 0, which is the scaling function
calculated by P. Résibois and C. Piette [90] for isotropic ferromagnets without dipolar

59



Critical fluctuations at the Curie point in Iron

Figure 3.1.: Longitudinal γL (a) and transversal γT (b) scaling function versus x =
1/qξ = κ/q calculated within the mode-coupling theory by E. Frey and
F. Schwabl [91, 93, 94]. The different curves correspond to different tem-
peratures with ϕ = Nπ/40.

interactions.

3.2. Experimental setup and sample

The spin echo measurements presented in this chapter were performed at neutron
wavelengths λ = 8.0Å and λ = 5.4Å, respectively, with the longitudinal MIEZE
option at the beam line RESEDA (MLZ) as described in Sec. 2.2.1. The first and
second longitudinal NRSE coil were placed at a distance of L1 = 1.926m, the dis-
tances between the second coil and the detector was set to L2 = 3.818m and between
sample and detector to LSD = 2.525m, respectively. In this configuration a dynamic
range from 1.6× 10−5 ns to 5 ns was covered.

To reach the Curie temperature of iron TC = 1043K [98], the sample was heated us-
ing a high temperature furnace (HTF-01), with a resistive Nb double cylinder heating
element. The Eurotherm temperature controller allowed to measure with a temper-
ature stability of ∆T ≈ 0.05K. Temperature stability and hysteresis effects were
verified by several temperature scans.

The sample investigated in this study is a bcc iron single crystal of cylindrical
shape with a diameter of 9mm and a height of 25mm. A 〈110〉 axis is aligned
approximately 10◦ of the cylinder axis of the crystal. For the measurements the
cylinder axis was mounted vertical. The sample is the same as reported in previous
studies in Brookhaven [95].
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3.3 Experimental results

3.3. Experimental results

Here we present the experimental results of the MIEZE measurements performed at
the beamline RESEDA. MIEZE is ideally suited to study the critical fluctuations
above and below the Curie point in iron, as its resolution is unaffected by the depo-
larization of the neutron beam in the ferromagnetic phase. At the beginning of this
section a temperature scan of the critical scattering intensity is presented. The second
part focuses on the MIEZE measurements above and below the Curie temperature.

3.3.1. Temperature scan

The temperature dependence of the critical small angle scattering was used to identify
the Curie temperature TC. Fig. 3.2 (a) shows the scattered intensity evaluated in
different q regions and panel (b) the transmission through the sample. A sharp peak
in the scattered intensity and a sharp minimum in the transmission at TC = 1023.2K
defines the Curie temperature with an accuracy of 0.2K. The offset of about 20K to
the values reported in the literature of 1043K (compare Tab. A.1) may originate in
a temperature gradient between sample and thermometer. A temperature gradient
in the sample is not present as the peak signature is very narrow, i.e. ∆T = 0.2K.
Furthermore, temperature scans with increasing and decreasing temperature do not
show any hysteresis. The distinct suppression of the transmission at TC is a vivid
example for the phenomenon of critical opalescence. Magnetic fluctuations on all
time- and energy-scales are present in the sample and tremendously increase the
scattering cross section, making the sample almost in-transparent for neutrons. The
scattering intensity has a maximum at a temperature T ∗ < TC in the ferromagnetic
phase. This peak shifts to higher temperatures with increasing scattering vector and
may be due to scattering from the shrinking ferromagnetic domains when approaching
the Curie point. A similar effect has been observed in EuO as reported in Ref. [99].

3.3.2. Quasielastic measurements

In this section the focus is on the determination of the linewidth of the critical fluc-
tuations. The MIEZE measurements are performed in a small angle scatting geom-
etry. This geometry allows to study the fluctuations around Q = 0, therefore only
transversal fluctuations can be measured. Longitudinal fluctuations can be accessed
only around Bragg peaks with h,k,l 6= 0.

The quasielastic measurements were performed at several temperatures in the range
TC− 10K to TC + 30K. The combination of the MIEZE technique with the area sen-
sitive CASCADE detector allowed covering a q-range of 0.009Å−1 ≤ q ≤ 0.043Å−1 at
λ = 8.0Å and 0.013Å−1 ≤ q ≤ 0.068Å−1 at λ = 5.4Å with one experimental setting,
respectively.
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Figure 3.2.: Temperature dependence of the critical scattering around the Curie tem-
perature TC. (a) Scattering intensity as function of temperature evaluated
in different q regions. The Curie temperature TC is marked by the dashed
line. (b) Transmission through the iron sample as function of tempera-
ture. The Curie temperature TC is defined by the sharp minimum of the
transmission and the maximum of the critical scattering.
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Figure 3.3.: Pregrouping and postgrouping masks as used for the measurement of the
fluctuations in Fe. In panel (a) the pregrouping mask is shown. The
128 · 128 pixels of the detector are combined in regions with a size of 5 · 5
pixels. The postgrouping, shown in panel (b) consists of circles centered
on the direct beam with a width of 5 pixels. The white regions are not
evaluated due to background from the spin analyzer.

The data reduction to extract the normalized intermediate scattering function
S(q,τ)/S(q,0) was carried out according to Sec. 2.3.5: First the detector was pre-
grouped in arrays of 5 · 5pixels. The pregrouping mask is shown in Fig. 3.3 (a). For
each of these masks the counts in the corresponding array of pixels is summed. The
MIEZE echo is than fitted to this sum. The fit results, i.e. echo amplitude and the
average count rate, are than in a second step combined according to the postgrouping
mask shown in Fig. 3.3 (b). This postgrouping mask defines circular regions with a
width of 5 pixels around the direct beam and therefore regions of constant q or more
precisely of constant 2θ. This procedure of pre- and post- grouping allows to extract
the intermediate scattering function S(q,τ) with sufficient statistics, while still keep-
ing a high MIEZE contrast.

All measurements from the iron sample were normalized to a standard graphite
sample, with the same shape as the iron sample and the same slits as for the iron
measurement. The normalized intermediate scattering function S(q,τ)/S(q,0) mea-
sured at the Curie temperature TC, TC+4K and TC+10K using a neutron wavelength
of 5.4Å and 8.0Å are shown in Fig. 3.4 and Fig. 3.5, respectively. The characteristic
decay time of the fluctuations decreases with increasing scattering vectors and increas-
ing temperature, as expected. Large arrays of spins fluctuate slower than small regions
and the fluctuations become stronger when approaching the transition. At small scat-
tering vectors a strong background contamination is visible as the data do not decay
to zero. In the direct beam at q = 0 for λ = 5.4Å (cf. Fig. 3.4) S(q,τ)/S(q,0) is
slightly larger than one. The very large count rate in the direct beam on the detector
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Figure 3.4.: Normalized MIEZE contrast in iron for measurements at (a) TC + 10K,
(b) TC + 4K and (c) TC. Data were recorded using neutrons with a mean
wavelength of λ = 5.3Å.
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Figure 3.5.: Normalized MIEZE contrast in iron for measurements at (a) TC + 10K,
(b) TC + 4K and (c) TC. Data were recorded using neutrons with a mean
wavelength of λ = 8.0Å.
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may be the reason for this unphysical effect. At λ = 8.0Å, were the neutron flux
is smaller by a factor of twelve with respect to λ = 5.4Å, S(q,τ)/S(q,0) = 1 in the
direct beam. The normalized scattering functions for all other data discussed in this
chapter are shown in the appendix Sec. A.

Critical fluctuations above TC are assumed to have a Lorentzian line shape as
reported in Ref. [100], hence all data are fitted with a single exponential decay of the
form

S(q,τ)

S(q,0)
= A · exp

[
−Γτ

~

]
+ (1− A), (3.8)

where A ≤ 1 is a q dependent parameter and allows to account for an elastic back-
ground i.e. the direct beam. The fit results are shown as solid lines in Figs. 3.4, 3.5
for a few selected temperatures and for all other temperatures in Appendix A.

Linewidth of the critical fluctuations above the Curie point

In Fig. 3.6 the q-dependence of the linewidth Γ is shown for different temperatures
T = TC (a), TC + 1K (b), TC + 2K (c), TC + 4K (d), TC + 10K (e), TC + 30K
(f). The blue triangles are measured with a neutron wavelength of 5.4Å and the
green squares with 8.0Å, respectively. For all temperatures an increase of Γ with
increasing scattering vector is observed. At larger scattering vectors the statistical
errors increase, due to significantly smaller count rates. In panel (a) the results from
the MIEZE measurement are directly compared with results from classical neutron
spin echo [38] (black circles), both techniques are in excellent agreement with each
other. The solid lines represent curves with Γ = Aq2.5, with A = 140meVÅ5/2 (red
curve) and A = 119meVÅ5/2 (orange curve). While the former value results from
triple axis (TAS) measurements taken from Ref. [100], the latter is a fit to our MIEZE
data. The small difference may be due to the precise experimental configuration, the
quality of the data and the assumptions concerning the line shape. Very close to TC
the line shape may be non-Lorentzian. In case of the TAS measurement “real” q scans
while in the MIEZE measurement 2θ scans are performed. Obviously, there are very
strong deviations for T > TC between the solid line and the data. Especially at small
scattering vectors q the difference is large being a first indication for the influence of
the dipolar interaction.

The dynamical scaling hypothesis Eq. (3.6) allows to extract the dynamical scaling
function for different temperatures by calculating

γT (x) =
Γ(T )

Γ(TC)
=

Γ(T )

Aq2.5
. (3.9)

Fig. 3.7 shows the scaling functions calculated for different temperatures using A =
119meVÅ5/2 and the data shown in Fig. 3.6. The solid lines are from the theory of
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Figure 3.6.: Linewidth of the critical fluctuations in iron as function of the scattering
vector q, measured for different temperatures T = TC (a), T = TC + 1K
(b), T = TC+2K (c), T = TC+4K (d), T = TC+10K (e), T = TC+30K
(f). The blue triangles are measured at λ = 5.4Å and the green squares
at λ = 8.0Å. The black circles in panel (a) are the results reported by
Mezei et al. [38]. The solid lines represents Aq5/2 with A = 140meVÅ5/2

[100] (red curve) and A = 119meVÅ5/2 (orange curve).
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Figure 3.7.: Scaling function of the critical fluctuations calculated from the linewidth
shown in Fig. 3.6 using Eq. (3.9) with A = 119meVÅ5/2. The solid
lines are the scaling functions calculated within the theory by E. Frey
and F. Schwabl [91, 93, 94]. Panel (a) shows the scaling function as
calculated for a constant qD = 0.033Å−1. In panel (b) qD is adjusted
to fit scaling function and experimental results. Panel (c) shows the
temperature dependence of qD as used in panel (b). The error bars reflect
the fact that the determination of N using Eq. (3.7) is associated with
an increasing error when approaching TC.
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Frey and Schwabl taken from Fig. 3.1. In panel (a) the theoretical scaling functions
were selected according to Eq. (3.7) with qD = 0.033Å−1 [101]. The experimental
and theoretical scaling functions obey the same dependence from x, decreasing to a
minimum in the range 0 < x < 1 and increasing for larger x. Also the trend as
function of temperature is the same. Nevertheless, the agreement between theory and
experimental results is not very good for both low and high temperatures. In order
to quantify the deviation between theory and experimental results we have adjusted
qD in Eq. (3.7) in order to match experimental data and theoretical scaling function.
Fig. 3.1 (b) shows the scaling function selected such that they fit the experimental
data. The according dipolar wave numbers qD are shown in panel (c) as function of
temperature. The blue dashed line reflects the literature value qD = 0.033Å−1 from
Ref. [101]. For TC < T < TC + 8K qD is slightly smaller than reported in literature,
while above TC+8K qD is significantly larger. It has to be noted that in Fig. 3.1 scaling
functions are only pictured for integer values of N and the temperature dependence
of N becomes very steep when approaching TC, hence the uncertainty of qD increases.
The strong deviation towards smaller qD is most likely an artifact, while the larger
QD can be understood as a stronger damping of the transversal fluctuations and may
be explained by the influence of the conduction electrons. Similar deviations of the
damping have also been found in nickel as reported in Ref. [102, 103].

Inelastic excitations below the Curie point

MIEZE allows to extend the study of the critical fluctuations in iron below the Curie
temperature in the region were the neutron beam is completely depolarized due to
the ferromagnetic domains. In conventional NSE this is not easily possible. However,
NSE can be altered in order to study under depolarizing conditions by adding two
additional spin analyzers before and behind the sample. This variant of NSE is called
Intensity Modulation NSE (INSE) and has been reported by B. Farago and F. Mezei
[104]. In a first test measurement with INSE B. Farago et al. have studied the magnon
dynamics in iron. Fig. 3.8 compares the results of the INSE and our MIEZE data.
Panel (a) displays the normalized intermediate scattering functions as measured with
INSE and MIEZE. Close to the transition at TC − 1K a decay is observed, that is
very similar to a single exponential. Both the results of Farago et al. and ours are in
excellent agreement with each other. At smaller temperatures TC−3K and TC−10K
the shape of the curve changes to an oscillation damped by an exponential decay.
However, the negative intermediate scattering function as reported by Farago et al.
cannot be observed with MIEZE due to a technical aspect that is described at the
end of Sec. 2.2.3. All MIEZE data shown in Fig. 3.8 (a) are the absolute value of
S(q,τ)/S(q,0). The last two data points at TC − 10K are put to negative values by
hand, while the open points reflect the original data. All data sets can be fitted by
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Figure 3.8.: Scattering function of iron in the time and energy space recorded in the
ferromagnetic phase i.e. for T < TC. In panel (a) the normalized in-
termediate scattering function at a scattering vector of q = 0.016Å−1 is
shown. Results by Farago et al., using a variant of classical NSE so-called
Intensity Modulation NSE [104], are directly compared to the results of
our MIEZE study. The solid lines represent the Fourier transform of two
Lorentzians centered at ±E0 with a width of Γ0. Panel (b) shows the
Fourier transform of the solid lines from panel (a). In panel (c) and (d)
the temperature dependence of E0 and Γ0 are displayed, respectively. The
solid lines in panel (c) are curves of the form E0 = D0 ((TC − T )/(TC))0.36.
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the Fourier transform of two Lorentzians centered at ±E0 assuming the form

S(q,∆E) = S0

(
1

(E − E0)2 + Γ2
0

+
1

(E + E0)2 + Γ2
0

)
, (3.10)

with a width Γ0. The solid lines in panel (a) are the results of the fits and panel
(b) shows the Fourier transform. For TC − 10K to few data points are available al-
lowing no precise fit. Nevertheless, we observe distinct inelastic excitations with a
finite energy in the range 6.7 µeV ≤ E0 ≤ 33 µeV as shown in panel (c). In stan-
dard magnon theory the temperature dependence of the magnon energy is given by
E0 = D0((TC−T )/TC)0.36 [105, 106]. The solid lines reflect curves with the literature
value D0 = 140meVÅ2 (green curve) and D0 = 70meVÅ2 (blue curve) fitting the
data, respectively. The mismatch between theory and experimental results may be
explained by the q resolution (FWHM σq = 0.004Å−1 following Sec. 1.2.1) in com-
bination with the varying spectral weight in the region of interest on the detector.
Within the selected mask the intensity decreases with 1/(q2 + κ2), hence smaller q
values are over estimated than larger q resulting in smaller energies E0. Panel (d)
shows the temperature dependence of the magnon width Γ0. The error bars do not
allow any predictions.

3.4. Discussion

Iron is one of the archetypal systems for the investigation of static and dynamic prop-
erties at second-order phase transitions. Our diffraction and MIEZE data directly
show how the fluctuations become stronger in time and space when approaching the
transition from the paramagnetic phase, resulting in a textbook example of critical
opalescence. At TC where fluctuations emerge on all length and time scales, the trans-
mission decreases by a factor ≈ 2.

The temperature and q dependence of the lifetime of the critical fluctuations above
TC proof to be in good agreement with previous studies [38], showing clear deviation
from a simple Heisenberg model treating the dipolar interaction only as weak pertur-
bation [90]. Our results are in much better agreement with the theory put forward by
Frey and Schwabl [91–93], based on a Hamiltonian comprised of exchange and dipolar
interaction. The data resemble the shape of the scaling function proposed by Frey
and Schwabl and the strength of the dipolar interaction qD is in the same order of
magnitude as reported in literature [101]. Nevertheless, our results do not agree with
a temperature independent qD. We observe a stronger damping of the transversal
fluctuations. The mismatch may be explained by the influence of the conduction elec-
trons Similar effects have been observed in nickel [102]. The conduction electrons are
delocalized, consequently more dominant on larger regions, i.e. at small q. Compared
to localized electrons the delocalized electrons are correlated, hence stronger damped.
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Below TC we find distinct inelastic excitations, i.e. magnons. The MIEZE methods
proofs to give the same results as observed with INSE [104], even though the amount
of points measured do not allow a rigorous determination of the magnon energy and
width from only the MIEZE data. Nevertheless, the temperature dependence of the
magnon energy extracted from combining the INSE and the MIEZE data is in agree-
ment with standard magnon theory. Even though our first results are very promising,
a precise determination of the shape of the intermediate scattering function below TC
using only the MIEZE method will be addressed in a future study.

Our data show that MIEZE yields the same results as classical NSE or more complex
methods like INSE. This study demonstrates the advantage of the MIEZE technique
for studies requiring high energy resolution in the small angle scattering regime. The
combination of the MIEZE technique with a large position sensitive detector allows to
study very efficiently quasi elastic dynamics over large q regions and is ideally suited
to study critical dynamics. In particular, the possibility to perform measurements
with depolarizing samples or depolarizing sample environments opens up the field
for the investigation of field induced QPTs or the study of melting and reorientation
transitions in the flux line lattice of superconductors.
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CHAPTER 4

Cubic chiral Dzyaloshinskii-Moriya helimagnets

This chapter discusses the magnetic ground state and the dynamics in the cubic chiral
Dzyaloshinskii-Moriya helimagnets MnSi, Mn1−xFexSi and Mn1−xCoxSi, studied by
means of SANS and spin echo spectroscopy. At the beginning a short introduction to
the helimagnets, their magnetic phase diagram and the most important properties of
the different magnetic phases is given. Further, polarized neutron scattering at the
paramagnetic to helimagnetic transitions in zero magnetic field is reported, followed
by a combined unpolarized SANS and MIEZE study of the evolution of the transition
to the tricritical point in finite field and temperature. In the last part of this chapter
the suppression of the helical order by means of iron and cobalt doping is discussed.

