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One way is to make it so simple that there are obviously no deficiencies,
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The first method is far more difficult.”
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Abstract

Driving Profile and Energy Demand Analysis for Electrical Vehicles based on GPS

Trajectories

by Sascha Moecker

A subject of great interest for energy providers is the influence that electrical vehicles (EVs) will

have on the electric grid of a city, how to cope with the emerging demand, and how to plan a

sufficient charging infrastructure. The goal of this work is to evaluate the extra energy demand

emerging through the introduction of EVs by analysing their driving patterns in a certain city

using Singapore as an example [1]. The obtained results will be incorporated into a comprehensive

taxi simulation aiming at optimising charging infrastructure in Singapore.

Two analysis tasks are conducted: driving profile and energy demand analysis. The driving

profile unit focuses on raw GPS trajectories obtained from GPS loggers and incorporates various

processing steps like filtering, map-matching, division into trips subject to vehicle’s status, route

reconstruction, and statistical evaluation of driving patterns. The energy demand part aims at

estimating energy consumptions of EVs for various sampling rates and various trajectory or route

resolutions, suitable for a simulation context. It comprises three approaches: a static, a dynamic

and an instant one of which the two first mentioned include a conceptualization of energetic

databases established upon historical GPS trajectories.

The driving profile analysis reveals insightful statistical evaluations combining SMRT’s log-

ging and booking data with LTA and auxiliary data sources. The performed pre-processing

and map-matching steps prepare the trajectories successfully for a satisfying energy estimation.

Accordingly, the implemented energy analysis approaches perform well under given conditions

employing three concepts: a static energy map of Singapore, a dynamic driving share approach,

and an instant driving feature approach. Each is capable of predicting energy at the detail level

or road segments.

An evaluation of energetic results against the comprehensive TUM CREATE EV Model reveals

considerably compliance. The dynamic driving share approach performs best with an average

deviation of ±14 % for the best 90 % trips due to its most flexible, driving dynamics anticipating,

and in-detail design. The static energy map approach yields similar findings with an average

deviation of ±18 %, but lacks in incorporating particular driving and traffic conditions as it

merely relies on average energy values per road segment. The instant driving feature approach,

levering fewest historical data inputs, produces a mean deviation of ±20 % but is rather applicable

for high resolution trajectories and thus inappropriate for the targeted simulation purpose.
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Chapter 1

Introduction

Great attention has been paid in recent time to which extent a large-scale launch of electric

vehicles will influence the electric grid and how to optimize the planning of a sufficient charging

infrastructure. This thesis tackles the bottommost layer as outlined in Figure 1.1 where it comes

to estimating energy demand of EVs as one of the atomic entities in the entire electrical grid and

as a foundation towards stepping the layers upwards.

It focuses on two major parts: the Driving Profile Analysis and the Energy Demand Analysis.

The driving profile analysis investigates a huge number of GPS trajectories recorded from taxis

equipped with GPS loggers. As a driving profile, the speed and altitude trend subject to time is

denoted. Obtained results serve as inputs for a subsequent carried out energy demand analysis

where taxis’ energy consumptions are examined by employing various estimation approaches.

Herein, a comprehensive energy database is conceptualized, which can be queried for computing

energy consumptions for arbitrary trips in the context of a simulation.

Figure 1.1: Thesis integration into RP 8 research topics

1.1 Thesis Goal and Integration into Current Research

The overall thesis’ goal is the estimation of energy consumption for trips of different sampling

periods, ranging from one second, over three minutes, up to the sole information about trip’s

origin and destination. Developed programs are designed to fit the needs of a taxi simulation in

Singapore requiring to compute energy consumptions for simulated trips.

This simulation aims at establishing a suitable charging station infrastructure at optimal lo-

cations - optimal in the sense of projecting the actual driving patterns sufficiently, including

1
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locations of taxi stands, breaks, and shift changes and virtually placing charging stations where

the energy is needed. Such a simulation is vital for an economical operation of charging stations

which fit the vehicle owner’s (in this case the taxi company) and taxi driver’s needs. A widely

disseminated charging infrastructure is regarded as one of the main moderating issues for EV’s

market penetration.

The way charging stations are distributed can influence the overall electric grid, particularly

pervasive for fast charging systems which demand a huge energy amount. Approaches towards

smart charging [3] of EVs, which take network load and electricity prices into account, and vehicle-

to-grid [4], which allow bi-directional energy flows treating EVs not just as a consumer but also

as a temporary storage system, are evidences that this field attracts a lot of research. TUM

CREATE also developed and prototyped an electric taxi named EVA, incorporating one of the

first super fast charging systems prevalent [5].

During the editing of this thesis, the focus shifted slightly from a proposed 70–30 preference on

the energy demand analysis part, to an eventually allocation of 50–50. Moreover, the development

of the Matlab programs demanded a great portion of time resulting in a total number of 9090

effective Lines of Code (LOC), rationale to the focus realignment.

1.2 Potential and Impact of Electrical Vehicles

There is an ongoing discussion whether EVs are already economically feasible, what its actual

CO2 footprint is, and when will it pervasively penetrate into the market. In fact, benefits of EVs

are an improvement in air quality - particularly in big cities, reduction of noise level, and the

independence of gas and oil, which will definitely run out in near future. EVs have the potential

for entirely emission free driving depending on which source is used for providing the electrical

energy and eventually determining the degree of eco-friendly driving. To date, hybrid solutions

are favoured comprising light hybrids like the Toyota Prius and Plug-in Hybrid Electrical Vehicles

(PHEV) like the Chevrolet Volt.

For established companies, however, it can be a high barrier to get involved into solely electrical

powered cars since they have a rooted reputation and customers tend to expect a certain vehicle

style. For instance, BMW stands for sporty cars whereas Daimler emphasises on safety concerns,

both requiring (and currently proceeding) a sensible integration of EVs into their portfolio. It is

easier for small startups like Tesla to enter the market and develop a tailored EV from scratch.

As said, the quality and quantity of established charging infrastructure is highly influential to

the pervasiveness of EVs. As long as there is only a low number of charging stations available,

customer may refuse to buy an EV at their first choice. For investors, on the other hand, investing

into charging infrastructure for only a few EVs will not be worthwhile and hence facilitates

rejection from investments.

Not less important is the economical production of battery packs and the possible driving

range. Up to date, EVs are more costly and demand frequent recharging, largely driven by

the high price of battery packs and its limited energy density compared to gas. Furthermore,

subsidies by government can ease introduction to overcome the vast price differences between

internal combustion engine powered and electrical powered cars.
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1.3 Particularities of Environment and Taxi System

When working on taxi data, the underlying taxi system and prevalent environmental conditions

influence data analysis to a certain extend. Compared to the German taxi system, where drivers

are usually permanently appointed with a fix monthly salary, Singaporean taxi drivers are waged

by a comparably small fixed amount added by the passenger’s revenue on a fare basis. The more

trips the driver conducts, the more income is gained. The driver is hence self responsible for the

amount of driving as long as he/she reaches the targeted mileage of the prevailing Taxi Available

Standard of, up to date, 250 km per day [6].

Another peculiarity is the high amount of issued taxi licences of 99, 711 in 2014 [7] and the

fact that only Singaporean permanent residents are entitled to receive such a licence. With a

total number of 27, 865 taxis in the island state of Singapore in June 2014 [7], which is 2.9 % of

all 969, 910 registered vehicles as of 2012 [8], there is a comparably high share of taxis. The taxi

vehicles are hereby owned by the contracted taxi company and rented on a daily basis. This taxi

share is even higher when examining the average daily mileages of private cars vs. taxis, former

not exceeding 50 km [8] while latter reaches around 300 km, as taken from own investigations.

Including this, taxis are responsible for about 15 % of all mileage and therefore emissions in

Singapore. This enables a higher leverage effect when endeavouring EV efforts in the context

of taxis and encourages concerned research. Changing ordinary taxis with internal combustion

engines to battery powered drivetrains can hence have a great positive influence on environmental

issues, particularly in Singapore with its high taxi density.

The Singapore based public transport company SMRT was chosen as a provider for taxi

trajectories because it also runs Mass Rapid Transit (MRT) trains, which require a huge amount

of electricity; and because it may also be a strategic partner in terms of providing electricity

supplies for possible fast charging stations in MRT station’s vicinity.

Environmental particularities are Singapore’s tropical climate with diurnal temperature vari-

ation, high temperatures, and high humidity throughout the year. In terms of taxis this requires

a constantly active air conditioning and expedites mechanical wear. Additionally impactful is the

bounded spatial extent of only roughly 40 km to 60 km and the maximum speed limit of 90 km/h

in the entire country. Both are taken into account when analysing recorded trips.

1.4 Thesis Structure

The present thesis is structured as follows.

Chapter 1 gives basic background information about electrical vehicles, the integration into

current research with respect to charging infrastructure, as well as particularities of Singapore’s

taxi system.

In Chapter 2, applications and studies of previous conducted and related work for analysing

driving profiles and estimating energy demands of EVs are reviewed. Those are summarized and

distinctions, commonalities, and reusable approaches for this thesis are carried out.

Most important data sources utilized in this work are described in Chapter 3. Here, the data

sources’ origin, its structure, and necessary pre-processing and conversion steps for using those

appropriately in the developed programs are explained.

The driving profile analysis is discussed in Chapter 4. It includes an in-detail examination of

the processing chain to convert raw data into usable trips, comprising import, pre-processing, trip
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extraction, map-matching, and eventually the generation of uploadable shift sets for an established

SQL database.

Concluding results are stated in Chapter 5, where priorly described methods and approaches

are evaluated and validated. Furthermore, a number of evaluated statistics about taxi driving

patterns are plotted, which have been compiled in collaboration with SMRT and which describe

the dataset in an insightful graphical manner.

The subsequent energy demand analysis is conducted in Chapter 6. Utilized energy estimation

methods differentiated by static, dynamic, and instant approaches are introduced in detail. In

addition, energy models for database set-up and validation purposes are described.

Followed by a result unit in Chapter 7, an evaluation of proposed approaches is presented and

validation results are shown. The validation process is stated and results are compared against a

reference vehicle model, and possible deviation sources are stated.

Eventually in Chapter 8, the work is concluded, results discussed, and outcomes assessed based

on evaluation criteria established in previous chapters. Suggestions for application opportunities,

particularly in terms of the planned taxi simulation in Singapore, are given, and the thesis finishes

with recommending further areas of work.



Chapter 2

Related Work

The literature review undertaken in this thesis strives to outline pervasive methods for analysing

GPS trajectories in form of driving profiles with its required pre-processing steps to mitigate

GPS specific shortcomings. It furthermore presents a non-exhaustive abstract about latest energy

estimation applications fed by prepared GPS trips and states which ideas and methods flow into

the development and implementations.

2.1 Driving Profile Analysis

The opening of the Global Position System (GPS) for private purposes in 2000, discontinuing

the artificial signal deterioration of Selective Availability and allowing users to receive an undis-

torted signal globally, escalated research in that field [9]. Initially fully available in 1995, GPS

underwent a continuous modernisation process in which precision and reliability increased dra-

matically. Nowadays, a GPS receiver is shipped with every modern Smartphone leading to an

escalating development of navigation applications. In a professional context, like car navigation

and approaches towards autonomous driving, applications rely on precise positions gathered from

GPS satellites.

In [10], the theory, algorithms, and typical applications are discussed in a detailed manner.

This work employs therein proposed pre-processing steps in Section 4.2, contemplating GPS

characteristics with its deviations, influence factors, and limitations. Discussed pre-processing

filters are Kalmann, Mean, and Median filters, of whom the two last mentioned are incorporated.

Extracting trips from a pool of numerous GPS points is topic of [11]. The paper deals with

route predictions from trip observations, exploiting that trips are most likely to follow a reoc-

curring pattern rather than being chosen randomly. For this, equally to nominated needs, the

paper dives into extracting, cleaning, and filtering trips. Described methods are adjusted to the

dominant environment but in principle are adopted as proposed.

In Section 4.5, a micro trip exaction according to conditions approached in [12] is employed.

Micro trips are short, roughly three minute long excerpts of real-world trips and are a convenient

way to analyse distinct driving patterns on small independent portions.

A major part of the driving profile analysis is spend on map-matching, a technique to project

real-world GPS trajectories to an underlying road network. Since the established approaches seek

to cover a broad range of sampling rates, conducted literature review focused on relatively low

sampling rate proposals and made a good match with [13] and in particular [14]. The algorithm

introduced in the latter paper is implemented in this work as it appeared to suit nominated

5
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requirements best. It’s applicability for low sampling rates is highly determined by the global

map-matching background which takes not only the whole trip from origin to destination into

account, but which also incorporates the road network and traffic constraints.

2.2 Energy Demand Analysis

For estimating energy consumptions of EVs, there are basically four approaches prevalent, using

either a vehicle model, a machine learning method, a statistical method, or a traffic simulation

method. A combination of those is also perceivable. The following sections firstly present generic

approaches towards estimating energy and secondly follow up with a number of specific, state-of-

the-art applications.

2.2.1 Generic Approaches

A vehicle model simulation is applicable if a high resolution driving profile with detailed dynamics

(speed, acceleration, altitude) is available. This is needed because a model mimes an actual driven

trip solely on basis of its dynamic information and its trend. This study uses an electrical version

of a vehicle model for constructing a road segment based energy map and for validating results

among all proposed energy demand estimation approaches.

Employing a machine learning method targets at finding typical and reoccurring patterns in

driving profiles or traffic conditions. Often, these driving profiles are grasped from standard driv-

ing cycles [15] and applied on arbitrary real-world trips. Those are processed utilizing machine

learning methods for clustering (portioning of similar pattern into groups) and classification (as-

signment of unclassified trips to established clusters), as for instance done in [16]. In the present

work, similar methods are implemented in the driving feature approach where distinct driving

patterns are linked to energy consumptions.

Statistical methods make use of a number of recorded trips for establishing a database for

trip related statistics, such as dynamic information, road network correspondence, or energy

consumptions. An initial attempt to construct an energy map of Singapore is proposed in [12],

in which each cell of a meshed grid denotes an average value of energy demands of a number

of recorded real-world trajectories. This method is employed in this thesis for the road segment

based energy map and road segment based driving share approach, where all recorded trips so

far are included.

The use of traffic simulation tools such as SUMO [17] aims at emphasizing relations between

energy consumption and traffic conditions as proposed in [18]. Although derived results show

that the energy consumption is indeed heavily dependent on traffic conditions, basically following

the state of congestion and average speed, the present work focuses on recorded real-world trips

in the context of taxis and therefore does not include a traffic simulation into the analysis.

2.2.2 Specific Applications

There are numerous vehicle models available for modelling classic internal combustion engines

(ICE) as well as electrical drivetrains. A basic idea for the challenges constructing an electric

vehicle model is given in [19], where all sub-modules are described in detail. One of its imple-

mentations is obtainable from [20] as a Matlab integration. The VEHLIB [21] and PHEM [22]

models are widespread for estimating vehicles’ emissions and are designed for internal combustion
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engines. Although in principle similar to electrical vehicle’s models regarding vehicle dynamics,

they fall short for energy recuperation, charging, and discharging processes.

In [23], an eco-routing navigation system is elaborated using the CMEM [24] emission model

employed on real-world driving profiles. Appended with multiple historical data sources, like

roadway characteristics and results from traffic simulations, it provides a comprehensive energy

estimation concept. However, its focus lays on real-time energy estimation for current traffic con-

ditions and therefore does not fit to this study’s objective of constructing a database of historical

trips for subsequent trip simulations.

A modular, crowsourced approach is introduced in [25] using a combination of collected real-

world speed profiles, in-vehicle sensor data, and traffic information. It targets at a real-time

energy estimation based on a comprehensive back-end server infrastructure communicating with

the vehicle. Alike herein proposed approaches, real-world trajectories, road network, and traf-

fic constraints are taken into account; however, it differs in targeted application scenarios and

infrastructural context. Nevertheless, portions of herein established methods are adopted.

In [26], a method operating on driving shares is proposed. A driving share is a distribution

of four distinct driving phases: idling, cruising, accelerating, and decelerating. An extraction

of functional parameters of overarching function shapes describes driving phase distributions in

accordance to speed, reveals the cars dynamic behaviour, and alludes to consumed energy. These

shares are used to compute driving phase related energy consumption for various road types and

gradients, corresponding to the set of parameters and average speed. An adopted version of this

method is profoundly implemented in this work for the driving share approach.



Chapter 3

Data Sources

This chapter introduces various data sources and resources which contributed to the analysis,

program development, and statistical evaluation. The main data source this work establishes

upon are real-world GPS trajectories recorded by GPS loggers built into a number of 20 taxis

and extended with booking data revealing the taxi’s status. The participating vehicles are part of

the SMRT taxi fleet, a Singaporean based public transport company running MRTs, buses, and

taxis. In terms of taxis, it is the fourth biggest taxi carrier in Singapore with 3227 taxis registered

in June 2014 [7]. In addition, auxiliary data was obtained by querying a number of open source

or crowd sourced data resources which provide valuable additional input material for the data

mining process.

The opportunity to access a number of different data sources requires two steps: independent

pre-processing of each source and combination of all sources into a utilizable format. Merging

multiple sources improves quality and insightfulness of data mining, allows for more detailed

statistics, and enables to reuse data in a wider range for related projects.

The cooperation with SMRT was chosen for several reasons. One is the opportunity to access

taxi data in a tropical city like Singapore at which also the EVA project aims [27]. Additionally,

SMRT has an extensive MRT station infrastructure, each demanding high amount of energy

and thus unlocking opportunities for EV charging stations with possible energy supply points at

those stations. Moreover, it is granted to also obtain taxi’s status information through a booking

dataset, essentially enhancing the trip extraction process.

3.1 Taxi Data

The developed programs primarily operate on received taxi data from SMRT, which includes

logging and booking data. The logging data, with a sampling period of one second, is captured

from installed GPS loggers whereas the booking data, with a three minute sampling period,

is gathered from the taxi’s Mobile Data Terminal (MDT), which is responsible for managing

bookings and fare deduction. A set of 20 loggers was installed into a representative selection of

taxis, chosen according to various features like hirer scheme, drivers’ home location, and vehicle

type.

The logger devices are expected to record trajectories for a duration of six month, given an

option of extending recording time for a subsequent six months period to add up to one year.

During the creation of this thesis, due to successful results, the number of installed loggers was

8
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increased to 50; albeit the here proposed analysis and discussed results only cover data from the

first phase with 20 loggers.

Recorded data is stored on Micro SD memory cards equipped to the logger devices and ex-

changed with a new set of memory cards each month to guarantee uninterrupted data recording.

Hence, there are total 40 Micro SD cards in stock. A change of memory cards is required due to

GPS logger recording constraints of maximum 512 files per card, which is expected to be exceeded

after roughly one and a half month, thus feasible in the planned set-up. The exchange also allows

to check data quality and to conduct data analysis on a monthly basis.

The initial set-up, testing, and installation was carried out by the participating research group,

while also introducing the system’s basic functionality and usage guidelines to the drivers. For

proper operation, deployed GPS loggers have to be prepared prior to deployment by formatting

the memory cards and adjusting recording properties. The card exchange, on the other hand, is

done by SMRT.

During monthly update meetings, recorded files of all memory cards are collected while pro-

viding empty cards for the next exchange process. Furthermore, during those update meetings,

insights into preliminary data analysis results are presented, occurred problems discussed, and

valuable feedback is retrieved - aiding further analysis actions. To allow for fast and straightfor-

ward memory card exchange, all memory cards are numbered with a unique id and maintained in

an Excel sheet, which records the link between taxi licence plate number and currently plugged

memory card id.

An overview of recorded data is depicted in Table 3.1, divided into subsets for each recorded

month. The following sections firstly, delineate the GPS trajectories obtained by GPS loggers

and secondly, explain the status information as recorded from MDTs.

Table 3.1: Dataset statistics over a period from 9th June to 8th September, divided into monthly
subsets

Statistic June July August September Total

Taxis 19 20 20 20 20
Recorded days 22 30 31 8 91
Extracted shifts 766 1,045 1,006 224 3,041
Extracted trips 19,802 26,047 26,023 5,434 77,306
Distance 130,440 km 170,700 km 166,610 km 35,336 km 503,086 km
Sample points 15,787,061 20,962,228 20,325,569 4,278,416 61,353,274

3.1.1 Taxi Logging Data (GPS Trajectories)

This section begins with a brief introduction into the Global Position System’s (GPS) functionality

in general and hands over to the specific GPS logger type as utilized in this work.

GPS Basics

The GPS is a complex system for determining a position on Earth’s surface with an accuracy of

nowadays ±20 m under normal operating conditions. Launched in its fully operational mode in

1990, it comprises a set of 24 satellites in six orbital planes, each equipped with four satellites

[10, p. 2].

The essential functional principal bases on measuring time differences between satellites in the

orbit (sender) and GPS device on Earth (receiver). Those time differences are translated into
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metric distances between sender and receiver as well as distances among the satellites, and they

eventually result into a fairly accurate three-dimensional position. With inclusion of satellites’

exact locations, the position is expressed in commonly used spheric coordinates of latitude and

longitude values, both relative to the equator and the Greenwich meridian, respectively.

Since transmission signals are running at the speed of light, which is extraordinary high,

the systems demands a very high clock precision and clock synchronisation among all satellites

and between sender and receiver. Thus, the receiver can only determine a valid position if it

is concurrently connected to at least four different GPS satellites, three for providing the three-

dimensional position and one for synchronizing the receivers internal clock.

GPS Logger

To record GPS trajectories, a set of Columbus V-990 Multifunctional GPS Data Loggers (Figure

3.1) is used, incorporating an Enhanced Positioning System (EPS) [28] for accuracy improvement.

Important criteria in this project’s scenario are a fast cold and warm start-up phase as well

as a high accuracy and high sensitivity - even when operated in a moving car. Furthermore,

requirements for devices comprise the capability to overcome power interruptions, robustness to

taxi driving conditions, and long durability. Because the Columbus logger was already proved

valuable in previously conducted, similar studies like in [29], the decision was made to acquire a

set of it. The logger stores one sample point per second (sampling rate 1 s−1), each attached with

fields provided in Table 3.2.

Figure 3.1: Columbus V-990
GPS logger

Table 3.2: GPS logger fields of Columbus V-990

Logger Field Typical Value

Id 2015
Tag T

Date 140901
Time 25014

Latitude 01.284309N
Longitude 103.848928E

Height 58
Speed 41

Heading 115

The device is automatically turned on when the taxi’s on board power supply is activated

because power is directly obtained through the cigar lighter socket. This normally happens when

the engine starts and all devices are supplied with electricity. However, in some vehicle types, the

power supply does not align to the engine start and stop pattern but remains active throughout

the time. Here, a manual on and off switching is required by the driver, each time a shift is

interrupted. For each stint between a logger on and off mode, a unique Comma Separated Value

(CSV) file is generated and stored on the plugged memory card.

Under the given operational scenario faced in the taxi tracking purpose, GPS positions underlie

a number of uncertainties, inaccuracies, and challenging traffic situations such as tunnels transits,

loss of signals, multipath effects, and position drifts as it is later discussed in Section 4.2. A basic

insight into the nature of a recorded trip is illustrated in two detail levels in Figure 3.2, of which

an excerpt of its raw CSV source is provided in Appendix A.



Chapter 3. Data Sources and Resources 11

(a) Entire trip (b) Excerpt

Figure 3.2: Example of a recorded trip and a detailed excerpt, background images taken from
Google Maps API [30]

An essential information for this work’s imposed intention are the speed values, which either

can be calculated programmatically using latitude, longitude, and time values of two adjacent

sample points, or which are directly obtained from the logger’s Speed field. Investigations revealed

that the provided speed values from the logger are more reliable and are in high accordance to

those obtainable from the CAN Bus. CAN Bus values are eminent as a good reference source

since they are directly taken from wheel sensors, which instantaneously calculate the speed in a

very exact manner. Another evidence is the fact that CAN BUS speed values determine security

relevant systems like ABS and ESP and therefore must be of high accuracy. A comparison of

both speed value sources in a similar set-up employing the same logger type is presented in Figure

3.3.

Figure 3.3: Comparison of speed values from CAN Bus and GPS logger, adopted from [31]

3.1.2 Taxi Booking Data (Status Data)

In line with the logging data proceedings, booking data was obtained during update meetings

with SMRT on a monthly basis. Each taxi is equipped with a MDT, which continuously captures

the taxi’s GPS position, timestamp, and status information in an approximate sampling period

of three minutes and acts as a booking manager and device for deducing taxi fares. It requires
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minor interaction with the drivers despite the input about the current trip’s purpose (the actual

taxi’s status).

Since the fare collection starts when the driver hits the Hired button and stops when the driver

hits the Payment button, it is confident that provided status information is valid. However, a

number of statuses like For Hire or Busy are dependent on driver’s choice and taste and should be

treated with more courtesy. All captured data is automatically transmitted to an SMRT database

which steadily receives statuses from all active taxis. Of particular interest is the time and status

datum which is forwarded in an Excel sheet format as an excerpt is listed in Table 3.3.

Table 3.3: Booking data fields as recorded from a MDT

Booking Field Typical Value

Taxi Licence SHF323S
Latitude 01.362683

Longitude 103.7447
Status HIRED

Date and Time 9/8/2014 12:08

The overall quality of booking data in terms of accuracy and completeness is considerably

good. Challenging is, at times, the unpredictable behaviour of the booking data collection system

(the MDT and connected database). Examinations yield that the system in general records data

whenever the taxi is active, assuming the MDT online and taxi’s engine running. Sometimes

however, gaps in booking data are encountered in comparison to the corresponding logging data.

If latter are available and former not, it is evidence for the incompleteness of booking data.

Another issue, which nevertheless does not have a strong deteriorating impact, occurs vice

versa where the booking systems continues capturing Log Off statuses while the taxi is not active

at all. Further investigations touching that issue are conducted in Section 4.2.1 in which the

data combination is approached. To some degree impactful is the unsteady sampling rate which

exacerbates the combination process and requires interpolation.

Figure 3.4 presents a booking data excerpt for one taxi and one day, denoting sample points’

positions and corresponding statuses by means of different colours. The colour-code is used unified

throughout this work and explained as follows.

Unknown The status could not be gathered due to a mismatch between booking and logging

data or due to missing booking values for the observed logging period.

Log Off The taxi is not active, or the hirer has logged off the MDT, respectively.

Hired A passenger has hired the taxi, and the taximeter is activated.

For Hire No passenger is on bard, and the taxi is searching for a next customers.

On Call The taxi received a confirmed booking and drives towards the agreed booking’s

pick-up location.

STC When a passenger is on board, the driver switches to this status to inform that he/she is

close to the destination and about to clear the job soon. Hence, this status will only occur after

a preceding Hired status.

Arrived The taxi arrives at the destination as defined in a booking for a passenger pick-up.

This status is most likely to happen after a preceding On Call status.
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Figure 3.4: Booking data example showing recorded sample point’s positions and corresponding
statuses for one taxi and one day, background image taken from [30]

Payment The trip has finished and the passenger is about to pay why the taximeter is stopped

for payment. Alike STC, a previous trip with status Hired is most likely.

Busy The taxi driver uses the taxi for his/her own purpose and the Busy status is logged in

the MDT.

3.2 Auxiliary Data

Auxiliary data supports the data mining process in various ways and enhances recorded GPS

trajectories with road network correspondence, elevation values, and zone matching (division of

Singapore). Those data is fetched from multiple sources and undergoes a comprehensive pre-

processing as also described in this section. First, Singapore’s road network as the foundational

input for map-matching is regarded. Afterwards, general infrastructure and the gathering of taxi

data is outlined, followed by spatial and geographical data sources as used to re-assign flawed

GPS fields.

3.2.1 Singapore Road Network Source and Preparation

The coherence between trips and road network is of principle interest for the energy estima-

tion approaches, especially for those requiring a point-by-point matching to road segments. For

this purpose, a road network is required which is easily accessible, of high quality, and straight-

forwardly importable into the Matlab development environment. The road network utilized in

this work is gathered from Open Street Map (OSM), a crowdsourced and licence-free accessible

database for road networks and infrastructural entities around the world [32]. The map quality

and level of completeness is conditional to the location but is generally available in greater detail

and more complete for urban areas. In case of Singapore, a very satisfying quality in terms of

completeness and detail level is perceived with only negligible limitations.
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In principal, OSM stores road network information as of Nodes, which are points with precise

GPS coordinates (latitude and longitude fields), connected by Ways, which link a set of nodes to

form an entity. Note that the object Way is not exclusively used for roads but more generic also

designates all other entities like buildings, pathways, and even country borders. Both types can

optionally be attached with additional Tags, indicating meta information such as traffic lights

or pedestrian crossings - in case of nodes - and street names or road types in case of ways. In

addition, OSM introduces Relations which are compounds of nodes and ways to indicate abstract

resources such as parks but disregarded herein.

Table 3.4 lists the quantity and average length of nodes and ways for the downloaded version

of a bounded Singapore OSM extract as of May 2014. It also includes the characteristics of Road

Segments and Links, which are introduced afterwards.

Table 3.4: Overview of OSM road network entity types with its quantity and average length

Type Value Average Length

Nodes 107, 388 -
Ways 20, 878 216.56 m

Road Segments 40, 425 134.70 m
Links 95, 245 24.71 m

Road segments are derived from ways and oblige the restriction to have no intermediate in-

tersections. They are introduced for the purpose to consider a road segment as a separate and

closed unit, avoiding cars to leave the segment. OSM reveals no standard recommendations when

to split a way into multiple parts; hence, a transformation from raw OSM into a form of non in-

termediate intersections is targeted to enable uniformness. Links, on the other hand, are defined

as atomic connections between two adjacent nodes.

Applicable definitions can be observed from Figure 3.5. Herein, the road segment is bounded

by two intersections, which are considered to be intermediate in relation to the way, and thus it

requires splitting.

Figure 3.5: OSM definitions for Node, Way, Road Segment, Link and Intersection

Downsides of crowdsourced data is its to a certain extent naturally arising unreliability and

inconsistency. Since everyone of the more than 1,700,000 registered users (as of August 2014 [33])

is entitled to edit the content without major restrictions, different mapping styles and interpreta-

tions of OSM best practice advises are unavoidable. Challenging are, for instance, unconnected

ways, ambiguous assignment of road types to ways, and the general problem that node and way

tags are not mandatory. Those issues makes only a subset of the entire OSM dataset feasibly

utilizable.
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Import of OSM and Filtering

To be independent of internet connection and to accelerate processing speed, a copy of an OSM

extract of Singapore was acquired, defined by boundaries of longitudinal and latitudinal extent

as depicted in Table 3.5.

Table 3.5: Boundaries of downloaded Singapore’s OSM extract and its spatial extent

Direction Boundary Position Extent

Longitude
North 1.4728372◦

31.81 km
South 1.1867929◦

Latitude
West 103.6106791◦

52.97 km
East 104.0871962◦

The OSM website provides the opportunity to download an XML formatted file, which solely

consists of the three previous introduced markup types (Node, Way, and Relation) and attaches

optional tags in a common key-value pair structure. The raw file contains a number of unim-

portant entities like buildings, forests, and pedestrian pathways, which are unnecessary for this

thesis’ scope and can be dismissed. Regardless of its nature, each entity is mapped in the same

manner using nodes and ways and would therefore inevitably impede efforts to extract only road

network related information. Thus, the map was filtered using the tool osmfilter, capable of

dismissing predefined entities.

Since the tool expects a rectangular boundary for the OSM export, which obviously does

not project the real shape of Singapore, an additional cropping step has to be applied, partly

automatically executed by the tool osmconvert and - for fine-tuning - partly done manually.

Cropping aims to dismiss entities which do not lay in the desired boundaries. Results comparing

an unfiltered with a filtered and cropped OSM excerpt are illustrated in Figure 3.6, where only

the interesting entities (roads and corresponding nodes) are left. As a final step for importing the

road network, the library package osmfunctions is used, which translates the XML file structure

into a suitable Matlab format and is obtainable from Matlab’s File Exchange website under [34].

(a) Unfiltered OSM excerpt (b) Filtered OSM excerpt

Figure 3.6: Unfiltered and filtered OSM excerpt dismissing irrelevant entities
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Preparation of OSM in Matlab

As described in the class structure overview in Figure 3.7, the imported XML file undergoes a

number of processing steps until sufficiently prepared for the planned usage scenario. Hereby,

Matlab’s built-in Object Oriented Programming (OOP) module was frequently leveraged to han-

dle complexity more manageable.

Figure 3.7: Class diagram for processing OSM data, including OsmXmlRaw, OSM, OSMMap,
OSMMapGrid and OSMMapGridSection

In a first step, the imported OSM road network is converted into an instance of an appropriate

class based format OSM, using an instance of OSMParser to extract XML tags of nodes and ways

and to create, for each, instances of classes Node and Way. The node instances inherit latitude,

longitude, and the node’s id field. All ways store a list of included node ids, and the additional

key-values pairs highway and oneway tags are extracted. It is noted that the term ‘road type’

and ‘highway’ are used synonymously to avoid confusion with the road type Motorway.

A crucial step towards performant utilization of the road network representation in Matlab

is to enhance it with hash maps (or lookup tables) of most occurring queries, comparable to

the technique of indexing large database tables. One reason is that ids of nodes in OSM live in

a global namespace among which they are unique. Due to the high id range (up to Billions),

they cannot be used efficiently as indices for Matlab arrays. This requires to build a fast lookup

opportunity to match global node ids to the internal representation of local ids.

Another reason is given due to the fact that only ways store a set of node ids, but not vice

versa. Without sophisticated hashing, thus, no direct information have be extractable about a

node-to-way link. For instance, in order to retrieve all ways which contain a demanded node,

without hashing, each way has to be traversed by searching for the asked node id. With hashing,

however, a previously establish node-to-way hash map is utilized, which allows for comfortably

fetching of all ways for the given node id. The hashing enhancement results in an instance

of OSMMap, which inherits from the OSM class and contains six different maps for frequently

demanded queries.

Particularly vital for the map-matching is a spatial relation between a certain areal and ways

contained. It is of major interest to find neighbourly way candidates for a given sample point (see

Section 4.4.2). This is achieved by dividing the area of Singapore into a 200× 300 meshed grid,

resulting in 60, 000 rectangular cells. As expressed in the class OSMMapGrid, two additional hash

maps for ways and nodes are set up.
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A last step, which came up during first challenges in implementations, is the extraction of road

segments denoted as sections in the class diagram. Road segments are a subset of ways, restricted

to have no intersection with any adjacent road segment other than at its very first or very last

edge. Particularly for the road segment based energy estimation approaches, this is an important

requirement because it enables to consider a road segment as a closed and undividable unit, which

has either been traversed by the car or has not. To extract those, ways are cut into two chunks at

intermediate intersections. It is recursively proceeded in this manner with the remainder until no

such intersections are left. The processing result in an instance of OSMMapGridSection, attached

with a field sections, fields of all previous introduced refinements, and enhancing steps in the

context of road segments.

Extraction of OSM Connectivity Matrix

The map-matching process implements the shortest path problem which employs a directed and

weighted graph connecting all nodes of the imported OSM road network. This directed graph is

in this work’s context called connectivity matrix. According to the definition of a directed graph,

each OSM node acts as a vertex, and each link connecting two nodes acts as a path. The graph

is chosen to be directed because it contains one-way streets (one directional = directed) and the

projected road network itself already behaves like a directed graph. A weight value denotes the

‘cost’ of traversing a path from node to node.

The weights for each path can be calculated subject to various targeted intentions as summa-

rized in the following delineations.

Vertex Quantity The weight attributes solely base on the amount of intermediary vertices from

one node to another. Since the directed graph contains a weight value for each link between

all possible nodes and not considering a path traversing more than two nodes, the weights

are all set to unity by default (unity = one point per link). A special advantage of this graph

version is its high computation performance since all weights are equal. This allows for using

the high performance Breadth First Search algorithm (BFS) with complexity O(|V | + |E|)
[35, p. 597], where V is the number of vertices and E the number of edges (or paths). Yet,

it omits the actual important distance between nodes and is thus less of value.

Euclidean Distance A weight factor is computed based on the Euclidean distance between two

adjacent nodes with its latitude and longitude coordinates. In routing algorithms, this graph

type is known as the actual shortest possible distance, but it does not imperatively translate

into the fastest journey time. This connectivity matrix requires Dijkstra’s algorithm with

complexity O(|V |2), where V is the number of vertices [36].

Time Demand The weights origin from an estimated time for traversing a link. Similarly to the

previous version, the Euclidean distance is computed and additionally divided by the average

speed for the corresponding road type as obtained from observed trips or LTA speed band

sensors. Applying this graph to a navigation system would resemble the fastest route option.

The shortest path problem is solved again employing Dijkstra’s algorithm.

To constitute such a connectivity matrix, an algorithm basically sifts through all nodes and

attaches a weight factor for each connection to adjacent nodes. As described, these weights are

obtainable using different variants which have all been implemented. This algorithm already takes

advantage of the previous described hashing step, which allows for a higher performance in the

lookup of nodes and ways.
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To prepare the connectivity matrix for extensive application in a map-matching environment in

terms of performance issues, the Matlab concept of sparse matrices is exploited, which only store

valid connections (where weights are unequal zero), and the majority of unconnected transitions

remain untouched. In Figure 3.8, the Vertex Quantity based connectivity matrix with unity

weights is illustrated, each point representing a connection between two nodes (the node ids are

displayed on both the x- and y-axis). The thicker diagonal line originates from a high number of

connected nodes with similar node ids.

Figure 3.8: OSM Vertex Quantity based connectivity matrix for all 107388 nodes of the overall
OSM road network

3.2.2 Infrastructure and Taxi Data

Infrastructure and taxi related data is mainly used in trip and shift extractions and as a validation

option for speed distribution around Singapore’s road network. As all auxiliary data, it also

influences and enhances the statistical evaluation. An outline about the acquisition of taxi fleet,

taxi stands, and LTA traffic sped band data is given in the following sections.

Taxi Fleet Data

As previously mentioned, the partner for recording GPS trajectories is the Singaporean public

transport company SMRT. In a first project stage, a subset of 20 taxis was equipped with GPS

loggers, keeping the option to extend the set to a total of 50 taxis. It is of great importance for the

degree of validity that the dataset is as representative as possible to derive relevant statements

which are extendable or upscalable for the entire taxi fleet. The representativeness is regarded

as the distribution of drivers home addresses, vehicle type, and hirer scheme, which all should

reflect the actual distribution among the entire taxi fleet.

The driver’s home address is significant because taxi drivers tend to serve their neighbourhood

preferably. Here, SMRT was asked to deliver a good match to the overall home address distribu-

tion and four drivers from the North, three from the East, one from the South, six from the West

and six from the North-East were chosen.
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Also the vehicle type certainly has an influence on GPS trajectories on account of its unique

characteristics and vehicle specific dynamic behaviour. The SMRT fleet is mainly composed of

four types: Chevrolet Epica, Chrysler 300C, Ssangyong Rodius, and Toyota Prius, of which also a

representative distribution was selected, resulting in 13 Chevrolet, one Chrysler, two Ssangyong

and four Toyota.

Likewise, the hirer scheme which constitutes the number of hirers agreed to drive one taxi,

was chosen accordingly and eleven two-hirer, and nine one-hirer scheme taxis were picked.

Taxi Stands in Singapore

Although less important than compared to the German taxi system, the geographical positions

of taxi stands in Singapore reveal locations with high occurrence probability and therefore play a

major role when locating a suitable charging station infrastructure. As already alluded in Section

1.3, the Singaporean taxi system has some peculiarities which also affect search strategies for

customers. Other than the German example, in the majority of cases in order to board a taxi,

customer just flag down a taxi virtually anywhere on a street, and passengers are not required to

wait at taxi stands.

Nevertheless, taxi stands are often contemplated in metropolitan areas where a high taxi

demand is faced in certain peak hours. Examples are points of interest like shopping malls,

hotels, hospitals, and sights with taxi stands or pickup bays right in front. The data source

also includes locations of bus stops which are sometimes misused for passenger pick-ups but not

investigated under this thesis’ scope. Yet, they may be consulted in future work.

Motivated by the rational to act as possible charging locations, a taxi stand database was

queried and imported into Matlab to be incorporated into the analysis. The demanded data is

available free-of-charge from Singapore Government Data website [37], which provides a great set

of useful and high quality data.

The data was received in the form of Shape Files, which initially do not reveal the actual

latitude and longitude coordinates of interest. Hence, the files have to be processed using the tool

QGIS Desktop to convert it into GeoJSON format. This GeoJSON files can now be imported

into Matlab using a JSON parser as available on Matlab File Exchange [34]. A list of all imported

taxi stands divided into ten major sectors is attached in Appendix L.

LTA Traffic Data

Preliminary to validate recorded GPS trajectory speed values and to gather average speeds for

Singapore’s road network, the LTA Speed Band database was queried as available under [38].

This data source holds values of an extensive amount of more than 40, 000 speed band sensors

distributed all over the island. A speed band is herein defined as a pair of lower and upper speed

limits, denoting the average speed of vehicles for the last five to ten minutes in a resolution of

20 km/h steps. Values of each speed band sensor are periodically updated and asynchronously

fetched and hence accessible in quasi real-time from an API.

To do so, a one-year account was registered entitling to query the API at all times. Each

query is restricted to a subset of 50 sensors per call and produces an output in XML format,

which is processed into Matlab using a built-in XML parser xmlread. The API works on HTML

requests with base address http://datamall.mytransport.sg/ltaodataservice.svc/, the

web service name TrafficSpeedBandSet, plus an additional passed parameter skip=50, which

determines the start of the requested sensor subset.
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An example of a 1000 sensors encompassing excerpt is displayed in Figure 3.9, where the colour

depicts the speed band values using green for the fastest (80− 100 km/h) and red for the slowest

speed band (0− 20 km/h).

