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Erik Demeulemeester Katholieke Universiteit Leuven (Belgium)
Thomas Fliedner TUM School of Management (Germany)
Markus Frey TUM School of Management (Germany)
Willy Herroelen Katholieke Universiteit Leuven (Belgium)
Johann Hurink University of Twente (Netherlands)
Joanna Jozefowska Poznan University of Technology (Poland)
Sigrid Knust Universität Osnabrück (Germany)
Rainer Kolisch TUM School of Management (Germany)
Mikhail Kovalyov National Academy of Sciences of Belarus (Belarus)
Wieslaw Kubiak Memorial University (Canada)
Roel Leus Katholieke Universiteit Leuven (Belgium)
Anulark Naber TUM School of Management (Germany)
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compiling the proceedings.

7



1

Analysis of Activity Networks with Phase Type
Distributions by Kronecker Algebra

Alessio Angius1, András Horváth1 and Marcello Urgo2

1 University of Turin, Italy, angius@di.unito.it,horvath@di.unito.it
2 Politecnico di Milano, Italy, marcello.urgo@mecc.polimi.it

Keywords: Activity Networks, Phase Type distributions.

1 Introduction

In the production of complex Manufacturing-to-Order products, uncertainty may stem
from a number of possible sources, both internal and external, affecting the execution of
the scheduled activities. A disrupted schedule incurs high costs due to missed due dates,
resource idleness, or higher work-in-process inventory. Robust scheduling approaches aim
at being able to provide a balanced compromise between expected performance and the
protection against rare but extremely unfavourable events. Tackling this problem entails
the need of estimating the probability distribution associated with a scheduling objective
function. One approach, described in (Urgo 2014), is to use phase type distributions to
approximate generally distributed activity durations.

The aim of this work is to show that an efficient manner to deal with activity networks
in which durations are described by phase type distributions is provided by Kronecker
algebra. This algebra alleviates the state space explosion problem, which is typical when
phase type distributions are used in models where several activities are executed in parallel,
and opens a way to an efficient and modular analysis methodology. The proposed approach
is applied to a simple test case demonstrating how a proper design of the PH approximation
provides a tool to asses the completion time distribution with a good accuracy.

2 Markov Activity Networks

In Markov Activity Networks (MAN) (Kulkarni & Adlakha 1986), given that (i) the
durations of the activities are mutually independent and (ii) exponentially distributed, the
execution of the activity network can be represented through a continuous time Markov
chain (CTMC). Modelling the execution of a network of activities with a Markov chain
provides the capability of exploiting the wide set of tools and approaches available for
Markov models to address stochastic scheduling problems. As an example we consider the
activity network in Figure 1, representing the execution of a set of activities 1, 2, ..., 5 and
their precedence relations. The durations of the activities are exponentially distributed
with parameters λ1, λ2, λ3, λ4, and λ5,, respectively.

The CTMC describing the execution of the set of activities is depicted in Figure 2 where
the on-going activities of a state are indicated inside the circle. The initial state is the state
in which no activities have yet been executed. Assuming that this state is the first state of
the CTMC, the initial probability vector is given as π(0) = |1, 0, ..., 0|. Denoting by Q the
infinitesimal generator of the CTMC, the transient probabilities of the states at time t is
given by the vector π(t) = π(0) exp(tQ) where exp(•) is the matrix exponential function.
Assuming that the last state of the CTMC corresponds to the situation when all activities
are executed, the last entry of π(t) gives the probability that the execution of all activities
took less than t time units. I.e., the last entry of π(t) provides the cumulative distribution
function of the makespan of the underlying stochastic scheduling problem. Note that the

8



2

1

2

3

4

5

Fig. 1. An activity network.
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Fig. 2. CTMC of the activity network in Figure 1.

last state of the Markov chain is absorbing and the chain is acyclic. However, the restriction
to exponentially distributed activity durations represents a limiting hypothesis, since the
exponential distribution is quite seldom applicable to real industrial processes.

3 Phase Type Distributions

In the field of Markov models, phase type (PH) distributions are widely used to provide
an approximation of a general distribution. Basically, a set of inter-related exponential
delays are put together to form a distribution to approximate a general one. Formally, a
continuous time PH distribution is the distribution of the time to absorption of a CTMC
and the order of the PH distribution is given by the number of transient states of the
chain. Consequently, the PH distribution is determined by a vector, β, which gives the
initial probabilities of the transient states and a matrix, T , which contains the intensities
of the transitions among the transient state. The cumulative distribution function, the
probability density function and the moments of a PH distribution are given by

F (x) = P{X ≤ x} = 1− βeTx1I, f(x) = βeTx(−T )1I, mi = i!β(−T )−i1I

where 1I is a column vector of ones.
The use of PH distributions is popular because these distributions can be easily used

as building blocks of more complex models. Indeed, if we are given a system in which
all sojourn times are according to PH distributions and the next state distribution is
Markovian then the overall system behavior can be described by a Markov chain.

The class of PH distributions is dense in the field of positive valued distributions, i.e.,
any positive valued distribution can be approximated by PH distributions with any accu-
racy. This fact does not provide however directly a practical method to fit distributions
by PH distributions. Several authors proposed fitting methods and most of these fall into
two categories: maximum likelihood (ML) based estimation of the parameters and mo-
ment matching techniques. One of the first works on ML estimation considered acyclic PH
distributions (Bobbio & Cumani 1992) while an approach for the whole family, based on
the expectation-maximization method, is proposed in (Asmussen, Nerman & Olsson 1996).
Since these early papers, many new methods and improvements have been suggested for
the whole PH family and for its sub-classes. For what concerns moment matching meth-
ods the following results are available. For low order (≤ 3) PH distributions, moment
bounds and moment matching formulas are either known in an explicit manner or there
exist iterative numerical methods to check if given moments can be captured (Telek &
Heindl 2002, Horváth & Telek 2007). For higher order there exist matching algorithms,
but these often result in improper density functions and the validity check is a non-trivial
problem. In (Bobbio, Horváth & Telek 2005) a simple method is provided that constructs
a minimal order acyclic PH distribution given three moments. Tool support is available for
the construction of PH and ME distributions. Specifically, ML based fitting is implemented
in PhFit (Horváth & Telek 2002) and a set of moment matching functions is provided in
BuTools.
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3

4 Analysis of Activity Networks with Phase Type Distributed Activity Du-
rations by Kronecker Algebra

We assume now that the time to carry out an activity is distributed according to a
PH distribution. We will denote the vector-matrix pair that describes the PH distributions
associated with activity i by (βi, Ti). Then infinitesimal generator of the overall system can
be constructed by blocks. The diagonal blocks describe the parallel execution of a number
of activities and the diagonal block associated with state j is given by

Qj,j =
⊕

i∈A(j)

Ti

where
⊕

denotes the Kronecker sum operator and A(j) is the set of on-going activities
in state j. An off diagonal block describes the finishing of an activity, the initialization of
one or more activities and must maintain the phase of those activities that remain active.
Accordingly, the block that describes the transition from state j to state k (with j 6= k) is
given as

Qj,k =
⊗

i∈A
Ri with Ri =





(−Ti)1I if i ∈ A(j) and i 6∈ A(k)
βi if i 6∈ A(j) and i ∈ A(k)
Ii if i ∈ A(j) and i ∈ A(k)
1 if i 6∈ A(j) and i 6∈ A(k)

where
⊗

denotes the Kronecker product operator and Ii is an identity matrix whose
size is equal to the order of the PH distribution associated with activity i. The four cases
in the above equation correspond to the cases: activity i finishes (described by the vector
(−Ti)1I which contains the “finishing” intensities of the associated PH distribution), activity
i starts (described by βi), activity i remain active (described by Ii), activity i is neither
active in state j nor in state k (scalar 1 in the Kronecker product). The initial probability
vector of the overall system is composed of the initial probabilities of the starting activities:
π(0) = |⊗i∈A(1) βi, 0, ..., 0|.

The infinitesimal generator for the model depicted in Figure 1 is as follows

Q =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1
⊕
T2 t1

⊗
I2
⊗
β3
⊗
β4 0 0 I1

⊗
t2 0 0 0 0 0 0 0

0 T2
⊕
T3
⊕
T4 I2

⊗
I3
⊗
t4 0 0 I2

⊗
t3
⊗
I4 t2

⊗
I3
⊗
I4 0 0 0 0 0

0 0 T2
⊕
T3 I2

⊗
t3 0 0 0 t2

⊗
I3 0 0 0 0

0 0 0 T2 0 0 0 0 t2
⊗
β5 0 0 0

0 0 0 0 T1 0 t1
⊗
β3
⊗
β4 0 0 0 0 0

0 0 0 I2
⊗
t4 0 T2

⊕
T4 0 0 0 t2

⊗
I4
⊗
β5 0 0

0 0 0 0 0 0 T3
⊕
T4 I3

⊗
t4 0 t3

⊗
I4
⊗
β5 0 0

0 0 0 0 0 0 0 T3 t3
⊗
β5 0 0 0

0 0 0 0 0 0 0 0 T5 0 0 t5
0 0 0 0 0 0 0 0 t4

⊗
I5 T4

⊕
T5 I4

⊗
t5 0

0 0 0 0 0 0 0 0 0 0 T4 t4
0 0 0 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where ti is the finishing vector of the PH distribution (βi, Ti) (i.e.,tx = −Tx1I). Each block
of rows corresponds to a set of currently ongoing activities and these sets are ordered as
{1, 2}, {2, 3, 4}, {2 , 3}, {2}, {1}, {2, 4}, {3, 4}, {3}, {5}, {4, 5}, {4} and the empty set, ∅.

As a numerical example, we assume that activity 1 follows a log-normal distribution

with mean equals to one and with pdf f(x) = 1/(b
√
2πx) e−

(log(x)−a)2
2b2 and parameters

a = −1.62, b = 1.8 while the duration of the other activities are given by order 4 Erlang
distribution with mean equal to one (note that Erlang distributions are in the PH family).
We constructed four different fitting distributions for the log-normal distribution of activity
1. The first one is an order 8 ML estimation by PhFit (Horváth & Telek 2002). The second
and the third one are order 8 ML estimations extended with 2 and 4 phases, respectively,
to fit the tail (obtained with PhFit). The last one matches three moments of the log-normal
distribution (this can be done with an order 2 PH distribution by (Bobbio et al. 2005)). The
pdf of the log-normal and the fitting PH distributions are depicted in Figure 3. The pure
ML estimation fails to catch the tail behaviour and the moment matching PH distribution
fails to capture the shape of the log-normal distribution.
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Fig. 3. Main part (left) and tail (right) of the pdf of the PH distributions fitting the
log-normal distribution.
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Fig. 4. Main part (left) and tail (right) of the pdf of the makespan of the activity network.

In Figure 4 we depicted the pdf of the makespan of the activity network both with the
original log-normal distribution and with the approximating PH distributions. It can be
seen that the best approximation is achieved by applying the third PH distributions that
captures both the main part and the tail of the pdf.
Acknowledgments. This research has been partially funded by the EU FP7 Project VISIONAIR
- Vision and Advanced Infrastructure for Research, Grant no. 262044.
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1. Problem statement 

Health care is a major problem, both in our society and in operations research. Hundreds of 
papers have been published using optimisation to solve health services problems. Our area of 
interest lies in the scheduling of operating rooms, see e.g. Cardoen et al. (2010) or Guerriero and 
Guido (2011) for a review of the planning and scheduling of operating rooms. We are working 
with a hospital in Spain which serves an average of 4,000 patients daily, has 1,000 single beds, 45 
operating rooms and 6,300 employees. The management of the hospital, which has been built 
recently, is trying to mechanize some of the processes of the hospital, using in some cases new 
technology available in the hospital. Our work is focused on the Urology unit, which is among the 
top performing units regarding the measures imposed by the local government. The process that 
concerns us is the planning of the operations to be carried out in a planning period (established as 
two weeks), specifically the selection of patients on the waiting list who have to be operated on, 
and the operating room and start time assigned to those operations. Currently, this task is done by 
hand by the head doctor of the unit.  

The main elements to be considered in the optimisation problem are the waiting list, the 
operating room sessions assigned to the unit, the unit resources and the performance criteria. The 
medical unit has a certain number of operating room sessions assigned. A session is determined 
specifying the date, the room number of the operating room and the start and finish time of that 
session. The waiting list is a dynamic list of patients who have to be operated on. Although this list 
is continuously updated, we work with the list of those patients included ten days before the first 
day of the two-week plan, because it is at that moment when the plan is designed. Later on we will 
discuss the information we have about these patients. The resources refer to doctors and 
specialties. In addition, an operation may belong to a specialty of the unit, or it may be classified 
as “general”. Each session can have one or more specialties assigned (not always the case in 
papers from the literature). A specialised operation must be done in a session assigned to the 
corresponding specialty, whereas a general operation can be done in any session. Regarding the 
patients, we only consider elective patients in this problem. An elective patient is someone for 
whom the surgery is planned well in advance. The opposite concept would be non-elective or 
urgent patients, those who need an operation urgently. We work both with inpatients and 
outpatients. An outpatient enters and leaves the hospital on the same day, whereas inpatients must 
stay at least one night in the hospital. For each patient we know the following information: the date 
of admission, whether they are inpatients or outpatients and their priority. The priority is one, two 
or three, depending on how urgent the operation is. Patients with priority one, two or three should 
be operated on in less than one, three and twelve months respectively. These values, together with 
the admission date, result in a (soft) due date for the operation. The waiting list also indicates if the 
patient needs a specialized surgery or not and the estimated duration of the operation. We are 
going to deal with durations as constants, not as random variables. The hospital also plans 
inpatients and outpatients separately and therefore we deal with those patients in the same way. 
Furthermore, between operations there should be a waiting time for cleaning fixed at twenty 
minutes. Regarding the objective functions, the hospital is interested in two performance criteria, 
to schedule first patients with smaller due dates (waiting time, WT) and the maximisation of the 
utilisation of the surgery rooms (UR). The waiting time can be calculated in several ways. In the 
model we will explain the specific measure we have adopted, called waiting time indicator (WTI). 
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The utilisation rate is the rate between the utilisation of the operating rooms and their capacity. 
The capacity is obviously the sum of the durations of all the sessions. The utilisation is the sum of 
the duration of the operations assigned to all the sessions. 

We have modelled the problem and solved it with GAMS. The mathematical model is similar 
to others in the literature, see e.g. Agnetis et. al (2012). 

 
Notation 
 
I is the set of surgeries (indexed by i) on the current waiting list; Pi is the duration of the i-th 

surgery; ddi is the due date of the i-th surgery; J is the set of sessions, indexed by j; Oj is the length 
time of session j; cij = 1 if the surgery i can be assigned to session j because the specialty of i is 
assigned to session j and 0 otherwise; K is a constant greater than the maximum of the deadlines 
for the surgeries; t(j) is the day in the planning of session j (we plan two weeks, a session in the 
first day has t(j)=1, a session in the second t(j)=2, etc.); T is the last day of the planning period, in 
general 14 (two weeks); ct is the cleaning time after an operation. 

 
Variables 
 
xij = 1 if the i-th surgery is assigned to session j and 0 otherwise. 
 
Model 
 

ܫܹܶ		ݔܽܯ ൌ෍෍ሺܭ െ ݀݀݅ሻ൫ܶ ൅ 1 െ ሺ݆ሻ൯ݐ ൉ ݆݅ݔ
݆݅

ሺ1ሻ 

ܴܷ	ݔܽܯ ൌ 	
∑ ∑ ܲ݅ ݆݆݅݅ݔ

∑ ܱ݆݆
					ሺ2ሻ 

s.t. 

෍݆݅ݔ
݆

൑ 1						∀݅			ሺ3ሻ 

෍ሺܲ݅ ൅ ݆݅ݔሻݐܿ
݅

൑ ܱ݆ ൅  ሺ4ሻ			݆∀						ݐܿ

݆݅ݔ ൑ ݆ܿ݅ 				∀݅, ݆				ሺ5ሻ 

݆݅ݔ 	 ∈ ሼ0, 1ሽ		∀݅, ݆				 
 

 
Equation (1) tries to include in the schedule those surgeries closer to their due date. The 
multiplication (K - ddis)(T+1-t(j)), together with the maximisation gives priority to those patients 
with smaller due dates, since (K - ddis) is bigger. We want to schedule those patients as soon as 
possible, and (T+1-t(j)) is bigger the sooner the session is. Equation (2) calculates the average 
utilization. Constraints (3) ensure that each surgery is performed no more than once. Constraints 
(4) take into account the length of a session. The duration of all operations assigned to a session 
cannot exceed its length. Constraints (5) guarantee that a surgery is assigned to a session with the 
appropriate discipline. 

2. Multi-objective optimisation 

For decades, researchers studied how to optimise a single objective function in optimisation 
problems, as this task was more than difficult enough. However, in practice, several goals compete 
with each other; practitioners want to optimise several measures at the same time. We are talking 
then about multi-objective or multi-criteria optimisation, see e.g. Ehrgott and Gandibleux (2004) 
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or Zitzler (1999). There are several ways to cope with these kinds of problems. The approach used 
depends on the relation between the decision maker (DM) and the optimisation process. According 
to Hwang and Masud (1979) and Horn (1997), there are three categories. 

(1) Decision making before search: Information given by the DM leads to a single objective 
optimisation problem where the objective is often a linear function of the original objectives of the 
multi-objective problem (MOP). 

(2) Search before decision making: A set of candidate solutions is calculated and then the DM 
selects a solution among them. 

(3) Decision making during search: The optimisation is divided into steps, after each of which 
a number of alternative trade-offs are presented to the DM, whose information guides the next 
step. 

 In our case, the head doctor prefers to be able to choose among several “top” solutions 
regarding the two objective functions. Therefore, we are going to follow approach two and 
calculate several efficient solutions. A feasible solution x is called efficient if there is no other 
feasible solution y as good as x in all objective functions but one, and strictly better than x in at 
least one objective function. If x is efficient, then f(x) is called non-dominated. The set of all non-
dominated solutions is also called the Pareto set or Pareto front. In general, a multi-objective 
problem is considered to be solved if an efficient solution for each element of the Pareto front is 
given. In our case, we do not seek to find the whole Pareto front, but we look for several efficient 
solutions to present to the head doctor. We will see in the next section how we build those 
solutions. 

3. Computational Results 

We have worked with a real instance, a two week period in which we know all the real data. 
The two weeks (weekends do not count) go from 11/03/2013 till 22/03/2013, even though there 
are two holidays, 18/03 and 19/03. There are 12 sessions and 10 doctors. There are 172 patients on 
the waiting list, of which approximately 40 are scheduled in a solution. In the future, we plan to 
create an instance generator capable of producing instances with the same structure as the real 
instances. We plan to test our procedures in those instances, too. 

Figure 1 shows a typical output of our algorithm, which is given to the head doctor. We can 
see the day of the week (11/03/2013), the name of the day and the time, morning/afternoon (“lunes 
mañana”) and the name of the operating room (“quirófano Q15”). There might be several 
operating rooms per session. After the name we have the number of operations occurring in that 
session. Immediately after we have a line for each operation with the following information: 1) 
identification number of the patient – names are not allowed because of confidentiality, 2) interval 
time where the patient occupies the operating room [start time of the operation, end time of 
operation, end time of cleaning], 3) priority on the list, 4) number of days on the list (column 
en_lista), 5) surgical discipline, 6) doctor that diagnosed the patient, 7) illness and 8) procedure 
that is going to be applied. 

 

 

Figure 1. Output of the algorithm for the real instance 

14



 
To create the candidate solutions, we apply the exact method with the objective function of the 

waiting time indicator (WTI), obtaining the best (minimum) possible value of WTI, WTIB, and a 
value of UR. Then, we exactly solve the problem, maximising the UR, with an additional 
constraint of WTI ≥ WTIB. The outcome of this problem is an efficient solution, with the best UR 
possible, UR0, for the WTIB. Then, we solve a problem maximising UR, without any additional 
restriction, obtaining URB, the best (maximum) possible value of UR. In general, UR0 < URB. We 
calculate nsol values equidistantly in the interval [UR0 , URB], UR0 < UR1 < UR2 < ... < URnsol < 
URB. Afterwards we exactly solve the problems maximising WTI with an additional restriction, 
UR  URi. With these problems we obtain nsol possible efficient solutions. From these nsol+2 
solutions we extract the efficient solutions which we present to the decision maker. 

Figure 2 shows the Pareto front obtained in the example. The x-axis is the UR, which goes 
from 81% to 89.4%, while the y-axis represents the WTI, and goes from 55000 to 80600. 

 

 

Figure 2. Pareto Front for the real instance 
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1. Introduction 

In the last decades new approaches to project management have been developed in order to 

deal simultaneously with: short delivery times, high quality of deliverables, increased difficulty on 

objectives preposition or milestones scheduling, and budgetary constraints. In innovation driven 

projects and environments the management tasks are even more complex, since that the intrinsic 

uncertainty of R&D activities can easily put at risk both delivery times and budget limits. 

Meanwhile, “Lean” practices and principles have shown their advantage and applicability in 

this area and especially in new product development projects. Several literature works can be 

cited, much of it related to the so called “Toyota Way” (Liker et. al. 2006 and Letens et. al. 2011). 

However, when the subject is directly related to lean project management, there are not many 

approaches that have addressed the topic and typically they are more related to construction field, 

such as Ballard et. al. (2003), or the Large Scale Industrial project as Karim and Nekoufar (2012)  

In the field of R&D projects Sánchez et. al. (2002) presented a work were the project efficiency 

was assessed in Spanish manufacturing companies. 

Project management workflows are in most of the cases information based and thus not all-

time visible and often elusive. Project specifications and variability hinders the process of 

standardization and reuse of work/product previously executed and wastes are hard to visualize 

and account for. Project efficiency is not an easy measurable concept, especially in innovation 

driven projects, since the measure of R&D efficiency includes not only information about the 

output and outcomes, such as patents, new products and profits, but also about the processes 

leading to them (Sánchez et. al. 2002).  

Swink et. al. (2006) develop a theory of efficiency and performance trade-offs for new product 

development (NPD) projects, were they have highlighted the trade-offs: speed-quality; time–cost; 

and time-quality. Amongst the findings the authors point the importance of project management 

experience, balanced management commitment, and cross-functional integration to achieving high 

levels of NPD project efficiency.  

Bouras (2013) developed a method for the evaluation of project management efficiency in the 

case of industrial projects execution. The method combines the objectives of cost and time 

completion, as well as other success criteria related to the operation and maintenance of the unit, 

and subsequently the relevant earnings into a so called unique relation using only non-dimensional 

quantities. Despite the well suited solution presented to relate the key performance indicators 

(KPI) with adimensional quantities for the efficient management of a given project, the method 

lacks a more integrated view of the different KPI. 

2. New concepts and tools for lean and efficient project management 

It is not an easy task to combine and optimize simultaneously the flow of a process (time 

management to reduce the total lead time) and the related resources. The so called Multi-Layer 

Stream Mapping (MSM) concept address the difficulties encountered on the efficiency assessment 

of complex systems, by analysing simultaneously the flow of a process and its resources Lourenço 

et. al. (2013). The root for the method can be related with the well-known Value Stream Mapping 

tool from the lean methodologies. Nonetheless, the concept opens a different and higher level 
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perspective to the value versus waste assessment for a system, by adding a multi layered variable 

analysis of different nature (time, energy, mass, water, etc.), with the combination of 

dimensionless ratios, which allows the comparison of efficiency ratios (Figure 1).       

 

 
 

Figure 1: MSM global efficiency concept basis. 

 

The values located below of the MSM line are those which do not add value to the product or 

deliverable, i.e. representing the "waste/misuses" of time (Lead Stages), or any kind of resources. 

On the other hand, the values that are presented above the VSM line (Process Stages) are those 

that add value to the product, thus representing the “useful consumption” of stream flow that can 

be analyzed in order to assess, evaluate and quantify production efficiency. One key feature of the 

MSM approach consists in considering dimensionless ratios, so the higher the result for the ratio, 

the better the performance of the energy, mass or time flow or other key variable of a process or 

system. It is possible to quantify the aggregated efficiency performance of a given unit processes 

(P1, P2, PN), by following the Multi-Layer Stream Mapping direction P1 φ (column direction of 

the diagram) or the overall efficiency of a given variable by analyzing each row direction. Finally, 

the overall efficiency of a process sequence or system can be evaluated by calculating the average 

(or other weighted formula) of the several φ of the unit processes.  

 

In this work, the concept of MSM is applied in the attempt of solving the issues of combining 

the common trade-offs of project management, creating both an individual or integrated view of 

the KPI of a project through the project stages or its processes. Since the MSM method relies on 

evaluating systematically if one variable of a given process acts towards the creation of value, or 

not (and should be classified as waste), and it delivers lean principles base attitude for the project 

management domain, as well as, an efficiency measurement. The application of the MSM method 

to the project management field brings new challenges, as for the measurement of the valuable part 

of some variables. On the other hand, the definition of the aggregated efficiency of a given project 

considers not only pure efficiency KPI, where both the accomplishment results and the inherent 

efforts are measured, but also effectiveness KPI measurement. The aggregated efficiency complies 

in this way with the combination of efficiency and effectiveness assessment. In Table 1 are 

presented a compiled a group of representative variables and associated KPI for project 
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management evaluated by MSM method. A specific constraint is related with the KPI definition, 

which it should be a value between [0-100%].   

  Table 1 – Compilation of a group of variables and project management KPI to be measured with MSM.  

Variable KPI Observations 

Availability of human resources 
Actual resources allocated / Planned 

resources 

This KPI can be expressed in Hours and should be limited 

to 100% if Actual > Planned 

Tasks completed on time nº Tasks completed on time / nº of tasks    

Tasks accomplished under the budget time effort 
Tasks accomplished under the budget 

time effort / nº of tasks 
Direct measure for effort control (and indirectly of costs)  

Milestones attained on time 
nº Milestones attained on time / nº of 

milestones 

This can indirectly evaluate the lead durations of stages 

and schedule accomplished  

Deliverables completed on time 
nº Deliverables completed on time / nº of 

deliverables 

This can indirectly evaluate the lead durations of stages 

and schedule accomplished 

Scope - Objectives 
Fraction of Objectives attained / Total 

amount of Objectives  

The objectives should be fractioned per task and each 

fraction  

Quality of supply 
Average quality evaluation of 

Deliverables / Max punctuation value 

Should be applied an inquire to the client with a [0-5] 

scale   

Client Satisfaction 
Average client evaluation / Max 

punctuation value 

Should be applied an inquire to the client with a [0-5] 

scale   

Team Morale or Stamina 
Average team member evaluation / Max 

punctuation value 

Should be applied an inquire to team members with a [0-5] 

scale   

 

 
Figure 2. Example of efficiency map or dashboard of a product development project. 