4.1. Introduction

Cubic chiral Dzyaloshinskii-Moriya helimagnets are a fascinating class of materials
as they exhibit a very general and fascinating magnetic phase diagram (cf. Fig.
4.1). This class of materials includes metals such as MnSi, Mn1−xFexSi, Mn1−xCoxSi,
semiconductors like Fe1−xCoxSi and insulators as Cu2OSeO3. All these materials
crystallize in the P213 (B20) space group, lacking inversion symmetry. Although
the most prominent member of this group, MnSi, has been studied for decades, great
scientific interest was recently generated by the discovery of a topologically non trivial
spin structure, i.e. a so called skyrmion lattice [3].

4.1.1. Magnetic phase diagram

All chiral helimagnets share a common magnetic phase diagram (see Fig. 4.1), when
scaling the magnetic field axis with the critical field Hc2 and the temperature axis
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Figure 4.1.: Generalized magnetic phase diagram (c) of the cubic chiral
Dzyaloshinskii-Moriya helimagnets as function of relative tempera-
ture T/Tc and relative magnetic field H/Hc2. The dashed lines are cross
over lines from the paramagnetic phase into the fluctuation disordered
(FD) and the field-polarized regime, respectively. The different panels
depict the real space arrangement of the spins: helical phase (e), conical
phase (a), field polarized ferromagnet (b), Skyrmion lattice (d) and
paramagnetic phase (f). Figure taken from Ref. [107].

with the transition temperature Tc, respectively. The magnetic phase diagram can
be explained by a hierarchy of energy scales [108] comprising of decreasing strength:
(i) Ferromagnetic exchange interaction, aligning the magnetic moments parallel to
each other. The lack of inversion symmetry gives rise to a (ii) Dzyaloshinskii-Moriya
spin-orbit interaction which favors an orthogonal alignment of the magnetic moments.
Combining these two gives rise to a long wavelength homochiral helix with a wave-
length λhel = 180Å for MnSi. Finally, (iii) a cubic magnetic anisotropy due to higher-
order spin-orbit coupling aligns the helices along certain crystal directions [111] or
[100], depending on the material. Theoretically the magnetic phase diagram and the
transition between the different phases can be explained by a Ginzburg-Landau the-
ory. The key elements of this Ginzburg-Landau theory presented below follow the
supplementary material of Ref. [14]: Classically, the free energy functional is given
by F =

∫
d3xf , with the free energy density f . The free energy density for chiral

helimagnets can be separated in f = f0 + fcub where f0 has full rotational symmetry
in zero external magnetic field and is given by [109, 110]

f0 =
1

2
φ(r − J∇2)φ+Dφ(∇× φ) +

u

4!
(φ2)2 − µ0µφH. (4.1)
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The three component dimensionless order parameter φ represents the direction of
the magnetization M = µφ, with µ = µB/f.u.. J is the exchange stiffness and u
the interaction parameter. D represents the Dzyaloshinskii-Moriya interaction and
the last term the Zeemann energy. The terms of second and higher order in spin
orbit coupling are summarized in fcub. This term breaks the rotational symmetry for
H = 0 due to cubic anisotropies. It is given by

fcub =
Jcub

2

[
(∂xφx)

2 + (∂yφy)
2 + (∂zφz)

2
]

+ ..., (4.2)

where the strength is given by Jcub. In zero field, this term forces the helices to point
either along 〈111〉 or 〈100〉. The general ansatz minimizing the free energy density is
a single conical helix. It can be written as

φ(r) = φ̂0φ0 + Ψhelê
−eikhelr + Ψ∗helê

+e−ikhelr, (4.3)

with the homogeneous magnetization φ0 and the complex amplitude of the helix Ψhel,
with pitch vector khel. The direction is given by ê± = (ê1 ± ê2)/

√
2, where the unit

vectors êi and the pitch vector khel generate a dreibein ê1 × ê2 = k̂hel.

This Ginzburg-Landau free energy describes the helical (Fig. 4.1 (e)) ground state
in zero field and below Tc where the helices are aligned along the easy axis 〈111〉 or
〈100〉. When increasing the magnetic field above Hc1, the helices align along the mag-
netic field and the system enters the conical (a) phase where the magnetic moments
of the helices bend more and more towards the field direction with increasing field.
At Hc2 the field polarized ferromagnetic (b) phase is reached. At high temperatures
the system is in the paramagnetic (f) phase and completely disordered. However, in
a small temperature and field region below Tc the so called A-phase emerges which
was identified as topologically non trivial spin structure consisting of skyrmions (f)
stabilized by thermal Gaussian fluctuations. The skyrmion lattice is discussed in the
following section.

4.1.2. Skyrmion lattice

The skyrmion lattice is a topologically non trivial spin structure consisting of whirls
in the magnetization which are stabilized in a small phase pocket below Tc. First re-
ferred to as A-phase [112] (c.f. red area in Fig. 4.1). Skyrmions were proposed by the
nuclear physicist Tony Skyrme as a particle-like solution in a nonlinear field theory for
interacting pions [113–115]. MnSi is the first bulk solid state system where skyrmions
could be identified in 2009 [3]. Since then, skyrmion lattices, have been found in
various materials ranging from pure metals [3, 116], to semiconductors [117, 118], and
insulators [119, 120] as a generic feature of all B20 helimagnets. Besides the B20 com-
pounds skyrmions also have been found on surfaces [121] and in thin films [122, 123].
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Figure 4.2.: (a) Real space image of the skyrmion lattice. Figure from [111]. The
image shows a plane perpendicular to the magnetic field H. (b) Typical
SANS pattern of a skyrmion lattice. The magnetic field is applied parallel
to the neutron beam (taken from Ref. [3]).

The skyrmions arrange themselves in a hexagonal lattice. A skyrmion in B20 com-
pounds can be characterized by a superposition of three helices kihel, in the plane
perpendicular to the magnetic field, with a fixed phase relation, 120◦ between the
helices and a superimposed ferromagnetic component. Fig. 4.2 (a) shows a real space
image of a skyrmion lattice. Along the magnetic field skyrmions form tubes similar
to the flux line lattices in type-II superconductors. Each of the skyrmions carries one
quantum of emergent magnetic flux.

Experimentally, the skyrmion lattice in MnSi was identified by SANS measurements
[3] and measurements of the topological Hall effect [124–126]. The SANS pattern is
quite similar to those of flux line lattices and has a characteristic six-fold symmetry
as can be seen in Fig. 4.2 (b). The weak particle like character of the skyrmion could
be proofed by a careful SANS study employing so called Renninger scans.

The non-trivial topology of the skyrmions gives rise to an additional signal to the
Hall effect [124–126] called topological Hall-effect appearing on top of the anomalous
Hall effect. Each spin of electrons traveling through the skyrmion lattice follows adia-
batically the magnetic structure. Thus, the electrons collect a geometrical phase, i.e.
the Berry phase, leading to their sideway deflection and hence to an additional con-
tribution to the Hall-effect. The size of the topological Hall signal allows determining
the density and winding number of the skyrmion lattice.

Very efficient gyromagnetic coupling between electrons and the magnetic structure
allows manipulating the skyrmion lattice by an electric current. To completely un-
pin the skyrmion lattice only ultra-low current densities are needed 1× 106 Am−2

[127, 128] in contrast to the high densities (1× 1012 Am−2) required to move ferro-
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magnetic domain walls, making skyrmions very interesting for spintronic applications,
e.g. data storage devices with high bit density [129]. Nevertheless, the precise tem-
perature dependence of the Skyrmion dynamics and the dynamics of the creation and
annihilation [130] have to be understood in order to adopt Skyrmions for applications.

4.1.3. Paramagnetic to chiral transition in MnSi at zero
magnetic field

The paramagnetic to helimagnetic transition in MnSi has been the subject of heated
scientific discussions in recent years. There were several proposals for explaining the
phase transition. The transition is expected to be of second-order on a mean field
level as discussed by Grigoriev et al. [131, 132]. Nevertheless, specific heat mea-
surements revealed a first-order character of the transition [133–135]. However, the
precise character of the first-order transition has a subtle dependence on the strength
of the cubic anisotropy. The same hierarchy of energy scales that is discussed above
as basis for the magnetic phase diagram is expected to be reflected in the fluctu-
ation spectrum when approaching the helimagnetic order from high temperature.
For high temperatures T � Tc, essentially ferromagnetic fluctuations at Q = 0 are
present. At a certain temperature, when the correlation length ξ reaches the order of
the Dzyaloshinskii-Moriya interaction ξDM, isotropic chiral fluctuations develop on a
sphere at finite Q = khel in reciprocal space. When cooling down further the cubic
anisotropy, ξcub forces the chiral fluctuations along the easy axis of the system. These
different fluctuating regimes are depicted in Fig. 4.3 (a). To distinguish between the
three models separated by two cross overs we introduce the so called Ginzburg length
ξGi [136]. The Ginzburg length describes the length scale at which fluctuations have
an important role and therefore lead to the breakdown of the mean field scenario.
The three models introduced in Fig. 4.3 (a) are:

(i) Wilson-Fisher-scenario ξcub � ξDM � ξGi: The transition takes place from
essential ferromagnetic fluctuations directly into the helimagnetic regime. This
can be described by a Wilson Fisher renormalization fixed point approach [7].

(ii) Brazovskii-scenario ξcub � ξGi � ξDM: The helical isotropic distributed fluctu-
ations are strongly interacting and drive the transition to first-order [9].

(iii) Bak-Jensen-scenario ξGi � ξcub � ξDM: In this scenario the isotropic chiral
fluctuations, are only weakly interacting and evolve to anisotropic chiral fluctu-
ations along the anisotropy direction of the system as described in Ref. [109].

Brazovskii scenario in MnSi

Janoschek et al. [14] could show that in MnSi the Brazovskii scenario of a fluctuation-
induced first-order transition is realized. As discussed above it is essential to determine
the precise relation between the relevant length scales in the system at the transition:
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(a)

(b)

Figure 4.3.: Helimagnetic transition in MnSi. (a) Two crossovers in the fluctuation
spectrum separate the three models discussed in the text describing the
transition as first-order transition. Panel (b) depicts the inverse corre-
lation length as function of temperature. Below 30.5K the data are ex-
tracted from SANS and above 30.5K from susceptibility measurements.
The solid black line reflects the high temperature behavior while the blue
line describes the renormalization of κ within the Brazovskii scenario.
Figures are taken from Ref. [14].
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The chiral Dzyaloshinskii-Moriya length ξDM = 1/khel, the cubic anisotropy length
ξcub = 1/(αcubkhel) and the Ginzburg length which is given by the correlation length at
the transition ξGi = ξ(Tc). Janoschek et al. extracted these length scales from energy
integrated SANS measurements. The scattering cross section for chiral helimagnets
based on the free energy as mentioned above has been first derived by Grigoriev et
al. [131]. The double Lorentzian profile is given by

dσ
dΩ

= A
kBT

(q + khel)
2 + κ2

× k2
hel + q2 + κ2

(q − khel)2 + κ2 + α2
cubk

2
hel(q̂

4
x + q̂4

y + q̂4
z − 1/3)

. (4.4)

Here, kB is the Boltzmann constant, A a proportionality constant depending on, e.g.,
the sample size and the neutron flux, T the temperature, khel the helical wave vec-
tor, q = |q| the magnitude of the scattering vector, κ the inverse correlation length,
and αcub the strength of the cubic anisotropy. αcub can be directly connected to
the Ginzburg-Landau ansatz in Eq. (4.2) by αcub = |Jcub|/(2J). Its sign determines
whether the helical domains align along 〈111〉 (αcub < 0) or along 〈100〉 (αcub > 0).
The cross section describes the scattering intensity arising from the critical fluctu-
ations for T > Tc. The intensity accumulates on a sphere in reciprocal space with
radius khel and shallow maxima along the 〈111〉 directions (for αcub < 0) due to the
cubic invariant (q̂4

x + q̂4
y + q̂4

z − 1/3), with q̂ = q/q. Janoschek et al. employed si-
multaneous fits to the radial intensity distribution along several crystal directions
to extract the temperature dependence of the inverse correlation length κ and the
cubic anisotropy αcub. The results for κ are shown in Fig. 4.3 (b) (blue circles) to-
gether with the temperature dependence expected for a mean-field transition (black
solid line). The interaction between the strong chiral fluctuations leads to a non-
analyticity in the free energy, renormalizing κ. According to this renormalization, the
inverse correlation length in the Brazovskii scenario behaves as

κ(T ) = κGi

√√√√√
[
τ + (1− τ 3 +

√
1− 2τ 3)

1/3
]2

21/3
(
1− τ 3 +

√
1− 2τ 3

)1/3
, (4.5)

with τ = (21/3/3)κ2
MF/κ

2
Gi = (T −TMF)/T0. TMF is the mean-field transition tempera-

ture. The temperature dependence described by Eq. (4.5) (blue solid line in Fig. 4.3
(b)) is perfectly recovered by the experimentally observed κ values.

Skyrmion liquid phase at the transition to helical order

A completely different scenario describing the formation of a skyrmion liquid phase
in zero magnetic field between the paramagnetic and the helimagnetic phase was
proposed by Rößler et al. [137]. However, this model is based on an additional phe-
nomenological parameter, going beyond the minimal model comprised of the three
energy scales only. This scenario implies a second phase transition at Tsk > Tc. The
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formation of a skyrmion phase in a bulk sample at zero magnetic field is of tremen-
dous interest, as it would open up new field for applications in spintronics.

In order to reveal the potential zero field skyrmion phase, Pappas and coworkers
[138, 139] have investigated the so-called chiral fraction η of the magnetic intensity
observed above Tc, which provides a measure of a chiral magnetic structure ordering
predominantly in one of two possible chiral domains. The most important aspect
in their argumentation is the observation of a chiral fraction η ≈ 1 up to Tc + 1K.
Their data presented in Fig. 4.4 show the homochirality of the system below Tc and
a smooth decay of η starting at Tc + 1K.

However, η measures to what extent a system is homochiral, but there is no con-
nection to the topological winding number or the phase relation of the underlying
multi-q structure. Both are the defining properties of the new skyrmion structure
found in MnSi under applied magnetic field.

Figure 4.4.: Temperature dependence of the chiral fraction η as measured by Pappas
et al. [139]. The chiral fraction η shows a completely chiral phase up to
T

′
= Tc + 1K.

4.1.4. Paramagnetic to chiral transition in MnSi at finite
magnetic field

In the previous section it was argued, that the zero field transition from paramag-
netism to helical order is a fluctuation-induced first-order transition. In contrast, the
transition from the conical to the field polarized ferromagnetic phase at low tempera-
tures is of second-order. Therefore, the character of the transition has to change from
first- to second-order when following the transition line with increasing magnetic field.
In a comprehensive study of the specific heat, Bauer et al. [140] could show that this
is realized in a tricritical point at µ0H

int
TCP = 340mT and TTCP = 28.5K.

80



4.1 Introduction

28 29 30

(t) 430 mT

T (K)

Tc

28 29 30

(r) 390 mT

T (K)

Tc

165 mT(j)
TA2

TA1

220 mT(m) TA2

TA1

28 29 30

mT

T (K)

T

(p) 340

c

60

80

100
C

el
/T

 (m
Jm

ol
-1
K-2

) 0 mT(c) Tc

60

80

100

C
el

/T
 (m

Jm
ol

-1
K-2

)
(g) 140 mT

Tc

Tc(e) 100 mT

28 29 30
T (K)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)H || 〈110〉

27 28 29 30 31 32

skyrmion
lattice

T (K)

FD PM

FPTCP
conical

helical 0

0.1

0.2

0.3

0.4

µ 0H
in

t
(T

)

Figure 4.5.: Specific heat of MnSi as function of temperature for different magnetic
fields from zero field (a) to 430mT (h). The magnetic field is applied
along the 〈110〉 direction. Panel (i) displays the magnetic phase diagram
inferred from the specific heat data. Both the cross over line from the
fluctuation disordered (FD) to the paramagnetic phase (PM) and the
cross over line from the field polarized (FP) to the PM phase end in the
tricritical point (TCP). All figures are taken from Ref. [140].

Typical specific heat data are shown in Fig. 4.5 (a) to (h). At zero field (panel
(a)) a sharp symmetric first-order peak is visible on top of a broad shoulder. This
sharp peak is associated with the helimagnetic transition temperature Tc and has
a characteristic latent heat due to a weakly broadened first-order transition. The
shoulder can be explained in terms of a Vollhardt invariance [141] at the temperature
T2. T2 may be identified as the cross-over between ferromagnetic and isotropic chiral
fluctuations as discussed above. At the magnetic field were Tc = T2 the form of the
specific heat peak changes to an asymmetric mean field like lambda anomaly (Fig. 4.5
(f)). This identifies the tricritical point (TCP) as also shown in the magnetic phase
diagram in Fig. 4.5 (i).

This study not only allowed to identify the tricritical point but also to precisely
identify the skyrmion lattice as a thermodynamic phase. Both, the transition into
and out of the skyrmion phase shows peaks in the temperature dependent specific
heat (c.f. 4.5 (d) and (e)) at TA1 and TA2, respectively, clearly marking the lower and
the upper boundary of the skyrmion phase.