Figure 3.9: LTA speed band values excerpt for 1000 queried sensors, where green dots indicate
high speeds, yellow dots moderate speeds, and red dots low speeds, retrieved from MyTransport

DataMall [38], background image taken from [30]

3.2.3 Spatial and Geographical Data

Spatial data is another category of auxiliary data, aiding to improve statistical evaluation and

especially to validate and adjust flawed altitude values of recorded GPS trajectories. This section

introduces the retrieval and pre-processing steps of different queried data sources, comprising

various Singapore’s zones and terrain’s altitude profile.

Singapore’s Regions, Planning Areas and Subzones

Other than linking a GPS points to a road segment as done in the map-matching process, it is

more robust, faster, and still effective to link a GPS point to a bounded area. Here, the provided

division into zones by the Department of Statistics is taken. Singapore is officially portioned

into three categories - arranged in the level of detail: Regions, Urban Planning Areas (URA),

and Subzones. Herein, a Region is the most coarse-scaled and a Subzone is the most fine-scaled

division, and each successor is a subset of the predecessor. In other words, a Region includes a

number of Planning Areas which in turn consists of a number of Subzones. In total there are five

Regions, 55 URAs and 322 Subzones received according to [39].

Alike the retrieval of taxi stands, the data comes in the format of Shape files requiring a

conversion into GeoJSON to finally import those into Matlab. In Appendix K, a map illustrating

those categories’ boundaries is plotted.

Elevation Map of Singapore

An elevation map is in principal a three-dimensional meshed grid of latitude and longitude coordi-

nates for x- and y-axis, projecting terrain’s elevation values on the z-axis. This section introduces

the retrieval and pre-processing of such an elevation map for the purpose of re-assignment of

recorded sample points from employed GPS loggers, which are very unreliable and often produce
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wrong or impossible measurements. It aims to replace these height values with those obtained

from a different source: the Google Elevation API [40].

To construct the elevation map, the area of Singapore is initially portioned into a meshed grid

of size 200× 300. For each of the resulting 60, 000 unique anchor points, the API is queried and

values are retrieved and stored into an equally sized Matlab matrix. Google periodically obtains

these values from satellite measurements, which are probably simultaneously taken during Google

Maps image recordings. The measurements do not include heights of buildings or bridges but

mirror the terrain’s elevation and hence perfectly suits this study’s needs.

In detail, a Google Developer account was created and a project via the Google Developers

Console [41] registered, while acquiring an API key to access the web service. Due to a limitation of

only 2, 500 queries per day in private usage mode, several Google accounts were combined to speed

up the entire data retrieval process. With the API key and mandatory latitude and longitude

fields, an HTML request is assembled with the base address https://maps.googleapis.com/,

concatenated with the web service address maps/api/elevation/json, and finally passed with

required parameters locations=1.29,103.13 and key=AIzaSyD4, for instance.

The altitude profile is a substantial factor determining the power to overcome gradient resis-

tance forces, which in turn influence the energy consumption to a high degree - especially for hilly

trips. Because Singapore is considered as a rather flat country, it might diminishes this impact

but is nevertheless influential and hence included in this work. Its application finds expression in

the substitution of altitude values for each sample point according to the constructed elevation

map and, in this way, simultaneously prohibits from computing wrong gradient resistances from

wrong altitude values.

The raw elevation map translates, according to boundary definition and spatial extent pre-

sented in Table 3.5, to a resolution of 159 m in North-South and 176 m in East-West direction.

For the subsequent height assignment step, which substitutes flawed altitude values on the layer

of sample points, this resolution turned out to be to low and requires an additional interpolation

step to gain intermediate points. This results in an increase in latitude and longitude stretch

by factor 20, in turn leading to a meshed grid of 4000 × 6000 anchor points and a resolution of

about 8 m in North-South and 9 m in East-West direction. The higher resolution suits mentioned

requirements better.

An interpolation runs the risk of overemphasising outliers or unreasonable values, which are

obtained in trust of the Google Elevation API’s data quality. Consequently, an ordinary mean

filter of window size 20 is applied, which smooth the data. The result and eventually utilized

elevation map is illustrated - together with a contour plot - in Figure 3.10.
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(a) Elevation map

(b) Elevation contour map

Figure 3.10: Elevation and contour map of Singapore, retrieved from the Google Elevation API
as of May 2014 [40]



Chapter 4

Driving Profile Analysis -

Methodology

The driving profile analysis unit of this thesis comprises descriptions of methods, algorithms, and

implementations to analyse driving profiles in detail. A driving profile is a recorded sequence of

spatial, speed, and altitude values subject to time.

This section begins by emphasizing the data import and data handling, which became more

important the more data was recorded, and continues with the pre-processing steps by immersing

into GPS immanent inaccuracies, which require mitigation at the layer of sample points. Subse-

quently, trip and shift extraction methods are introduced and the vital map-matching process for

the contemplated context is elaborated.

As an attempt to uniform the used vocabulary, frequently occurring expressions are defined

in the following to work on a unambiguous set of terms and prohibiting inconsistencies.

Sample Point A sample point consists of a spatial part with latitude, longitude, and altitude

fields, a dynamic part with speed and heading fields, and optional fields like status, road

segment id, road type, and Subzone id. It is the atomic building block for the logging and

booking dataset architecture.

GPS Point When focusing solely on a sample point’s position, the term GPS point is often used

to indicate the mere interest into the spheric coordinates latitude and longitude.

Trip A trip is an array of connected sample points which generally follow one distinct taxi status

and therefore one driving purpose. Trips’ distances typically vary between zero to 40 km and

last for one to 60 minutes, heavily dependent on the taxi’s status and whether there is a

passenger on-board or not. In Section 4.3.1 the trips are elaborated in greater detail.

Shift A shift contains a number of trips for one taxi and one driver. It is meant to be a closed

stint which normally occurs once per day per driver. A typical duration for a shift is eight

to twelve hours, which, however, is subject to high variance and extensible up to 16 hours as

it has been recorded. Shifts are further examined in Section 4.3.2.

Driving Profile A driving profile essentially defines the same as a trip does, but it rather focuses

on the dynamic trend as on the position. It comprises a sequence of time, speed, and altitude

values.

Dynamics With dynamics the traffic and vehicle regarded dynamic values speed, acceleration,

and deceleration are meant.

Road Type A road type is a category of roads as defined in OSM and is introduced in greater

detail in Section 6.2.

23
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Road Segment A road segment is basically a road or street as mapped in OSM which is re-

stricted to have no intermediate intersections with any other road except on its very first or

very last edge.

Micro Trip A micro trip is considered as a subset of a trip’s sample points. It can basically origin

from three sources: (a) micro trips as an extract of a normal trip with targeted duration of

roughly 210 seconds, defined by boundary conditions below a certain speed and acceleration

threshold (see Section 4.5.1); (b) road segment based micro trips include an array of connected

sample points on a single road segment; (c) road type micro trips which are essential the same

as previous described but are split at the transitions between two different road types and

not at road segment transitions; thus they are usually longer.

The overall goal of the driving profile analysis is to extract a set of shifts comprising a number

of driven shifts per taxi, each in turn including a set of trips of an array of sample points. The

class diagram presented in Figure 4.1 illustrates the structure and interconnections among each

entity.

Figure 4.1: Class diagram for ShiftSet structure, including Taxi, Shift, Trip and SamplePoint
and its interconnections

4.1 Data Import and Handling

The data import is an essential step for transforming table formatted, raw logging and booking

data received from GPS loggers and MDTs, respectively, into Matlab. Since all subsequent

processing steps are carried out in Matlab, this interface has to be treated with great care. As

introduced in Section 3.1, for each of the 20 participating taxis a single GPS logger is equipped

with a single MicroSD memory card. For faster exchange and data retrieval, another 20 spare

memory cards are in stock, which are alternated at each card exchange appointment. This

exchange takes place on a monthly basis while keeping track of the mapping between taxi licence

plate number and current plugged memory card.

On the logging side, all files are initially processed by copying the entire memory card content to

a folder named alike the card’s id and located on a local server. Next, the files are manually moved
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into a folder structure presented in Figure 4.2 according to the tracked mapping of card id →
licence plate number, as well as according to the recorded month denoted by the files’ timestamps.

This folder structure eases later analysis, which is tailored to run on monthly chunks. Each taxi

folder contains a set of subfolders, named according to the recorded month, which in turn contain

a log folder, storing the actual raw CSV files and a couple of MAT files, caching processing steps

as an interim output of developed programs. An example excerpt of a typical logging file in CSV

format is presented in Appendix A.

A suggestion to further work is to automate the transfer step from memory cards to the utilized

Matlab structure to prevent errors and to be capable of scaling the system to a higher number of

tracked taxis.

(a) Booking data (b) Logging data

Figure 4.2: Folder structure as organised in Matlab for booking and logging data

On the booking side, a similar structure is established, omitting the log folder and the cache

files and just concentrating on the monthly booking files provided in the XLSM format, an

Excel sheet with Macro capabilities. Those Macros originate from a required pre-processing step

realised directly in Excel using a Visual Basic (VB) script. The script browses through an initially

unordered list of all available booking sample points in a single sheet and extracts sets of points

belonging to the same licence plate number. It then merges each set into an own sheet and names

it alike the licence plate number. An extract of such a XLSM file before the pre-processing step

is attached in Appendix B.

The import of logging and booking files is executed by utilizing the built-in function textscan

for ordinary CSV files and the more powerful function xlsread for XLSM files. Both file formats

are table based, which enables the import of a predefined set of columns of interest. The major

difference in importing is the fact that the latter requires the desired licence plate number to

select the corresponding sheet for the taxi booking set in the XLSM files.

The actual import is straightforwardly performed in three steps: In case of logging data, for

each recorded CSV file a new instance of class Trip is generated first. Second, each table column

denoting one logging field is matched to the corresponding field of the trip instance. Third, each

sample point is concatenated with an existing array of previous captured sample points. The

booking import works identically, except for the different instantiation of objects of class Booking

and its respective fields.

Unlike an object-orientated approach may would recommend, Matlab’s strength of arrays is

exploited, and each sample point’s field is split into a single array. This is an essential and

impactful software architecture decision and was undertaken after an unsuccessful approach to

instantiate one object of a class SamplePoint for each actual recorded sample point, leading to an
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overuse of memory space in Matlab. A disadvantage of this structure is the necessity to handle

all trip’s field arrays concurrently.

Figure 4.3 displays the outlined structure and used data types depicted in the second column.

Virtually, there are only small differences in demanded memory space among the chosen data

types. For instance, the data type double requires eight bytes, whereas a value encoded in

int16 only needs two bytes. This might does not impact memory demand for small datasets; it

is however impactful for huge datasets as it is the case in this work.

During the implementation phase, emerging challenges regarding shortcomings of memory

capacities and inconveniences working with large Matlab MAT files were encountered. It was

consequentially decided to set up a Microsoft SQL Database Server and upload all imported

and processed sample points and its contextual related trips and shifts into this database. The

resulting architecture essentially resembles the structure employed in Matlab (see class diagram

in Figure 4.1) but was adjusted to suit the needs of the underlying Database Management System

(DBMS). Most classes found hereby expression into tables. Further advantages of a DBMS are

the opportunity for tailored and more fine grained search queries, eased statistics generation, as

well as concurrent accessibility from multiple users while still acting on a unique data repository.

The database’s table structure is illustrated in Appendix C. Alike hash maps in Matlab, the

database tables underwent indexing steps to speed up query times.

(a) Trip instance structure (b) Booking instance structure

Figure 4.3: Internal trip and booking instance structure in Matlab

4.2 Trajectory Pre-Processing

The trajectory pre-processing covers the areas of combination of booking and logging data sources,

filtering, and interpolation. All three steps are of high importance for the subsequent energy

demand analysis as they bring the raw sources into a cleaned, enhanced, and utilizable form.

The combination process, which merges both sources and attaches status tags to sample points,

primarily affects the later trip extraction, whereas the filtering and interpolation steps do also have

an impact on the energy estimation results. This means, when immersing into latter mentioned

methods in following sections, it is operated at the lowest layer of actual sample points as the

atomic parts. The dynamic interactions among those, in turn, are the foundation of the proposed

estimation approaches. Hence, these steps are influential and carried out with great care.

4.2.1 Combination of Logging and Booking Data

To exploit the full power of available trajectory related data sources, a combination of logging

and booking data is mandatory. Since both sources are equipped with the same timestamp and
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position fields, they can easily be merged. This status tag is in particular vital for the extraction

of trips, which are usually bounded by the status revealing the taxi’s driving intention.

The algorithm principally searches for equal timestamps and attaches the status information

gathered from a booking sample point to the according logging sample point. However, it is

required to extend this algorithm to a broader moving window technique which compares both

timestamps within a tolerance band of ±30 seconds. This is because both sets could contain gaps

as sample points are not unconditionally always available or do not always follow the expected

sampling rate throughout the whole trip.

The employed framed window attempts to search for possible corresponding logging sample

points in the vicinity of booking sample anchor points. These contain the demanded status

information and undergo a lower fluctuation in sampling rate; it is thus more reliable to use those

as anchor points. The algorithm behind combining both data sets is outlined in Figure 4.4, where

a number of three status tags from booking sample points are matched to the corresponding

logging sample points in terms of their timestamps.

Figure 4.4: Outline of the combination algorithm for logging and booking data for an excerpt of
three booking sample points, where each status is matched to the corresponding logging sample

point

In case of a match, the algorithm attaches the booking sample point’s status to the logger’s

sample point counterpart and additionally fills the range to the next available status tag with the

same status. This way, oversampling of the logging set is inevitably, which, however, is tackled

in subsequent processing steps particularly in the status based trip extraction.

Before the actual combination algorithm is applied, the general matching of booking and

logging data is validated as shown in Figure 4.5. Here, in both cases, all active times are coloured

in grey, whereas occurrences of more interesting recording gaps are coloured in green (for the

booking set) and red (for the logging set). It gives a basic estimation if both sets belong together

and throws an exception if active times deviate to a high degree. This is reasonable because

a large part of previous conducted steps included manual processing, which is commonly more

susceptible for flaws.
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Figure 4.5: Active periods of logging and booking data, showing active logging periods and
gaps in upper chart and booking periods and gaps in bottom chart

4.2.2 GPS Trajectory Filtering

GPS trajectory filtering comprises steps towards transforming raw and erroneous input trajec-

tories into a sufficient quality for further processing steps. There are a number of typical error

sources which are counteracted by means of two categories: Outlier Filtering and Dynamics Fil-

tering. The former focuses on erasing spatial and dynamical anomalies such as flawed sample

points. The latter targets on preparing the trajectory’s driving profile for the subsequent energy

demand analysis.

Both categories are of high importance since outliers and dynamic inaccuracies have a de-

teriorating effect on energy estimation quality. For instance, an unreasonably high acceleration

or speed, mistakenly recorded by the GPS logger, can lead to an unreasonable high energy con-

sumption. In general, the following problems and deviations are faced requiring specific mitigation

efforts.

Outliers Outliers denote sample points with unreasonable values regarding position, speed, al-

titude, or heading, caused by poor a GPS signal quality. It comprises single sample points

way off the Singaporean boundary, sample points exceeding physically possible speed or ac-

celeration values, and altitude values exceeding the highest elevation of Singapore.

Gaps Gaps are missing values within a GPS trajectory, often occurring as a consequence of poor

GPS satellite coverage or tunnel transits. Typically, values close to the gap’s boundary (e.g.,

tunnel entry and exit) are also of poor quality.

Drift With drifting, a GPS signal is termed which records a movement while the car actually

remains at its position. This is most likely to appear after a stint with high speed followed

by a sudden standstill period.

Multipath Multipath means that the GPS device receives multiple signals simultaneously from

the same sender resulting in a position mismatch, mostly due to surrounding mirroring areas

such as high buildings in the CBD and is thus particularly challenging in Singapore.

An excerpt of an example trip where occurrences of all four deviations are marked is presented

in Figure 4.6.
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Figure 4.6: Possible GPS immanent inaccuracies, deviations, and erroneous points, background
image taken from [30]

Besides trip specific filtering methods, which operate at the layer of sample points, filters which

treat outliers regarding the entire trip are also applied. Those erase trips which have either less

than a threshold of 30 points or have recorded a period less than 30 seconds. In the subset of all

trips of July, this filtering step removed 9.6 % of all entailed trips.

Outlier Filtering

Outliers are tackled by introducing thresholds expressing maximum or minimum possible physical

constraints. Sample points are tested against these thresholds, and over- and undershoots are

mitigated by simple elimination. In the following, for each filter, the share of erased points is

given related to a trip subset of July with 26,047 trips. It is differentiated between spatial and

dynamic outliers.

Spatial outliers are comparably easy to detect as boundaries of Singapore are predefined and

the only task is to check a sample point’s position to fit within this area as illustrated in Figure

4.7. This step erased 0.06 % of all sample points of the considered test set, which is a rather small

amount compared to other filtering methods but would have a very disturbing influence if left

untouched.

Figure 4.7: Spatial outlier exceeding Singapore’s borders

The more comprehensive dynamic outlier filtering comprises mitigation approaches to detect an

erroneous sample point’s position by exploiting its dynamic behaviour. It shall be highlighted that

the methods at this stage do not tackle the actual dynamic values as recorded from the GPS logger

(the Speed field), but they solely use independently computed dynamics from GPS coordinates. In
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that sense, an outlier is defined as a sample point whose position is physically impossible respect

to its predecessor or successor, exceeding physically constrained speed or acceleration values.

Those speed and acceleration values are computed first, by calculating the distance between

two GPS positions denoted by longitude and latitude coordinates, and second, by computing the

first derivative v = ṡ = ds
dt for speed and the second derivative a = v̇ = s̈ = d2s

dt2
for acceleration,

respectively. The term ds herein denotes the distance and dt the time between two considered

points. Figure 4.8 outlines the basic principle behind dynamic outlier filtering and highlights the

areas where values exceed established thresholds.

A more detailed view on the performing algorithm is described later in this section when

immersing in the dynamics filtering; both outlier and dynamics filtering use the same algorithm.

A share of 15.2 % erroneous sample points for the considered test set could be detected, which

erased a remarkably great deal of sample points.

Figure 4.8: Dynamics outliers exceeding acceleration and speed thresholds

To work on GPS coordinates in the environment of the more commonly used metric system,

the spherical coordinates have to be projected into a utilizable Euclidean coordinate system

for employing metric measurements. Since the Earth shapes alike an ellipsoid, a mathematical

correct result for computing the distance of two spherical positions delivers the Haversine Formula

as presented in Equation 4.1 and taken from [42] .

d = R · 2 · arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) · cos(φ2) · sin2

(
λ2 − λ1

2

))
(4.1)

d . . . Euclidean distance between two sample points in spherical coordinates
R . . . Earth radius

φ1, φ2 . . . Latitude of point 1 and latitude of point 2
λ1, λ2 . . . Longitude of point 1 and longitude of point 2

However, a simpler Flat Earth model in form of the Pythagorean Theorem as denoted in

Equation 4.2 can be applied for small distances, effectively decreasing computation costs where

the calculation is occurring very frequently as it applies in the regarded scenario. As discussed

in [43], for distances less than 50 km, which is the maximum expected trip distance in Singapore,

the error would be negligibly low with less than 24 m. This is determined by the proximity to the

equator and increases with greater remoteness.

The spherical coordinates (unit: degree [◦]) are simply transformed into the Euclidean co-

ordinate system (unit: metre [m]) by multiplying both latitudinal and longitudinal projected

distances 4x = x2 − x1 and 4y = y2 − y1 with a constant factor in the observation unit m/◦

- one factor per case (see Appendix H). The factors are assumed to be constant since trips are
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d =
√

(x2 − x1)2 + (y2 − y1)2 (4.2)

d . . . Euclidean distance between two sample points in Euclidean coordinates
x1, x2 . . . Points in Cartesian coordinates for longitudinal projection
y1, y2 . . . Points in Cartesian coordinates for latitudinal projection

considerably short and Singapore is very close to the equator with a latitude value close to zero;

both facts diminishing the effect of the Earth’s ellipsoidal shape.

Dynamics Filtering

The prior described outlier filtering aims at eliminating erroneous sample points solely based on

spatial information in form of the GPS coordinates. In the dynamics filtering step, the sample

point’s position is now expected to be correct in terms of physically feasibility, and the dynamic

values are analysed as they are directly obtained from the GPS logger.

This additional filtering is vital for the subsequent energy demand analysis, and hence the

trips carefully undergo a twofold filtering process. First, likewise the dynamic outlier filtering,

speed and acceleration values are filtered which exceed physical constraints. However, this time,

those values are not computed manually but are directly taken from the GPS logger’s recorded

speed profile. Merely the acceleration cannot be obtained directly from the logger and is thus

computed as the first derivative of speed subject to time (a = v̇ = dv
dt ).

The algorithm is essentially the same as the one used in the outlier filtering and follows the

flowchart in Figure 4.9 according to relations and definitions in Figure 4.10. Applying this filter,

a share of 7.4 % erroneous sample points for the considered test set could be detected.

Figure 4.9: Dynamics filtering algorithm flowchart to detect and eliminate physically impossible
sample points regarding speed and acceleration
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Utilized relations are explained in Figure 4.10 with pi denoting an actual sample point, vi,j
the speed from point i to point j, and |di − dj | the Euclidean distance from point i to point j.

Figure 4.10: Distance and speed relations for the dynamic filtering algorithm

After removing a number of erroneous sample points employing both filtering steps, still a

number of inconsistencies in trips’ speed profiles were encountered. Comparing those to driving

cycles, CAN Bus values, and previously recorded trips, a higher fluctuation in speed values is

noticed than one would have expected. Therefore, a decision for a third filtering step was made

which additionally applies a simple Gaussian filter of window size five to give the speed profile

a little more smoothness. In the result part in Chapter 5, this choice is justified by comparing

average acceleration and deceleration values as a benchmark for fluctuation.

Regarding further dynamic values like heading and altitude, no action is taken in the filtering

step since heading is just of minor importance and is already of decent quality. Altitude values

are tackled in the following interpolation step in Section 4.2.3.

4.2.3 GPS Trajectory Interpolation

An interpolation is the process of substituting gaps of missing or disarranged values in terms of

disobeying the targeted sampling rate. The necessity for interpolation origins twofold: on the one

hand, the preceding filtering steps erased certain sample points and generated gaps; on the other

hand, incomplete sample data is likely provided due to GPS logger inconsistencies. In general,

gaps are acceptable because each sample point also includes a timestamp which unambiguously

links positions and dynamics to time. It allows for simply connecting gap’s border points; this

resembles the method of a linear interpolation.

However, performing a more comprehensive interpolation including additional inputs can im-

prove the quality of the output trajectory. A further reason is the facilitating effect on subsequent

computation steps when a fixed sampling rate can be guaranteed.

There are basically two different interpolation methods available: continuous and discrete

interpolation; former is applicable for continuous signals like GPS coordinates, and latter is

utilizable for discrete values such as status information.

Interpolation of Gaps and disarranged Sample Points

To interpolate gaps, it is proceeded in two steps. First, a targeted time vector is established.

That is in principle the duration from first to last sample point with a sampling period of one

second. This rate is reasonable since GPS trajectories are recorded alike. The process of defining a

new sampling rate, or in this context’s case rather repeatedly applying the same rate once more,
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is called re-sampling. The employed algorithm basically immerses into each point and checks

whether interpolation is necessary or whether a suitable point in terms of fitting of sampling rate

is already present.

Once the time vector is defined, all fields of unsuitable sampling rates or gaps are estimated

using various interpolation techniques as described in the following. As a result, each sample

point follows the predefined sampling rate and gaps are dismissed. In the actual implementation,

Matlab’s built-in interp1 function is utilized. Figure 4.11 schemes this process comparing a raw

with an interpolated trajectory.

Figure 4.11: Interpolation of gaps and disarranged sample points

A special interpolation method is demanded for large gaps like tunnels. Here, it is not reliable

to just consider values straight before and after the tunnel, because those tend to have a high

uncertainty. Rather, a more comprehensive method is applied: initially, the actual length of

the gap is calculated by GPS coordinate based distance computation; afterwards, the average

speed for this portion is retrieved; finally, the interpolated intermediate points are tagged with

this speed value. In the transition areas, acceleration and deceleration constraints are obeyed by

deriving a slope towards and from the targeted mean speed value to gain a smooth transition.

In the result part in Chapter 5, a tunnel example which underwent this interpolation method is

presented.

Linear Interpolation Exemplified, linear interpolation draws a line to connect the gap’s border

points. The border points can either be just the two last known adjacent points, risking

inaccuracies, or the mean of a number of border points to allow for a smoother transition and

more robust linear interpolation.

Spline Interpolation A “spline is a numeric function that is piecewise-defined by polynomial

functions, and which possesses a sufficiently high degree of smoothness at the places where

the polynomial pieces connect” [44, p. 225]. It is a reasonable choice for floating values

where smoothness is an important requirement. It is successfully applicable for interpolating

GPS coordinates but has its downsides for interpolating speed and height, where the high

emphasis on smooth transitions may lead to negative speed or altitudes.

Pchip Interpolation The method of Pchip (Piecewise Cubic Hermite Interpolating Polyno-

mial) acts similar to the spline interpolation, but the resulting curve restricts each “cubic to

be monotone in an interval. [. . . ] The curve produced contains no extraneous ‘bumps’ or

‘wiggles’, which makes it more readily acceptable to scientists and engineers” [45, p. 238].

Nearest Neighbour Interpolation Nearest Neighbour interpolation is the simplest of all in-

troduced methods, assigning the value of the nearest neighbours to an interpolated point. It

is in particular applicable and feasible for discrete values like the status and road segment

field.
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Altitude Assignment

In the altitude assignment step, flawed altitude values gathered from the logger are substituted

with more reasonable values obtained from the Google Elevation API. Although Singapore is

relatively flat and the elevation impact on energy consumption is fairly small, this step is necessary

to avoid wrong conclusions when computing with erroneous altitude values.

A comparison of a sample trip before and after the assignment step is plotted in Figure 4.12.

The green line representing the raw values as gained from the GPS logger reveals a high fluctuation

and instinctively has an unlikely high number and magnitude of hills and valleys. In contrast, the

blue line, visualizing the assigned values, behaves smoother and is less undulating. Both charts,

however, meet at a similar average altitude. Although the assigned values cannot considered as

the ground truth without any exception, evaluation results in Section 5.1.2 build confidence that

assigned values reflect the reality way better than the raw sample point’s altitude values from the

GPS logger do.

Figure 4.12: Comparison of altitude values for GPS logger and elevation map

Other approaches exploit the relative average height value obtained from all trips and do not

incorporate further resources as done here. For instance, in [29, p. 12], the same GPS logger

was used in a comparable set-up, following an alternative approach to obtain all recorded trips’

altitude values for each cell of a meshed grid and extracting the considered ground truth elevation

by forming the average.

The implemented altitude assignment algorithm basically goes through each sample point’s

position and, in a first step, locates the point on a meshed grid of Singapore. As discussed in

Section 3.2.3, elevation values have been retrieved via the Google Elevation API for anchor points

of an established grid of size 4000 × 6000 (after interpolation). It then computes the Euclidean

distances to the four adjacent anchor points which are used as weights. An example of a sample

point (green) with its four anchor grid points (orange) is observable from Figure 4.13. The closer

the anchor point to the sample point, the higher its influence is weighted. Those four weight values

- normalized to unity - are finally incorporated into the actual calculation of the sample point’s

altitude, which sums up all anchor points’ altitude values multiplied with the weight factor.

It was further elicited whether the original GPS logger altitude values should flow into the

assignment step by weighting both inputs according to a ratio. However, it was refused from

doing so since Google Elevation API values are already very satisfactory.
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Figure 4.13: Anchor points (orange) for altitude assignment of a sample point (green), weighted
with distances di

4.3 Trip and Shift Extraction

All previous described pre-processing and filtering steps are specific for each trip and operate at

the layer of sample points. To be able to consider trips and shifts as contextually reasonable

bounded portions with an interrelated array of sample points, an extraction is required and

presented herein. Trip extraction not just eases and restricts dynamic filtering, but it also sets

map-matching bounds and is of significance for statistical evaluation.

First, several trip extraction methods are examined operating in the transition between sample

point layer and trip layer. An initial, implicit trip extraction was already done on data import,

where each CSV file translated into exactly one trip. These stints, however, are merely split at

transitions from loggers’ on to off mode and thus rather cover a too large amount of sample points

as would be suitable for one trip.

Afterwards, the shift extraction, which operates between trip and shift layers, is introduced.

Here, the objective is to arrange trips into a suitable contextual and time bounded stint, which

is denoted as a shift.

4.3.1 Trip Extraction

Various methods for extracting trips from a huge array of sample points are realised. The basic

proceeding, which is common among those methods, is depicted by finding valid edge indices for

reasonable cutting points according to obliged conditions. Its objective is to split big trips which

do not reflect the reality into two or more smaller trips as they are most likely to have occurred

in the recorded scenario.

Arranged in the order of importance, implemented extraction methods are fundamentally

based on: Status, Long Distant Trip, Taxi stand, Time Difference, and Standstill Period. Restric-

tively, extractions are founded on various empirically determined parameters and are subject to

change as they are driven by new outcomes and learnings. Analysis done in related studies (e.g.,

[29]) and feedback from SMRT set a basic parameter framework, which found solidification in the

implemented programs as parameters listed in Appendix H.

Status Based Extraction

As the major extraction method, the status based trip extraction fully harvests both the logging

and the booking data derived from a previous combination. The status itself precisely offers a

means of trip’s intention, whether a passenger is on board, a taxi is used on private purposes, or
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even whether the taxi is active at all. It is the fundamental criterion for trip cutting and leads to

the definition of a trip as a closed unit with defined purpose. Hence, a trip is mainly considered

as having exactly one status.

The gathered status information is periodically recorded approximately every three minutes,

which does not straightforwardly reveal the exact actual status change times but leaves an un-

certainty of ±3 minutes.

For instance, in the case illustrated in Figure 4.14a, three statuses have been captured at

times 3:00, 3:03 and 3:06 - one Hired status enveloped by two For Hire status. The actual times a

passenger boarded and alighted the taxi and hence caused the status change is, however, at times

3:01 and 3:05, respectively. The sole information that a passenger trip has occurred in between

both status changes does not imply when this exactly (by means of a resolution of seconds)

happened. Further examinations are thus essential to find the exact status change times.

Another issues is likely to arise when two status changes have occurred within a short time

bound, undercutting the three minute sampling rate as displayed in Figure 4.14b. In the examined

case, the actual status changes at times 3:01 and 3:02 are not caught by the booking database

since the MDT notifies the back-end system at inappropriate times (3:00 and 3:03), exceeding

the time the intermediate status was prevalent. This case frequently occurs, e.g., at favoured taxi

stands at peak times where a taxi drops off a passenger and immediately picks up another one.

This is why the developed extraction methods also have to handle this issue. It resulted in the

introduction of an additional trip extraction step for long distant trips as explained later.

(a) Blurred status transition (b) Missing status change

Figure 4.14: Status change extraction challenges for over- and undersampling of status changes

To find the most likely actual status change points as delineated in Figure 4.14a, four methods

are defined and utilized using a combination of Stand Still Periods, Taxi Stands, Most Distant

Points, and U-Turns. Those are applied on a small trip’s subset between the second last and last

known status of roughly three minutes, identical to the booking sampling period between both

neighbouring status anchor points.

All four methods, individually contemplated, merely unreliably and inaccurately indicate an

estimation candidate. Therefore, the power of a combination of all methods is exploited by

assigning weights to each method’s resulting candidates; the one with the highest value as a

summation of all partial weights is eventually chosen. Applicable for all methods, it is always

attempted to take the lowest speed at status change candidates if no real standstill period could

be observed, as displayed in the case of Figure 4.15a.

Stand Still Period Most of the status changes occur during a standstill period of the taxi, be

it a passenger pick up, drop off, or a the beginning or end of a break. The information about

the standstill periods is thus of major interest and observable from Figure 4.15b. However,
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not all status changes took place in the vicinity of a stand still period (e.g., a For Hire →
Busy change), why this is not a necessary requirement.

Taxi Stand Taxi stands are frequently visited by taxis to pick up or drop off passengers and

thus play an important role for status changes of type For Hire → Hired or vice versa. In

combination with a minimum stop time threshold of 10 seconds, it is a very good indicator for

a status change candidate. To determine whether a taxi has reached a taxi stand, a circular

neighbouring area of 50 m is defined and minor outliers are allowed to catch GPS immanent

deviations.

Most Distant Point Another indicator of possible status changes is the consideration of the

most distant points in the scope of the trip’s extract, which leads to the case displayed in

Figure 4.15c. It attempts to find the most distant point: either in terms of the biggest

distance to the destination point, depicted in Figure 4.16a, or the biggest projected distance

on a direct line (the ‘bee-line’) connecting origin and destination as displayed in Figure 4.16b.

The rationale behind this method is that taxis tend to use the most direct route and avoid

detours. If a most distant point occurs, it indicates a passenger pick-up or drop-off in its

vicinity.

U-turn A U-turn detection attempts to find a U-turn pattern in a trip excerpt. It primary

bases on the vehicle’s heading of which a change of roughly 180◦ alludes to a candidate. Two

restrictive issues arose: First, a U-turn is not imperatively defined by an exact 180◦ turn

but was also observed for a slightly lower or higher value, eventually leading to a tolerance

band of ±30◦. Second, logger’s heading values, which have not been priorly pre-processed,

are subject to noise and especially under poor conditions likely to fluctuate inappropriately.

This justifies the introduction of another threshold determining a minimum time period in

which a U-turn has to be detected. An example states Figure 4.15d.

Peculiarities for status changes are prevalent for the statuses Payment, Arrived, STC, and

Unknown. The three first-mentioned indicate a trip of status Hired which is about to end soon

or has ended recently. It would not make sense to cut trips along these status transitions because

the trip’s intention is essentially the same. The status Unknown is the initialization value and

most likely persists if the match between booking and logging data was unsuccessful.

Long Distant Trip Extraction

From the example given in Figure 4.14b, the need for further mining approaches in case of

undersampling of status changes can be derived. The corresponding trip split points cannot be

detected by solely residing on the recorded status values. An extraction mode called the long

distant trip extraction tackles trips of more than 10 km targeting at finding unrecognised trip

splits.

It basically applies the same methods as introduced in the status based extraction in an adopted

version, contemplating an entire trip rather than just a three minute excerpt. Particularly the

U-turn detection requires a subsequent validation step because, in case of a whole trip, a U-turn

is broader defined and rather translates to a ‘direction change detection’, nevertheless inheriting

from the U-turn detection algorithm. A case example is plotted in Figure 4.17.
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(a) No stop candidate (b) Unique stop candidate

(c) Most distant candidate (d) U-turn candidate

Figure 4.15: Status change extraction methods analysing inter-status cut candidates displaying
various scenarios of candidate constellations, background images taken from [30]

(a) Direction change candidate (b) Origin/Destination change candidate

Figure 4.16: Most distant point analysis detecting status change candidates for two different
scenarios, background images taken from [30]
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Figure 4.17: Extraction of long distant trips which were not covered by previous extraction
methods, emphasizing U-turns as possible trip split candidates, background image taken from

[30]

Taxi Stand Extraction

Although - in a fine-scaled manner - already part of the status based extraction, this extraction

method additionally aids to detect trip splits which have been undersampled. Alike the taxi

stand detection as a submodule of the status based extraction, it searches for taxi stands in the

vicinity of the GPS trajectory and checks whether a stand still period obeys imposed taxi stand

metrics. This is: minimum standstill time, maximum distance to taxi stand location, and outlier

and maximum speed tolerances.

If a match is detected, the actual cutting takes place after the taxi has left the taxi stand.

Given the example of a long queue in front of a favoured taxi stand, this decision is reasonable

because the actual change in status (in this case For Hide → Hired) has occurred after the taxi

left the stand.

Time Difference Extraction

This method employs time differences in GPS trajectories indicating possible trip splits - especially

for the case of undersampled status changes. Usually, sample points received from the GPS logger

come in a sampling period of one second with minor deviations of ±3 seconds. However, in some

cases, despite an active recording mode, major gaps in GPS trajectories are encountered and

accounted for by GPS satellites signal losses.

Typical cases are tunnel transits and pick-up or drop-off locations which are covered by a

spanned roof, likely to occur at the airport and shopping malls or more seldom at hospitals and

hotels. Tunnel transits, however, do not reveal any enrichment in localising trip splits since it is

definitely part of the concerned trip. Here, two thresholds are introduced to catch the latter cases

for possible trip splits and disregard the former. Since the time difference extraction method is

admittedly quite unreliable, a rather defensive set of those parameters was chosen.

The thresholds comprise (a), a minimum required time for the GPS signal loss and (b), a

maximum allowed travelled distance during signal loss. The first mentioned is set to 30 seconds.

It was encountered that this value - solely applied - did not reveal the desired detection quality.
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Hence an additional distance measurement was introduced, which starts measuring when the

signal is lost and ends when it is regained. If this distance exceed the threshold of 500 m, it is

considerably certain that a tunnel transit is present, rather than a pick-up or drop-off point.

Standstill Period Extraction

A trip extraction with regard to standstill periods targets at splitting trips after a comparably

long time without vehicle motion. It is a less common, but yet occurring case and applicable

either on driver’s breaks with active GPS logger and ongoing recording mode or after waiting for

a passenger. A standstill period is defined as the time a taxi stood still for at least five minutes.

A distinguishing between commonly occurring waiting times (e.g., at a traffic signal), passenger

waiting times (e.g., at taxi stands), and breaks or shift changes is crucial. A speed threshold of

1 km/h determines the maximum speed regarded as standstill.

4.3.2 Shift Extraction

Shift extraction aims at arranging trips into shifts according to time and context bounds, which

is in principle alignment with one stint for one driver for one day. Its duration varies among

the drivers and from day to day but normally lays in the limits of eight to 16 hours. This high

variability is accounted for by different hirer schemes of one or two drivers, eligible to drive the

same taxi, but also for the different interpretation and execution of these schemes.

As shown in concerned parts of Chapter 5, a two-hirer scheme does not unconditionally lead

to a daily alternation in drivers but can also mean that the taxi is shared on a day to day basis;

or even a combination of both is conceivable. This exacerbates the shift extraction analysis vastly

because it is non-trivial to predefine a targeted duration per shift.

This section examines the shift extraction process in two distinct steps: first, analysis of

underlying patterns pointing towards reoccurring shift change times and locations, and second,

application of gained patterns on daily trips.

Shift Change Pattern Analysis

To extract shifts from a number of unrelated trips, reoccurring patterns in shift change times and

locations are exploited. Shift changes are not recorded by any means, neither in the logging nor

in the booking set. It hence is the task to estimate possible shift changes employing a set of four

criteria: time of the day, number of hirers, location, and status distribution.

In a first step, the time of the day and the status distribution is considered by merging all

monthly recorded sample points for each minute of the day subject to taxi states. The state is

either active (all statuses except Log Off) or inactive (Log Off and gaps in logging data). This

relation is plotted in Figure 4.18 and reveals the average active times for a taxi with 60 sample

points as the possible maximum value as derivable from the one second sampling period. The

black dots indicate possible shift change times, and both red dots illustrate the best fitting shift

time combination.

The purpose is to gain possible and reoccurring shift change times, assuming that a shift

change is defined where a taxi has status Log Off or at least is inactive for a certain duration.

Those time thresholds are once more empirically examined. It is assumed that after two hours of

inactivity a shift change must have been occurred, whereas a stint of more than 16 hours requires
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Figure 4.18: Analysis of shift change patterns by examining active daily recording times of a
typical two-shift taxi, the blue line denoting the absolute active times and the green line denoting

its derivative

a split into two or more shifts. These thresholds define basic boundaries in which further detailed

analysis are necessary.

The algorithm, investigating shift changes on time dependency, basically aims at finding min-

ima in active times or maxima in its derivative. It initially smooths the active times distribution

to avoid a too neatly detection of extrema. Secondly, it finds a limited number of minima, which

are the basic shift change candidates.

Meanwhile, the derivative is computed, which supports the data mining. The resulting trend

denotes the magnitude of transitions between active and inactive times and is thus a good indicator

for relatively fixed shift change times. Alike the previous step, a limited number of maxima is now

computed. Those maxima are input for a subsequent search for the best fitting pair with respect

to average shift time as well as respect to maximum and minimum shift duration constraints.

The actual extraction algorithm starts with the highest derivative, computes time difference

to the second highest value, and matches the result with the anticipated shift length. This

anticipated value equals half the duration of all normally occurring active times for this specific

taxi. As ‘normal occurring’ the average active times above 20 % are considered to avoid impacts of

noise. If the time difference matches to the assumed shift duration, the algorithm is finished and

the possible shift change candidates are found. If not, it is continued with the distance between

the first and the third highest deviation and so on. Should this again does not produce a match

in any of these constellations, the highest derivative is dismissed and the process is repeated with

the second highest value as a reference.

Eventually, the two absolute occurrence likelihoods which are closest to the retrieved derivative

candidates are selected. Herewith, the findings are again projected to the actual scenario where a

minima in active times denotes the best candidate. Nevertheless, initially extracting candidates

on the basis of derivatives in the first step produced more reliable results as if solely the absolute

distribution would have been taken.
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By incorporating locations, it is anticipated that shift are not just likely to occur at same

times but also at same locations. This assumption is in line with empirical experiences, and they

can even be extended to a preferred shift change at driver’s home locations which are available

from SMRT.

Extraction of Shifts and Post-Processing

The elaborated shift change candidates and examined patterns are now applied on a daily basis.

Because shifts are likely to span over more than one day, always two days are considered - the

previous and the current one. First, alike the candidate extraction, a break or gap of more than

two hours, where a shift change could have taken place, is attempted to be found. In case of

one-hirer schemes, it is easier to assign trips to shifts as there commonly happens only one shift

per day. Drivers of two-hirer scheme taxis, on the other hand, tend to change shift twice a day

which leads to usually two shifts daily.