 

Besides the MSM concept application (example in Figure 2), the lean principles of the Toyota 

Way related to respect for the collaborator, namely to increase the collaborators intrinsic 

motivation and empowerment, were used in order to achieve positive commitment inside the 

project team. Figure 3a shows a radar chart example for skill assessment (blue line) and intrinsic 

motivation (red line), representing the output of the assessment carried out to know better the 

knowledge level (skill) of the collaborators in predetermined areas and in what areas they feel 

more motivated to participate. The method that was applied to map the team skills/motivation 

consisted in biannual inquires to the team (self-assessment with scale from 0-5) and the results 

were stored in a so called skill/competence matrix. Figure 3.b shows an extracted view example 

for one specific collaborator.     

 

 

Figure 3 – Radar chart example (a) for skill assessment (blue line) and intrinsic motivation (red line) and 

table data example for one team member (b). 
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3. Conclusions 

The described methods and tools were developed in order to assess the overall efficiency of a 

project, or group of projects, based in lean principles and in the novel framework MSM –Multi-

layer Stream Mapping. The approach is proving to be a very powerful tool towards an easy and 

intuitive interpretation of KPI metrics of aggregated efficiency in project management. Since the 

number of KPI is not restricted, and should be set accordingly to the management rules of each 

organization, it can also be of great usefulness to handle the common trade-offs that exist in 

project management so that the project manager can see the consequences of a decision that puts 

more emphasis on one aspect of management, possibly neglecting other aspects. The proposed 

approach facilitates ways to compare groups of projects, as for portfolio management or multi-

project management. In this type of analysis the approach present by itself a new kind of simple 

dashboard evaluation that can be both used by top-management, middle management, and also by 

the collaborators.  

The other methods and tools, related to team management such as the described skill/intrinsic 

motivation matrix and radar charts are proving to be, not only popular within the project teams, but 

are also effective and positive to improve team motivation, identifying skill needs for project 

execution, decision support for training events and even to discover hidden talents.  

The described methods are being implemented in a new application by an IT software 

company (SISTRADE) in order to be available as an independent product that can instantiate the 

created tools and methods allowing a more straightforward use of it in project management daily 

activities. 
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1. Introduction 

The baseline schedule plays a crucial role in the managing of a project, as it provides the point 
of reference for both risk management and project control (Vanhoucke 2012). A project's baseline 
schedule is primarily defined by the project network. Therefore, it is essential to obtain realistic 
and diverse project networks that span the full range of problem complexity so that accurate 
evaluations of project management techniques can be performed. For this purpose, many network 
generators have been presented in literature (e.g. Kolisch et al. 1995, Schwindt 1995, Agrawal et 
al. 1996, Tavares 1999, Demeulemeester et al. 2003, Vanhoucke et al. 2008). The most complete 
network generators can take into account both network topology and resource-related 
characteristics. Moreover, these network generators have enabled the construction of several 
benchmark datasets (see e.g. Boctor 1993, Kolisch and Sprecher 1996, Van Peteghem and 
Vanhoucke 2013), which can be and have been employed as a basis for the validation and 
evaluation of novel project management techniques. 

However, it can be argued that these techniques should not only be evaluated on generated 
project datasets, but also on a large and diverse database of projects with real-life baseline 
schedules. This view has already been expressed by many authors (i.a. Zwikael et al. 2000, 
Henderson 2003, 2004, Lipke 2009, Vanhoucke 2011). Therefore, the construction of a large and 
diverse project database lies at the heart of the current study. These data can then be used for 
various research topics. In this study, our focus is on the earned value management (EVM) control 
technique. More specifically, the accuracies of the most commonly used EVM forecasting 
methods for both project duration and cost are assessed. 

2. Project database construction procedure 

During the process of project database construction, it is crucial to ensure the quality and 
completeness of the real-life project data. Therefore, so-called project cards were developed, 
which provide a tool for project data evaluation, categorization and acquisition. Figure 1 illustrates 
how the project cards can be used during the database construction procedure. Moreover, the 
figure visualizes the classification into generated and real-life project data.  

We mention that most of the acquired data were gathered from case studies performed by 
master students in Business Engineering and Civil Engineering of Ghent University. At the end of 
October 2013, the project database consisted of 47 real-life projects, a number that will be further 
increased by April 2014 when the 14th PMS conference takes place. Furthermore, it is our goal to 
continuously extend the project database so that ever more generalizable conclusions could be 
obtained for current as well as future research topics. 

Moreover, within the framework of the project cards, novel data evaluation and project 
characterization metrics are proposed. In that way, the data can more accurately be evaluated and 
categorized, and gaps in the database regarding completeness and diversity can more easily be 
identified. A project card also contains information about, for example, whether the project's 
baseline schedule includes cost and resource data and, if present, how many of which kind of 
resources (renewable or non-renewable) there are. Furthermore, the network topology of each 
project is described based on various indicators (Tavares et al. 1999), like e.g. the serial/parallel-
indicator (SP). Of course, the different aspects of risk analysis, mainly concerning project 
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sensitivity measures (Williams 1992, Elmaghraby 2000), and project control are also presented on 
a project card. 

 

 
Figure 1. Situation and overview of our research approach based on real-life project data 

3. Research design 

The current study based on the real-life database concerns the evaluation of the accuracy of the 
most commonly used EVM forecasting methods for both project duration and cost. More 
specifically, the nine time and eight cost forecasting methods presented in Vanhoucke (2012) are 
evaluated. The performed study builds upon the work of many authors who have assessed either 
the cost (Bright and Howard 1981, Covach et al. 1981, Riedel and Chance 1989, Zwikael et al. 
2000) or time (Henderson 2003, 2005, Vandevoorde and Vanhoucke 2006, Hecht 2007, Lipke 
2009, Rujirayanyong 2009) forecasting accuracy of a selection of EVM methods.  

However, whereas previous work focused on either the cost or the time dimension, this study 
considers both dimensions and therefore allows a quantitative comparison (based on the mean 
absolute percentage error or MAPE) between the two main aspects of project forecasting. 
Furthermore, the obtained results are based on a real-life project database that surpasses all 
existing real-life datasets in project management literature in both size and diversity, by which the 
recommendations of many authors in the research field are followed (i.a. Zwikael et al. 2000, 
Henderson 2003, 2004, Lipke 2009, Vanhoucke 2011). 

Apart from the central theme of overall EVM forecasting accuracy evaluation, the influence of 
the network structure on the forecasting accuracy is also assessed. This topic extends the research 
of Vanhoucke and Vandevoorde (2007) as they performed a comparable analysis, however, based 
on a simulation study instead of real-life data. 

Moreover, as real-life baseline schedule data can also be used as a basis for simulations, 
simulated and real forecasting results - the latter being based on actual instead of simulated project 
progress - can be compared. This comparison can of course not be made for generated projects, as 
such projects do not contain actual progress data and are therefore limited to simulated forecasting 
only. 
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1 Introduction

Most models for project scheduling assume that all activities have constant durations
and resource requirements. In contrast, in practical applications, e.g., pharmaceutical and
software development projects, the project manager may change the resource usage of an
activity over time in order to use the scarce project resources more e�ciently.

This gives rise to the following project scheduling problem. One renewable work-content
resource is available, and for each activity a work content is prescribed. The number of units
of the work-content resource allocated to an activity may vary over time, as long as the
required total work content is met. During execution, the number of units allocated must
met a lower and an upper bound. Moreover, a minimum time lag between consecutive
changes of the usage of the work-content resource (minimum block length for short) is
prescribed. Besides the work-content resource an activity often requires further resources
such as tools or supplies; the requirement for these resources depends on the amount
of the work-content resource used. Furthermore, the activities are subject to �nish-start
precedence relationships. The planning problem consists in scheduling the activities of such
a project such that the project duration is minimized.

For this problem, Fündeling (2006) presents a branch-and-bound method. Even though
the approach is tailored to the speci�c problem setting, only few and small-sized prob-
lem instances can be solved to optimality. To tackle large-scale instances, Fündeling and
Trautmann (2010) develop a priority-rule method that schedules activities iteratively us-
ing a speci�c schedule-generation scheme. The quality of the generated schedules could not
have been evaluated thoroughly because neither optimal solutions nor strong lower bounds
are known. Both approaches address the problem setting in which in a feasible schedule, the
total number of resource units allocated to each activity must coincide with its prescribed
work content. Besides, the discrete time/resource trade-o� problem has been discussed in
the literature (cf., e.g., Demeulemeester et al. 2000 or De Reyck et al. 1998). In that prob-
lem, only the work-content resource is considered, and an execution mode must be selected
for each activity; each mode corresponds to a combination of a duration and a constant
resource usage such that the total number of resource units allocated to the activity is
equal to or larger than its prescribed work content. Recently Naber and Kolisch (2013)
have presented four di�erent mixed-integer linear programming (MILP) formulations for
a relaxation of the problem discussed in this chapter; they assume that the total number
of resource units allocated to an activity is to be greater than or equal to its prescribed
work content, and that the capacity of the renewable resources can be divided continuously
among the activities.

In this paper, we present an MILP formulation of the above-described problem. From
the 480 problem instances with 10 activities that were introduced in Fündeling and Traut-
mann (2010), this model formulation solves 81% to optimality within short CPU times.
We also analyze how the performance improves when the integrality constraint for the
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resource allocation is dropped. For further details about our model formulation, we refer
to Baumann and Trautmann (2013).

The remainder of the paper is organized as follows. In Section 2, we present the MILP
formulation. In Section 3, we summarize our computational results. Section 4 concludes.

2 MILP SCHEDULING MODEL

We base our formulation on a discrete representation of time and on binary variables
Xit that are equal to 1 if activity i is processed in period t, and 0 otherwise. We use the
following notation:

i Activity
t Time period
k Resource
k∗ Work-content resource
V Activities
T Periods
R Resources
V r Real activities
V r
kt Real activities that require resource k ∈ R and can be processed in period t ∈ T
Ti Relevant periods for activity i (Ti = {ESTi + 1, . . . , LFTi, LFTi + 1})
Ri Resources required by activity i
Pi Immediate predecessors of activity i
wi Work content of activity i
rik Upper bound on amount of resource k ∈ R used by activity i
rik Lower bound on amount of resource k ∈ R used by activity i
m Minimum block length
sik Requirement for resource k ∈ R \ k∗ by activity i per unit of work-content
Rk Capacity of resource k ∈ R
Rikt Amount of resource k ∈ R used by activity i ∈ V r

kt in period t ∈ Ti
Xit

{
= 1, if activity i is processed in period t ∈ Ti
= 0, otherwise

Dit

{
= 1, if usage of resource k∗ by activity i ∈ V r in period t ∈ Ti di�ers from t− 1
= 0, otherwise

For each activity i ∈ V , we determine the set of available periods Ti based on the
respective earliest start and latest �nish times (ESTi, LFTi). The decision variables related
to activity i are only de�ned for these periods. The earliest start times are computed by
forward recursion. Thereby the earliest start time of an activity is set to the latest earliest
�nish time of all immediate predecessor activities. The earliest �nish time of an activity is
computed by adding the lower bound on its duration dwi/rik∗e to its earliest start time.
The latest �nish times are computed similarly using backward recursion.

The dummy activity n+ 1 is scheduled within the planning horizon, i.e.,
∑

t∈Tn+1

Xn+1,t = 1 (1)

Activities may not be interrupted; more precisely, if activity i is executed in period t − 1
and its work content has not been entirely processed by the end of this period, then activity
i must also be processed in period t, i.e.,

Xi,t−1 −
∑

t′∈Ti:t′<t

Rik∗t′

wi
≤ Xit (i ∈ V r; t ∈ Ti : t > ESTi + 1) (2)
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Activity i can only be started if the total work content of all of its predecessors has been
processed, i.e.,

Xit ≤
∑

t′∈Ti′ :t′<t

Ri′k∗t′

wi′
(i ∈ V ; i′ ∈ Pi; t ∈ Ti) (3)

The work content of each activity is to be processed exactly during its execution, i.e.,
∑

t∈Ti

Rik∗t = wi (i ∈ V r) (4)

The lower and the upper bound on the usage of the work content resource must be met,
i.e.,

rik∗Xit ≤ Rik∗t (i ∈ V r; t ∈ Ti) (5)

rik∗Xit ≥ Rik∗t (i ∈ V r; t ∈ Ti) (6)

Variable Dit must be equal to 1 if the usage of the work-content resource by activity i in
period t − 1 di�ers from the usage in period t. When an activity is completed in period
t = LFi, the variable Dit of the period t = LFi +1 will capture the last jump in the usage
of the work-content resource.

Rik∗t ≤ rik∗Dit (i ∈ V r; t = ESTi + 1) (7)

Rik∗t −Rik∗,t−1 ≤ rik∗Dit (i ∈ V r; t ∈ Ti : t > ESTi + 1) (8)

Rik∗,t−1 −Rik∗t ≤ rik∗Dit (i ∈ V r; t ∈ Ti : t > ESTi + 1) (9)

An activity i must not be processed after its latest �nish time, i.e.,

Xit = 0 (i ∈ V r; t = LFTi + 1) (10)

The minimum block length m implies that only one jump in the usage of the work-content
resource during m consecutive periods t ∈ Ti is allowed, i.e.,

m−1∑

t′=0

Di,t+t′ ≤ 1 (i ∈ V r; t ∈ Ti : t ≤ LFTi − (m− 2)) (11)

The requirement of the non-work-content resources depends on the usage of the work-
content resource. Here, a linear relation between the requirement of the non-work-content
resources and the usage of the work-content resource is assumed, i.e., an increase (decrease)
in the usage of the work-content resource results in a proportional increase (decrease) of
the requirement for further resources. However, since we assume that all resources are
discrete in nature, fractional requirements have to be rounded up. Thus, the requirement
Rikt of resource k ∈ R \ k∗ by activity i in period t is Rikt = drik + sik(Rik∗t − rik∗)e,
where sik =

rik−rik
rik∗−rik∗

represents the requirement per unit of the work-content resource

k∗. The requirement of resource k ∈ R\{k∗} of activity i in period t is computed by
constraints (12). As this requirement needs to be an integer value, we use integer variables
Rikt to round up fractional values.

rikXit + sik(Rik∗t − rik∗) ≤ Rikt (i ∈ V r; k ∈ Ri \ {k∗}; t ∈ Ti) (12)

The total requirement for any resource k ∈ R must not exceed its capacity Rk, i.e.,
∑

i∈V r
kt

Rikt ≤ Rk (k ∈ R; t ∈ T ) (13)

The objective is to minimize the duration of the project. The dummy activity n + 1
represents the end of the project as it can only be scheduled after the completion of all real
activities V r. We write the objective function to be minimized as

∑
t∈Tn+1

tXn+1,t − 1.
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3 Computational Results

We implemented the proposed model in AMPL and used Gurobi 5.5 with a prescribed
time limit of 10 minutes to solve the 480 problem instances introduced in Fündeling and
Trautmann (2010). The computations were performed on a standard workstation with two
Intel Xeon 3.1GHz CPUs and 128GB RAM. For each problem instance we computed an
upper bound on the makespan using the method of Fündeling and Trautmann (2010). To
facilitate the generation of feasible solutions, we set the latest �nish time of the dummy
activities n+ 1 to the respective upper bound multiplied by a factor of 1.05.

Table 1 summarizes the results for the novel model with and without integrality con-
straints on the resource allocation variables. We report the number of instances for which a
feasible solution was found within the time limit, and the number of instances for which op-
timality was proven within the time limit. For all instances for which a feasible solution has
been devised, but the optimality of the best solution found could not be proven, we state
the average MIP gap. In columns 5 and 6, we state the average relative deviation of our
feasible solutions to the lower bounds computed in Fündeling and Trautmann (2010), and
to the solutions found by the method of Fündeling and Trautmann (2010). The proposed
model compares favorably to the method of Fündeling and Trautmann (2010). Moreover,
when the integrality constraints are relaxed, almost all instances are solved to optimality.

Table 1. Computational Results

Resource allocation # Feasible # Optimal ∅ MIP gap [%] ∅ ∆LB [%] ∅ ∆FueTra10 [%]

Integer 430 389 5.02 16.15 -2.68
Continuous 480 476 1.60 6.95 �

4 CONCLUSIONS

We presented a novel MILP formulation for the work-content constrained project schedul-
ing problem. Our model covers all particularities of this problem, in particular the minimum
block-length constraint and the dependent requirement for non-work-content resources. Our
computational results indicate that the proposed model outperforms the state-of-the-art
method. We have analyzed the impact of the integrality constraint on the resource alloca-
tion; the computational burden is reduced considerably when this constraint is dropped.
In future research, work-content based precedence relationships should be considered.
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1 Introduction

The overlapping of activities is a common practice to accelerate the execution of engi-
neering projects. This technique consists in executing in parallel two sequential activities
by allowing a downstream activity to start before the end of an upstream activity based on
preliminary information. However, the overlapping of activities can entail rework tasks and
modifications further to the transmission of complementary information after the start of
the downstream activity (Grèze et. al. 2012). Activity overlapping thus allows reducing the
total duration of project execution, at the expense of additional workload and execution
cost associated to rework tasks. In this paper, we propose a Rough-Cut Capacity Planning
(RCCP) model that determines the order of execution in time of a set of work packages
(WPs) so as to minimize the total project duration and/or project cost, while respecting
precedence relations, resource constraints and considering overlapping possibilities. The
model was developed for supporting the project planning function in the early phases of
projects by considering variable activity intensities, and aggregate resource capacities. The
reminder of the paper is organized as follow. We first give a brief state of the art of existing
RCCP and Resource-Constrained Project Scheduling Problem (RCPSP) models and over-
lapping models. We then introduce our RCCP model with multiple overlapping modes. In
section 4, we present preliminary results before concluding the paper in section 5.

2 Related work

Several authors have studied the relation between rework and the amount of overlap in
project conducted in a concurrent engineering context but only few papers have incorpo-
rated overlapping in the RCPSP. For instance, Gerk and Qassim (2008) proposed a linear
model for project acceleration using crashing, overlapping and activity substitution. This
model assumes that the relation between overlap amount and rework is continuous and
linear. Grèze et. al. (2012) proposed a more realistic approach by restricting overlapping
possibilities to a set of feasible overlap durations for each couple of overlappable activities,
instead of considering a continuous and linear relation between overlap amount and rework.
This assumption is more realistic as scheduling is performed in practice on a period-by-
period basis (i.e. resource availabilities and allocations are determined per period). Also,
overlapping points between activities is defined through clear document or information
exchange in a concurrent engineering context, which limits the overlapping modes to a
reduced and discrete set of possibilities.

However, these RCPSP models are not suited for planners in the early phases of projects
as detailed activity content and resources are not known with precision and as work in-
tensity is assumed to be constant over execution time. Indeed, planners tend to adopt an
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aggregate planning approach in large engineering projects (Cherkaoui et. al. 2013) where
WPs are broadly defined as group of multiple activities that could extend on a long period
(weeks or months). In that context, RCCP models are better suited by dividing the plan-
ning horizon into time buckets (or periods) used to evaluate critical resource usage and by
allowing resource allocation to WP to vary from one period to another (De Boer 1998). As
such, a WP may start or end during a period; it is therefore possible to plan a WP and its
successor within the same period.

Among existing RCCP models, Hans (2001) proposed an exact approach that consists in
determining the periods where each job can be executed, and then specifying the fractions
of the WP contents that are actually executed in each period. Several heuristic approaches
have also been proposed to solve the RCCP problem including constructive heuristics (De
Boer 1998) and linear-programming based heuristics (Gademann and Schutten 2005). How-
ever, none of these models considers overlapping and rework. To fill this gap, we propose a
mixed integer linear-programming model, that is an extension of the RCCP model proposed
by Haït and Baydoun (2012), where predecessor-successor WPs can overlap according to
multiple overlapping modes. This extended model assumes that each overlapping mode can
be defined by the percentage of execution of predecessor WP that needs to be reached in
order to start the successor, as well as the amount of reworks on both WPs. The model is
further explained in the following section.

3 RCCP model with overlapping

The model of Haït and Baydoun (2012) combines a continuous time representation of
events and a discrete time evaluation of resources. A set of binary variables ensures the
relation between starting time, ending time and durations over periods. These durations
give minimum and maximum workload that can be assigned to the period. Our new model
is based on the same representation of time and events of WP start and WP end, but adds
a third type of events: intermediate milestone attainment.

Table 1. Nomenclature : sets & parameters / variables

P,D,H Set of time periods (p ∈ P ), duration of a period, time horizon H = D · |P |
I Set of work packages (i ∈ I)
Succi, Ci Set of successors of i that can overlap on i (j ∈ Succi), Ci = |Succi|
Mi Set of overlapping modes between i and its direct successors (m ∈Mi)
Posijm Position of j among the successors of i according to mode m ∈Mi

Lc
im Required workload of part c of WP i in mode m

Lpred
ijm , Lsucc

ijm Required rework on i (respectively on j) in mode m ∈Mi due to overlapping
between i and j

t0i , t
Ci+1
i Starting time and ending time of i

tci For c ∈ 1..Ci : ending time of part c of i (tc+1
i ≥ tci ∀i ∈ I, c ∈ {0..Ci})

eim Binary variable that equals 1 if mode m is chosen for i (
∑

m∈Mi

eim = 1 ∀i ∈ I)

dcip Duration of part c of i within period p
dijp Duration of overlapping between i and j within period p
lcip Workload of part c of i during period p

lpredijp , lsuccijp Rework on i (resp. j) during p due to overlapping between i and j

An overlapping mode between a WP i and its successor j is defined regarding the
attainment – in terms of workload – of a milestone within WP i; the successor can start
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once the milestone is reached. Each WP i is therefore divided into Ci +1 parts, the end of
each part matching the time when a milestone of i is reached. Each part has its own set
of durations over the periods, denoted dcip, and assigned workload during the periods, lcip.
Variables dcip are used to guarantee that workloads lcip always respect the minimum and
maximum intensities.

Constraints (1) ensure that the required workload is attained for each part of WP i
according to the selected mode.

∑

p∈P

lcip ≥ Lc
im · eim ∀i ∈ I, c ∈ {1..Ci + 1},m ∈Mi (1)

The end of each part gives the time tci when a successor in Succi can start. Constraints
(2) ensure that successor j begins after the correct milestone of i. For successors j̃ that
cannot overlap on i, a classical end-to-start constraint is defined: t0

j̃
≥ tCi+1

i .
t0j ≥ tci −H · (1− eim) ∀i ∈ I,m ∈Mi, j ∈ Succi, c ∈ {1..Ci + 1|c = Posijm} (2)

Figure 1 presents an example of a WP (A) with two successors (B,C) that can overlap.
A is therefore divided into three parts. In the depicted mode, the milestone corresponding
to C comes before the one corresponding to B. Consequently C can start after the end of
the first part of A, while B can start after the end of the second part of A.

Fig. 1. A work package (A) with two successors (B,C) that can overlap.

In addition to initial workloads, reworks are required on predecessors and successors that
overlap. The reworks should be executed during the overlapping time between predecessors
and successors. Workload variables lcip, l

pred
ijp , and lsuccijp are linked to durations dijp and dcip

to ensure the respect of minimum and maximum allowed intensities. Constraints (3) and (4)
make sure that the total executed reworks match the required reworks in selected modes.
As our objective functions minimise project cost and/or delivery time, inequalities are used
instead of equalities for constraints 1, 3 and 4.

∑

p∈P

lpredijp ≥ Lpred
ijm · eim ∀i ∈ I,m ∈Mi, j ∈ Succi (3)

∑

p∈P

lsuccijp ≥ Lsucc
ijm · eim ∀i ∈ I,m ∈Mi, j ∈ Succi (4)
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4 Main results

In order to test our model, we used instances that were generated by De Boer (1998)
and that are commonly used to test RCCP models. These instances were modified in order
to handle overlapping. Half of predecessor-successor couples were randomly selected and
were allowed to overlap. Each selected couple has a maximum of two overlapping modes
(80% and/or 60% of the workload of predecessors) and reworks were fixed proportionally
(factor of 0.4) to the maximum workload that can be overlapped.

We tested our model using CPLEX 12.5 on instances, with and without overlapping.
We solved the problem with two objective functions: project cost (cost of using external
resources and adding reworks), and project delivery time. The results for one instance of
10 WPs (table 2) show that overlapping is beneficial in both cases. Note that the objective
can easily be adapted in order to make a trade-off between project cost and delivery time.

Table 2. Results for instance RCCP125

Without overlapping With overlapping
Cost Delivery time CPU time Cost Delivery time Total rework CPU time

Minimise cost 3269.9 31 1.75 s 3261.5 30.313 33.84 5 s
Minimise delivery time 3540.2 29 1.5 s 3673.4 27.54 119.04 2.57 s
Minimise delivery time with a target cost of 3540.2 3540.2 28.031 119.04 4.28 s

5 Conclusion

In conclusion, we proposed an interesting extension of the RCCP that allows overlapping
of work packages. Preliminary results show that overlapping adds a flexibility in distributing
the workload for earlier delivery date or smaller cost of project.

Future work will focus on improving the performance of our model, and conduct an
extended analysis on the benefits of overlapping, over a sufficient number of instances.
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1. Introduction 

Scheduling problems consider often that machines are available during the scheduling, or in 

practice machines may be unavailable during several periods of time due to machine breakdown or 

preventive maintenance. In this work we consider a two-machine permutation flowshop problem 

with release dates of jobs in the deterministic case where unavailability periods of machines are 

fixed in advance. Moreover, we consider the resumable scheduling case (r-a) when the pre-

emption is allowed. The objective is to minimize the total tardiness of jobs under the above 

mentioned assumptions. 

The total tardiness criterion is very important in industries because the not respect of due dates 

can affect the reputation of the company and can cause lack of confidence, costs increasing, and 

losing of costumers. 

The rest of this paper is organized as follows: the problem under consideration is described in 

Section2. In Section 3 we propose a mixed-integer formulation. In Section 4 we present five 

constructive heuristics. The experimental results and a comparative study are provided in Section 

5. Finally, conclusions are given in Section 6. 

2. Problem description 

In this paper we study the two-machine flowshop problem with availability constraints in 

deterministic case and resumable machine in aim to minimize the total tardiness criterion subject 

to release dates. To the best of our knowledge this is the first attempt to solve this problem. In 

effect only makespan criterion has been widely studied for the two-machine flowshop scheduling 

problem with availability constraints. This problem can be stated as follows. 