4.1.5. Suppression of magnetic order by hydrostatic pressure
and substitutional doping

Hydrostatic pressure suppresses the helical order in MnSi as can be seen in the pres-
sure versus temperature phase diagram shown in Fig. 4.6 (a). While suppressing the
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Figure 4.6.: Influence of hydrostatic pressure on the magnetic phase diagram of MnSi.
Panel (a) shows the temperature-pressure phase diagram of MnSi, taken
from [142]. The transition temperature Tc is inferred from resistivity
ρ and ac susceptibility χ data from Ref. [143] (blue squares). T0 is
based on energy integrated SANS data from Ref. [144]. Tc,L and TTE
are from Larmor diffraction data [142]. The light blue area indicates
the region of Fermi liquid behavior and the dark blue region a regime of
phase segregation seen in µSR [145]. In the green shaded region non-Fermi
liquid behavior is observed. The dark green area is the region where the
partial magnetic order occurs. The scattering distribution shows sharp
peaks along the 〈111〉 below the critical pressure pc (panel (b)) and broad
maxima along the 〈110〉 directions (panel (c)) in the partial order above
pc [144].
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helical transition temperature Tc, the characteristic magnetic fields Bc1 and Bc2 do not
change. Tc vanishes at a critical pressure pc = 14.6 kbar [146, 147]. At p∗ = 12 kbar
and T ∗ = 12K, the character of the transition changes to clear first-order, as in-
ferred from the metamagnetic transition under applied magnetic field [148–150]. In
the ordered phase (light blue shaded area) the electrons can be described by the
standard model for metals, the Fermi liquid (FL) theory. The helical modulation is
quite long compared to inter atomic distances, hence, by adding spin fluctuations to
the Ginzburg-Landau theory, the ordered phase can be described as a weakly spin-
polarized ferromagnet [151, 152]. The dark blue area shows a phase separation in
the range between p∗ and pc, revealed by NMR [153] and µSR [145] measurements.
Above pc and below T ∗ ≈ 12K (light green shaded area), an extended non-Fermi
liquid (NFL) regime is observed, that expresses itself in, e.g. an unusual temperature
dependence of the resistivity. In contrast to the T 2 dependence expected from Fermi
liquid theory, a T 3/2 dependence of the resistivity is observed down to mK and up
to at least three times pc [4, 26, 154, 155]. Below pc the scattering intensity assumes
sharp maxima along the 〈111〉 (c.f. Fig. 4.6 (b)) and for p > pc broad maxima along
the crystalline 〈110〉 direction as shown in panel (c). The latter is referred to as par-
tial order (PO) [144] and is shown as dark green area in panel (a). The scattering
intensity in the PO has the same wave number (≈ 0.035Å−1) as the helical intensity
below pc. Hence, helices or at least chiral fluctuations survive above pc, however, the
orientation cannot be explained within the Ginzburg Landau theory introduced in
Sec. 4.1.1, as the 〈110〉 direction is not stable for the considered cubic anisotropy.

The temperature T0 below which the partial order is observed can be called a
freezing temperature. Below this temperature the fluctuations become slow enough
to be measurable with energy integrated neutron scattering (SANS) [144] and NMR
[156] measurements, suggesting a static structure on time scales between 10−10 s and
10−11 s [145]. The pressure were T0 extrapolates to zero is called p0 = 21 kbar. A
neutron Larmor diffraction study [142] of the thermal expansion revealed that neither
at pc nor at p0 the sign of the Grüneisen parameter changes, which would indicate
a first-order quantum phase transition. Recently, in a comprehensive study of the
topological Hall effect, Ritz et al. [27, 157] could show that with increasing pressure
the topological Hall effect increases by a factor of 10 in finite field. Furthermore,
above pc the topological Hall signal can even be observed at zero field extending in
the complete non-Fermi liquid regime. Consequently, topological non trivial skyrmion
like structures or fluctuations may be the reason for the non-Fermi liquid behavior in
MnSi under hydrostatic pressure.

Besides hydrostatic pressure also the substitution of manganese atoms by iron or
cobalt suppresses the magnetic order in MnSi. Substitutional doping, also referred to
as “chemical pressure” decreases the lattice constant and may change the number of
valance electrons per unit cell. Both effects change the electronic band structure and
therefore the density of states at the Fermi level. Doping increases the disorder in the
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Figure 4.7.: Influence of iron and cobalt doping onto the magnetic H-T phase diagram
of MnSi (a). Panels (b) and (c) depict the magnetic phase diagram of
Mn1−xCoxSi for x = 0.02 and x = 0.04, respectively. The magnetic phase
diagram of Mn1−xFexSi x = 0.04 and x = 0.08 are shown in panels (d)
and (e), respectively. The doping versus temperature phase diagram for
iron doping (to the right) and cobalt doping (to the left) is displayed in
panel (f). All figures taken from Ref. [159].

system leading to unexpected changes of the physical properties. Nevertheless, the
effect of disorder seems to be small in Mn1−xFexSi and Mn1−xCoxSi as the magnetic
phase diagram shown in Fig. 4.7 stays essentially the same [158–160].

The number of valance electrons per formula unit increases by one respectively two
when doping with iron or cobalt. Cobalt doping has twice the effect of iron doping
as can be seen in the magnetic phase diagrams shown in Fig. 4.7 (a) to (e). The sup-
pression of Tc is the same in Mn1−xFexSi and Mn1−xCoxSi crystals when the amount
of iron doped into the host crystal is twice the amount of cobalt xFe = 2xCo. Sub-
stitutional doping does not change the critical fields Hc1 and Hc2. The helical wave
number khel significantly increases with doping as will be discussed in more detail
in Sec. 4.4.1. Nevertheless, the increase of khel is also reflected in an increase of
the Skyrmion density giving rise to a large topological Hall effect ∼ 50 nΩ cm [45].
Measurements of the magnetization, specific heat and susceptibility reported in Ref.
[159] suggest that with the suppression of Tc to zero an underlying ferromagnetic
quantum critical point at xFec ≈ 0.192 and xCoc ≈ 0.084 occurs (see Fig. 4.7 (f)). In
contrast to pure MnSi under hydrostatic pressure, the first-order character of the Bra-
zovskii transition in Mn1−xFexSi and Mn1−xCoxSi smears out more and more when
approaching the critical concentration [159]. A neutron scattering study referred to
this phenomenon as chiral criticality [161].

In conclusion, the effects on the physical properties of MnSi introduced by hydro-
static pressure and doping are very similar and a combined discussion may give new
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insight to answer open questions as for example the precise nature of the partial order.

4.1.6. SANS measurements on chiral magnets

All measurements described in this chapter are performed on helical magnets as de-
scribed in the previous sections in the small angle scattering regime. There are two
scattering geometries which allow to observe the different magnetic phases introduced
in Sec. 4.1.1.

• B ⊥ n: In this geometry (Fig. 4.8 (a)) both the conical and the Skyrmion
phase can be observed. While the conical peaks occur on the horizontal axis
the Skyrmion peaks occur along the z-axis.

• B ‖ n: This geometry is shown in Fig. 4.8 (b). It allows to observe the sixfold
geometry of the Skyrmion crystal on the detector.

In Fig. 4.8 also the rocking angle ω is introduced as a rotation of the sample together
with the magnetic field about the z-axis. The azimuthal angle α is defined as angle
between a point on the detector and the z-axis, also indicated on the detector image
in Fig. 4.8.
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4.2. Critical spin-flip scattering at the helimagnetic
transition of MnSi

In order to clarify whether the proposed Brazovskii scenario (see Sec. 4.1.3) de-
scribing the transition within the minimal model can also explain the scattering of
polarized neutrons, we re-investigated the critical spin-flip scattering and the chiral
fraction η above Tc. Therefore, a new compact spherical neutron polarimetry device
called MiniMuPAD was designed and built. The construction of the first MiniMuPAD
and the measurements of the data presented in this section were already performed
within my diploma thesis [50], whereas the analysis was part of this thesis. The anal-
ysis shows that the critical scattering at the helimagnetic transition of MnSi is in very
good agreement with the Brazovskii scenario. This section follows our publication [15].

4.2.1. Experimental setup and sample

For a detailed description of MiniMuPAD see Sec. 2.1 and Ref. [15, 50]. The
MiniMuPAD was used at the beamline RESEDA using neutrons with a wavelength
of λ = 4.5Å and a spread of ∆λ/λ = 0.16. The neutron beam was polarized using a
cavity and analyzed using a bender with an efficiency of 95% and 98%, respectively.
A position sensitive CASCADE detector with an active area of 200mm · 200mm was
positioned at a distance of 1596mm from the sample. The MnSi single crystal used
for this study is the one that has already been investigated in Ref. [14]. The sample
was oriented by X-ray Laue diffraction and aligned such that two 〈111〉 directions
were orthogonal to the neutron beam with one axis being horizontal. These domains
are denoted by k1 ‖ [11̄1̄] and k2 ‖ [11̄1]. The neutron beam was aligned along the
[110] as shown in Fig. 4.9 (a). The detector in combination with the possibility to
rotate the sample about an angle Φ as described in Fig. 2.1 allowed to track several
points on the sphere with |Q| = khel going well above previous studies [138].

4.2.2. Experimental results

For a physically transparent theoretical account of the critical spin-flip scattering
and also to proof the working principal of the MiniMuPAD, we start with the spin-
resolved energy-integrated neutron scattering cross section σêout,êin(Q) = dσ

dΩ
, with

momentum transfer Q, as motivated in Sec. 1.1.4. This cross section describes the
transition of the neutron spin eigenstate êin to êout with ~σ|êα〉 = eα|êα〉 and α = x,y,z.
In general, the scattering cross section is comprised of a purely nuclear and purely
magnetic contribution, as well as an interference term between nuclear and magnetic
scattering [55, 162]. For the measurement shown in Fig. 4.9 no spin analyzer was
placed behind the sample. Instead the sample itself was used as spin analyzer and
only the incoming polarization was rotated in the (k1,k2)-plane by the precession coils
of the MiniMuPAD. The results can be described by the spin-polarization dependent
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scattering cross-section
σ(Q,êin) =

∑
τ=±1

στ êout,êin(Q). (4.6)

The magnetic contribution to the magnetic part of this cross section can be separated
into a symmetric and an antisymmetric part

σmag(Q,êin) = σSmag(Q) + (Q̂êin)σAmag(Q), (4.7)

the antisymmetric part is weighted with the scalar product Q̂êin, with Q̂ = Q/Q.
As measure for the chirality of the magnetic system one can now define the chiral
fraction η by

η(Q) =
σAmag(Q)

σSmag(Q)
. (4.8)

In zero magnetic field Eq. (4.3) can be simplified and the magnetization in the helical
order of MnSi can be described by ~M(r) = Mhel(ê1 coskhelr + ê2 sinkhelr), with the
helical modulation vector khel, and the orthonormal unit vectors êiêj = δij (i,j = 1,2),
being orthogonal to khel. A left handed helix is then given by ê1 × ê2 = −k̂hel. The
magnetic Bragg scattering from a helix has an equal contribution of the symmetric and
antisymmetric part σmag(Q)|Bragg = ±σmag(Q)|Bragg. The sign defines the handedness
of the helix. For the left handed helimagnetic ground state of MnSi one therefore
expects a scattering cross section of the form

σmag(Q = khel,êin) ∝ 1 + (k̂helêin) = 2 cos2(δΩ/2), (4.9)

where δΩ is the angle between the incoming polarization and the helical domain khel,
as also defined in Fig. 4.9 (b).

This sinusoidal dependence can be measured by rotating the incoming polarization
in the plane perpendicular to the incoming neutron beam, while using no spin ana-
lyzer. The results of such a measurement are shown in Fig. 4.9, where panel (a) shows
an integrated scattering pattern over all incoming polarization directions. The angle
Ω defines the orientation of the incoming neutron beam with respect to k1 as shown
in panel (b). Figures (c) through (f) show scattering patterns for Ω = 0, cos−1(1/3),
π and cos−1(1/3) + π. These angles correspond to the helical domains aligned along
the 〈111〉 directions of the crystal. In Fig. 4.9 (g) the integrated intensity on all
four helical spots (k1, k2, −k1 and −k2) as function of Ω are shown. The data are
perfectly fitted by Eq. (4.9). The difference in the amplitude of the oscillation may
come from a small misalignments of the k2 axis with respect to the SNP device. See
also Fig. 4.9 (a).

By means of an additional spin analyzer behind the sample the critical spin-flip
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Figure 4.10.: (a) Temperature dependence of the spin-flip scattering cross section of
MnSi σ‖±,∓(Q) close to the critical temperature T > Tc. The spin-flip
scattering has been measured with different orientations on the sphere
with |Q| = khel, defined by the angle Φ = 0◦, 3◦,25◦. For Φ = 0◦, Q̂ ‖
[11̄1̄] all other orientations are defined by an anticlockwise rotation about
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intensity scale. The gray shaded area is the fitted incoherent spin-flip
background σSinc. (c) the chiral fraction η as function of temperature
calculated with Eq. (4.11) from the spin-flip data. The solid lines are
fits to the Brazovskii theory, predicting a turning point of η(T ) at T ∗.
Figure from Ref. [15].
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scattering can be accessed. For this study the polarization of the incoming and out-
going neutrons was aligned parallel and antiparallel to the transferred momentum Q.
The cross section reads στoutQ̂,τinQ̂(Q) with τout, τin = 1,− 1 being the up ↑ and down
↓ state of the neutrons with respect to Q̂. According to the theory for chiral magnets
[131] and as an extension of Eq. (4.4) one expects the spin-flip scattering to assume
the form

σSmag(Q)∓ σAmag(Q) =
AkBT

(|Q| ± khel)2 + κ2(T )
(4.10)

for T > Tc. Here, kB is the Boltzmann constant and κ(T ) the temperature dependent
inverse correlation length as shown in Fig. 4.3 (b). The inverse correlation length
provides the connection to the different scenarios described in Sec. 4.1.3. In case of
the Brazovskii scenario, κ(T ) renormalizes as shown in Eq. (4.5), due to the strong
interaction of the chiral paramagnons. In Fig. 4.10 (a) and (b) the critical spin flip
scattering σ‖±∓(Q) measured on a sphere with a radius of the helical modulation vec-
tor khel is shown as function of temperature. Approaching Tc, the chiral magnetic
intensity indeed develops isotropically on the sphere as can be seen in panel (b). σ‖−+

has a very strong temperature dependence above Tc, while the channel σ‖+− is barely
temperature dependent as it is suppressed by an additional factor 4k2

hel in the de-
nominator of Eq. (4.10). The solid lines in Fig. 4.10 (a) and (b) are fits to the data
using Eq. (4.10). For this fit we used the published results for κ(T ) [14], also shown
in Fig. 4.3 (b). Hence, only two free parameters, namely the magnitude A and a
Q-independent incoherent background σSinc shown as dashed line in Fig. 4.3 (b). Fit-
ting all data sets simultaneously gives a remarkably good agreement with both cross
sections for ±khel.

The chiral fraction η can be extracted from the critical spin-flip scattering when
subtracting the fitted background σSinc by

η(Q) =
σAmag(|Q| = khel)

σBmag(|Q| = khel)
=

1

1 + κ2(T )/(2k2
hel)

. (4.11)

Fig. 4.10 (c) shows the results of this study compared with those of Pappas et al.
[138]. It is essential to note that the experimental values depend sensitively on σSinc
(likewise the error bars of η). Within the error bars, however, the chiral fraction is in
very good agreement with the Brazovskii theory of κ(T ). In particular, η(T ) displays
a characteristic point of inflection at a temperature T ∗ − Tc ≈ 2K. It is finally
instructive to note that η(T ) reported by Pappas et al. [138, 139] differs substantially
up to ≈ 2K above Tc as shown in Fig. 4.10 (c). Based on the information given in
Refs. [138, 139] we strongly suspect that this difference is due to an overestimation
of σSinc.
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4.2.3. Discussion

In conclusion, we have investigated the critical spin-flip scattering with an emphasis
on the chiral fraction η close to the helimagnetic transition in MnSi. For our study
we have developed a miniaturized, low-cost SNP device, that allows an easy imple-
mentation of polarization analysis up to scattering angles of 2θ = 15◦ at different
beamlines. Considering carefully the importance of incoherent scattering yielding
background we find excellent quantitative agreement of the temperature dependence
of the chiral fraction η at various sample orientations with the Brazovskii scenario of
a fluctuation-induced first order transition. Our study [15] provides a quantitative
connection of η with elastic neutron scattering as well as the magnetization, suscepti-
bility, and specific heat discussed in Ref. [14], completing a remarkably comprehensive
account in a minimal model, introduced in Sec. 4.1.1, that does not require any ad-
ditional phenomenological parameters such as those needed in a recent proposal [137]
for the prediction of skyrmion formation at zero magnetic field in bulk chiral magnets.
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4.3. Evolution of the helimagnetic transition in
MnSi with magnetic field

In the previous section, the helimagnetic transition in MnSi in zero magnetic field was
identified as fluctuation-induced first-order transition that can be described within a
Brazovskii scenario. The transition from the conical to the field induced ferromagnetic
phase at low temperatures is of second-order. Consequently, the phase transition has
to change from first- to second-order somewhere on the transition line. In a recent
thermodynamic study, Bauer et al. [140] could show that this change takes place at
a tricritical point at µ0H

int
TCP = 340mT and TTCP = 28.5K as discussed in Sec. 4.1.4.

The helimagnetic transition is driven to first-order, because the chiral fluctuations
at finite q have a large phase space available, leading to strong interactions. A mag-
netic field applied to the sample reduces the available phase space by forcing the chiral
fluctuations to develop along the field direction. Therefore, the first-order Brazovskii
transition is suppressed and evolves towards a second-order transition.

In this section, we first report a SANS study to determine the correlation length
of the chiral fluctuations in reciprocal space. Secondly, a MIEZE study accessing the
quasi elastic linewidth of the fluctuations at the transition is discussed. The results
precisely identify the temperature and field were the transition changes from first to
second-order and give additional evidence for the Brazovskii scenario in MnSi.

4.3.1. Correlation length of the magnetic fluctuations

The discussion of the magnetic field evolution starts with the SANS measurements
performed at SANS-1 (MLZ). In the following section the SANS experiments and
their evaluation are reported.