However, as presented in the statistical evaluation part in Section 4.6, it cannot be assumed

that each two-hirer scheme taxi always comprises two shifts per day. Furthermore, it seems that

the underlying patterns are subject to change from day to day, exacerbating the data analysis.

For instance, a two-hirer scheme taxi was observed which drove ten hours over three days a week

and almost twice as long for the rest of the week. To aggravate things even further, one-hirer

taxis do also reveal patterns indicating shift changes in a number of cases.

One mitigation approach to handle this outlined uncertainties and inaccuracies is to improve

the previous pattern recognition with locations in the vicinity of already selected shift change

candidates. Those are additionally applied to the actual shift extraction on a day to day basis.

Moreover, recommendations for further investigations also include the driver’s home addresses

and more detailed statuses of last assumed trips. This, however, would have stepped beyond this

work’s scope and is thus not examined further.

The final step in the extraction of shifts is the actual assignment of trips to an instance of class

Shift (see Figure 4.1), enveloping a number of trips into a contained array. A final post-pressing

step adjusts extracted shifts which have less than a minimum number of trips included or which

exceed the predefined maximum duration of one shift.

4.4 Map-Matching

The process of map-matching has the purpose of matching sample points to an underlying road

network. This is necessary since received GPS coordinates typically come with a Gaussian dis-

tributed inaccuracy of about ±20 metres [46]. Hence, a good match cannot be guaranteed for

trivial approaches which attempt to find the closest road segment to a sample point solely using

its raw positional data. A more sophisticated matching approach is unavoidable.

There are basically two map-matching categories available: a global and an incremental al-

gorithm. In principal, the global one uses the overall trip taking each GPS point from origin to

destination into account. The incremental method, by contrast, merely uses a limited range of

previous sample points, which are incrementally fed to the algorithm.

Typically, global algorithms are more comprehensive and more difficult to implement but yield

better results. They take all interconnections of road segments - the road network - into account

and do not just rely on sample point’s position as the incremental ones do. To limit computation

costs, which are especially expensive for the following introduced transmission probability, only a
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(a) Entire trip

(b) Trip excerpt (low detail)

(c) Trip excerpt (high detail)

Figure 4.19: Example trip compared to the underlying road network for various detail levels

subset of each 60th sample point is used. In this way, the sampling period is artificially increased

to 60 seconds.

Map-matching implementations either tag the road segment id to the sample point or adjust the

actual sample point’s GPS coordinates to the matched road segment and, as a consequence, change

the trajectory directly. In this implementation, the former method is used since information about

traversed road segments is already sufficient. The speed profile information is vital, whereas

detailed position information is less important with respect to energy consideration.

An example trip projected on the road network is illustrated in Figure 4.19. The left-hand chart

shows the trip’s trajectory in blue, connecting sample points in red, on the background of a subset

of neighbouring black ways and green nodes as imported from OSM. The more detailed excerpts

in the right-hand chart reveal a considerably good match between trajectory and roads but also

highlights the narrow and fine meshed network, requiring a global map-matching approach.

4.4.1 Map-Matching ST Algorithm

The choice fell on the ST (Spatial-Temporal) map-matching algorithm as proposed in [14], which

addresses a wide range of feasible sampling rates, particularly supporting low sampling periods

of three to five minutes. With respect to this thesis’ goal of estimating energy demand of trips

with a high variety of sampling rates (periods of one second up to the sole information about

origin and destination), it suits requirements very well. The ST algorithm pertains to the global

map-matching approaches, contemplating the entire trip’s trajectory. It consists of a spatial and

a temporal part, which jointly reveal its strength and are presented as follows.
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Spatial (S) Component

The spatial component is the major influencing and most powerful component, consisting of an

Observation and a Transmission part. In the foundational observation part, the sample point’s

position is analysed and distances to neighbouring - and thus possibly traversed road segments -

computed. In order to compute these distances, a perpendicular line from road segment to the

sample point in question is projected, and the Euclidean distance in metre is retrieved, following

the method already utilized in the trajectory filtering step in Section 4.2.2.

In Figure 4.20, a sample point pi has three road segments eki , 1 ≤ k ≤ 3 in its vicinity, with each

projection resulting in a corresponding candidate ci. The distance is converted into a normalized

weight factor for all considered nearby road segment, which is higher for closer segments and

lower for distant ones.

Figure 4.20: Candidate points c1i , c2i and c3i on road segments e1i , e2i and e3i for a sample point
pi, adopted from [14, p. 4]

Equation 4.3 expresses the observation probability N mathematically, where xsi is the distance

between pi and csi , µ the mean deviation (in the GPS context equal to zero), and σ the standard

deviation (in the GPS context equal to ±20 m) [14, p. 4].

N(csi ) =
1√

2πσ2
· e

(xsi−µ)
2

2σ2 (4.3)

The transmission part of the spatial component computes transmission probability, expressing

the likelihood that a car moved from point A to B. It computes the Euclidean distance between

two recorded sample points and additionally the distance between corresponding projected points

on the candidate’s road segment. In this cases, however, the latter distance is not imperatively

equal to the Euclidean distance, but it rather reflects the actual distance if a car would have driven

on that specific road. It hence incorporates the projection of sample points on the road network

and receives the distance through a graph shortest path computation (details are to follow).

After that, the algorithm forms the ratio between both distances, technically comparing the

smallest possible ‘bee-line’ with the actual driven distance. The higher the ratio, the higher the

likelihood that the road segment was traversed, assuming that cars usually take the shortest

path between two adjacent sample points. An example where transmission analysis is required

illustrates Figure 4.21, in which the closest candidate projection c1i of point pi would have been

classified wrongly.

The addressed shortest path computation aims at finding the shortest possible path through a

network of vertices and paths in terms of weights for each connecting link. In case of map-matching

and a real road network, the vertices translate to nodes, and the paths translate to roads. The

weights rely on the established connectivity matrices of the imported OSM network, denoting the
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Figure 4.21: Example of points and candidates which require transmission probability as pi
has two candidates c1i and c2i , and c2i has higher observation probability but would be the wrong

match according to transmission likelihood, adopted from [14, p. 5]

distance between two nodes. Matlab’s built-in graphshortestpath function utilizing Dijkstra’s

algorithm [36] can handle this task.

Mathematically, the transmission probability is expressed in Equation 4.4, where di−1→i is the

Euclidean distance between pi and pi−1 and w(i−1,t)→(i,s) equals the length of the shortest path

from cti−1 to csi .

V (cti−1 → csi ) =
di−1→i

w(i−1,t)→(i,s)
(4.4)

Both spatial components, the observation and transmission probability, result in the final

spatial probability factor Fs as expressed in Equation 4.5.

Fs(c
t
i−1 → csi ) = N(csi ) · V (cti−1 → csi ) (4.5)

Temporal (T) Component

The temporal component addresses road specific speed constraints. It computes a temporal

correlation value, expressing the matching between average speed of the actual trip extract of

two adjacent sample points and the historical average road segment speed. The latter, historical

value has either been gathered from actual recorded trajectories or from LTA speed band sensors.

The correlation is fundamentally computed by the Cosine distance, which expresses the simi-

larity between both speeds. An exemplary situation where temporal analysis is needed illustrates

Figure 4.22. Here, the spatial analysis, including observation and transmission probability, would

reveal a draw; but the fundamentally different temporal constraints for a Service Road and a

Highway would indicate the more likely road segment (which is not derivable from this example

as no speed values are given).

Its mathematical expression is found in Equation 4.6, where v(i−1,t)→(i,s) is the speed from

candidate point cti−1 to csi , and v(i−1,t)→(i,s) is its reference average value.

Ft(c
t
i−1 → csi ) =

v(i−1,t)→(i,s) · v(i−1,t)→(i,s)√
v(i−1,t)→(i,s)

2 ·
√
v(i−1,t)→(i,s)

2
(4.6)

Figure 4.22: Example for required temporal component for a GPS trajectory described by
points Pi and Pi with ambiguous matchable road segments, adopted from [14, p. 5]



Chapter 4. Driving Profile Analysis - Methodology 46

4.4.2 Application of Map-Matching on recorded GPS Trajectories

For each recorded trip, map-matching is conducted by performing both a spatial and a temporal

analysis, and results are combined according to Equation 4.7. Eventually, F reveals the likelihood

that a candidate csi at time s follows a preceding candidate cti−1 at time t.

F (cti−1 → csi ) = Fs(c
t
i−1 → csi ) · Ft(c

t
i−1 → csi ) (4.7)

As mentioned in this section’s introduction, in order to limit computation time only a subset

of sample points is used - typically each 60th. To still exploit the strength of a high sampling

rate as available from the GPS logger, intermediate sample points are not simply skipped but are

rather estimated by using an interpolation technique in form of a fitting line through a number

of vicinity points and thus still indirectly take all sample points into consideration. The map-

matching process takes a comparably long time why computation is largely outsourced using

Matlab’s parallel computing pools on a remote computer.

Construction of Candidate Graph

A candidate graph displays the weights of connected candidates for adjacent sample points. Can-

didates are possible points on vicinal road segments projected from an actual recorded sample

point. The weights are the resulting values of F including both algorithm components Spatial S

and Temporal T.

An example for a variable number of candidates per sample point is presented in Figure 4.23.

Given the fact that the sample point p1 has the candidate c11, and the subsequent sample point

p2 has the candidate c12, then the weight is c11 → c12 expressing the probability that the car has

taken this path.

Figure 4.23: Candidate graph construction for points Pi with candidates cji and weights cji →
cji+1 for 1 ≤ i ≤ n with n denoting the number of points, and 1 ≤ j ≤ m with m denoting the

number of candidates, adopted from [14, p. 5]

The number of candidates is either confined by a circular area around the sample points

coordinates or is fixed to a constant number. In the contemplated case, the number is fixed

to three, allowing to speed up the candidate gathering and candidate graph construction. The

resulting sizes of the spatial components are: for observation probability 3×1, since points position

is not related to each other, and for transmission probability 3× 3, because every candidate has

a distinct weight to reach each other candidate. This results in a 3× 3 matrix. Also for temporal

probability a 3× 3 matrix is received since each connection traverses a set of road segments with

distinct temporal constraints.
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Retrieval of Best Fitting Sequence

In this step, the task is to compute the highest weight value as the best fitting sequence of

connected candidates through the candidate graph. To do so, the candidate graph is flipped, and

all weights from end to start are added together. The highest value points to the best fitting

sequence, while the algorithm keeps track of each winning candidate’s predecessor in each step to

later backtrack all best suiting candidate points. The implemented algorithm for the whole map-

matching process, from sample points to the best fitting sequence of projected candidate points

on road segments, is outlined in Figure 4.24. It consists of the major modules Sample Point

Retrieval, Candidate Retrieval, Observation Probability Computation, Transmission Probability

Computation, Temporal Analysis, and finally Best Fitting Sequence Analysis with N denoting the

share of taken sample points and C denoting the number of candidates.

Figure 4.24: Map matching algorithm for candidate graph construction from sample points to
road segments ids flowchart

Result Matching and Post-Processing

The so far described steps result in a sequence of candidate points or road segments ids, respec-

tively, for the considered trip. Those ids can easily be matched to the corresponding sample

points which have been used for map-matching. However, taking into account that only a subset

of sample points was used, it is required to fill arisen gaps. This time, a simple interpolation

would not work out because the algorithm operates in the context of a discrete road network.

The gaps are consequently filled applying the shortest path repeatedly for the segment between

each already map-matched anchor point and its successor.

The shortest path analysis reveals intermediate traversed road segments, which are matched

according to the sample points Euclidean distance to road segment transitions. Again, it is

assumed that a direct way is preferred by the taxi driver expressed by utilizing the Euclidean

distance connectivity matrix. The result matching process is feasible since just a relatively short

segment of 60 seconds is considered. Evaluation results in Section 5.2 are evident for herein made
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choices. The algorithm is presented in the flowchart in Figure 4.25, taking a partial map-matched

trip as in input and producing a fully map-matched trip as an output.

Figure 4.25: Map matching post-processing algorithm flowchart

4.5 Micro Trips and Driving Features

This section discusses the extraction of micro trips, which are small partial trips, as well as

driving features, which are a set of driving pattern characteristics, both in preparation of the

instant driving feature approach for estimating energy consumption. Outlining this approach,

extracted micro trip features are firstly parsed into distinct clusters, the energy demand of each

cluster is secondly computed, and unclassified micro trips are finally categorized according to

these cluster in an application stage. Details for this process are to follow in Section 4.5.2.

4.5.1 Micro Trip Extraction

As a micro trip, a partial trip comprising a set of real-world sample points is defined which

is targeted to have a duration of about 210 seconds. The purpose is to have the capability

to analyse a micro trip independently from its parent by using mean values to describe basic

characteristics. Mean values can only be sufficiently applied if the micro trip is considerably

short and its characteristics are as distinct as possible.
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A set of features should reflect reoccurring patterns and hence a characteristical energy con-

sumption. The idea is that each micro trip represents a certain driving phase. An application

and detailed method’s description can be found in [12]. Furthermore, it is possible to assemble

multiple micro trips into a driving cycle or into an artificial constructed ‘real-world’ trip, but this

is disregarded in this work.

To obtain reasonable micro trips, two boundary conditions are defined which enable a smooth

transition among two micro trips at its edges where they are intentioned to be split. Primarily,

speed values are searched obeying a threshold of 1 km/h, which can be considered standstill. This

way, a micro trip would automatically result in a closed stint between two stops. However, for

long periods on motorways, standstill time will barely occur. This leads to a second boundary

condition of ‘zero’ acceleration. For this, tolerance threshold are introduced, too: 0.15 m/s2 for

acceleration and −0.15 m/s2 for deceleration to allow for slight deviations. Also the length of

targeted 210 seconds is expanded by a threshold band of ±30 seconds as suggested in [47] with

purpose to extract more possible micro trips from a real-world trip.

The term micro trip occurs in different contexts throughout this work. Its is distinguished

between a road segment, road type, and floating micro trip. The first two terms are used in

the context of map-matching where a micro trip is considered a small partial trip on one road

segment or road type, respectively. The term floating micro trip is synonymously used for the

here described extraction of micro trips from real-world trips.

(a) Micro trip extraction from entire trip (b) Resulting micro trips

Figure 4.26: Micro trip extraction from a real-world trip

4.5.2 Driving Feature Extraction and Clustering

This section explains the proceeding of feature exaction and a thereon based clustering of yielded

multidimensional feature vectors. Features are characteristic properties of micro trips like average

speed, distance, duration, or major road type. A complete list of appointed features lists Table

4.1, adopted from recommendations given in [12].

The extraction of those is straightforward as it is worked on a limited number of roughly

200 sample points per micro trip. Initially, interim values are computed on a point-to-point

basis, such as all accelerations between two subsequent sample points, and afterwards averaged

complying with mentioned transition thresholds. For example, thresholds restricting accelerations

with a minimum value prohibit from including bias by negligibly low values. A fully examined

set of features is called feature vector and has the same dimension as the number of incorporated

features.
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On basis of extracted feature vectors - each per micro trip - it is attempted to find underlying

patterns and characteristical driving behaviours derivable from a large number of vectors. This

step is called clustering as it attempts to assign each vector to a certain category for which most

of the entailed features fit best. There are a number of cluster algorithms and tools available.

An elaboration of various approaches would go beyond this work’s scope, and so only a short

introduction in the eventually utilized kmeans algorithm is given, as it is conveniently shipped

with Matlab’s Statistics Toolbox.

Kmeans’ principal functionality is determined by minimizing the distance between cluster

centroids and akin feature vectors. A centroid is the centre of all entailed vectors of a cluster and,

so to speak, indicates the cluster’s ‘position’. Methods for calculating distances among vectors

and centroids are herein variably defined. Common measurement metrics are sqeuclidean and

cityblock, whose former is the “squared Euclidean distance [. . . ] (where) each centroid is the

mean of the points in that cluster” and latter the “sum of absolute differences [. . . ] (where)

each centroid is the component-wise median of the points in that cluster” [48]. In this work’s

performed examinations, the Euclidean distance method is predominantly chosen. The smaller

the distance, the more likely a feature vector belongs to the centroid. Ultimately, one centroid is

gained for each cluster, which is as dimensional as the feature vector.

Clustering requires the multidimensional feature arrays to be normalized to avoid different

scales and ranges among feature’s arrays. Without normalizing, the weight and therefore the

influence of traditionally higher values like speed or time compared to acceleration or the number

of stops would be equally higher. A normalization limits values among each feature to an upper

and lower bound and compensates unequal distributions.

A peculiarity of kmeans is accounted for by the pre-definition of the amount of clusters, feature

vectors are portioned to. This is not an easy task, since the level of distinctiveness among the

clusters is not trivially estimable. The number of clusters was eventually determined empirically

by varying its quantity for several runs and incorporating the best fit.

Another option is to extract a certain feature from the vector (like road type or time zone),

disregard it from the actual clustering process, and place it one level above - thus establishing

predefined clusters. For instance, three predefined road type clusters could be used on whose

subordinated feature vectors a clustering is executed. However, this would require map-matching

to enable road type classification which was aimed to be avoided.

4.5.3 Driving Feature Classification

The previous erected clusters are now utilized for matching feature vectors to clusters. This step

is called classification. Classification attempts to find the best matching cluster for a given feature

vector of an unclassified micro trip aiming at recognizing reoccurring patterns by employing the

same distance computation method as used for centroid extraction. In the context of energy

estimation, the classification harvests previously computed energy consumptions for each cluster

and takes this value for granted for the classified micro trip.

An insight into cluster arrangements and cluster centroids is illustrated in Figure 4.27. Here,

four different feature combinations are displayed in a two-dimensional space. Although the actual

clustering and classification steps take all 16 features into consideration, it is not feasible to

visualize those graphically. Yet, the plots reveal interesting coherences and are evidence for

distinct delimitations among established clusters.
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Table 4.1: Fields of a feature vector for the driving feature approach

Index Feature Unit Typical Value

1 Distance km 1.5
2 Mean speed total km/h 30
3 Mean speed excluding stops km/h 35
4 Maximum speed km/h 60
5 Minimum speed km/h 0
6 Share idling % 20
7 Share cruising % 40
8 Share accelerating % 25
9 Share decelerating % 15
10 Mean acceleration m/s2 0.4
11 Mean deceleration m/s2 0.6
12 Stop rate 1/km 2
13 Mean stop time 1/km 15
14 Highway cluster type - 1
15 Time period - 1
16 Energy consumption kWh/100km 16

(a) Mean speed vs. mean acceleration (b) Cruising share vs. distance

(c) Maximum speed vs. idling share (d) Mean deceleration vs. stop rate

Figure 4.27: Cluster centroids for various two-dimensional excerpts of the 16-dimensional fea-
ture array
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For instance, the graph in Figure 4.27a illustrates micro trips’ mean acceleration on the y-axis

subject to its mean speed on the x-axis. It is apparent that three clusters with marked boundaries

are established, following the general distribution of an Acceleration-Velocity AV matrix [49].

4.6 Statistical Analysis

A statistical evaluation is carried out for several reasons. One is to gain insights into the dataset

influencing the latter energy demand analysis. For instance, the analysis of the average booking

statuses throughout the day (see Figure 5.10 in the following result unit in Chapter 5) influences

the trip and shift extraction. Another reason addresses the validation of the driving profile

analysis and its implementations in Matlab. The trip distance distribution in comparison to LTA

provided data, for example, gives approximate feedback if the implemented algorithm fulfils the

overarching demands (see Figure 5.14). A third reason is the request from SMRT to provide

detailed feedback about driving patterns of appointed taxis during monthly update meetings and

is part of the mutual agreement.

In a first attempt of compiling the statistics, it was distinguished between luxury and normal

taxis for certain statistics like daily mileage and trip distance, expecting this to have a bigger

impact than the distinguishing between one- and two-hirer taxis. However, the focus changed

as it eventually turned out that the distinguishing of hirer schemes reveals a higher distinction,

allowing to gain more meaningful results.

4.6.1 Logging Data based Statistics

Logging data based statistics focus on recorded GPS trajectories, its dynamic behaviour, as well

as trip and shift extractions. This section immerses into evaluation methods highlighting the

construction of heat maps and the analysis of mileage for trips and shifts.

Heat Map Construction

A heat map is an effective method for displaying a high amount of comprehensive information in a

compressed, graphical, and insightful manner which is easily perceivable. In this work, heat maps

are mainly used for visualizing position occurrence frequency of recorded taxis on Singapore’s

road network as well as for displaying the origin and destination frequencies and its differences

subject to Planning Areas.

The basic method behind constructing a heat map is to count the number of occurrences of

sample points obeying a certain condition in a certain area. The position heat map, for instance,

counts the presences of GPS positions, denoted by latitude and longitude, in a rectangular area.

A necessary step is therefore to priorly erect a rectangular grid for Singapore, preferably of size

200× 300 as already used for the meshed grid for the OSM road network (see Section 3.2.3).

In the algorithm, each sample point’s position is unambiguously matched to exactly one cell.

Heat maps for origin and destination occurrences subject to Planning Areas are constructed in

a similar way. Instead of using each sample point, only the first and last sample points of a trip

are taken. The matching is furthermore not based on the assignment to a rectangular cell of the

meshed grid, but the points are fitted to a polygon depicting the Planning Area’s boundaries (see

Appendix K).

In a last step, the occurrence values are normalized to unity and matched to a colour map.

The strongest or brightest colour is linked to the highest value, which is unity after normalizing,
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whereas the lowest value (zero) matches with the weakest or lightest colour. Intermediate values

are matched to the colour map’s intermediate range by applying a logarithmic scale. A logarithmic

scale is incorporated for presentation reasons to avail for displaying even single occurrences and

to smooth the heat map to a certain extent.

Based on those heat maps, small video clips are created displaying a set of heat maps subject

to time, particularly revealing the time dependent variations and transitions which would have

been hidden when only considering the average values as in an ordinary heat map. For its

construction, the described steps are repeated but applied on a time dependent subset. Hence,

previously interested data is extracted within a moving window frame of 60 minutes and with

a moving speed of ten seconds per frame, which equals the resulting video’s frame rate. The

ratio between window size and frame rate is deliberately chosen to this value to allow for smooth

transitions. A too small window size would only show a very small data extract per frame and

thus would hide the meaningful changes subject to time.

Mileage Analysis

Most of the compiled diagrams include a histogram or bar chart to display data in an easy

perceivable manner. Examples are given in the result Section 5.3.3. Histograms hereby make

use of the built-in Matlab histc function, which counts the occurrences of items in an array.

Resulting distributions are displayed using the bar function, which is often preferred to the

ordinary plot function preferentially used for displaying trend data.

The mileage is computed using the speed based approach. Also the trip distance is included,

which, however, is highly dependent on the prior trip extraction. The shift lengths behave accord-

ingly, but the extraction is even more challenging since there is no real additional input indicating

suitable shift changes. Moreover, it can not be taken for granted that there are in fact distinct

shifts for two-hirer scheme taxis.

4.6.2 Booking Data based Statistics

As mentioned earlier, the taxi’s booking status is retrieved through the in-car MDT, which pe-

riodically sends status information to an SMRT server. These status chunks are, however, only

send if the MDT is online and inevitably leads to gaps in booking data recordings. Additionally,

the definition of ‘online’ is in a sense blurred because in some cases booking information of status

Log Off was encountered over a period of multiple hours. Therefore, the MDT’s online mode and

hence the update of status information does not reliably link to the taxi being ready for driving

or not.

Furthermore, the sampling period of three minutes is not unconditionally valid throughout

the set, which leads to fluctuations in recorded timestamps. Latter effect is most likely accounted

for by a loss mobile data signal or GPS satellite connection, former used to send the status

information and latter for retrieving the position.

Yet, to consistently treat booking statuses over time, an interpolation is necessary. Commonly

occurring gaps or unsuitable sampling rates are interpolated using the Nearest Neighbour method,

which was already applied for interpolating status information in the logging data set (see Section

4.2.3). To fill prolonged gaps of more than 30 minutes, those are interpolated with the status

Log Off, assuming that such a duration of missing status signals translates to an according offline

mode of MDT and hence taxi’s inactivity.



Chapter 4. Driving Profile Analysis - Methodology 54

Prerequisite steps for constructing booking based statistics include the merging of several

monthly booking sets with possible overlapping times. To reach a daily status distribution as

displayed in Section 5.3.2, a day is divided into portions of 15 minutes, each denoting the excerpt’s

booking status distribution.



Chapter 5

Driving Profile Analysis - Results

and Evaluation

As outlined in the previous chapter, the driving profile analysis plays a major role in preparing

the data set into a utilizable form for subsequent processing steps. It is particularly vital for

statistical evaluation and the targeted computation of energy consumptions.

This chapter evaluates conducted pre-processing and map-matching steps, and presents results

of statistical evaluation by eventually comparing those to LTA data.

5.1 Pre-Processing Evaluation

The pre-processing comprises the combination of logging and booking data, filtering, and inter-

polation of spatial and dynamic data. It is the primary step in transforming raw and erroneous

GPS trajectories and booking data into filtered and processed data for subsequent analysis steps.

5.1.1 Dataset Combination Evaluation

The dataset combination merges the logging set, which is received from installed GPS loggers,

with the booking set, which is received from taxi’s MDTs. They have different sampling periods of

one seconds for the logging and three minutes for the booking set, which requires a comprehensive

combination process. As a short reminder, the algorithm basically tries to find same timestamps

and tags the received statuses from booking sample points to the corresponding logging sample

points.

Since gaps and inaccuracies in sampling rates are encountered, the algorithm is designed

robustly to allow for these deviations. Yet, to check for compliance, the deviants in time and

position are computed and assessed whether its deviation is below a certain maximum threshold.

Figure 5.1 shows a good match (top plot) and bad match (bottom plot) for exactly this

procedure. In each, the chart’s upper part shows the time deviation within a window of ±30 s

and the actual match as a red dot, and the chart’s lower part reveals the position deviation

and the actual matching, accordingly as a red dot. Here, the threshold denoting the maximum

distance between correspondence sample point and deciding whether the match is valid or not is

set to 500 m.

55
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(a) Good match

(b) Bad match

Figure 5.1: Evaluation of the combination of logging and booking data

5.1.2 Filtering and Interpolation Evaluation

Filtering, in the sense of GPS trajectories, is the process of analysing a set of contextual connected

sample points according to restrictions, limitations, and thresholds with the goal of adjusting those

accordingly.

Interpolation, on the other hand, substitutes missing or disarranged values with estimations of

best fitting intermediate point to complete a trajectory. In this work, the scope of interpolation

is extended as the term is also used for the altitude assignment process, where virtually all values

are replaced by a different data source.

Filtering Evaluation

In Figure 5.2, a speed profile for a recorded example trip is presented. The green graph depicts the

original values as captured from the GPS logger, and the blue graph illustrates the speed profile

after filtering. Two major insights are perceivable: One is the existence of apparent outliers at

approximately times 50 s and 400 s; the former capturing a too high speed value in the vicinity of

slow speeds, whereas the latter records a single unreasonable zero speed value during a relatively

constant driving period. During the filtering process, though, both outliers are correctly detected

and erased as desired.



Chapter 5. Driving Profile Analysis - Results and Evaluation 57

The second major insight is the smoothing effect on the whole speed profile. The unfiltered

profile shapes with high fluctuations and entails almost no constant driving periods. It is very

unlikely that the actual vehicle behaved as the logger has recorded, omitting any periods of

constant speed. It is more reasonable that the recorded values are to some extend erroneous. The

filtered speed profile, coloured in blue, is smoother than its green counterpart as it underwent a

Gaussian filter of a small window size of five sample points, which is applied in addition to the

outlier detection. The window size is restricted to this rather small value because the impression

of ‘correctness’ solely bases on empirical inspections and no scientifically justification for a distinct

value can be given. To do so, a comparison with CAN Bus values as outlined in Figure 3.3 would

have been necessary for all tracked vehicle types but was not available at this time.

Figure 5.2: Comparison of raw and filtered speed profiles

By immersing into the in-detail filtering procedure as results presented in Figure 5.3, the

impact of filtering for speed and acceleration values can be observed. Both right-hand charts

show the speed subject to time trend, divided into an unfiltered version on the top and a filtered

version on the bottom, highlighting the filter threshold of 200 km/h at which sample points are

erased from the trip. Both left-hand charts show the according acceleration trend, equally divided

into an unfiltered chart in the top and a filtered version in the bottom graph, applying threshold

of +4 m/s2 and −6 m/s2 for acceleration and deceleration, respectively.

In terms of filtering, methods are distinguished between spatial and dynamic input types.

As already frequently noted, speed values are preferably obtained directly from the GPS logger

rather than computing the speed manually by means of latitude and longitude coordinates. From

Figure 5.4 is evidence that the position based speed would fluctuate to a high extent, inevitably

caused by GPS immanent deviations. The spatial uncertainty, which usually does not impact the

energy consideration to a high extend, would in this case be incorporated into the speed values

and hence accordingly exacerbatingly fluctuate.

As another prove that computed speed values project the driving behaviour improperly, the

average acceleration and deceleration, as well as the former’s standard deviation are computed

as depicted in Table 5.1 and compared to literature values for various ARTEMIS cycles in Table

5.2, taken from [50]. In the regarded case, values are presented for a real-world trip with a high

share of OSM road type Motorway, comparable to a ARTEMIS Motorway cycle. For the filtered,
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Figure 5.3: Results for acceleration and speed filtering using +4 m/s2 and −6 m/s2 thresholds
for maximum acceleration and deceleration, respectively, and 200 km/h as the maximum speed

threshold

Figure 5.4: Comparison of speed values from GPS logger (blue) and speed computed on basis
of sample point’s GPS coordinates (green)

logger based speed computation method both sets of characteristics align very well, whereas all

other methods underperform and do not match satisfyingly.

Interpolation and Height Assignment Evaluation

In the interpolation step, gaps in trips are filled which either originate from loss of connection

to GPS satellites or from eliminations in the preceding filtering process. As described, filtering

simply erases unreasonable or erroneous sample points and expects the substitution of missing

values in the interpolation step. In both cases, gaps’ boundary values are used as anchor points to

estimate suitable intermediate sample points. In Section 4.2.3, various interpolation strategies for

different variable types are introduced, mainly distinguished in continuous and discrete methods.

Here, the focus lays on evaluating spatial and speed interpolation, as well as assessing the altitude

assignment on basis of an adopted Google elevation map.
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Table 5.1: Average acceleration, deceleration, and standard deviation for an example trip with
a predominant Motorway share

Source
Average

Acceleration
Average

Deceleration
Standard Deviation

of Acceleration

Filtered logger speed 0.54 m/s2 −0.61 m/s2 0.42 m/s2

Unfiltered logger speed 1.18 m/s2 −1.16 m/s2 1.10 m/s2

Filtered GPS position speed 0.73 m/s2 −0.77 m/s2 0.79 m/s2

Unfiltered GPS position speed 0.81 m/s2 −0.84 m/s2 0.85 m/s2

Table 5.2: Average acceleration, deceleration, and standard deviation for three ARTEMIS
cycles, taken from [50]

ARTEMIS Cycle
Average

Acceleration
Average

Deceleration
Standard Deviation

of Acceleration

ARTEMIS Motorway cycle 0.52 m/s2 −0.68 m/s2 0.49 m/s2

ARTEMIS Road cycle 0.58 m/s2 −0.65 m/s2 0.56 m/s2

ARTEMIS Urban cycle 0.75 m/s2 −0.75 m/s2 0.68 m/s2

The speed profile illustrated in Figure 5.5 is a good example particularly for the interpolation

performance in the vicinity of tunnels, where a more comprehensive approach is employed. The

left-hand chart shows the state before filtering and interpolation with an unreasonable steep

slope during tunnel transit and sudden rising speed at the end of the tunnel. The right-hand,

interpolated version mitigates this apparently flawed values with an assumption of constant speed.

The bottommost chart displays the actual GPS trajectory of a tunnel transit after filtering and

interpolation and highlights important parts.

Singapore’s terrain is a lowland with a slightly hilly central plateau. Its highest elevation

is Bukit Timah with 163.63 m above sea level, and its lowest point is 0 m as the island has

direct access to the sea [51]. Although considered relatively flat with an admittedly small, yet

existing impact on vehicle’s energy demand, a height assignment is performed following procedures

described in Section 4.2.3.

The necessity of this height assignment step can be obtained from Table 5.3 where charac-

teristical domains for altitude values and gradients for an unassigned and an assigned version

of a subset of recorded trips are listed. Regarding the altitude, the unassigned version exceeds

the maximum possible elevation of Singapore for more than 70 m - indicating the erroneous raw

values. Moreover, both the mean and 95 % percentile appear to be way too high compared to

the assigned version. In addition, a 5 % percentile of exactly 0.00 m points to a high amount of

sample points with exactly this zero value and is likely to be caused by the logger characteristical

behaviour to record a zero value for uncaught altitudes or in case of a bad GPS coverage.

Table 5.3: Altitude and gradient evaluation before and after assigning with the Google elevation
map

Feature Method Mean Min Max Percentile 5 % Percentile 95 %

Altitude
Unassigned 29.86 m −5.00 m 241.00 m 0.00 m 88.75 m
Assigned 17.82 m −3.27 m 70.22 m 7.86 m 34.99 m

Gradient
Unassigned 0.23 % −132.50 % 149.00 % −5.12 % 5.19 %
Assigned 0.00 % −14.21 % 14.71 % −1.52 % 1.55 %
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(a) Raw speed profile (b) Filtered and interpolated speed profile

(c) Filtered and interpolated spatial trajectory, background image taken
from [30]

Figure 5.5: Interpolation of a tunnel transit for speed profile and spatial trajectory

Distance Computation

During the implementation of the programs, the need for computing trip’s distance in a detailed

manner was often encountered. Three different distance computation methods are implemented:

position based, speed based, and road segment based; and results are compared against a Google

Maps API’s suggested trip lengths.

It turned out that there is no one-fits-its-all solution, but each approach has its advantages and

disadvantages for different scenarios. Eventually, the decision favoured the speed based method

as it produces the most exact values in most cases. The method calculates the distance on basis

of pre-processed speed values from the GPS logger and the time between two adjacent sample

points (which is fixed to one second after interpolation). This approach is already implicitly

incorporated into the speed profiles for the energy demand estimation.

Table 5.4 lists comparative values for three scenarios: a good quality trip, a trip in the vicinity

of the CBD, and a trip including a tunnel transit. The good quality trip has great GPS satellite

signal coverage throughout the time, whereas the CBD trip suffers from multi-path effects caused

by prevalent high buildings, mirroring the satellite’s signal and resulting in inaccuracies. The

tunnel transit trip losses GPS signal during transit resulting in gaps with missing sample points.

Observable higher values for the position based method are likely due to drift effects, where a

vehicle stood still but the GPS logger continued to detected slight motions and recorded positions

changes. The tendency for longer distances in case of the road segment based method, probably

has its origin in map-matching errors. Map-matching often results in over-assignment of road
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Table 5.4: Comparison of various distance computation methods

Method Good Quality CBD Tunnel Transit

Reference Google Maps value 8.7 km 17.5 km 24.6 km

Position based 9.3 km 19.4 km 24.1 km
Speed based 8.5 km 18.1 km 22.6 km
Road Segment based 8.9 km 18.7 km 29.7 km

segments or - in other words - considers more segments as ‘traversed’ than it would have been

the truth.

5.2 Map-Matching Evaluation

The map-matching process has a big influence on proposed approaches and affects results, as it

is incorporated into the static energy map and dynamic driving share approach. The evaluation

takes place by comparing the correctly matched sample points to the total number of a trip’s sam-

ple points. To assess whether a point is considered as correct, a labelling tool for manual matching

of trips was developed, which serves as the so called ground truth - a reference assignment, results

are compared to.

In Table 5.5, a total number of nine trips, three for each road cluster, were randomly selected

for manual labelling and evaluation process. Since the labelling process demands comparably

much time, the size of the validation set was limited to save time, approving to be only capable

of giving an outline of implemented map-matching’s performance. A thorough evaluation of the

original ST algorithm can be obtained from the regarded paper in [14].

Table 5.5: Map-matching evaluation for various road type clusters

Road
Cluster

Total
Points

Correctly
Classified

Share
Average
Share

Motorway
1465 1273 86.9 %

84.1 %1308 1103 84.3 %
1197 971 81.1 %

Road
1294 1097 84.8 %

80.7 %925 731 79.0 %
1212 948 78.2 %

Urban
1485 1219 82.1 %

78.0 %1076 830 77.1 %
932 694 74.5 %

The map-matching implementation is designed to perform well on relatively low sampling

rates or periods. The normal sampling period, trips are map-matched throughout the analysis,

is 60 seconds. Note that the original sampling period of logging data, which is one second, is

indeed shorter and was artificially increased to save computation time. This leads to the sole

consideration of a subset of each 60th sample point. For comparison reasons, results in Table 5.5

are also derived from map-matched trips with a 60 second sampling period.

For evaluation, three clusters (Motorway, Road, Urban, as already used beforehand and derived

from ARTEMIS) were set up because different results for each were expected; evaluation outcomes

confirmed this. On a trip with a high Motorway share, good results were anticipated due to
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a wide satellite coverage and less disturbing factors despite tunnel transits at MCE (Marina

Coastal Expressway) or Chin Swee Tunnel as part of the CTE (Central Expressway). GPS losses

during tunnel transits, however, are mitigated considerably good by the global ST map-matching

algorithm as it takes the whole trip into account and can estimate missing values. An Urban trip,

on the other hand, is likely being adversely affected by GPS deviations which often occurs under

Singapore’s conditions with a huge number of tall buildings.

The effect of different sampling rates on map-matching is likewise evaluated and presented in

Figure 5.6 for the average shares of Table 5.5. As apparent from the trend, in general, an increase

of sampling rate leads to a decrease in the share of correctly classified sample points. However,

the effect is rather slight, correlating to the original paper’s results. Remarkable is the fact that

this trend does not apply for the worse performing ten second sampling period which may can be

accounted for the tailored design for lower sampling rates.

Regarding the different road type clusters, the trips of cluster Urban are expected to deteriorate

with lower sampling rate, whereas the map-matching quality of cluster Motorway shall remain

considerably good. Those anticipations are in line with the presented results.

Figure 5.6: Map-matching evaluation for different sampling rates on various road categories

The impact of different connectivity matrices, as introduced in Section 3.2.1, is illustrated

in Figure 5.7 in which three different matrices are employed for routing a trip from origin to

destination. The point count based connectivity matrix lacks of reliable distance information

because it solely uses the number of points between two nodes and is heavily dependent on

the mapper’s style and the road’s shape. Hence, the routing chooses an unreasonable path

omitting speed constraints or expectable traffic conditions a real driver would probably have

taken into account. The connectivity matrices incorporating the Euclidean distance and time

demand perform better and align with the actual taken route. Particularly the time demand

connectivity matrix resembles the real trip almost impeccably.

5.3 Dataset Statistics

The cooperation with SMRT is of mutual benefit: on the one hand, the received data is used

for the in this thesis presented investigations and for future related projects, and on the other

hand, during monthly update meetings, so far conducted analysis were presented and supported

SMRT in understanding driving patterns or may even affecting strategic decisions. A subset

of most insightful statistics is presented in this section, which has also aided to understand the

data and the underlying patterns. All diagrams are based upon data in the range from 8th June
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Figure 5.7: Routing for different connectivity matrices based on Point Count, Euclidean Dis-
tance and Time Demand as introduced in Section 3.2.1, background image taken from [30]

to 9th September. The presented results are depended of chosen parameters as introduced for

several implemented programs. A complete list of those parameters is attached in Appendix H.

In addition, parameters are subject to change as they are obtained empirically, and new outcomes

may require adjustments. The list therefore does not claim to be the perfect set of choice, but

rather reflects the optimal values to the best of believes.

Beforehand, basic statistics about monthly datasets are derived to assess conducted pre-

processing, filtering, interpolation, and extraction steps. The batch for September is presented in

Table 5.6. It already gives a good insight into dataset quality by computing the mean, extrema,

and 5 % and 95 % percentiles denoting the boundary values in which 90 % of all values settle. A

complete list of those statistics for each month is attached in Appendix F.

5.3.1 Speed Profile

The diagram in Figure 5.8 illustrates the average daily speed distribution on Singapore’s roads,

distinguished for hired trips (blue graph) and all recorded trips (green graph). As anticipated,

the highest speed values occur during night when traffic flow is low and roads are free.

There are two significant drops in average speed values during morning and evening peak

hours due to upcoming commuting traffic and resulting congestion. During the day, traffic eases

and speed values slightly increase; but they interestingly remain on a comparably low level. The

evening drop is more significant than the morning’s, which is may due to the fact that traffic

congestion has not recuperated entirely. This speed profile analysis also contributed in finding

suitable time periods for a ‘blowing-out’ of engine combustion remains, which requires driving

periods greater 50 km/h for at least 15 minutes.
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Table 5.6: Trip set statistics for September, denoting values for mean, minimum, maximum,
5 % percentile and 95 % percentile

Feature Mean Min Max 5% 95%

Shift Duration [h] 7.24 0.01 21.05 0.79 11.91
Shift Mileage [km] 169.70 0.00 500.83 12.17 342.04

Hired Status [%] 54.00 0.00 100.00 0.00 82.50
For-Hire Status [%] 29.72 0.00 100.00 0.00 56.17
Other Statuses [%] 16.28 0.00 100.00 0.00 63.77

Trip Duration [min] 12.53 0.50 632.38 1.77 31.76
Trip Length [km] 6.25 0.00 178.45 0.11 21.89
Trip Velocity [km/h] 29.82 0.00 150.56 0.00 85.46

Hired Trip Duration [min] 17.00 0.50 585.40 3.62 36.35
Hired Trip Length [km] 9.97 0.00 178.45 0.94 25.64
Hired Trip Velocity [km/h] 35.11 0.00 132.90 0.00 88.25

Altitude [m] 19.32 -18.84 71.09 8.41 34.64
Altitude Incline [%] 0.00 -15.32 17.11 -1.62 1.62

Velocity Start of Trip [km/h] 1.23 0.00 27.94 0.00 7.45
Velocity End of Trip [km/h] 1.70 0.00 100.88 0.00 7.11

Stand still period distribution [%] 29.14 0.00 100.00 4.87 75.69
Pause duration [min] 28.32 5.00 179.57 5.40 96.22

Energy Consumption [kWh/100 km] 17.99 7.46 79.96 12.92 28.95
Hired Energy Consumption [kWh/100 km] 16.43 9.80 78.64 13.10 20.71

Figure 5.8: Average speed distribution subject to time, averaged in steps of 15 minutes over
one day
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5.3.2 Booking Status Distribution

In Figure 5.9; the status share of all taxis averaged for one day is presented. The distribution

reveals a clear disparity between day and night. During night, generally less driving is seen with

a maximum of 78 % Log Off share and a minimum of 16 % Hired share at 4 am. During daytime,

by contrast, inactive times reach its minimum at 3 pm with less than 5 % Log Off mode. The

most productive times take place during peak hours, one at 9 am with 40 % share of Hired status,

and one at 7 pm reaching the absolute maximum Hired share of 41 %.