We are given a set of n jobs (j=1,...,n) must be processed during p1j time units firstly on 

machine M1 and then during p2j time units on machine M2. The two machines are available at time 

zero and can process at most one job at a time. The processing of job j cannot be started before a 

release date rj and is subject to a due date dj known in advance. We assume that at least one 

unavailability period (hole) can occur on each machine and there aren’t two or more holes 

overlapping on the same machine.  Also, job processing can be interrupted and resumed after. The 

aim is to compute a sequence of jobs which minimizes the ∑   
 
   criterion, with Tj=max(0,Cj-dj) 

where Tj and Cj are the tardiness and completion time of job j, respectively. This problem is 

denoted by F2,hlo∣r-a,rj∣∑Tj, where hlo is the number of holes (h) both on machine 1 (l) and on 

machine 2 (o). It is an extension of the F2∣∣∑Tj known to be NP-hard in the strong sense (Lenstra 

et al., 1977). 

3. Mixed-integer formulation 

The problem under consideration can be formulated as follows.  Let: 

 Xij: A binary variable which is equal to 1 if job j is assigned to position i and 0 

otherwise. i=1,2,…,n and j=1,2,…,n 

 Tk: tardiness at position k = 1,2,...,n 
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 u,v: the number of holes on M1 and M2, respectively 

   
 : duration of the hole number l on machine Mi (i=1,2). 

    
 :a binary variable which is equal to 1 if the hole l occurs during the processing of the 

job assigned to the position j on machine Mi and 0 otherwise, with i=1,2 and j=1,2,...,n 

 Ck: the completion time of job scheduled at position k. 

 

Then, the problem can be formally formulated as follows: 

 

Minimize ∑   
 
             (1.1) 

Subject to: 
∑    

 
                           (1.2) 

∑    
 
                          (1.3) 

   (          )    ∑   
  

       
  ∑   

  
       

                 (1.4) 

                ∑   
  

       
                        (1.5) 

   ∑ ∑    
 
      

 
    ∑ ∑   

     
  

   
 
    ∑       

 
    ∑   

  
       

           (1.6) 
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Constraints (1.2) imply that at each position there is only one job. Constraints (1.3) imply that 

each job must be scheduled at least at one position. Constraint (1.4) means that the completion 

time at the first position is greater than or equal to the sum of processing times and the release date 

and the durations of holes which occur at this position. Constraints (1.5) mean that the completion 

time of the job in position k is greater than or equal to the completion time of the job in position k-

1 on the second machine plus the processing time of the job in position k plus the sum of the 

durations of holes which occur at this position. Constraints (1.6) mean that the completion time of 

the job at the position k is greater than or equal to the sum of processing times of jobs scheduled 

until position k on the first machine M1 plus the sum of the durations of holes that occur until 

position k on the first machine plus the sum of processing times on machine M2 of the job 

scheduled at position k plus the sum of the durations of holes which occur on machine M2 in 

position k. Constraints (1.7) mean that the tardiness at position k is greater than the completion 

time at position k minus the due date of the job scheduled at this position. 

4. Constructive heuristics 

In this section we present five constructive heuristics for the problem under consideration. 

These heuristics are based on the well-known NEH algorithm (Nawaz et al., 1983) originally 

developed for minimizing the maximum completion time. 

We denote by σ a partial sequence of scheduled jobs and  t̅he set of unscheduled jobs. The Hi 

(i=1,2,3,4,5)heuristics can be described as follows: 

 Step 0:      ̅    

 Step 1: Arrange the jobs in   ̅ according to Ri(i=1,2,3,4,5) rule. Let 

ᴨ =(π(1),π(2),…,π(n)) be the resulting sequence 

 Step 2: Among the partial sequences σ=π(1),π(2) and σ=π(2),π(1) select the one with 

the minimum partial total tardiness. Set  ̅    ̅            and k=2 

 Step 3: Select the job      and insert it to the k+1 possible position of σ. Among k+1 

sequences, select the one with the minimum partial total tardiness and set it as the 

current σ. Set  ̅    ̅       
 Step 4: Repeat Step 3 until  ̅    

 

Modifying the Step 1 to the following five alternatives yields five different versions. 

 

H1: The jobs are ranked according to EDD (Earliest Due Date or Jackson’s rule). We sort the 

jobs in non-decreasing order of their due date dj(Jackson 1955). 
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H2: The jobs are ranked according to MDD (Modified Due Date). At each time t, we select the 

job j having the minimum value of max{dj,Cj(σ)}, where Cj(σ) is the completion time of job j if it 

is scheduled at the end of σ. 

H3: The jobs are sorted using ST (Slack Time). At each time t, the job j with the minimum 

value of dj-Cj(σ) is selected. 

H4: The jobs are sorted according to STRW (ST per Remaining Work) rule. At each step the 

job with minimum value of 
        

       
 is selected. 

H5: The sequence having the minimum total tardiness obtained with Hi(i=1,2,3,4) is 

considered. 

5. Experimental results 

This section describes the computational tests which have been conducted to evaluate the 

empirical performance of the proposed algorithms. Our algorithms have been coded in C++ and 

run on a Pentium (R) Dual-Core 2.30 GHz PC with 3 GB RAM. 

5.1. Test problems 

In order to assess the quality of the different proposed algorithms, we carried out a series of 

experiments on 30 randomly generated instances for 14 problem sizes 

n∈{10,20,30,40,50,60,70,80,90,100,200,300,400,500}. Thus, we solved a total of 420 test 

problems. 

The processing times and release dates are uniformly distributed between [1,100], [  
∑    
 
   

 
]  

respectively.  The due dates generating is inspired from the scheme of Pinedo and Singer (1999), dj 

will be uniformly distributed in [bi,bs] with bi=rj+p1j+p2j and bs=rj+3(p1j+p2j). Moreover, we 

consider 5 holes randomly generated on each machine. 

5.2. Performance of the proposed heuristics 

The performance analysis is based on the average relative percentage deviation (ARPD) from 

the best-known solution. The percentage deviation is defined as [      

   ]     , where UB is the 

solution provided by the heuristic Hi and UB  =min(UBi); (i=1,...,5). 

The results of the computational study of the proposed constructive heuristics are summarized 

in Table 1. The headings have the following meaning: n: number of jobs, ARPD: average relative 

percentage deviation from the best-known solution and Time: mean CPU time (in sec). 

Table 1.Computational performance of the proposed constructive heuristics 

 

n 
H1 H2 H3 H4 H5 

ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time 

10 4.19 0.00 9.89 0.00 2.57 0.00 2.62 0.00 0.00 0.00 

20 4.50 0.00 5.56 0.00 4.45 0.00 3.46 0.00 0.00 0.00 

30 6.36 0.00 2.37 0.00 6.23 0.00 4.76 0.00 0.00 0.01 

40 6.51 0.00 1.92 0.01 6.15 0.01 6.26 0.00 0.00 0.03 

50 6.98 0.01 1.20 0.02 7.10 0.01 7.54 0.01 0.00 0.05 

60 9.14 0.01 0.56 0.02 9.13 0.02 10.03 0.02 0.00 0.08 

70 8.94 0.02 0.47 0.03 9.09 0.04 12.08 0.02 0.00 0.13 

80 11.05 0.03 0.47 0.05 10.83 0.06 10.35 0.03 0.00 0.19 

90 12.34 0.04 0.28 0.07 11.76 0.08 11.87 0.05 0.00 0.27 

100 12.13 0.06 0.49 0.11 11.88 0.12 11.69 0.07 0.00 0.37 

200 12.65 0.50 0.71 0.80 12.59 0.91 13.07 0.50 0.00 3.01 

300 13.89 1.57 1.10 2.63 14.06 2.58 13.87 1.51 0.00 10.39 

400 13.54 3.81 1.02 5.78 13.39 6.01 13.44 3.82 0.00 23.60 

500 13.74 7.15 1.23 11.04 13.82 11.44 13.64 6.95 0.00 46.00 

Avg. 9.71 0.94 1.95 1.47 9.50 1.52 9.62 0.93 0.00 6.01 
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The results of Table 1 provide strong evidence that H5 heuristic is very effective and 

outperforms all the proposed heuristics. Indeed H5 presents lower values of average relative 

percentage deviation from the best-known solution compared with the remaining heuristics for all 

instances. 

Table 1 shows that the proposed algorithms can solve all problem sizes less than n=100 in a 

negligible mean CPU time (<1 sec). From Table 1, we see that H5 algorithm is able to solve very 

large instances with up 500 jobs within a moderate CPU time. For instance all the instances with 

500 jobs were solved within an average CPU time equal to 46 sec. 

6. Conclusions 

This paper investigates the two-machine permutation flowshop with the objective of 

minimizing the total tardiness with availability constraints and subject to release dates. Despite its 

theoretical and practical importance, this NP-hard problem has not been investigated before. We 

proposed a mixed-integer formulation as well as some constructive heuristics. Our computational 

experiments that were carried out on a large set of randomly instances show that the proposed 

heuristics provides interesting results. An interesting issue which deserves further investigation is 

to develop lower bounds and an exact method for the problem under consideration. 
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1 Introduction

Generalized Precedence Relations (GPRs) are temporal constraints in which the start-
ing/�nishing times of a pair of activities have to be separated by at least or at most an
amount of time denoted as �time lag� (minimum time lag and maximum time lag, respec-
tively). GPRs can be classi�ed into Start-to-Start (SS), Start-to-Finish (SF ), Finish-to-
Start (FS) and Finish-to-Finish (FF ) relations. These four constraint types double when
minimum and maximum time lags are concerned. In particular, a minimum time lag gen-
erates (SSmin

ij (δ), SFmin
ij (δ), FSmin

ij (δ), FFmin
ij (δ)) which specify that activity j can start

(�nish) only if its predecessor i has started (�nished) at least δ time units before. Anal-
ogously, a maximum time lag (SSmax

ij (δ), SFmax
ij (δ), FSmax

ij (δ), FFmax
ij (δ)) imposes that

activity j can be started (�nished) at most δ time slots beyond the starting (�nishing)
time of activity i.

We study Resource Constrained Project Scheduling Problem (RCPSP) with GPRs.
From the complexity viewpoint, the problem is strongly NP-hard and also the easier prob-
lem of detecting whether a feasible solution exists is NP-complete (Bartusch et. al., 1988).
Almost all the exact procedures presented in the literature for such a problem are con-
ceived to work for the project completion time minimization, i.e., the branch and bound
algorithms by Bartusch et. al. (1988), Demeulemeester and Herroelen (1997), De Reyck
and Herroelen (1998), Schwindt (1998), Fest et. al. (1999), Dorndorf et. al. (2000), and
Bianco and Caramia (2012).

Only a few exact approaches have been introduced in the literature to level resource
pro�les in projects with GPRs. Engelhardt and Zimmermann (1998), exploiting an idea
of Ahuja (1976), proposed a method that enumerates all combinations of activity start
times to minimize the sum over time of the squared changes in the resource utilization
and several other objective functions. In 2001, Nübel presented a tree-based enumeration
approach for the resource renting problem, and Neumann et. al. (2003) outlined how this
approach can be used to solve the resource levelling problem. Gather and Zimmermann
(2009) have sketched some weaknesses of the latter approach and developed a new and
more e�cient procedure, relying on the paper of Gabow and Myers (1978). Additional
literature on RCPSP with GPRs can be found in the book of Neumann et. al. (2003).

In our work, we study a particular RCPSP with GPRs. Indeed, we consider the problem
of levelling resources in a project with GPRs, given a deadline for the completion of all the
activities and variable execution intensity of the activities. RCPSP with variable execution
intensity has been taken into account �rstly by Kis (2005) applied to a real world scenario
in which, due to the physical characteristics of some manufacturing processes, the e�ort
associated with a certain activity for its execution may vary over time. An example is
that of the human resources that can be shared among a set of simultaneous activities in
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proportion variable over time. In this case, the amount of work per time unit devoted to
each activity and, consequently, also its duration are not univocally de�ned. Therefore, the
problem tackled in our work is as follows: given a set ofK types of renewable resources, with
ak and ck being, respectively, the available amount of resource type k and its additional
resource unitary cost per time period, a set of activity i = 1, . . . , n, with activity i requiring
a total amount r̄ik of resource k and having a duration ranging between a minimum and
a maximum value dmin

i and dmax
i , respectively, and a set of GPRs constraints, we want

to schedule these activities levelling the usage of resources over time, e.g., minimizing the
total additional resource cost, while respecting a deadline D. To the best of our knowledge
this is a novel problem. In the following section, we propose a mathematical formulation
for such a problem.

2 The Mathematical Model

In the following, we assume that there is a planning horizon within which all the activi-
ties may be carried out. In particular, we denote such a planning horizon as [0, T ), where T
is an upper bound on the minimum project completion time. Trivially, we consider T ≥ D.
Moreover, we assume, without loss of generality, that the time horizon is discretized into
T unit-width time periods [0, 1), [1, 2), . . . , [T −1, T ), indexed by t = 1, . . . , T , respectively.
The project is formed by n real activities, i = 1, . . . , n, and by two dummy activities, 0
and n + 1, corresponding to the source and sink nodes of the project network. The latter
is assumed to be in an activity-on-nodes standardized form (see, Bartusch et. al. 1998)
without positive directed cycles. Let us de�ne the following parameters:
� K, the number of renewable (continuously divisible) resources, each one available in

an amount of ak units, with k = 1, . . . ,K;
� ck, the unitary cost of additional resources of type k per time period;
� r̄ik, the overall amount of units of resource k necessary to carry out activity i;
� dmax

i , the maximum duration of activity i;
� dmin

i , the minimum duration of activity i;
� D, the deadline to complete all the activities;
� E, the set of ordered pairs of activities constrained in the standardized activity-on-

nodes project network de�ned by GPRs.
Furthermore, let us consider the following decision variables:
� ukt, the type k resource usage during time period t;
� xit, the fraction of activity i executed within the end of time period t;
� sit, a binary variable that assumes value 1 if activity i has started within the beginning

of time period t, and assumes value 0 otherwise;
� fit, a binary variable that assumes value 1 if activity i has �nished within the end of

time period t, and assumes value 0 otherwise.
The mathematical model is as follows:

min
T∑

t=1

K∑

k=1

ck max(0, ukt − ak) (1)

s.t. xit − xi,t−1 ≥ 1

dmax
i

(sit − fi,t−1), i = 1, . . . , n; t = 1, . . . , T (2)

xit − xi,t−1 ≤ sit − fi,t−1, i = 1, . . . , n; t = 1, . . . , T (3)
T∑

t=1

sit ≥
T∑

t=1

sjt + δij , ∀(i, j) ∈ E (4)
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sit ≤ si,t+1, i = 0, . . . , n+ 1; t = 1, . . . , T (5)
fi,t−1 ≤ fit, i = 0, . . . , n+ 1; t = 1, . . . , T (6)
xiT = fiT = siT = 1, i = 1, . . . , n (7)
xi0 = fi0 = 0, i = 1, . . . , n (8)
fit ≤ xit, i = 1, . . . , n; t = 1, . . . , T (9)
xit ≤ sit, i = 1, . . . , n; t = 1, . . . , T (10)
f00 = s01 = 1 (11)
fn+1,T = sn+1,T+1 = 1 (12)
n∑

i=1

r̄ik(xit − xi,t−1) = ukt, k = 1, . . . ,K; t = 1, . . . T (13)

t(sn+1,t+1 − sn+1,t) ≤ D, t = 1, . . . , T (14)

1 +
T∑

t=1

(sit − fit) ≥ dmin
i , i = 1, . . . , n (15)

T∑

t=1

(xit − xi,t−1) = 1, i = 1, . . . , n (16)

ukt ≥ 0, k = 1, . . . ,K; t = 1, . . . , T (17)
xit ≥ 0, i = 1, . . . , n; t = 1, . . . , T (18)
sit ∈ {0, 1}, i = 0, . . . , n+ 1; t = 1, . . . , T + 1 (19)
fit ∈ {0, 1}, i = 0, . . . , n+ 1; t = 0, . . . , T (20)

The objective function (1) minimizes the total cost of the additional resource usage.
Constraints (2) and (3) regulate the minimum and maximum fraction of activity i to be
executed in time period t. Constraints (4) model Start-to-Start precedence constraints with
time-lags δij , (i, j) ∈ E, where δij 's depend in general also on the durations of activities i
and j, respectively, being the duration of activity i equal to 1+

∑T
t=1(sit−fit). Constraints

(5) and (6) are congruency constraints on the values assumed by variables sit and fit over
time. Constraints (7) say that every activity i must start and �nish within the planning
horizon. Constraints (8) represent the initialization conditions for variables xit, and fit
when t = 0. Constraints (9) and (10) force fit to be zero if xit < 1, and xit to be zero if
sit = 0. Constraints (11) and (12) are initialization conditions for dummy activities 0 and
n+1, respectively. Resource usage is represented by relations (13). Constraints (14) impose
that the project must �nish within the deadline D. Constraints (15) force the duration of
each activity i to be not less than dmin

i . Constraints (16) say that activity i must be
completely executed. Constraints (17), (18), (19), and (20) limit the range of variability of
the variables.

In order to linearize the objective function, we introduce additional variables ūkt ≥ 0,
k = 1, . . . ,K, t = 1, . . . , T , and rewrite (1) as min

∑T
i=1

∑K
k=1 ckūkt, with the additional

constraints ūkt ≥ ukt − ak, k = 1, . . . ,K; t = 1, . . . , T , which, by constraints (13), may
be rewritten as ūkt ≥

∑n
i=1 r̄ik(xit − xi,t−1)− ak, k = 1, . . . ,K; t = 1, . . . , T .

We solve the proposed model by means of an exact branch and bound algorithm where
the lower bound is based on a Lagrangian relaxation of the latter resource constraints.

We conducted preliminary tests on two sets of instances. First of all, we used the well
known rlp_j10 test set devised in Weglarz (1998); this test set contains 270 test instances
with 10 activities and 1-5 resources. Furthermore, we considered 45 instances of the rlp_j20
test set (see Weglarz, 1998) with 20 activities and 1-5 resources (instances 136-180). In the
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columns of Table 1, we reported: the test type, the average objective value AOV obtained, the
average value AQCV of the function

∑K
k=1

∑T
t=1 cku

2
kt associated with the optimal solutions

achieved by our model, the average branch and bound nodes B&B_Nodes, the average CPU
time (in seconds) to solve at the optimum the instances (when optimality is achieved), the
number #_opt of instances solved at the optimum within a time limit of 7200 seconds, the
number #_opt_300_s of instances solved within 300 seconds.

Table 1. Computational results

Test Type AOV AQCV B&B_Nodes Average_CPU_Time #_opt #_opt_300_s
rlp_j20 380 4378 4402 89s 270 270

rlp_j20 (instances 136-180) 805 8213 9225 2512s 35 18
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We consider a single machine scheduling problem with additional bin packing con-

straints. The origin of the problem comes from the production of chemotherapy drugs
(Mazier et. al. 2010). In this production environment, raw materials are called monoclonal
antibodies and can be stored in vials for a long time before use (Billaut 2011). However,
once a vial is opened or once the active agent has to be mixed with some water, it must
be used before a given time limit, in order to keep intact the properties of anticancer ac-
tive agents. The maximum delay of use after opening depends on the agent and may vary
between several hours to several days. In the mean time, the product has to be stored in a
fridge for temperature and darkness reasons. The cost of these drugs is not negligible and
the economic impact of saving these products is very important. The preparations that are
scheduled and which use the same vial have to be completed before the product perishes.
In other words, the total processing time of the jobs assigned to a same vial cannot be
greater than the life time of the raw material. Furthermore, the total consumption cannot
be greater than the total volume of the vial. Because each preparation has to be delivered
to a patient for a given due date, one objective of the problem is to minimize the maxi-
mum lateness related to these due dates. Notice that in such a context, the deadline for
the use of the raw material becomes a variable of the problem, which is directly related
to the production scheduling decisions: once the life duration or the capacity of the vial is
exceeded, a new vial is opened.

1 Problem statement and notations

We consider a simpli�ed version of the above problem, with only one machine and one
type of raw material. We consider a set of n jobs to schedule on a single machine. W.l.o.g.,
the jobs are supposed to be numbered in EDD order, i.e. d1 ≤ d2 ≤ ... ≤ dn. To each
job j ∈ {1, ..., n} is associated a processing time pj , a consumption bj and a due date dj .
The life duration of the product after opening is equal to T and the volume of one vial
is equal to V . We assume always w.l.o.g. that pj < T and bj < V , ∀j, 1 ≤ j ≤ n. The
number of vials is not limited but supposed to be bounded by n. We denote by Cj the
completion time of j, Lj the lateness de�ned by Lj = Cj − dj . The maximum lateness is
de�ned by Lmax = max1≤j≤n Lj . We assume that the maximum lateness is bounded by
Q. Minimizing the quantity of lost raw materials is equivalent to minimize the number of
vials that are opened. Therefore, the problem is a mixed between a scheduling problem
and a two-constraint bin packing problem. Without due dates (or with extremely large
due dates), the problem is a bin packing problem. For this reason, the problem is clearly
NP-hard. With a huge T and a huge V , the problem is the trivial single machine problem
with the Lmax minimization. In the following, we call a �bin�, the set of jobs performed
with the same vial.

Example:We consider a set of six jobs with the following data and T = 10 and V = 10.

40



2

j 1 2 3 4 5 6

pj 3 4 4 5 3 1
bj 1 2 5 3 1 4
dj 7 9 11 13 14 16

The schedule (1, 3, 5, 2, 4, 6) is represented in Fig. 1. In this two dimensional Gantt
chart, a job j is represented by a rectangle with the duration pj on the x-axis and the
consumption bj on the y-axis. Jobs of the same bin are connected by the north-west corner
of the rectangle. The �rst job of a bin is put on the x-axis. In Fig. 1, one can see that
1 and 2 are the �rst jobs of the bins (1, 3, 5) and (2, 4, 6). The maximum lateness of this
sequence is equal to Lmax = max(−4, 5,−4, 6,−4, 4) = 6 and this schedule requires 2 bins.

We denote by uk ∈ {0, 1} a boolean variable equal to 1 if bin k is used, and 0 otherwise
and by xj,k ∈ {0, 1} a boolean variable equal to 1 if job j is assigned to bin k, and 0
otherwise. Also, HV denotes a very large (high value) constant in order to determine a
standard big-M constraint in ILP modeling. The problem can be formalized as follows.

MIN

n∑

k=1

uk

s.t.



n∑

k=1

xj,k = 1,∀j ∈ {1, ..., n} (1)

n∑

j=1

pjxj,k ≤ Tuk,∀k ∈ {1, ..., n} (2)

n∑

j=1

bjxj,k ≤ V uk,∀k ∈ {1, ..., n} (3)

k−1∑

h=1

n∑

i=1

pixi,h +

j∑

i=1

pixi,k ≤ dj +Q+HV (1− xj,k),

∀j ∈ {1, ..., n},∀k ∈ {1, ..., n} (4)
uk+1 ≤ uk,∀k ∈ {1, ..., n} (5)

Constraints (1) ensure that each job is performed by using one vial (is assigned to
one bin). Constraints (2) and (3) correspond to the temporal and capacity limits. Con-
straints (4) suppose that job j is in bin k and correspond to the bound on the Lmax:∑k−1

h=1

∑n
i=1 pixi,h is the completion time of the k − 1th bin,

∑j
i=1 pixi,k is the completion

time of job j in its bin (remember that the jobs are numbered in EDD order). Constraints
(5) ensure that the bins are used in their index increasing order.

2 Solution approaches

2.1 Recovering beam search algorithm

The Beam Search algorithm is a truncated branch-and-bound method where a subset of
w nodes at each level are selected for branching. w is called the beam width. This method
was �rst proposed in (Ow and Morton 1988). For the selection of nodes, each node is
evaluated by a combination of a lower bound (LB) and an upper bound (UB), generally
a weighted sum WS = (1− α)LB + αUB. Because the selected nodes are not necessarily
the bests at a given level of the tree, among the set of possible nodes of a pure branch-and-
bound algorithm, a recovering phase is applied in the Recovering Beam Search algorithm
(RBS). The aim of this phase is to recover from wrong decisions jumping to a better node
at the same level of the search tree. For a detailed description of RBS we refer to (Della
Croce et. al. 2004). A node σ of the tree is de�ned by a partial sequence of jobs S(σ), a
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Fig. 1. Gantt chart of schedule (1, 3, 5, 2, 4, 6)

list of unscheduled jobs S(σ), a lower bound LB(σ), and an upper bound UB(σ). At the
root node, the initial sequence of unscheduled jobs is determined as follows. Starting from
EDD sequence, a steepest descent algorithm is used to reduce the number of bins, without
violating the constraint on the Lmax. The initial sequence which is obtained is called INIT.
Alg. 1 and Alg. 2 describe the lower bound and upper bound computation. We denote by
Bin(S) a function that computes in O(n) the number of bins used by a sequence S and
the sum of jobs processing time and of jobs consumption in the last bin (respectively called
RestP and RestB). u//v stands for the concatenation of u and v.

Algorithm 1 LB(σ)

NbBins = Bin(S(σ))− 1
SumP = RestP +

∑
j∈S(σ) pj

SumB = RestB +
∑
j∈S(σ) bj

NbBins = NbBins+max(dSumP/T e, dSumB/V e)
Return(NbBins)

Algorithm 2 UB(σ)

S′(σ) = S(σ)//S(σ)
NbBins = Bin(S′(σ))
Return(NbBins)

The evaluation of a node is given by WS(σ) = (1−α)LB(σ)+αUB(σ). The recovering
phase is composed by two types of neighborhood called SWAP and EBSR (extraction and
backward shift reinsertion) proposed in (Della Croce et. al. 1 2004).