Experimental setup and sample

The measurements have been performed at SANS-1 (MLZ), investigating the mag-
netic correlation length at the helimagnetic transition. For the experiment, neutrons
with a wavelength of λ = 5.5Å, coarsely monochromatized ∆λ/λ = 0.10 by a me-
chanical velocity selector were used. The collimation of the initial beam was set to
12m with a pinhole of 20mm diameter at the entrance of the collimation section and
a 4mm pinhole in front of the sample. The detector was positioned 10.2m behind
the sample. To access the complete (B,T)-phase diagram a superconducting magnet,
optimized for small angle scattering, combined with a closed cycle cryostat were used.
The magnet allows for in-plane fields up to 5T and is the same as described in Sec.
2.2.4 and shown in Fig. 2.7 (a). A minimal temperature of 4K was available with
the cryostat. The sample was mounted on a sample stick, which allowed for rotation
about the vertical 〈110〉 axis of the sample. A spherical shaped MnSi single crystal
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(OFZ 59) with a 〈110〉 direction oriented vertically was used as sample. The diameter
of the sphere is 6mm and a 〈111〉 axis was aligned horizontally, perpendicular to the
neutron beam and parallel to the magnetic field. Hence, neutron beam and magnetic
field resembles the perpendicular geometry as described in Sec. 4.1.6. Considering the
sample shape and the measured susceptibility as described in Ref. [163] the internal
field applied to the sample is given by Hint = 0.90 ·Hext. All magnetic fields in this
section are given as internal fields.

Experimental results

In Fig. 4.11 typical SANS patterns for temperatures below (left column) and above
(middle column) the helical transition temperature Tc are shown. From bottom to top
the magnetic field increases, starting at zero field up to µ0H

int = 432mT > µ0H
int
TCP.

Each scattering pattern shows the sum of a rocking scan about ω ± 3◦. In zero
magnetic field and below the transition temperature, helical peaks appear along the
horizontally oriented crystalline 〈111〉 axis (cf. Fig. 4.11 (s)). With increasing field at
the same position conical peaks appear as can be seen in panels (a), (d), (g), (j), (m)
and (p). Above Tc and in zero magnetic field, the critical scattering accumulates on
an isotropic sphere as described within the Brazovskii scenario [14] (Fig. 4.11 (t)). In
Fig. 4.12 the intensity on the ring with q = |khel| is shown versus the azimuthal angle
α. The intensity is flat as function of α, with small peaks along the 〈111〉 direction.
The small peaks at α = 0◦ and α = 180◦ correspond to a small cubic anisotropy of
αcub ≈ (−0.04± 0.01)Å−1, as will be discussed in the following sections. Besides this
small anisotropy the region above Tc shows an isotropic sphere of critical intensity,
that is observed as a ring on the SANS detector.

Increasing the magnetic field forces the magnetic fluctuations above Tc to align more
and more along the horizontal field direction. Up to µ0H

int = 135mT (cf. Fig. 4.11
(n),(q)) the fluctuations are still symmetric with respect to Q = 0, showing small
remnants of the skyrmion phase along the vertical 〈110〉 direction. Above 135mT
(cf. panel (k)) the fluctuations do not accumulate on a full ring anymore but on
spherical segments along the magnetic field. The symmetry of the fluctuations about
q = 0 changes completely when crossing the tricritical point in Fig. 4.11 (h). Above
µ0H

int
TCP, the center of mass of the fluctuations is not anymore a ring around Q = 0

but q = ±khel.

The Brazovskii fluctuations are also visible in the temperature dependence of the
scattering intensity. In the right column of Fig. 4.11 the intensity is evaluated as
function of temperature on the peaks (red filled circles) and on the ring (black filled
boxes). The latter region is a ring with radius khel, excluding the positions where the
helical peaks occur below Tc. When approaching the transition in zero field (cf. panel
(u)) from high temperatures the intensity on both ring and peak increase until at

94



4.3 Evolution of the helimagnetic transition in MnSi with magnetic field

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

50 25 0 25 50

|qx| (10
-3

Å
-1

)

10

5

0

I (10
-3c/m

on)

T = 26.3 K

µ0Hint 
= 0 mT(s)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

50 25 0 25 50

|qx| (10
-3

Å
-1

)

20

10

0

I (10
-6c/m

on)

T = 29.3 K

µ0Hint 
= 0 mT(t)

4
6

10
-5

2

4
6

10
-4

2

4

I (
c/

m
on

)

302826

T (K)

Peak
Ring

µ0Hint 
= 0 mT

Tc 
= 29.1 K

(u)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

20

15

10

5

0

I (10
-3c/m

on)

T = 26.3 K

µ0Hint 
= 104 mT(p)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

40

30

20

10

0

I (10
-6c/m

on)

T = 29.3 K

µ0Hint 
= 104 mT(q)

10
-5

10
-4

10
-3

I (
c/

m
on

)

Peak
Ring

µ0Hint 
= 104 mT

Tc 
= 28.9 K

(r)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

15

10

5

0

I (10
-3c/m

on)

T = 26.3 K

µ0Hint 
= 135 mT(m)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

) 20

10

0

I (10
-6c/m

on)

T = 29.3 K

µ0Hint 
= 135 mT(n)

2

4

10
-5

2

4

10
-4

2

4

I (
c/

m
on

)

Peak
Ring

µ0Hint 
= 135 mT

Tc 
= 28.9 K

(o)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

8

6

4

2

0

I (10
-3c/m

on)

T = 26.3 K

µ0Hint 
= 240 mT(j)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

30

20

10

0

I (10
-6c/m

on)

T = 29.3 K

µ0Hint 
= 240 mT(k)

2

4

10
-5

2

4

10
-4

2

4

I (
c/

m
on

)

Peak
Ring

µ0Hint 
= 240 mT

Tc 
= 28.8 K

(l)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

2

1

0

I (10
-3c/m

on)

T = 26.3 K

µ0Hint 
= 350 mT(g)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

6

4

2

0

I (10
-6c/m

on)

T = 29.3 K

µ0Hint 
= 350 mT(h)

10
-6

2

4

10
-5

2

4

10
-4

2

4

I (
c/

m
on

)

Peak
Ring

µ0Hint 
= 350 mT

Tc 
= 28.5 K

(i)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

2

1

0

I (10
-3c/m

on)

T = 26.3 K

µ0Hint 
= 384 mT(d)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

4

3

2

1

0

I (10
-6c/m

on)

T = 29.3 K

µ0Hint 
= 384 mT(e)

10
-6

2

4

10
-5

2

4

10
-4

2

I (
c/

m
on

)

Peak
Ring

µ0Hint 
= 384 mT

Tc 
= 28.0 K

(f)

50

25

0

25

50
|q

y|
 (1

0-3
Å

-1
)

6

4

2

0

I (10
-4c/m

on)

T = 26.3 K

µ0Hint 
= 432 mT(a)

50

25

0

25

50

|q
y|

 (1
0-3

Å
-1

)

4

3

2

1

0

I (10
-6c/m

on)

T = 28.3 K

µ0Hint 
= 432 mT(b)

2

3

4
5
6

10
-5

2

I (
c/

m
on

)

Peak
Ring

µ0Hint 
= 432 mT

Tc 
= 27.7 K

(c)

Figure 4.11.: Typical SANS patterns measured below (left column) and above (middle
column) the helical transition temperature Tc. (right column) Temper-
ature dependence of the intensity evaluated on the helical peak and a
ring with Q = khel. From bottom to top the magnetic field is increased
from zero to B > BTCP. 95
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Figure 4.12.: Intensity as function of the azimuthal angle α evaluated on ring with
a radius corresponding to the helical modulation vector Q = 0.04Å−1.
The data were measured at zero magnetic field and T = 29.3K are taken
from Fig. 4.11 (t). The peaks at α = 0◦ and 180◦ correspond to the
higher intensity on the horizontal line in in Fig. 4.11 (t).

Tc the peak intensity increases very strongly within a very small temperature region
∆T ≈ 0.15K while the ring intensity decreases to the background level. This behavior
is present up to 135mT, where the intensity on the ring also exhibits a sudden increase
at Tc. This peak is due to the fact that this field corresponds to the skyrmion phase
and two structural skyrmion peaks scatter into the selected ring region. At 240mT
the ring is not isotropically populated anymore and varies with the azimuthal angle
α. The intensities on ring and the peak do not anymore increase with the same rate.

The transition temperature Tc is defined as the point where the derivative of the
peak intensity versus temperature curve is minimized. With this definition Tc is at
the same position as the sharp peak on top of the broad shoulder in the specific heat
and the peak in the susceptibility. In the right column of Fig. 4.11 Tc is indicated by
the dashed line. Tc shifts with increasing field slightly towards smaller temperature.
The shift from zero field Tc = 29.1K to the tricritical point by -0.5K is in excellent
agreement with Ref. [140]. Moreover, the sharp first-order feature in the intensity
smears out when increasing the magnetic field.

Two dimensional fit to the SANS data

For a more quantitative analysis, the scattering patterns were fitted using the scat-
tering cross section for chiral helimagnets given in Eq. (4.4). Eq. (4.4) is valid for
chiral magnets above the transition temperature Tc, where the length of the chiral
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modulation vector is given by khel. The cubic invariant results in an easy axis of the
chiral fluctuations along the 〈111〉 crystalline directions for αcub < 0 or along the 〈100〉
directions for αcub > 0. |αcub| characterizes the strength of the anisotropy. The corre-
lation length of the magnetic fluctuations is given by κ. The scattering cross section
Eq. (4.4) only holds for zero magnetic field but it can be extended to also describe the
magnetic fluctuations in an external magnetic field. Therefore, the inverse correlation
length κ has to be split in one that is parallel to the magnetic field κ‖ and one which
is perpendicular to the magnetic field κ⊥. This extended formula evaluated by M.
Garst is given in the appendix through Eqs. (B.1), (B.2) and (B.3). The extended
scattering cross section also covers the dipolar interaction χint. By defining χint = 0
and κ = κ‖ = κ⊥ the zero field formula (4.4) is recovered.

To extract the correlation length at the transition as a function of field and tem-
perature the complete two dimensional SANS patterns were fitted. In contrast, to
the study of Janoschek et al. [14] where the intensity as function of q for certain
crystalline directions was fitted.

The fit to the zero field data allows to directly comparing the fitting procedure
and the actual data with the results of Janoschek et al. In Fig. 4.13 the results of
the fit are shown. All fits give a normalized χ2 of about 0.95. The red data result
from a fit with freely varying αcub and κ, while the amplitude A is fixed to the mean
value of all temperatures. A fixation of αcub to αcub = 0.04Å−1 results in the green
data. The length of the helical wave vector khel, shown in panel (a), increases with
temperature by about 10% from 0.036(5)Å−1 at Tc to 30.52K, being slightly stronger
than reported in Ref. [14]. For the cubic anisotropy αcub (cf. Fig. 4.13 (b)) very weak
temperature dependence, as expected within the Brazovskii theory, is observed. The
mean value of αcub = −0.04(1)Å−1 is about twice the value reported by Janoschek
et al., which may be due to the better resolution of our measurement. Nevertheless,
the influence of the temperature dependence onto the inverse correlation length is
negligible as shown in Fig. 4.13 (c). Both, κ resulting from fits with free αcub and
fixed αcub are in very good agreement with each other and more importantly with the
calculated temperature dependence of κ from the Brazovskii theory (black solid line).

In a next step the field dependence of the correlation length is determined by fit-
ting the extended scattering cross-section Eq. (B.1) to the data measured in applied
magnetic field. For these fits the dipolar interaction was neglected (χint = 0) and the
cubic anisotropy was fixed at −0.041(1)Å−1. As discussed above, under applied mag-
netic field two inverse correlation lengths describe the critical scattering κ‖ and κ⊥.
For the measurements discussed here the magnetic field was aligned along the [111]
crystalline direction. As the measurements discussed here were performed with the
magnetic field aligned along the [111] crystalline direction, both, αcub and κ‖ change
the anisotropy of the scattering pattern in this direction. Hence, αcub is fixed to the
zero field value to sustain reasonable results for κ‖.

97



Cubic chiral Dzyaloshinskii-Moriya helimagnets

4.0

3.5

k h
el

 (1
0-2

Å
-1

)

0 mT
Janoschek et al.
 αcub free

 αcub = -0.04 Å
-1

(a) Tc

-4

-2

0

α c
ub

 (1
0-2

Å
-1

)

(b) Tc

2

0

κ 
(1

0-2
Å

-1
)

313029

T (K)

Brazovskii theory(c) Tc

Figure 4.13.: Comparison of the fit results as obtained for the zero field data for a
freely variable αcub (red data), αcub fixed to -0.04Å−1 (blue data) and
the results published by Janoschek et al. [14] (green squares). In (a)
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The outcomes of the fits are shown in Fig. 4.14. In the left column the inverse
correlation length parallel κ‖ (green squares) and perpendicular κ⊥ (red circles) to
the magnetic field are shown for internal magnetic fields from 0 to 432mT. On the
right hand side the temperature dependence of the helical wave vector khel is shown.
The zero field data (k) and (l) are the same as shown in Fig. 4.13, but on a differ-
ent temperature scale. The blue dashed lines are the intensity on the peak position
as function of temperature, in order to identify the transition temperature Tc. At
µ0HInt = 104mT the skyrmion phase is crossed in the temperature scan, resulting in
a dip of the intensity below Tc (cf. gray shaded area in Fig. 4.14 (i) and (j)). The in-
verse correlation length κ‖ and κ⊥ increase with temperature up to µ0HInt = 350mT,
where the slope of κ‖ and κ⊥ becomes opposite to each other. From µ0HInt = 350mT
on κ‖ decreases with temperature (cf. Fig. 4.14 (c) and (a)). The difference between
κ‖ and κ⊥ increases with increasing magnetic field, while at 104mT (cf. Fig. 4.14
(k)) both inverse correlation lengths are still quite similar. In zero field κ and in finite
field κ⊥ do not become zero at Tc. Above µ0H

TCP
int κ⊥ seems to decrease continuously

to zero.

The helical pitch khel shown on the right hand side in Fig. 4.14 increases with
temperature. The zero field data are in good agreement with those published in Ref.
[14] as shown in Fig. 4.13 (c). The field dependence is marginal. There is a very
small overall reduction of khel with increasing field.

Inverse Correlation length calculated from Brazovskii theory

As described in the Appendix B.2 κ‖ and κ⊥ can be determined in the Brazovskii the-
ory introduced in Sec. 4.1.3. The temperature and magnetic field dependence can be
calculated by solving the implicit equations (B.13) and (B.15). The field dependence
is introduced by the magnetization of the sample. Fig. 4.15 shows the magnetization
of MnSi with the field aligned along the [111] crystalline axis. The field is given as
internal field µ0Hint. In the theory described in App. B.2 the magnetization is given
by φ0 in units of µB/f.u..

In the left column of Fig. 4.14 the calculated inverse correlation lengths are shown
as solid lines. The oscillations are numerical artifacts from solving the system of
equations. In the calculation the dimensionless fit parameter ũ is introduced. ũ
represents a energy density and is given in units of (1/Jkhel). The parameter is
expected to be temperature and field independent. Up to 240mT calculated and
measured inverse correlation lengths are in quite good agreement, with ũ = 5964.
From 350mT on the calculations do not resemble the measurements. The trend can
be recovered by changing the fit parameter to ũ = 13419.
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Figure 4.14.: Temperature dependence of the perpendicular κ⊥, parallel κ‖ inverse
correlation length (left column), and the helical pitch khel (right column)
for various magnetic field in MnSi. The data points are inferred from fits
to the scattering patterns with the anisotropy parameter fixed to αcub =
−0.04(1)Å−1. The solid lines are calculated within the Brazovskii theory
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4.3.2. Quasielastic linewidth of the magnetic fluctuations

In the following sections the quasielastic measurements of the fluctuations at the
paramagnetic transition as function of temperature and magnetic field are discussed.

Experimental setup and sample

The temperature dependence of the quasi elastic linewidth was determined by means
of MIEZE measurements at the instrument RESEDA (MLZ) using the transverse
NRSE option with µ-metal shielding, covering a dynamic range of 0.4 ns to 3.5 ns. As
spin analyzer a 5V cavity before the sample was mounted. The beam collimation was
defined by a 30×30mm2 slit at the beginning of the spectrometer and a 10×10mm2

slit in front of the sample. Magnetic fields up to 400mT were applied using the nor-
mal conducting magnet “Garfield” designed by T. Reimann. The magnetic field was
aligned perpendicular (vertical) to the neutron beam resembling the transverse field
geometry as described in Sec. 4.1.6. In this geometry the conical peaks occur on the
vertical axis above and below the direct beam on the detector. To reach temperatures
down to 3.5K a standard closed cycle cryostat was employed. The cylindrical shaped
(diameter 10mm, height 30mm) MnSi single crystal (OFZ 128-3) with a crystalline
〈111〉 direction parallel to the cylinder axis was mounted to a sample stick, that al-
lowed for rotations about the vertical cylinder axis. To allow a direct comparison
between the SANS study presented in Sec. 4.3.1 and the results discussed here all
magnetic fields are given as internal fields. Considering the sample shape and the
measured susceptibility as described in Ref. [163] the internal field applied to the
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sample is given by Hint = 0.96 ·Hext.

The instrumental resolution and especially the effect of path length differences that
may occur in the sample was corrected with a resolution measurement on the helical,
respectively, conical peaks at 4K while background was measured at 40K. Fig. B.1
shows the resulting absolute value of the normalized intermediate scattering functions
for all studied temperatures and magnetic fields. For this discussion the data were
fitted with a single exponential decay of the form

S(q,τ)

S(q,0)
= A · exp

[
−Γτ

~

]
+ (1− A), (4.12)

with A = 1. This approach assumes one exponential decay process. As can be seen in
Fig. B.1 this simple model does not perfectly fit the data. A more complex analysis
will be discussed elsewhere.