Busy status is seen more often during the day since drivers apparently do not use the taxi for

their own purposes during night. Overall, a fairly small On Call status is observed, indicating a

rather short waiting time for passengers after requesting a taxi booking. All here discusser points

are in line with prior contemplated expectations and thus prove the booking data quality good.

The distribution is of value for the status based trip extraction method.

Figure 5.9: Status distribution averaged over one day in steps of one hour

A further separation into one- and two-hirer scheme taxis is provided in Appendix E, from

which a remarkable fact can be observed that, despite technically more drivers using the same

vehicle, the status distribution is almost equally distributed for both schemes.

Figure 5.10 illustrates the overall status distribution disregarding the time of day for all taxis,

divided into one- and two-hirer schemes. The Log Off status is included in the upper plot and

excluded in the bottom one to gauge the implication of non-active times.

It is apparent that one-hirer scheme taxis generally reveal a higher productivity with a Hired

share of 53 %, outperforming the two-hirer scheme taxis with only 44 %. The higher Busy share

of 14 % for the latter versus 9 % for the former gives a second hint that hirers may use the taxi

more often on personal purpose or have to spend more time for commuting between the agreed

shift change locations. Remarkable is the fact that the Log Off share, as perceivable in the upper

chart, is not significantly lower for the two-hirer scheme as for one would have expect.

Together with results of daily status distribution in Figure 5.9 and Appendix E, it hence can

be concluded that a two-hirer scheme not necessarily implies two shifts with two shift changes

each day but can also indicate a taxi alternation on a day-to-day basis. This is of significance for

the shift extraction method.
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Figure 5.10: Status distribution per one- and two-hirer schemes, upper plot including Log Off
times and bottom plot excluding Log Off times

5.3.3 Mileage and Distance Analysis

The overall, average daily mileage and its share of hired trips for the recorded set of 20 taxis is

depicted in Figure 5.11. A threshold marking the 250 km value is included, which origins from

a targeted daily mileage as enforced by the LTA as a criteria for taxi companies to retain their

licence. Singapore is comparably strict in issuing taxi licences, requiring not only a minimum

daily mileage but also a minimum fleet magnitude.

Noticeable is the high amount of taxis, which seem to target exactly this 250 km threshold. For

further investigations, the taxis are clustered into four categories, low, medium, high, and very-

high mileage as worked out in Section 5.3.5. In congruence with the expectations, the average

daily mileage settles at 306 km, mainly influenced by the very-high mileage cluster as only seven

taxis excel the mean value.

Generally can be observed that the productivity, denoted by the length of the coloured bar, is

higher for low and medium mileage clusters, which is in line with the results presented in Figure

5.10. Drivers’ taxis in the very high mileage cluster seem to use the taxi in a broader sense, and

the productivity can be lower because still a high absolute mileage of hired trip is reached.

Figure 5.12 shows the overall daily mileage distribution distinguished by one- or two-hirer

scheme. As expected, the one-hirer scheme taxis drive less than its counterpart, but the impact is

much lower than anticipated. This again hints to the likelihood that both hirers of the same taxi

do not inevitably share their taxi throughout the day with distinct shift changes, which would

result in a much higher daily mileage because the taxi is used more frequently. Both distributions

are more or less Gaussian shaped, finding their mean value at 260 km for one-hirer and 326 km

for two-hirer scheme taxis.

As can be seen in Figure 5.13, the average hired trip distance is distributed equally among

different vehicle types and has its mean at around 10.5 km, which is a bit higher than LTA data

would suggest (discussion are to follow in Section 5.4). The two luxurious vehicle types (Chrysler

in orange and Ssangyong in red) slightly exceed the average trip distance, attributable to the fact

that luxurious vehicle are more reasonable for longer trips.
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Figure 5.11: Average daily mileage and share of hired trips for each vehicle type, ordered
ascendantly by mileage

Figure 5.12: Daily mileage distribution for one- and two-hirer scheme taxis

Figure 5.13: Average hired trip distance among different vehicle types
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Figure 5.14 reveals the distribution of hired trip distances distinguished by one- and two-hirer

schemes. Noticeable is the high ratio of short trips with a peak at around 5 km. As assumed,

the share of longer trips decreases hyperboloidal and reaches a minimum share of less then 1 %

for trips longer than 30 km. Nevertheless, a lot more small trips are encountered than expected,

leading to an unequal distribution.

An explanation might be given by the fact that Singaporean taxis are comparably cheap in

relation to average income; hence, a lot of people can afford taxi journeys. In some cases, taxis

even tend to be the preferred means of transportation because public transport infrastructure,

which is admittedly increasing dramatically and is of decent quality, does not yet cover all areas as

pervasively as desired. For instance, plans attempt to increase the share of MRT rides of roughly

30 % in 2013, preliminary by substituting bus journeys, which have the highest share of currently

about 60 % [52]. Furthermore, Singapore is not big in extent which has a confining affect on trip

length.

Figure 5.14: Hired trip distance distribution for one- and two-hirer scheme

5.3.4 Region related Analysis

A general idea about driver’s favoured locations is illustrated by means of a heat map in Figure

5.15. Heat maps are a convenient tool to present distinct features from a data set in an easy

conceivable, graphical way. Its construction is explained in detail in Section 4.6.1. As a reminder,

the colour code indicates the quantity of occurrences in a predefined cell on a meshed grid. A

blue pixel indicates a low occurrence probability, whereas a red pixel marks frequently visited

locations. The scale is chosen to be logarithmic to cover the wide range and extensively unequal

occurrence distribution.

A video was created which concatenates a number of those heat maps on basis of time depended

trips. It shows which roads are used more frequent and which parts of Singapore are more often

visited for different times of a day. In this way, it reveals more distinctiveness than one presented

plot would be able to. The video can be found on the attached CD.

A peculiarity might be seen in the blurred areas around the CBD and the Southern coastline,

former originating from poor GPS quality caused by typically high building and multi-path effects

as described in Section 4.2.2, and latter caused by tunnel transits requiring interpolation and

affecting the GPS trajectory as apparent.
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Figure 5.15: Occurrence frequency heat map on a 200 × 300 grid

Figure 5.16 illustrates the distribution of taxi occurrences for trip origins and trip destinations

subject to Planning Areas, denoted by the intensity of the colours as referenced in the colour-bar.

A trip origin is hereby defined as the location where a trip has started; a trip destination is

consecutively defined as the location a trip has ended.

A similar distribution is seen for origins and destinations. This indicates the anticipated

driving pattern that drivers tend to start a subsequent trip in the same area, searching a new

passenger in the vicinity rather than returning to a fix spot. It reveals a big distinction towards

German taxi patterns where passenger pick-ups largely happen at fix locations, namely taxi

stands. Additionally noticeable is the higher occurrence in the South-East area, highlighting the

airport, CBD, and the amusement quarter Kallang.

Figure 5.16: Origin/Destination map for hired trips, showing origins in the top subplot and
destination in bottom subplot, indicating concurrence frequency per Planning Area by colour

intensity
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A related plot is presented in Figure 5.17, emphasising differences between previously shown

origins and destinations distribution. Priorly hidden, it now indeed reveals insightful features for

Planning Areas showing, for instance, a high amount of trips starting from the SMRT Woodlands

depot and a high amount of trips with destination Kallang.

Figure 5.17: Origin/Destination difference map for hired trips, showing the difference in origin
and destination frequencies per Planning Area by colour intensity

5.3.5 Cluster Analysis

After clustering taxis according to daily mileage into four distinct categories, each is submitted

to a separate investigation. This addresses the average total daily mileage, average daily mileage

with status Hired, herefrom derived productivity evaluation, and the active times searching for

customers. Results are presented in Figure 5.18, from which previous conclusions are affirmed:

drivers with a relatively small daily mileage tend to be more productive as they use their small

amount of driving to a huge extent for Hired trips.

Figure 5.18: Cluster statistics displaying total mileage, mileage of Hired trips, ratio hired/not
hired, and operation time
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5.4 Comparison and Validation with LTA Data

In Table 5.7, statistics of this work’s analysis versus statistical data from LTA sources are pre-

sented. The first two rows for one- and two-hirer schemes display the latests accessible data as

from December 2013 and was taken from [7]. This source, however does not include statistics

for all taxis where the distribution of both hirer-schemes is impactful. To gather missing val-

ues, another source [53] is hence queried, reflecting the entire year 2012. It is noted, the term

hirer-scheme, as used by SMRT, is considered a synonym to shift, as given in the queried sources.

There are basically two noticeable things apparent: both LTA data source do not straightfor-

wardly fit together, as the average daily mileage for all taxis exceeds even the maximum of both

single values. Conceivable sources of deviation are a change in driving patterns between 2012 and

2013 or a change in means of measuring of daily mileage. The average trip distance however is

in line among both sources.

Regarding the comparison of LTA data with evaluated statistics, in principal a considerably

good match is observed, especially in average trip distances not exceeding a 10 % deviation. The

captured average daily mileage, by contrast, surpasses the provided LTA benchmarks of the first

source by 12.0 % and 27.6 %, respectively, whereas it undercuts the values provided in the second

source by 7.7 %. The good match in average trip distances confirms developed trip extraction

algorithms. The major differences in daily mileage are likely not caused by incorrect programs

but are rather due to different data sources presented numbers rest upon and different definitions

of hirer schemes and shift systems.

Table 5.7: Comparison of evaluated statistics with LTA data

Hirer Scheme Statistic LTA Data Examined Data Deviation

One-hirer scheme
Average daily taxi trips 20.2 24.6 +21.8 %
Average mileage per trip 10.1 km 10.6 km +5.0 %
Average daily mileage 204.0 km 260.3 km +27.6 %

Two-hirer scheme
Average daily taxi trips 29.4 31.1 +5.8 %
Average mileage per trip 9.9 km 10.5 km +6.1 %
Average daily mileage 291.1 km 326.1 km +12.0 %

All taxis
Average daily taxi trips 34.3 29.2 −14.9 %
Average mileage per trip 9.7 km 10.5 km +8.2 %
Average daily mileage 332.5 km 306.8 km −7.7 %



Chapter 6

Energy Demand Analysis -

Methodology

This chapter introduces the proposed energy estimation approaches and outlines the concep-

tualization of a corresponding energy database, which bases on successfully pre-processed and

map-matched taxi GPS trajectories as described in Chapter 4.

In principle, there are two distinct approaches conceivable towards energy estimation: first,

using a vehicle model and directly simulate the car’s dynamic behaviour in form of a speed pro-

file, and second, utilizing historical data such as previously recorded GPS trips, environmental,

or traffic data to set up a database. Moreover, a combination of both intentions is feasible, ex-

ploiting the car’s actual dynamic characteristics on the one hand, enhanced with robust historical

background information on the other. The former vehicle model concept is outlined in Figure 6.1.

Figure 6.1: EV model application scheme

As mentioned earlier, the motivation behind this energy demand analysis is to incorporate

obtained results in form of energy estimation programs into a sophisticated taxi simulation in

Singapore, addressing the impacts of a high quantity of electric taxis on the power grid. As a

requirement and input for developed programs, a wide range of driving profiles’ level of detail

is anticipated, including a rather rough estimate of taxi’s chosen route. This is accounted for

by a simulation’s natural of abstraction and simplification. The energy demand estimation ap-

proaches are therefore tailored to support low sampling rates, and a high leverage of historical

and environmental data is utilized.

In detail, the investigation of a great number of real-world GPS trajectories recorded by a

subset of 20 SMRT taxis, establishes an energy database - using a static energy map on the one

hand and a dynamic driving share approach on the other hand.

72
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As a simplified outline, each road segment of Singapore’s road network is tagged with an

average energy consumption and an distribution of average driving shares (distribution of state

of driving like idling, cruising, accelerating, or deceleration, see Section 6.3), and additionally

different time zones and road types are regarded. When attempting to compute energy con-

sumption for arbitrary trips, this database is harvested by retrieving the corresponding energetic

characteristics for each traversed road segment.

6.1 Electric Vehicle Models

Electric vehicle models are pervasive for computing energy demands of driving cycles or real-world

driving trips in various application areas, including official consumption assessment tests for new

cars. A typical input for a vehicle model is a trip’s dynamic representation in form of a speed

and altitude profile subject to time. The combination of both is defined as a driving profile.

There are various models available for different simulation purposes. One, for instance, is

the PHEM [22] which emphasises on vehicle’s emissions. To meet targeted requirements and

to align to the context of electrical vehicles, two in-house developed models are of choice: the

TUM CREATE EV Model [54] and the Backward Model (for implementation see Listing M.20

in Appendix M); latter is a derived and simplified version of the former.

To allow for a comparison among both models and to link the model to a distinct vehicle type, a

uniform set of vehicle characteristics is applied as indicated in Table 6.1. Most of herein presented

values are adopted directly from EVA characteristics, an electric taxi prototype developed and

manufactured by TUM CREATE [27]. Unattainable data was, as applicable, taken from state-

of-the-art books and papers as corresponding reference is given in the table.

The auxiliary energy demand is distinguished between a base load for on-board power con-

sumers (such as electronics, light, and infotainment systems) and air conditioning, which affects

energy consumption in tropical cities like Singapore to a high extent. For both energy consumers,

with regard to simplicity, a constant value is assumed, which approximately holds for preva-

lent conditions of rather constant temperatures and humidity throughout the day and year [56].

Section 6.1.3 outlines a more comprehensive approach suggested for further investigations which

substitutes an assumed constant auxiliary power demand with a fine-grained auxiliary model.

To perceive an idea about the impact of recuperation as a major benefit of electric vehicles,

Figure 6.2 compares consumed and recovered energy during a simulation on several ARTEMIS

standard driving cycles. It is apparent that energy recuperation has a bigger impact under

generally slower driving conditions, as for instance prevalent in an urban environment, than it

has on motorways with typically higher speeds. This is accounted for by an higher share of

Stop & Go traffic and because recuperation only occurs while breaking.

Furthermore, Figure 6.3 illustrates the share of drivetrain power in comparison to auxiliary

and air conditioning power demand. Similar to the energy recuperation distribution, the share

of auxiliary power demands decreases with faster driving conditions due to a higher influence of

air and roll resistance. Remarkable is the high share of 43 % spent for auxiliary power, which

does not contribute to the actual driving purpose. It furthermore reveals the high importance of

energy saving air-conditioning systems as in case of Singapore the humid air first has to be dried

before the actual cooling process can be started.

As a conclusion, the electric vehicle model should be capable of predicting energy demands

correctly under various driving conditions. Neither recuperation nor auxiliary submodules can be

neglected as it influences total energy demand significantly.
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Table 6.1: Electric vehicle characteristics for EV models

Category Characteristic Symbol Value Source

Basic
Characteristics

Mass mcar 1500 kg [5]
Wheel radius rwheel 0.3 m [54]
Rolling resistance coefficient Fr 0.008 [54]
Drag coefficient cw 0.34 [5]
Frontal area Afront 2.8 m2 [5]
Cabin volume Vcabin 5 m3 [5]

Dynamic
Characteristics

Maximum power Pmax 60 kW [5]
Maximum torque Mmax 223 Nm [5]
Top speed vmax 111 km/h [5]

Passenger
Characteristics

Number of passengers Npassenger 2 [54]
Passenger weight mpassenger 75 kg [54]

Battery
Characteristics

Battery capacity Cbattery 50 kWh [5]
Battery energy density µbattery 110 kWh/m3 [5]
Initial SOC SOCinit 0.9 [54]
Lower SOC limit SOClower 0.1 [54]
Usable SOC range SOCusable 0.8 [54]

Auxiliary
Characteristics

Air-conditioning power Paircon 1500 W [55]
Ambient temperature Tambient 27 ◦C [56]
Ambient humidity φambient 84 % [56]
Desired cabin temperature Tcabin 23 ◦C [54]
Desired cabin humidity φcabin 60 % [54]
On-board power supply Pauxiliary 500 W [55]

Efficiency
Characteristics

Transmission efficiency ηtransmission 0.95 [57]
Engine efficiency ηengine 0.94 [57]
Inverter efficiency ηinverter 0.97 [57]
Charging efficiency ηcharge 0.85 [57]
Discharging efficiency ηdischarge 0.95 [57]

(a) ARTEMIS Urban (b) ARTEMIS Road (c) ARTEMIS Motorway

Figure 6.2: Share of consumed vs. recovered energy for different ARTEMIS [50] standard
driving cycles

(a) ARTEMIS Urban (b) ARTEMIS Road (c) ARTEMIS Motorway

Figure 6.3: Share of energy consumers for different ARTEMIS [50] standard driving cycles
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6.1.1 TUM CREATE EV Model

The most comprehensive electric vehicle model accessible is the TUM CREATE EV Model [54],

which is implemented in Matlab Simulink and thus easily adoptable into the established develop-

ment environment. An overview of its first layer is given in Figure 6.4, comprising all submodules

and basic interconnections. Since the model is exclusively utilized and by no means adjusted

respect to its internal structure, a further functional description would go beyond this work’s

scope. This model is used for result validation of proposed energy estimation approaches and for

comparison with the simplified Backward Model.

The model’s main advantage is a thoroughly modelled and complete set of submodules, in-

cluding Driver, Environment, Vehicle Dynamics, Drivetrain, ESS (Energy Storage System), Aux-

iliaries, and Controller, which together regard each possible energy consumer on board an EV.

Drawbacks, on the other hand, are its comparable long computation time and sensibility for peaks

in speed profile. Both are due to an extensive usage of differential equations as they are commonly

employed in Simulink. Moreover, its in-depth modelling character exceeds the requirements for

this study’s anticipated usage scenario.

Figure 6.4: First layer of the TUM CREATE EV Model, adopted from [54]

6.1.2 Backward Model

Particularly the low computation time of the TUM CREATE EV Model matters to implement

a simplified, faster version without limiting the estimation quality. Since it is aimed to take all

so far captured trips (more than 77, 000, see Table 3.1) into consideration to set up a meaningful

database in terms of quality and quantity of covered road segments, it was unavoidable to use

a less time consuming model. Feasible for a high amount of trips, robust and less sensitive

to dynamic outliers, the purely Matlab based Backward Model is used (for implementation see

Listing M.20 in Appendix M).

In its principal functionality, it computes the required power of each submodule for each time

step on basis of the trip’s speed and altitude profile. Resulting power values are amplified with
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underlying characteristical EV efficiency coefficients, and the resulting energy is calculated as the

sum of all power shares multiplied with the time spend for the examined trip.

There is no necessity for any control loops as it is only looked into a small portion of two

adjacent sample points at each step. This, however, reveals some drawbacks as possible impactful

interferences between submodules are omitted, which may would have been covered in control

loops. The incorporated submodules are schemed in Figure 6.5.

(a) Driving profile (b) Vehicle dynamic (c) Transmission (d) Electric engine (e) Battery pack

Figure 6.5: Backward Model submodules

6.1.3 Model Tailoring and Enhancements

Both models are adjusted to fit into the applicable Matlab environment. The Simulink based

TUM CREATE EV Model requires an interface for direct access from Matlab, which in principal

passes trip’s dynamics from the Matlab workspace into the Simulink workspace.

The Backward Model comes without a gradient model which is meant to reflect the road slopes

as part of the vehicle dynamics submodule. This had to be implemented manually. A gradient

model computes the quotient of height difference and Euclidean distance between two adjacent

sample points and rescales values the height disparity per 100 m.

As mentioned, a vehicle model relies on a set of vehicle characteristics directly influencing the

energy consumption. In an initialization step, these characteristics are imported into both models

to allow for comparable results and to follow the dynamic behaviour of EVA, from which most of

the characteristics are taken from.

Further recommended model enhancements would include the design of an auxiliary model,

capable of estimating required auxiliary power in greater detail. Auxiliary consumers comprise

on-board power supply, infotainment, heating, and air condition. In case of prevalent climatic

conditions in Singapore, air condition has the biggest share of all auxiliary power consumers.

In the current implementation, a constant value of 500 W is assumed for the on-board power

supply and infotainment system, and an additional 1500 W for the air conditioning system. An

comprehensive auxiliary energy model, though, would use speed, ambient temperature, and sun

angle to compute first, the vehicles surface temperature and second, the hereupon derived de-

manded air conditioning power.

6.2 Static Energy Map Approach

In principal, an energy map is denoted as a database which links average energy demands to an

underlying road network. In the pervasive context, each of the 40, 425 Singaporean road segments

is assigned with a mean energy consumption plus an additionally set of four time dependent values

according to the introduced time zones in chapter 4.6.
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By energy consumptions, values scaled to the unit of kWh/100 km are denoted to allow for

independence of road segment length, especially applicable in the stage of constructing the energy

map. Although a huge number of recorded trips is incorporated, it cannot be expected that each

road segment has been traversed as frequent as it would be required for a thorough energy

inspection. In these cases, it is resorted on road type’s mean energy consumptions, which have

been obtained as an average of all trip’s consumptions on certain road types.

There are two steps enfolded in the static energy map approach: (a) constructing the map on

basis of historical data to gain average, road segment linked energy demands; (b) utilizing the map

for arbitrary trips to estimate its energy consumption. Firstly, addressing the former, the map

is constructed by taking all so far recorded trips into account, analysing those energetically by

applying an electric vehicle model, and finally extracting mentioned five energy values. Secondly,

addressing the application stage, traversed road segments of a chosen trip are extracted and all

corresponding energy values are summed up. An abstract overview of the conceptualization step

is delineated in Figure 6.6; and detailed descriptions are to follow in the next sections.

Figure 6.6: Principal scheme of the energy map conceptualization

As a by-product, it is targeted to export the previously imported OSM (described in Section

3.2.1) into the same OSM format for a convenient access by commonly used tools like JOSM.

This approach is considered as static by means of implicitly incorporating a set of charac-

teristics, which are not retrospectively adjustable for different vehicle types or for varying en-

vironmental conditions. The former is due to fixed vehicle characteristics directly involved into

the energy models. The latter is almost unavoidable as environmental conditions are inevitably

directly reflected in the GPS trajectories, influencing computed energy consumptions.

After revising results in the evaluation unit of Chapter 7, another restriction arose, expressing

the lack of treating particular traffic conditions such as traffic jams. This is due to the sole usage

of averaged energy values, which are less perfect capable of reflecting individual scenarios.

6.2.1 Energy Map Construction

The first step of the static energy map approach includes the energy map conceptualization by

incorporating recorded, pre-processed, and map-matched trips as established in Chapter 4. The

process is subdivided into road segment and road type based construction, both enhanced by
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time zone information. As aforementioned, those method do not use absolute, but relative energy

values, scaled to the unit of kWh/100 km, to overcome boundary effects which are basically

inaccuracies resulting from map-matching.

As described, map-matching tags the corresponding road segments to sample points and in-

evitably cuts the dynamic information between two adjacent points at segment transitions. When

recalling micro trips on a certain road segment, this information bit cannot be recovered, resulting

in incomplete dynamics and a generally smaller observed micro trip length compared to the road

segment length. Boundary effects are more impactful on smaller segments, when both length do

not correspond to a high degree. An example is provided in Figure 6.7, where only five sample

points are map-matched to a traversed segment, whose length, as a result, does not fit to the

actual segment length.

Figure 6.7: Boundary effects resulting in mismatch between micro trip length and road segment
length

Energy Map by Road Segments

To construct a road segment based energy map, it is proceeded in two steps: first, traversed road

segments are retrieved in form of micro trips; second, an energy model is applied on those fetched

micro trips. Regarding the first step, another two options are faced: (a) the entire recorded trip

set is browsed and micro trips are gathered according to road segment ids, which are tagged to

sample points; (b) the established SQL database is directly queried by fetching all micro trips

for selected road segment ids. The latter database method is more convenient and faster but was

initially not available. That is why this section introduces both methods in the following.

The second step, addressing the application of an energy model, is done for both methods in

the same manner and includes the actual computation of energy consumption for micro trip’s

driving profiles. Due to performance and robustness issues, in this stage the Backward Model is

utilized as rationales are discussed in Section 6.1.2. Although it is way simpler than its TUM

CREATE EV Model counterpart, evaluation results in Section 7.1 indicate a high compliance of

both models.

The method implied in (a) performs at the layer of a shift set, which is basically the result of

the entire driving profile analysis program as implemented according to analysis undertaken in

Chapter 3. It includes a hierarchical structure comprising taxis, shifts, trips, and sample points.

The algorithm skims iteratively through each layer until reaching the bottommost sample point

level. It then gathers transitions in sample point’s tagged road segment ids. Those transition

indices are the actual points at which the traversed road segment has changed: the edge points.

Next, it extracts micro trips by cutting along these edge points and hereby finally receives a set

of micro trips, of which each traverses only a single road segment.

In a second stage, those micro trips are applied on the chosen energy model. The computed

energy value is finally tagged to the road segment id, and described steps are repeated on behalf

of all successive trips.
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By querying the database directly, as stated in option (b), it can be avoided to immerse

into every single sample point as it would have been required in method (a). The power of a

database management system is conveniently exploited by fetching all micro trips, which took

place on a certain road segment, straightforwardly by using the SQL Select statement alike

an example query SELECT idTrip, datetime, speed, altitude FROM DataPoint WHERE

idSection = 8. In the example, most vital trip fields are fetched, including timestamp, speed,

and altitude value for road segment with id 8.

The road segment based energy map is in a sense problematic and questionable because it

heavily relies on the quality of previously conducted map-matching. Since the tagging of road

segment ids to sample points is solely done in the map-matching step, a good quality is crucial for

the here proposed approach. Especially the traversed road segment’s boundaries are of importance

(see Figure 6.7), exacerbating the process of gathering the entire range of dynamics.

A threshold of a minimum amount of five sample points is introduced, determining whether to

use a micro trip or not and avoiding a high fluctuation of energy values for very small micro trips.

It is assured that this procedure does not dismisses high speeds as those occur in almost every

case on longer road segments. The threshold hence implicitly regards all traffic conditions. Yet,

the nature of a road segment is its limited length; a high variance is to some extend inevitable

because micro trips on road segments tend to be short, anyway. In the examined dataset an

average number of about 19 sample points per road segment were obtained.

Enhancement according to Time Zone

All taxi companies in Singapore divide a day strategically into four parts with different applicable

surcharges: two peak hours, including commuting traffic home → work in the morning (Peak

AM ) and commuting traffic work → home in the evening (Peak PM ), one normal, surcharge free

period during daytime (Day), and one with a comparable low traffic volume during night (Night)

and highest surcharge accounting for aggravating working conditions for drivers. Detailed time

bounds, surcharges (additional fare as a share of the normal trip fare), and average speeds during

depicted periods are listed in Table 6.2. As the diverse surcharge and average speed distribution

justifies, the applicable time zone is of high interest and certainly considered impactful for the

energy examination.

Table 6.2: Time zones characteristics indicating start and end time, applicable taxi surcharge,
and average speed

Time Zone Start End Taxi Surcharge Average Speed

Peak AM 06:00 am 09:30 am 25 % 32.74 km/h
Day 09:30 am 18:00 pm 0 % 31.40 km/h
Peak PM 18:00 pm 24:00 pm 25 % 31.10 km/h
Night 00:00 am 06:00 am 50 % 37.38 km/h

Energy Map by Road Types

The energy map by road types is an eased version of the sophisticated road segment version, and

only sets up a database for categories of roads, other than for actual individual roads.

The OSM road network provides 16 different major road types as listed in Table 6.3. Each is

displayed and equipped with an average speed value resulting from investigations of all recorded
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trajectories and serving as a traffic indicator. A distinct speed distribution among road types is

evidence that traffic indeed follows patterns and behaves diverse for different categories.

Table 6.3: Road type overview as defined in OSM [58] with introduced clusters and average
speeds, gathered from all recorded trips

Cluster Index Road Type Average Speed

Motorway

1 Motorway 69.93 km/h
2 Trunk 48.10 km/h
9 Motorway Link 53.58 km/h
10 Trunk Link 43.65 km/h

Road

3 Primary 33.90 km/h
4 Secondary 27.24 km/h
5 Tertiary 26.20 km/h
11 Primary Link 29.71 km/h
12 Secondary Link 24.67 km/h
13 Tertiary Link 23.75 km/h

Urban

6 Unclassified 25.58 km/h
7 Residential 20.15 km/h
8 Service 18.85 km/h
14 Living Street 30.36 km/h
15 Track 25.73 km/h
16 Road -

In principal, the coarse-grained road type energy map is a subset of the fine-grained road

segment counterpart. Although it is not claimed that the road type based map performs as well

as the high detail road segment one, it is nevertheless expected to see decent results, capable of

substituting possibly missing road segment values or even serving as a stand-alone solution.

Moreover, road types are categorized by extracting three clusters Motorway, Road and Urban,

which are in line with the ARTEMIS categories of same names. Since OSM merely recommends,

rather than obligates the proper usage of those 16 road types [59], the mapper does not have to

follow these rules unconditionally, leading to inaccuracies as discussed in Chapter 3. Road types

are hence empirically linked to the introduced clusters.

A distribution of road types among Singapore for all recorded trips is illustrated in the bar

chart in Figure 6.8. More than 30% of all sample points are linked to Primary categorized roads,

which are mostly the main streets or feeder roads from motorways leading into the city and

apparently preferred by taxis. Motorways, Secondary, and Residential categorized roads are also

used frequently and meet at a share of around 15%. The category Residential denotes streets in

the uptown or in residential neighbourhoods.

The actual construction of a road type based energy map follows generally the road segment

based counterpart with its steps: (a) retrieval of road type micro trips; (b) application of an

energy model. The main difference in step (a) is the gathering of transition indices which are

now defined as indices where a change in a road type occurred. Where the road segment based

approach tends to result in rather small micro trips risking to omit characteristics in intersection

vicinity, it is now worked on typically longer road type micro trips (for comparison see Figure

6.9), covering a wider area of dynamics. This is more robust and results in a lower variance among

extracted characteristics. The energy model application in step (b) is identical to the previously

described process and hence not recalled again.
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Figure 6.8: Road type distribution for all captured trips

Figure 6.9: Road type micro trip length vs. road segment micro trip length

6.2.2 Energy Map Application

Once the energy map database is established, it is possible to derive energy consumptions for

arbitrary trips. Those trips can originate either from real-world GPS trajectories, as already used

to set up the database, or from simulated trips for a wide range of sampling rates as it will be

the anticipated case for the taxi simulation. In line with the energy map construction part, in

the application phase, traversed road segments initially have to be extracted and subsequently

applied with on database. Figure 6.10 schematically illustrates this application process.

Retrieval of traversed Road Segments

This step is identical to the one in the construction of the database. In both cases, traversed road

segments have to be obtained. For this, a good map-matching is required where the majority of

points has to be linked correctly as this is the only information for matching the sample points

with the underlying road network. In dependence of the sampling rate of input GPS trajectories,

either the introduced map-matching tools are applied, or a routing algorithms for estimating the

most likely taken route through the road network are utilized. Conceivable is also a combination

of both. The ultimate target is to project the input GPS trajectory as good as possible to the

road network.

Figure 6.11 compares routes with different estimation sources: The red coloured trajectory

displays the trajectory as recorded from the GPS logger (one second sampling period). A high

correspondence can be observed for the yellow, normal resolution (60 seconds sampling period)
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Figure 6.10: Schematic overview of energy map application with steps: Retrieval of traversed
nodes from origin/destination node (a1) or directly obtained from real-world trips (a2); (b) Route
reconstruction; (c) Retrieval of traversed road segments; (d) Retrieval of corresponding energy

values; (e) Summation of energy values

map-matched route, which essentially follows the original one with just little deviations. The green

coloured trajectory shows the estimated route when passing origin and destination positions into

a routing algorithm, using a connectivity matrix of Euclidean distance (see Section 3.2.1). This,

however, does not take any information despite the first and last sample point into account and

results in a different route.

Although considered as a special case where the taxi did not follow the shortest route, it was

frequently encountered that these circumstances do occur - often accompanied by an erroneous

trip extraction. Moreover, prevailing traffic conditions are not taken into consideration, leading

to the fact that the originally chosen route indeed might be the fastest due to avoidance of

congested roads. This should be considered when using the energy map solely based on origin

and destination locations.

Estimation of Energy Demand

The final step towards energy demand estimation is the actual application of the energy map on

arbitrary trips. The extracted route of a trip, including all traversed road segment ids, is already

sufficient for this purpose. Here lays the big distinction between construction and application:

was the speed value of essence in the former, is the location core in the latter.

For every entailed road segment id a set of energy consumptions is retrieved from the database

of all ever conducted micro trips on that specific road. This takes place subject to availability and

in accordance to the corresponding time zone. This step is repeated for all other road segment

ids.

Since a set of single energy consumptions is not of interest but rather is the average of all

historical trips, the mean is computed on-the-fly. By doing so, the energy map is urged to grow

simultaneously to its application and allow more values to be added when new data is recorded.
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Figure 6.11: Comparison between trip, map-matched route and origin/destination route, back-
ground image taken from [30]

An alternative approach would be to build the mean consumptions in a preceding step and store

its results.

In a final step, all received energy consumptions per road segment are summed up after

re-scaling the stored values in relation to the road segment’s length. Eventually, the actual

consumed energy in the unit of kWh is gained. Missing values for non traversed road segments

are substituted with average road type values as obtainable from the road type database.

6.3 Dynamic Driving Share Approach

One downside of the proposed energy map approach in Section 6.2 is its static design. Once,

energy values are computed on basis of a certain set of vehicle characteristics and by utilizing

an underlying energy model, values are fixed. Moreover, by solely focusing on the mean values,

particularities in trips are omitted, which makes this approach merely feasible for a good estimate

under normal conditions

The herein suggested more dynamic approach tries to mitigate those drawbacks by focusing on

patterns in trips’ trajectories, independent of an underlying vehicle type and capable of projecting

particularities in traffic conditions. It shall be acknowledged that recorded GPS trajectories

indeed are already influenced by vehicle specific parameters since its dynamic behaviour is directly

mirrored to the trips. As discussed earlier, it is nevertheless assumed feasible to transfer recorded

trips to various vehicle types including the one of an electric taxi.

6.3.1 Driving Share Approach Basics

This section describes the foundations of the driving share approach as adopted from [26]. The

principal idea and concept behind this approach is twofold: First, it is assumed that trips are

distinguishable into four distinct driving phases: idling, cruising, accelerating and decelerating ;
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each of them addresses a certain combination of power submodules to overcome various appli-

cable driving forces. By including vehicle characteristics and trip duration, power requirements

eventually translate into energy demands, which are of particularly interest. Second, the driving

phases are dependent on speed and moreover unique for different roads.

Driving Share Definition

Driving phases principally express in which dynamic mode or state the vehicle is operated, whether

the driver changes speed (accelerating or decelerating), stops the car (idle), or remains at approx-

imately the same speed (cruise). For instance, a trip snippet with a very low acceleration or

deceleration, as prevalent on motorways with relatively constant speed, behaves completely dif-

ferent to a snippet with high acceleration or deceleration under a Stop & Go conditions on urban

roads.

To reasonably distinguish driving phases, boundary thresholds are defined tolerating small

outliers and therefore broaden the driving phase definitions. Since a vehicle is naturally so dy-

namic constituted that it is either accelerating or decelerating throughout the time, it is required

to introduce mentioned thresholds. The four characteristical driving phases are introduced with

mentioned thresholds as follows.

Idle The vehicle is not moving, denoted by a speed value below a threshold of 1 km/h. Generic

traffic situation are, for instance, waiting in front of a red traffic light, traffic jams, or -

particularly in case of taxis - waiting periods at taxi stands.

Cruise The vehicle is driving at constant speed defined by a value between an upper bounded

acceleration of 0.15 m/s2 and a lower bounded deceleration of −0.15 m/s2. Examples of traffic

situations are long trips on uncongested motorways or trips under smooth high street traffic

conditions with constant speed.

Acceleration The vehicle accelerates with a higher value as 0.15 m/s2. Suggested traffic situa-

tions are starting after a red traffic light or increasing speed for a takeover manoeuvre.

Deceleration The vehicle decelerates with a lower value as −0.15 m/s2. Possible traffic situa-

tions are stopping for a red traffic light or decreasing speed due to congestion.

The proposed approach focuses on the distribution of those driving phases for a certain trip.

In accordance with the paper in [26], which introduces the discussed concept, this distribution is

called driving share. For instance, a ride on a motorway would, due to its typically smooth traffic

flow conditions, have a higher share of cruising time than accelerating or decelerating phases

and likely zero idling share. A converse example of a ride on a congested road in an urban area

during peak hours, however, would probably reveal a high share of accelerating, decelerating and

foremost idling time, while cruising share would be negligible low.

Underlying Energy Model

The total power requirement to overcome driving forces is denoted in 6.1 as a summation of

all partial power submodules. Since this work supports an electrical vehicle with recuperation

capabilities, Pdecelerating can be negative which decreases the required power or even allows for

recharging the battery.

Pbattery = Proll + Pair + Paccelerating + Pdecelerating + Pgrade + Paux (6.1)
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Each power contributor is computed using following equations as adopted from [26, p. 259].

Proll = m · g · Fr · v̄ (6.2)

Pair =
1

2
· cw · ρair ·Afront ·

√
v3 (6.3)

Paccelerating = m · ā · v̄ (6.4)

Pdecelerating = −m · ā · v̄ (6.5)

Pgrade = m · g · αgradient · v̄ (6.6)

Pauxiliary = const. (6.7)

Proll . . . Needed power to overcome rolling resistance [kW]
Pair . . . Needed power to overcome air resistance [kW]

Paccelerating . . . Needed power for acceleration [kW]
Pdecelerating . . . Gained power from decelerating [kW]
Pgradient . . . Needed power to overcome road gradient [kW]
Pauxiliary . . . Needed power for auxiliary power demand [kW]

v̄ . . . Vehicle’s average speed [m/s]

v3 . . . Vehicle’s average cubic speed [m3/s3]
ā . . . Vehicle’s average acceleration and deceleration, respectively [m/s2]

αgradient . . . Road gradient [%]
m, g, Fr, cw, ρair, Afront . . . Vehicle characteristics (see Table 6.1)

Figure 6.12: Impact of driving power submodules subject to speed with a constant acceleration
of 0.5 m/s2 and 1 % road gradient, as suggested in [26, p. 260]

As evident from Figure 6.12, Proll and Pgrade are almost independent from vehicle’s speed,

whereas the linearly rising Paccelerating and Paccelerating, as well as particular the cubical rising

Pair have a higher impact at higher speeds. It seems that engine power up to a speed of 100 km/h

is mainly spent to overcome acceleration resistance, while a value beyond this threshold predom-

inately requires engine power to overcome air and acceleration resistance. Especially the cubical

dependency should be handled with great care since the driving share approach merely takes the
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mean speed as an input for the model equations. To mitigate this possible weakness, a second

average speed value v3 is introduced where the cube is calculated prior to extracting the mean.

In the following, all energy consumption contributors subject to power, time, and driving

shares are delineated and its equation given. The symbol τ hereby expresses the normalized

share of time spend in that particular driving phase.

Eidling The car is not moving and hence does not consume any motion related energy. Only the

auxiliary devices contribute to its overall power demand.

Eidling = Pauxiliary · t · τidling (6.8)

Ecruising The car runs at constant speed which allows to omit acceleration and deceleration

power. Merely roll, air and grade resistance pertain.

Ecruising = (Proll + Pair + Pgrade + Pauxiliary) · t · τcruising (6.9)

Eaccelerating The car raises its speed, thus energy to overcome acceleration related forces is

needed. Since the car is still moving, roll, air and grade resistance additionally apply.

Eaccelerating = (Paccelerating + Proll + Pair + Pgrade + Pauxiliary) · t · τaccelerating (6.10)

Edecelerating The car reduces its speed and besides the regular motion resistance of moving, roll,

air and grade resistance, energy may be utilized by recuperation denoted by a negative value of

Pdecelerating.

Edecelerating = (Pdecelerating + Proll + Pair + Pgrade + Pauxiliary) · t · τdecelerating (6.11)

As can be seen in Equations 6.8 to 6.11, each driving phase related energy consumption is

computed as a summation of the applicable power values for that specific driving phase and by

multiplying those with the total trip time, as well as the share of time spend in this phase. The

total energy consumption is finally derived as the addition of all partial energy values in Equation

6.12.

Etotal = Eidling + Ecruising + Eaccelerating + Edecelerating (6.12)

6.3.2 Driving Shares for Energy Estimation

As of [26], the fundamental concept to link driving shares with energy consumption is the de-

pendency on speed. It is examined that driving phase distributions change subject to speed and

differ for various road types or even reveal diverse characteristics on the level of road segments.

This is where the established approach comes into play. The principal idea is to establish a solely

speed depended driving share database to compute the energy consumption for arbitrary trips.