2.2 Matheuristic algorithm

A matheuristic procedure (Della Croce et. al. 2013) can be seen as a local search
approach for MIPs, expecially suited for 0 − 1 variables, using a generalization of the
k-exchange neighborhood. Consider a general MIP (min cTX subject to AX ≤ b, X ∈
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{0, 1}), where XT = (x1, x2, .., xn) is a vector of n variables of the problem and X̄T =
(x̄1, x̄2, .., x̄n) is a feasible solution to the MIP. If this is the case, it is always possible
to de�ne a subset S of a de�ned size of variables indices {1, 2, .., n}. The neighborhood
N(X̄) consists of all solutions of the MIP where the jth variable is equal to the value
of the jth variable in X̄ for all j /∈ S, namely N(X̄) = {X | xj = x̄j , ∀j /∈ S}. The
resulting neighborhoods N(X̄) can then be searched for an improving solution using a
MIP-solver both optimally or approximately. The main idea stems in representing the MIP
as a permutation problem where variables belonging to the current solution are partitioned
into two sets. A �rst set (X̄/S) is then reoptimized by means of a MILP solver generating
a permutated assignment while variables in the second set (S) keep the same assignment
as in the current solution. For the considered problem, the incumbent solution returned by
the RBS algorithm induces correspondingly a sequence of the bins where we assume that
γ bins are used. The neighborhood exploration works as follows. Starting with the �rst
bin, consider the r-th bin in the sequence along with bins r + 1, r + 2,..., r + H − 1 with
item set S = Sr ∪ Sr+1 ∪ ...∪ Sr+H−1. Solve the problem of rescheduling the items in S so
that w(Sr+H−1) =

∑
wi : i ∈ Sr+H−1 is minimized where we use wi = max{vi, pi} (this

performance measure has been selected experimentally). The rationale is to empty as much
as possible bin r+H−1. If a (sub)sequence with w(Sr+H−1) = 0 is obtained, then one bin
is saved, γ is reduced by one unit and the process can restart with r = 1. Alternatively,
the new subsequence is kept anyway as the space of bin Sr+H−1 has been optimized and
will be used in the next iterate. The approach is then iterated for r = 1, 2, ..., γ −H + 1.
Whenever r = γ − H + 1 is reached, the process restarts with r = 1 until a time limit
is exceeded. The problem of rescheduling the items in S is done by solving by means of
an ILP solver that adapts the model presented to above in order to take into account the
fact that bins 1, ...r − 1 and r + H, ..., γ are not rescheduled and that the objective is to
minimize the weight of the items assigned to bin r +H − 1.

3 Computational experiments

Detailed computational experiments will be presented at the Conference and relate
to the bin packing instances considered in (Capara and Toth 2001) modi�ed in order to
take into account also the sequencing part of the problem. Here, we simply stress that the
proposed approach combining RBS and MH reaches in limited time good quality solutions
being able to improve also some of the benchmarks results on the original bin packing
instances of (Capara and Toth 2001).
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1. INTRODUCTION 

This paper deals with the problem of scheduling rolling jobs on a single rolling mill 

which hereafter will be called the Cold Rolling-Mill Scheduling Problem (CRMSP). The 

problem studied is a real one that has been observed in a Canadian aluminium rolling 

facility where the usual practice is to construct an operations schedule for the coming 

five to seven days on a sliding horizon basis. This plan is updated every two or three 

days to reschedule the remaining jobs of the previous plan along with new ones that are 

expected to arrive during the following five to seven working days. The arrival date, the 

due date, the processing time, the weight, the final width and the final thickness of the 

aluminium coils to be rolled are known and deterministic. The scheduling objective is to 

minimize the sum of setup costs, tardiness penalties and inventory holding costs. A setup 

is needed whenever the width of the coil to be rolled is larger than the width of the 

previous one as the edges of the rolled coil leave marks and scratches on the rollers. In 

this case, the rollers should be grinded and polished before rolling the larger job. The 

work-in-process holding cost depends on the alloy composition, the weight of the coil to 

be processed and its flow time in the shop. 

In the studied industrial setting, the setup cost is estimated at $300, the setup time is 

about 1.5 hours and the tardiness penalty per hour is set at $30 per 1000 pounds. The 

average inventory holding cost per 1000 pounds and per hour is $0,025, the width of 

jobs varies between 40 and 62 inches and the job processing time is from 1 to 5 hours.  

2. LITERATURE REVIEW 

Very few published papers deal with the rolling mill scheduling problem and all but 

one address the hot not the cold mill scheduling problem. The objective in this case is to 

synchronize the operations of the furnaces or the smelters with the operations of the 

rolling mill facility. This objective is usually expressed as maximizing the throughput of 

the milling facility or minimizing the make span of processing the set of rolling jobs. As 

underlined by Nicholls (1994), if the rolling mill facility is not able to handle all the 

required jobs in time, the entire plant can be disrupted causing substantial cost increase. 

The sole paper that deals with the cold rolling-mill scheduling problem is by 

Mayrand et al (1995) who propose a non-linear formulation and an adaptation of the 

genetic algorithm to solve the problem. The cost elements of the objective function are 

discounted in function of the arrival date of each job. They do not consider due dates as 

either a soft or a hard constraint. However, there is no guarantee that the genetic 

algorithm they propose will find a feasible schedule even if such a schedule exists. 

This current paper rather, deals with the cold rolling mill scheduling problem 

(CRMSP) where all jobs should be processed and there is no need to synchronize the 

mill operations with the smelter. The paper provides a new and linear formulation of the 

problem considering due dates explicitly. It also provides a Hybrid Greedy Randomized 

Adaptive Sampling Procedure (HGRASP) to solve it. Using randomly generated 

problem instances having the same characteristics of the real-life problem, it will be 

shown that the proposed heuristics perform remarkably well. 
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3. MATHEMATICAL FORMULATION 

This section provides a new and linear formulation of the CRMSP using the 

following notation: 

N number of jobs to be scheduled 

j job index; j=1,..., N 

S cost of one set-up 

s time required to perform one set-up  

H a large number 

hj unit inventory holding cost per unit of time and per unit of weight of job j 

 earliest date where the rolling mill is available to process the considered set of jobs 

a
j
 arrival date of job j 

d
j
 due date of job j 

wj total weight of job j (e.g. in pounds) 

L
j slab width of job j (e.g. in inches) 

L the largest width that can be processed at the beginning of the planning horizon 

without any prior set-up 

e
j
 thickness of job j (e.g. in inches) 

p
j
 processing time of job j (e.g. in hours) 

Pj tardiness penalty per unit of time and unit of weight for job j 

t
j
 starting date of job j 

r
j
 tardiness of job j; rj= max (0, tj+pj-dj) 

X
jp

 binary variable equals 1 if job j is to be in position p in the execution sequence;  

Y
p
 binary variable equals 1 if a setup is needed before the job in position p  

Due dates will be considered as soft constraints. A penalty Pj per unit of job weight 

and for each tardiness time unit is added to the total cost. To formulate the problem we 

add a dummy job, numbered 0, with L0=L, t0= a0= , p0=0, d0= ∞ and assign it to 

position 0 in the sequence (i.e.: we set X00=1). Using the above given notation our cold 

rolling mill scheduling problem (CRMSP) can be modelled as follows: 

                     {   }          {   }                                     

          ∑    
 
    ∑ {    (        )         

 
   }                       

             ∑    
 
                                                                           

∑    
 
                                                                            

              (            )  

                                     

     (            )  (     )  

                                        

                                                                           

The first term of the objective function (1) is the sum of setup costs; the second term 

is the total inventory holding cost, and the third term gives the overall tardiness penalty. 

Constraints (2) state that each job has one and only one position in the execution 

sequence while constraints (3) make sure that there is only one job in each position. 

Constraints (4) imply that, if job j immediately precedes job i, then the starting time of i 

is greater than or equal to the finish time of j plus the setup time s if a setup is necessary. 

Constraints (5) set the value of setup variable Yp to 1 if the job in position p is larger than 

the job in position p-1. Finally constraints (6) determine the tardiness rj of each job j. 
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This model contains 2N continuous variables, N(N+1) binary variables and N(2N2
-

N+1) linear constraints. It can be solved using available MIP codes for up to about 10 

jobs only. However, real-life instances contain up to 50 jobs over a horizon of 5 days.  

4. OPTIMUM SOLUTION AND EXECUTION DATES FOR A GIVEN SEQUENCE 

The heuristic proposed in this paper enumerate some production sequences and for 

each sequence determine the corresponding optimal execution dates and costs. Let  be 

the earliest date where the mill is available and assume that jobs are numbered according 

to the given execution sequence. Then the earliest start times can be determined by: 

t
1
 = max (a

1
 , +

1
s), (7) 

t
j
 = max (a

j , tj-1 + p
j-1

 + 
j 
s); j=2,...,N, (8) 

r
j
 = max (0, t

j + p
j-1

  d
j
); j=1,...,N. (9) 

Where: 
1 =1 if L1>L and 

1
=0 otherwise 


j =1 if L

j
>L

j-1
 and 

j
=0 otherwise 

The minimal total cost corresponding to this sequence  is: 

    ∑  
 
    ∑        

 
         ∑     

 
              

This cost is the smallest possible (minimum) cost for the given sequence  as once 

the sequence is chosen the number of setups is fixed, the corresponding setup cost is 

determined and cannot be reduced. Also, using the earliest execution dates minimizes 

both the sum of the inventory holding costs and the sum of tardiness penalties. 

5. THE HYBRID GREEDY RANDOMIZED ADAPTIVE SAMPLING PROCEDURE  

The proposed heuristic enumerates a number of production sequences and retains the 

one producing the smallest cost. Each sequence is obtained by a construction heuristic 

which starts at time t= (the earliest time where the rolling mill is available), attributes 

to each of the jobs schedulable at time t a score, denoted sj, and randomly choose among 

the three jobs having the highest score the one to schedule. Then we move to the time 

moment where this job should finish and choose the next one; and so on. The score is a 

weighted sum of three of job characteristics: time slack, processing time and width. 

To choose among the three jobs having the highest score, we use the standard 

roulette wheel scheme. We arrange the 3 jobs in the descending order of their score, 

attribute to each one a probability fj of being selected, which equals its score divided by 

the sum of the three scores, and then draw a random number x from a uniform 

distribution between 0 and 1. The job with the highest probability is then selected if xf1, 

the second job is selected if f1<x f1+f2, and the third one is selected otherwise. 

This proposed sequence construction procedure is repeated G times producing G 

solution. The optimal execution dates and cost for each sequence is determined (as 

shown in Section 4) and the best of the G sampled sequences is then retained. 

Two improvement procedures, I1 and I2, are then applied. These improvement 

procedures are hill climbing procedures. The difference between these two procedures is 

their searched neighbourhood. The neighbourhood of I1 is all neighbour sequences 

where only one job is moved to a different position. The neighbourhood of I2 is all the 

neighbour sequences where one pair of jobs exchanges their position in the sequence. 

6. PERFORMANC EVALUATION 

One hundred test instances were randomly generated and solved. These instances 

have the same characteristics as the real-life problem observed in the Aluminium rolling 

facility but with only 15 jobs to process. Table 1 presents parameters values used to 

generate the test instances.  
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Table 1: Parameters of the randomly generated test-instances 

Parameter Values Parameter Values 

Set up cost S 300 Job width Lj 41,45,49,53,57,61 

Setup time s 1.5 Job weight wj 20,25,30,..,225 

Initial width L 57 Job arrival date aj 0,6,12,18 

Tardiness penalty Pj 30 Job due date dj 6,12,18,24 

Inventory holding cost hj 0.025 Processing time pj 1,2,3,4,5 

We tried to solve the test problems to optimality using the MIP code GUROBI 5.0.1 

and a computer equipped with a 3.50 GHz, 8 cores Intel Xeon processor. After 24 hours 

of computation the first problem was not solved. Thus it was decided to put a limit of 

3600 seconds (one hour) on the run time. No problem was solved to optimality within 

this time limit. Solutions obtained after one hour was better than the best solutions 

obtained by the tested heuristic for only 21 problems. The average deviation of the best 

solution obtained by GUROBI from the best obtained solution was 3.39%.  

The 100 test-instances were solved using the Hybrid greedy randomized 

adaptive sampling procedure with G (the number of sampled solutions) equals to 

1000, 2000, and 5000. The best sampled solution is then improved by applying 

the two improvement procedure I1 and I2. Table 2 summarizes the results 

obtained. From this table we can see that increasing G decreases the percentage 

deviation from the best solution found. However, the computation time also 

significantly increases. The table also shows that the HGRASP with G=5000 and 

followed by the two improvement procedures gave the best results as expected. 

Table 2: Summary of the obtained results 

 GUROBI 
HGRASP with*  

G=1000 G=2000 G=5000 

Average percentage deviation from the best found solution 3.39% 2.19% 2.13% 1.70% 

Maximal percentage deviation from the best found solution 14.84% 13.24% 18.53% 13.17% 

Average computation time (seconds) 3600 2.00 3.84 9.53 

Number of times the best solution is found 21 46 49 55 

Number of times is the only method to find the best solution 21 10 7 11 

* Only the best sampled solution is improved by applying I1 and I2. 

7. OTHER SOLUTION METHODS 

Two other solution methods were developed within this research project to solve the 

CRMSP. A detailed description of these methods and the results they produced are given 

in Boctor (2014). 
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1. Problem description

We are initially given a set S = {S1, S2, . . . , Sn} of jobs. Each job Si has associated with

it a length si where we assume 0 ≤ si ≤ 1. The jobs are all processed sequentially on a

single processor. Only one job can be worked on at any point in time. A job Si will be

processed during a (semi-open) time interval [α, α+ si) for some α ≥ 0.

Given some permutation π of S, say π(S) = T = (T1, T2, . . . , Tn) with corresponding job

lengths (t1, t2, . . . , tn), the jobs are placed sequentially on the real line as follows. The

initial job T1 in the list T begins at time 0 and finishes at time t1. In general, Ti+1 begins

as soon as Ti is completed, provided the following constraint is always observed [1].

For every real x ≥ 0, the unit interval

[x, x+ 1) can intersect at most B jobs. (1)

Constraint (1) reflects the condition that each job needs one of B additional ressources for

being processed and that a ressource has to be renewed after the processing of a job has

been finished. The preceding procedure results in a unique placement (or schedule) of the

jobs on the real line. We define the finishing time τ(T ) to be the time at which the last job

Tn is finished. A natural goal might be for a given job set S, to find those permutations

T = π(S) which minimize the finishing time τ(T ).

2. Worst-case analysis of the List Scheduling heuristic

In [1] it has been shown that the problem is NP-hard in general. (The authors polynomially

reduce the NP-hard problem PARTITION (see [2]) to a special case of our scheduling

problem.) Let us denote by τw(S) the largest possible finishing time for any permutation

of S, and let τo(S) denote the optimal (i.e., the shortest possible) finishing time for any

1
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permutation of S. We are interested in seeing how much worse τw(S) can be compared

to τo(S). The following bounds from [1] are similar in spirit to some of the bounds in the

very early List scheduling heuristic and LPT heuristic literature ([3], [4]).

Theorem 1 For B = 2 and any set S,

τw(S)− 4

3
τo(S) ≤ 1.

The factor 4
3 is best possible.

Theorem 2 For B ≥ 3 and any set S,

τw(S)−
(

2− 1

B − 1

)
τo(S) ≤ 3.

The factor 2− 1
B−1 is best possible.

3. Analysis of the LPT heuristic

For this heuristic, we rearrange our set S of jobs into decreasing order to form the permuta-

tion L = (L1, L2, . . . , Ln) where li denotes the length of Li and li ≥ li+1 for 1 ≤ i ≤ n− 1.

As usual (see [1]), we let s(li) denote the starting time of Li when L is scheduled, and

we let f(Li) denote the corresponding finishing time. We write τ(L) = τLPT (S) for the

makespan of an LPT-schedule. We start with the following observation.

Lemma 1 If the jobs are ordered according to the LPT rule, then we have:

s(Li) = f(Li−2) + 1, i ≥ 3

Proof: It follows from (1) that

s(Li) ≥ f(Li−2) + 1, 2 ≤ i ≤ n. (2)

In fact, we claim that (2) holds with equality for all i if the jobs are given in LPT order.

This is certainly true for i = 2 (since l2 ≤ 1). Assume that it holds for some value i ≥ 3.

The only reason that we could have s(Li) > 1 + f(Li−2) is if

f(Li−1) > f(Li−2) + 1. (3)

But we know by induction that f(Li−1) = s(Li−1) + li−1 = f(Li−3) + 1 + li−1. Hence,

by (3), f(Li−3) + 1 + li−1 > f(Li−2) + 1, i.e., f(Li−3) + li−1 > f(Li−2) = s(Li−2) + li−2.

However, s(Li−2) ≥ f(Li−3). Therefore, s(Li−2) + li−1 > s(Li−2) + li−2, or li−1 > li−2,

which is a contradiction. Thus we have s(Li) = 1 + f(Li−2) for all i.

2
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Theorem 3 For any set S,

τ(L)− τo(S) ≤





1
2 (1 + l1 − ln−1 − ln) if n is odd,

1
2 (l1 + l2 − ln−1 − ln) if n is even.

Proof: We know from [1] that the optimal schedule for S satisfies

τo(S) ≥ 1

2

(
s1 + sn +

n∑

i=1

si + n− 2
)

≥ 1

2

(
ln−1 + ln +

n∑

i=1

li + n− 2
)

(4)

(note that ln−1 and ln are the lengths of the two smallest jobs in the LPT order).

Now we consider two cases:

(i) n = 2m+ 1. From Lemma 1 we see that

τ(L) = l1 + 1 + l3 + 1 + . . .+ l2m−1 + 1 + l2m+1 =

m∑

i=1

l2i−1 +m.

Because of li ≥ li+1 for 1 ≤ i ≤ n− 1, we have consequently

τ(L) ≤ l1 + 1 + l2 + 1 + . . .+ l2m−2 + 1 + l2m = l1 +
m−1∑

i=1

l2i +m.

Thus,

τ(L) ≤ 1

2

(
l1 +

2m+1∑

i=1

li + 2m
)

=
1

2

(
l1 +

n∑

i=1

li + n− 1
)
.

Hence, by (4),

τ(L)− τo(S) ≤ 1

2

(
1 + l1 − ln−1 − ln

)
.

(ii) n = 2m. From Lemma 1 we see that

τ(L) = l1 + 1 + l2 + 1 + l4 + 1 . . .+ l2m−2 + 1 + l2m = l1 +

m∑

i=1

l2i +m− 1.

Because of li ≥ li+1 for 1 ≤ i ≤ n− 1, we have consequently

τ(L) ≤ l1 + 1 + l2 + 1 + l3 + 1 + . . .+ l2m−3 + 1 + l2m−1 = l2 +

m∑

i=1

l2i−1 +m− 1.

3
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Thus,

τ(L) ≤ 1

2

(
l1 + l2 +

2m∑

i=1

li + 2m− 2
)

=
1

2

(
l1 + l2 +

n∑

i=1

li + n− 2
)
.

Hence, by (4),

τ(L)− τo(S) ≤ 1

2

(
l1 + l2 − ln−1 − ln

)
.

It follows immediately that LPT-schedules are at most one unit interval longer than optimal

schedules. We give the following example that shows that the bound is tight. Consider

the set S consisting of t jobs of length 1 and t zero-jobs for some integer t. We denote a

job of length 1 by 1 and a zero-job by 0. The optimal permutation 0[1]t[0]t−1 has finishing

time τo(S) = (3t − 2)/2. On the other hand, the LPT-order 1t0t has a finishing time

τ(L) = 3t/2. Thus, τ(L)− τo(S) = 1.
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1. Introduction 
The project management is a tool providing successful realization of a project within planned time, 

planned costs and planned quality. To ensure this it is necessary to analyse critical and threatening 
factors both explicitly and implicitly existing in the project.  

The principle of the project management is expressed in the form of a project magic triangle (triple 
imperative) where the dimension of costs, time and quality towards the project objective are monitored 
(Kerzner, 1979, Warburton, 2011, PMI, 2013). This magic triangle expresses the dynamics of the project 
management: it is possible to reduce costs, however, at the expense of time and quality, or it is possible 
to reduce time but at the expense of costs and decreasing quality or finally, it is possible to improve the 
quality but to increase time and costs. Unfortunately, the objectives of a project can never be reached 
with minimal costs, in minimal time and with the highest quality possible (Kerzner, 1979, Warburton, 
2011). Liberatore and Pollack-Johnson (2012) show the continuous model for maximization the quality 
subject to time and cost limits.  

The riskiness, threat and criticalness of project activities are not only given by the surroundings and 
the environment of the project but also by the internal arrangement and structure of the project.  

Quantitative estimation serves for the evaluation of the task criticalness. Although such quantitative 
estimation of the project is performed in a pre-project phase, generally only traditional time and resource 
analysis of the project is provided. Primarily, the activities are evaluated from a time perspective only as 
critical or uncritical activities, but many other quantitative characteristics can be used. Such a multiple 
attribute analysis enables not to ignore the impact of time-uncritical activities which may have the high 
criticalness from many different reasons (Brozova et al, 2013).  

On the other side, more attention is paid to the analysis of the risks which can occur during the 
project realization and result in the project failure (Wideman, 1992). The risk management covers a 
number of different techniques and approaches which have been derived in order to reduce the risk of a 
project and its partial activities (Wideman, 1992). The risk management is the identification, assessment 
and reduction of risks (Gonen, 2012). Sadeh and Zwikael (2012) show that in order to improve project 
success organizations have to use a proper measurement method for riskiness evaluation. Risks can 
come from uncertainty in quantitative attributes and from qualitative and intangible aspects, which often 
cover also human and social elements. That is the reason why the subjective judgement methods or 
fuzzy approach are used for the evaluation of riskiness of the project (Gonen, 2012). 

According to our point of view, the criticalness, the riskiness and the threat of the project tasks 
should be evaluated and managed. Threatening tasks can lead to the project failure in all three aspects of 
the project magic triangle. The task threat is more qualitative than the task criticalness; however, it is 
based on similar parameters, mainly duration, cost and quality. Therefore the evaluation of the activities 
threat should be based on the fuzzy evaluation from the perspective of the project magic triangle aspects.  

The main aim of the paper is to compare the qualitative and quantitative approach analysing threats 
and criticalness of the project tasks. We suggest the application of the fuzzy linguistic system into the 
qualitative (soft) estimation of the threat of the project tasks and we use multiple attribute approaches in 
the quantitative (hard) evaluation of the activities criticalness. We compare both approaches and discuss 
their advantages and disadvantages. 

2. Threatening tasks  
The suggested overall evaluation of the threat of the project activities is based on experts’ 

knowledge and experts’ experience of characters of tasks. This evaluation method is based on the soft 
system approach (Checkland, Scholes, 1990) because many factors influencing the project success have 
social or human roots or are based on uncertainty, probability and possibility. Such managerial 
evaluation of the task threatening can be made by expressing linguistic uncertainty using linguistic terms 
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and fuzzy scales. A fuzzy measure is a subjective scale for the degrees of fuzziness and is suitable in 
analysing human subjective judgement (Ross, 2010, Wang and Klir, 1992). Therefore, we define the 
fuzzy linguistic system with the linguistic state variables describing the level of activity threat, their 
values are words, and meanings of these words are fuzzy sets. The evaluation of the threat is based on a 
fuzzy conversion, which corresponds to the conversion of linguistic labels into fuzzy numbers. In this 
study we created a non uniform six point fuzzy scale allowing realistic subjective evaluation of the task 
hazard where uncertainty decreases towards the extreme values. 

Task can be (timely, costly or qualitatively)  

  

not at all hazardous 
usually not hazardous 
rather not hazardous 
rather hazardous 
usually hazardous 
always hazardous 

(0; 0; 0; 0.1)  
(0; 0.1; 0.2; 0.3)  
(0.2; 0.3; 0.4; 0.6)  
(0.4; 0.6; 0.7; 0.8)  
(0.7; 0.8; 0.9; 1)  
(0.9; 1; 1; 1)  

Figure 1. Linguistic fuzzy scale for task hazard evaluation 

Partial evaluations of the tasks are aggregated using a fuzzy logic system representing a knowledge 
system (its simplest form uses fuzzy sum). For the overall evaluation is used a non uniform five point 
fuzzy scale with uncertainty increases towards the evaluation Extremely threatening task values.  

Task can be  

 

Non-threatening 
Weakly threatening  
Rather threatening  
Strongly threatening  
Extremely threatening  

(0; 0;  0.05; 0.15) 
(0.05; 0.15; 0.25; 0.35) 
(0.25; 0.35; 0.5; 0.6) 
(0.5; 0.6; 0.75; 0.85) 
(0.75; 0.85; 1; 1) 
  

Figure 2. Linguistic fuzzy scale for overall task threat evaluation 

The application of the suggested fuzzy system enables to obtain an approximative overall evaluation 
of the task threat for all project tasks. 

3. Task criticalness 
A hard system approach to the analysis of the task in the relation to the project success is based on 

the crisp exact quantitative evaluation of the task. Brozova et al (2013) suggested to provide the overall 
evaluation of the task criticalness without soft knowledge about character of the tasks.  

The estimation of the overall criticalness of the project activities is based on the multiple attributes 
decision making method using five indicators of the criticalness as probability that the activity will lie 
on critical path, time duration, time slack, cost, and work. The weights of these indicators are evaluated 
by the decision maker. The values of these indicators are then converted into interval 0,1 , the value 0 

corresponds to the lowest partial criticalness and the value 1 to the highest criticalness, and used as the 
input for the Simple additive weighted mmethod (Hwang, Yoon, 1981) using formula  

1 2 3 4 5

maxmin min min min

max min max min min max max min max min
I KI K I K I K I KK K K K K

I
K K K K K K K K K KK K K K KK K K K K

s sp p t t c c w w
C v v v v v

p p t t s s c c w w

−− − − −
= + + + +

− − − − −
 (1) 

where CI is the global evaluation of the activity criticalness, pI is the evaluation of probability of the 
critical path, tI is the duration of the activity, sI is the time slack of the activity, cI is the cost of the 
activity, vI is the work amount of the activity, and v1,…,v5 are the weights of the components of 
criticalness.  

The probability that the activity lies on critical path is related to the project structure, i.e. these 
probabilities of the predecessors and the numbers of their successors and calculated as 

1 1 and , 1j
i

j predecessor of i j

p
p p i

h
= = ≠∑         (2) 

where p1, pi, pj are the probabilities that the activities 1, i, j will be on the critical path, and hj is the 
number of activities following activity j, (activity 1 is the starting task). 
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4. Example of the evaluation of the tasks - Tender for the purchase of software  
The project shows the tasks of the public tender for the acquisition of software in simplified sub-

limit mode. The tender starts with preparing the documentation. The first aggregate activity consists of 
the initial analysis of the client's needs, processing task itself, detailed specifications of the subject, and 
criteria evaluation. The next step is the preparation of the tender documentation, made mostly by the 
legal department. The tender call and the receipt of bids are the following steps. Once the receipt of bids 
is closed, the envelopes will be opened and their formal correctness will be checked and then the bids 
are compared according to the tender criteria. Based on information from previous tasks, the evaluation 
will be sent to tender participants and finally the selected supplier will be asked to sign the contract. 