Experimental results

Fig. 4.16 summarizes the results of the MIEZE measurements. The quasielastic
linewidth is shown as function of temperature for five different magnetic fields in the
range 0 ≤ µ0Hint ≤ 384mT, measured on the helical/conical peaks q = khel. All
MIEZE measurements were performed after zero field cooling to 10K and then heat-
ing of the sample in applied magnetic field. For each field the integrated intensity is
shown (blue open squares). At 104mT the sample passes the skyrmion phase near
T = 28.5K, leading to a kink. This kink reflects a transfer of spectral weight from
the conical to the Skyrmion peaks.

Tc is identified in the same way as for the SANS measurements discussed in Sec.
4.3.1, by the derivative of the intensity versus temperature curve. As for the SANS
data Tc shifts by -0.5K from zero field Tc = 28.9K to the tricritical point Tc = 28.3K.
The offset off 0.2K between Tc measured with SANS-1 and with RESEDA is small and
may arise from a different temperature gradient between sample and thermometer. At
SANS-1 a different cryostat with a longer sample tube was used to fit into the magnet.

Tc is not only reflected in the temperature dependence of the intensity but also in
the temperature dependence of the linewidth Γ. At Tc Γ increases, showing a finite
lifetime of the chiral fluctuations. The increase of Γ shifts to smaller temperatures
with increasing field, as observed for Tc in the intensity. In zero field and up to 240mT,
a step in Γ is present that vanishes to a monotonic increase above µ0H

TCP
int = 340mT.

At µ0H
TCP
int = 384mT the increase of Γ seems to already start below Tc.
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Figure 4.16.: Quasielastic linewidth (red data) of the chiral fluctuations measured as
function of temperature for various vertical magnetic fields in the range
0 ≤ µ0Hint ≤ 384mT. The blue dashed line displays the intensity,
evaluated at the same q position and the black dashed line indicates Tc.
The linewidth Γ results from a fit assuming a single exponential decay.
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4.3.3. Discussion

Our combined SANS and MIEZE study shows the evolution of the paramagnetic
to helimagnetic transition in MnSi from a first-order in zero field to a second-order
transition for Hint ≥ HTCP

int in agreement with previously performed specific heat
measurements [140]. The temperature and field dependence of both the relevant cor-
relation length κ⊥, κ‖ and the quasi elastic linewidth Γ are in very good agreement
with the Brazovskii scenario of a fluctuation-induced first-order transition that breaks
down at the tricritical point, as expected.

The scattering patterns above Tc vividly show the symmetry change of the fluctua-
tion spectrum from isotropic chiral fluctuations on a sphere, to circular segments, to
isotropic fluctuations around the conical peak positions at q = ±khel. In zero field
the fluctuations accumulate on a two dimensional surface in reciprocal space while for
H ≥ HTCP

int only two points in reciprocal space are populated. The steep drop in the
intensity at Tc evolves to a monotone decrease for Hint ≥ HTCP

int and the transition
temperatures slightly decreases with increasing field from Tc = 29.00(5)K in zero field
to 28.50(5)K at 350mT.

The zero field data show that the analysis by fitting the full scattering pattern
gives reliable results and the direct comparison to the previously published data by
Janoschek et al. [14] shows a remarkably good agreement, although both studies were
performed at different instruments and with different samples. The stronger cubic
anisotropy αcub observed in this study may be explained by the significantly higher q
resolution of the measurements at SANS-1. Nevertheless, the exact temperature de-
pendence of αcub has only a very small influence on the temperature dependence of the
inverse correlation length κ. This small influence justifies fixing αcub = 0.041(1)Å−1

for the fits of the data measured under applied magnetic field.

Comparing the field and temperature dependence of the measured inverse correla-
tion length with the inverse correlation length calculated within the Brazovskii sce-
nario gives a very good agreement for magnetic fields below HTCP

int . At the tricritical
point the simple model with only a single fit parameter, i.e ũ, does not hold anymore.
The Brazovskii theory presented in Sec. B.2 only considers the most important renor-
malization effects. Close to the tricritical point and in the region of the second-order
transition higher order corrections to the free energy have to be considered to describe
κ⊥ and κ‖.

The temperature dependence of the quasielastic linewidth Γ confirms the reduc-
tion of Tc as observed from the intensity. The first-order like step in Γ vanishes with
increasing field. For magnetic fields larger then µ0H

TCP
int the linewidth Γ increases

monotonically, as expected for a second-order transition.
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The tricritical point in MnSi, originally identified by specific heat measurements
[140], is explicitly observed with neutron scattering. At the tricritical point the sym-
metry of the chiral fluctuations change, resulting in a reduction of the available phase
space. Hence, the strong interactions between the fluctuations are suppressed and the
fluctuation-induced first-order transition changes to a second-order transition. The
application of the Brazovskii theory allows to predict the temperature and field de-
pendence of the inverse correlation length κ⊥ and κ‖ when approaching the tricritical
point. This study provides another proof for the validity of the Brazovskii scenario
in MnSi.
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4.4. Suppression of magnetic order in Mn1−xFexSi
and Mn1−xCoxSi

The magnetism in MnSi may be suppressed by substitutional doping of iron or cobalt
atoms on the manganese sites, as discussed in Sec. 4.1.5. In this section, a comprehen-
sive study of single crystals of Mn1−xFexSi and Mn1−xCoxSi by SANS and transversal
NRSE measurements is reported.

The following discussion consists of two parts. First, SANS measurements charac-
terizing the magnetic ground state in zero magnetic field are reported. Second, the
focus is on the temperature dependence of the scattering intensity and the tempera-
ture dependence of the lifetime of the magnetic fluctuations at the transition into the
helical phase in zero field.

4.4.1. Investigation of the magnetic ground state

Experimental setup and samples

In a first step the magnetic ground state of all samples was studied by means of
SANS measurements. The experiments were carried out at the instruments RESEDA
at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany and at SANS-II at
PSI, Villigen, Switzerland. T. Adams performed a preliminary study focusing on the
Skyrmion phase at the beamline MIRA (MLZ) [164]. The measurements at SANS-II
were performed together with S. Ernst in the framework of his Bachelor thesis [165].
At MLZ a standard pulse tube cooler was utilized reaching temperatures down to
3.5K. For temperatures down to 0.5K a He-3 and down to 50mK a dilution-insert
was used, respectively. The measurements at SANS-II were carried out with a 11T
cryomagnet with dilution insert reaching temperatures down to 50mK. All key pa-
rameters of the experiments at the different beamlines are summarized in Tab. 4.4.1.

We studied single crystals of pure MnSi, Mn1−xCoxSi (x = 0.02 and x = 0.04)
and Mn1−xFexSi (x = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 and 0.16). A characterization by
means of magnetization, ac susceptibility and specific heat measurements of most of
these samples is reported in Ref. [159]. Two single crystals, Mn1−xFexSi x = 0.06
and x = 0.10, were additionally grown as described in Ref. [159]. All samples under
study possess a cylindrical shape and were oriented by x-ray Laue diffraction, such
that a crystalline 〈110〉 direction was aligned perpendicular to the scattering plane.
The rotation about this vertical axis defines the rocking angle ω (see Fig. 4.8).

Magnetic ground state

The influence of iron doping on the scattering pattern in zero magnetic field is shown
in Fig. 4.17. For x ≤ 0.08 data is recorded at a temperature of ≈ 3.5K, x = 0.10
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4.4 Suppression of magnetic order in Mn1−xFexSi and Mn1−xCoxSi

Table 4.1.: Instrumental parameters at the different beamlines used for this study. (1)
@ MLZ, (2) @ PSI, (3) normal conducting magnet in Helmholtz geometry,
(4) superconducting cryomagnet MA11.

instrument λ (Å) ∆λ/λ detector Bmax (T) Tmin (K) samples

RESEDA(1) 5.42 0.10 CASCADE 0.4(3) 0.05 xFe = 0, 0.02, 0.04,
0.06, 0.08, 0.10, 0.12;
xCo = 0.02, 0.04

SANS-II(2) 4.76 0.10 He-3 PSD 11(4) 0.05 xFe = 0.12, 0.16

was measured at 0.5K and 0.12 ≤ x ≤ 0.16 at 0.05K. The iron concentration in-
creases from left to right. In the top row (a1) - (h1), the samples are oriented with
n ‖ 〈100〉, in central row (a2) - (h2) with n ‖ 〈110〉 and in the bottom row (a3) - (h3)
all samples are aligned with n ‖ 〈111〉. Fig. 4.18 shows the corresponding azimuthal
intensity distributions, evaluated on a ring with radius q = khel and width ∆q. The
radial width ∆q was selected according to the radial width of the peak or ring. All
intensities are plotted as function of the azimuthal angle α. α is measured clockwise
from the vertical 〈110〉 axis as depicted on the detector in Fig. 4.8. The intensities
are normalized to the peak intensity IP of each sample.

In the first column of Fig. 4.17, panels (a1) to (a3), the results for pure MnSi are
shown. MnSi shows a well-defined scattering pattern with helical Bragg spots along
the 〈111〉 directions. The rocking width of the helical Bragg spots is very narrow
∆ω = 1.3(8)◦. Nevertheless, panel (a2) shows four helical peaks being only observ-
able as all panels in Fig. 4.17 show the sum of a rocking scan of ω ± 3◦. At qz = 0
along qx weak spots occur due to double scattering. The azimuthal width ∆α, the
radial width ∆q and the rocking width ∆ω of the helical peaks are limited by the
instrumental resolution, the sample size and the slit in front of the sample. Increasing
the iron content broadens the helical Bragg spots in azimuthal and radial q direction.
Up to an iron concentration of x = 0.12 clear helical peaks are visible. The sam-
ple with x = 0.16 shows a ring with broad peaks of a slightly higher intensity. All
samples clearly show a helical structure resulting from the interplay of exchange and
Dzyaloshinskii-Moriya interaction. The strongest effect of the substitutional doping
on the magnetic ground state, visible in the low temperature scattering patterns, is
a change of the strength of the cubic anisotropy. The broadening of the peaks is
primarily visible in an increase of the azimuthal width ∆α, while the radial width ∆q
stays relatively constant up to x = 0.08. This can also be seen from the azimuthal
intensity distributions in Fig. 4.18. At x = 0.12 iron doping peaks are still visible. In
addition to these peaks a ring of scattering intensity emerges. This diffuse scattering
is obviously concentrated on a ring or sphere with q = khel, however, it is not isotrop-
ically distributed, suggesting that the ring of diffuse scattering originates either from
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unpinned helices or isotropic chiral fluctuations, similar to those observed in pure
MnSi above Tc for H = 0. Nevertheless, the energy integrated SANS measurements
presented here do not allow to distinguish between static randomly aligned helices or
isotropic chiral fluctuations.

The scattering patterns for cobalt doped samples are shown in Fig. 4.19, for the
neutron beam parallel to 〈100〉 (top row) and 〈110〉 (bottom row). Increasing doping
leads to the same behavior as discussed above for iron, however for half the concen-
trations (xCo = 2xFe). The azimuthal width strongly increases while the radial width
stays relatively constant.
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Figure 4.19.: SANS patterns and azimuthal intensity distribution of the magnetic
ground state of Mn1−xCoxSi for x = 0.02 and x = 0.04. The figures
show data measured with the neutron beam along [100] and [110] in
zero magnetic field.

Magnetic anisotropy

In the previous section the strength of the magnetic anisotropy was discussed, here we
focus on the direction of the anisotropy. The Ginzburg Landau ansatz as presented
in Sec. 4.1.1 and especially with the contribution to the free energy presented in
Eq. (4.2) only allows for alignments of the helices along the 〈111〉 or 〈100〉 directions.
The 〈110〉 direction results in a saddle point of the free energy, hence, is not stable.
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Figure 4.20.: Rocking map as function of azimuthal angle α and rocking angle ω of
Mn1−xFexSi for different iron concentrations. While (a)-(c) and (e) show
a helical order which is aligned along the 〈111〉 direction, in (d) and (f)
the pinning of the helical order is clearly along 〈110〉.
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In case of pure MnSi the easy axis is the 〈111〉 direction, as also discussed above
and visible in the rocking map shown in Fig. 4.20 (a). Fig. 4.20 shows a mapping of
the intensity from the sphere with radius |khel| onto a plane as function of the rocking
angle ω and azimuthal angle α for different iron concentrations. ω = 0 corresponds
to an alignment of the neutron beam along the crystalline [110] direction and α is
measured clockwise with respect to the vertical [110] direction. In MnSi (a), a clear
〈111〉 anisotropy is visible as only peaks along this direction appear. The same holds
for x = 0.02 (b). At x = 0.04 (c) the first hint for a change of the anisotropy direction
becomes visible as weak intensity along the 〈110〉 direction in Fig. 4.17 (c1), (c3) and
Fig. 4.20 (c) appears. A 〈110〉 anisotropy forms at an iron concentration of x = 0.06
with distinct peaks along the 〈110〉-crystal axis. The 〈110〉 anisotropy changes back
to an 〈111〉 anisotropy at x = 0.08, with remnants of 〈110〉 intensity (e3). At x = 0.10
the anisotropy direction is again 〈110〉. For higher iron concentrations (i.e. x = 0.12
and x = 0.16) the determination of the anisotropy direction becomes difficult as the
diffuse ring becomes stronger than the helical peaks. Nevertheless, fitting the scatter-
ing patterns with the scattering cross section Eq. (4.4) as done in Sec. 4.3.1, allows
to determine the sign of αcub and therefore to decide whether the anisotropy is along
〈100〉 (αcub > 0) or along 〈111〉 (αcub < 0). These two samples have been studied
together with S. Ernst at SANS-II (PSI) and are discussed in more detail in his Bach-
elor thesis Ref. [165]. The fits reveal that the Mn1−xFexSi sample with x = 0.12
has a 〈111〉 anisotropy while the sample with x = 0.16 observes a very weak 〈100〉
anisotropy.

As discussed above both Mn1−xCoxSi samples under study show unambiguously a
anisotropy in 〈111〉 direction.

Helical pitch

The pitch of the helical modulation vector khel increases with increasing iron and
cobalt concentration as can be seen in Fig. 4.21 where the scattering intensity is
plotted as function of radial q, evaluated in a sector covering the helical peak. Panel
(a) shows the results for iron and (b) for cobalt doping. The peak position shifts from
0.036Å−1 for pure MnSi to 0.088Å−1 at x = 0.16 iron doping. The increase of khel
corresponds to a reduction of the helix length by more than a factor of two, from
173Å to 71Å. Cobalt doping has twice the effect as iron doping because twice as
many electrons are added to the crystal per unit cell, as discussed in the introduction.
This can be explicitly seen in Fig. 4.22, where both the helical wave vector khel and
the length of the helical modulation λhel is plotted versus iron and cobalt doping.
The iron axis is scaled by a factor of two compared to the cobalt axis. Both, the
data for Mn1−xFexSi (red circles) and the data for Mn1−xCoxSi (green squares) are
in very good agreement when considering that cobalt doping increases the electron
concentration twice as much as iron doping.
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Figure 4.21.: Panels (a) and (b) show the radial q-dependence of the neutron scat-
tering intensity for Mn1−xFexSi and Mn1−xCoxSi in the helical order,
respectively. The pitch of the helical order increases with increasing
iron and cobalt concentration.
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Figure 4.22.: Iron and cobalt dependence of the helical modulation vector khel (a) and
length of the helix λtextrmhel in Mn1−xFexSi and Mn1−xCoxSi. The
dashed lines are guides to the eye.
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4.4.2. Stability of magnetic order

Experimental setup and sample

All quasi-elastic measurements were performed at RESEDA (MLZ) using the standard
transverse NRSE setup with double µ-metal shielded spectrometer arms covering a
dynamic range from 0.2 ns to 2 ns. The sample environment was the same as described
in Sec. 4.4.1. In contrast to the SANS measurements a single 3-He counter was used
as detector. The collimation in the primary spectrometer arm was the same but at the
beginning of the secondary arm slits were added to reduce the background signal. The
measurements presented here are performed on the helical Bragg spot. All samples
were oriented with a helical satellite peak in the scattering plane.

Experimental results

The temperature dependence of the energy integrated intensity from the magnetic
satellites of all Mn1−xFexSi samples under study is shown on the left hand side of
Fig. 4.23. To allow a comparison between the different samples the intensities are
normalized to the intensity of pure MnSi by considering the magnetic moment at base
temperature taken from Ref. [159]. As discussed in Sec. 4.3.1, Tc is determined as the
minimum of the derivative of the temperature dependence of the scattering intensity.
The black dashed line indicates Tc. Below Tc a kink occurs, indicated by the black
arrow in Fig. 4.23, that becomes more pronounced with increasing iron concentration
and may origin in a reorientations of helical domains. For pure MnSi, shown in panel
(a), the intensity at 3.5K is about ten times larger than at the kink. In contrast, the
sample with x = 0.10 (k) does not show any temperature dependence of the intensity
for temperatures below the kink. For the sample with the highest iron concentration
under study x = 0.12 shown in panel (m) a definition of Tc is very difficult, as there
is no sharp feature in the temperature dependence of the scattering intensity. The
derivative identifies Tc at Tc = (5± 1)K.