In addition to the driving shares, average acceleration and deceleration values subject to speed

enrich the method and can directly be passed to the equations of the underlying vehicle model.

In the following, those speed dependent average acceleration and deceleration values are named

dynamics.
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The driving share and dynamics distribution is intrinsically depended on various parameters,

such as traffic conditions, weather, and driving style - just to name a few. However, aiming at an

easy but reasonable implementation, both are kept solely depended on vehicle’s speed. Although

hereby likely neglecting a number of input factors, this dependency is assumed satisfactory feasible

for mirroring the driving situation effectively and sufficiently.

An upcoming restriction might be that the method is only applicable when drawing from

short trips because averaged driving shares and dynamics are only reasonable if there exists a

high delimitation in driving conditions. One option is to use traversed road segments or traversed

road type micro trips, as they are by default short as described in Section 6.3.1. Alike the energy

map construction, the objective is to construct a driving share and dynamics database for each

road segment and each road type, enhanced by further differentiation into time zones.

Extraction of Driving Share and Dynamics

For the construction of the driving share database, road segment and road type micro trips are

utilized, which are extracted as described in Section 6.2.1. As therein likewise introduced, the

database is enhanced by treating micro trips according to their time zone, thus distinguishing

driving shares temporally. Each of those retrieved micro trips is processed by an algorithm which

extracts seven characteristics: driving shares (distribution of the four driving phases), mean

acceleration and deceleration, as well as mean speed.

For eased understanding, virtually each recorded second of driving can be classified into one

distinct driving phase. Likewise, the dynamics are easily obtainable on a second-by-second basis

taking the successor sample point into account.

In detail, the seized driving shares are normalized to 100 % and average speed as well as

average acceleration and deceleration values are computed. For the two last mentioned values,

only driving periods where changes in speed do actually apply are considered, leading to an

omission of standstill and cruising times, which would have adversely affected the values.

Curve Fitting

On basis of extracted driving shares and dynamics subject to speed, in each case, a curve fitting

technique is performed to gather continuous functions describing these dependencies. At first,

it is looked into the basic shape of each function by plotting averaged values for each available

speed as illustrated in Figure 6.13 for the driving shares and in Figure 6.14 for the dynamic values.

These are attached with an empirical evaluated fit function.

For curve fitting, the strength of existing built-in Matlab function lsqcurvefit [60] (Least Square

Curve Fitting) is exploited. This technique solves nonlinear data fitting problems by minimizing

the variance to a predefined function. Therefore, a basic predefined function type is requested for

each distinct shape. From 6.13 three different function types can be derived.

The Idle share function basically shapes alike a decreasing exponential function, which is

shifted to the right following a feasible function as given in Equation 6.13. This shape is suitable

because for smaller average speeds the idling share has to increase and eventually intersect the

y-axis at unity because in this case the vehicle was not driving at all. For higher speeds, by

contrast, the idling share approaches the x-axis and becomes eventually negligible small.

The Cruise share function has an Arcus-Tangential form, shifted to the right and top, and is

asymptotically constraint by an upper and lower boundary. It follows a possible equation as given

in Equation 6.14. This shape is reasonable because a higher share of cruising for higher speeds,
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Figure 6.13: Curve fitting for driving shares functions of four driving phases

fidle(x) = a · e−b·x (6.13)

a . . . The y-axis intercept where e-function x-value is zero
b . . . The e-function’s decreasing speed

where usually few obstacles or few traffic flow changes occur, is more likely. However, there is no

big drop or rise as also for small speeds cruising time is conceivable.

fcruise(x) = a · arctan(b · x+ c) + d (6.14)

a . . . Stretching along y-axis
b . . . Stretching along x-axis
c . . . The x-axis shift
d . . . The y-axis shift

To describe the Acceleration and Deceleration functions, which both reveal the same function

shape, the difference of two decreasing e-functions with variant decreasing speeds is exploited,

intersecting the origin and approaching to a lower asymptote as a potential shape according to

Equation 6.15. This function type is applicable because the graph has to intersect the origin for

the same reason as the idling share has to intersect unity: the car is not driving at all. It increases

for higher speeds reaching a peak at roughly 35 km/h, which is equal to the average inter urban

speed. This is because at these speeds there is a high probability for Stop & Go traffic. It finally

decreases for trips with very high average speed as on motorways with additional relatively small

speed changes.

facc/dec(x) = a · (e−b·x − e−c·x) + d · e−1/x (6.15)

a . . . The y-axis intercept of resulting function
b . . . Decreasing speed for first e-function
c . . . Decreasing speed for second e-function
d . . . The lower asymptote the resulting function heads to
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Figure 6.14: Curve fitting for dynamics functions of acceleration and deceleration

In the dynamics distribution in Figure 6.14, two different function types are gained, which are

mirror-symmetric and can be consolidated into one function with contrary signs. When comparing

those to the results gained from previous driving share curve fitting, a high accordance to the

Acceleration and Deceleration distribution is observed, and hence the same function are used once

more as given in Equation 6.15.

Parameter Extraction

By applying curve fitting, Matlab generates a set of parameters a, b, c and d (c and d only where

applicable) which explicitly define the underlying functions. Therefore, the problem is translated

from a huge number of fixed driving shares and dynamics to a small set of more flexible parameters

for speed depended functions. In a later stage, those can be used to recover the original values,

which in turn are input for the underlying energy model.

It should be noted that this approach suffers from a high fluctuation and uncertainty especially

when working on short road segment or road type micro trips. For instance, a quantity of less

than five points per micro trip or less than 30 total recoded micro trips per traversed segment

may not reveal any characteristical pattern at all. On top of that, different driving situations are

included by default, such as intersections, traffic lights, congestions, and traffic jams.

It is inevitably operated on a set of averaged values, which only reveal their full power if

extracted from a huge dataset. An evidence for this fact can be retrieved from Figure 6.15, where

for a specific road segment all actual input points for performed curve fitting are displayed for

driving shares and dynamics.

6.3.3 Driving Share Application

The previous constructed database can be applied on arbitrary trips: firstly, by retrieving cor-

responding driving shares and dynamics from the database, and secondly, by computing the

hereupon required energy consumption. This approach is best suitable for recorded real-world

trips which reveal detailed or moderate dynamic information, as the average speed is essential for

the proposed method.



Chapter 6. Energy Demand Analysis - Methodology 90

(a) Driving shares (b) Dynamics

Figure 6.15: Curve fitting contemplating all values

Nevertheless, there are application scenarios conceivable where information about traversed

road segments or road types is sufficient. In this case, dynamic information like speed and road

gradient is not received from the trip itself but from previous established databases. Examples

are already given in Section 3.2.2, where LTA provided speed band sensors are queried, or in

Section 6.2.1, where average speed values for road types are depicted.

In Figure 6.16, a scheme about the application process is visualized, including the gathering

of average speed per road segment and the retrieval of speed dependent driving share functions

per road segment.

Figure 6.16: Driving share application scheme

Retrieval of Driving Shares and Dynamics

Based on the chosen scenario, the retrieval of driving shares is diverse. In case of real-world

trips, the first step comprises the gathering of traversed road segments. Hence, a previously

carried out map-matching is required. A successful map-matching tags each sample point with a

corresponding road segment id which is passed as a key to the driving share database, and the

herein stored driving shares and dynamics are retrieved - one set per ever carried out trip.

Since a set of driving shares and dynamics is not of major benefit, but rather are the parameters

of underlying functions describing its distribution subject to time, the introduced curve fitting

technique is now executed. An on-the-fly curve fitting is not suggested (the retrieval of average

energy values in the energy map approach was, by contrast) because it would cost too much time.

Hence this step is outsourced prior to the actual application of the method in its objected usage
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context. Received function parameters are additionally stored, and curve fitting is repeated on

reception of new data.

In addition to the values received from the database, the micro trip itself has to be extracted,

comprising all connected sample points on that specific road segment, in order to compute the

average speed (as the single input for the driving shares and dynamics functions). In case of

nonexistent speed values, like simulated trips of low resolution or routed trips, it is possible to

obtain dynamic values from previous mentioned data sources as a proxy. At this point, in both

cases, the function parameters and the average speeds are obtained, which both can easily be

handed to the actual functions from Equation 6.13, 6.14 and 6.15 for computing the resulting

driving shares and dynamics.

6.4 Instant Approaches

Next to the presented static and dynamic approaches, a third category instant is established,

which aims at instantaneously addressing the trip’s dynamics distribution (without using an

energy model) and is solely applicable for trips of a high sampling rate.

This instant category comprises two approaches: a driving share and a driving feature ap-

proach. The former is already known from the dynamic category where the distribution of the

four driving phases and mean acceleration/deceleration is considered. The latter is a novel at-

tempt, aiming at taking a set of 16 different features into account, as drawn from examined

feature extraction in Section 4.5. Hereupon, clusters are established reflecting characteristical

driving patterns, and certain energy values are linked to each. Both approaches employ recorded

trips of high sampling rates and do not require any information about traversed road segments.

Thus, they are the only approaches which are independent of the - to times - error prone map-

matching step.

Both approaches utilize micro trips as obtained from a micro trip extraction algorithm in

Section 4.5. To recall, it is aimed to divide the entire interested trip into smaller portions (the

actual micro trips) with distinct characteristics, following the rules of smooth transitions among

two adjacent parts. In the best case, the original trip resembles a re-assembled set of extracted

micro trips and no intermediate gaps are produced. In reality, this is hardly achievable since the

smooth transition rules typically enable only the inclusion of a trip’s subset. In these cases, gap

indices where no micro trip was extracted are located, and characteristics are interpolated by

taking the two adjacent micro trip characteristics into account.

6.4.1 Instant Driving Share Approach

Extracted micro trips are directly investigated with respect to driving shares and dynamics. No

previously established database is queried, but the resulting values are directly applied on the

underlying model.

For each micro trip the average speed, acceleration, and deceleration is computed. Those

values plus the EV characteristics are then directly passed to the equations of the driving share

model introduced in Section 6.3.3.

This approach reveals a rather rough estimate about energy consumptions because important

dynamic details are omitted by merely considering average values of micro trips of about 210

seconds. However, it is helpful in validating the addressed model, which differs from the one

utilized in the more comprehensive EV models.
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6.4.2 Instant Driving Feature Approach

In the instant driving feature approach, it is principally assumed that a set of characteristical

features indicate a certain energy consumption if the features have been chosen accordingly and

the hereupon established clusters as distinct among each other. Evidence for this attempt is

given in [12], where the energy consumption even influenced the construction of clusters to a high

degree.

To classify micro trips with respect to clusters, for each micro trip a feature vector is extract,

including the characteristics presented in the methodology section in Table 4.1. It is then at-

tempted to find the best matching cluster denoted by the minimum Euclidean distance to the

cluster centroid. Subsequently, previously computed average energy consumptions are gathered

for all micro trips belonging to the matching cluster, and these step are repeated for all remaining

micro trips.

The importance of normalizing feature vectors in the clustering and classification phase should

be highlighted. As a measure to identify and compute cluster’s centroids, the built-in Matlab

function kmeans and the Euclidean distance are used. The Euclidean distance is particularly

sensible to vector’s magnitude and therefore requires normalization. Each feature vector of the

fetched micro trips is normalize by applying the same standard deviations and mean values as

gathered in the clustering step.

Figure 6.17 provides an insight into the 18 eventually established clusters and its centroids for

two examples with two highlighted features, each. The clusters are displayed in different colour,

and a distinct distribution with marked boundaries is perceivable.

(a) Mean speed vs. mean acceleration (b) Distance vs. idle share

Figure 6.17: Extract of established 18 clusters of driving feature approach



Chapter 7

Energy Demand Analysis - Results

and Evaluation

This chapter summarizes and evaluates results of the application of the utilized energy models and

energy estimation approaches as introduced in the previous Chapter 6. For evaluation purposes,

a representative set of total 795 trips is selected, following proceedings discussed in Section 7.2.1.

To gain an insight into these trips, an extract of nine trips is displayed in Figure 7.1. The

representative trips basically reflect the overall distribution in terms of status, duration, and

length, and vary in its energy consumptions to derive insightful statements from evaluation.

The first section compares both energy models the TUM CREATE EV Model and the Back-

ward Model among each other and derives consequences for its usage within herein established

approaches. The second section concentrates on the evaluation of developed energy estimation

approaches against a reference vehicle model for different input data sampling rates. All en-

ergy values are reported in the scaled dimension of kWh/100 km to ease comparison and enable

independence from trip length.

Figure 7.1: Extract of representative trips for validation, background images taken from [30]

93
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7.1 Comparison of Energy Models

In this work, electrical vehicle models are utilized twofold: first, as a foundation for energy

consumption calculation as part of the static energy map; second, to validate results among all

energy estimation approaches. For this purpose, a confirmation and prove is needed that the

incorporated models are of good quality and reliably predict energy consumptions correctly.

Since there is no access to real-world energy consumption data, such as trials on real EVs or

CAN BUS retrievable energetic information as accessible for newer cars, the validation solely relies

on a vehicle model as a reference - the so called ‘ground truth’. For this task, the TUM CREATE

EV Model is utilized as it underwent a number of validations and was assessed as qualitatively

highly valuable. It has been developed approximately since two years and preliminary used for

the EVA taxi consumption estimation, and it is utilized among a number of different project

in various RPs. In the following, the term reference vehicle model always denotes the TUM

CREATE EV Model.

According to [61], the average energy consumption per 100 km for the one of the latest fully

electric powered vehicle BMW i3 is 16.8 kWh (combined for city and motorway). Since this car

is appreciably comparable to the characteristics of the EVA taxi prototype, most of the vehicle

characteristics are taken from, it is reasonable to use this value as a benchmark and approximate

estimation reference. Note that the actual vehicles attached with GPS loggers are non-electric

and hence show a slightly different dynamic behaviour, particularly in terms of acceleration where

the electric engine has the advantage of providing torque linearly right from the beginning - even

for low rotational speeds.

The reference model has some drawbacks in terms of computation time and robustness as

discussed earlier in Section 6.1. For the conceptualization of the energy map, thus, the simplified

Backward Model is employed. To prove its operational capability, both models are compared on

a subset of nine trips of three categories, taken from the total set of representative trips. Results

are listed in Table 7.1. It is evident that deviations are very low and a high compliance can be

observed throughout the clusters with deviation not exceeding 5 %.

Road
Cluster

TUM CREATE
EV Model

Backward
Model

Deviation

Urban
17.34 kWh 16.73 kWh −3.6 %
17.15 kWh 16.85 kWh −1.8 %
18.99 kWh 18.57 kWh −2.3 %

Road
17.03 kWh 16.71 kWh −1.9 %
16.11 kWh 16.75 kWh +3.8 %
16.54 kWh 16.03 kWh −3.2 %

Motorway
15.99 kWh 15.83 kWh −1.0 %
15.02 kWh 14.74 kWh −1.9 %
14.45 kWh 14.84 kWh +2.7 %

Table 7.1: Comparison of energy models for roadtype clusters with energy values scaled to
energy values per 100 km

A further investigation result is illustrated in Figure 7.2, where all 795 trips have been applied

on both models. In the left-hand chart, the Backward Model estimation is placed on the x-axis,

whereas the y-axis entails the reference vehicle model calculations. It is apparent that the values

in principal follow the ideal diagonal line displayed as the ‘optimum’. This is considered as ideal
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because both estimation sources would meet at the same value. Another two lines representing

the ±5 % and ±10 % deviation borders are marked. Moreover, most of the values lay within the

bounds of ±5 % deviation, revealing a high accordance. Only a little number of outliers can be

seen where the reference model estimated a value which is too high. However, those are negligible.

The right-hand chart shows the trip distance comparison, which can have a biasing effect of

scaled values shown in the left-hand chart. However, in this case a high compliance is observed,

too.

(a) Energy comparison (b) Distance comparison

Figure 7.2: Comparison of energy models for all representative trips

7.2 Environment and Scope of Evaluation

One could say that a vehicle model is perfectly sufficient for the energy estimation task as it is

already a great predictor and is even used as the reference ground truth. However, the actual

high resolution trip’s dynamics have to be available because no historical, traffic, or environmental

data is leveraged.

Thus, the established energy demand estimation approaches have their right to exist; a de-

tailed trip’s trajectory with a high dynamics resolution (speed, acceleration, and altitude) cannot

implicitly be expected as an input for developed programs - particularly in the context of a simula-

tion. If so, it would be perfectly adequate to rely on the introduced vehicle models since a detailed

trip with known dynamics is easily processable by those. Moreover, elaborated approaches are

faster and more tailored to be used in the context of a more abstract simulation.

The evaluation’s objective entails also a performance investigation of various sampling rates

or periods for input trips. For this purpose, five variants are chosen: 10 s, 60 s, 180 s, 300 s, and

sampling period ‘zero’ as solely using origin and destination of a trip. Note that for the prior

database’s conceptualization only high resolution trips were taken into consideration to allow for

extracting as many detailed energetic characteristics about Singapore’s road network as possible.

The application now assumes that a database has already been established.

The approaches which link energy characteristics to the underlying road network lead to further

helpful applications, which escalate the usage scenarios from just this work’s case to many others.

For instance, they could be used for energy economic routing or trip recommendations, especially

for electric vehicles with an interest in using eco-friendly routes to save scarce energy.

Since a representative subset of taxis is chosen, which mirrors the whole taxi fleet accordingly,

the taxi trajectories give a very good insight into the actual overall traffic situation as a repre-

sentative. Furthermore, taxis are virtually on the road throughout the time. Taken the status
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into consideration, they also reflect people’s behaviour and commuting patterns subject to time

and location.

Approaches and implementations underlie a high impact of input sampling rates. The sam-

pling rate particularly affects map-matching, but also influences the extraction of driving shares,

characteristical driving features, and the quality of vehicle model’s energy computation. Figure

7.3 gives an idea about different sampling rates as possible simulation inputs. It basically af-

fects the resolution of small dynamic changes, which are of great importance for a fair energy

estimation.

Figure 7.3: Overview of different sampling rates

It should once more be highlighted that there is a high impact of chosen parameters for

developed programs. Most of those are derived empirically from investigations. There is not just

a high dependency between energy demand estimations and chosen vehicle characteristics for the

EV models; also the set of program parameters influences previous conducted processing steps.

A full list can be obtained from Appendix H.

7.2.1 Evaluation Environment

The evaluation environment virtually describes what is required for the process of evaluation,

which data is concerned, and which established databases are queried. The current implementa-

tion stores the road segment specific characteristics (average energy values for the energy map,

and driving share and dynamics function parameters in case of driving share approach) in a Mat-

lab hash map format. The map’s key corresponds in each case to the road segment id. With this

preliminary set-up, it is possible to transfer characteristics into the established SQL database (see

Appendix C), where all trips and the road network are already available. For instance, the Road

Segment table in the database could easily be extended with fields denoting driving shares and

energy values.

In the following sections, the choice and gathering of representative trips for all assessments is

initially described, followed with a description about incorporated databases emphasizing on its

utilization.

Representative Dataset for Validation

To derive meaningful statements from the following validation procedure, it is vital to work on a

representative subset of all taxi trips to cover a wide range of various driving situations, vehicle

types, and styles by different drivers. To allow for outliers and to enhance validity, a relatively big

validation set is employed. A number of 960 trips was targeted, which are composed as follows:
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For each tracked taxi (ntaxi = 20), for each time zone Peak AM, Day, Peak PM, Night (ntime = 4),

and for each highway cluster Motorway, Road, Urban (ncluster = 3), four trips (ntrip = 4) were

chosen. This sums up to ntrips = ntaxi ·ntime ·ncluster ·ntrip = 20 ·4 ·3 ·4 = 960 trips. However, due

to partial coverage of several road types in combination with certain time zones, only an excerpt

of 795 trips could be used.

The determination of representative trips follows basically the trip length and status distri-

bution. To derive meaningful results, which are not disturbed by factors arising on small trips

(e.g., poor map-matching or few distinct driving characteristics), the focus is set on trips between

10 km and 30 km. Regarding the status, the overall distribution is alluded, and 75 % trips of

status Hired and 25 % of status For Hire are taken. All other statuses were disregarded with

respect to its few occurrences.

The energetic examination of representative trips, applied on the reference vehicle model,

results in a mean energy demand of 15.71 kWh/100 km and is listed with additional characteristics

in Table 7.2. The mean is slightly lower than the BMW i3 benchmark and possibly accounted for

different EV characteristics and energy consumption measurement procedures.

Table 7.2: Characteristics of representative trips as used for validation, energy demand values
are stated per 100 km

Characteristic Mean Min Max 5% 95%

Distance 17.10 km 10.01 km 29.88 km 10.47 km 27.11 km
Energy Demand 15.71 kWh 11.59 kWh 37.98 kWh 13.27 kWh 18.50 kWh

Utilized Databases

Inputs for the following evaluation steps are the road segment characteristics (average energy,

driving shares and dynamics function parameters), which are stored in Matlab hash maps. Addi-

tionally, the average energy per road type and driving shares and dynamics function parameters

per road type, which are stored in common Matlab arrays, are fetched. Both source types were

previously conceptualized by using all recorded trips in the period from 8th June to 9th September.

Table 7.3 lists all established approaches which are evaluated and validated in this unit. By

including time zones, the differentiation between Peak AM, Day, Peak PM, and Night is taken

into account and an increase in estimation quality is expected. As discussed later, this effect did

not ensue because the time zones taken from taxi companies’ definitions do not reflect the actual

traffic situation accordingly.

Table 7.3: Validation categories segmented into static, dynamic, and instant approaches

Static Energy Map
Road Segment

Mean
Time Zone

Road Type
Mean

Time Zone

Dynamic Driving Share
Road Segment

Mean
Time Zone

Road Type
Mean

Time Zone

Instant
Driving Share

Features
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7.2.2 Application Set-Up

The evaluation is done respect to primary three emphasises: (a) the comparison of estimated

energy demands of established approaches with the reference vehicle model, (b) the compari-

son among the estimation approaches; (c) the dependency of input trips’ sampling rate and its

influence on energy demand estimation quality.

The alternation of different sampling rates reflects different scenarios and mimes various input

trip resolutions. There might only be the origin and destination location available on whose basis

an energy demand has to be estimated; or conceivable is a trajectory with three minute sampling

period as prevalent in the booking data. Also 60 seconds, as used in the map-matching step,

or a high resolution of one second alike the recorded raw trajectories is a possible input for the

programs in the context of a simulation. As a reminder, at low sampling rates navigation methods

are used to determine traversed road segments.

The representative trips are re-sampled with the desired sampling rate, top-down by using the

highest sampling rate and reducing it stepwise artificially by omitting intermediate points. In this

way, lower rates are simulated as they would have been received from input data. The erected

database, however, is not touched in this stage and a high resolution database is still harvested.

As already introduced in the corresponding sections, the application process of the three main

approaches’ categories is diverse and recapitulatory recalled as follows.

Static Approach Map-matching → Retrieval of traversed road segment list → Retrieval of

corresponding time zone (→ Retrieval of all recorded energy values per road segment) →
Extraction of average energy values per road segment → Summation of all partial energy

consumptions

Dynamic Approach Map-matching → Retrieval of traversed road segment list → Retrieval of

corresponding time zone (→ Retrieval of all recorded driving shares and dynamics per road

segment) → Extraction of function parameters for driving share and dynamics functions →
Application of energy model with gained driving shares and dynamics

Instant Approach Extraction of micro trips → Extraction of driving features or driving shares

→ Clustering of feature vectors or extraction of driving share and dynamics → Summation

of all received or computed energy consumptions per micro trip

The steps in brackets denote those which are not necessary if average energy consumption

(in case of energy map) and function parameters (in case of driving shares) have already been

extracted in a preceding step.

For the results presented in the next sections, box plots are utilized, which are a convenient

and insightful graphical representation of deviations between a set of reference and a set of

estimated values. In this work’s case, the reference values are energy consumptions computed by

the reference vehicle model, and the estimated ones come from implemented approaches.

A box plot basically consists of four features: the mean value, two rectangles representing a

certain share of values, and outliers. The mean deviation is displayed as a solid horizontal line.

The range in which the best 25 % to 75 % of all values lie is illustrated with a blue rectangle, and

the area which covers the best 5 % to 95 % of all values is depicted by the black vertical line. Red

crosses mark outliers. A 2σ outlier threshold is aimed to be achieved; therefore the ‘Whisker’ is

set to 0.9826 according to [62] and explained in Figure 7.4.
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Figure 7.4: Box plot basics where the box denoted by IQR entails the best 50 % values, and
the red line marks values within a certain deviation boundary (in this work’s case it is set to 2σ),

adopted from [63]

7.3 Evaluation Results

This section presents the main results of the application of implemented energy estimation ap-

proaches and the quality of its corresponding established databases when applied on the intro-

duced representative trip set. First, a compressed table summarising the major box plot results

is presented, comparing all approaches at a glance. Second, it is continued with discussing depen-

dencies between sampling rate and its impact of estimation quality. In a later stage, each approach

is analysed in detail, presenting akin detailed box plots and attempting to explain deviations and

remarkable effects.

Table 7.4 compares specific values extracted from each box plot and expresses the overall ap-

proaches’ estimation quality. In each, as anticipated, the road segment based versions performs

better than the road type ones due to its finer-grained nature. The inclusion of time zone con-

sideration does not improve results to the expected extent or even worsens the outcomes. One

reason might be the fact that the time zones, as chosen by the taxi companies, are mainly defined

for the application of different surcharges and do not reflect the actual traffic conditions and

the corresponding required energy demand accordingly. Both instant approaches perform decent,

whereby the instant driving share approach almost reaches its dynamic counterpart.

Table 7.4: Comparison of energy approach results segmented into approaches’ versions

Approach Method Vers. Mean
Deviation
Best 50 %

Deviation
Best 90 %

Energy Map
Road Segment

Mean −8.8 % 13.1 %[−6.9%,+6.2%] 37.3 %[−19.7%,+17.6%]

Time −8.7 % 13.3 %[−6.7%,−6.6%] 38.3 %[−19.3%,+19.0%]

Road Type
Mean +1.7 % 14.1 %[−6.5%,+7.6%] 41.9 %[−20.0%,+21.9%]

Time +1.4 % 14.1 %[−6.7%,+7.4%] 41.5 %[−20.3%,+21.2%]

Driving Share
Road Segment

Mean +9.3 % 9.2 %[−4.3%,+4.9%] 26.8 %[−13.0%,+14.8%]

Time +8.5 % 9.4 %[−4.9%,+4.5%] 27.7 %[−14.0%,+13.7%]

Road Type
Mean +13.9 % 9.9 %[−4.7%,+5.2%] 29.1 %[−14.2%,+14.9%]

Time +13.7 % 9.9 %[−4.9%,+5.0%] 29.1 %[−15.4%,+13.7%]

Driving Share +3.1 % 13.4 %[−7.1%,+6.3%] 30.3 %[−12.3%,+18.0%]

Driving Features −9.7 % 14.7 %[−6.3%,+8.4%] 38.0 %[−19.3%,+18.7%]
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When comparing values to those from lower or higher sampling rates, a deteriorating effect

for all approaches can be observed as evident from Figure 7.5. Only the range of the best 50 %

trips are picked for displaying.

For the graph’s construction, the trip representatives are re-map-matched with different sam-

pling rates. The estimation quality of both dynamic approaches does indeed decrease with lower

sampling rate, but they are still utilizable as results are considerably good. This is accounted for

by the fact that map-matching quality is fairly constant for a wide range of sampling rates as

shown before in the map-matching evaluation unit in Section 5.2. Since the extraction of road

segments and hence the retrieval of road segment characteristics correlates to the map-matching,

this effect was to a certain extent expected.

(a) Energy map energy estimation (b) Energy map distance

(c) Driving Share energy estimation (d) Driving Share distance

Figure 7.5: Energy demand and distance estimation for different sampling rates

7.3.1 Results for Energy Map Approach

Table 7.5 lists the results of the road type energy map depicting the mean energy demand per

100 km and per time zone. Regarding the mean values, several features can be observed. Energy

consumption is generally lower on roads with typically higher speeds. That is, the Motorway clus-

ter with Motorway and Trunk consumptions settle below 15 kWh/100 km, followed by the Road

cluster with Primary, Secondary, and Tertiary at around 17 kWh/100 km, and reaches its peak for

the Urban cluster with Unclassified, Residential, and Service at average 19 kWh/100 km. Living

Street, Track, and Road are disregarded since, according to Figure 6.8, a very low occurrences of

less than 0.1 % is observed.

The five road types attributed with Link constitute connections between roads of same or

different types. They are generally lower for the cluster Motorway because these links are often

tagged in the transition between a road with higher speed and a road with lower speed; thus,

the share of the vehicle decelerating overtops. For Links of cluster Road, by contrast, values are

increasing as it is often the case that those links are mapped where a transition to a road with

higher speed is present, causing a high share of acceleration.
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Table 7.5: Energy consumption per road type and time zone in units of kWh/100 km

Mean Peak AM Day Peak PM Night Id Road Type

14.90 14.62 14.77 14.65 16.52 1 Motorway
14.82 15.79 14.49 14.79 15.23 2 Trunk
16.19 16.26 16.27 16.16 15.89 3 Primary
17.60 17.28 17.52 17.80 17.75 4 Secondary
17.17 17.89 17.08 17.06 16.93 5 Tertiary
17.77 16.64 17.12 18.82 20.62 6 Unclassified
18.86 18.38 18.97 19.12 18.19 7 Residential
20.36 21.03 20.41 20.39 18.87 8 Service
14.83 15.05 14.59 14.63 16.03 9 Motorway Link
13.91 14.92 14.07 13.42 13.49 10 Trunk Link
22.06 21.93 22.25 22.21 21.03 11 Primary Link
21.20 20.51 21.00 22.15 19.96 12 Secondary Link
18.63 17.37 18.50 18.78 24.04 13 Tertiary Link
14.17 12.85 13.69 15.89 13.53 14 Living Street
21.73 20.55 20.94 23.20 22.18 15 Track

- - - - - 16 Road

By immersing into the different time zones, this work’s proposed approaches principally got

confirmed regarding the expected outcomes. Since a high correlation between average speed

and energy consumption is seen, two features should be highlighted: for the Motorway road

type, average energy consumption increases during night as roads are free and taxis can drive at

higher speeds. For an EV this usually means higher consumption as the impact of the cubic speed

dependent air resistance rises. For the Primary road type, on the other hand, a slightly decreasing

demand is observed, which is probably not due to an actual change of average speed but rather

due to more uncongested traffic conditions during night, leading to more efficient driving.

In Figure 7.6 a box plot depicting the energy estimation performance respect to the benchmark

of the reference vehicle model is presented. The left-hand chart is dived into four sections: both

leftmost tackling the road segment based and the two rightmost tackling the road type based

energy map. Each is extended with a time zone version. The right-most chart, by contrast, shows

the distance deviation for both approach versions.

In principal, the more detailed road segment based version performs better than the road type

counterpart. Both suffer from a biased mean, which is negative for road segments and positive for

road types. Best performance is observed from the leftmost box plot with a deviation of roughly

±8 % for the best 50 % of examined trips, which surprisingly yields slightly better results than the

distinguishing into time zones. This is an indication that the incorporated time zones, which are

in line with the taxi companies’ definition, do not satisfactorily support the estimation quality.

Results in Section 4.6 already pointed to that issue; particularly drops and rises in the speed over

time distribution in Figure 5.8 do not align to the time zones.

By analysing the distribution in detail as done in Figure 7.7, a problematic characteristic is

observed that the values do not match over the whole range of reference model’s estimated energy

consumptions. Although moderate results are obtained regarding the average deviation depicted

in the box plot, a good match is only considered for rather ‘normal’ energy consumption around

16 kWh/100 km under average conditions. The resulting line does not shape along the optimal

diagonal line, but it rather resembles a parallel line to the x-axis.
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Figure 7.6: Energy estimation results for different versions of the energy map approach applied
on a representative trip set

(a) Energy comparison (b) Distance comparison

Figure 7.7: Evaluation of road segment based energy map

The main reason for this observation is the energy map’s lack to support particular traffic

situations due to its sole foundation on mean energy values. For normal trips a high fit is

observed, which, however, would have also be gained by estimating the energy consumption as a

constant value. Hence, no real added value is gained. As a result, a road segment based energy

map tends to over-simplify particular traffic situations and rather only gives an estimate under

normal conditions.

7.3.2 Results for Driving Share Approach

Shortcomings of the energy map approach are mitigated in the driving share approach. In a direct

comparison to the previous discussed box plot, smaller boxes are observed and indicate a better,

lower deviation in results as evidence from Figure 7.8.

In line with observations from the energy map evaluation, the road segment version of this

approach outperforms the road type version due to its more tailored nature. The best result

yields the road segment version without the distinguishing of time zones, reaching an estimation

quality of roughly ±5 % for the best 50 % of examined trips. Counter-intuitively, time zones do
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Figure 7.8: Energy estimation results for different versions of the driving share approaches
applied on a representative trip set

not enhance quality to a great extent or even do not improve those at all, which points to the

same issue of unaligned time zone separation as discussed earlier.

In this case, however, for all versions the mean value is biased and settles at a too high value at

around +10 % and hence does not align to the predicted energy demand. One reason is suggested

that the different underlying models, the reference vehicle model on the one hand and the driving

share model on the other hand, do have different sources and thus interpreting characteristics or

emphasizing submodules in a different manner.

The measurement points in the chart in Figure 7.9 align very well along a line with the same

slope and shape alike the ideal one, indicating a high correlation between both results sets and

the substantially good prediction quality of the dynamic driving share approach. However, the

same bias in the mean is reflected. As mentioned, this is likely to be caused by the underlying

model and the difference to the compared reference model.

(a) Energy comparison (b) Distance comparison

Figure 7.9: Evaluation of road segment based driving share approach

The driving share approach’s foundation is determined by differences in driving shares and

dynamics distributions for different road types and road segments. In the conceptualization
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phase, function parameters describing dependencies between speed and mentioned distributions

are extracted for each road type and each road segment.

The charts in Figure 7.10 illustrate distributions for three different road types (Motorway,

Primary, and Service) with distinct function shapes. As expected, driving shares on roads of

category Motorway are predominantly determined by cruising time, whereas idling time is barely

present. The dynamics distribution reflect this issue similarly with relatively low acceleration

and deceleration values throughout the speed range. Roads of category Primary are defined by

considerably high acceleration and deceleration values and shares. Also Service roads follow this

pattern but decline more sudden for higher speeds.

Overall, the charts reveal a fair level of distinctness confirming the basic driving share concept

and is even more diverse when considering single road segments instead of road types.

(a) Motorway driving shares (b) Motorway dynamics

(c) Primary driving share (d) Primary dynamics

(e) Service driving share (f) Service dynamics

Figure 7.10: Driving share and dynamics per road type for Motorway, Primary and Service
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7.3.3 Results for Instant Approaches

The instant approaches do not claim to be the main outcome of this work, but they rather gave

valuable feedback during development of the driving share approach with its unproven underlying

model and are a good starting point for possible further investigations into driving features as

they incorporate more dynamic characteristics than the driving share.

Results of both application variations are plotted in Figure 7.11 and 7.12. Former evaluates

the instant driving share approach and latter the driving feature approach.

In Figure 7.11, the box plot in the left-hand chart and the comparison plot in the right-hand

chart both indicate an admirably good estimation quality. Prior to application, the trip was cut

into micro trips of which driving shares and dynamics were derived. Those are then directly

handed to the underlying energy model equations, calculating the demander energy. It turns out

that the extracted averaged characteristics are already sufficient to estimate energy consumption

of a moderate quality without requiring a preceding map-matching step.

(a) Box plot (b) Comparison plot

Figure 7.11: Instant driving share approach evaluation

The latter plots in Figure 7.12 display evaluation results of the driving feature approach, which

aimed to extract feature vectors from micro trips and to classify those according to 18 established

clusters with distinct energy consumptions. This approach seems to underestimate the variety of

driving characteristics and reveals a rather big deviation. It basically follows the optimal diagonal

trend line as seen from the right-hand chart, but it does not convince with results. For future

work it is suggested to extent the amount of clusters or to apply weights to the vector to control

each feature’s impact within a feature vector.

(a) Box plot (b) Comparison plot

Figure 7.12: Instant driving feature approach evaluation
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Conclusion and Outlook

This thesis focused on two parts: driving profile and energy demand analysis. In this chapter, both

parts are concluded with focus on its utilization opportunities and implications for further work.

In the objective stated in the introduction, this thesis’ ultimate goal was the conceptualization of

reliable energy demand estimation programs for electrical vehicles for different sampling rates of

trips. The integration into the overarching project context was defined as the role of a supplier

for a comprehensive taxi simulation in tropical mega-cities.

As the main outcome of the driving profile analysis unit, a database entailing all recorded trips

was established. It not just contains the raw data as directly gathered from the GPS loggers, but

entails trips which already underwent various processing steps like: filtering, interpolation, trip

extraction, shift extraction, map-matching, and zone matching.

The trip’s quality is appropriate for the subsequently conducted energy demand analysis, and

statistical evaluations show high compliance with LTA provided data and empirically derived

expectations. Furthermore, for future work, the database is capable of serving multiple purposes

and of supporting several projects in the context of electro-mobility in Singapore - perhaps as

part of future projects of TUM CREATE.

Especially the fact that extracted trips’ each sample points are linked with a sophisticatedly

estimated road segment and implicitly with a road type, both part of the underlying OSM road

network, makes it valuable for analysing traffic patterns directly projected to environmental

conditions in Singapore. Since Singapore’s entire road network, its zones, and auxiliary data such

as taxi stands are available in the database, this work established a data compound, conveniently

accessible from just one single source. This might be a peculiarity of present work as a leveraged

emphasise of various data sources make data mining more reliable.

The cooperation with SMRT has been solidified and is about to be extended, likely aided

due to satisfying statistical evaluations from this thesis. SMRT is seen as a strategic partner for

upcoming projects in the field of electro-mobility or urban transportation in general, which are

already in draft.

Statistics turned out to match appreciatively with various LTA data sources, indicating a good

logging and booking data quality, as well as a plausible implementation of algorithms incarnated

in developed Matlab programs. It also reveals a fit in chosen program parameters, especially

for the more empirically based procedures like trip and shift extraction. Also the driving profile

preparation, the decent map-matching, enhanced filtering, and re-assignment of correct altitude

values from the Google Elevation API contributed to a high quality of uploaded trips.

As a summary of energy demand analysis’ results, the outcome of the driving share approach

106
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shall be highlighted, meeting the energy consumption computed by the reference vehicle model

to a great extent and shows high compliance. Driving shares do not just express the average

energy consumptions on road segments as the static energy map does, but it also take dynamics

in dependency of the average speed per road segment into account and in this way, projects

particular traffic conditions way better. The driving shares have previously been derived from a

huge set of trips. It provides opportunities for applications for various sampling rates as long as

the average speed can be determined in the targeted granularity. It is furthermore extendable

with upcoming recordings and adjustable to different vehicle types.

Areas for potential have been uncovered during implementations as outlined in the regarded

chapters and summarized in the following. The concept of road segment based analysis was

initially grounded on the energy map approach, which was expected to perform best due to its

anticipated well fitting and tailored design to the energy models. However, a rather moderate

deviation in energy values was observed, underperforming the driving share approach. New data

from GPS trajectories are about to be incorporated into the current database which will stepwise

enhance energy estimation quality.

An additional challenge for further work is the examined mismatch of employed time zones

and actual traffic patterns subject to time, which did not reveal the anticipated enhancement

in energy estimation quality. Results of all energy estimation approaches shall furthermore be

uploaded into the established database for a uniform data access. Moreover, an implementation

of auxiliary submodules for employed EV models are conceivable in future improvements.

As a final summary, in the driving profile analysis a database of in-detail trips enhanced by

several processing steps and multiple data sources is established, which has great potential and

is considered useful also for related projects. The analysis revealed insightful statistics enhancing

developed programs and is of great value. On the energy demand analysis side, results show that a

utilization of energy approaches in a simulation context is feasible due to a good estimation quality.

This applies particularly for the driving share approach with less than ±14 % deviation for the

best 90 % trips. Moreover, this approach enables good expandability, usability, and adaptability

since it is independent from a specific vehicle and specific traffic conditions. All approaches are

expected to become more accurate with additionally recorded data.