The project was firstly evaluated using quantitative data according to the formula (1). The results are 
in the table 1, the criticalness of the activities are in the last column. 

Table 1. Analysis of the task criticalness using Simple additive weighted method 

 
For soft evaluation the linguistics terms from the table 1 are used. As an example: the activity 

Analysis of the client's needs is often underestimated in terms of time and resources. Therefore, the 
project manager evaluated its duration as usually hazardous, and costs as rather hazardous. Because it is 
necessary to reach the good analysis to set the consequent parameters and specifications, in terms of 
quality, these activities are always hazardous.  

Table 2. Analysis of the threat of the task using fuzzy linguistic system  

 
The table 2 consists of the expert linguistic evaluation of the activities and the overall evaluation 

using fuzzy rule basis is in the last column, these terms are ordered according to their natural meanings. 

5. Results and discussion 
The results are in the figure 3, where the activities are ranked according to the task criticalness. The 

graph shows that some activities are evaluated differently according to the both evaluations.  
The biggest difference is seen in criticalness and the threat of the Commenting on the tender 

documents. This difference is based on the fact that this activity is not time critical and also is not really 
consuming in the other parameters, but it is inherently very risky, mainly the quality is very threatening 
and also it can be time consuming. The difference in the evaluation of the activities Analysis of the 
client's needs, Specification of the evaluation criteria, Opening of the bids and checking of formal 
correctness and Specifications of the subject matter can be explained similarly. 

54



 

 Figure 3. Comparison of the task criticalness and the task threatening  

6. Conclusion 
The example of quantitative and qualitative evaluation of project activities demonstrates the need for 

both forms of the project analysis. In this way the comprehensive evaluation of the project activities 
includes all their attributes. 

The quantitative (hard) evaluation of task criticalness does not respect the soft factors influencing 
activities; it is good evaluation in the cases of low impact of these factors on the realization of the 
project. This approach is subjectively influenced only by setting the weights of the parameters of the 
criticalness. 

The task qualitative evaluation of the task threat using fuzzy approach enables to include also 
randomness, social aspects and other soft aspects influencing the tasks and the project realization. Used 
linguistic terms, however, allow a large degree of subjectivity evaluation. This fact is not only negative; 
its positivity lies in the possibility of expert evaluation of the factors based on the content of each project 
activity. 

Therefore the crisp data and evaluation has to be compared with the subjective, intuitive and soft 
evaluation. Different project managers can evaluate the tasks and the weights differently and thus the 
results are different. Putting different parameters and rules will lead to different results. 

Acknowledgements 
The research is supported by the Internal Grant Agency of the University of Life Sciences Prague – 

project IGA PEF 20131028 - Multicriterial Analysis of Criticality of Project Activities. 

References 
Brozova, H., Bartoska, J., Subrt, T., Rydval, J., 2013, “Multiple criteria evaluation of the activities 

criticalness in the Project management”, Proceedings of the 31st International conference on 
Mathematical Methods in Economics, Jihlava. 

Checkland, P., Scholes, J., 1990, “Soft System Metodology In Action”, John Wiley, Chichester. 
Gonen, A., 2012, “Project Risks selection under budget constraints”, Proceedings of the 13th 

International Conference on Project Management and Scheduling, Leuven. 
Hwang, Ch-L., Yoon, K., 1981, “Multiple Attribute Decision Making”. Springer, Berlin Heidelberg, 

New York, 1981. 
Kerzner, H., 1979, “Project Management: A Systems Approach to Planning, Scheduling and 

Controlling”. New York: Van Nostrand Reinhold. 
Liberatore, M.J., Pollack-Johnson, B., 2013, “Improving Project Management Decision Making by 

Modelling Quality, Time, and Cost Continuously”, IEEE Trans. Eng. Manag., Vol. 60, pp. 518-528. 
Madadi, M., Iranmanesh, H., 2012, “A management oriented approach to reduce a project duration and 

its risk (variability)”. European Journal of Operational Research 219, pp. 751-761. 
PMI, 2013, Project Management Institute. “A Guide to the Project Management Body of Knowledge”. 

5th ed., Newtown Square (PA, USA), ISBN 978-1-935589-67-9. 
Ross, T.J., 2010, “Fuzzy Logic with Engineering Applications”, John Wiley and sons. 
Sadeh, A., Zwikael, O., 2012, “Top Management Project Support: an Investigation into the Most 

Effective Antecedents for Project Success”, Proceedings of the 13th International Conference on 
Project Management and Scheduling, Leuven.  

Wang, Z., Klir, G.J., 1992, “Fuzzy Measure Theory”, Plenum Press, New York. 
Warburton, R.D.H., 2011, “A time-dependent earned value model for software projects”, International 

Journal of Project Management, vol. 29, no. 8, pp. 1082-1090. 
Wideman, R.M., 1992, “Project and Program Risk Management”, Project Management Institute. 

55



Proactive Project Scheduling with a Bi-Objective Genetic Algorithm in an 

R&D Department 

Canan Capa1, Gunduz Ulusoy2 
 

1Concordia University, Canada 

e-mail: c_capa@encs.concordia.ca 

2Sabanci University, Turkey 

e-mail: gunduz@sabanciuniv.edu 

 

Keywords: proactive project scheduling, multi-objective genetic algorithm, R&D 

1. Introduction 

During project execution, especially in a multi-project environment unforeseen events arise 

that disrupt project plans resulting in deviations of project plans and budgets. Therefore, project 

schedules should also include solution robustness to cope with the uncertainties such that actually 

realized activity start times during project execution will not differ much from the baseline 

schedule. Constructing solution robust schedules requires proactive scheduling techniques.  

The literature on proactive project scheduling is relatively scarce. Leus (2003) considers the 

objective of minimizing the total weighted instability of the schedules from a given deadline. 

Herroelen and Leus (2004) develop mathematical models for the generation of stable baseline 

schedules. Van de Vonder et. al. (2006) propose resource flow dependent float factor heuristic as a 

time buffering technique to produce robust schedules relying completely on the activity weights. 

Lambrechts et. al. (2008) focus on disruptions caused by stochastic resource availabilities and aim 

at generating stable baseline schedules. Van de Vonder et. al. (2008) introduce multiple algorithms 

to include time buffers in a given schedule while a predefined project due date remains respected. 

In a recent study, Lambrechts et. al. (2011) analytically determine the impact of unexpected 

resource breakdowns on activity durations and develop an approach for inserting explicit idle time 

into project schedules in order to protect them from possible resource unavailability. In addition to 

these proactive strategies, there are some risk-integrated procedures. Shatteman et. al. (2008) 

develop a methodology that relies on a computer supported risk management system that allows to 

identify, analyze and quantify the major risk factors and derive the probability of their occurrence 

and their impact on the duration of the project activities. Creemers et. al. (2013) propose a 

quantitative approach that allows to address the risk response process in a scientifically-sound 

manner and shows that a risk-driven approach is more efficient than an activity-based approach to 

analyze risks. Herroelen (2014) propose a methodology that integrates quantitative risk analysis 

with reliable proactive/reactive project scheduling procedures.   

The problem on hand is the proactive scheduling of R&D projects with a priori assigned resources 

in a stochastic and dynamic environment present in the R&D Department of a leading home 

appliances company in Turkey. We develop a three-phase model incorporating data mining and 

project scheduling techniques to solve the problem. Phase I of the model, the uncertainty 

assessment phase, provides a systematic approach to assess uncertainty by identifying the most 

important factors of uncertainty, measuring the impacts of these factors to resource usage 

deviation levels of projects and their activities; and generating activity resource usage deviation 

distributions by using the well known data mining techniques: feature subset selection, clustering 

and classification. Phase II, the proactive project scheduling phase, proposes two scheduling 

approaches using a bi-objective genetic algorithm (GA). Phase III, the reactive project scheduling 

phase, aims at rescheduling the disrupted project activities during implementation using the 

scheduled order repair heuristic developed and enables the project managers to make what-if 

analysis and thus to generate a set of contingency plans for better preparation. 

In this paper, our focus is limited to Phase II of the three-phase approach. In Section 2, the 

problem and the problem environment are explained. In Section 3, we present the solution 

methodology and in Section 4 we present the main results obtained by the implementation of the 

proposed proactive project scheduling approach with real data. Finally, in Section 5 we conclude 

and provide suggestions for future work.   
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2. Problem definition and environment 

We consider the preemptive resource constrained multi-project scheduling problem 

(RCMPSP) in a stochastic and dynamic environment present in the R&D Department of a leading 

home appliances company in Turkey. No precedence relation is assumed between projects. A 

project consists of a number of events and activities that have to be performed in accordance with 

a set of precedence and resource constraints. Activities require two types of renewable resources: 

human resource and equipment. Human resource is multi-skilled. Equipment includes machines, 

mechanisms and laboratories. Non-renewable resources are not considered.  This is due to 

relatively unrestricted availability of non-renewable resources. The resource requirement of 

activities and hence, the durations of activities are uncertain. The project network is of activity-on-

node (AON) type with Finish-to-Start (FS) and Start-to-Start (SS) precedence relations with zero 

or positive time lags. The problem on hand can be considered an extension of the RCMPSP with 

generalized precedence relations and multi-skilled resources, preemption, stochastic activity 

durations and resource availabilities and dynamic arrival of projects. The objective is to generate 

solution robust baseline project schedules and minimizing the completion time for the overall 

project makespan. Solution robustness is a measure of the difference between the realized schedule 

and baseline schedule. In our case, we use the total sum of absolute deviations (TSAD) for solution 

robustness, where the absolute deviations are taken between the actual starting times and starting 

times realized in a set of K simulations over all activities. The problem environment differs from 

those in the literature in that a resource is required for the duration of its usage within an activity 

rather than for the whole duration of the activity requiring that particular resource. Resources can 

work on more than one activity in a time period (say, a week) and the duration of the usage of the 

resources can differ over the periods that the activity is executed. Additionally, the concept of 

preemption of a resource employed by an activity is also introduced.  

3. Solution methodology 

In this section, we present a bi-objective GA for the scheduling of a newly arrived project that 

uses the output of Phase I as input and employs two scheduling approaches: the single and multi-

project scheduling approaches. The aim of these scheduling approaches is to generate non-

dominated solution robust project schedules with the minimum makespan for the completion of all 

projects scheduled. Solution robustness is measured with TSAD of the schedule through K number 

of possible schedule realizations in both approaches. The single and multi-project scheduling 

approaches differ in that the single project scheduling approach considers the ongoing and not yet 

started activities and projects of the baseline schedule as fixed by the time of scheduling of the 

newly arrived project and uses the currently available resources to schedule it. The multi-project 

scheduling approach, on the other hand, schedules the ongoing and not yet started activities and 

projects of the baseline schedule anew together with the newly arrived project. Since the two 

scheduling approaches differ in the way they adopt for the scope of scheduling, the definitions of 

TSAD and makespan, thus, the objectives considered in the bi-objective GA also differ although 

they both try to minimize TSAD and makespan. Note that in the proactive project scheduling 

approaches, a set of non-dominated robust project schedules are generated. From these non-

dominated robust schedules, the decision maker can choose the schedule that best fits the current 

project management environment in the system. Proposed bi-objective GA is an adopted version 

of NSGA-II suggested by Deb et al. (2002), which uses an explicit diversity generation procedure 

called crowded-comparison along with an elite-preservation procedure called non-dominated 

sorting. An individual is represented by a precedence feasible activity list. We make use of one-

point crossover and swap mutation operators. Population management is the same as in NSGA-II. 

However, our bi-objective GA differs in the schedule generation scheme and chromosome 

evaluation procedures. 

3.1. Schedule generation 

Since the work of resources on activities is preemptive, a schedule is represented with the lists 

of resource, activity, week and amount (r,a,t,k) quadruple. Each (r,a,t,k) quadruple shows that 

resource r works on activity a at the time instant t for k working hours. Our resource schedule 

generation scheme starts with scheduling the resources of the first activity in the chromosome. 

Note that, resource order for scheduling is not important since all orders give the same work 

schedule for that activity. Considering the earliest precedence feasible starting time of activities 

57



and starting at the first available time instant, resources are scheduled until they reach their 

required usage hours. After all the resources of the first activity in the chromosome are scheduled, 

starting and ending time of that activity is determined by simply checking the work schedules of 

the resources that activity requires. Then, the earliest starting time of the successor activities are 

updated. This procedure is repeated until all the activities in the chromosome are scheduled. 

3.2. Chromosome evaluation 

For a given order of activities both the overall makespan and solution robustness are assessed 

through a set of K realizations mimicking the implementation phase, where a realization 

corresponds to a sample instance obtained by a simulation run using the activities’ percentage 

resource requirement deviation distributions, which is determined by Phase I. For this purpose, 

two alternative chromosome evaluation heuristics with the objective of quality robustness 

represented with makespan and solution robustness expressed in terms of TSAD value of the robust 

activity starting times from their counterparts in all K realizations, are considered: chromosome 

evaluation heuristic I (CEH-I), and chromosome evaluation heuristic II (CEH-II). CEH-I solves a 

TSAD minimization model by LP. Using the activity starting times realized in simulations, this 

TSAD minimization model aims at finding robust start times that minimize the TSAD value of the 

scheduled activities. Note that resulting activity start times might be completely different than the 

activity starting times in K realizations and they might be resource-infeasible. Thus, using the 

resulting robust starting times, first, feasibility of these starting times is checked and if infeasible, 

the schedule is fixed with deferring the infeasible activities. On the other hand, in CEH-II, K 

realizations are sorted in their non-domination ranks using the corresponding makespan and TSAD 

values. Among the schedules that are on the Pareto front, the schedule having the minimum TSAD 

is selected as the robust schedule of the chromosome. The makespan and the TSAD values of the 

resulting schedule are used as performance measures of the chromosome. Note that the TSAD in 

the multi-project scheduling approach includes the deviations of the starting times of the activities 

not yet completed as well. 

4. Implementation with real data 

For the implementation, 37 completed R&D projects varying in size all initiated by the R&D 

Department between 2007 and 2011 are used as test instances to compare the performances of the 

two proactive project scheduling approaches. Project networks are of AON type. FS and SS are 

generalized precedence relations with zero and positive time lags. There is no precedence relation 

between the projects. The number of activities vary between five and up to 39 and average 

network complexities are 1.2, 1.5, and 1.7 for small, medium and large networks, respectively. The 

two types of renewable resources are: Human resource and equipment. Activities require from one 

human resource to a total of more than 11 human resources and equipment. The weekly capacity 

of human resources is 45 working hours. For the resources in the equipment category, capacity 

values differ from nine working hours to 672 working hours. Resource availability may vary 

between resources and periods regarding the current workloads.  

All codes are written in Microsoft Visual Studio C# and CPLEX 12.5 is used as the MILP 

solver. All tests are performed on a computer with a 3.20 GHz Intel(R) Core(TM) i7 CPU 960 

processor and 8 GB of RAM. 

The best combination of the parameters to be used in the bi-objective GA is determined 

through extensive experimentation resulting in the following set of parameters: the crossover rate 

of 0.95; mutation rate of 0.05; population size 50; the number of generations 50; and the number of 

schedule realizations for a chromosome 100. The results obtained by the use of CEH-I and CEH-II 

are compared with respect to CPU time, diversity of the solutions and solution quality. Because of 

space limitations, we do not present the tables showing results but we provide the main results 

obtained with the analysis of the results. It is seen that the CPU time required to schedule the 

projects is less for almost all projects when CEH-II is used instead of CEH-I since fitness of a 

chromosome is calculated using an already generated schedule in CEH-II. Thus, it seems sorting 

the schedules generated in the simulation with respect to their non-domination level requires less 

computational time than solving the TSAD minimization model and generating a new schedule 

using the output of the TSAD minimization model. It is also seen that when CEH-I is used, less 

number of non-dominated schedules are obtained for each project and it tends to find schedules 

with less TSAD while CEH-II tends to find schedules with smaller makespan values.  
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When we compared the results of the single and multi-project scheduling approaches, we saw 

that for most of the projects, single project scheduling approach gives better completion times. On 

the other hand, if we think all the projects as a composite project, the completion time of this 

composite project obtained with multi-project scheduling approaches approximately 3.5 months 

earlier using CEH-I and approximately 4.5 months earlier using CEH-II in a time horizon of 

34months. Hence, if completing the composite project is more important than completing the 

projects individually, multi-project scheduling approach is better. On the other hand, a 

disadvantage of multi-project scheduling is that it re-schedules all the active activities with a new 

project initiation, so an activity is scheduled more than once even if there is no disruption affecting 

that activity. This re-scheduling increases system nervousness and decreases the morale of the 

human resources that work on the activities. An additional disadvantage is that the multi-project 

scheduling approach needs more CPU time than the single project scheduling approach. 

5. Conclusion and future work 

In this paper, we presented the proactive project scheduling phase of the three-phase approach 

developed for robust project scheduling. To the extent of our knowledge, this study is the first 

study considering multiple objectives on proactive project scheduling literature for the problem of 

the preemptive version of the RCMPSP with generalized precedence relations. To obtain robust 

baseline schedules, in the proactive project scheduling phase, we suggested two scheduling 

approaches each using a bi-objective GA with two different chromosome evaluation heuristics. 

Solution robustness is assured with TSAD minimization after a pre-specified number of schedule 

realizations are obtained for a chromosome. The other objective is the minimization of the 

makespan over all projects. The proactive project scheduling approaches are implemented on the 

real data from the R&D Department of a leading home appliances company in Turkey. Although 

we have used these two objectives, some other objectives could be used or added to the model as 

well. A further extension of our work could be considering the concepts of activity flexibility, 

project flexibility, activity priority and project priority while scheduling the projects. 
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1. Introduction 
Electronics industry is one of the largest industries in the world. Key players in this industry are the 
semiconductor manufacturers, which produce integrated circuits on silicon wafers. According to a 
report by the Semiconductor Industry Association (SIA), the worldwide sales of semiconductors 
reached $25.53 billion for the month of July 2013, and an increase of 5.1 percent over July 2012. 
Semiconductor manufacturing process consists of four stages: wafer fabrication, wafer probe, 
assembly, and final test. Wafer fabrication is one of the most complex manufacturing processes. It 
takes place in fabs, that are very large systems with tens to hundreds machines moving hundreds to 
thousands wafers (Moench et al., 2011). The scheduling problems in a wafer fab is similar to 
scheduling flexible job shop but it is more complicated since there are several elements which have 
to be considered, i.e. (Dabbas and Fowler 2003): (1) Re-entrance of lots in some stages, i.e. lots 
must be processed by the same machine during multiple visits; (2) Different types of machines 
depending on the object processed, i.e. wafer, lot (a set of wafers) or batch (a set of lots); (3) Setup 
times: Changing between different operations needs setup actions in several stages in the fabs; (4) 
Auxiliary resources: In some stages, auxiliary resources are required, such as the reticles in the 
photolithography stage; (5) Multiple orders per lot: due to technology innovation and increase in the 
wafer size, customer order is reducing, so various customers’ orders might be grouped in a lot; (6) 
Uncertainties and machine availability: the arrival of new orders, the cancellation of orders, and long 
machine failure are common unplanned events; (7) Time constraints: in some cases, the time 
between the end of an operation n and the start of the operation n+q must be lower than a time-limit, 
in  order  to  guarantee  the  lots’  quality.  Scheduling  in  such  a  context  is  challenging  for  managers.  
Therefore this work presents the preliminary results of a research carried on in the framework of a 
EU-funded project: “Integrated Solutions for Agile Manufacturing in High-mix Semiconductor 
Fabs”  (INTEGRATE),  aimed at developing scheduling algorithms to support wafers manufactures. 
The studied case is the one of the plant of ST-MICROELECTRONICS in Catania. In particular, the 
proposed approach support them in defining the batches and dispatching the lots among three 
consecutive operations (i.e. one cleaning and two diffusions) characterized by time constraints 
between them and no batches affinity between the first and the second operation. Moreover, the 
batches might be composed of lots of wafers of different families. Considering j as  the  lot’s  index,  
the problem can be described as in (1) (in line with the notation proposed in Bucker (2007)): 
𝑅  𝐽ห  𝑝௝, 𝑑௝, 𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 − 𝑏𝑎𝑡𝑐ℎ, 𝑇௟௔௚௦௠௜௡หmin(𝑇ത) ,min(𝑅௪௢௥௞) , 𝑆௦௖௥௔௣ = 0          (1) 

Where the first part of (1) defines the machine environment, which is unrelated parallel machines 
(R) with different operations (J). The second part describes the product characteristics. In particular: 
the studied situation is characterized by different processing time of the lots (pj), relevant and 
different due dates of the lots (dj), the time for processing a batch on a machine is the longest 
processing time among all the lots in the batch (p-batch), not all the lots can be batched together 
(incompatible-batch), and presence of time constraints between operations (Tlagsmin). The last part 
represents the objectives, which are: minimizing the average flow time of the lots (T) and the number 
of re-cleaned lots (Rwork), and avoid scrapped lots (Sscrap). To this aim, two heuristic algorithms have 
been proposed. We  use  the  term  “heuristic  algorithms”  to  describe  our  approaches,  since  we  propose  
two methods that are both composed by a series of steps (thus the term algorithm), but they support 
the decision maker in finding a good solution in a limited amount of time, but they do not assure to 
find the optimal solution (thus the term heuristic). They share the same trigger events, but not the 
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prioritisation rule, which for the former is based on the ATC-Index (Vepsalainen and Morton, 1987) 
while on BATC-Index (Cerekci and Banerjee, 2010) for the latter. A simulation model of ST-
MICROELECTRONICS Catania's   wafer   fab   has   been   developed   on   Arena™   and   a   simulation  
campaign performed in order to validate and compare the two heuristic algorithms to find the one 
which allows to reach better performance (i.e. minimum rework, average flow time and zero 
scrapped lots). 

2. Literature review 
Researchers have addressed the problem of batching and dispatching in different ways. Various 
elements can be considered in order to classify the methods: (i) machine environment e.g work area, 
parallel machines; (ii) process restrictions e.g. re-entrant flow, time constraints, sequence-
dependent; (iii) objectives e.g. related to processing time, throughput, on time delivery (Mönch et 
al. 2011). Different solving techniques have been used, i.e. mathematical programming, simulation 
and heuristic algorithms (Mathirajan and Sivakumar 2006). Batching and dispatching problems are 
often solved by means of a rule based on the value of an index, that takes into account lot's features. 
Vepsalainen and Morton (1987) develops an index called Apparent Tardiness Cost (ATC), which 
assigns the priority on the basis of the expected tardiness cost per immediate processing 
requirements. The aim is to minimize the sum of weighted tardiness, in a job shop. An evolution of 
this index is presented by Cerekci and Banerjee (2010). They focus on mean tardiness performance 
of a batch processing machine in a two-stages system by including an upstream unit capacity 
machine. They propose two new control strategies, called BATC-I and BATC-II, in order to find 
the batches composition and then dispatch the batches. Akçali et al. (2000) focus on loading policy 
based on the minimum batch size, and different dispatching policies based on an index called critical 
ratio of lots, in diffusion area of a wafer fab. They suggest that by setting a variable minimum batch 
size, which depends on the production volume, the flow time can be reduced. They use simulation 
in order to test the different approaches, and the results show that the loading policy has a significant 
influence on the flow time and on the overall processing time of the products, while dispatching 
policy has less significant effect. Some approaches incorporate other information about the state of 
the fab. Solomon et al. (2002) develop a dispatching policy to be used in batch processing machines 
that incorporates information about future arrivals and the status of critical machines, so to balance 
the time that lots spend waiting at the batch processing machine and the time spent in setups, in 
order to improve the makespan. As far as time constraints is concerned, the relevance of the topic 
has been recognized by both practitioners and researchers. Solutions have been proposed in 
industries other than semiconductors and considering both tardiness and makespan as objectives. In 
fact, Gicquel, et al. (2012) study hybrid flow-shop scheduling problem arising from a bio-process 
industry, where a variety of constraints has to be taken into account, such as limited waiting time 
between processing stages. They propose an exact solution approach for minimizing the total 
weighted tardiness, based on a discrete time representation and a mixed-integer linear programming 
formulation. Joo and Kim  (2008) face the problem of two stages single server with time constraints 
between the two stages. They apply the branch- and-bound algorithm using the dominance properties 
in order to minimize the makespan. Similarly, Li and Li (2007) study the hybrid flow-shop 
scheduling problem with limited waiting time constraint in a multi stage process, characterized by 
parallel unit capacity machines. The objective is to minimize the makespan for a given set of jobs. 
They propose a recursive backtracking algorithm, which schedules each job from the first stage to 
the last. Some works include also the problems related to batch processing machines. For example, 
Su (2003) proposes a heuristic algorithm to minimize the makespan on a two stages process, where 
at the first stage there is a batch processing machine. It should be noted that they model only lots 
belonging to the same family. Literature review shows that few papers consider both batching 
problem and time constraints, and none proposes a model applicable to ST-
MICROELECTRONICS's plant situation.  

3. Problem setting and proposed heuristic algorithms 
3.1 Problem setting 

The aim of this work is to provide the production managers of ST-MICROELECTRONICS 
Catania's plant, with reference to the cleaning and diffusion area, an heuristic algorithm to define: 
(1) Which lots should be included in a batch, (2) Which batch should be dispatched first, and (3) 
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When a batch should be dispatched. Only a part of ST Catania's Plant is considered, precisely the 
cleaning and diffusion areas.  Three  types  of  lots’  flows go through these two areas: (i) lots which 
have to perform only cleaning, (ii) lots which have to perform cleaning and one diffusion operation, 
and (iii) lots which have to perform cleaning and two consecutive diffusion operations. In addition, 
the lots belong to different family, which means they are characterized by different recipes, therefore 
they cannot be processed together. Furthermore, the lots can have the same recipe at the cleaning 
operation, but different recipes at the diffusion operation. This means that lots loaded in the same 
batch at the cleaning operation not necessarily can be loaded directly in the same batch on the first 
diffusion operations. While the batches that have been loaded on the first diffusion operation can be 
loaded as they are also on the second diffusion operation, without any recombination of lots, 
provided that the capacity limit of the machine is respected. Furthermore, the two areas are 
characterized by a set of parallel batch processing machines, which can have different maximum 
batch size. Another characteristic is that not all the machines are qualified to process all the recipes. 
Moreover, it should be noted that the processing time of a batch is equal to the highest processing 
time of the lots belonging to the batch itself. Lastly there are minimum time constraints between the 
different operations. This means that a lot can wait in the queue in front of a furnace machine no 
longer than a threshold, given by the recipe of the lot itself. The queue time is calculated from the 
moment when the lot finishes to be processed at an operation to the moment when the lot is loaded 
on the machine at the next operation. If a lot exceeds the time constraint between a cleaning 
operation and diffusion operation, it must be reworked, while if a lot exceeds the time constraint 
between the two consecutive diffusion operations, it must be scrapped. The information related to 
the job, such as due date, processing time, arrival time at first stage, can be obtained from the 
information system of the fab. The same applies for the information related to the fab status, for 
example machine status or number of lots in the queue. Preemption is not allowed. 