The results of the quasi elastic NRSE measurements are summarized on the right
hand side of Fig 4.23. All data were measured while heating the sample in zero mag-
netic field. A comparison between a graphite measurement and a low temperature
measurements on the Mn1−xFexSi and Mn1−xCoxSi samples revealed that they are
identical for 0 ≤ x ≤ 0.10. However, the intensity of the low temperature measure-
ments on the Mn1−xFexSi and Mn1−xCoxSi is larger than the intensity from resolu-
tion sample, hence the former were selected as resolution. For Mn1−xFexSi x = 0.12
a deviation to the graphite measurement was observed down to the lowest available
temperature 50mK, beeing the first hint for the absence of static order in this sam-
ple. To consider the resolution we selected the low temperature measurement from
the sample with x = 0.10. In Fig. B.2 and B.3 shown the appendix all normalized
intermediate scattering functions are depicted.
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Figure 4.23.: Suppression of the helical order in Mn1−xFexSi (0 ≤ x ≤ 0.12) as ob-
served in the scattering intensity and the linewidth Γ of the fluctuations.
The left column shows the intensity as function of temperature. Tc is
indicated by the black dashed line. The black arrow slightly below Tc
points at a characteristic kink present for all iron concentrations. On the
right hand site the quasielastic line width Γ as function of temperature
is shown. The black dashed line indicates the temperature TQENS where
Γ = 0. All data are measured on the position of the helical Bragg peak.
The solid lines are guides to the eye. 115
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The quasielastic line width Γ is extracted by a fit to S(q,τ)/S(q,0) considering a
single exponential decay of the form

S(q,τ)

S(q,0)
= A · exp

[
−Γτ

~

]
+ (1− A), (4.13)

with A = 1 and y0 = 0. The line width Γ versus temperature is shown on the right
hand side in Fig. 4.23. All samples in the range (0 ≤ x ≤ 10) show a character-
istic temperature dependence of Γ. At low temperatures in the helical phase, Γ is
resolution limited, i.e. Γ = 0, at a temperature TQENS Γ exhibits a sudden increase.
TQENS is indicated by the black dashed line. For increasing iron concentration TQENS

decreases as observed for Tc. Mn1−xFexSi, x = 0.02 (cf. Fig. 4.23 (d)) exhibits a
weaker increase of Γ, due to a strong background contamination. The collimation of
the neutron beam was not adjusted properly in this special measurement. In contrast
to all other samples, Γ remains finite in the full temperature range under study for
the sample with x = 0.12 (cf. Fig. 4.23 (n)). No static magnetic order is observed
down to 50mK in this sample.

In conclusion, the measurements reported in this section allow to extract two char-
acteristic temperatures Tc and TQENS. Tc is defined by the minimum of the derivative
of the intensity versus temperature data and resembles the sharp peak on the shoulder
in the specific heat data as shown for MnSi in Fig. 4.5 (a). TQENS defines the temper-
ature were the chiral fluctuations become static indicated by a resolution limited Γ.
Another characteristic temperature T2 is defined by the Vollhardt invariance in the
specific. At T2the cross over from the chiral fluctuating to ferromagnetic fluctuating
regime takes place, as discussed in Sec. 4.1.4. Fig 4.24 summarizes the evolution of
these temperatures with increasing iron concentration. The data for Tc, TQENS are
from this study while those for T2 are from Ref. [159]. In the green shaded area a
static helical order is observed. The blue shaded region indicates a phase of predom-
inant isotropic chiral fluctuations, which become ferromagnetic above the cross over
line defined at T2.

All characteristic parameters of the helical order khel, λhel, ∆ω, ∆α and the char-
acteristic temperatures Tc and TQENS for both Mn1−xFexSi and Mn1−xCoxSi are sum-
marized in Tab. 4.2.

4.4.3. Discussion

Substitutional doping of iron and cobalt atoms into MnSi, similar to hydrostatic
pressure, decreases the lattice constant but in addition, also increases the amount
of electrons per formula unit. Thus directly affecting the electronic structure. The
increase of the number of electrons per formula unit dominates the influence onto the
magnetic structure, as a cobalt doping of xCo corresponds precisely to the effect of
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data for T2 are taken from ref. [159]). In the green shaded area a
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2xFe iron doping in various properties, e.g. Tc and khel. The effect of disorder seems
to be weak, at least up to an iron concentration of x = 0.10, as the incoherent back-
ground in the scattering patterns is rather small up to this concentration.

Less obvious is the influence on the magnetic anisotropy αcub. αcub decreases with
increasing doping. Additionally, an unexpected orientation of the helical domains in
the crystalline 〈110〉 direction occurs for x = 0.06 and 0.10. Peaks along the 〈110〉
direction are very similar to the partial magnetic order under hydrostatic pressure
in pure MnSi. However, the minimal model for chiral helimagnets as introduced in
Sec. 4.1.1 does not explain the alignment of helices along the 〈110〉 direction. The
free energy cannot be minimized for helical domains pointing along this direction, as
all higher order terms to fcub result in saddle points. In the minimal model there is
no explanation for a state with several helical domains pointing along 〈110〉. Beyond
the minimal model, the observations from neutron scattering may be explained by a
single domain multi-q state, but there is no further evidence for such a proposal.

The system becomes less ferromagnetic with increasing doping as the helical wave
vector khel ∝ D/J increases. However, the effect is much stronger for doping than for
pressure. khel increases by a factor of ∼ 3 up to the critical concentration xc, while
under pressure the increase is only by a factor of ∼ 1.3 as reported in Ref. [166].
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The suppression of the magnetic order by doping can be observed in various physical
properties, e.g. susceptibility, intensity of the magnetic satellites and linewidth of the
chiral fluctuations as summarized in Fig. 4.25. While in pure MnSi the susceptibility
exhibits a first-order peak (cf. panel (a)), this feature smears out for increasing iron
concentration. The same holds for the temperature dependence of the intensity, also
observing a less pronounced decay with increasing iron concentration. A smeared out
decay may be understood in terms of a second-order phase transition, but can also
arise from an increased disorder in the highly doped samples.
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Figure 4.25.: Direct comparison of susceptibility (a), intensity of the helical Bragg
peak (b) and quasielastic line width (c) measured in Mn1−xFexSi. In
all quantities the suppression of the helical transition temperature Tc is
visible. At an iron concentration of x = 0.12 line width stays finite down
to 50mK. The susceptibility is measured by A. Bauer.

For the highly doped sample with x = 0.12 a finite linewidth Γ > 0 is found
down to 0.05K, in contrast to all other samples under study. Hence, the ring like
intensity distribution below the broad helical satellites can be explained by isotropic
chiral fluctuations, rather than unaligned helical order. A similar fluctuating regime
is reported in MnGe [167]. In addition, C. Franz et al. observed a topological Hall
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signal in the same sample for temperatures 0.5K ≤ T ≤ 3K [45]. The combination of
the topological signal with the fluctuating magnetic phase, may indicate that in this
region of the phase diagram (cf. Fig. 4.24) a new type of topological non-trivial spin
liquid stabilizes.
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Conclusion and Outlook

This thesis describes the advancements of the neutron spin echo spectrometer RESEDA
towards a larger dynamic range, lower small angle scattering background and improve-
ments for a better applicability of the Larmor precession techniques with samples
under extreme conditions. The main focus is on the paramagnetic to ferromagnetic
transition in iron and the evolution of the paramagnetic to helimagnetic transition
with magnetic field and substitutional doping in the cubic helimagnet MnSi. Both
systems were studied by means of SANS and neutron spin echo measurements.

In Chapter 2 I summarize the experimental methods used in this thesis and their im-
provements to realize the studies on iron and MnSi. The new generation MiniMuPAD
has one order of magnitude less background compared to the first version, an increased
transmission and allows a precise sample alignment between the precession elements.
First test experiments with the new longitudinal NRSE setup increased the maximum
resolution at RESEDA by one order of magnitude and at the same time enhanced the
dynamic range to at least 106. The small angle scattering background is significantly
reduced and the neutron flux increased by using uncoated rf-coils, a well defined col-
limation and vacuum flight tubes in the primary and secondary spectrometer arm.
We have for the first time realized MIEZE measurements under very strong magnetic
fields up to 17T without reduction of resolution proving the feasibility to combine
spin echo resolution with extreme sample environments [41].

In Chapter 3 I report a comprehensive MIEZE study of the dynamics at the para-
magnetic to ferromagnetic transition in iron for both T > TC and T < TC performed
at the beamline RESEDA. Above the Curie temperature the critical fluctuations can
be explained by a Heisenberg model additionally considering the dipolar interaction
between the fluctuations. The increased flux and reduced background at RESEDA al-
lowed us to access very small scattering angles, hence, probing large distances in real
space where weak but long-range interactions, like the dipolar interaction, become
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important. Our results confirm the scaling theory developed by Schwabl and Frey
[91, 93, 94] for dipolar ferromagnets. Nevertheless, the precise strength of the dipolar
interaction can not be explained in this model, illustrating the influence of itinerant
electrons. The large dynamic range, easily tunable with longitudinal MIEZE, enabled
us to study the well defined excitations, i.e. magnons, below TC. Our results sup-
port previous studies [104] and are in good agreement with standard magnon theory
[105, 106].

In Chapter 4 I address the paramagnetic to helimagnetic transition in MnSi under
three aspects. First, the chirality of the system at the zero field transition in MnSi,
second, the evolution of the chiral fluctuations under the influence of a magnetic field
and, third, the suppression of the magnetic order by substitutional doping of iron and
cobalt atoms. The MiniMuPAD enabled us to investigate the zero field transition from
paramagnetism to helimagnetism in MnSi using polarization analysis [15]. Our study
confirms that in agreement with previous unpolarized studies [14] the critical spin flip
scattering is very well described by the minimal model of a fluctuation-induced first-
order transition in a Brazovskii scenario. The chirality of the system, characterized
by the chiral fraction η, decreases above Tc as predicted within this minimal model
and there is no need for a more complex model as that recently proposed in Refs.
[137–139], predicting a skyrmion formation in bulk chiral magnets at zero magnetic
field. Our combined SANS and MIEZE study following the evolution of the para-
magnetic to helimagnetic transition in MnSi with magnetic field confirm the change
from a first to a second-order transition at the tricritical point HTCP. The SANS pat-
terns vividly show that with increasing field the phase space volume populated by the
chiral fluctuations is reduced, from an isotropic sphere to spots on the magnetic satel-
lites. Approaching the tricritical point the number of degrees of freedom of the chiral
fluctuations is reduced until the Brazovskii scenario breaks down and the transition
becomes second-order. The inverse correlation length parallel κ‖ and perpendicular
κ⊥ to the magnetic field characterizing the fluctuations can be directly calculated by
means of the Brazovskii theory. Our fits to the scattering patterns confirm the change
of slope of κ‖ at the tricritical point and prove the increasing separation between κ‖
and κ⊥, both as predicted by the Brazovskii theory. The temperature dependence
of Γ resembles the small decrease of Tc when approaching HTCP and shows clear ev-
idence for a change from a first to second-order phase transition. Finally, we can
show that substitutional doping of iron and cobalt atoms into MnSi suppresses the
magnetic order and induces the emergence of a topologically fluctuating phase. Tc
is suppressed, accompanied by an increase of the helical wave vector as observed in
our diffraction data. The quasielastic linewidth allows to determine the characteristic
temperature TQENS at which the magnetic structure becomes static. By combining
our results with susceptibility data [159] and measurements of the topological Hall
effect [45] we are able to draw a magnetic phase diagram as function of doping and
temperature that shows how the isotropic chiral Brazovskii fluctuations at zero doping
evolve to a regime that may be identified as a new form of a topological spin liquid.
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Furthermore, while suppressing Tc we observe unconventional anisotropies pointing
in the crystalline 〈110〉 direction, similar to the partial magnetic order in MnSi under
hydrostatic pressure [144].

The results presented in this thesis show the great potential of combining SANS and
spin echo techniques. Novel magnetic systems, like Skyrmions or other magnetic vor-
tices, order on large length scales being perfectly accessible with SANS instruments.
At the same time the dynamics of these magnetic systems is very important for their
fundamental understanding, making spin echo the perfect choice. The possibility to
combine depolarizing samples and sample environments with spin echo resolution us-
ing the MIEZE technique is ideally suited to study field induced QPTs for instance
in CoNb2O6 [42] or QPTs at the border to ferromagnetism as for example in UGe2

[21]. Yet another fascinating field is the study of melting and reorientation transi-
tions in the flux line lattice of superconductors. First proof of principle experiments
at RESEDA show the feasibility of such studies, but also the importance to increase
the resolution. A better control of the B0 fields and rf-coils that allow spin flips up to
4MHz will make an effective field integral of ≈ 500mTm available, being comparable
to that applied at world leading spin echo spectrometers. The large effective field
integral does not only allow to study at ultra large spin echo times using long wave-
length, but also to perform measurements with medium resolution at the wavelength
of maximum flux. An increased flux is very important for the study of diffuse pro-
cesses as for example at continuous phase transitions where critical scattering from
the fluctuations of the order parameter are observed. Longitudinal NRSE has the
unique opportunity to easily implement well established focusing neutron guides in
the precession region and hence to increase the neutron flux at the sample. Mean-
while, the MIEZE method can be further improved for inelastic studies and better
statistics by fixing the phase of the MIEZE echo. A constant phase will allow to follow
changes of the phase due to inelastic excitations in the sample and to measure their
evolution towards critical fluctuations when approaching a phase transition. For the
investigation of chiral helimagnets the precise understanding of the partial magnetic
order - the holy grail of MnSi - remains unsettled. A combined SANS and MIEZE
study addressing the suppression of the magnetic order by hydrostatic pressure may
give the important hint to solve this problem.

In conclusion, within this thesis we have proven that the combination of small angle
scattering and high resolution spin echo measurements is a powerful tool to investigate
the nature and stability of magnetic order. The systems studied in this thesis are very
good examples where fluctuations fundamentally change the properties of the system
and give rise to new unexpected physical phenomena.
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APPENDIX A

Appendix: Critical fluctuations at the Curie point of iron

In Tab. A.1 all parameters employed in the study on iron and the corresponding
references are summarized. Fig. A.1 shows additional MIEZE data measured above
the Curie point at TC + 30K (a), TC + 2K (b) and TC + 1K (c). The data are treated
in the same way as discussed in Ch. 3.

Table A.1.: Characteristic parameters of iron used in this chapter.

TC a κ0 ν A qD

Fe 1043K[98] 2.87Å[98] 1.22Å[95] 0.69 140meVÅ5/2[100] 0.033Å−1[101]
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Figure A.1.: Normalized MIEZE contrast measured at TC + 30K (a), TC + 2K (b)
and TC + 1K (c). The data were recorded using neutrons with a mean
wavelength λ = 8.0Å.
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APPENDIX B

Appendix: Cubic chiral Dzyaloshinskii-Moriya helimagnets

In this appendix the generalized scattering cross section for chiral magnets and a
description of how to calculate the correlation length κ⊥ and κ‖ within the Brazovskii
theory are given. Additional results for the MIEZE measurements on MnSi and the
NRSE measurements on Mn1−xFexSi and Mn1−xCoxSi are shown.

B.1. Scattering cross section for chiral magnets

Equation B.2 and B.3 combine in equation B.1 to the generalized scattering cross-
section σ for chiral helimagnets as introduced in Sec. 4.1.3. σ includes the dependence
on an external magnetic field along the crystalline 〈111〉 direction of the sample. The
length of the scattering vector is given by q =

√
q2

1 + q2
2 + q2

3, the length of the helical
wave vector by khel, the strength of the dipolar interaction by χint and the strength of
the cubic anisotropy by αcub, respectively. κ‖ describes the inverse correlation length
along and κ⊥ perpendicular to the magnetic field.

σ = AkBT
nominator

denominator
(B.1)
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The generalized expression was calculated by M. Garst and then evaluated for B ‖
〈111〉 using Mathematica [168], to resemble the field geometry in our SANS study.
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(B.3)

B.2. Brazovskii theory for chiral magnets

Here the fundamental equations from the Brazovskii theory are motivated to calculate
the parallel κ‖ and perpendicular κ⊥ inverse correlation length for chiral magnets in
magnetic field, following the supplement of Ref. [14] and the report [169]. Close to
the transition chiral fluctuations have to be treated in a self-consistent manner. We
start the discussion with Eq. (B30) and (B31) from the supplement of Ref. [14] in
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the paramagnetic phase |Ψhel| = 0. The equations read

∆⊥ = δ +
u

3!
φ2

0 +
u

3!
(2D⊥ +D‖) (B.4)

∆‖ = δ +
u

3!
3φ2

0 +
u

3!
(D⊥ + 3D‖), (B.5)

D⊥ and D‖ are the partial derivatives of the function D(∆⊥,∆‖) with respect to ∆⊥
and ∆‖, Di = ∂∆i

D(∆⊥,∆‖) with i =⊥ , ‖. The function D reads

D(∆⊥,∆‖) = kBT

∫
d3k

(2π)3
log(detχ−1(k)), (B.6)

where χ is susceptibility introduced in Eq. (B24) in the supplement of Ref. [14]. D
can be separated in into a part containing the leading singularity and into a subleading
part D = Dsingular +Dsub. The singular part is given by

Dsingular(∆⊥,∆‖) =
Q3kBT√

2π

√
∆⊥ + ∆‖
JQ2

· y
(

∆⊥ −∆‖
∆⊥ + ∆‖

)
, (B.7)

with the auxiliary function

y(α) =
√

1 + α− 1

π

∫ ∞
−∞

ds

(
1−

√
1 + s2

α
tan−1

√
α

1 + s2

)
. (B.8)

The function yields y(0) = 1 and the derivative y′(0) = 1/6. One can rewrite Eq.
B.4 and B.5 in a dimensionless form by dividing both equations through JQ2, with
the ferromagnetic exchange constant J and the scattering vector Q. We introduce
κ̃i := κi

Q
, κ2

i := ∆i

J
, δ̃ := δ

JQ2 , ũ := u
JQ2 and γ := ũkBQ

3

JQ2 . The dimensionless equations
than read

κ̃2
⊥ = δ̃ +

1

3!
ũφ2

0 +
1

3!
ũ(2D⊥ +D‖) (B.9)

κ̃2
‖ = δ̃ +

3

3!
ũφ2

0 +
1

3!
ũ(D⊥ + 3D‖). (B.10)

The Ansatz
δ̃ =

T − TMF

T0

(B.11)
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leads to
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0+ (B.12)
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and
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0+ (B.14)
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Eq. (B.13) and (B.15) only depend on temperature T , the mean field transition tem-
perature TMF and the magnetization φ0 in units of µB/f.u.. For MnSi f.u. = 24.018Å3.
ũ is a field and temperature independent fit parameter.
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B.3. MIEZE measurements on MnSi

In Figure B.1 the normalized intermediate scattering function S(q,τ)/S(q,0) is shown.
The data were measured on a MnSi single crystal with the transversal MIEZE setup
at RESEDA.
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Figure B.1.: Normalized intermediate scattering function measured on the conical
Bragg peak as function of temperature for different magnetic fields.
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B.4. NRSE measurements from Mn1−xFexSi and
Mn1−xCoxSi

The following figures show the measurements using the transverse NRSE option of
RESEDA. Fig B.2 and B.3 show the normalized intermediate scattering function
measured on the Mn1−xFexSi samples. Fig. B.4 shows the results as obtained from
Mn1−xCoxSi.
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Figure B.2.: Normalized intermediate scattering function measured on the conical
Bragg peak of Mn1−xFexSi as function of temperature for different iron
concentrations. (a) x = 0.02, (b) x = 0.04 and (c) x = 0.06.
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Figure B.3.: Normalized intermediate scattering function measured on the conical
Bragg peak of Mn1−xFexSi as function of temperature for different iron
concentrations. (a) x = 0.08, (b) x = 0.10 and (c) x = 0.12.
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141





Bibliography

Bibliography

[1] J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the
Ba-La-Cu-O system, Z. Phys. B: Condens. Matter 64, 189 (1986).