Appendix A

Logging Data Example

Table A.1: Logging data example

Id Tag Date Time Latitude Longitude Height Speed Heading

2000 T 140901 24959 01.285260N 103.847203E 52 40 120
2001 T 140901 25000 01.285208N 103.847291E 52 42 122
2002 T 140901 25001 01.285260N 103.847563E 52 37 124
2003 T 140901 25002 01.285216N 103.847683E 53 29 130
2004 T 140901 25003 01.285163N 103.847735E 53 39 124
2005 T 140901 25004 01.285041N 103.848093E 53 40 121
2006 T 140901 25005 01.284928N 103.848243E 53 40 119
2007 T 140901 25006 01.284869N 103.848346E 54 37 118
2008 T 140901 25007 01.284768N 103.848271E 54 40 118
2009 T 140901 25008 01.284704N 103.848308E 54 39 118
2010 T 140901 25009 01.284646N 103.848395E 54 45 117
2011 T 140901 25010 01.284583N 103.848496E 55 43 117
2012 T 140901 25011 01.284513N 103.848621E 55 47 118
2013 T 140901 25012 01.284466N 103.848718E 56 47 118
2014 T 140901 25013 01.284416N 103.848828E 57 45 116
2015 T 140901 25014 01.284374N 103.848928E 58 41 115
2016 T 140901 25015 01.284309N 103.849060E 59 51 117
2017 T 140901 25016 01.284293N 103.849184E 60 49 123
2018 T 140901 25017 01.284160N 103.849263E 61 44 129
2019 T 140901 25018 01.284050N 103.849361E 62 50 154
2020 T 140901 25019 01.283960N 103.849424E 63 45 148
2021 T 140901 25020 01.283865N 103.849504E 64 50 144
2022 T 140901 25021 01.283766N 103.849594E 65 48 144
2023 T 140901 25022 01.283661N 103.849668E 65 50 145
2024 T 140901 25023 01.283546N 103.849729E 66 51 149
2025 T 140901 25024 01.283426N 103.849793E 67 49 151
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Appendix B

Booking Data Example

Table B.1: Booking data example

Taxi License Latitude Longitude Status Date and Time

SHF323S 1.362683 103.7447 FOR HIRE 9/8/2014 12:08
SHC4866G 1.335307 103.8628 BUSY 9/8/2014 12:08
SHB5902J 1.314898 103.9095 HIRED 9/8/2014 12:08
SHB1013B 1.36554 103.8907 HIRED 9/8/2014 12:08
SHF52Z 1.27775 103.8087 FOR HIRE 9/8/2014 12:08
SHB167Y 1.304678 103.9215 HIRED 9/8/2014 12:08
SHB164E 1.320099 103.8528 PAYMENT 9/8/2014 12:08
SHB5566X 1.372853 103.9317 HIRED 9/8/2014 12:08
SHB1133M 1.373368 103.8822 FOR HIRE 9/8/2014 12:08
SHF290C 1.318837 103.8626 FOR HIRE 9/8/2014 12:09
SHB1078P 1.349168 103.7097 FOR HIRE 9/8/2014 12:11
SHB1188E 1.304898 103.764 PAYMENT 9/8/2014 12:11
SHB5121X 1.351087 103.7319 BUSY 9/8/2014 12:11
SHB1210Z 1.294433 103.7861 HIRED 9/8/2014 12:11
SHD6282Y 1.306355 103.8493 HIRED 9/8/2014 12:11
SHF61Y 1.34079 103.8475 FOR HIRE 9/8/2014 12:11
SHB1269E 1.346933 103.9602 LOG OFF 9/8/2014 12:11
SHC4809Y 1.437782 103.8376 LOG OFF 9/8/2014 12:11
SHB1238U 1.35954 103.8829 HIRED 9/8/2014 12:11
SHF323S 1.362677 103.7447 FOR HIRE 9/8/2014 12:11
SHC4866G 1.335293 103.863 BUSY 9/8/2014 12:11
SHB5902J 1.308844 103.9117 HIRED 9/8/2014 12:11
SHB1013B 1.369155 103.8944 HIRED 9/8/2014 12:11
SHF52Z 1.272677 103.8115 FOR HIRE 9/8/2014 12:11
SHB167Y 1.317193 103.9636 HIRED 9/8/2014 12:11
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Appendix C

Taxi Database Structure

Figure C.1: Taxi database overview
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Appendix D

Shift Set Structure

Figure D.1: Shift set structure overview
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Figure D.2: Trip set structure overview

Figure D.3: Trip structure overview



Appendix E

Additional Statistics

Figure E.1: Average status distribution for all recorded 20 taxis

Figure E.2: Average status share per taxis type
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(a) One-hirer scheme taxis

(b) Two-hirer scheme taxis

Figure E.3: One- and two-hirer scheme status distribution averaged over one day in steps of
one hour



Appendix E. Additional Statistics 115

(a) Low mileage cluster

(b) Medium mileage cluster

(c) High mileage cluster

(d) Very high mileage cluster

Figure E.4: Daily booking status distribution for clusters low, medium, high and very high



Appendix F

Shift Set Statistics

Table F.1: Trip set statistics June

Feature Mean Min Max 5% 95%

Shift Duration [h] 7.21 0.02 25.64 0.96 12.09
Shift Mileage [km] 170.28 0.00 554.83 17.13 317.69
Hired Status [%] 55.30 0.00 100.00 0.00 85.24
For-Hire Status [%] 30.18 0.00 100.00 0.00 55.92
Other Status [%] 14.52 0.00 100.00 0.00 50.25
Trip Duration [min] 13.27 0.50 1332.75 1.79 33.30
Trip Length [km] 6.59 0.00 108.52 0.15 22.47
Trip Velocity [km/h] 29.71 0.00 119.64 0.00 85.38
Hired Trip Duration [min] 17.76 0.53 661.97 4.32 36.72
Hired Trip Length [km] 10.58 0.00 71.16 1.26 26.37
Hired Trip Velocity [km/h] 35.70 0.00 119.60 0.00 88.73
Altitude [m] 19.10 -0.27 87.16 8.19 34.26
Altitude Incline [%] 0.00 -16.39 16.49 -1.60 1.60
Velocity Start of Trip [km/h] 1.00 0.00 28.21 0.00 6.30
Velocity End of Trip [km/h] 1.41 0.00 89.98 0.00 5.87
Stand still period distribution [%] 30.34 0.00 100.00 5.82 73.68
Pause duration [min] 29.87 5.02 178.48 5.45 104.22
Energy Consumption [kWh/100km] 18.01 7.89 78.78 13.16 29.11
Hired Energy Consumption [kWh/100km] 16.28 9.94 72.50 13.34 20.12
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Table F.2: Trip set statistics July

Feature Mean Min Max 5% 95%

Shift Duration [h] 7.07 0.01 25.51 0.79 11.68
Shift Mileage [km] 163.35 0.03 531.35 12.07 304.40
Hired Status [%] 56.30 0.00 100.00 0.00 87.98
For-Hire Status [%] 27.80 0.00 100.00 0.00 51.23
Other Status [%] 15.90 0.00 100.00 0.00 64.03
Trip Duration [min] 13.40 0.52 886.92 1.78 34.17
Trip Length [km] 6.55 0.00 224.39 0.16 22.81
Trip Velocity [km/h] 29.25 0.00 119.62 0.00 84.95
Hired Trip Duration [min] 18.26 0.52 886.92 4.25 38.66
Hired Trip Length [km] 10.59 0.00 224.39 1.21 26.36
Hired Trip Velocity [km/h] 34.72 0.00 119.48 0.00 88.04
Altitude [m] 19.36 -19.10 124.27 8.42 34.83
Altitude Incline [%] 0.00 -16.30 16.02 -1.59 1.60
Velocity Start of Trip [km/h] 1.00 0.00 29.74 0.00 6.01
Velocity End of Trip [km/h] 1.39 0.00 100.94 0.00 5.88
Stand still period distribution [%] 28.75 0.00 100.00 5.47 70.97
Pause duration [min] 27.95 5.00 179.57 5.42 94.74
Energy Consumption [kWh/100km] 17.94 7.51 79.48 13.01 29.20
Hired Energy Consumption [kWh/100km] 16.30 10.01 79.48 13.23 20.37

Table F.3: Trip set statistics August

Feature Mean Min Max 5% 95%

Shift Duration [h] 7.17 0.01 19.34 0.67 11.60
Shift Mileage [km] 165.62 0.00 509.57 15.05 316.62
Hired Status [%] 57.75 0.00 100.00 0.00 92.32
For-Hire Status [%] 27.24 0.00 100.00 0.00 56.15
Other Status [%] 15.01 0.00 100.00 0.00 57.68
Trip Duration [min] 13.00 0.52 535.08 1.73 33.77
Trip Length [km] 6.40 0.00 81.84 0.08 22.77
Trip Velocity [km/h] 29.43 0.00 143.44 0.00 84.77
Hired Trip Duration [min] 18.30 0.52 483.37 4.33 39.00
Hired Trip Length [km] 10.50 0.00 81.84 1.05 26.89
Hired Trip Velocity [km/h] 34.38 0.00 143.44 0.00 87.56
Altitude [m] 19.24 -16.29 85.92 8.15 34.35
Altitude Incline [%] 0.00 -15.84 17.02 -1.61 1.61
Velocity Start of Trip [km/h] 1.04 0.00 36.10 0.00 6.14
Velocity End of Trip [km/h] 1.39 0.00 134.15 0.00 5.97
Stand still period distribution [%] 29.57 0.00 100.00 5.19 79.30
Pause duration [min] 28.75 5.00 179.85 5.49 96.94
Energy Consumption [kWh/100km] 18.03 8.03 79.76 13.07 29.42
Hired Energy Consumption [kWh/100km] 16.38 9.09 75.40 13.30 20.51
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GPS Logger Manual
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Appendix H

Program Parameters

Monthly Chain

TEST_RUN = true (true, if only a test folder is used instead of real taxis)

TEST_TAXI_NUMBER = 20 (The taxi number to be used in test mode)

ONLY_ONE_DAY = false (Consider only first day)

ONLY_ONE_TAXI_RUN = false (Only consider one taxi)

ONLY_TAXI_NUMBER = 1 (The taxi in one day mode)

CHAIN_START = 1 (Fist taxi index)

CHAIN_END = 20 (Last taxi index)

SHALL_ONLY_IMPORT = false (true, if only importing is demanded)

SHALL_ONLY_COMBINE = false (true, if only combination of logging and booking is demanded)

SHALL_IMPORT_LOGGING_FROM_CSV = true (true, if import of logging data is demanded)

SHALL_IMPORT_BOOKING_FROM_XLS = true (true, if import of booking data is demanded)

SHALL_COMBINE_BOOKING_AND_LOGGING = true (true, if combination of logging and booking is demanded)

SHALL_PREPROCESS = true (true, if pre-processing is demanded)

SHALL_MATCH_SUBZONES = false (true, if trips shall be matched with Subzones)

SHALL_MAP_MATCH = false (true, if trips shall be matched with road network)

SHALL_SAVE_IMPORT_FILES = true (true, if imported files shall be saved)

SHALL_SAVE_TRIP_FILES = true (true, if processed trips shall be saved)

SHALL_SAVE_COMBINATION_FILES = false (true, if combination data set shall be saved)

SHALL_SAVE_RAW_TRIPS = false (true, if unprocessed trips shall be saved)

SHALL_SAVE_FILTERED_TRIPS = false (true, if filtered trips shall be saved)

SHALL_SAVE_MAP_MATCHED_TRIPS = false (true, if map-matched trips shall be saved)

Booking Set

GAP_FOR_LOG_OFF_INTERPOLATION = 30 (Time in minutes to substitute gaps in booking data with Log Off)

Feature Classification

NUM_OF_CLUSTERS = 3 (Number of clusters for driving feature clustering)

Trajectory Cleaning

CROP_NUMBER_OF_ELEMENTS_START = 10 (Number of sample points to be erased on device start)

Combination

MAX_DISTANCE_THERSHOLD = 500 (Allowance of deviation in metres between both GPS coordinates)

MAX_TIME_DIFF_THRESHOLD = 60 (Allowance of deviation in seconds between both timestamps)

Elevation Map

GRID_SIZE_Y = 200 (Size of elevation map grid in x-axis)

GRID_SIZE_X = 300 (Size of elevation map grid in y-axis)

INTERPOLATION_FACTOR = 20 (Factor to increase elevation map meshed grid granularity)

NUMBER_OF_LAYERS = 20 (Number of layer in the contour map)

Energy Validation

MIN_TRIP_LENGTH = 10 (Min length of trips for representative set)

MAX_TRIP_LENGTH = 30 (Max length of trips for representative set)

TRIPS_PER_SEGMENT = 4 (Number of targeted trips per category)

WHISKER = 0.9826 (Whisker to enable a 2 σ box plot distribution)
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Evaluation Map

GPS_DEVIATION_THRESHOLD = 20 (Assumed standard deviation for GPS for statistics)

MIN_PAUSE_DURATION = 5 (Duration considered as a pause))

STANDSTILL_VELOCITY_THRESHOLD = 1 (Max speed to be considered as standstill)

Trajectory Filtering

ACCELERATION_OFFSET = 4 (Threshold for acceleration filtering)

DECELERATION_OFFSET = -6 (Threshold for deceleration filtering)

MIN_NUMBER_OF_ELEMENTS = 30 (Minimum sample point required to be contained in a trip)

CROP_NUMBER_OF_ELEMENTS_START_AND_END = 0 (Number of sample points to be erased at trip’s edges)

MAX_TIME_DIFFERENCE = 0.5 (Minimum time between two sample points)

MIN_TIME_OF_TRIP = 30 (Minimum time of one trip)

MAX_VELOCITY_THRESHOLD = 200 (Threshold for speed filtering)

GAUSSIAN_WINDOW = 5 (Filter Gaussian window for possible smoothing with Gaussian filtering)

GPS Plots

DEFAULT_VISUALIZATION_DISTANCE = 200 (Distance from sample point to map extracts bored)

Trajectory Interpolation

WEIGHT_FACTOR_ELEVATION_MAP = 1 (Weight denoting share of logger and elevation map height value)

Map Attachments

MIN_DRIVING_POINTS_ON_WAY = 5 (Minimum points on a way to extract energetic characteristics)

Map-Matching

HIGHEST_PROBABILITY = 1 (Norm factor for uniform highest values among all functions)

INTERPOLATION_METHOD = ‘pchip’ (Interpolation method for measurement point interpolation)

INTERPOLATION_FACTOR = 5 (Factor determining number of interpolated point between two sample points)

CANDIDATE_POINTS = 3 (The number of candidate per road segment)

STAKE_OF_USED_POINTS = 60 (The stake of taken point for map-matching)

DEFAULT_DEVIATION = 50 (Assumed deviation for GPS signals)

MEAN = 0 (Assumed bias of GPS signal)

Micro Trip Extraction

STOP_TRESHHOLD = 1 (Minimum speed considered as a stop)

MIN_DRIVING_POINTS_ON_HIGHWAY = 2 (Minimum sample points on a certain road type)

MICRO_TRIP_TARGET = 210 (Targeted micro trip length in seconds)

MICRO_TRIP_TOLERANCE = 30 (Tolerance band in seconds for micro trip extraction)

MIN_ACCELERATION_REGARDED_AS_CRUSINING = 0.15 (Minimum acceleration considered as cruising)

ZERO_VELOCITY_TRESHHOLD = 1 (Minimum speed considered as standstill)

OSM

MIN_DISTANCE_VALUE = 0.01 (Minimum distance between two nods for connectivity matrix)

UNKNOWN = 0 (Unknown road type)

MOTORWAY = 1 (Motorway or highway)

TRUNK = 2 (Inner city motorway )

PRIMARY = 3 (Main road )

SECONDARY = 4 (Smaller main road)

TERTIARY = 5 (Smallest main road)

UNCLASSIFIED = 6 (Unclassified road)

RESIDENTIAL = 7 (Residential area road)

SERVICE = 8 (Service roads for public buildings)

MOTORWAY_LINK = 9 (Link from/toa motorway)

TRUNK_LINK = 10 (Link from/to a trunk)

PRIMARY_LINK = 11 (Link from/to a Primary road)

SECONDARY_LINK = 12 (Link from/to a Secondary road)

TERTIARY_LINK = 13 ((Link from/to a Tertiary road)

LIVING_STREET = 14 (Residential road with restricted speed limit)

TRACK = 15 (Rural roads)

ROAD = 16 (General road type)

GRID_SIZE_Y = 200 (Grid size in x-direction for OSM grid class)

GRID_SIZE_X = 300 (Grid size in y-direction for OSM grid class)
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Trip Set

MAX_DISTANCE_TO_TAXILOCATION = 50 (Maximum distance to taxi stand for taxi stand localisation)

MIN_STOP_DURATION = 60 (Minimum time in seconds considered as waiting at a taxi stand)

MAX_VELOCITY_FOR_STOP = 10 (Maximum speed threshold for taxi stand waiting)

MAX_OUTLIER_GAP = 5 (Maximum allowed outliers for previous established constraints)

Shift Extraction

MAX_SHIFT_DURATION = 12 (Maximum targeted shift duration)

TOLERANCE_AJDUSTMENT_BAND = 5 (Tolerance band for shift duration)

PERCENTAGE_OF_MIN_POINTS = 0.20 (Minimum points in a period considered as normally active)

EDGES = 14401 (Resolution of shift pattern analysis (minute wise))

NOISE_EDGES_REDUCTION = 5 (Smooth factor for reducing noise and flatting the distribution)

ONE_SHIFT_CHANGE_THRESHOLD = 3 (After his time in hours ineffectiveness a shift change is forced)

MIN_TRIPS_PER_SHIFT = 5 (Minimum trips per shift for post-processing)

MAX_TIME_BETWEEN_SHIFTS = 3 (Maximum time between shifts in hours for post-processing)

SHIFT_CHANGE_THRESHOLD = 2 (Maximum time between two shifts on one day for shift change)

TIME_THRESHOLD = 10 (Threshold in seconds a car has to be stopped for considering as a break)

TOLERANCE_BAND_OUTLIERS = 10 (Possible outliers for break detection)

MIN_STOP_TIME = 240 (Minimum stop time in seconds)

Singapore

NORTH = 1.4728372 (Upper north latitude of Singapore)

SOUTH = 1.1867929 (Bottom south latitude of Singapore)

WEST = 103.6106791 (Leftmost west longitude of Singapore)

EAST = 104.0871962 (Rightmost east longitude of Singapore)

DISTANCE_NORTH_TO_SOUTH = 31806.67495559416 (Distance in metre from north to south)

DISTANCE_WEST_TO_EAST = 52968.77840846990 (Distance in metre from north to south)

LAT_DISTANCE_NORTH_TO_SOUTH = 0.2860443 (Distance in spherical coordinates from north to south)

LON_DISTANCE_WEST_TO_EAST = 0.4765171 (Distance in spherical coordinates from west to east)

NORTH_SOUTH_DISTANCE_PER_LAT = 111194.9266445588 (Conversion factor from degree to metre for lat.)

WEST_EAST_DISTANCE_PER_LON = 111158.1901435854 (Conversion factor from degree to metre for long.)

DISTANCE_PER_DEGREE_MEAN = 111176.5583940721 (Conversion factor from degree to metre mean)

LAT_DISTANCE_TO_LON_DISTANCE_RATIO = 1.66588566876 (Ratio of north-south and west-east extent)

CENTER_LAT = 1.32981505 (Singapore center latitude)

CENTER_LON = 103.84893765 (Singapore center longitude)

Trip

FILTER_COEFFICIENT = 30 (Filter for heading computation for smoothing)

MIN_SPATIAL_EXTENT = 500 (Minimum average distance for trip considered as ‘driving’)

VELOCITY_THRESHOLD = 3 (Minimum average speed for trip considered as ‘driving’)

Trip Extraction

MIN_TRIP_LENGTH_TO_CONSIDER_LONG_HIRED_TRIPS = 9000 (Minimum distance to apply extraction)

MIN_TRIP_DISTANCE_TO_CUT = 3000 (Minimum distance for candidates to be allowed to cut)

TIME_OFFSET = 300 (Time in seconds of inactiveness to cut a trip)

VELOCITY_STOP_THRESHOLD = 0 (Minimum speed considered as a stop for stop based extraction)

TOLERANCE_BAND_OUTLIERS = 30 (Maximum outliers for established constraint)

MAX_DISTANCE_TO_TAXILOCATION = 50 (Maximum distance to taxi stand for taxi stand localisation)

MIN_STOP_DURATION = 180 (Minimum stop duration considered as waiting period)

MAX_VELOCITY_FOR_STOP = 3 (Maximum speed considered as a stop)

MIN_DISTANCE_TO_LAST_CUT_POINT = 1000 (Distance in metre between two trips for trip exaction)

MIN_DISTANCE_TO_START_POINT = 200 (Tolerance distance for most distant point analysis)

MIN_STOP_FOR_PASSENGER_SECONDS = 10 (Time in seconds required for passenger pickup)

MOVING_WINDOW_SIZE = 10 (Moving window size to detect U-turns)

UTURN_DEGREE = 180 (Targeted U-turn heading change in degree)

UTURN_DETECTION_THRESHOLD_DEGREE_TOLERANCE = 20 (Tolerance band for U-turn detection in degree)

RANGE_IN_METER = 200 (Minimum distance of the period a U-turn was detected)
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Matlab Data Folder

ALLSETS All booking and logging sets so far merged and prepared to be used within the programs

AUXMODEL Lookup tables for temperature, time, and sun angle in Singapore and derived roof and

door temperatures as inputs for a planed auxiliary energy model

BOOKINGSET All booking data combined on monthly basis for all taxis

DRIVINGSHARE Driving share sets for all micro trips and all road type, both including time zone

information

ELEAVATION Elevation map for Singapore obtained from Google Elevation API

ENERGY Energy has maps for all micro trips and all road type, both including time zone information

EVALUATION Evaluated statistics for each monthly shift set

LTA Sensor data fetched at various times, containing speed bands of a number of speed sensors provided

from LTA

MAPATTACHEMENT Map attachments for energy, driving share, and average speed which is at-

tached to the OSM map for each section and contains the main outcome of the energy demand

analysis

MODEL EV characteristics which are used throughout the programs for each model to allow for com-

parison and uniformity among each other

OSM The OSM road network representation in Matlab, including hashed map containers, section based

links, section length, and grid assignments, plus auxiliary files required for building step-wise OSM

map representation in Matlab and raw files exported from OSM website

SHIFTSET Cell array based representation of shifts, each including a set of trips

SHIFTSETTABLE Shift set in a table based format including statistical attachments

SMRT Folder structure for the set of SMRT taxis including all logging CSV and booking XLSM files plus

temporary MAT cache files

STATISTICS Colour map for unified plot colours in statistic al evaluations

TAXIS List of all taxis attached with GPS loggers

TAXISTANDS List of taxi stands, pickup bays, and bus stops and its raw data gathered from data.gov.sg

and processed with QGIS and finally imported to Matlab

TRIPSET Set of trips for each taxi containing a number of tips on monthly basis

ZONES List of regions, planning areas and subzones and its raw data gathered from data.gov.sg and

processed with QGIS and finally imported to Matlab
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Matlab Source Folder

AUXMODEL Air conditioning lookup table implementation for further implementations of EV models

BOOKING Booking class with fields longitude, latitude, time, status � Interpolation of status from

booking data to one minute sampling rate � Status class containing all statuses, string to status

conversion, and status to string conversion

CLEAN Cleaning of boundaries where GPS points are not within Singapore’s boundary � Cleaning of

device starts shortly after device has been started � Time order cleaning to correct time order of GPS

points of a recorder trajectory

CLASSIFICATION Classification of driving features and clustering into categories � Retrieval of clus-

ters where a feature set belongs to

COLOR Unique colours throughout the plots

COMBINE Combination of logging and booking data based on time and location � Validation check of

combination results by evaluating time and spatial difference of received booking and logging data set

DATABSE Connection to database using credentials � Database query template for SQL queries

DRIVINGSHARE Dynamics entailing acceleration and deceleration parameters, fit functions defini-

tions, fit function parameters, and thresholds � DrivingShare comprising idle, cruise, acceleration, and

deceleration share parameters, fit functions, fit function parameters, and thresholds � DrivingSharePa-

rameter holds both, Dynamics and DrivingShare instances � Computation of energy based on driving

shares for micro trips extracted from whole trip � DrivingShare and Dynamics are computed using

mean velocity � Computation of energy based on whole trips � Extraction of Dynamics from a given

set of micro trips � Extraction of DrivingShare values from a given set of micro trips � Extraction of

share parameters as a combination of Dynamics and DrivingShare � Extraction of share parameters

for road types based on road type micro trips using time zones � Definition of fit functions for each

driving share � Functions for computing contributing driving power submodules

ELEVATION Construction of meshed grid � Plotting elevation map, in addition contour and gradient

� Parsing of map from Google API queries

ENERGY Comparison of all used models � Computation of energy for each models � Extraction of energy

values for road type micro trips using time zones � Retrieval of time zones for given trip � Retrieval

of time zone set where each cell array contains all trips happened in a certain time � Computation

of energy for road types for energy map approach � Computation of energy for a series of traversed

road segments for energy map approach � Computation of energy for an origin and destination node

for energy map approach � Used default energy value for cases where no value could be retrieved

ENERGYAPPLICATION Comparison of distances for different distance calculation methods � Com-

parison of driving share application using all methods from driving share approach � Comparison of

energy map application using all methods from energy map approach

ENERGYVALIDATION Retrieval of a number of representative trips � Validation of both approaches

driving share and energy map
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EVALUATION Statistical application on different functions receiving mean, max, min, 5% percentile

and 95% percentile � Evaluation methods for about 15 different characteristics

FILTER Application of all trip set filter on data � Application of all trip specific filter on data � Filtering

for acceleration either GPS position or logger speed based � Filtering for speed either GPS position

or logger speed based � Filtering sample point count based as a certain number of sample point per

trip is required � Filtering where origin and destination of a trip are reduced by an amount of sample

points � Filter for a certain minimum trip time is required � Acceleration and speed computation �
Trip length computation based on GPS position

GOOGLE Class preliminary for plotting Google Maps

GPS GPS position as a latitude and longitude class representation � GPS boundary as a boundary object

mainly for plotting purpose

IMPORT Booking data import based on XLSM sheets � Logging data import reading folder CSV files

and converting files to Matlab format also applying data format �Merge of booking data since multiple

sources are conceivable

INTERPOLATION Gap interpolation application � Computation of slope or gradient � Altitude as-

signment � Interpolation of big gaps by using velocity method � Re-sampling to ensure time conformity

of one second sampling rate

LTA Fetching of sensor data from server � Plotting of sensor data

MAPATTACHEMENTS Container based adding of values for road segments (energy map and driving

share approach) � Conceptualization of the attachment map � Conceptualization by using data fetched

from database � Retrieval of a set of trips for given link from DB � Update of an existing value in

map containers

MAPMATCHING Attaching of road segment ids to appropriate sample points � Computation of ob-

servation probability � Computation of Transmission probability � Finding of best matching sequence

concerning weights � Retrieval of adjacent indices from map � Retrieval of candidate points in a certain

range � Retrieval of all road segment candidates � Retrieval of candidate point for a link � Retrieval of

an average version of observed point �Map-matching of a trip �Map Matching class which holds basic

configurations � Map-matching of a road segment based algorithm which transforms the OSM fields

from ‘way’ to ‘section’ � Map-matching of a whole trip set � Plotting of the comparison for matching

evaluation � Plotting of the comparison for matching evaluation linked with actual corresponding

points � Plotting of fitting sequence � Plotting of sections, ways � Post-processing by reattaching

points to ways and omitting wrongly matched ways � Shortening of connectivity matrix to enable fast

runtime � Computation of temporal analysis

MICROTRIP Extraction of feature set form micro trips � Extraction of features for one micro trip �
Extraction of highway micro trips analysing highway changes � Extraction of link based micro trips

analysing road segment changes � Feature Set class denoting all field for one feature set � Finding

of best cut point for trip according to micro trips � Retrieval of candidates for velocity inspection �
Retrieval of candidates for acceleration inspection

OSM Trip distance computation based on road segment length � Extraction of connectivity matrices �
Retrieval of closest start and end node for a trip � Distance calculation between two nodes � Highway,

Node, One-way, Speed, Section, and Way as basic classes for OSM constructs � OSM, OSMMap,

OSMMapGrid, OSMMapGridSection denoting the actual classes a OSM is represented � According

Parser classes to transform one OSM class into another � Post-processing for connectivity matrix to

remove flawed entries

REGIONS Import of Planning Areas, Regions and Subzones � Plotting of various zones

ROUTING Comparison of different routing or navigation methods � Distance computation based on

GPS sample point latitude and longitude values � Retrieval of traversed rad segment from a route

consisting of OSM nodes � Retrieval of all latitude and longitude values from a trip � Retrieval of a

route for start and end node � Plotting of a route
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SETS Attaching of shift set with additional information � Attaching of trip set with additional information

� Conversion of shift set into table based format � Creation of a booking set from all booking data

per taxi � Creation of a shift set from all shifts per taxi � Creation of a trip set from all shifts per

taxi � Finding of taxi stand location in the vicinity of a point � Merge of two or more booking sets �
Merge of data into trip sets � Merge of more than one trip set

SHIFT Adjustment of shift change candidates based on location � Analysis of shift change candidates

� Extraction of shift change candidates based on patterns � Extraction of shifts � Search for driving

periods in trips � Search for standstill periods � Retrieval of best fitting shift change pattern in

candidates � Retrieval of break start and end time for pattern recognition � Retrieval of time histogram

for active taxi driving times

SINGAPORE Singapore boundaries and extent definitions

TAXISTANDS Import of bus stops, pick-up bays, and taxi stands

TRIP Computation of heading based on GPS coordinates � Computation of trip length based on GPS

coordinate, road segment length, and speed based from logger fields � Computation of speeds based

on GPS coordinates � Extraction of daily trips from a set of trips � Retrieval of all trips with status

Hired � Retrieval of all trips where taxi was actually driving � Retrieval of day start and end time �
Retrieval of distances to a GPS coordinate in metres

TRIPEXTRACTION Prove for valid status change cut candidate � Cutting of trips into two or more

stints � Trip extraction long hired trip based � Trip extraction status based � Trip extraction stop

based � Trip extraction taxi stand based � Trip extraction time based � Finding best suitable cut point

� Finding the best point in terms of low speed � Retrieval of possible cut candidates � Retrieval of

most distant indices for trip excerpt � Retrieval of relevant status changes � Retrieval of stop indices

� Retrieval of of time in driving mode � Retrieval of U-turn candidates � Plotting of best suitable

candidates � Validation of U-turn candidates

WAYMATCHING Basically an old approach matching ways merely by location � Plot functions for

way matching

XML Export of road segment with energy tags to OSM XML file � Export of all road segments to an

OSM XML file � Export function into OSM format for opening with JOSM � Extraction of mean

values for each road segment

ZONEMATCHING Matching of sample points to zones
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Regions, Planning Areas, and

Subzones in Singapore

Figure K.1: Singapore Regions, Planning Areas, and Subzones, taken from [64]
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Taxi Stands in Singapore

Table L.1: Taxi stands in Singapore, taken from [2]

Id Code Location Type
SECTOR A (Orchard)

1 A01 Orchard Road along driveway outside Lucky Plaza Stand
2 A02 Bideford Road - driveway of Paragon Shopping Centre Stand
3 A03 Mt Elizabeth Road at York Hotel PU/DO
4 A04 Mt Elizabeth Road at Paragon Medical Centre PU/DO
5 A05 Mt Elizabeth Road at Mt Elizabeth Hospital Stand
6 A06 Cairnhill Road outside Cairnhill Place Stop
7 A07 Orchard Link at Meritus Mandarin Hotel PU/DO
8 A08 Orchard Turn outside Wisma Atria Shopping Centre Stand
9 A09 Orchard Turn along driveway outside Ngee Ann City Stand
10 A10 Grange Road at Cathay Cineleisure PU/DO
11 A11 Orchard Road outside Centrepoint Stand
12 A12 Cuppage Road at Starhub Centre Stop
13 A13 Kramat Lane outside Le Meridien Singapore Shopping Centre Stand
14 A14 Cavenagh Road at Holiday Inn Parkview Stop
15 A16 Handy Road outside Plaza Singapura Stand
16 A17 Handy Road near Cathay Building Stand
17 A18 Penang Road along driveway outside Park Mall Stand
18 A19 Clemenceau Avenue infront of Haw Par Glass Centre Stand
19 A20 Penang Road after Istana Park Stand
20 A21 Killiney Road outside Orchard Central Stand
SECTOR B (Bugis)

21 B01 Prinsep Street at Hotel Rendezvous PU/DO
22 B02 Selegie Road outside Parklane Shopping Mall Stand
23 B03 Short Street near La Salle Arts College Stand
24 B04 Bencoolen Street at Summerview Hotel Stop
25 B05 Bencoolen Street at Bayview Hotel Stop
26 B06 Bencoolen Street at SMU School of Econ & Social Sciences Stop
27 B07 Bencoolen Street at SMU School of Information Systems Stop
28 B08 Queen Street at SMU Li K Shing Library Stand
29 B09 Queen Street at PA Staff Club Stand
30 B10 Waterloo Street at Stamford Arts Centre Stand
31 B11 North Bridge Road along driveway outside Bugis Junction Tower Stand
32 B12 Tan Quee Lan Street near Heritage Place Stand
33 B13 Beach Road near Shaw Towers Stand
34 B14 Purvis Street outside Shop House No 24 Stand
35 B15 Victoria Street at Hotel Grand Pacific PU/DO
36 B16 Bras Basah Road at Carlton Hotel PU/DO
37 B17 Bencoolen Street at Masjid Bencoolen Stop
SECTOR C (City Hall)

38 C01 River Valley Road outside Clarke Quay Stand
39 C02 River Valley Road outside Liang Court Shopping Centre Stand
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40 C03 River Valley Road at Novotel Clarke Quay PU/DO
41 C04 Tan Tye Place at Clarke Quay Stand
42 C05 Canning Rise near Registry of Marriages Stand
43 C06 Armenian Street infront of Peranakan Museum Stand
44 C07 Hill Street outside Funan DigitaLife Mall Stand
45 C08 Coleman Street along driveway outside Peninsula Excelsior Hotel Stand
46 C09 North Bridge Road outside Funan DigitaLife Mall Stop
47 C10 Old Parliament Lane Behind Victoria Theatre Stand
48 C11 Connaught Drive at The Padang Stand
49 C12 Coleman Street at The Adelphi Stop
50 C13 North Bridge Road outside Capitol Building Stand
51 C14 Stamford Road along driveway outside Raffles City Stand
52 C15 North Bridge Road along driveway outside Raffles City Stand
53 C16 Bras Basah Road at The Fairmont PU/DO
54 C17 Stamford Road along driveway of Swissotel The Stamford PU/DO
55 C18 Temasek Boulevard at Suntec Tower 1 & 2 Stand
56 C19 Temasek Boulevard at Suntec Tower 3 & 4 Stand
57 C20 Raffles Boulevard at Millenia Walk Stand
58 C21 Temasek Avenue at Millenia Tower Stand
59 C22 Raffles Boulevard along driveway outside Marina Square Stand
60 C23 Raffles Boulevard at Marina Mandarin Hotel PU/DO
61 C24 Raffles Avenue at The Esplanade Stand
62 C25 Raffles Boulevard at Suntec City Stand
63 C26 Percival Road at round-about of Fort Canning Park Stop
SECTOR D (Chinatown)

64 D01 Teo Hong Road near Outram MRT Station Exit H Stand
65 D02 Neil Road at Chinatown Stand
66 D03 Pearl’s Hill Terrace outside Pearl’s Centre Stand
67 D04 Kreta Ayer Road opposite Oriental Plaza Stand
68 D05 Park Crescent outside People’s Park Complex Stand
69 D06 Upper Cross Street outside OG Building Stand
70 D07 Havelock Square outside People’s Park Centre (New Market Road) Stand
71 D08 New Bridge Road along driveway outside Chinatown Point Stand
72 D09 New Market Road outside Ministry of Manpower Stop
73 D10 Magazine Road outside Central Mall Stand
74 D11 Merchant Road at Riverside Point Stand
75 D12 Tew Chew Street at Central Stand
76 D13 Upper Circular Road at The Riverwalk Stop
77 D14 Carpenter Street Opposite Safra Town Club Stand
78 D15 North Canal Road opposite Hong Lim Park Stand
79 D16 South Bridge Road outside Sri Mariamman Temple Stand
80 D17 Sago Lane Beside Beside Duddha Tooth Relic Temple Museum Stand
81 D18 Temple Street infront of Grand Court Restaurant Stand
82 D19 Mosque Street infront of Dragon Brand Bird’s Nest Building Stand
83 D20 Club Street at City State Apartments Stand
84 D21 Temple Street beside Lucky Chinatown Stop
SECTOR E (Raffles Place / Tanjong Pagar)

85 E01 Pickering Street at Great Eastern Centre PU/DO
86 E03 Cross Street at China Square Stop
87 E04 South Canal Road near OCBC Centre Stop
88 E05 Market Street outside Golden Shoe Car Park Stand
89 E06 Amoy Street behind Thian Hock Keng Temple Stand
90 E07 Telok Ayer Street outside PWC Building Stand
91 E08 Cecil Street outside GB Building (before McCallum St) Stop
92 E09 Cecil Street outside Keck Seng Tower Stop
93 E10 Cecil Street outside Market Street Car Park Stop
94 E11 D’almeida Street outside Bharat Building Stop
95 E12 Fullerton Road at One Fullerton Building Stop
96 E13 Battery Road outside Straits Trading Building Stop
97 E14 Robinson Road before McCallum Street outside Singapore Post Stop
98 E15 Robinson Road outside Robinson Point Stop
99 E16 Raffles Quay near Telegraph Street Stop
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100 E17 Raffles Quay at One Raffles Quay Stand
101 E18 Shenton Way outside SGX Centre Stop
102 E19 Shenton Way outside DBS Building Stop
103 E20 Shenton Way outside MAS Building Stop
104 E21 Cook Street behind Murray Terrace Food Alley Stand
105 E22 Duxton Road at Shophouse No 61 (Spinners Pub) Stand
106 E23 Hoe Chiang Road at Keppel Tower Stop
107 E24 Tanjong Pagar Road at Amara Hotel Stop
108 E25 Tanjong Pagar Road outside Tanjong Pagar Plaza Stand
109 E26 Peck Seah Street near Red Dot Traffic Stand
110 E27 Bernam Street outside Fuji Xerox Towers Stand
111 E29 Anson Road at M Hotel PU/DO
112 E30 Anson Road along driveway outside International Plaza Stand
113 E31 Robinson Road at Capital Tower PU/DO
114 E32 Collyer Quay at Hitachi Towers Stop
115 E33 Circular Road at Shophouse No 5 Stand
116 E34 Tanjong Pagar opposite Mac-Nels Building Stand
117 E35 Lorong Telok at Archipelago Brewery Building Stand
118 E36 Raffles Quay outside Lau Pa Sat Stop
119 E37 Collyer Quay outside OUE Bayfront Stop
120 E38 Tanjong Pagar at Shophouse No. 68 Stand
121 E39 Cross Street outside Telok Ayer DTL Station Stand
SECTOR F (CENTRAL)

1 F01 Ang Mo Kio Ave 6 outside Yio Chu Kang MRT Station Stand
2 F02 Ang Mo Kio Ave 8 outside Ang Mo Kio MRT Station Stand
3 F03 Bishan Place outside Bishan Junction 8 shopping Centre Stand
4 F04 Bishan Road opposite Bishan MRT Station (towards Ang Mo Kio) Stand
5 F05 Bishan Road outside Bishan MRT Station (towards Toa Payoh) Stand
6 F06 Toa Payoh Central outside Toa Payoh Community Library Stand
7 F07 Toa Payoh Lorong 1 outside Blk 109 (near Braddell MRT Station) Stand
8 F08 Toa Payoh Lorong 2 infront of Blk 175 Stand
9 F09 To Payoh Lorong 6 along driveway of OrangeTee Building Stand
10 F10 Upper Thomson Road along driveway of Thomson Plaza Stand
11 F11 Whampoa Drive outside Blk 90 food centre Stand
12 F12 Balestier Road outside Balestier Hospital (Parkway Medical) Stand
13 F13 Buangkok View outside Block 1 ( Institute of Mental Health) Stand
14 F14 Bendemeer Road outside Blocks 25/27 (Bendemeer Shopping Mall) Stand
15 F15 Kallang Road along driveway of ICA building Stop
16 F16 Serangoon Road outside Boon Keng NEL Station (Ent B)(opp Blk 102) Stand
17 F17 Serangoon Road outside Serangoon Plaza Stand
18 F18 Kitchener Road along driveway of Park Royal Hotel Stop
19 F19 Jalan Sultan Road near Sultan Plaza Stand
20 F20 Beach Road along Driveway of Golden Mile Complex Stand
21 F21 Republic Ave outside Nicoll Highway CCL Station (Ent A) Stand
22 F23 Hastings Road Outside Tekka Mall Stand
23 F24 Rochor Canal Road outside Sim Lim Square Stop
24 F25 Bukit Timah Road along driveway outside Balmoral Plaza Stand
25 F26 Bukit Timah Rd outside Little India NEL Station (Ent A) Stand
26 F27 Race Course Road outside Little India NEL Station (Ent C) Stand
27 F28 Race Course Road outside Farrer Park NEL Station(Ent C) Stand
28 F29 Race Course Road outside Farrer Park NEL Station (Ent D) Stand
29 F30 Harbourfront Walk beside Harbourfront Centre Stand
30 F31 Telok Blangah Crescent near Radin Mas Community Club Stand
31 F32 Telok Blangah Rd opposite Harbourfront NEL Station (Ent D) Stand
32 F33 Hospital Drive outside Singapore General Hospital (Block 1) Stand
33 F34 Outram Road outside Outram Park MRT Station Stand
34 F35 Outram Road along driveway of Holiday Inn Atrium & Shopping Centre Stand
35 F36 Bukit Ho Swee Crescent along driveway of Tiong Bahru Plaza Stand
36 F37 Seng Poh Road outside Tiong Bahru Market Stand
37 F38 Bukit Merah Central outside Blk 165 Stand
38 F39 Bukit Purmei Ave outside Block 109 Stand
39 F40 Tiong Bahru Rd outside Redhill MRT Station Stand
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40 F41 Commonwealth Ave outside Commonwealth MRT Station (Alexandra Rd) Stand
41 F42 Commonwealth Ave outside Commonwealth MRT Station (Clementi) Stand
42 F43 Commonwealth Ave outside Queenstown MRT Station (Clementi) Stand
43 F44 Commonwealth Ave outside Queenstown MRT Station (Alexandra) Stand
44 F45 Queensway outside Queenstown Neighbourhood Police Centre Stand
45 F46 North Bouna Vista Road outside Buona Vista CCL Station (Holland Road) Stand
46 F47 Jervois Road near Embassy of Malaysia along Holt Road Stand
47 F48 Chatsworth Road outside Embassy of Republic of Indonesia Stop
48 F49 Angullia Park outside Liat Towers Stand
49 F50 Claymore Road outside Orchard Towers Stop
50 F51 Napier Road along Driveway of Gleneagles Hospital Stand
51 F52 Scotts Road along driveway of Far East Plaza Stand
52 F53 Scotts Road outside Newton MRT Station (towards Orchard) Stand
53 F54 Scotts Road outside Newton MRT Station (towards Newton Circus) Stand
54 F55 Tanglin Road along driveway of Tanglin Shopping Centre Stand
55 F56 Tanglin Road outside Tanglin Mall Stand
56 F57 Cluny Park Road outside Botanic Gardens CCL Station Stand
57 F58 Toa Payoh Rise outside Caldecott CCL Station Stand
58 F59 Marina Bay Cruise Centre Singapore Stand
SECTOR G NORTH-EAST)