3.2 Proposed heuristic algorithms 

Two heuristic algorithms have been developed and then compared. The objectives taken into account 
when developing them are: minimize the average flow time of lots, minimize the reworked and avoid 
the scrapped lots. Both methods were developed starting from two ideas, i.e.: (1) In order to avoid 
lots waiting at the batch processing machines due to lack of other lots to be included in the batch, 
the method tries to compose the batches at the beginning of the cleaning operation by grouping lots 
sharing the same flow type and recipes. (2) In order to avoid to overstep the time constraint the 
queues in front of the furnace machines are monitored and the batches are loaded on a machine at 
cleaning area only when the expected queue time at the following stage is lower than the time 
constraint.The proposed heuristics algorithms are characterized by three main elements: (a) 
prioritisation: which aims to compose the batches and calculate the priority index to prioritize the 
batches, (b) trigger events and dispatching: which aims to define the instant when prioritization 
should be performed, and then, based on the prioritisation result, the batch must be dispatched, and 
(c) queues control: which aims to limit the number of batches waiting at the second stage in order to 
avoid to overstep the time constraint 
In this work two alternative methods for performing the prioritisation are presented, namely ATC-
index (Vepsalainen and Morton 1987) and the BATCH-index (Cerekci and Banerjee, 2010).  
The second task is to define the trigger event, which activates the heuristic algorithms. At the 
cleaning  operation  there  are  two  trigger  events,  the  first  one  is:  “a  cleaning  machine  is  empty”,  while  
the  second  is:  “there  is  a  new  lot  in  queue  at  the  cleaning  and  a  cleaning  machine  is  empty”.  Whereas,  
the  trigger  event  for  the  diffusion  operation  is:  “there  is  at  least  one complete batch in front of the 
diffusion machine and at least one load-space  of  the  diffusion  machine  is  empty”. 
The queue control depends on the following equation (equation 2):  

The equation aims to check if a specific machine i can process all the batches in its queue without 
overstep the time constraint (TC), by considering the waiting batches (Wipi), the service rate (ui) and 
machine availability (ai),  in  line  with  Little’s  law. Finally, the heuristic algorithms are divided in 
four steps: (a) Priority index calculation: this part is the same for all the lots, (b) Cleaning scheduling: 
applied when the chosen lot has to do only the cleaning operation, (c) Cleaning-Diffusion 
scheduling: used when the lot has to do one cleaning and one diffusion, and (d) Cleaning-Diffusion-
Diffusion scheduling: implemented when the lot has to do one cleaning and two diffusions. The first 
part of the heuristic algorithms aims to select the lots to be dispatched first. The trigger events are 

(2) 
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the two explained above. ATC is calculated in both heuristic algorithms, then only for the second 
also BATC is calculated. ATC allows for selecting the lot to be considered first for batching. BATC 
allows for selecting the batch to dispatch first on the cleaning machine. The three following parts of 
the heuristic algorithms, i.e. b, c and d, differ one from the other for the maximum batch capacity 
since in the first case is the capacity of the available cleaning machine which can perform the recipe 
of the considered batch; for the second is the capacity of the diffusion machine which can perform 
the recipe of the considered batch and respects (2), while for the third Bmax is the maximum among 
the maximum capacities of the machines which can perform the recipe of the considered batch and 
full fill the condition of the equation (2), respectively for the first and the second diffusion 
operations. In addition, the batches at diffusion are dispatched on the furnaces using FIFO (first in 
first out) logic.  

3.3 Simulation experiment and results 

A simulation model of the analysed system is developed in ArenaTM in order to validate and compare 
the two heuristics algorithms. The input data came from the real situation of ST-
MICROELECTRONICS Catania plant. A simulation campaign is performed using as decision 
variables: (i) Δt: the look-ahead time; (ii) Wtmax: the maximum waiting time at the first operation; 
(iii) Time_load_space: time for when the load-space is booked, as control variables: (i) Waiting time 
at the diffusion operations (< time constraint); (ii) Waiting time at the cleaning operation, and as 
performance: (i) average flow time (ii) number of scrapped lots (iii) number of lots reworked. The 
performance of the proposed heuristic algorithms have been compared.  
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1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the most inves-
tigated scheduling problems in the project management literature. Resource-constrained
project scheduling is the process of constructing a project schedule within the limited
amount of resources available. It requires the examination of the possible unbalanced use of
resources over time to resolve over-allocations (the so-called resource conflicts) when more
resources are required than available. The critical path based scheduling methods will often
schedule certain activities simultaneously, but when more resources such as machines or
people are needed than there are available, these activities will have to be rescheduled con-
currently or even sequentially to resolve the resource constraints. The resource-constrained
project scheduling problem aims at resolving these resource conflicts such that the total
project makespan is minimized.

This abstract presents a new solution approach to solve the resource-constrained project
scheduling problem in the presence of multiple modes with mode identity constraints and
two types of logical constraints. Apart from the traditional AND constraints with minimal
time-lags, these precedences are extended to OR constraints. These logical constraints
extend the set of relations between pairs of activities and make the RCPSP definition
somewhat different from the traditional RCPSP research topics in literature. It is known
that the RCPSP with AND constraints, and hence its extension to OR constraints, is
NP-hard.

The new algorithm consists of a set of network transformation rules that remove the
OR logical constraints and transforms them into AND constraints and extends the set of
activities to maintain the original logic. A satisfiability (SAT) solver is used to guarantee the
original precedence logic and is embedded in a meta-heuristic search to construct resource
feasible schedules that respect both the limited renewable resource availability as well as
the precedence logic. Computational results on a newly generated dataset that is publicly
available show that the procedure is able to generate near-optimal solutions in reasonable
time.
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2 Problem description

In this abstract, a new solution approach will be proposed that will be able to solve
various versions of the multi-mode resource-constrained project scheduling problem (section
2.1) and will take both AND and OR precedence relations (section 2.2) into account. The
solution approach consists of a combined metaheuristic search and a SAT solver search
(section 2.3), based on the principles used by [Coelho and Vanhoucke, 2011], to solve this
new problem to near-optimality in reasonable time.

2.1 Multi-mode

Many research efforts have extended the RCPSP to the presence of multiple activity
modes where each activity can be executed under a different duration and a correspond-
ing renewable and nonrenewable resource use (the problem is further abbreviated as the
MMRCPSP). Due to the complex nature of the problem, only a few exact algorithms have
been presented in literature, and most algorithms presented in literature therefore consist
of heuristic or meta-heuristic solution approaches. Moreover, a clear distinction can be
made between algorithms incorporating both renewable and non-renewable resource con-
straints and algorithms limited to projects with only renewable resource constraints. In
the paper written by [Van Peteghem and Vanhoucke, 2014], most algorithms have been
benchmarked on existing and newly presented data instances. We will compare our solu-
tion approach on these data instances, extended with extra features such as mode identity
constraints [Salewski et al., 1997] as well as the extended precedence relations that will be
discussed in the next subsection.

2.2 AND/OR constraints

Scheduling activities with AND/OR constraints is not new in literature, and has been
discussed in [Gillies and Liu, 1995], [Adelson-Velsky and Levner, 2002] and [Möhring et al.,
2004]. They classify the traditional precedence relations to the class of AND constraints
to model that an activity can only start when all predecessors have been finished. An OR
constraint, however, is slightly different as it allows an activity to start as soon as any of its
predecessors has been completed. Consequently, the OR precedence relations differ from
the traditional AND constraints that they only require one predecessor to finish before the
successor can start.

2.3 SAT approach

The solution approach to solve the existing and novel problems to near-optimality
consists of the three-phased approach, including a set of network transformation rules, the
use of a SAT solver and a metaheuristic search for resource feasible solutions, as briefly
discussed along the following lines.

– Step 1. Network transformation: Including multi-modes and AND/OR relations into
the RCPSP will be done by extending the network with various dummy nodes and
dummy arcs that enable the algorithm to solve the problem using a traditional RCPSP
solver. The specific details of the network conversions are not outlined in this document
but will be shown in the presentation.

– Step 2. SAT Solver: In order to guarantee that the newly incorporated constraints will
be satisfied, a satisfiability (SAT) problem solver will evaluate the logical conditions
of the intermediate constructed schedules that act as a go/no go to further optimize
the partial schedule in case all constraints are satisfied. A similar approach has been
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proposed by [Coelho and Vanhoucke, 2011] to solve overallocations of non-renewable
resources.

– Step 3. Metaheuristic search: A metaheuristic search procedure will evaluate thousands
of solutions in reasonable time based on the traditional principles borrowed from genetic
algorithms.

3 Computational design

During the presentation, the design for a new public dataset will be described and
preliminary computational results for the computational experiments will be reported.
These data instances will be generated by the network generators of [Demeulemeester
et al., 2003,Vanhoucke et al., 2008] and will be used to test our solution approach.

Table 1 displays general and preliminary results for the new solution approach to solve
the multi-mode RCPSP and shows its performance in comparison with the currently best
performing algorithm from literature. To that purpose, we relied on the data instances
of [Van Peteghem and Vanhoucke, 2014] that have been especially designed to solve MM-
RCPSP instances and to benchmark the resulting solution in literature. In the table, the
results for a 1,000, 5,000 and 50,000 schedules limit are shown for the instance set MM-
LIB50, MMLIB100, and MMLIB+. For each set and stop criterion, the percentage of feasi-
ble instances, the deviation percentage from the lower bound, and the deviation percentage
from the best solution known are displayed. The deviation percentages are calculated only
for the feasible instances.

The results show that the procedure is competitive with the currently best performing
algorithms since it stays at an average 2% from the best-known solutions. However, the
newly presented solution approach can, unlike most algorithms presented in literature, be
used to solve several extensions of the well-known MMRCPSP without any change in the
algorithm. It should be noted that these results are only preliminary, and more detailed
results will be presented on the workshop.

The infeasibility on some of the problem instances occur due to two reasons. Firstly, the
number of activity modes might be too high for the current implementation of the RCPSP
algorithm, and secondly, the number of backtracks limit during the SAT search was often
reached. In the near future, an update of the data structure of the RCPSP solver is on the
agenda in order to deal with a larger number of activity modes. Moreover, updating the
SAT procedure to make a more specific search in order to find an activity mode assignments
in a more efficient way also lie in our future research intentions.

Table 1. Preliminary results on a sample of the test data

Schedule Limit: 1,000 5,000 50,000
MMLIB50 feasibility 83% 83% 83%

dev.LB 30% 21% 16%
dev.Best 13% 5% 1%

MMLIB100 feasibility 83% 83% 82%
dev.LB 40% 28% 19%

dev.Best 19% 9% 2%
MMLIB+ feasibility n.a. 50% 50%

dev.LB n.a. 67% 54%
dev.Best n.a. 10% 2%
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4 Conclusions

In this abstract, the integration between resource-constrained project scheduling and
a satisfiability (SAT) problem solver, as originally presented by [Coelho and Vanhoucke,
2011] has been extended to the presence of AND/OR constraints. Computational results
tested on the datasets presented in [Van Peteghem and Vanhoucke, 2014] show promising
results and show that the current state of the procedure can compete with some of the
existing algorithms in literature. However, the newly presented solution approach can,
unlike most algorithms presented in literature, be used to solve several extensions of the
problem formulation without any change in the algorithm.
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1 Introduction

The resource-constrained project scheduling problem (RCPSP) has been widely stud-
ied. Most of the literature focuses on the deterministic RCPSP with minimum-makespan
objective. A fundamental assumption of the deterministic RCPSP is that activity dura-
tions are known in advance; they are certain. In reality, however, this is almost never the
case. In this abstract, we develop an exact procedure to solve the stochastic resource-
constrained scheduling problem (SRCPSP). A computational experiment shows that our
approach works best when solving small-to medium-sized problem instances where activity
durations have a moderate-to-high level of variability. For this setting, our model outper-
forms the existing state-of-the-art.

Most of the literature on resource-constrained project scheduling assumes that activity
durations are known in advance (i.e., they are deterministic). In reality, however, activity
durations are often uncertain (Ashtiani et al. 2011). The stochastic resource-constrained
project scheduling problem (stochastic RCPSP or SRCPSP) studies the RCPSP when
activity durations are stochastic. In contrast to the deterministic RCPSP, the SRCPSP
has received only little attention in the literature (for a survey of the literature on the
deterministic RCPSP, refer to to Demeulemeester and Herroelen (2002) and Neumann
et al. (2003)). Because the deterministic RCPSP, and hence the SRCPSP, is known to
be N P-hard (Blazewicz et al. 1983), most of the researchers have focussed their efforts
on heuristic procedures. Golenko-Ginzburg and Gonik (1997) propose two heuristics that
both rely on solving a series of multi-dimensional knapsack problems (the first heuristic
uses an exact procedure whereas the second procedure resorts to a heuristic solution of
the knapsack problems). Tsai and Gemmill (1998) apply simulated annealing and tabu
search procedures whereas Ballestín and Leus (2009) use a genetic algorithm and a GRASP
algorithm respectively. Ashtiani et al. (2001) adopt a two-phase local-search procedure.
Stork (2001), who builds on the work of Igelmund and Radermacher (1983) and Möhring
(2000), is one of the few researchers that has developed exact procedures to solve the
SRCPSP. In his PhD, he compares the performance of five different branch-and-bound
algorithms.

In this abstract, we extend the work of Creemers et al. (2010) and use a backward
stochastic dynamic-programming (SDP) recursion to determine the minimum completion
time of resource-constrained projects with stochastic activity durations. We use acyclic
phase type (PH) distributions to model activity durations and match the first two mo-
ments of the activity duration distributions. The complexity of the problem increases with
the number of project activities and with decreasing levels of activity duration variabil-
ity. Therefore, the model is intended for small-to medium-sized problem instances where
activity durations have a moderate-to-high level of variability.
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2 Definitions and problem statement

A project is a network of activities that can be represented by a graph G = (V,E),
where V = {0, 1, . . . , n} is a set of nodes and E = {(i, j)|i, j ∈ V } is a set of arcs. The
nodes represent project activities whereas the arcs connecting the nodes represent prece-
dence relationships. Activities 0 and n are dummy activities and represent the start and
completion of the project respectively. The duration of an activity i is a random variable
p̃i and has expected value µi and variance σ2

i . p̃ = {p̃0, p̃1, . . . , p̃n} denotes the vector of
the activity duration random variables. pi is a realization (or random variate) of p̃i and
p = {p0, p1, . . . , pn} is a realization of p̃. An activity i can start when all of its predecessors
are finished and if sufficient resources are available. There are K renewable resource types.
The availability of each resource type k is denoted by Rk. Each activity i requires ri,k units
of resource k, where r0,k = rn,k = 0 for all k ∈ R = {1, 2, . . . ,K}.

A solution to the deterministic RCPSP is a schedule S = {S0, S1, . . . , Sn}, where Si

is the starting time of an activity i, S0 = 0 (i.e., the project starts at time 0), and Sn

represents the completion time (or makespan) of the project. In addition, define A (S, t) =
{i ∈ V : Si ≤ t ∧ (Si + pi) ≥ t), the set of activities in schedule S that are active at time t.
A schedule S is feasible if:

Si + pi ≤ Sj ∀(i, j) ∈ E, (1)
∑

i∈A (S,t)

ri,k ≤ Rk ∀t ≥ 0,∀k ∈ R, (2)

Si ≥ 0 ∀i ∈ V. (3)

The optimal schedule S∗ minimizes Sn subject to Constraints 1–3.
Because activity durations are not known in advance, a solution to the SRCPSP is

a policy rather than a schedule. A policy Π is a set of decision rules that defines ac-
tions at decision times. Decision times are typically the start of the project and the
completion times of activities. An action, on the other hand, corresponds to the start
of a precedence-and-resource-feasible set of activities. In addition, decisions have to re-
spect the non-anticipativity constraint. When executing a policy, a schedule is con-
structed as time progresses (i.e., activity starting times become known gradually). Con-
sequently, a policy Π may be interpreted as a function Rn+1

≥0 7→ Rn+1
≥0 that maps

given realizations of activity durations p to vectors of feasible starting times S (p;Π) =
{S (p0;Π) , S (p1;Π) , . . . , S (pn;Π)} (see for instance Igelmund and Radermacher (1983),
Möhring (2000), and Stork (2001)). For a given realization p and policy Π, Sn (p;Π)
denotes the makespan of schedule S (p;Π). The most common objective of the SRCPSP
is to minimize E (Sn (p;Π)) over a given class of policies (where E (·) is the expectation
operator with respect to p). Optimization over the class of all policies is computationally
intractable. Therefore, we restrict our attention to the subclass of policies P that start
activities only at the end of other activities (where activity 0 starts at time 0).

3 Stochastic activity durations

A project network with stochastic activity durations is often referred to as a PERT net-
work, and a PERT network with independent and exponentially-distributed activity dura-
tions is also called a Markovian PERT network. For Markovian PERT networks, Kulkarni
and Adlakha (1986) have developed an exact method for deriving the distribution of the
earliest project completion time using a continuous-time Markov chain (CTMC). Buss
and Rosenblatt (1997), Sobel et al. (2009), and Creemers et al. (2010) use the CTMC of
Kulkarni and Adlakha (1986) as a starting point to develop scheduling procedures that
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maximize an expected-NPV objective. All aforementioned studies, however, assume un-
limited resources and exponentially distributed activity durations. In this abstract, we
extend the work of Creemers et al. (2010) to accommodate: (1) resource constraints, (2)
PH-distributed activity durations, and (3) a minimum-makespan objective.

4 Performance

In order to solve the SRCPSP, we extend the SDP recursion presented in Creemers
et al. (2010). They use a SDP recursion to determine the maximum Net Present Value
(NPV) when activity durations are exponentially distributed. In this abstract, we extend
this recursion and (1) include resource constraints, (2) allow for general activity duration
distributions, and (3) apply a minimum-makespan objective rather than a maximum-NPV
objective. The SDP recursion is implemented in Visual Studio C++. All tests are performed
on an Intel I5 2.53 GHz computer with 4 GB of RAM.

Various data sets are available in the literature. Tsai and Gemmill (1998), Ballestín
and Leus (2009), and Ashtiani et al. (2011) assess the performance of their procedures
using the instances of the Patterson data set (Patterson 1984). Stork (2001) evaluates his
branch-and-bound algorithms on the J30 and J60 instances of the well-known PSPLIB data
set (Kolisch and Sprecher 1996). Ballestín and Leus (2009) and Ashtiani et al. (2011) use
the J120 instances of the same data set. Golenko-Ginzburg and Gonik (1997) use a single
instance with 36 activities to evaluate their two heuristics. The same problem instance is
also used in Ballestín and Leus (2009) and Ashtiani et al. (2011). In our experiments, we
use the project instances of the Patterson data set and the J30 and J60 instances of the
PSPLIB data set. Because our model is designed to solve small-to medium-sized problem
instances, we do not use the J120 instances of the PSPLIB data set. We also do not use the
example project presented in Golenko-Ginzburg and Gonik (1997) because its activities
have a very limited duration variability.

In a first experiment we assume that activity durations are exponentially distributed.
Table 1 summarizes the results. It is clear that project networks of up to 32 activities are
analyzed with ease. The results also show that networks of 62 activities can often be solved,
albeit at a larger computational cost. With respect to the Patterson data set, Tsai and
Gemmill (1998) are able to solve 95 out of 110 instances to optimality if activity durations
are deterministic. If activity durations are stochastic, optimality cannot be guaranteed.
With respect to the J30 and J60 instances of the PSPLIB data set, Stork (2001) is able
to solve 179 and 11 out of 480 instances respectively. It is clear that our model performs
better. Next, we use the instances of the J30 data set to analyze the impact of different
levels of activity duration variability on the performance of our model. Table 1 summarizes
the results. The level of activity duration variability determines the complexity of the
Markovian PERT network. For values of SCV smaller than 0.5, the size of the state space
increases exponentially and computational performance plummets. For moderate-to-high
levels of activity duration variability, however, the computational effort is acceptable.

5 Conclusions

In this abstract, we have presented a generic model for the optimal scheduling of activ-
ities with stochastic durations subject to precedence- and resource constraints. The model
is an extension of the SDP recursion presented in Creemers et al. (2010). A computational
experiment has shown that the model performs best when activities have moderate-to-high
levels of activity duration variability, and that it can be used to solve project instances
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Table 1. Computational performance

Data set (SCV = 1.0) Average SCV (J30)
Patterson J30 J60 0.5 1.0 2.0

Instances in set 110 480 480 480 480 480
Instances solved 110 480 197 467 480 467
Avg CPU time (s) 0.00 0.49 3, 727 18.6 0.49 18.8
Max CPU time (s) 0.06 13.1 697, 368 321 13.1 390
Min CPU time (s) 0.00 0.00 3.07 0.03 0.00 0.03
Avg state-space size (103 states) 7.45 539 150, 424 50, 795 539 50, 795
Max state-space size (103 states) 136 11, 378 975, 124 899, 011 11, 378 899, 011

that have up to 62 activities. For this setting, the model outperforms the existing state-of-
the-art.
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1 Introduction

Evacuation problems have received increasing attention in the last years. From the lit-
erature, it turns out that two main application scenarios have been considered: the scenario
of building evacuation and the scenario of region evacuation. Evacuation of buildings is ex-
tensively discussed in (Hamacher and Tjandra 2001). Several reviews tackle the evacuation
problem for large regions, e.g, (Sbayti and Mahmassani 2006), (Bish 2011) and (Bish et.
al. 2013).

To analyse, evaluate and find an optimal evacuation plan, several optimization models
have been developed. These models are generaly based on the Dynamic Traffic Assignment
(DTA) methodology, e.g, (Kwon and Pitt 2005) and (Sbayti 2008)) or on dynamic net-
work flow models, like universal maximum flow, minimum dynamic cost flow, maximum
dynamic flow, quickest flow and quickest path, e.g, (Hamacher and Tjandra 2001). Both
proposed optimization models aim at minimizing the total evacuation time or to maximize
the number of people exiting the damaged area in a given time period.

In this work, we consider the evacuation of people due to a natural disaster, like earth-
quakes, where residents have to change their centre of lives from several days to several
months with the eventual goal of returning back to home. In particular, we assume that
the locations of gathering points (where people are evacuated, outside the damaged area),
the locations of collection points (where people are gathered waiting to be evacuated) and
the capacities of the transportation network are known. The goal is to define a macroscopic
plan of evacuation which means that people are considered homogeneously: only common
behaviours are taken into account, and we have to transport evacuees from the collection
points to the gathering points in a minimal amount of time. The evacuation is assumed to
be done by means of a fleet of buses, thus leading to schedule the evacuation operations
with a fleet of buses (Bus Evacuation Problem, BEP). Originally, the BEP was introduced
and studied in (Bish 2011), where a mathematical programming model and an heuristic
are presented. BEP can be modeled as a cumulative scheduling problem with additional
resource constraints: the gathering points are cumulative parallel machines and the jobs
to schedule are the persons to evacuate. The additional resources are the buses which are
disjunctive resources. One other important feature of this evacuation scheduling problem
is that the processing time of the jobs are dependent on their starting time in the schedule.
This is a consequence of the evolution of the transportation network through time due to
events like earthquake replicates and road repairs.

Section 2 describes the evacuation scheduling problem in details and provides a mixed-
integer programming formulation. In Section 3, we present a preprocessing method to
improve the mathematical programming solution.
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2 Problem definition and mathematical formulation

Consider that we haveM parallel and cumulative machines, each machine j correspond-
ing to a gathering location GP j , with a capacity capj expressed as a number of buses that
can bring evacuees. N evacuation operations have to be scheduled on the machines, and
each operation i is associated with a collection point CP`. Similarly to the calculation
of the machine capacity, it is assumed that one evacuation operation coressponds to the
evacuation of people by a filled bus. Thus, the set of evacuation operations is deduced
from the number of people to evacuate and the capacity of a bus. A fleet of K identical
buses is given and used to evacuate people. We suppose that the capacity of the reconfig-
ured network is sufficient after the disaster to enable a fluent evacuation. This hypothesis
enables to approximate the bus routing by considering travel times only. An additional
assumption is made on the time horizon since, on the original problem, events that modify
the transportation network may occur: we assume that k such events happen at a known
time dl and can change the value of processing time of operation i on machine j:

pi,j,t =





a0i,j if tij ∈]0, d1]
a1i,j if tij ∈]d1, d2]
...
ak−1i,j if tij ∈]dk−1, dk]

where axi,j is the travel time if the evacuees are transported from a collection point i to
gathering point j in the xth time interval, i.e. its starting time tij ∈]dx−1, dx]. The number
of finite intervals [dl−1, dl] is determined by a preliminary forecasting of the evolution of
the transportation network.

To model BEP we proposed a time-indexed mathematical formulation. Usually, time-
indexed formulations on scheduling problems yield to simple and efficient models despite
the presence of a pseudo-polynomial number of variables (see (Berghman et. al. 2013)
among others). Let us turn to the model for our evacuation scheduling problem in which
T is the time horizon. The decision variables are:

∀i = {1, ..., N},∀j = {1, ...,M},∀t = {0, ..., T − 1};

xi,j,t =

{
1 , if a bus starts the evacuation operation i towards j at [t, t+ 1[
0 , otherwise.

and Cmax, the duration of the schedule.

The proposed (IP) formulation is as follows :

minCmax. (1)

Subject to:
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Cmax ≥ (t+ pi,j,t)xi,j,t ∀i = {1, ..., N},∀j = {1, ...,M},∀t = {0, ..., T − 1} (2)
T−1∑

t=0

N∑

i=1

xi,j,t ≤ capj ∀j = {1, ...,M}] (3)

N∑

i=1

M∑

j=1

∑

t′∈[0,t]
pi,j,t′+t′>t

xi,j,t′ ≤ K ∀t = {0, ..., T − 1} (4)

T−1∑

t=0

M∑

j=1

xi,j,t = 1 ∀i = {1, ..., N} (5)

xi,j,t ∈ {0, 1} (6)

Constraints (2) guarantee that Cmax defines the value of the criterion which is then
minimized by the objective function (1). Constraints (3) are the gathering point capacity
constraints: we cannot exceed the capacities of gathering points. Constraints (4) are the
bus capacity constraints: we cannot exceed the number of buses we have. Constraints (5)
ensure that each operation is processed once and only once. Constraints (6) are the logical
binary restriction on the xi,j,t variables.