[2] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a mott insulator: Physics of
high-temperature superconductivity, Rev. Mod. Phys. 78, 17 (2006).

[3] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer,
R. Georgii, and P. Böni, Skyrmion Lattice in a Chiral Magnet, Science 323,
915 (2009).

[4] C. Pfleiderer, S. R. Julian, and G. G. Lonzarich, Non-Fermi-liquid nature of the
normal state of itinerant-electron ferromagnets, Nature 414, 427 (2001).

[5] G. R. Stewart, Non-Fermi-liquid behavior in d- and f -electron metals, Rev.
Mod. Phys. 73, 797 (2001).

[6] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities
at magnetic quantum phase transitions, Rev. Mod. Phys. 79, 1015 (2007).

[7] K. G. Wilson, The renormalization group and critical phenomena, Rev. Mod.
Phys. 55, 583 (1983).

[8] C. Pfleiderer, Why first order quantum phase transitions are interesting, J.
Phys.: Condens. Matter 17, S987 (2005).

[9] S. A. Brazovskii, Phase transition of an isotropic system to a nonuniform state,
Soviet Physics JETP 41 (1975).

[10] J. Swift, Fluctuations near the nematic-smectic-C phase transition, Phys. Rev.
A 14, 2274 (1976).

143

http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/ 10.1103/RevModPhys.78.17
http://dx.doi.org/ 10.1126/science.1166767
http://dx.doi.org/ 10.1126/science.1166767
http://dx.doi.org/10.1038/35106527
http://dx.doi.org/ 10.1103/revmodphys.73.797
http://dx.doi.org/ 10.1103/revmodphys.73.797
http://dx.doi.org/ 10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/RevModPhys.55.583
http://stacks.iop.org/0953-8984/17/i=11/a=031
http://stacks.iop.org/0953-8984/17/i=11/a=031
http://dx.doi.org/ 10.1103/PhysRevA.14.2274
http://dx.doi.org/ 10.1103/PhysRevA.14.2274


Bibliography

[11] A. B. Migdal, E. Saperstein, M. Troitsky, and D. N. Voskresensky, Pion degrees
of freedom in nuclear matter, Physics Reports 192, 179 (1990).

[12] T. D. Stanescu, B. Anderson, and V. Galitski, Spin-orbit coupled Bose-Einstein
condensates, Phys. Rev. A 78, 023616 (2008).

[13] J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective
instability, Phys. Rev. A 15, 319 (1977).

[14] M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Böni, and
C. Pfleiderer, Fluctuation-induced first-order phase transition in Dzyaloshinskii-
Moriya helimagnets, Phys. Rev. B 87, 134407 (2013).

[15] J. Kindervater, W. Häußler, M. Janoschek, C. Pfleiderer, P. Böni, and M. Garst,
Critical spin-flip scattering at the helimagnetic transition of MnSi, Phys. Rev.
B 89, 180408 (2014).

[16] M. Vojta, Quantum phase transitions, Rep. Prog. Phys. 66, 2069 (2003).

[17] N. D. Mathur, F. Grosche, S. Julian, I. Walker, D. Freye, R. Haselwimmer,
and G. Lonzarich, Magnetically mediated superconductivity in heavy fermion
compounds, Nature 394, 39 (1998).

[18] C. Pfleiderer, Superconducting phases of f-electron compounds, Rev. Mod. Phys.
81, 1551 (2009).

[19] J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli,
C. Geibel, F. Steglich, C. Pepin, and P. Coleman, The break-up of heavy elec-
trons at a quantum critical point, Nature 424, 524 (2003).

[20] T. Vojta, Quantum phase transitions in electronic systems, Annalen der Physik
9, 403 (2000).

[21] S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer,
M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich,
A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Superconductivity on
the border of itinerant-electron ferromagnetism, Nature 406, 587 (2000).

[22] E. Vargoz, P. Link, D. Jaccard, T. Le Bihan, and S. Heathman, Is CeCu2 a
pressure-induced heavy-fermion superconductor? Physica B: Condensed Matter
229, 225 (1997).

[23] R. Movshovich, T. Graf, D. Mandrus, J. D. Thompson, J. L. Smith, and Z. Fisk,
Superconductivity in heavy-fermion CeRh2Si2, Phys. Rev. B 53, 8241 (1996).

144

http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/ 10.1103/PhysRevA.15.319
http://dx.doi.org/10.1103/physrevb.87.134407
http://dx.doi.org/ 10.1103/PhysRevB.89.180408
http://dx.doi.org/ 10.1103/PhysRevB.89.180408
http://dx.doi.org/doi:10.1088/0034-4885/66/12/R01
http://dx.doi.org/10.1038/27838
http://dx.doi.org/10.1103/RevModPhys.81.1551
http://dx.doi.org/10.1103/RevModPhys.81.1551
http://dx.doi.org/ 10.1038/nature01774
http://dx.doi.org/ 10.1002/1521-3889(200006)9:6<403::aid-andp403>3.0.co;2-r
http://dx.doi.org/ 10.1002/1521-3889(200006)9:6<403::aid-andp403>3.0.co;2-r
http://dx.doi.org/10.1038/35020500
http://dx.doi.org/ http://dx.doi.org/10.1016/S0921-4526(96)00603-5
http://dx.doi.org/ http://dx.doi.org/10.1016/S0921-4526(96)00603-5
http://dx.doi.org/ 10.1103/PhysRevB.53.8241


Bibliography

[24] M. Brando, D. Moroni-Klementowicz, C. Albrecht, and F. M. Grosche, Quan-
tum criticality in NbFe2, Proceedings of the International Conference on Strongly
Correlated Electron Systems SCES 2005 Proceedings of the International Con-
ference on Strongly Correlated Electron Systems, Physica B: Condensed Matter
378–380, 111 (2006).

[25] M. Brando, W. J. Duncan, D. Moroni-Klementowicz, C. Albrecht, D. Grüner,
R. Ballou, and F. M. Grosche, Logarithmic Fermi-Liquid Breakdown in NbFe2,
Phys. Rev. Lett. 101, 026401 (2008).

[26] N. Doiron-Leyraud, I. R. Walker, L. Taillefer, M. J. Steiner, S. R. Julian, and
G. G. Lonzarich, Fermi-liquid breakdown in the paramagnetic phase of a pure
metal, Nature 425, 595 (2003).

[27] R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, and C. Pfleiderer, Forma-
tion of a topological non-Fermi liquid in MnSi, Nature 497, 231 (2013).

[28] F. Mezei, Neutron spin echo: a new concept in polarized thermal neutron tech-
niques, Z. Physik 255, 146 (1972).

[29] F. Mezei, The principles of neutron spin echo (Springer, 1980).

[30] R. Gähler and R. Golub, A high resolution neutron spectrometer for quasielastic
scattering on the basis of spin-echo and magnetic resonance, Z. Physik B 65,
269 (1987).

[31] D. Dubbers, P. El-Muzeini, M. Kessler, and J. Last, Prototype of a zero-field
neutron spin-echo spectrometer, Nucl. Instrum. Methods Phys. Res., Sect. A
275, 294 (1989).

[32] R. Gähler, R. Golub, and T. Keller, Neutron resonance spin echo—a new tool
for high resolution spectroscopy, Physica B: Condensed Matter 180, 899 (1992).

[33] F. Mezei, ’Neutron Inelastic Scattering’ 1977 (IAEA, Vienna, 1978) p. 125.

[34] F. Mezei and A. Murani, Combined three-dimensional polarization analysis and
spin echo study of spin glass dynamics, J. Magn. Magn. Mater. 14, 211 (1979).

[35] S. M. Shapiro, H. Maletta, and F. Mezei, Neutron-spin-echo study of the reen-
trent spin glass EuxSr1−xS, J. Appl. Phys. 57, 3485 (1985).

[36] B. V. B. Sarkissian, Cluster dynamics in Au-15%Fe alloy: neutron spin echo
studies, J. Phys.: Condens. Matter 2, 7873 (1990).

[37] C. Pappas, F. Mezei, G. Ehlers, P. Manuel, and I. A. Campbell, Dynamic scaling
in spin glasses, Phys. Rev. B 68, 054431 (2003).

145

http://dx.doi.org/doi: 10.1016/j.physb.2006.01.045
http://dx.doi.org/doi: 10.1016/j.physb.2006.01.045
http://link.aps.org/doi/10.1103/PhysRevLett.101.026401
http://dx.doi.org/10.1038/nature01968
http://dx.doi.org/doi:10.1038/nature12023
http://dx.doi.org/ http://dx.doi.org/10.1016/0168-9002(89)90700-6
http://dx.doi.org/ http://dx.doi.org/10.1016/0168-9002(89)90700-6
http://dx.doi.org/http://dx.doi.org/10.1016/0304-8853(79)90120-3
http://dx.doi.org/ http://dx.doi.org/10.1063/1.335034
http://stacks.iop.org/0953-8984/2/i=38/a=014
http://dx.doi.org/ 10.1103/PhysRevB.68.054431


Bibliography

[38] F. Mezei, Role of spin-nonconserving forces in the critical dynamics of fe at the
curie point, Phys. Rev. Lett. 49, 1096 (1982).

[39] W. Besenböck, R. Gähler, P. Hank, R. Kahn, M. Koppe, C.-H. De Novion,
W. Petry, and J. Wuttke, First scattering experiment on MIEZE: A fourier
transform time-of-flight spectrometer using resonance coils, Journal of Neutron
Research 7, 65 (1998).

[40] P. Hank, W. Besenböck, R. Gähler, and M. Koppe, Zero-field neutron spin echo
techniques for incoherent scattering, Physica B: Condensed Matter 234, 1130
(1997).

[41] J. Kindervater, N. Martin, W. Häußler, M. Krautloher, C. Fuchs, S. Mühlbauer,
J. Lim, E. Blackburn, P. Böni, and C. Pfleiderer, Neutron spin echo spectroscopy
under 17T magnetic field at RESEDA, EPJ Web of Conferences 83, 03008
(2015).

[42] R. Coldea, D. Tennant, E. Wheeler, E. Wawrzynska, D. Prabhakaran,
M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer, Quantum criticality in an
Ising chain: experimental evidence for emergent E8 symmetry, Science 327, 177
(2010).

[43] C. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer, H. Mutka,
A. Wildes, K. Habicht, and P. Vorderwisch, Bose-Einstein condensation of the
triplet states in the magnetic insulator TlCuCl3, Nature 423, 62 (2003).

[44] A. Zheludev, V. O. Garlea, T. Masuda, H. Manaka, L.-P. Regnault,
E. Ressouche, B. Grenier, J.-H. Chung, Y. Qiu, K. Habicht, K. Kiefer, and
M. Boehm, Dynamics of quantum spin liquid and spin solid phases in IPA-CuCl3
under an applied magnetic field studied with neutron scattering, Phys. Rev. B
76, 054450 (2007).

[45] C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T. Adams,
S. Blugel, A. Rosch, Y. Mokrousov, and C. Pfleiderer, Real-Space and
Reciprocal-Space Berry Phases in the Hall Effect of Mn1−xFexSi, Phys. Rev.
Lett. 112, 186601 (2014).

[46] A. Furrer, J. Mesot, and T. Strässle, Neutron Scattering in Condensed Matter
Physics, Vol. 4 (World Scientific Publishing Co. Pte. Ltd, 2009).

[47] G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering , Dover
books on physics (New York, 1978).

[48] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter , Interna-
tional series of monographs on physics No. Bd. 2 (1986).

146

http://dx.doi.org/ 10.1103/PhysRevLett.49.1096
http://dx.doi.org/ 10.1051/epjconf/20158303008
http://dx.doi.org/ 10.1051/epjconf/20158303008
http://dx.doi.org/ 10.1103/PhysRevB.76.054450
http://dx.doi.org/ 10.1103/PhysRevB.76.054450
http://dx.doi.org/10.1103/physrevlett.112.186601
http://dx.doi.org/10.1103/physrevlett.112.186601
http://books.google.de/books?id=Lx4xcz3v9IMC
http://books.google.de/books/about/Theory_of_Neutron_Scattering_from_Conden.html?id=JuupZxrsCTEC&redir_esc=y


Bibliography

[49] L. Van Hove, Correlations in space and time and Born approximation scattering
in systems of interacting particles, Phys. Rev. 95, 249 (1954).

[50] J. Kindervater, From Heli- to Paramagnetism in MnSi: Polarization Analysis
with MiniMuPAD (Diploma Thesis, Technische Universität München (TUM),
2012).

[51] U. Fano, Description of States in Quantum Mechanics by Density Matrix and
Operator Techniques, Rev. Mod. Phys. 29, 74 (1957).

[52] Y. A. Izyumov and S. V. Maleyev, Soviet Physics JETP 14, 1668 (1962).

[53] M. Blume, Polarization Effects in the Magnetic Elastic Scattering of Slow Neu-
trons, Phys. Rev. 130, 1670 (1963).

[54] Y. A. Izyumov, Sov. Phys. Usp 16, 359 (1963).

[55] M. Blume, Polarization Effects in Slow Neutron Scattering II. Spin-Orbit Scat-
tering and Interference, Phys. Rev. 133, A1366 (1964).

[56] P. J. Brown, Polarised neutrons and complex antiferromagnets: an overview,
Physica B: Condensed Matter 297, 198 (2001).

[57] M. Janoschek, S. Klimko, B. Roessli, R. Gähler, and P. Böni, Spherical neutron
polarimetry with MuPAD, Physica B 397, 125 (2007).

[58] J. S. Pedersen, D. Posselt, and K. Mortensen, Analytical treatment of the res-
olution function for small-angle scattering, J. Appl. Phys. 23, 321 (1990).

[59] R. Nathans, C. Shull, G. Shirane, and A. Andresen, The use of polarized neu-
trons in determining the magnetic scattering by iron and nickel, J. Phys. Chem.
Solids 10, 138 (1959).

[60] R. M. Moon, T. Riste, and W. C. Koehler, Polarization Analysis of Thermal-
Neutron Scattering, Phys. Rev. 181, 920 (1969).

[61] F. Tasset, Zero field neutron polarimetry, Physica B: Condensed Matter 156,
627 (1989).

[62] F. Tasset, P. Brown, E. Lelièvre-Berna, T. Roberts, S. Pujol, J. Allibon, and
E. Bourgeat-Lami, Spherical neutron polarimetry with Cryopad-II, Physica B:
Condensed Matter 267, 69 (1999).

[63] E. Lelièvre-Berna, E. Bourgeat-Lami, P. Fouilloux, B. Geffray, Y. Gibert,
K. Kakurai, N. Kernavanois, B. Longuet, F. Mantegezza, M. Nakamura, et al.,
Advances in spherical neutron polarimetry with Cryopad, Physica B: Condensed
Matter 356, 131 (2005).

147

http://dx.doi.org/10.1103/RevModPhys.29.74
http://dx.doi.org/ 10.1103/PhysRev.130.1670
http://dx.doi.org/10.1103/PhysRev.133.A1366
http://www.sciencedirect.com/science/article/B6TVH-42SXK24-1C/2/3cca6e2e08fc857119a61eb984d9b0ef
http://dx.doi.org/ 10.1107/s0021889890003946
http://dx.doi.org/10.1103/physrev.181.920


Bibliography

[64] M. Janoschek, MuPAD 3D Polarization Analysis in Magnetic Neutron Scatter-
ing (Diploma Thesis, Technische Universität München (TUM), 2004).

[65] T. Keller, R. Golub, and R. Gähler, Neutron Spin Echo - a Technique for high
Resolution Neutron Scattering, Scattering and Inverse Scattering in Pure and
Applied Science, Academic Press, San Diego, CA 1264, 2002 (2002).

[66] G. Brandl, First measurements of the linewidth in magnetic phases of MnSi
using MIEZE (Diploma Thesis, Technische Universität München (TUM), 2010).

[67] F. Haslbeck, Simulation und Konstruktion eines MiniMuPAD (Bachelor Thesis,
Technische Universität München (TUM), 2013).

[68] Comsol Multiphysics GmbH, COMSOL Multiphysics R©, (2015),
https://www.comsol.de/ accesed at 01.05.2015.

[69] W. Häußler, B. Gohla-Neudecker, R. Schwikowski, D. Streibl, and P. Böni,
RESEDA - the new resonance spin echo spectrometer using cold neutrons at
the FRM-II, Physica B 397, 112 (2007).

[70] M. Krautloher, Implementation of a LNRSE option into RESEDA / MLZ (Mas-
ter Thesis, Ludwig-Maximilians-Universität München (LMU), 2014).

[71] W. Häußler, U. Schmidt, G. Ehlers, and F. Mezei, Neutron resonance spin echo
using spin echo correction coils, Chemical physics 292, 501 (2003).

[72] W. Häußler, G. Ehlers, and U. Schmidt, Field integral correction in neutron res-
onance spin echo, Physica B: Condensed Matter 350, E807 (2004), proceedings
of the Third European Conference on Neutron Scattering.