59 G01 Potong Pasir Ave 1 outside Potong Pasir NEL Station (Ent A) Stand
60 G02 Upper Serangoon Road outside Potong Pasir NEL Station (Ent B) Stand
61 G03 Upper Serangoon Road outside Woodleigh NEL Station (Ent B) Stand
62 G04 Serangoon Ave 3 outside Blk 267 Stand
63 G05 Serangoon Central outside Serangoon CCL Station (Ent E) Stand
64 G06 Upper Serangoon Road outside Serangoon NEL Station (Ent C) Stand
65 G07 Serangoon Central outside Serangoon NEL Station (Ent A) Stand
66 G08 Serangoon Ave 3 outside Lorong Chuan CCL Station (Ent A) Stand
67 G09 Yio Chu Kang Rd outside Kovan Centre Stand
68 G10 Upper Serangoon Road outside Kovan NEL Station (Ent C) Stand
69 G11 Upper Serangoon Road outside Kovan NEL Station(Ent A) Stand
70 G12 Hougang Central outside Hougang NEL Station (Ent B) Stand
71 G13 Sengkang Central outside Buangkok NEL Station (Ent A) Stand
72 G14 Sengkang Central outside Buangkok NEL Station (Ent B) Stand
73 G15 Punggol Road outside Rivervale Plaza Stand
74 G16 Sengkang East Way outside Sengkang NEL Station (Ent D) Stand
75 G17 Sengkang East Way outside Sengkang NEL Station Stand
76 G18 Sengkang Square outside Sengkang NEL Station (Ent C) Stand
77 G19 Punggol Central outside Punggol NEL Station (Ent A) Stand
78 G20 Punggol Central outside Punggol NEL Station (Ent C) Stand
79 G21 Seletar Airport Passenger Terminal at Seletar West Camp Stop
80 G22 Pasir Ris Central outside Pasir Ris MRT Station Stand
81 G23 Pasir Ris Central Street 3 outside White Sands Shopping Mall Stand
SECTOR H (NORTH-WEST)

82 H01 Ghim Moh Road outside Blk 19 Stand
83 H02 Holland Drive outside Buona Vista Swimming Complex Stand
84 H03 Holland Ave outside Holland Road Shopping Centre Stand
85 H04 Holland Road along driveway outside Cold Storage Jelita Stand
86 H05 Farrer Road outside Farrer Road CCL Station Stand
87 H06 Upper Bukit Timah Road along driveway of Bukit Timah Shopping Centre Stand
88 H07 Yishun Ave 2 outside Khatib MRT Station Stand
89 H08 Yishun Ave 2 outside Yishun MRT Station Stand
90 H09 Yishun Ave 5 opp Blk 151 near Yishun MRT Station Stand
91 H10 Yishun Central along driveway of Northpoint Shopping Centre Stand
92 H11 Deptford Road at Carpark outside Sembawang Wharves Stand
93 H12 Sembawang Road along driveway outside Sembawang Shopping Centre Stand
94 H13 Sembawang Way outside Sembawang MRT Station Stand
95 H14 Woodlands Ave 7 outside Admiralty MRT Station Stand
96 H15 Woodlands Square (East End) outside Woodlands MRT Station (Ent C) Stand
97 H16 Woodlands Square (West End) outside Woodlands MRT Station (Ent B) Stand
98 H17 Woodlands Centre Road outside Woodlands Train Checkpoint Complex Stand
99 H18 Woodlands Ave 3 outside Marsiling MRT Station Stand
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100 H19 Woodlands Road outside Kranji MRT Station Stand
101 H20 Jumbo Jet Drive at Singapore Turf Club Stop
SECTOR I (EAST)

102 I01 Changi Village Rd outside Blk 5 Stand
103 I02 Changi South Ave 1 along driveway of Singapore EXPO Stand
104 I03 Tampines Ave 4 outside Tampines Mall Stand
105 I04 Simei Street 6 outside Eastpoint Shopping Mall Stand
106 I05 New Upper Changi Road outside Tanah Merah MRT station (Ent A) Stand
107 I06 New Upper Changi Road outside Tanah Merah MRT station (Ent B) Stand
108 I07 New Upper Changi Rd along driveway outside Blk 209 Stand
109 I08 New Upper Changi Rd outside Bedok MRT station (towards Siglap) Stand
110 I09 Bedok North Street 3 outside Blk 539 Stand
111 I10 Bedok Reservior Road outside Sheng Siong Hypermart Stand
112 I11 Bayshore Road outside The Bayshore Stand
113 I12 Marine Parade Road outside Mandarin Gardens Stand
114 I13 Marine Terrace outside Blk 54 Stand
115 I14 Marine Parade Road outside Blk 71 Stand
116 I15 Marine Parade Road along driveway of Parkway Parade Stand
117 I16 Mountbatten Road along driveway of Katong Shopping Centre Stand
118 I17 Sims Ave East outside Kembangan MRT station (towards Bedok) Stand
119 I18 Sims Ave near Geylang Serai Malay Village Stand
120 I19 Sims Ave near Tanjong Katong Complex Stand
121 I20 Tanjong Katong Road outside City Plaza Stand
122 I21 Tanjong Katong Road outside Lion City Hotel Stand
123 I22 Paya lebar Rd outside Paya Lebar CCL Station (Ent C) Stand
124 I23 Eunos Road 8 outside Paya Lebar MRT Station (Singapore Post Centre) Stand
125 I24 Geylang East Central outside Geylang Polyclinic Stand
126 I25 Geylang Lorong 25A outside Aljunied MRT Station Stand
127 I26 Bartley Rd outside Bartley CCL Station (Ent A) Stand
128 I27 Old Airport Road outside Dakota CCL Station (Ent A) Stand
129 I28 Stadium Walk opposite Singapore Indoor Stadium Stand
130 I29 Stadium Boulevard outside Stadium CCL Station (Ent B) Stand
SECTOR J (WEST)

131 J01 Bukit Batok West Ave 5 outside Bukit Gombak MRT Station Stand
132 J02 Choa Chu Kang Ave 4 near Choa Chu Kang MRT Station Stand
133 J03 Choa Chu Kang Ave 4 outside Yew Tee MRT Station Stand
134 J04 Pasir Panjang Rd outside Haw Par Villa Stand
135 J05 Commonwealth Ave West outside Dover MRT Station (Clementi) Stand
136 J06 Commonwealth Ave West outside Dover MRT Station (Queenstown) Stand
137 J07 Commonwealth Ave West outside Clementi MRT Station Stand
138 J08 Jurong Gateway Road outside Jurong East MRT Station Stand
139 J09 Jurong Gateway Road in front of JCube (U/C) Stand
140 J10 Jurong West Ave 1 outside Blk 492 Stand
141 J11 Boon Lay Way outside Chinese Garden MRT Station Stand
142 J12 Boon Lay Way outside Lakeside MRT Station Stand
143 J13 Boon Lay Way outside Boon Lay MRT Station (Jurong East) Stand
144 J14 Boon Lay Way outside Boon Lay MRT Station (Tuas) Stand
145 J15 Boon Lay Way outside Jurong Point Shopping Mall Stand
146 J16 Jurong West St 63 outside Pioneer MRT Station (Ent B) Stand
147 J17 Joo Koon Circle outside Joo Koon MRT Station (Ent A) Stand
148 J18 Singapore Discovery inside the carpark Stand
149 J19 Pasir Panjang Road outside Haw Par Villa CCL Station Stand
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Matlab Code Excerpts

%% This script is used to import and process a monthly dataset for one taxi.
% All logging files to import shall be put in a path subfolder logs. The
% booking data file shall be put into the path folder. Intermediate stages
% are stored into the path folder.

% Author: Sascha Moecker
% Contact: sascha.moecker@live.de

%#ok<*UNRCH>

%% Chain attributed, properties and constants
clc;
clear all;
startup;

L.trace('runPrepareChain', sprintf('Starting monthly taxi chain ...'));

% MONTH = '06_june';
% MONTH = '07_july';
% MONTH = '08_august';
MONTH = '09_september';
% MONTH = 'TEST';

% Import and load properties
SHALL_ONLY_IMPORT = false;
SHALL_ONLY_COMBINE = false;

SHALL_IMPORT_LOGGING_FROM_CSV = true;
SHALL_IMPORT_BOOKING_FROM_XLS = true;

% Processing properties
SHALL_COMBINE_BOOKING_AND_LOGGING = true;
SHALL_PREPROCESS = true;

SHALL_MATCH_SUBZONES = false;
SHALL_MAP_MATCH = false;

% Save properties
SHALL_SAVE_IMPORT_FILES = true;
SHALL_SAVE_TRIP_FILES = true;

SHALL_SAVE_COMBINATION_FILES = false;

SHALL_SAVE_RAW_TRIPS = false;
SHALL_SAVE_FILTERED_TRIPS = false;
SHALL_SAVE_HEIGHT_INTERPOLATED_TRIPS = false;
SHALL_SAVE_MAP_MATCHED_TRIPS = false;
SHALL_SAVE_ATTRIBUTED_TRIPS = false;

% Test and debug properties
TEST_RUN = true;
TEST_TAXI_NUMBER = 20;

% One day
ONLY_ONE_DAY = false;

% One taxi
ONLY_ONE_TAXI_RUN = false;
ONLY_TAXI_NUMBER = 1;

% At which position should the chain start
CHAIN_START = 1;
CHAIN_END = 20;

%% Load required data Loading previously established data and auxiliary input
L.trace('runPrepareChain', sprintf('Loading required data ...'));

% ElevationMap Constructed elevation map of Singapore for height interpolation

133
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L.trace('runPrepareChain', sprintf('Loading elevation map ...'));
load('data/elevation/elevationMap60000InterpolatedFiltered.mat');

% Taxistands List of taxi stand locations in Singapore
L.trace('runPrepareChain', sprintf('Loading taxistands, pickup-bays and busstops ...'));
load('data/taxistands/taxistands.mat');
load('data/taxistands/pickupbays.mat');
load('data/taxistands/busstops.mat');

% Zones - Cell array of zone structs denoting seperations
L.trace('runPrepareChain', sprintf('Loading regions, planning areas and subzones ...'));
load('data/zones/regions.mat');
load('data/zones/planningAreas.mat');
load('data/zones/subzones.mat');
load('data/zones/subzones_ex.mat');

% OSM coastline map ?OSM map denoting waterfront borders of Singapore
L.trace('runPrepareChain', sprintf('Loading OSM coastline map ...'));
load('data/osm/osmCoastlineMap.mat');

% Aux
L.trace('runPrepareChain', sprintf('Loading colormap for stats ...'));
load('data\statistics\cmap.mat');

% Energy
L.trace('runPrepareChain', sprintf('Loading EVCHaracteristics for energy estimation ...'));
load('data\model\EVCharacteristics.mat');

% OSM Map OSM map of Singapore including all nodes and ways
if SHALL_MAP_MATCH

L.trace('runPrepareChain', sprintf('Loading OSM map grid section ...'));
load('data/osm/osmMapGridSectionDistance.mat');

L.trace('runPrepareChain', sprintf('Loading connectivity matrix ...'));
load('data/osm/connectivityMatrixDistance.mat');

end

% Taxis liscence numbers All tracked and participating taxis including taxi type
L.trace('runPrepareChain', sprintf('Loading taxis liscence numbers ...'));
load('data/taxis/taxis.mat');

%% Only one taxi (determind by ONLY_TAXI_NUMBER) is considered
if ONLY_ONE_TAXI_RUN

taxis = taxis(ONLY_TAXI_NUMBER, :);
end

%% Test run uses test data of taxi TEST_TAXI_NUMBER
if TEST_RUN

TAXI_REAL_NAME = taxis{TEST_TAXI_NUMBER, 1};
taxis = taxis(TEST_TAXI_NUMBER, :);
taxis{1} = 'TEST';

end

Listing M.1: Preparation chain

%% This script performs all trip set extraction methods
for i = CHAIN_START:min(CHAIN_END, size(taxis, 1))

%% Basic setup Set Folders for taxi and month
TAXI = taxis{i, 1};

L.info(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Run monthly chain for taxi <%s> in <%s> with loop index <%d>', TAXI, MONTH, i));

path = ['data/smrt/', TAXI, '/' , MONTH];
bookingPath = ['data/smrt/booking/', MONTH];
L.trace('runTripSetChain', sprintf('Path set to <%s>', path));
L.trace('runTripSetChain', sprintf('Booking path set to <%s>', bookingPath));

%% Import or load logging data
if SHALL_IMPORT_LOGGING_FROM_CSV

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Importing logging data ...'));
data = importLoggingData([path, '/logs']);

if isempty(data)
% Continue with next taxi, since no data was fetched
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Skipping taxi, since no data could be imported'));

else
%% Save logging data
if SHALL_SAVE_IMPORT_FILES

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving imported logging data ...'));
save([path, '/data.mat'], 'data');

end
end

else
%% Load logging data from saved files
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Loading logging data ...'));
try

load(['data/smrt/', TAXI, '/' , MONTH, '/data.mat']);
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catch
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Could not load logging data, skipping taxi ...'));

end
end

%% Import or load booking data
if SHALL_IMPORT_BOOKING_FROM_XLS

L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Importing booking data...'));
if TEST_RUN

dataBooking = importBookingDataFromOneSheet(bookingPath, TAXI_REAL_NAME, MONTH);
else

dataBooking = importBookingDataFromOneSheet(bookingPath, TAXI, MONTH);
end

%% Save booking data
if isempty(dataBooking)

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Skipping taxis booking data, since no booking data could be imported'));

else
if SHALL_SAVE_IMPORT_FILES

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving imported booking data ...'));
save([path, '/dataBooking.mat'], 'dataBooking');

end
end

else
%% Load booking data from saved files
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Loading booking data ...'));
try

load(['data/smrt/', TAXI, '/' , MONTH, '/dataBooking.mat']);
catch

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Could not load booking data, skipping taxi'));

end
end

%% Only import mode forces to skip the next stages
if SHALL_ONLY_IMPORT

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Only import mode is on, continue to next available taxi'));
continue;

end

%% Check if we have data
if isempty(data) || isempty(dataBooking)

% Continue with next taxi, since no data was fetched
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Skipping taxi, since no logging data or booking data available'));
continue;

end

%% Only one day is considered
if ONLY_ONE_DAY

dailyData = extractDailyTrips(data);
data = dailyData{1};

end

%% Combination of booking and logging data
if SHALL_COMBINE_BOOKING_AND_LOGGING

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Combination ...'));
[data, combinationIndices] = combineDatasets(data, dataBooking);

%% Cleaning data
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Cleaning and first trip set filtering...'));
[data, combinationIndices] = applyCleaning(data, combinationIndices);
[data, combinationIndices] = applyTripSetFilters(data, combinationIndices);

%% Save combined data
if SHALL_SAVE_COMBINATION_FILES

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving combined data ...'));
save([path, '/dataCombined.mat'], 'data');
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving combination indices ...'));
save([path, '/combinationIndices.mat'], 'combinationIndices');

end
else

%% Load booking data from saved files
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Loading combination data ...'));
try

load(['data/smrt/', TAXI, '/' , MONTH, '/dataCombined.mat']);
load(['data/smrt/', TAXI, '/' , MONTH, '/combinationIndices.mat']);

catch
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Could not load combination data or combination indices, skipping taxi ...'));
continue;

end
end

%% Only import mode forces to skip the next stages
if SHALL_ONLY_COMBINE

L.trace(['runTripSetChain <', num2str(i), '>'], ...
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sprintf('Only combine mode is on, continue to next available taxi'));
continue;

end

%% Extraction of trips from raw data
L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Extraction ...'));
data = applyTripExtraction(data, combinationIndices, taxistands, pickupbays, busstops);
data = applyTripSetFilters(data);

%% Save raw trips
if SHALL_SAVE_RAW_TRIPS

L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving extracted raw trips ...'));
save([path, '/tripsRaw.mat'], 'data');

end

%% Filtering raw trip to retrieve reasonably filtered trips
if SHALL_PREPROCESS

L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Filtering ...'));
data = applyTripSetFilters(data);
data = applyTripSpecificFilters(data);
data = applyTripSetFilters(data);

if SHALL_SAVE_FILTERED_TRIPS
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving filtered trips ...'));
save([path, '/tripsFiltered.mat'], 'data');

end

%% Interpolation of erased entries in trips to ensure frequency conformity
L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Height Interpolation ...'));
data = heightInterpolation(data, elevationMap);

if SHALL_SAVE_HEIGHT_INTERPOLATED_TRIPS
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving height interpolated trips ...'));
save([path, '/tripsHeightInterpolated.mat'], 'data');

end

L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Resampling Interpolation ...'));
data = resamplingInterpolation(data);

end

%% Match subzone to points
if SHALL_MATCH_SUBZONES

L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Subzone-Matching ...'));
data = matchZonesEx(data, subzones_ex);

end

%% Save preprocessed trips
if SHALL_SAVE_TRIP_FILES

L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Saving processed trips ...'));
save([path, '/trips.mat'], 'data');

end

%% Map Matching
if SHALL_MAP_MATCH

%% Map match to road network
L.trace(['runTripSetChain <', num2str(i), '>'], sprintf('Map-Matching ...'));
data = mapMatchSection(data, osmMapGridSection, connectivityMatrix);

if SHALL_SAVE_MAP_MATCHED_TRIPS
%% Save map matched trips
L.trace(['runTripSetChain <', num2str(i), '>'], ...
sprintf('Saving map matched trip ...'));
save([path, '/tripsMapMatched.mat'], 'data');

end
end

%% Save trips with attributes
if SHALL_SAVE_ATTRIBUTED_TRIPS

data = attachTripsWithAttributes(data);
save([path, '/tripsAttributes.mat'], 'data');

end
end

%% Build and save Sets of all taxis
% Trip set
L.trace('runTripSetChain', sprintf('Creating trip set ...'));
tripSet = createTripSet(MONTH, taxis);

L.trace('runTripSetChain', sprintf('Saving trip set ...'));
save(['data/tripset/tripSet', MONTH, '.mat'], 'tripSet');

% Booking set
L.trace('runMonthlyTaxiChain', sprintf('Creating booking set ...'));
bookingSet = createBookingSet(MONTH, taxis);

L.trace('runMonthlyTaxiChain', sprintf('Saving booking set ...'));
save(['data/bookingSet/bookingSet', MONTH, '.mat'], 'bookingSet');

Listing M.2: Trip set chain
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%% This script performs all map matching steps
L.trace('runMapMatchingChain', sprintf('Loading OSM map grid section ...'));
load('data/osm/osmMapGridSectionDistance.mat');

L.trace('runMapMatchingChain', sprintf('Loading connectivity matrix ...'));
load('data/osm/connectivityMatrixDistance.mat');

tripSet = mapMatchTripSet(tripSet, osmMapGridSection, connectivityMatrix);
tripSet = matchZonesExTripSet(tripSet, zones);

Listing M.3: Map-matching chain

%% This script performs all shift set extraction methods
L.trace('runShiftSetChain', sprintf('Creating shift set ...'));
shiftSet = createShiftSet(tripSet);
L.trace('runShiftSetChain', sprintf('Attaching shift set with extracted attributes ...'));
shiftSet = attachShiftSetWithAttributes(shiftSet);
L.trace('runShiftSetChain', sprintf('Attaching shift set with statistics ...'));
shiftSet = attachShiftSetWithStatistics(shiftSet, EVCharacteristics);

L.trace('runShiftSetChain', sprintf('Attaching shift set with taxistand locations ...'));
shiftSet = findTaxistandLocations(shiftSet, taxistands);

L.trace('runShiftSetChain', sprintf('Saving shift set ...'));
save(['data/shiftSet/shiftSet', MONTH, '.mat'], 'shiftSet');

% Shift set table
L.trace('runShiftSetChain', sprintf('Convert shift set to table ...'));
shiftSetTable = convertShiftSetToTable(shiftSet);

L.trace('runShiftSetChain', sprintf('Saving shift set table ...'));
save(['data/shiftSetTable/shiftSetTable', MONTH, '.mat'], 'shiftSetTable');

% Statisitics
L.trace('runShiftSetChain', sprintf('Perform shift set evaluation ...'));
statistics = evaluateShiftSet(shiftSet, EVCharacteristics);

L.trace('runShiftSetChain', sprintf('Saving evaluated statistics ...'));
save(['data/statistics/evaluation', MONTH, '.mat'], 'statistics');

Listing M.4: Shift set chain

function data = importLoggingData(path)
%IMPORT Imports logging data from given path

L = evalin('base', 'L');
HAEDER_ROW_COUNT = 1;

% Time offset between GMT time and Singapore time
TIME_OFFSET = datenum([0 1 0 8 0 0]);
CSV_TYPE = 'CSV';

filePaths = getAllFiles(path);
L.trace('importLoggingData', sprintf('Got total of <%d> file(s)', numel(filePaths)));

% Create empty data array
data = {};

% Erase files from list which to not satisfy requirements for logging data
eraseIndices = [];
for i = 1:numel(filePaths)

path = filePaths{i};
type = path(end-2;end);
if ˜strcmp(type, CSV_TYPE)

L.trace('importLoggingData', sprintf('Will skip file <%s>', path));
eraseIndices = [eraseIndices, i];
continue;

end
end
filePaths(eraseIndices) = [];

for i = 1:numel(filePaths)
path = filePaths{i};

L.trace('importLoggingData', sprintf('Read trip <%d> at <%s>', i, path));

% Read CSV file and assign fields to variables
[date, time, lat, lon, altitude, velocity, heading] = ...

textread(path, ...
'%*s %*s %u %u %s %s %s %s %s %*s', ...
'headerlines', HAEDER_ROW_COUNT, ...
'delimiter', ',');

trip = Trip;

%% Time
dateTime = [num2str(date), num2str(time,'%06i')];
pattern = datevec(dateTime, 'yymmdd HHMMSS', 1960);
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time = datenum(pattern) + TIME_OFFSET;

trip.time = time;

%% LatLon
lat = (cellfun(@(x) single(str2double(x(1;end-1))), lat));
trip.lat = lat;
lon = (cellfun(@(x) single(str2double(x(1;end-1))), lon));
trip.lon = lon;

%% Altitude
altitude = (cellfun(@(x) int16(str2double(x)), altitude));
trip.altitude = altitude;

%% Velocity
velocity = (cellfun(@(x) int16(str2double(x)), velocity));
trip.velocity = velocity;

%% Heading
heading = (cellfun(@(x) int16(str2double(x)), heading));
trip.heading = heading;

%% Optional Fields
trip.setupOptionalFields();

% Assign trip to data set
data{i, 1} = trip;

end

L.trace('importLoggingData', sprintf('Got <%d> trips', length(data)));

end

Listing M.5: Import of logging data

function dataBooking = importBookingDataFromOneSheet(path, taxi, month)
%IMPORT Imports booking data from one Excel sheet respect to the queried
%taxi licence plate number

L = evalin('base', 'L');
XLS_TYPE = 'xls';
XLSM_TYPE = 'xlsm';

filePaths = getAllFiles(path);
L.trace('importBookingData', sprintf('Got total of <%d> file(s)', numel(filePaths)));

dataBooking = {};

% Erase files from list which to not satisfy requirements for booking data
eraseIndices = [];
for i = 1:numel(filePaths)

path = filePaths{i};
[˜, ˜, type] = fileparts(path);
type = type(2;end);
if ˜strcmp(type, XLS_TYPE) && ˜strcmp(type, XLSM_TYPE)

L.trace('importBookingData', sprintf('Will skip file <%s>', path));
eraseIndices = [eraseIndices, i];
continue;

end
end
filePaths(eraseIndices) = [];

for i = 1:numel(filePaths)
path = filePaths{i};

L.trace('importBookingData', sprintf('Read booking file <%d> at <%s>', i, path));

% Read xls file and store it in cell array of numeric elements and
% stirng elements
[numValues, stringValues] = xlsread(path, taxi);

if isempty(numValues) || isempty(stringValues)
L.trace('importBookingData', 'No value found for matching taxi, will skip file');
continue;

end

% Create a new Booking object
booking = Booking;

%% LatLon
booking.lat = numValues(:, 1);
booking.lon = numValues(:, 2);

%% Time
time = [];
for j = 1:length(stringValues)

try
time(j, 1) = datenum(stringValues(j, 5), 'dd/mm/yyyy HH:MM:SS AM');

catch
time(j, 1) = datenum(stringValues(j, 5), 'dd/mm/yyyy');

end
end
booking.time = time;
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%% Status
booking.status = stringValues(:, 4);

monthDigit = month(3:4);
monthDigit = strrep(monthDigit, '0', '');
monthDigit = str2double(monthDigit);

yearDigit = month(1:2);
yearDigit = strrep(yearDigit, '0', '');
yearDigit = ['20', yearDigit];
yearDigit = str2double(yearDigit);

% Filter those indices which are in the mnth range.
% It uses 2014 year for easing import. Also, since the dates of the CSV
% files are in UTC time and the booking dates are in Singaporean time,
% we add a one day tolerance filed to the booking data threshold
indices = find(booking.time >= datenum([yearDigit monthDigit 1 0 0 0]) ...

& booking.time < datenum([yearDigit monthDigit+1 2 0 0 0]));

if ˜isempty(indices)
booking = booking.getExtraction(indices(1):indices(;end));
booking.sort();

else
L.warn('importBookingData', ...

sprintf('No booking data could be fetched for given month <%s>', month));
booking = [];

end

% Assign booking object to data
dataBooking{i, 1} = booking;

end

L.trace('importBookingData', sprintf('Merge <%d> booking data into one booking', length(dataBooking)));
dataBooking = mergeBookings(dataBooking);

L.trace('importBookingData', sprintf('Got <%d> booking data', length(dataBooking)));

end

Listing M.6: Import of booking data

function data = filterVelocityBasedLogger(data)
%PREPROCESSTRIPS Filters all trips in data according to velicty outliers

L = evalin('base', 'L');

% km/h
MAX_VELOCITY_THRESHOLD = 200;

L.trace('filterVelocityBasedLogger', ...
sprintf('Filter values exceeding velocity of <%dkm/h>', MAX_VELOCITY_THRESHOLD));

for i = 1:length(data)
countBefore = length(data{i}.time);

trip = data{i};

j = 1;
while j < length(trip.time) - 1

j = dynamicFilterVelocityLogger(trip, j, MAX_VELOCITY_THRESHOLD);
end

countAfter = length(data{i}.time);

L.trace('filterVelocityBasedLogger', ...
sprintf('Removed <%d/%d> entries of trip <%d>', ...
countBefore - countAfter, countBefore, i));

end

end

Listing M.7: Filter for velocity of logger field

function j = dynamicFilterVelocityLogger...
(trip, j, threshold)

%DYNAMICS Filters sample points in terms of thresholds for acceleration,
%deceleration and velocity

% Compute current velocity based on lat lon changes
velocity = trip.velocity(j);

if abs(velocity) > threshold
% Compute velocity happening when we skip next velocity
velocitySkipNext = trip.velocity(j+2);

% Compute velocity happening when we skip current velocity
velocitySkipCurrent = trip.velocity(j+1);
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% If both values while skipping current or next exceed boundaries,
% delete both entries and skip backstep steps back restarting the
% algorithm
if abs(velocitySkipCurrent) > threshold ...

&& abs(velocitySkipNext) > threshold
trip.deleteEntries([j, j+1]);
% Jump to first point
j = 1;

else
% Else erase the value which caused the error. This means, if the
% skipped value now lays within boundries, remove the other one
if abs(velocitySkipCurrent) <= threshold

trip.deleteEntries(j);
end
if abs(velocitySkipNext) <= threshold

trip.deleteEntries(j+1);
end
j = max(1, j - 1);

end
else

j = j + 1;
end

end

Listing M.8: Dynamic filter algorithm

function data = filterTimestampBased(data)
%FILTERTIMESTAMPBASED Filters values which do not obey the timestamp
%contraints or have the same timestamp

L = evalin('base', 'L');

MAX_TIME_DIFFERENCE = datenum([0 1 0 0 0 0.5]);

L.trace('filterTimestampBased', ...
sprintf('Remove entries where the timestamp equals'));

countBefore = cellfun(@(x) length(x.time), data);

% Compute time difference per trip
difference = cellfun(@(x) diff(x.time), data, 'UniformOutput', false);

% Erase indices where time difference is smaller than limit
eraseIndices = cellfun(@(x) find(x < MAX_TIME_DIFFERENCE), difference, 'UniformOutput', false);

countRemoved = cellfun(@(x) length(find(x˜=0)), eraseIndices);

% Actual removing of entries
cellfun(@(x, y) x.deleteEntries(y), data, eraseIndices);

for i = 1:length(data)
L.trace('filterTimestampBased', ...

sprintf('Removed <%d/%d> entries for trip <%d>',...
countRemoved(i), countBefore(i), i));

end

end

Listing M.9: Filter for timestamps

function data = resamplingInterpolation(data)
%RESAMPLING Interpolates missing value of trips in data or replaces
%misarranged sample points

L = evalin('base', 'L');

% Resampling rate
ONE_SECOND = datenum([0 1 0 0 0 1]);

% Define different interpolation strategies for differenc tpuproses
INTERPOLATION_METHOD_SPATIAL = 'pchip';
INTERPOLATION_METHOD_DYNAMICS = 'pchip';
INTERPOLATION_METHOD_TAGS = 'nearest';

L.trace('resamplingInterpolation', ...
sprintf('Resample dataset by interpolating missing values'));

for i = 1:length(data)
trip = data{i};

% Skip this step due to uncertainty
[timeForVelocity, velocities] = interpolateBigGaps(trip);

timeForVelocity = trip.time;
velocities = trip.velocity;

% Compute the interplated time defined by one-second interval
timeInterpolated = trip.time(1):ONE_SECOND:trip.time(;end);
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% Interpolate each element with sampling rate for spatial information
latInterpolated = interp1(trip.time, double(trip.lat), timeInterpolated, ...

INTERPOLATION_METHOD_SPATIAL);
lonInterpolated = interp1(trip.time, double(trip.lon), timeInterpolated, ...

INTERPOLATION_METHOD_SPATIAL);

% Interpolate fields for dynamics
velocityInterpolated = interp1(timeForVelocity, double(velocities), timeInterpolated, ...

INTERPOLATION_METHOD_DYNAMICS);
velocityInterpolated(velocityInterpolated < 0) = 0;

altitudeInterpolated = interp1(trip.time, double(trip.altitude), timeInterpolated, ...
INTERPOLATION_METHOD_DYNAMICS);

headingInterpolated = interp1(trip.time, double(trip.heading), timeInterpolated, ...
INTERPOLATION_METHOD_DYNAMICS);

% Interpolate discrete fields mainly using nearest neighbour method
statusInterpolated = interp1(trip.time, double(trip.status), timeInterpolated, ...

INTERPOLATION_METHOD_TAGS);
wayInterpolated = interp1(trip.time, double(trip.way), timeInterpolated, ...

INTERPOLATION_METHOD_TAGS);
highwayInterpolated = interp1(trip.time, double(trip.highway), timeInterpolated, ...

INTERPOLATION_METHOD_TAGS);
subzoneInterpolated = interp1(trip.time, double(trip.subzone), timeInterpolated, ...

INTERPOLATION_METHOD_TAGS);

% Assign interpolated values to trip. Here we define the used data
% format as it is the last prepreocessing step
trip.time = timeInterpolated';

trip.lat = single(latInterpolated');
trip.lon = single(lonInterpolated');

trip.velocity = single(velocityInterpolated');
trip.altitude = single(altitudeInterpolated');
trip.heading = int16(headingInterpolated');

trip.status = int8(statusInterpolated');
trip.way = int32(wayInterpolated');
trip.highway = int8(highwayInterpolated');
trip.subzone = int16(subzoneInterpolated');

end

end

Listing M.10: Interpolation of trips

function data = heightInterpolation(data, elevationMap)
%HEIGHTINTERPOLATION Interpolates the height by matching the position of
%each point to a grid of Singapore. This grid is attached with an elevation
%value received from Google Elevation Api

L = evalin('base', 'L');

% For now, only use values from elevation map
WEIGHT_FACTOR_ELEVATION_MAP = 1;

L.trace('heightInterpolation', ...
sprintf('Interplating altitude values by using Google elevation values with weight factor <%d>', ...
WEIGHT_FACTOR_ELEVATION_MAP));

% Get lat and lon range
lats = linspace(Singapore.SOUTH, Singapore.NORTH, elevationMap.GRID_SIZE_INTERPOLATED_Y - ...

elevationMap.INTERPOLATION_FACTOR + 1);
lons = linspace(Singapore.WEST, Singapore.EAST, elevationMap.GRID_SIZE_INTERPOLATED_X - ...

elevationMap.INTERPOLATION_FACTOR + 1);

for i = 1:length(data)
L.trace('heightInterpolation', ...

sprintf('Interpolate height for trip <%d>', i));

for j = 1:length(data{i}.time)

% Get nearest index in x and y direction for current point
[˜,xIndex] = min(abs(lons - data{i}.lon(j)));
[˜,yIndex] = min(abs(lats - data{i}.lat(j)));

actualDistanceX = lons(xIndex) - data{i}.lon(j);
actualDistanceY = lats(yIndex) - data{i}.lat(j);

actualPoint = [data{i}.lon(j), data{i}.lat(j)];

shiftX = 0;
if actualDistanceX > 0

shiftX = 1;
end

adjacentIndices(1, 1) = xIndex - shiftX;
adjacentIndices(2, 1) = xIndex + 1 - shiftX;
adjacentIndices(3, 1) = xIndex - shiftX;
adjacentIndices(4, 1) = xIndex + 1 - shiftX;
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shiftY = 0;
if actualDistanceY > 0

shiftY = 1;
end

adjacentIndices(1, 2) = yIndex + 1- shiftY;
adjacentIndices(2, 2) = yIndex + 1- shiftY;
adjacentIndices(3, 2) = yIndex - shiftY;
adjacentIndices(4, 2) = yIndex - shiftY;

adjacentPoints = [lons(adjacentIndices(:, 1))', lats(adjacentIndices(:, 2))'];

distances = pdist2(single(adjacentPoints), single(actualPoint), 'euclidean') ...

* Singapore.DISTANCE_PER_DEGREE_MEAN;

distanceIsZeroIndex = find(distances == 0);
if distanceIsZeroIndex

elevation = elevationMap.matrixInterpolatedFiltered(adjacentIndices(distanceIsZeroIndex, 2), ...
adjacentIndices(distanceIsZeroIndex, 1));

else
weights = distances / min(distances);
weights = 1 ./ weights;
weights = weights / sum(weights);

elevations = diag(elevationMap.matrixInterpolatedFiltered(adjacentIndices(:, 2), ...
adjacentIndices(:, 1)));

elevation = sum(weights .* elevations);

data{i}.altitude = single(data{i}.altitude);
end

elevation = single(elevation);

% Update value according to weighted average
data{i}.altitude(j) = elevation;

end
end

end

Listing M.11: Altitude assignment

function [status, timeInterpolated] = getInterpolatedStatus(dataBooking)
%GETINTERPOLATEDBOOKINGDATA Interpolates status gained from a booking set.
%The booking set contains gaps where the taxi was not driven and also small
%gaps which do not correspond to the normal 3 minute frequcny. This
%function targets to interpolate each values to a one-minute sequence to
%use it for hostograms

TRANSORM_TO_MINUTE_FACTOR = 24 * 60;
MIN_GAP_IN_MINUTES_FOR_LOG_OFF_INTERPOLATION = 30;

% The time we want to interpolate
ONE_MINUTE = datenum([0 1 0 0 1 0]);

% Get all status as Status objects
status = [];
status = [status; arrayfun(@(x) Status.getFromString(x), dataBooking.status)];

% Get all times of booking data
times = dataBooking.time;

gapIndices = find((diff(times) * TRANSORM_TO_MINUTE_FACTOR) ...
> MIN_GAP_IN_MINUTES_FOR_LOG_OFF_INTERPOLATION);

% Interpolate last known indx before gap as Log Off
status(gapIndices) = Status.LOG_OFF;

% Interpolate first known indx after gap as Log Off.
% This enables the interplation to set the values in between to LOG OFF
status(gapIndices + 1) = Status.LOG_OFF;

% Do some cleaning of flawful time order of booking data
status(diff(dataBooking.time) <= 0) = [];
times(diff(dataBooking.time) <= 0) = [];

% Compute the targeting time which uses one minute sequence
timeInterpolated = dataBooking.time(1):ONE_MINUTE:dataBooking.time(;end);

% Teh ctual interpolation using the nearest neighboor
status = status(floor(interp1(times, 1:length(times), timeInterpolated)));

end

Listing M.12: Interpolation of booking set
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function [data, combinationIndices] = combineDatasets(data, dataBooking)
%COMBINEDATASETWONDOWED Combines logging with booking dataset by attaching logging
%dataset with status information. It uses time infomration form booking
%data set and searches robostly for a equaivilant in the logging dataset.

L = evalin('base', 'L');

% Allow a band of 30 seconds for logging and booking data
SECONDS_TOLERANCE = 30;
TOLERANCE_OFFSET = datenum([0 1 0 0 0 SECONDS_TOLERANCE]);

combinationIndices = {};
combinationCounter = 0;
combinationCounterTotal = 0;
dataLengthCounter = 0;

L.trace('combineDatasets', ...
sprintf('Combine booking with logging data with tolerance band of <%ds>', ...
SECONDS_TOLERANCE));

if isempty(dataBooking)
L.trace('combineDatasets', 'Booking data is empty, skipping combination');
return;

end

% Setup combination indices
for i = 1:length(data)

trip = data{i};
combinationIndices{i, 1}(1:length(trip.time), 1) = 0;

end

for i = 1:length(data)
trip = data{i};

L.trace('combineDatasets', ...
sprintf('Combining trip <%d>', i));

% Find all indices of logging dataset where time of booking dataset
% equals time in logging dataset
indices = arrayfun(@(x) ...

find((x >= trip.time - TOLERANCE_OFFSET)...
& (x <= trip.time + TOLERANCE_OFFSET)),...
dataBooking.time, ...
'UniformOutput', false);

% Get indices as vector values
indices = cell2mat(indices);

% Find all indices of booking dataset where time of logging dataset
% equals time in booking dataset
bookingIndices = arrayfun(@(x) ...

find((x >= dataBooking.time - TOLERANCE_OFFSET)...
& (x <= dataBooking.time + TOLERANCE_OFFSET)),...
trip.time, ...
'UniformOutput', false);

% Get indices as vector values
bookingIndices = cell2mat(bookingIndices);

% Validate indice results
isCheckOk = checkCombineDataset(indices, bookingIndices, trip, dataBooking, false);
if ˜isCheckOk

L.warn('combineDatasets', ...
sprintf('Booking data does not fit to logging data at trip <%d>', i));

end

% Extract status strings from booking data
statusStrings = dataBooking.status(bookingIndices);

% Goes through all booking indices and apply its status to the trip
for j = 1:length(bookingIndices)

switch j
case 1

% If we are at the first index, fill start of trip up to
% first index
trip.status(1:indices(j)) = ...

Status.getFromString(statusStrings(j));
case length(bookingIndices)

% If we already reached the last statusString, add the same
% status till the end of the trip
trip.status(indices(j):length(trip.time)) = ...

Status.getFromString(statusStrings(j));
otherwise

% Fill gap between current and sucessor
trip.status(indices(j):indices(j + 1)) = ...

Status.getFromString(statusStrings(j));
end
% Add the status to combinationIndices where we actually relaly
% had the information that the status has changes. This is
% required for the trip cutting step.
combinationIndices{i, 1}(indices(j), 1) = Status.getFromString(statusStrings(j));

end
combinationCounter = combinationCounter + length(unique(bookingIndices));

end

L.trace('combineDatasets', ...
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sprintf('Combined <%d/%d> booking data to logging data', ...
combinationCounter, length(dataBooking.time)));

% Some measurement vars
dataLengthCounter = dataLengthCounter + length(dataBooking.time);
combinationCounterTotal = combinationCounterTotal + combinationCounter;

L.trace('combineDatasets', ...
sprintf('Total combined <%d/%d> booking data to logging data', ...
combinationCounterTotal, dataLengthCounter));

end

Listing M.13: Interpolation of booking set

function dataExtracted = extractTripsStatusBased(data, combinationIndices, taxistands, shallPlot)
%EXTRACTTRIPS Extract trips if there is a change in status. A status change
%indnicates that a taxi trip has ende or is about to start or e.g. a break
%has started. Since each trip has its own status, this is a crucial step.