3 Preprocessing the time-indexed formulation

To make the solution of the time-indexed formulation faster, a preprocessing method is
proposed in this section. The goal of this method is to reduce the size of the instances to
be solved. This technique has shown good results for some NP-Hard scheduling problems,
((Baptise et. al. 2010) and (Tang et. al. 2013)).

The preprocessing technique is based on the relationship between (IP) and its contin-
uous relaxation (LP). Let z∗LP and z∗IP be respectively the optimal solutions (i.e. values
of the criterion) of the LP and the IP and let B∗ be the basis associated to the optimal
solution of the (LP). The preprocessing consists in deducing the value of some boolean vari-
ables xi,j,t in an optimal solution of the (IP). We distinguish between the basic variables
and the non-basic variables of the optimal solution to (LP).

It is well known in mathematical programming that the following relationship exists
between the optimal solution of the (IP) and the optimal solution of the (LP), (applied to
our model):

z∗IP = z∗LP +
∑

xi,j,t /∈B∗
ci,j,txi,j,t (7)

with ci,j,t be the reduced cost associated to variable xi,j,t. Let UB an upper bound to
z∗IP (calculated by an heuristic algorithm). Then, we can be deduced that :

UB ≥ z∗LP +
∑

xi,j,t /∈B∗
ci,j,txi,j,t ⇔ UB − z∗LP ≥

∑

xi,j,t /∈B∗
ci,j,txi,j,t (8)

From inequality (8) we can deduce the following fixing rule: ∀xi,j,t /∈ B∗, if ci,j,t >
UB − z∗LP then in any optimal solution of (IP), xi,j,t = 0. By reasonning on the slack
variables associated to variables xi,j,t, we can deduce when xi,j,t = 1.
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Concerning basic variables xi,j,t ∈ B∗, we use pseudo-costs li,j,t and ui,j,t associated to
variables xi,j,t. These two values can be calculated, for instance, by means of Driebeeck’s
penalties. These penalties correspond to lower estimates on the increase of z∗LP if xi,j,t is
set to 0 or 1: they are, typically calculated based on reduced costs of non basic variables.
We kindly refer the reader to the paper of (Driebeeck 1966) for a detailed explanation on
how these penalities are calculated. We have:

1. ∀xi,j,t ∈ B∗, if (`i,j,kxi,j,t) ≥ (UB − z∗LP ) then in any optimal solution of (IP) we have
xi,j,t = 1;

2. ∀xi,j,t ∈ B∗, if (ui,j,k(1 − xi,j,t)) ≥ (UB − z∗LP ) then in any optimal solution of (IP)
we have xi,j,t = 0.

This variable fixing technique can be used at any node of a search tree, in a Branch &
Cut algorithm for instance, as long as the (LP) relaxation and the corresponding node has
been solved. The preprocessing algorithm works as follows: (1) Calculate an upper bound
for BEP, (2) Solve the (LP) relaxation, (3) Fix some variables xi,j,t, finally, the (IP) is
solved with the set of fixed variables included.

At the conference, we will present some valid inequalities to restrict the solution space
of the problem and to see the efficiency of the preprocessing algorithm. We will also present
a computational experiment of these algorithms, and report the size of the instances solved
to optimality.
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1 Introduction

There is a widely recognised gap between research and practice in the scheduling �eld
(MacCarthy and Liu 1993). Among the di�erent causes cited, the lack of an integrated
view of scheduling has been frequently mentioned (Herrmann 2004), with most research
focusing exclusively on technical �i.e. optimisation� aspects of scheduling. In this regard,
Decision Support Systems (DSSs) for scheduling have been acknowledged as a key to inte-
grate human and technical perspectives, thus providing a direction to advance in bridging
the aforementioned gap. Therefore, within the scheduling �eld there is a growing interest
in DSS, which has produced a number of case-studies and descriptions of implementation
of DSSs for manufacturing scheduling. The analysis of these case studies and contributions
may serve to identify a number of relevant issues still not properly addressed and thus
provide future research lines to close the gap between theory and practice in manufac-
turing scheduling. In addition, such analysis may provide a retrospective study on which
techniques and approaches to model scheduling problem are been succesfully implemented
in practice.

The goal of this paper is to review and classify these contributions. To do so, we
�rst carry out a systematic review to identify the relevant papers in the literature. In
total, 86 contributions have been regarded as relevant. In order to provide a coherent
taxonomy for the analysis of these papers, we develop a classi�cation based in the works
by (Monfared and Yang 2007, Framinan and Ruiz 2010, Framinan and Ruiz 2012). More
speci�cally, we focus on the structure �or functionalities� of the DSSs reviewed (i.e.
what the systems do), and on their methodology (i.e. how the systems achieve their
functionality). The �rst aspect is oriented towards the identi�cation of issues not adequately
covered up-to-now, and the second aspect is related to analysing the degree of success
of the diferent techniques and methods available. Due to space problems, the complete
classi�cation will be presented in the conference (the full tables with the classi�cation are
available in http://taylor.us.es/componentes/mdr/PMS/Review_PMS_2014.pdf), and
here we simply brie�y discuss the classi�cation criteria and comment some conclusions.

2 Structure of DSS

As mentioned before, the structure of the DSSs refers to their functionalities which
are classi�ed here according to the architecture of manufacturing scheduling systems by
(Framinan and Ruiz 2010):

� Scope of the System, i.e the extent of the decisions supported by the system. Al-
though this paper focuses on manufacturing scheduling (S), some DSSs also address
related decisions, most typically Planning (P) and Control(C).
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� Problem Modeling. This functionality relates to the ability of the system to capture
the di�erent constraints and features of the shop �oor, which can be facilitated by
the so-called Model Detection (MD), i.e. DSS' capabilities to determine the most suit-
able model for solving a speci�c scheduling scenario. Another feature is Constraints
Abstraction (CA), indicating whether the system can reduce the complexity of the
models by means of e.g. aggregating constraints.

� Problem Solving. This functionality relates to the ability of the system to solve the
models. The following speci�c features can be identi�ed (Framinan and Ruiz 2010):

• Algorithms for Rescheduling (AR), which refers to the capability of the DSS for
reacting to disturbances by applying the corresponding algorithms.

• Multi Algorithm (MA) scheduling, a feature allowing the decision maker to compare
the di�erent solutions and choose the one �tting his/her objectives better.

• Evaluation of Algorithms (EA) can be seen as a re�nement of the previous feature,
as the system suggests the planner which one is the best algorithm available.

• Generation of New Algorithms (GNA), meaning the capability of the system to
embed new algorithms.

• Incorporation of Human Expertise (HE), indicating that the DSS allows the deci-
sion maker to incorporate his/her expertise in some manner.

� Solution Evaluation. This functionality refers to the ability of the system to present
the solutions from di�erent points of view so the decision maker can analyse them.
Di�erent features can be considered:

• Di�erent Objectives (DO). Note that this feature does not refer to considering dif-
ferent objectives in the solution procedure, but on evaluating the resulting schedules
with respect to di�erent objectives.

• Analysis of Scenarios (AS) o�ers the decision maker the possibility of comparing
di�erent solutions obtained from the DSS. By means of this feature the decision
maker can modify the input data of the DSS to see what happens if, for example,
there are more customer orders or if the duration of a task in a speci�c machine is
increased.

� User Interface. In this functionality the DSSs show the resulting schedules to the user.
Di�erent charts and graphs can be used, including Gantt Charts (GC), Job Screens
(JS), Machine Loading Boards (MLB), Textual Information (T) or other kinds of charts
or diagrams (OC).

3 Methodology of DSS

With respect to the methodology adopted in the di�erent DSSs in order to provide
the functionalities described in Section 2, we use the classi�cation by (Monfared and
Yang 2007). In their work, three di�erent levels of methodologies are described, i.e.: sup-
porting discipline, major approaches, and techniques. In the �rst level � disciplines�, they
consider Computer Science (CS), Operations Research (OR), and Control Theory (CT). For
each supporting discipline, one or more of the di�erent major approaches can be adopted:
Optimization Techniques (OT), Arti�cial Intelligence (IT), Simulation (S) and Neural Net-
works (NN). Finally, within each approach, di�erent techniques can be applied:

� Regarding Optimization Techniques, we distinguish between Mixed Integer Linear Pro-
gramming (MILP), and approximate techniques such as metaheuristics, i.e.: Tabu
Search (TS), Genetic Algorithms (GA), Simulated Annealing (SA) or Speci�c Heuris-
tics (SH) developed for the problem.

� Regarding Simulation, we iden�y some contributions using Discrete Event Simulation
(DES) and Queuing Theory (QT).
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� Regarding Arti�cal Intelligence, three di�erent techniques are considered: Expert Sys-
tems (ES), Constraint Programming (CP) and Multi-Agents Systems (MAS).

� Regarding Neural Networks, we distinguish between Feed Forward Neural Network
(FF) and Multi-Layered Perceptron (MLP).

4 Conclusions

A number of general conclusions that can be drawn are summarised next:

� Regarding the integration of scheduling and related decisions, 28 DSSs address produc-
tion scheduling and control, in four cases planning and scheduling are simultaneously
solved, and in an additional case, scheduling and transport decisions are integrated. We
also �nd two cases where planning, scheduling and control are faced together.For the
rest of the cases, manufacturing scheduling is addressed in isolation. This fact speaks for
the relatively autonomy of manufacturing scheduling decisions, which certainly eases
the development of DSSs.

� When analysing the functional features of the reviewed DSSs, there is a wide diversity
in the number and type of features. Problem Modelling is present only in about 27%
of the systems, while Problem Solving in more than half of them. Finally, Solution
Evaluation and User Interface features are described in around 60% of the systems.
A conclusion is that there are few described DSSs addressing the whole process, from
modeling to solution representation (only 20%). Most DSSs focus on modelling and
solving the models, and do not include information on data management or user inter-
faces. This makes di�cult to transfer the knowledge generated by the authors of these
contributions to the real industry.

With respect to the structure of the DSS, the following speci�c conclusions can be
presented:

� Regarding Problem Modelling, only 26 out of the 86 DSSs include some feature related
to this aspect. Moreover, only seven references describe a system with capabilities of
Model Detection. If this �nding is aligned with the fact that most solution procedures
in the literature are model-speci�c, then it is clear that this functionality is clearly an
area in urgent need of research to close the gap between theory and practice.

� With respect to Problem Solving, the importance of incorporating human expertise in
production scheduling is acknowledged in most DSSs (52%). Algorithms for reschedul-
ing are present in more than 25%. In constrast, the rest of the related features seldomly
appear in the DSSs reviewed, all of them referring to algorithms creation, maintenance
and evaluation. Since these aspects greatly in�uence the capability of adapting a DSS to
di�erent scheduling scenarios, this factor is probably limiting the expansion of generic
manufacturing scheduling DSSs.

� Regarding Solution Evaluation, there is a lack of DSSs dealing with stochasticity, as no
single contribution was found in this respect. Additionally, a half of the DSSs give the
user the possibility to analyse di�erent scenarios to get insights about how to enhance
his schedules, and around one quarter allows the user for selecting di�erent objectives
to generate their schedules.

� User Interface. It is particularly di�cult to infer information regarding this feature
obtain as most of the works do not include screenshots of the DSSs nor descriptions
about how these present the information to the decision maker. Based on the available
information we obtained that a 33.7% of the results used text to show the schedules
while almost the half of them show their results through Gantt Charts and around
10% using Job Screens or Machine Loading Boards. There were some works where the
information was o�ered through di�erent methods.
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The following conclusions can be extracted regarding the methodology of the DSS:

� Regarding the supporting discipline, most DSSs in practice do not adopt a single sup-
porting discipline, but rely on several supporting disciplines depending on the part of
the DSS. When addressing issues related to database management components or dia-
logue management components, the most used discipline is Computer Science, whereas
for the model management components the most employed discipline is Operations
Research. Finally, Control Theory is predominant for those systems including reactive
scheduling. This speaks for the need of an integrated approach and for interdisciplinary
teams when trying to comprehensively address the design and implementation of DSSs
for manufacturing scheduling.

� Regarding approaches for modeling the scheduling problem, there is a strong corre-
lation between the supporting discipline and the approach adopted, although this is
not strictly required according to the work by (Monfared and Yang 2007). Perhaps not
surprisingly, most DSSs using Optimization Techniques involve minimisation problems,
while approaches based on Arti�cial Intelligence and Neural Networks are oriented to-
wards the obtention of feasible schedules. This reveals an apparent lack of interest from
the Operations Research approaches to focus on obtaining feasible (but not neccesar-
ily optimal) schedules, as well as the di�culty for approaches derived from Computer
Science to e�ciently handle optimisation approaches.

Finally, with respect to the speci�c techniques employed, several remarks can be done:

� Deterministic techniques are preferred in front of techniques explicitly addressing the
stochastic nature of most scheduling problems. While this does not neccessarily mean
that such stochastic nature is ignored in most DSSs, it leads to the need of investigating
the degree of variability that deterministic techniques can cope with, i.e. how di�er-
ent sources of variability a�ect the quality of the schedules provided by deterministic
techniques.

� The majority (39) of the DSSs use Speci�c Heuristics for the models, which are obvi-
ously di�cult to be generalized or applied for di�erent scenarios. This may point out
to the need of moving towards at least two directions: 1) the generalisation of ad hoc

techniques so they can be applied to a broader range of situations, and 2) the develop-
ment of systematic approaches e�ciently building and testing speci�c heuristics so the
�usually high� e�ort to develop and evaluate heuristics for new scheduling problems
can be shortened.
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1. Introduction  

In this study, we investigate a multi-mode project scheduling problem that considers a single 
non-renewable resource (money), namely, the discrete time/cost trade-off problem (DTCTP). The 
deadline version of the problem assigns modes to each activity so that the total cost is minimized 
while respecting the project deadline; whereas the budget version minimizes the project duration 
given a constraint on total spending. Both versions have application areas in practice as they model 
the time/cost relationship in processing activities. Small and medium size problems could be 
solved by exact methods (Demeulemeester et.al. 1996, 1998); whereas approximate solution 
methods are needed for large size problems (See Hazır et al. 2010a, for a comprehensive literature 
review and the problem formulation).  

Combining the two versions of the DTCTP, we propose to construct non-dominated time/cost 
solutions and rank them regarding robustness. We define robust solutions as the schedules which 
are insensitive regarding deviations in activity durations. To evaluate robustness, we propose a 
new measure in section 2.2. Even if cost and completion time are the most widely investigated 
criteria in academic literature; in real life, developing robust schedules becomes critical to hedge 
against uncertain events (Hazır et al. 2010b).  

To rank the solutions we use super-efficiency models (Andersen and Petersen 1993) of data 

envelopment analysis (DEA) [Charnes, Cooper and Rhodes (CCR), 1978]. DEA models do not 
require defining explicit weights for criteria, which are difficult to obtain in real life and may not 
be uniform in the feasibility region. In the literature, there are multi-objective resource constrained 
project scheduling studies. Viena and Sousa (2000) applied metaheuristics to optimize project 
completion time, mean weighted lateness and resource availability. Balestin and Blanco (2011) 
obtained the set of non-dominated solutions based on completion time and tardiness. They also 
proposed measures to express quality of these sets and compare the techniques based on these 
measures. Differently, we focus on ranking. To the best of our knowledge, this study is the first 
multi-criteria optimization research that integrates robustness in multi-mode project scheduling. 

2. Methodology 

We develop a two-stage algorithm. First, we obtain a set of approximately efficient solutions 
and then order them based on total cost, completion time and robustness. 

2.1. Approximately Non-Dominated Solutions 

Hapke et al. (1998) used the term approximately non-dominated solutions to describe the set 
obtained through their heuristic search. We use that term for schedules in b and c neighborhood 
regarding budget and project completion time (B, Cmax); where b and c represent tolerance levels. 
According to our definition, for an approximately efficient solution (B, Cmax) there exist no 
feasible solutions with {(B, Cmax

 ı): Cmax
 ı < Cmax - c} and {(B ı, Cmax): B

ı  < B - b }. To generate 
solutions to the DTCTP, we use direct CPLEX modeling and Benders Decomposition for larger 
instances.  Setting the optimality gap around 2% and truncating the branch & bound, solving the 
problems iteratively produces high quality solutions quickly (Hazir 2010a).  
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2.2. Robustness Measure  

To measure robustness, we use total slack (TS), the amount of time by which the activity 
completion can be delayed without delaying the project completion time, based measures. For 
DTCTP, several slack based functions have been already formulated and tested using simulation 
(Hazir et al. 2010b). We formulate a new robustness measure (RM), an exponential utility function 
that uses the ratio of slack (TSi) to activity duration (pi), and represents the average value over n 
activities. Figure 1 shows that when TS is equal to the activity duration (SDR=1), the contribution 
of additional slack becomes minimal. Hence, to maximize RM, considering the durations, slacks 
should be distributed evenly among activities. 
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                Figure 1. Utility Function  
 

 

2.3. DEA as a Multi Criteria Ranking Tool for Alternatives  

DEA is used for ranking decision making units that include multiple inputs and/or outputs. 
Every unit maximizes its own ranking based on most favorable weights for inputs and outputs for 
itself rather than fixed values (CCR, 1978). DEA has been applied to evaluate the performance of 
different types of organizations in different sectors such as education, health care, banking and 
services.  Efficiency of a unit is calculated by dividing the aggregated value of all outputs (ykj : j

th 
output of the kth unit) to the aggregated value of inputs (xks : s

th input of the kth unit).  None of the 
units will have efficiency value greater than 1. The DEA CCR model is formulated below:  
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vj, us  0; j = 1,...,J,  s = 1,...,S    (3) 
 

For each unit k = 1,...,I, this model is solved maximizing the efficiency (hk). Input (xks) and 
output values (ykj) are assumed to be known. Decision variables of the model are the weights for S 
inputs (us) and J outputs (vj). Note that the model can easily be converted to a linear program (LP) 
by equating the denominator of the objective function to unity. 

The interactive approach of Belton and Vickers (1999) was one of the first studies using DEA 
as an MCDM tool. Stewart (1996) analyzed the correspondence between the efficiency definition 
and distance to the Pareto frontier. Joro et al. (1998) showed the connection between DEA and LP 
by formulating DEA as a reference point model. Eryilmaz and Karasakal (2006) combined DEA 
with outranking methods and ranked MBA programs using published data.   

We use the super efficiency approach to obtain distinct scores for efficient units. In the original 
DEA all efficient units are scored 1 and cannot be differentiated. However, super efficiency score 
is calculated using the radial distance of the current unit to the efficiency frontier excluding itself; 
the constraint is valid for i  k (Eq.4); the unit under evaluation can get a score greater than 1.  
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DEA serves as a practical approach for selection among schedules: First, there is a non-linear 

and complex relation among duration, cost and robustness which is difficult to formulate and solve 
analytically. Moreover, marginal improvement in robustness (utility) is a decreasing function of 
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slacks, which depend on the schedule (mode selection). Secondly, there is positive correlation 
between input and output variables: given the budget (completion time), robustness could be 
increased by increasing the completion time (budget).  In both cases, some of the activities would 
include more slacks hence flexibility.  However inputs and outputs cannot be easily measured by a 
common concrete unit (such as money) and therefore cannot be aggregated. 

2.4. Algorithm for Ranking the Non-Dominated Schedules 

Stage 1: Generating the set of approximately non-dominated schedules 
We use the data set of Akkan et al. (2005). Given the budget, solutions to the DTCTP (budget 

version) instances are solved. In each iteration, for a given budget, 10 feasible solutions within an 
optimality gap [0.25-2.5 %] and the optimal one are recorded. This process is replicated for budget 
values above [10%, 20%] the minimal total cost, with discrete steps of 0.5 %).  Therefore, 231 
(21*11) schedules with associated duration and cost (Bk, Cmax

k) are recorded. 
Stage 2: Ranking the Schedules using DEA 

In this stage, the RM  is calculated and integrated as output score for each schedule generated 
in stage 1. Cost and project completion time are taken as input values and robustness as output (for 
the kth schedule, xk1 = Bk and xk2 =Cmax

k, and yk=RMk).  The super-efficiency method is then 
suitable to present the decision maker schedules that have distinct properties compared to other 
solutions. We use the tool EMS tool [Scheel, 2000] for calculations. 

The first 10 ranked solutions for a problem instance with 136 activities (complexity index, 
CI=14, coefficient of network complexity, CNC=8, concave cost function and between 2 and 10 
modes per activity) are given in Table 1. The efficient solutions have diverse characteristics: the 
4th schedule has a favorable budget value, whereas the completion time for 1th. 3th places are 
balanced in both criteria. Even the 2nd schedule is worse than the 1st schedule regarding the 
completion time, it is significantly better in budget and slightly in robustness. Figure 2a illustrates 
the time/cost trade-off and the generated schedules. The efficient ones are highlighted as red in 
Figure 2b and 2c.  Note that as the budget increases, we can generate left shifted schedules, which 
results in smaller slacks regarding project completion time and hence the RM decreases. 
 
Table 1. Ranked schedules using DEA 

 
Figure 2a. Budget vs Completion Time 

 

 
Figure 2b. Robustness Measure vs. Completion Time    Figure 2c. Robustness Measure vs. Budget 
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Rank B Cmax RM Efficiency 
1 29817 523 0.657 104.35 
2 23022 590 0.686 101.41 
3 17386 704 0.727 100.86 
4 15928 741 0.730 100.69 
5 19568 654 0.710 100.47 
6 19498 651 0.704 99.53 
7 15902 739 0.724 99.39 
8 20333 639 0.697 99.04 
9 16441 723 0.718 98.94 
10 17392 702 0.717 98.92 
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3. Conclusion 

In this research, time/cost relations in project scheduling are investigated and robust solutions 
are sought. An algorithmic basis for a decision support system (DSS) that support project 
managers is under development. Using the algorithm, a set of high quality project schedules are 
determined and ranked using DEA analysis. Therefore project managers can concentrate on only a 
few alternative schedules that will be the basis in planning to complete projects within time and 
cost targets. To validate the effectiveness and efficiency of our approach, extensive computational 
experiments and statistical analysis will be performed in future work.  
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1 Introduction

The flowshop scheduling problem involves determining the sequence in which n jobs
are processed on m machines in the same order. It is usually assumed that the job se-
quences will be the same on every machine (permutation flowshops), along with other
hypotheses such as e.g. the simultaneous availability of all jobs and of all machines, de-
terministic processing times, etc (RA Dudek and OF Teuton 1964). Among the objectives
that can be considered, the minimisation of the sum of the completion times of the jobs
–or F |prmu| ∑ Cj , according to the notation by Graham, R. L. et. al. (1979)– has been
consistenly pointed out both as relevant and meaningful for today’s dynamic production
environment (J Liu and CR Reeves 2001). This problem is known to be NP-hard, therefore
most of the research on this topic is devoted to developing approaches yielding good (but
not necessarily optimal) solutions in reasonable computation time. Recently, Pan, Q.-K.
and Ruiz, R. (2013) exhaustively evaluate the different heuristics in the literature taking
into account the quality of the solutions (measured as the average relative percentage de-
viation over the best known solution) and the CPU time (in seconds). Using these two
indicators as in a bicriteria decision problem, they derived a set of 14 non-dominated (i.e.
approximation of a Pareto set) heuristics, which can be considered state-of-the-art for the
problem. A detailed analysis of this Pareto set reveals that 12 out of the 14 heuristics
employ a mechanism for constructing the solutions based in the heuristic by J Liu and CR
Reeves (2001). In this paper, we propose a heuristic with complexity O(n2m) that outper-
forms the heuristic by J Liu and CR Reeves (2001) both in terms of quality of the solutions
and in CPU time. By embedding this new heuristic in several composite heuristics in the
Pareto set, we obtain a completely new efficient set.

2 Problem Statement

The problem under consideration can be stated as follows: n jobs have to be scheduled
in a flowshop consisting of m machines. On each machine i, each job j has a processing time
denoted as pij . The completion time of job j on machine i is denoted as Cij , whereas Ci[j]

indicates the completion time on machine i of job scheduled in position j. Cmj represents
the completion time of job j.

As mentioned before, a great number of heuristics have been proposed for the problem.
Pan, Q.-K. and Ruiz, R. (2013)exhaustively evaluate all these heuristics in terms of both
the quality of the solutions and computational requirements, and depict a Pareto set to
place the efficient heuristics for the problem in view of their performance on the well-known
Taillard’s testbed. This Pareto set is formed by the following heuristics: Raj, LR(1), RZ,
LR − NEH(5), LR − NEH(10), LR − NEH(15), LR − FPE, PR4(5), PR2(5), PR3(5),
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PR4(10), PR4(15), PR2(15) and PR1(15). From the analysis of the Pareto set, at least
two conclusions can be derived: 1) Each heuristic in the Pareto set has at least a complexity
of n3 ·m; and 2) all the efficient heuristics consist on variation/adaptations of the following
five main (or primary) procedures: NEH, LR(x), FPE, iRZ and V NS. More specifically,
the LR(x) heuristic is present in 12 of the 14 heuristics in the Pareto set.

From these conclusions, it can be seen that LR is a key heuristic of complexity O(n3 ·m),
playing a role similar to that of the NEH for makespan minimisation. For this latter
problem, Taillard, E. (1990) showed that the complexity of the NEH can be reduced
from O(n3m) to O(n2m) by using an acceleration mechanism, but unfortunately, such
mechanism cannot be used to minimize flowtime. The only acceleration proposed is due
to Li et. al. (2009), who reported savings in the CPU time around 30-50%. Nevertheless,
the complexity of the NEH remains the same and thus a way to reduce the complexity of
efficient approximate algorithms for flowtime to O(n2m) has remained elusive.

3 The proposed heuristic

The proposed constructive heuristic –denoted as FF (x)– iteratively selects one job after
another at the end of the sequence. When introducing a new job at the end of the sequence,
there are three elements to be considered:

– Idle time induced by the newly inserted job, which influences the next jobs to be in-
serted. Clearly, this influence decreases with each step (being 0 in the last step). Its
calculation has a complexity O(m).

– Completion time in machine m of the newly inserted job, which affects the total flow-
time since the completion time of each job in machine m is included in the objective
function. This data can be calculated within O(m) using the completion time on each
machine of the preceding job.

– Completion time in machine m of the artificial job. It is thus convenient to ensure
that the unscheduled jobs will not have a very large completion time in machine m.
However, the calculation of this completion time has a complexity of n · m.