[73] W. Häußler and U. Schmidt, Effective field integral subtraction by the com-
bination of spin echo and resonance spin echo. Journal of Physical Chemistry
Chemical Physics 7, 1245 (2005).

[74] W. Häußler, P. Böni, M. Klein, C. Schmidt, U. Schmidt, F. Groitl, and
J. Kindervater, Detection of high frequency intensity oscillations at reseda using
the cascade detector, Rev. Sci. Instrum. 82, 045101 (2011).

[75] M. Klein and C. Schmidt, CASCADE, neutron detectors for highest count rates
in combination with ASIC/FPGA based readout electronics, Nucl. Instrum.
Methods Phys. Res., Sect. A 628, 9 (2011).

[76] A. T. Holmes, G. R. Walsh, E. Blackburn, E. M. Forgan, and M. Savey-Bennett,
A 17 T horizontal field cryomagnet with rapid sample change designed for beam-
line use, Rev. Sci. Instrum. 83, 023904 (2012).

148

http://dx.doi.org/ http://dx.doi.org/10.1016/j.physb.2004.03.210


Bibliography

[77] J. Kindervater, W. Häußler, A. Tischendorf, and P. Böni, Neutron-spin-echo
from polarizing samples, in J. Phys. Conf. Ser., Vol. 340 (IOP Publishing, 2012)
p. 012030.

[78] S. Mühlbauer, J. Kindervater, and W. Häußler, Static and Quasielastic Prop-
erties of the Spiral Magnet Ba2CuGe2O7 Studied by Neutron Resonance Spin
Echo Spectroscopy and Neutron Larmor Labelling, submitted to Phys. Rev. B
(2015).

[79] F. Bloch and A. Siegert, Magnetic resonance for nonrotating fields, Phys. Rev.
57, 522 (1940).

[80] B. I. Halperin and P. C. Hohenberg, Generalization of scaling laws to dynamical
properties of a system near its critical point, Phys. Rev. Lett. 19, 700 (1967).

[81] B. I. Halperin and P. Hohenberg, Scaling laws for dynamic critical phenomena,
Phys. Rev. 177, 952 (1969).

[82] M. Fixman, Ultrasonic attenuation in the critical region, J. Chem. Phys. 33,
1363 (1960).

[83] M. Fixman, Absorption and Dispersion of Sound in Critical Mixtures, J. Chem.
Phys. 36, 1961 (1962).

[84] M. E. Fisher and A. Aharony, Dipolar interactions at ferromagnetic critical
points, Phys. Rev. Lett. 30, 559 (1973).

[85] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,
Reviews of Modern Physics 49, 435 (1977).

[86] P. Böni, D. Görlitz, J. Kötzler, and J. Martnez, Dynamics of longitudinal and
transverse fluctuations above Tc in EuS, Phys. Rev. B 43, 8755 (1991).

[87] L. Chow, C. Hohenemser, and R. M. Suter, Observation of Crossover in the
Dynamic Exponent z in Fe and Ni, Phys. Rev. Lett. 45, 908 (1980).

[88] F. Mezei, Critical dynamics in isotropic ferromagnets, Journal of magnetism
and magnetic materials 45, 67 (1984).

[89] F. Mezei, Critical Dynamics in EuO at the Ferromagnetic Curie Point, Physica
B+C 136, 417 (1986).

[90] P. Résibois and C. Piette, Temperature Dependence of the Linewidth in Critical
Spin Fluctuation, Phys. Rev. Lett. 24, 514 (1970).

[91] E. Frey and F. Schwabl, Critical dynamics of dipolar ferromagnets, Physics
Letters A , 49 (1987).

149

http://dx.doi.org/10.1103/physrev.57.522
http://dx.doi.org/10.1103/physrev.57.522
http://dx.doi.org/10.1103/physrevlett.19.700
http://dx.doi.org/http://dx.doi.org/10.1063/1.1731413
http://dx.doi.org/http://dx.doi.org/10.1063/1.1731413
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1732810
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1732810
http://dx.doi.org/10.1103/physrevb.43.8755
http://dx.doi.org/ 10.1103/physrevlett.24.514


Bibliography

[92] E. Frey, F. Schwabl, and S. Thoma, Shape functions of dipolar ferromagnets at
the Curie point, Physics Letters A 129, 343 (1988).

[93] E. Frey and F. Schwabl, On the critical dynamics of ferromagnets, Z. Phys. B:
Condens. Matter 71, 355 (1988).

[94] E. Frey and F. Schwabl, Critical Dynamics of Magnets, arXiv preprint
arXiv:cond-mat/9509141v1 (2008).

[95] J. Wicksted, P. Böni, and G. Shirane, Polarized-beam study of the paramagnetic
scattering from bcc iron, Phys. Rev. B 30, 3655 (1984).

[96] J. C. Le Guillou and J. Zinn-Justin, Critical exponents for the n-vector model
in three dimensions from field theory, Phys. Rev. Lett. 39, 95 (1977).

[97] J. C. Le Guillou and J. Zinn-Justin, Critical exponents from field theory, Phys.
Rev. B 21, 3976 (1980).

[98] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1995).

[99] J. Als-Nielsen, O. Dietrich, and L. Passell, Neutron scattering from the Heisen-
berg ferromagnets EuO and EuS. II. Static critical properties, Phys. Rev. B 14,
4908 (1976).

[100] G. Shirane, Magnetic correlations in 3d ferromagnets above TC , Journal of mag-
netism and magnetic materials 45, 33 (1984).

[101] J. Kötzler, Critical phenomena in dipolar magnets, J. Magn. Magn. Mater. 54,
649 (1986).

[102] P. Böni, H. A. Mook, J. L. Martínez, and G. Shirane, Comparison of the param-
agnetic spin fluctuations in nickel with asymptotic renormalization-group the-
ory, Phys. Rev. B 47, 3171 (1993).

[103] P. Böni, Spin fluctuations in isotropic ferromagnets near TC , Physica B: Con-
densed Matter 192, 94 (1993).

[104] B. Farago and F. Mezei, Study of magnon dynamics in Fe near TC by modified
neutron spin echo techniques, Physica B+C 136, 100 (1986).

[105] T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magne-
tization of a ferromagnet, Phys. Rev. 58, 1098 (1940).

[106] M. Collins, V. Minkiewicz, R. Nathans, L. Passell, and G. Shirane, Critical and
spin-wave scattering of neutrons from iron, Physical Review 179, 417 (1969).

[107] A. Bauer, Investigation of itinerant antiferromagnets and cubic chiral helimag-
nets, Ph.D. thesis, Technische Universität München (2014).

150

http://dx.doi.org/10.1103/PhysRevLett.39.95
http://dx.doi.org/10.1103/PhysRevB.21.3976
http://dx.doi.org/10.1103/PhysRevB.21.3976
http://dx.doi.org/ 10.1103/PhysRevB.47.3171
http://dx.doi.org/ 10.1103/PhysRev.58.1098


Bibliography

[108] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, vol. 8 (Pergamon
Press, 1980).

[109] P. Bak and M. H. Jensen, Theory of helical magnetic structures and phase
transitions in MnSi and FeGe, J. Phys. C 13, L881 (1980).

[110] O. Nakanishi, A. Yanase, A. Hasegawa, and M. Kataoka, The origin of the
helical spin density wave in MnSi, Solid State Communications 35, 995 (1980).

[111] S. Mühlbauer, Vortex Lattices in Superconducting Niobium and Skyrmion Lat-
tices in the Chiral Magnet MnSi Investigated by Neutron Scattering, Ph.D. the-
sis, Technische Universität München (TUM) (2009).

[112] K. Kadowaki, K. Okuda, and M. Date, Magnetization and Magnetoresistance
of MnSi.–I, J. Phys. Soc. Jpn. 51, 2433 (1982).

[113] T. H. R. Skyrme, Particle states of a quantized meson field, Proc. Royal Soc.
Lond. A 262, 237 (1961).

[114] T. H. R. Skyrme, A non-linear field theory, Proc. Royal Soc. Lond. A 260, 127
(1961).

[115] T. H. R. Skyrme, A unified field theory of mesons and baryons, Nuclear Physics
31, 556 (1962).

[116] X. W. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata,
Y. Matsui, and Y. Tokura, Near room-temperature formation of a skyrmion
crystal in thin-films of the helimagnet FeGe, Nature Mater. 10, 106 (2010).

[117] X. W. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Na-
gaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion
crystal, Nature 465, 901 (2010).

[118] W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz,
R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer,
Skyrmion lattice in the doped semiconductor Fe1−xCoxSi, Phys. Rev. B 81,
041203 (2010).

[119] S. Seki, X. W. Yu, S. Ishiwata, and Y. Tokura, Observation of skyrmions in a
multiferroic material, Science 336, 198 (2012).

[120] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger,
P. Lemmens, and C. Pfleiderer, Long-Wavelength Helimagnetic Order and
Skyrmion Lattice Phase in Cu2OSeO3, Phys. Rev. Lett. 108, 237204 (2012).

[121] S. Polesya, S. Mankovsky, S. Bornemann, D. Ködderitzsch, J. Minár, and
H. Ebert, Skyrmion magnetic structure of an ordered FePt monolayer deposited
on Pt (111), Phys. Rev. B 89, 184414 (2014).

151

http://dx.doi.org/10.1088/0022-3719/13/31/002
http://dx.doi.org/10.1143/JPSJ.51.2433
http://dx.doi.org/10.1098/rspa.1961.0115
http://dx.doi.org/10.1098/rspa.1961.0115
http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/ 10.1016/0029-5582(62)90775-7
http://dx.doi.org/ 10.1016/0029-5582(62)90775-7
http://dx.doi.org/10.1038/nmat2916
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1103/physrevb.81.041203
http://dx.doi.org/10.1103/physrevb.81.041203
http://dx.doi.org/10.1126/science.1214143
http://dx.doi.org/ 10.1103/physrevlett.108.237204


Bibliography

[122] T. Ogasawara, N. Iwata, Y. Murakami, H. Okamoto, and Y. Tokura, Submicron-
scale spatial feature of ultrafast photoinduced magnetization reversal in TbFeCo
thin film, Applied Physics Letters 94, 162507 (2009).

[123] M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Duò, A. Kir-
ilyuk, T. Rasing, and M. Ezawa, Laser-Induced Magnetic Nanostructures with
Tunable Topological Properties, Phys. Rev. Lett. 110, 177205 (2013).

[124] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and
P. Böni, Topological Hall effect in the A-phase of MnSi, Phys. Rev. Lett. 102,
186602 (2009).

[125] A. Neubauer, C. Pfleiderer, R. Ritz, P. G. Niklowitz, and P. Böni, Hall effect and
magnetoresistance in MnSi, Physica B: Condensed Matter 404, 3163 (2009).

[126] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Unusual Hall effect
anomaly in MnSi under pressure, Phys. Rev. Lett. 102, 186601 (2009).

[127] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer,
T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and
A. Rosch, Spin Transfer Torques in MnSi at Ultralow Current Densities, Science
330, 1648 (2010).

[128] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer,
K. Everschor, M. Garst, and A. Rosch, Emergent electrodynamics of skyrmions
in a chiral magnet, Nature Physics 8, 301 (2012).

[129] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nature Nanotech. 8,
152–156 (2013).

[130] P. Milde, D. Köhler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater,
S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schütte, and A. Rosch, Unwinding
of a Skyrmion Lattice by Magnetic Monopoles, Science 340, 1076 (2013).

[131] S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, Y. O. Chetverikov, R. Georgii,
P. Böni, D. Lamago, H. Eckerlebe, and K. Pranzas, Critical fluctuations in MnSi
near TC : A polarized neutron scattering study, Phys. Rev. B 72, 134420 (2005).

[132] S. Grigoriev, S. Maleyev, E. Moskvin, V. Dyadkin, P. Fouquet, and H. Ecker-
lebe, Crossover behavior of critical helix fluctuations in MnSi, Phys. Rev. B 81,
144413 (2010).

[133] S. M. Stishov, A. E. Petrova, S. Khasanov, G. K. Panova, A. A. Shikov, J. C.
Lashley, D. Wu, and T. A. Lograsso, Magnetic phase transition in the itinerant
helimagnet MnSi: Thermodynamic and transport properties, Phys. Rev. B 76,
052405 (2007).

152

http://dx.doi.org/10.1103/physrevlett.110.177205
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://dx.doi.org/doi:10.1016/j.physb.2009.07.055
http://dx.doi.org/10.1103/PhysRevLett.102.186601
http://dx.doi.org/10.1126/science.1195709
http://dx.doi.org/10.1126/science.1195709
http://dx.doi.org/ 10.1038/nnano.2013.29
http://dx.doi.org/ 10.1038/nnano.2013.29
http://dx.doi.org/ 10.1126/science.1234657
http://dx.doi.org/ 10.1103/physrevb.72.134420
http://dx.doi.org/10.1103/physrevb.81.144413
http://dx.doi.org/10.1103/physrevb.81.144413


Bibliography

[134] S. Stishov, A. Petrova, S. Khasanov, G. K. Panova, A. Shikov, J. Lashley,
D. Wu, and T. Lograsso, Heat capacity and thermal expansion of the itinerant
helimagnet MnSi, J. Phys.: Condens. Matter 20, 235222 (2008).

[135] A. Petrova and S. Stishov, Ultrasonic studies of the magnetic phase transition
in MnSi, J. Phys.: Condens. Matter 21, 196001 (2009).

[136] P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics,
Vol. 1 (Cambridge Univ Press, 2000).

[137] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground
states in magnetic metals, Nature 442, 797 (2006).

[138] C. Pappas, E. Lelièvre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev,
P. Fouquet, and B. Farago, Chiral Paramagnetic Skyrmion-like Phase in MnSi,
Phys. Rev. Lett. 102, 197202 (2009).

[139] C. Pappas, E. Lelièvre-Berna, P. Bentley, P. Falus, P. Fouquet, and B. Farago,
Magnetic fluctuations and correlations in MnSi: Evidence for a chiral skyrmion
spin liquid phase, Phys. Rev. B 83, 224405 (2011).

[140] A. Bauer, M. Garst, and C. Pfleiderer, Specific Heat of the Skyrmion Lattice
Phase and Field-Induced Tricritical Point in MnSi, Phys. Rev. Lett. 110, 177207
(2013).

[141] D. Vollhardt, Characteristic crossing points in specific heat curves of correlated
systems, Phys. Rev. Lett. 78, 1307 (1997).

[142] C. Pfleiderer, P. Böni, T. Keller, U. K. Rößler, and A. Rosch, Non fermi liquid
metal without quantum criticality, Science 316, 1871 (2007).

[143] C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich, Magnetic
quantum phase transition in MnSi under hydrostatic pressure, Phys. Rev. B
55, 8330 (1997).

[144] C. Pfleiderer, D. Reznik, L. Pintschovius, H. v. Löhneysen, M. Garst, and
A. Rosch, Partial order in the non-Fermi-liquid phase of MnSi, Nature 427,
227 (2004).

[145] Y. J. Uemura, T. Goko, I. M. Gat-Malureanu, J. P. Carlo, P. L. Russo, A. T.
Savici, A. Aczel, G. J. MacDougall, J. A. Rodriguez, G. M. Luke, S. R. Dun-
siger, A. McCollam, J. Arai, C. Pfleiderer, P. Böni, K. Yoshimura, E. Baggio-
Saitovitch, M. B. Fontes, J. L. jr, Y. V. Sushko, and J. Sereni, Phase separation
and suppression of critical dynamics at quantum phase transitions of MnSi and
(Sr1−xCax)RuO3, Nature Physics 3, 29 (2007).

153

http://dx.doi.org/10.1038/nature05056
http://dx.doi.org/10.1103/physrevlett.102.197202
http://dx.doi.org/ 10.1103/physrevb.83.224405
http://dx.doi.org/ 10.1103/physrevlett.110.177207
http://dx.doi.org/ 10.1103/physrevlett.110.177207
http://dx.doi.org/10.1126/science.1142644
http://dx.doi.org/ 10.1103/physrevb.55.8330
http://dx.doi.org/ 10.1103/physrevb.55.8330
http://dx.doi.org/doi:10.1038/nature02232
http://dx.doi.org/doi:10.1038/nature02232


Bibliography

[146] J. D. Thompson, Z. Fisk, and G. G. Lonzarich, Perspective on heavy-electron
and Kondo-lattice systems from high pressure studies, Physica B 161, 317
(1989).

[147] C. Pfleiderer, R. H. Friend, G. G. Lonzarich, N. R. Bernhoeft, and J. Flouquet,
Transition from a magnetic to a nonmagnetic state as a function of pressure in
MnSi, International Journal of Modern Physics B 07, 887 (1993).

[148] I. Lifshitz, Anomalies of electron characteristics of a metal in the high pressure
region, Sov. Phys. JETP 11, 1130 (1960).

[149] C. Thessieu, C. Pfleiderer, A. N. Stepanov, and J. Flouquet, Field dependence
of the magnetic quantum phase transition in MnSi, J. Phys.: Condens. Matter
9, 6677–6687 (1997).

[150] K. Koyama, T. Goto, T. Kanomata, and R. Note, Observation of an itinerant
metamagnetic transition in MnSi under high pressure, Phys. Rev. B 62, 986
(2000).

[151] G. G. Lonzarich and L. Taillefer, Effect of spin fluctuations on the magnetic
equation of state of ferromagnetic or nearly ferromagnetic metals, J. Phys. C
18, 4339 (1985).

[152] T. Moriya, Spin fluctuations in itinerant electron magnetism, Springer series in
solid-state sciences (Springer-Verlag, 1985).

[153] W. Yu, F. Zamborszky, J. D. Thompson, J. L. Sarrao, M. E. Torelli, Z. Fisk,
and S. E. Brown, Phase Inhomogeneity of the Itinerant Ferromagnet MnSi at
High Pressures, Phys. Rev. Lett. 92, 086403 (2004).

[154] P. Pedrazzini, D. Jaccard, G. Lapertot, J. Flouquet, Y. Inada, H. Kohara,
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