L = evalin('base', 'L');

if nargin < 4
shallPlot = false;

end

dataExtracted = {};

for dataIndex = 1:length(data)
trip = data{dataIndex};
tripCombinationIndices = combinationIndices{dataIndex};

% Get cut matrix based on status changes
candidateCutPoints = getRelevantStatusChangeIndices(trip);

% Check and estimate the right cut position in the area of all cut
% points
cutPoints = checkStatusCutPoint(trip, candidateCutPoints, tripCombinationIndices, taxistands, shallPlot);
cutPoints = unique(cutPoints);

edgeIndices = [0; cutPoints; length(trip.time)];

L.trace('extractTripsStatusBased', sprintf('Trace <%d> is cut into <%d> trips', ...
dataIndex, length(edgeIndices) - 1));

% Cut trips an assign them to new data set
dataExtracted = cutTrips(data, dataExtracted, dataIndex, edgeIndices);

end

% Apply set filters since it can happen that a extraction is less than a
% minimum of entries
dataExtracted = applyTripSetFilters(dataExtracted);

% Since we cut trips not necessarily at the change indice of a status
% change, but on a checked or estimated one, we need to convey status
% information from one trip to another.
for j = 1:length(dataExtracted)

tripExtracted = dataExtracted{j};
changeIndex = getRelevantStatusChangeIndices(tripExtracted);
if ˜isempty(changeIndex)

tripExtracted.status(1:changeIndex(;end)) = tripExtracted.status(changeIndex(;end) + 1);
end

end

L.trace('extractTripsTimeBased', sprintf('Got <%d> trips', length(dataExtracted)));

end

Listing M.14: Status based trip extraction

function cutPoints = ...
checkStatusCutPoint(trip, candidateCutPoints, tripCombinationIndices, taxistands, shallPlot)

%CHECKSTATUSCUTPOINT Takes a set of candidate cut points for a given trip.
%Those cut points should origin from a status changed trip extraction
%analysis. To estimate where the status change exactly occured, thresse
%methods are taken into account: Where did the taxi stopped, where was a
%uturn and which point was most distant to the direct route

if nargin < 5
shallPlot = false;

end

cutPoints = [];
for i = 1:length(candidateCutPoints)

% Find the right step back index gathererd from the combination indices
% array from combination step
realStatusChangeIndices = find(diff(tripCombinationIndices));
realStatusChangeIndices = realStatusChangeIndices(candidateCutPoints(i) ...
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- realStatusChangeIndices > 0);

if length(realStatusChangeIndices) < 1
realStatusChangeIndices = 1;

end
if length(realStatusChangeIndices) < 2

realStatusChangeIndices = [1; realStatusChangeIndices];
end
tripStepBackIndex = floor(mean([realStatusChangeIndices(;end), realStatusChangeIndices(end-1)]));

% Get the extraction of trip in specific window
tripExtraction = trip.getExtraction(tripStepBackIndex:candidateCutPoints(i));

% Call uturn estimation algo
uturnEstimationIndices = getUturnEstimationIndices(tripExtraction);

% Call stop estimation algo
stopEstimationIndices = getStopEstimationIndices(tripExtraction);

% Call most distance estimation algo
mostDistantEstimationIndex = getMostDistantEstimationIndices(tripExtraction);

% Include uturn, and stopestimation into the fitting algorithm for the
% best cut point
estimatedCutPointExtraction = ...

findBestFittingCutPoint(...
tripExtraction, ...
uturnEstimationIndices, ...
stopEstimationIndices, ...
mostDistantEstimationIndex);

% Tailor cut Point to our indices of the whole trip
estimatedCutPoint = tripStepBackIndex + estimatedCutPointExtraction;

% Finally add it to our array
cutPoints = [cutPoints; estimatedCutPoint];

if shallPlot
% Plots
handle = figure;
maxfig(handle, 1);
hold on;
plot(tripExtraction.lon(estimatedCutPointExtraction), ...

tripExtraction.lat(estimatedCutPointExtraction), ...
'c.', 'MarkerSize', 80, 'DisplayName', 'Best fitting cut point');

plot(tripExtraction.lon(uturnEstimationIndices), ...
tripExtraction.lat(uturnEstimationIndices), ...
'y.', 'MarkerSize', 60, 'DisplayName', 'Uturn candidates');

plot(tripExtraction.lon(stopEstimationIndices), ...
tripExtraction.lat(stopEstimationIndices), ...
'm.', 'MarkerSize', 40, 'DisplayName', 'Stop candidates');

plot(tripExtraction.lon(mostDistantEstimationIndex), ...
tripExtraction.lat(mostDistantEstimationIndex), ...
'k.', 'MarkerSize', 30, 'DisplayName', 'Most distant candidates');

tripExtraction.plot();
xlabel('Lon');
ylabel('Lat');
title('Status changed trip cut candidates');
axis equal;
legend show;

end
end

end

Listing M.15: Validation of status change point

function shifts = extractShifts(data)
%EXTRACTSHIFTSBULK Extracts shifts from a set of trips contained in data by
%analysing reoccuring patterns

% A pause more than 3 hours is considered as a shift change
ONE_SHIFT_CHANGE_THRESHOLD = 3;
MIN_TRIPS_PER_SHIFT = 5;
MAX_TIME_BETWEEN_SHIFTS = ONE_SHIFT_CHANGE_THRESHOLD;
shifts = [];

% Find a common pattern for shift change for each data trip
[˜, shiftchangesIndices, ˜, subzoneChanges] = extractShiftChangeCandidates(data, false);

% Compute gaps between times
starts = cellfun(@(x) x.time(1), data);
ends = cellfun(@(x) x.time(1), data);

gaps = abs(ends(1;end-1) - starts(2;end)) * 24;

% Find the location of gaps where we can possible cut shifts
gapIndices = find(gaps >= ONE_SHIFT_CHANGE_THRESHOLD);
gapIndices = [0; gapIndices; length(data)];

for i = 1:length(gapIndices) - 1
% Get the shift candidate by cutting at the gap index
shiftCandidate = {data{gapIndices(i) + 1:gapIndices(i+1)}};
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% Analyse cut shift and probably cut it in more detail by taken usual
% shift change behvior into account
shiftCandidates = analyseShiftCandidate(shiftCandidate, shiftchangesIndices, subzoneChanges);

shifts = [shifts; shiftCandidates];
end

% Thorughout the preocess it is possible that empty shift sets are create.
% Erase those.
shifts = shifts(˜cellfun('isempty', shifts));

% Here we adjust the trips in order to have not very small shifts which are
% very aadjacent to other shifts
adjustedShift = [];
i = 1;
while i <= length(shifts)

shift = shifts{i};
if length(shift) < MIN_TRIPS_PER_SHIFT

previousShift = [];
nextShift = [];

if i > 1
previousShift = shifts{i - 1};

end

if i < length(shifts)
nextShift = shifts{i + 1};

end

if ˜isempty(previousShift)
timeToPreviousShift = (shift{1}.time(1) - previousShift{end}.time(;end)) * 24;

else
timeToPreviousShift = inf;

end

if ˜isempty(nextShift)
timeToNextShift = (nextShift{1}.time(1) - shift{end}.time(;end)) * 24;

else
timeToNextShift = inf;

end

if timeToPreviousShift < MAX_TIME_BETWEEN_SHIFTS
adjustedShift{end} = [previousShift; shift];
i = i + 1;

else
if timeToNextShift < MAX_TIME_BETWEEN_SHIFTS

adjustedShift{end + 1, 1} = [shift; nextShift];
i = i + 2;

else
adjustedShift{end + 1, 1} = shift;
i = i + 1;

end
end

else
adjustedShift{end + 1, 1} = shift;
i = i + 1;

end
end
shifts = adjustedShift;

end

Listing M.16: Shift extraction

function connectivityMatrix = extractConnectivityMatrix(osmMap)
%EXTRACTCONENCTIVITYMATRIX Extracts the connectivity matrix from an osmMap
%object.

connectivityMatrix = sparse([]);

% Iterate over all ways
for i = 1:length(osmMap.ways)

OsmParser.L.trace('connectivityMatrix', ['Extracting connectivity for way <', num2str(i), '>']);

% Get all nodes contained in way
nodeIds = osmMap.ways(i).nodeIds;

% Iterate over all nodes in way
for j = 1:length(nodeIds)

if osmMap.node2IndexMap.isKey(num2str(nodeIds(j)))
% Get current node index
nodeIndex = osmMap.node2IndexMap(num2str(nodeIds(j)));

else
warning(['Key ', num2str(nodeIds(j)), ' not present in node2IndexMap']);
continue;

end

% Check neighbourhood
if j < length(nodeIds)

% Get next node index
if osmMap.node2IndexMap.isKey(num2str(nodeIds(j+1)))
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nodeIndexNext = osmMap.node2IndexMap(num2str(nodeIds(j+1)));
% Add adjacent node incices to connectivity matrix.
% Check if we have an oneway street. if so, add the
% reversed order to our matrix. If the oneway street
% was modeled vice versa add the 'wrong' direction to
% the matrix
dijkstraDistance = ...

getDistanceBetweenNodes(osmMap.nodes(nodeIndex), osmMap.nodes(nodeIndexNext), ...
osmMap.ways(i));

if osmMap.ways(i).oneway == 0 || osmMap.ways(i).oneway == 1
connectivityMatrix(nodeIndex, nodeIndexNext) = dijkstraDistance;

end
if osmMap.ways(i).oneway == 0 || osmMap.ways(i).oneway == -1

connectivityMatrix(nodeIndexNext, nodeIndex) = dijkstraDistance; %#ok<*SPRIX>
end

else
warning(['Key ', num2str(nodeIds(j)), ' not present in node2IndexMap']);

end
end

% Get intersection possibilities
adjacentWays = osmMap.node2WaysMap(num2str(nodeIds(j)));
for k = 1:length(adjacentWays)

% Prevent to use the own way for adjacent ways
if adjacentWays(k).id == osmMap.ways(i).id

continue;
end

for l = 1:length(adjacentWays(k).nodeIds)
if adjacentWays(k).nodeIds(l) == nodeIds(j);

break;
end

end
if l < length(adjacentWays(k).nodeIds)

if osmMap.node2IndexMap.isKey(num2str(adjacentWays(k).nodeIds(l+1)))
% Get node index
adjacentNodeIndex = osmMap.node2IndexMap(num2str(adjacentWays(k).nodeIds(l+1)));

dijkstraDistance = ...
getDistanceBetweenNodes(osmMap.nodes(nodeIndex), osmMap.nodes(adjacentNodeIndex), ...
osmMap.ways(i));

if adjacentWays(k).oneway == 0 || adjacentWays(k).oneway == 1
connectivityMatrix(nodeIndex, adjacentNodeIndex) = dijkstraDistance;

end
if adjacentWays(k).oneway == 0 || adjacentWays(k).oneway == -1

connectivityMatrix(adjacentNodeIndex, nodeIndex) = dijkstraDistance;
end

else
warning(['Key ', num2str(adjacentWays(k).nodeIds(l+1)), ...

' not present in node2IndexMap']);
end

end
if l > 1

if osmMap.node2IndexMap.isKey(num2str(adjacentWays(k).nodeIds(l-1)))
% Get node index

adjacentNodeIndex = osmMap.node2IndexMap(num2str(adjacentWays(k).nodeIds(l-1)));
dijkstraDistance = ...

getDistanceBetweenNodes(osmMap.nodes(nodeIndex), osmMap.nodes(adjacentNodeIndex), ...
osmMap.ways(i));

if adjacentWays(k).oneway == 0 || adjacentWays(k).oneway == 1
connectivityMatrix(adjacentNodeIndex, nodeIndex) = dijkstraDistance;

end
if adjacentWays(k).oneway == 0 || adjacentWays(k).oneway == -1

connectivityMatrix(nodeIndex, adjacentNodeIndex) = dijkstraDistance;
end

else
warning(['Key ', num2str(adjacentWays(k).nodeIds(l-1)), ...

' not present in node2IndexMap']);
end

end
end

end
end

spy(connectivityMatrix);

end

Listing M.17: Extraction of connectivity matrix

function data = mapMatch(data, osmMapGridSection, connectivityMatrix, range, shouldPlot)
%MAPMATCH Map matches an extract of range trip from trip set in data using
%the conenctivity matrix which indicates possible connection on the given
%osmMap

L = evalin('base', 'L');

if nargin < 4
range = 1:length(data);
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shouldPlot = false;
end

if nargin < 5
shouldPlot = false;

end

for i = range
try

parfor_progress;
catch
end;

% This array stores the graph of closest points and ways to backtrack
% sequence in a later stage
candidateGraph = {};
closestNodesGraph = {};
closestWaysGraph = {};

% The Fs and Ft array contais the weights for each possible path in
% spatial and temporal manner
Fs = {};
Ft = {};
trip = data{i};

L.trace('mapMatch', sprintf('Map match trip <%d/%d> ', i, length(data)));

% Retrive a set of point to be used for map matching. Avoid using each
% point for computation enhancements
pointIndicesToMatch = [1:MapMatching.STAKE_OF_USED_POINTS:length(trip.time), length(trip.time)];
pointIndicesToMatch = unique(pointIndicesToMatch);

for j = pointIndicesToMatch
L.trace('mapMatch', sprintf('Map match point no <%d/%d> ', j, length(trip.time)));

observedPoint = getObservedMeanPoint(trip, j, false);
observedVelocity = median(trip.velocity(max(1, j - MapMatching.STAKE_OF_USED_POINTS):j));

% Get location on grid
[latIndex, lonIndex] = osmMapGridSection.getGridLocation(observedPoint);

ways = [];
% Start with a range of 1 to allow finding more adjacent ways
range = 1;
while length(ways) < MapMatching.CANDIDATE_POINTS

range = range + 1;
% Retrieve neigbouring indices
indices = getAdjacentIndices(osmMapGridSection, latIndex, lonIndex, range);
% Retrieve all possible ways
ways = getAllWayCandidates(indices, osmMapGridSection);

end;

% Retrieve all candidate points projected on way
[candidatePoints, closestNodes, closestWays] = ...

getAllCandidatePoints(ways, observedPoint, osmMapGridSection, MapMatching.CANDIDATE_POINTS);

% Add points to graph to backtrack matched sequence
candidateGraph{end+1} = candidatePoints;
closestNodesGraph{end+1} = closestNodes;
closestWaysGraph{end+1} = closestWays;

% Compute obersavation probability
N = computeObservationProbability(observedPoint, candidatePoints);
N = repmat(N, MapMatching.CANDIDATE_POINTS, 1);

% Compute transmission probability
if j > 1

observedPointPrevious = ...
[trip.lat(max(1, j-MapMatching.STAKE_OF_USED_POINTS)), ...
trip.lon(max(1, j-MapMatching.STAKE_OF_USED_POINTS))];

% Apply the transmission prob. algorithm to gain the assumed
% prob. that the route followed the path between previous
% observed and curretn observed point
V = computeTransmissionProbability( ...

observedPointPrevious, observedPoint, ...
candidatePointsPrevious, candidatePoints, ...
closestNodesPrevious, closestNodes, ...
osmMapGridSection, connectivityMatrix);

% Compute temporal analysis function
temporalDistance = temporalAnalysisFunction( ...

osmMapGridSection, ...
closestNodesPrevious, closestNodes, ...
observedVelocityPrevious, observedVelocity);

else
% For the first point in j just use ones to only apply the
% observation probability
V = ones(MapMatching.CANDIDATE_POINTS, MapMatching.CANDIDATE_POINTS);
temporalDistance = ones(MapMatching.CANDIDATE_POINTS, MapMatching.CANDIDATE_POINTS);

end

% Compute Spatial analysis function
Fs{end+1} = N .* V;

% Attach temporal analysis function value
Ft{end+1} = temporalDistance;
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% Store previous observed point for next transmission probability
% for next point to matched
candidatePointsPrevious = candidatePoints;
closestNodesPrevious = closestNodes;
observedVelocityPrevious = observedVelocity;

end

L.trace('mapMatch', 'Find best matching sequence ...');

% Compute best matching sequence
sequence = findMatchedSequence(Fs, Ft);

% Plot results
if shouldPlot

maxfig(figure, 1);
hold on;
plot(trip.lon(pointIndicesToMatch), trip.lat(pointIndicesToMatch), '.b', 'MarkerSize', 60);
plotMatchedSequence(osmMapGridSection, candidateGraph, closestNodesGraph, sequence, Fs);
cellfun(@(x) plotWays(x, osmMapGridSection), closestWaysGraph);

end

% Attach sequenced ways ids and highway tags to points
matchedWayIds = attachTagsToPoints(osmMapGridSection, connectivityMatrix, ...

trip, pointIndicesToMatch, ...
closestWaysGraph, closestNodesGraph, sequence, shouldPlot);

% Conduct a post processing step which readjusted wrongly matched ways
postProcessMapMatching(osmMapGridSection, ...

matchedWayIds, trip, shouldPlot);

if shouldPlot
trip.visualize;
hold on;
plotMatchedWays(trip, osmMapGridSection);

end
end

end

Listing M.18: Map-matching algorithm

function data = matchZonesEx(data, zones)
%MATCHZONES Matches each point of trip to a certain subzone
% id from zones array

L = evalin('base', 'L');

for i = 1:length(data)
L.trace('matchZones', sprintf('Matching trip <%d/%d> to zones', i, length(data)));

trip = data{i};
point = [trip.lon, trip.lat];

for k = 1:length(zones)
in = inpoly(point, [zones{k}.Longitude, zones{k}.Latitude]);
trip.subzone(in) = k;

end

% Adopted from database implementation
% count consecutive number of 0 values
min0 = 60;

idSubZone = trip.subzone;
idDataPoint = 1:length(trip.subzone);

n0 = 0;
i_assign = false(length(idSubZone), 1);

for i = 1:length(idSubZone)
if idSubZone(i) == 0

n0 = n0 + 1;
else

if n0 > 0
if n0 <= min0

i_assign(i-n0:i-1) = true;
end
n0 = 0;

end
end

end

if n0 > 0
if n0 <= min0

i_assign(i-n0+1;end) = true;
end

end

% Check if interpolation shall be done
if any(i_assign)

% Remove values from original data
id_in = double(idDataPoint(˜i_assign));
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sz_in = double(idSubZone(˜i_assign));

% Interpolate subzone ids
idSubZone_int = interp1(id_in, sz_in, idDataPoint, 'nearest', 'extrap');
trip.subzone = int16(idSubZone_int');

end
end

end

Listing M.19: Matching of Subzones to sample points

function [Econs, drivePower, Distance, spCons] = ...
CalculateEnergyConsumptionEVCharacteristics(dynamics, EVCharacteristics)

% ==================================================
% Function: CalculateEnergyConsumption
% Autor: Pablo Lopez Hidalgo pablo.hidalgo@tum-create.edu.sg (inputs
% from Theresa Knoblauch), changes from Sascha Moecker
% Date: 30.07.2014
% Version: 1.10
% ==================================================
% Calculate the energy consumption for one vehicle type
% Input: speed: 2 dimensional vector 1st column: Time [s]
% 2nd column speed values [m/s] the used speed in this file should
% already be filtered

% vehicle: vehicle is a struct containing the vehicle parameters m, f_r, c_w, A, lambda
%
% Output: Cummulated Energy Consumption of Vehicle, last value is also the
% total energy consumed for one trip
%
% requires: File with driving cycle data
% ==================================================

% Obtain values from uniform EV CHaracteristics
g = EVCharacteristics.g;
rho = EVCharacteristics.rho;
eta_dt = EVCharacteristics.etaMotor * EVCharacteristics.etaInverter ...

* EVCharacteristics.etaTransmission;

eta_charge = EVCharacteristics.etaCharging;
eta_discharge = EVCharacteristics.etaDischarging;
P_AUX = EVCharacteristics.powerAux;

m = EVCharacteristics.mass;
fR = EVCharacteristics.tireRollingResistance;
cw = EVCharacteristics.dragCoefficient;
A = EVCharacteristics.frontalArea;
lambda = EVCharacteristics.rotationalMassFactor;

% Slope
time = dynamics(:, 1);
velocity = dynamics(:, 2);
alpha = dynamics(:, 3);

% Acceleration
a_grd = gradient(velocity, time);

% Power submodules
P_L = 1/2 * rho * cw * A .* velocity .ˆ 3;
P_k = m * lambda .* a_grd .* velocity;
P_r = m * g * fR .* velocity;
P_s = m * g .* sin(alpha) .* velocity;
Paux = ones(length(velocity),1) .* P_AUX;

% Drivetrain power
P_road = P_L + P_k + P_r + P_s;

% Efficiency consideration
P_road(P_road >= 0) = 1 / eta_dt .* P_road(P_road>=0);
P_road(P_road < 0) = eta_dt .* P_road(P_road<0);

% Drivetrain power distinguished by charge and discharge
drivePower(P_road >= 0,1) = (P_road(P_road>=0) + Paux(P_road >= 0)) ./ 1000 * 1 / eta_discharge;
drivePower(P_road < 0,1) = (P_road(P_road<0) - Paux(P_road < 0))./ 1000 * eta_charge;

Econs = cumsum(0.5 .* (drivePower(1;end-1, 1) + drivePower(2;end, 1)) .* (time(2;end, 1) ...
- time(1;end-1, 1)) ./ 3600);

Econs = [0; Econs];

Distance = cumsum(0.5 .* (dynamics(2;end, 2) + dynamics(1;end-1, 2)) .* ((dynamics(2;end, 1) ...
- dynamics(1;end-1, 1))) ./ 1000);

spCons = Econs(end) / Distance(end) * 100;

end

Listing M.20: Backward Model implementation

function [consumedEnergy, energyPer100Km, distance] = ...
computeEnergyTumEVModel(trip, EVCharacteristics)
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%COMPUTEENERGY Prepares dataset and applies the vehicle model on
%velocity/altitude basis

% We have to apply a smottohing on our velocity vector since the TUM EV
% model does not deal with to high peaks in the v/t diagram
% tripPrepared.velocity = smooth(double(trip.velocity), SMOOTH_VALUE);

SMOOTH_VALUE = 5; %#ok<NASGU>

% Global variable declaration for SIMULINK
global dc;
global sp;

% Preload the system for inititalization
load_system('VehicleModel');

% Initiate Simulation Parameters
[dc, sp] = InitParameters(trip);

assignin('base', 'dc', dc);
assignin('base', 'sp', sp);

set_param('VehicleModel','InitFcn','');

%Simulate to get Reference Values
sim('VehicleModel');

set_param('VehicleModel','InitFcn','StartSimulationScript');

% Format results to our known format
energyPer100Km = kWh100km.Data(;end);
consumedEnergy = consumedEnergyPerTrip.Data(;end);
distance = distanceTraveled.Data(;end);

end

Listing M.21: Energy computation for TUM CREATE EV Model

function [consumedEnergy, energyPer100Km, distance] = ...
computeEnergyForSections(osmMapGridSection, energyMap, linkMicroTrips)

%COMPUTEENERGYFORSTARTANDENDNODE Computes energy consumption based on
%established energy map

energyValues = [];
distanceValues = [];
for i = 1:length(linkMicroTrips)

linkMicroTrip = linkMicroTrips{i};
sectionId = mode(linkMicroTrip.way);
section = osmMapGridSection.sectionMap(num2str(sectionId));

if energyMap.isKey(num2str(sectionId));
energyPer100kmMeaned = mean(energyMap(num2str(sectionId)));
% Get from kWh per 100km to kWh consumed for this particualr
% section
energyPerSection = energyPer100kmMeaned / (100 * 1000) * section.length;

else
energyPerSection = getDefaultEnergyValue(section);

end

energyValues = [energyValues; energyPerSection];
distanceValues = [distanceValues; section.length];

end

consumedEnergy = sum(energyValues);

distance = sum(distanceValues) / 1000;
energyPer100Km = 100 / distance * consumedEnergy;

Listing M.22: Energy computation for road segment based energy map approach

function [consumedEnergy, energyPer100Km, distance] = ...
computeEnergyDrivingShare(trip, EVCharacteristics, drivingShareParameters)

%COMPUTEENERGYDIRVINGSHARE Computes energy consumption based on driving
%share and average acc and dec for a certain trip

time = (trip.time(;end) - trip.time(1)) * 24 * 60 * 60;

velocity = mean(trip.velocity);
velocityCubicMean = (mean(trip.velocity .ˆ 3)) ˆ (1/3);
gradient = mean(methodIncline({trip}));

% Get share and acc dec values for vertain velocity
drivingShares = drivingShareParameters.getDrivingShare(velocity);
accDecValues = drivingShareParameters.getAccDecValue(velocity);

acceleration = accDecValues(1);
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deceleration = accDecValues(2);

% Compute all power values for different driving force contribution
eRoll = getERoll(velocity, EVCharacteristics);
eAir = getEAir(velocity, EVCharacteristics);
eAcc = getEAcc(velocity, acceleration, EVCharacteristics);
eDec = getEDec(velocity, deceleration, EVCharacteristics);
eGrade = getEGrade(velocity, gradient, EVCharacteristics);
eAux = getEAux(EVCharacteristics);

% Retrieve the weighted energy value for our driving situation
energy = getTotalEnergyShareBased(drivingShares, eRoll, eAir, eAcc, eDec, eGrade, eAux) * time;

distance = cell2mat(computeTripLengthVelocityBased({trip})) / 1000;
consumedEnergy = energy;
energyPer100Km = energy / distance * 100;
[˜, b, ˜] = computeEnergyPabloModel(trip, EVCharacteristics);

end

Listing M.23: Energy computation for generic driving share approach

function [consumedEnergy, energyPer100Km, distance] = ...
computeEnergyDrivingShareForSections(linkMicroTrips, shareParameterMap, EVCharacteristics)

%COMPUTEENERGYDIRVINGSHARE Compute energy consumption based on driving
%share and average acc and dec for a certain trip

distance = 0;
consumedEnergy = 0;

for i = 1:length(linkMicroTrips)
trip = linkMicroTrips{i};

wayId = mode(trip.way);

if shareParameterMap.isKey(num2str(wayId))
drivingShareParameters = shareParameterMap(num2str(wayId));

[energy, ˜, ˜] = ...
computeEnergyDrivingShare(trip, EVCharacteristics, drivingShareParameters);

else
section.length = cell2mat(computeTripLengthVelocityBased({trip}));
energy = getDefaultEnergyValue(section);

end

distance = distance + cell2mat(computeTripLengthVelocityBased({trip})) / 1000;
consumedEnergy = consumedEnergy + energy;

end

energyPer100Km = consumedEnergy / distance * 100;

end

Listing M.24: Energy computation for road segment based driving share approach

function mapAttachement = updateMapAttachementValues(microTrip, mapAttachement, EVCharacteristics)
%GETMAPATTACHEMENTVALUES Updates map attachements in form of average energy
%values for energy map or driving shares and dyanmics in case of driving
%share apporach

MAX_ENERGY_VALUE = EVCharacteristics.maxPower;

% The actual application of our car model
% [˜, energyPer100Km, ˜] = computeEnergyStaticModel(vehicleCharacterisitcs, trip, wayRange);
[˜, energyPer100Km, ˜] = computeEnergyPabloModel(microTrip, EVCharacteristics);

% Contnue to next way if energy exceed limits. This can be caused
% by a unregular energy apttern.
if abs(energyPer100Km) > MAX_ENERGY_VALUE

return;
end

% Prepare the key
key = num2str(mode(microTrip.way));

% Continue with next key if we have a zero as key. This case means,
% we haven't mapped a way to the point
if strcmp(key, '0')

return;
end

% The average speed
averageSpeed = mean(microTrip.velocity);

acceleration = getAcceleration(double(diff(microTrip.velocity)), diff(microTrip.time));
accelerations = acceleration(acceleration >= AccDecValue.ACCELERATION_THRESHOLD);
decelerations = acceleration(acceleration <= AccDecValue.DECELERATION_THRESHOLD);
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if isempty(accelerations)
accelerations = 0;

end

if isempty(decelerations)
decelerations = 0;

end

meanAcc = mean(accelerations);
meanDec = mean(decelerations);

% drivingShareParameters = extractShareParameters({trip}, false);
shares = extractDrivingShareValues(microTrip);
drivingShareMapValue = [averageSpeed, meanAcc, meanDec, shares];

% Attach gathered values and keys to our maps
mapAttachement.energyWayMap = addToMapContainer(mapAttachement.energyWayMap, ...

key, energyPer100Km);
mapAttachement.averageSpeedMap = addToMapContainer(mapAttachement.averageSpeedMap, ...

key, averageSpeed);
mapAttachement.drivingShareMap = addToMapContainer(mapAttachement.drivingShareMap, ...

key, drivingShareMapValue);

timeZoneSet = getTimeZoneSpecificSet({microTrip});
timePeriodIndex = find(˜cellfun(@isempty,timeZoneSet));
switch timePeriodIndex

case PeakHours.PEAK_AM_INDEX
mapAttachement.energyWayMapPeakAM = addToMapContainer(mapAttachement.energyWayMapPeakAM, ...

key, energyPer100Km);
mapAttachement.averageSpeedMapPeakAM = addToMapContainer(mapAttachement.averageSpeedMapPeakAM, ...

key, averageSpeed);
mapAttachement.drivingShareMapPeakAM = addToMapContainer(mapAttachement.drivingShareMapPeakAM, ...

key, drivingShareMapValue);
case PeakHours.DAY_INDEX

mapAttachement.energyWayMapDay = addToMapContainer(mapAttachement.energyWayMapDay, ...
key, energyPer100Km);

mapAttachement.averageSpeedMapDay = addToMapContainer(mapAttachement.averageSpeedMapDay, ...
key, averageSpeed);

mapAttachement.drivingShareMapDay = addToMapContainer(mapAttachement.drivingShareMapDay, ...
key, drivingShareMapValue);

case PeakHours.PEAK_PM_INDEX
mapAttachement.energyWayMapPeakPM = addToMapContainer(mapAttachement.energyWayMapPeakPM, ...

key, energyPer100Km);
mapAttachement.averageSpeedMapPeakPM = addToMapContainer(mapAttachement.averageSpeedMapPeakPM, ...

key, averageSpeed);
mapAttachement.drivingShareMapPeakPM = addToMapContainer(mapAttachement.drivingShareMapPeakPM, ...

key, drivingShareMapValue);
case PeakHours.NIGHT_INDEX

mapAttachement.energyWayMapNight = addToMapContainer(mapAttachement.energyWayMapNight, ...
key, energyPer100Km);

mapAttachement.averageSpeedMapNight = addToMapContainer(mapAttachement.averageSpeedMapNight, ...
key, averageSpeed);

mapAttachement.drivingShareMapNight = addToMapContainer(mapAttachement.drivingShareMapNight, ...
key, drivingShareMapValue);

end

end

Listing M.25: Conceptualization of road segment attachments

function featureSet = extractFeaturesFromMicroTrip(microTrip, EVCharacteristics)
%EXTRACTFEATURESFROMMICROTRIP Feature extraction from micro trips based on
%established 16 features

STOP_TRESHHOLD = 1;

stopIndices = find(microTrip.velocity < STOP_TRESHHOLD);
velocitiesWithoutStops = microTrip.velocity;

if ˜isempty(stopIndices)
stopCuts = find(diff(stopIndices) > 1);
stopCuts = [0; stopCuts; length(stopIndices)];
stopLength = [];

for i = 1:length(stopCuts) - 1
stopLength = [stopLength; stopCuts(i + 1) - stopCuts(i) + 1 - 1];

end

stopNumber = length(find(diff(stopIndices) > 1)) + 1;
velocitiesWithoutStops(stopIndices) = [];

else
stopNumber = 0;
stopLength = 0;

end

shares = extractDrivingShareValues(microTrip);

celocityCmp = getVelocity(diff(microTrip.lat), diff(microTrip.lon), diff(microTrip.time));
accelerationCmp = getAcceleration(diff(celocityCmp), diff(microTrip.time(1;end-1)));
acceleration = accelerationCmp;

% acceleration = getAcceleration(diff(microTrip.velocity), diff(microTrip.time));
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[˜, energyPer100Km, ˜] = computeEnergyPabloModel(microTrip, EVCharacteristics);

% Create an empty feature set instance
featureSet = FeatureSet;

featureSet.distance = cell2mat(computeTripLengthVelocityBased({microTrip})) / 1000;

featureSet.meanVelocityTotal = mean(microTrip.velocity);
featureSet.meanVelocityExcludingStops = mean(velocitiesWithoutStops);

featureSet.maxVelocity = max(microTrip.velocity);
featureSet.minVelocity = min(microTrip.velocity);

featureSet.shareIdle = shares(DrivingShare.IDLE);
featureSet.shareCruise = shares(DrivingShare.CRUISE);
featureSet.shareAcc = shares(DrivingShare.ACCELERATION);
featureSet.shareDec = shares(DrivingShare.DECELERATION);

featureSet.meanAcceleration = mean(acceleration(acceleration > 0.15));
featureSet.meanDeceleration = mean(acceleration(acceleration < -0.15));

featureSet.stopRate = stopNumber / featureSet.distance;
featureSet.meanStopTime = mean(stopLength);

featureSet.modeHighwayType = Highway.getBestMatchingCluster(microTrip.highway);

featureSet.timePeriod = getTimeZoneForTrip( microTrip);
featureSet.energyConsumption = energyPer100Km;

end

Listing M.26: Driving feature extraction for instant approach

function drivingShare = extractDrivingShare(microTrips, shallPlot)
%EXTRACT Takes a set of trips or micro trip in data and detects the driving
%shares of each

L = evalin('base', 'L');

drivingShare = DrivingShare;

% Setup a share matrix consiting of MAX_SPEED number of cells
[shares{1:DrivingShare.MAX_SPEED}] = deal([]);
shares = shares';

% Iterate over all trips in data
for i = 1:length(microTrips)

if ˜mod(i, 100) || i == 1
L.trace('extractDrivingShare', sprintf('Extracting driving share for micro trip <%d>', i));

end
microTrip = microTrips{i};

% Build a trip regarded diving type array
tripDrivingTypes = [];
for j = 1:length(microTrip.time) - 1

drivingType = DrivingShare.getDrivingType(microTrip.velocity(j), microTrip.velocity(j + 1));
tripDrivingTypes(end+1) = drivingType;

end

% Get the mean velocity for this trip. Floor it, so we actually have
% the velocity + 1. Thus, index 1 equals velocity of zero
meanedVelocity = floor(mean(microTrip.velocity)) + 1;

% Get the histogram of driving shares for our trip
drivingShareHistogram = histc(tripDrivingTypes, DrivingShare.DRIVING_STATES);

% Assign the gathered histrogram normalized to the gathered mean
% valocity
shares{meanedVelocity, 1} = ...

[shares{meanedVelocity, 1}; ...
drivingShareHistogram / sum(drivingShareHistogram)];

end

% Take all share values for each velocity and mean the containing share
% distribution
sharesMeaned = cellfun(@(x) mean(x, 1), shares, 'UniformOutput', false);

idles = getTimeSharesForDrivingType(shares, DrivingShare.IDLE);
cruises = getTimeSharesForDrivingType(shares, DrivingShare.CRUISE);
accs = getTimeSharesForDrivingType(shares, DrivingShare.ACCELERATION);
decs = getTimeSharesForDrivingType(shares, DrivingShare.DECELERATION);

idlesMeaned = getTimeSharesForDrivingType(sharesMeaned, DrivingShare.IDLE);
cruisesMeaned = getTimeSharesForDrivingType(sharesMeaned, DrivingShare.CRUISE);
accsMeaned = getTimeSharesForDrivingType(sharesMeaned, DrivingShare.ACCELERATION);
decsMeaned = getTimeSharesForDrivingType(sharesMeaned, DrivingShare.DECELERATION);

idles = idlesMeaned;
cruises = cruisesMeaned;
accs = accsMeaned;
decs = decsMeaned;

% Compute the fitting curve for idle times
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[drivingShare.idleParameters, ˜] = ...
lsqcurvefit(DrivingShare.IDLE_FUNCTION, DrivingShare.IDLE_INIT_PARAM, ...
idles(:, 1), idles(:, 2), ...
DrivingShare.IDLE_LB, DrivingShare.IDLE_UB);

xIdles = cruises(:, 1);
fitIdlesCurve = DrivingShare.IDLE_FUNCTION(drivingShare.idleParameters, xIdles);

% Compute the fitting curve for crusing times
[drivingShare.cruiseParameters, ˜] = ...

lsqcurvefit(DrivingShare.CRUISE_FUNCTION, DrivingShare.CRUISE_INIT_PARAM, ...
cruises(:, 1), cruises(:, 2), ...
DrivingShare.CRUISE_LB, DrivingShare.CRUISE_UB);

xCruise = cruises(:, 1);
fitCruiseCurve = DrivingShare.CRUISE_FUNCTION(drivingShare.cruiseParameters, xCruise);

% Compute the fitting curve for acceleration times
[drivingShare.accParameters, ˜] = ...

lsqcurvefit(DrivingShare.ACC_FUNCTION, DrivingShare.ACC_INIT_PARAM, ...
accs(:, 1), accs(:, 2), ...
DrivingShare.ACC_LB, DrivingShare.ACC_UB);

xAccs = accs(:, 1);
fitAccsCurve = DrivingShare.ACC_FUNCTION(drivingShare.accParameters, xAccs); %#ok<*NASGU>

% Compute the fitting curve for deceleration times
[drivingShare.decParameters, ˜] = ...

lsqcurvefit(DrivingShare.DEC_FUNCTION, DrivingShare.DEC_INIT_PARAM, ...
decs(:, 1), decs(:, 2), ...
DrivingShare.DEC_LB, DrivingShare.DEC_UB);

xDecs = decs(:, 1);
fitDecsCurve = DrivingShare.DEC_FUNCTION(drivingShare.decParameters, xDecs);

if shallPlot
% Plot the reults
maxfig(figure, 1);
hold on;

% First plot each meaned datapoint for driving type ditribution
plot(idles(:, 1), idles(:, 2), '.', ...

cruises(:, 1), cruises(:, 2), 'x',...
accs(:, 1), accs(:, 2), 'o',...
decs(:, 1), decs(:, 2), '*');

% PLot the fitting curves in same diagram
% plot(xIdles, fitIdlesCurve, xCruise, fitCruiseCurve, xAccs, fitAccsCurve, xDecs, fitDecsCurve);

xValues = 0:120;
crvIdle = DrivingShare.IDLE_FUNCTION(drivingShare.idleParameters, xValues);
crvCruise= DrivingShare.CRUISE_FUNCTION(drivingShare.cruiseParameters, xValues);
crvAcc = DrivingShare.ACC_FUNCTION(drivingShare.accParameters, xValues);
crvDec = DrivingShare.DEC_FUNCTION(drivingShare.decParameters, xValues);

plot(xValues, crvIdle, xValues, crvCruise, xValues, crvAcc, xValues, crvDec);
ylim([0,1]);

title('Driving type shares');
xlabel('Speed [km/h]');
ylabel('Share [%]')
grid on;

legend('Idle times', 'Cruise times', 'Acceleration times', 'Deceleration times', ...
'Idle share function', 'Cruise share function', 'Acceleration share function', ...
'Deceleration share function');

end

end

Listing M.27: Driving share extraction for driving share approach

function accDecValue = extractAccDecValue(microTrips, shallPlot)
%EXTRACTACCDECSHARE Takes a set of trips or micro trip in data and detects
%the dynamics shares of each

L = evalin('base', 'L');

accDecValue = AccDecValue;

% Setup a share matrix consiting of MAX_SPEED number of cells
[accDecValues{1:AccDecValue.MAX_SPEED}] = deal([]);
accDecValues = accDecValues';

% Iterate over all trips in data
for i = 1:length(microTrips)

if ˜mod(i, 100) || i == 1
L.trace('extractAccDecShare', sprintf('Extracting acceleration share for micro trip <%d>', i));

end

microTrip = microTrips{i};
meanedVelocity = floor(mean(microTrip.velocity)) + 1;
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% Get all accelerations and extract those accs and decs which exceed
% the deinfed threshhold
acceleration = getAcceleration(double(diff(microTrip.velocity)), diff(microTrip.time));
accelerations = acceleration(acceleration >= AccDecValue.ACCELERATION_THRESHOLD);
decelerations = acceleration(acceleration <= AccDecValue.DECELERATION_THRESHOLD);

if isempty(accelerations) || isempty(decelerations)
continue;

end

meanAcc = mean(accelerations);
meanDec = mean(decelerations);

accDecValues{meanedVelocity, 1} = ...
[accDecValues{meanedVelocity, 1}; ...
meanAcc, meanDec];

end

% Take all share values for each velocity and mean the containing share
% distribution
accDecValuesMeaned = cellfun(@(x) mean(x, 1), accDecValues, 'UniformOutput', false);

accs = getTimeSharesForDrivingType(accDecValues, 1);
decs = getTimeSharesForDrivingType(accDecValues, 2);

accsMeaned = getTimeSharesForDrivingType(accDecValuesMeaned, 1);
decsMeaned = getTimeSharesForDrivingType(accDecValuesMeaned, 2);

accs = accsMeaned;
decs = decsMeaned;

% Compute the fitting curve for acceleration times
[accDecValue.accParameters, ˜] = ...

lsqcurvefit(AccDecValue.ACC_FUNCTION, AccDecValue.ACC_INIT_PARAM, ...
accs(:, 1), accs(:, 2), ...
AccDecValue.ACC_LB, AccDecValue.ACC_UB);

xAccs = accs(:, 1);
fitAccsCurve = AccDecValue.ACC_FUNCTION(accDecValue.accParameters, xAccs); %#ok<*NASGU>

% Compute the fitting curve for deceleration times
[accDecValue.decParameters, ˜] = ...

lsqcurvefit(AccDecValue.DEC_FUNCTION, AccDecValue.DEC_INIT_PARAM, ...
decs(:, 1), decs(:, 2), ...
AccDecValue.DEC_LB, AccDecValue.DEC_UB);

xDecs= decs(:, 1);
fitDecsCurve = AccDecValue.DEC_FUNCTION(accDecValue.decParameters, xDecs);

if shallPlot
% Plot the reults
maxfig(figure, 1);
hold on;

plot(accs(:, 1), accs(:, 2), '.', ...
decs(:, 1), decs(:, 2), 'x');

% PLot the fitting curves in same diagram
% plot(xAccs, fitAccsCurve, xDecs, fitDecsCurve);

xValues = 0:120;
crvAcc = AccDecValue.ACC_FUNCTION(accDecValue.accParameters, xValues);
crvDec = AccDecValue.DEC_FUNCTION(accDecValue.decParameters, xValues);
plot(xValues, crvAcc, xValues, crvDec);

ylim([-1,1]);

title('Acceleration Function');
xlabel('Speed [km/h]');
ylabel('Acceleration [m/sˆ2]')
grid on;

legend('Acceleration values', 'Deceleration values', ...
'Acceleration function', 'Deceleration function');

end

end

Listing M.28: Dynamics extraction for driving share approach
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