Since choosing the adequate position of a job is critical, the main issue lies in weighting
the influence of the aforementioned elements. To do so, we use two parameters (a and b),
to balance the first two elements, i.e. idle time and completion time of the newly inserted
job. In contrast, we leave aside the third element (completion time of the artificial job),
since its influence in the objective function is not as direct as the other two elements, and
its consideration would increase the complexity of the algorithm to n3 · m.

More specifically, the proposed heuristic is as follows:

1. Sort the jobs according to a non descending order of indicator ξ
′
j0 (eq. 1), breaking ties

in favor of jobs with higher IT
′
j,0 (eq. 2). Let us denote by I the so-obtained vector

2. Obtain x partial sequences πi (i = 1, . . . , x) of length 1, where the first (and only) job
of sequence πi is the job in position i in I. Store in U i the jobs not scheduled in πi.

3. For k = 2 to n:
(a) For each partial sequence πi, remove from U i the job for which the minimum value

of ξ
′
j,k (see equation 1) is found and place it in the last position of πi.

4. Return the (final) sequence πi yielding the lowest completion time.

Therefore, the proposed procedure begins with x sequences (πi with i ∈ [1, x]) with
only one job. The first job of each sequence πi is the job in position i of a vector sorted
in non descending order of indicator ξ

′
j0 (equation 1) breaking ties in favor of jobs with
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higher IT
′
j,0 (equation 2) and each final sequence πi is obtained adding one by one jobs to

the last position of the vector.
Let us denote by k the size of the vector in each step. To insert a new job j (j ∈ U i) in

each sequence πi, one of the unscheduled jobs of each sequence, U i, is removed according to
an ascending index of a complexity m, ξ

′
j,k. This index is based on IT

′
j,k the weighted idle

time between the job in position k and the new job j to be inserted, and on the makespan
of the sequence when inserting job j, Cm,j . For each job j ∈ U i, ξ

′
j,k is calculated as follows:

ξ
′
j,k =

(n − k − 2)

a
· IT

′
j,k + AT

′
j,k (1)

where AT
′
j,k and IT

′
j,k are defined as follow:

IT
′
j,k =

m∑

i=2

m · max{Ci−1,j − Ci,[k], 0}
i − b + k · (m − i + b)/(n − 2)

(2)

AT
′
j,k = Cm,j (3)

Note that by avoiding the calculation of the completion time of the artificial job p
(Cmp), the complexity of the algorithm decreases from n3 · m to n2 · m, a complexity n
times lower than the fastest heuristics in the efficient set by Pan, Q.-K. and Ruiz, R. (2013).

In order determine the best values for parameters a and b, a multi-factor Analysis of
Variance (ANOVA) was performed with four factors (n, m, a and b) where a ∈ {1, 2, 3, 4},
b ∈ {0, 0.5, 1}. Factors n and m are those in the testbed by Taillard, E. (1993), which is
employed to perform the analysis. More specifically, n ∈ {20, 50, 100, 200, 500} and m ∈
{5, 10, 20}. The best combination of parameters is found using a = 4 and b = 1, so these
values are used for the new set of heuristics.

4 Computational experience and evaluation

Fig. 1. New Pareto Set of Heuristics. X-axis is shown in logarithmic scale.
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In order to compare the performance of our proposal, the efficient heuristics described
by Pan, Q.-K. and Ruiz, R. (2013) are implemented and their results on the benchmark
set of Taillard, E. (1993) are collected. Since Li et. al. (2009) showed that the CPU time
of heuristics with insertion and pair-wise exchanges can be reduced by 30-50%, this ac-
celeration has been implemented. The overall results –summarised in Table 1– show the
efficiency of the proposed heuristic. For instance, the average CPU time of FF (1) is 0.02s
while that for LR(1) is 0.76s. Not only the complexity of the algorithm has been reduced
from n3 ·m to n2 ·m, but the ARPD of FF (1) is also lower as compared to that of LR(1).
By replacing LR by our proposal in the up-to-now efficient set, a new set of 13 efficient
heuristics (all of them using FF ) can be identified (see Fig. 1).

Table 1. Comparisons between composite heuristics which include LR and FF heuristics

Heuristic ARPD Avg. Time Heuristic ARPD Avg. Time
LR(1) 3.01 0.76 → FF(1) 2.76 0.02

LR(n/m)-FPE(n) 1.02 33.07 → FF(n/m)-FPE(n) 1.01 18.05
IC1 0.64 41.93 → FF-IC1 0.62 25.33
IC2 0.54 55.33 → FF-IC2 0.56 36.47
IC3 0.53 330.92 → FF-IC3 0.55 300.93

LR-NEH(5) 1.52 6.69 → FF-NEH(5) 1.40 3.18
LR-NEH(10) 1.44 13.37 → FF-NEH(10) 1.34 6.33

Raj 4.86 0.29 — — —
RZ 2.32 2.97 — — —

RZ-LW 1.13 32.69 — — —
PR1(5) 0.37 58.87 → FF-PR1(5) 0.34 48.60
PR1(10) 0.26 67.38 → FF-PR1(10) 0.24 58.48
PR1(15) 0.21 68.54 → FF-PR1(15) 0.19 63.03

References

Li, Xiaoping and Wang, Qian and Wu, Cheng, 2009, “Efficient composite heuristics for total
flowtime minimization in permutation flow shops", Omega, Vol. 37, pp. 155-164.

Taillard, E., 1993, “Benchmarks for basic scheduling problems", European Journal of Operational
Research, Vol. 64, pp. 278-285.

Taillard, E., 1990, “Some efficient heuristic methods for the flow shop sequencing problem", Eu-
ropean Journal of Operational Research, Vol. 47, pp. 65-74.

Pan, Q.-K. and Ruiz, R., 2013, “A comprehensive review and evaluation of permutation flowshop
heuristics to minimize flowtime", Computers and Operations Research, Vol. 40, pp. 117-128.

A.J. Vakharia, U. Wemmerlov, 1990, “Designing a cellular manufacturing system: a materials flow
approach based on operation sequences", IIE Transactions, Vol. 22, pp. 84-97.

L.J. Krajewski, B.E. King, L.P. Ritzman and D.S. Wong, 1987, “Kanban, MRP, and shaping the
manufacturing environment", Management Science, Vol. 33, pp. 39-57.

R.H. Storer, S.D. Wu and R. Vaccari, 1992, “New search spaces for sequencing problems with
application to job shop scheduling", Management Science, Vol. 38, pp. 1495-1509.

RA Dudek and OF Teuton, 1964, “Development of m stage decision rule for scheduling n jobs
through m machines", Operations Research, Vol. 12, pp. 471.

J Liu and CR Reeves, 2001, “Constructive and composite heuristic solutions to the P || ∑ Ci

scheduling problem", European Journal of Operational Research, Vol. 132, pp. 439-452.
Graham, R. L. and Lawler, E. L. and Lenstra, J. K. and Rinnooy Kan,A. H. G., 1979, “Optimiza-

tion and Approximation in Deterministic Sequencing and Scheduling: A Survey", Annals of
Discrete Mathematics, Vol. 5, pp. 287-326.

87



1

Exploring heuristic solutions for the stochastic �owshop

problem

Jose M Framinan1 and Paz Perez-Gonzalez1

University of Seville, Spain
framinan@us.es; pazperez@us.es

Keywords: Scheduling, Stochastic, Makespan Objective.

1 Introduction

In the �owshop scheduling problem with makespan objective (denoted as Fm|prmu|Cmax),
a classical assumption is that the processing times of each job in each machine are known
in advance. In contrast, in our paper this assumption is relaxed so these processing times
are not deterministic, but follow some known distribution. The objective considered is that
of minimizing the expected makespan. we will denote our problem as Fm|prmu|E[Cmax].
This problem has been much less studied, and it is clearly much more complex. In fact,
apart from a dominance rule obtained by Makino (1965) for n = 2, no exact solution
is available without assumptions on the distribution of the processing times. For m = 2
and exponential distribution of the processing times, Talwar (1967) conjectured an exact
solution known as Talwar's rule. For the two-machine case, three approximate solutions
have been proposed by Baker and Trietsch (2011), all of them with similar (near optimal)
performance. For the general m machine case, Baker and Altheimer (2012) suggest three
heuristics based on adaptations of the CDS (Campbell et al. 1970) and NEH (Nawaz et
al. 1983) heuristics with similar (near optimal) performance. In view of these results it
might seem that Fm|prmu|E[Cmax] is already solved, some issues have to be discussed:

� The evaluation of sequences in an stochastic �owshop is far from being a trivial task,
as E[Cmax] has to be estimated by running N simulations using the sequence as a
solution, and obtaining a sample mean C̄max of size N . However, there is no standard-
ised procedure to determine N , e.g. Baker and Altheimer (2012) uses a �xed value of
N = 100, 000, while Gourgand et al. (2003) employs N = 200, 000. In addition, there is
no way to ensure the statistical signi�cance of the so-obtained C̄max and, consequently,
to establish the signi�cance of the di�erences in the performance of the heuristics. We
propose a procedure to address this issue in Section 2

� The need of speci�c stochastic heuristics has not been established yet, as the stochastic
performance of sequences obtained from applying (deterministic) heuristics to a deter-
ministic �owshop with processing times equal to the means of the processing times has
to be tested. Even if it is expected that these heuristics are outperformed, it would be
interesting to quantify the degree of variability for which using them is still acceptable.
This evaluation is addressed in Section 3.

2 A procedure for the estimation of the expected makespan

Our proposal to estimate the expected makespan of a sequence is based on the maximum
percentual error accepted for the estimation of E[Cmax]. More speci�cally, the half-width
of a con�dence interval for E[Cmax] of 1−α con�dence level is given by tα/2,N−1

s√
N
, where
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s is the sample standard deviation of the makespan, and α/2 is the area of a Student's
t-distribution with N − 1 degrees of freedom left in the interval (−∞, tα/2,N−1]. We intend
that tN−1,α/2

s√
N

≤ C̄max · p, where p is a (small) percentage. By doing so, E[Cmax] is

con�ned in the interval [C̄max(1 − p), C̄max(1 + p)] with a 1 − α con�dence level. If we set
α to a very low value (in our experiments, α = 0.001), we can be almost sure (statistically
speaking) that p represents the percentual error of the estimation of E[Cmax] and use it
to check the signi�cance of di�erent results obtained by several heuristics. Note that the
normality assumption of the sum of the sample values of makespan required to use this
con�dence interval seems a loose restriction given the high number of samples that would
be run in practice, and the fact that the result of each run is independent from the others.
In order to check the number of simulation runs required by this procedure for di�erent
degrees of variability and percentage error p, we obtain the estimations of the expected
makespan of a random sequence for each instance in the testbed. The results are shown in
Table 1. From these results, it can be seen that the number of runs varies greatly depending
on the percentage error accepted. Allowing a 5% error means that results can be obtained
with less than 10,000 runs, but a 0.5% error requires more than 400,000 runs even for
instances with small variability, and around 1,000,000 for c = 0.5. The results show that
it is di�cult to be con�dent in the results obtained for the number of simulation runs
employed in the literature.

Table 1. Estimation of the expected makespan for the testbed: number of simulation runs
required

p = 0.005, several c values p = 0.01, several c values p = 0.05, several c values
n m 0.01 0.1 0.2 0.5 0.01 0.1 0.2 0.5 0.01 0.1 0.2 0.5

5 2 431975 445822 496753 2023060 107999 111461 124159 500291 4327 4465 4981 17707
5 5 432423 440565 469612 1357063 108111 110146 117412 324274 4332 4413 4707 12420
5 10 432690 437698 455579 1013767 108178 109431 113899 247341 4334 4385 4559 9438
5 20 432856 435632 445717 787848 108220 108914 111445 197201 4336 4364 4464 8418
10 2 432495 440274 469076 1387634 108129 110069 117269 333995 4332 4411 4701 12204
10 5 432679 437646 455673 1001419 108175 109416 113923 244879 4334 4384 4561 9358
10 10 432818 436128 447910 804226 108210 109040 111982 201065 4336 4369 4487 7671
10 20 432911 434916 442260 691900 108233 108734 110568 173496 4336 4357 4430 6724
15 2 432686 437973 457365 1052151 108177 109495 114367 263858 4334 4387 4579 9512
15 5 432793 436369 449396 870760 108204 109097 112343 215040 4335 4371 4501 7987
15 10 432870 435250 444120 725289 108223 108816 111031 181546 4336 4360 4447 7498
15 20 432949 434544 440394 641138 108243 108642 110100 158538 4337 4353 4411 6360
20 2 432788 436753 451444 949730 108202 109194 112862 239675 4335 4375 4521 8842
20 5 432856 435628 445883 776576 108219 108912 111467 194368 4336 4364 4466 7177
20 10 432914 434841 442099 689996 108234 108716 110532 172757 4337 4356 4430 6858
20 20 432968 434284 439143 613362 108248 108577 109790 154052 4337 4350 4399 6195

Avg. 432729 437145 453276 961620 108188 109291 113322 237649 4335 4379 4540 9023

3 Comparison of heuristics

Next, we carry out a computational study to establish the performance of di�er-
ent heuristics for the problem according to the procedure for the estimation of the ex-
pected makespan presented in the previous section. The heuristics tested are the fol-
lowing: SNEH the stochastic version of the NEH heuristic as described in Baker and
Altheimer (2012), SCDS/Talwar the stochastic version of the CDS/Talwar heuristic as
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described in Baker and Altheimer (2012), NEH the deterministic NEH heuristic applied
using as data the mean processing times of the instances, CDS/Talwar the deterministic
CDS/Talwar heuristic applied using as data the mean processing times of the instances,
and NEH − Talwar the deterministic NEH heuristic applied using as data the mean pro-
cessing times of the instances, but using as initial order that given by the deterministic
CDS/Talwar heuristic.

For all of these heuristics requiring the estimation of E[Cmax], the procedure in Section
2 has been employed. Tables 2 to 3 show the results obtained for di�erent values of c and for
di�erent problem sizes. Apart from the average values obtained by the estimated makespan
for each one of the heuristic (labelled as Avg. in the tables), the average percentage increase
of the makespan of each heuristic with respect to that of SNEH is presented (labelled as
∆ in the tables).

Several comments can be done on the results obtained. First, regarding the heuristics
speci�cally designed for the stochastic problem, there are signi�cant di�erences in perfor-
mance. This result contradicts those obtained by Baker and Altheimer (2012). However,it
has to be noted that their way to estimate E[Cmax] is based on a �xed number of simulation
runs and that the value employed (100,000) has been shown to be unsu�cient to establish
consistent results for medium/large coe�cient of variations. In addition, our testbed is
of bigger size, a fact that may also explain some di�erences. Di�erences in performance
between SNEH and SCDS/Talwar decrease with the variability of the testbed, but still are
substantial for relatively large coe�cient of variations. The explanation may lie in the fact
that Talwar's rule is optimal for the exponential distribution, whose coe�cient of variation
is 1, and therefore its performance improves for instances where c is closer to that value.

With respect to the deterministic heuristics tested, the best performance corresponds
to the NEH. It is interesting to note that CDS/Talwar is supposed to incorporate some
stochastic considerations in their ordering, however these do not pay o�, either as a simple
heuristic, or as a starting order for the NEH heuristic. When comparing SNEH and NEH,
that di�erences are very small, in some cases below the error accepted for p (1%). The
conclusion is that, for realistic ranges of variability, using NEH with the mean processing
times gives an extremely good estimation of the performance of their stochastic counterpart.
Since SNEH is highly CPU-intensive, it has to be questioned whether such e�ort pays o�.
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Table 2. Comparative results of the di�erent heuristics for c = 0.01.

SNEH SCDS/Talwar NEH CDS/Talwar NEH-Talwar
n m Avg. Avg. ∆ Avg. ∆ Avg. ∆ Avg. ∆

5 2 309.848 348.360 13.056 309.978 0.041 348.367 13.059 310.171 0.103
5 5 477.448 550.888 15.905 477.552 0.024 550.878 15.903 477.373 -0.086
5 10 795.812 891.632 12.574 795.833 0.004 891.644 12.576 798.258 0.301
5 20 1372.339 1482.957 8.063 1374.269 0.148 1482.933 8.061 1374.786 0.167
10 2 571.929 632.638 11.423 572.181 0.046 632.649 11.426 572.615 0.136
10 5 720.947 866.235 20.268 721.875 0.119 866.224 20.266 716.499 -0.575
10 10 1049.066 1246.054 18.884 1053.062 0.384 1246.057 18.885 1052.709 0.348
10 20 1673.640 1902.705 13.662 1676.495 0.169 1902.713 13.662 1681.827 0.490
15 2 801.950 857.986 6.943 802.028 0.010 857.982 6.943 805.056 0.406
15 5 1008.644 1206.445 19.737 1008.840 0.017 1206.441 19.736 1013.747 0.536
15 10 1309.681 1574.132 20.336 1312.544 0.223 1574.124 20.335 1324.418 1.134
15 20 1965.180 2261.390 15.063 1981.237 0.833 2261.389 15.063 1972.786 0.375
20 2 1085.429 1155.937 6.582 1085.508 0.008 1155.929 6.582 1088.635 0.309
20 5 1224.466 1486.417 21.419 1228.891 0.368 1486.406 21.418 1240.408 1.305
20 10 1601.085 1939.413 21.186 1609.659 0.548 1939.435 21.187 1615.548 0.926
20 20 2258.262 2658.262 17.759 2269.505 0.501 2658.259 17.759 2274.953 0.746

15.179 0.215 15.179 0.414

Table 3. Comparative results of the di�erent heuristics for c = 0.5.

SNEH SCDS/Talwar NEH CDS/Talwar NEH-Talwar
n m Avg. Avg. ∆ Avg. ∆ Avg. ∆ Avg. ∆

5 2 744.176 776.915 4.380 748.874 0.657 776.746 4.365 752.611 1.146
5 5 1529.894 1595.708 4.422 1537.664 0.520 1595.128 4.392 1533.510 0.224
5 10 2726.438 2842.900 4.478 2741.956 0.596 2848.047 4.689 2739.926 0.513
5 20 4807.027 4982.471 3.657 4836.312 0.613 4986.449 3.744 4834.410 0.561
10 2 1411.348 1496.158 6.206 1446.847 2.448 1496.660 6.243 1446.062 2.461
10 5 2579.011 2764.617 7.170 2610.984 1.251 2763.582 7.132 2613.878 1.326
10 10 4384.309 4678.766 6.734 4433.741 1.153 4684.903 6.870 4433.034 1.118
10 20 7312.968 7656.029 4.647 7357.016 0.616 7659.549 4.700 7373.893 0.843
15 2 1979.146 2095.786 5.837 2021.776 2.165 2095.632 5.814 2042.227 3.156
15 5 3683.235 3989.336 8.347 3737.412 1.467 3990.114 8.363 3756.730 2.026
15 10 5793.048 6186.216 6.805 5861.646 1.184 6189.823 6.863 5878.701 1.479
15 20 9561.606 10073.656 5.356 9661.007 1.039 10078.809 5.412 9646.360 0.881
20 2 2647.731 2821.413 6.605 2711.862 2.447 2819.596 6.535 2743.518 3.665
20 5 4527.154 4910.429 8.443 4590.192 1.394 4914.857 8.541 4632.402 2.332
20 10 7330.081 7883.050 7.532 7445.274 1.580 7882.278 7.528 7446.577 1.593
20 20 11624.512 12411.446 6.818 11730.277 0.911 12403.771 6.757 11745.989 1.044

Avg. 6.090 1.252 6.122 1.523
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1 Introduction

This paper deals with a routing problem within the context of home health care. The
cares are delivered by nurses, doctors, assistant nurses, physiotherapists, for instance. We
explain the problem proposed by a nurse coordinator. This nurse organizes the care workers’
routes. Each patient is characterized by an address and a dependency level. This level
impacts activity duration for the patients with a high dependency level. The cares have a
duration, a time windows when they can be carried out, the required number of resources,
the resources with the capacity to do it. Each patient can give a preference for a resource.
The resources have a type like nurse, doctor or assistant nurse and its have an experience
related to each care. We have many constraints: we must respect the resource’s and patient
’s availability, each activity requires resources with a good number and compatible type,
the routes begin and end at the depot and we must take into account the travel time
between two activities. Our goal is to define the planning of each resource to provide
cares at patient’s home. We consider three criterion: to minimize the transporting time, to
balance the dependency level of the activities carried out by each resource and to maximize
the patients’ preference. We have found several models for a home health care problem in
the literature. We have identified different characteristics concerning resources or patients.
In our problem, we have integrated the dependency level, the compatibility degree and
three criteria described above. In the first part, we will propose a mathematical model.
In the second part, we will explain approached methods and the combination between
metaheuristics and simulation model. We conclude with fiew results.

2 Mathematical modeling

The proposed model is an extension of the m-TSPTW (multiple Traveling Salesman
Problem with Time Windows) model. A set of cares for a patient is called an activity.
An activity is carried out by one or two resources at patient’s home. The several specific
constraints are: synchronization of the activities, resources’ number for each activity, com-
patibility degree between resources and activities. The type of the resources is modeling
by compatibility degree. The degree is a real number between zero and one. When the
compatibility between an activity and a resource is equal to zero, the resource can’t carry
out the activity. This degree may model another aspect, patients’ preference or resources’
experience. In the first case, a value close to zero means a low preference. In the second
case, the closer to one the degree is, the more experienced the resource is to carry out the
activity. We introduce two fictitious activities that represent the beginning and ending of
the routes at the depot. We will describe the notations used in the model:
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nR Number of resources
R = {1, ..., nR} Set of resources
nA Number of activities
A = {1, ..., nA} ∪ {0, nA+1} Set of planned activities and two fictitious activities
nbi Number of resources required to carry out activity i ∈ A[
tmin
i , tmax

i

]
Time window of the duration of activity i ∈ A

τik Duration of activity i ∈ A carried out by resource k
[bi, ei] Time window to carry out activity i ∈ A
ηi ∈ {1, 2, 3, 4} Level of dependence for the person receiving activity i ∈ A
Dij Travelling time between activity i ∈ A and activity j ∈ A
Cjk ∈ [0, 1] Compatibility degree between activity j ∈ A and resource k ∈ R
M High value
The duration and the dependency level of the fictitious activities equal to zero. The com-
patibility degree between each resource and fictitious activities equals to one. We introduce
two variables:
xijk = 1 if resource k ∈ R carries out activity i ∈ {0, ..., nA} before activity

j ∈ {1, ..., , nA+1}; 0 otherwise
zi Starting date for activity i ∈ A
The objective function is a linear combination of the three criteria:

nA∑

i=0

nA+1∑

j=1

Dij

nR∑

k=1

xijk ; max
k∈R

nA∑

i=1

nA+1∑

j=1

xijk.ηi ;

nA∑

j=1

nR∑

k=1

(1− Cjk)

nA+1∑

i=1

xijk (1)

The constraints are:
nA+1∑

j=1

nR∑

k=1

xijk = nbi ∀i ∈ {1, ..., nA} (2)

nA∑

i=0

nR∑

k=1

xijk = nbj ∀j ∈ {1, ..., nA} (3)

nA∑

j=1

xOjk = 1 ∀k ∈ R (4)

nA∑

i=1

xi(nA+1)k = 1 ∀k ∈ R (5)

nA∑

i=0

xilk =

nA+1∑

j=1

xljk ∀l ∈ {1, ..., nA},∀k ∈ R (6)

zj ≤ zi + τik +Dij + (xijk − 1) .M ∀i ∈ {0, ..., nA},∀j ∈ {1, ..., nA+1},∀k ∈ R (7)
zi ≥ bi ∀i ∈ {1, ..., nA} (8)

zi ≤ ei − τi ∀i ∈ {1, ..., nA} (9)
nA∑

i=0

xijk ≤ Cjk.M ∀j ∈ {1, ..., nA},∀k ∈ R (10)

Constraints 2 make sure that the number of resources is correct for each activity. Con-
straints 3 assure that all resources will exit from patients’ home. Constraints 4 and 5 force
that the route begins and ends by fictitious activity. Constraints 6 ensure the conservation
of the flow. Constraints 7 formulate the travel time between two activities. All activities
are completed during the time window according to the constraints 8 and 9. Constraints
10 assure that the resources are compatible with the resources.
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3 Proposed coupling

We propose a method based on a combination between metaheuristic (iterated local
search) and a simulation model summarized in the figure 1. W. Abo-Hamad et al. (2010)
propose a recent review of this kind of approach. The metaheuristic consists in ordering
the activities carried out by each resources. The simulation model checks that the solution
is feasible and computes the starting date of the activities. In this part, we are going to
describe the proposed metaheuristics and the simulation model.

Fig. 1. Proposed method

3.1 Metaheuristics

We propose to use an iterated local search proposed by Lourenço H. et al. (2002). We
will begin with the description of the solution encoding. The solution is a matrix φ =
(φik)A×R. It gives the ordered list of the activities for each resource. We can represent the
solution by a graph. The figure 2 on the left represents a feasible solution for ten activities

Fig. 2. Example for three resources and ten activities

and three resources. The activity 5, 7 and 9 need two resources. The two neighborhood
systems used are based on swap and insertion moves. In the two cases, we ensure that the
neighborhood gives a feasible solution according to the constraints of compatibility. The
principle algorithms of the neighborhood system are given in algorithms 1 and 2.

The cardinal of the swap neighborhood is a.(a−1)
2 and the cardinal of the insertion

neighborhood is a. (a− 1). To ensure that each neighborhood has the same probability
to be chosen, we fix a probability equals to 1

3 for swap neighborhood and 2
3 for insertion

neighborhood. Metaheuristics must be initialized by a feasible solution build with a greedy
heuristics. The solutions are evaluated with a weighted sum of the criterion described in
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Algorithm 1: Neighborhood Swap
Choose randomly and uniformly a resource i ;
Choose randomly and uniformly an activity a carried out by the resource i ;
Choose randomly and uniformly a resource j , compatible with activity a ;
Choose randomly and uniformly an activity b compatible with the resource i carried out
by the resource j ;
Swap the activities a and b;

Algorithm 2: Neighborhood Insertion
Choose randomly and uniformly a resource i ;
Choose randomly and uniformly an activity a carried out by the resource i ;
Choose randomly and uniformly a resource j compatible with activity a ;
Choose randomly and uniformly a position b in the ordered list of the resource j ;
Insert the activity a in position b in the ordered list of the resource j ;
Remove the inserted activity in the ordered list of the resource i ;

section 1. We have encountered a difficulty relating that some activities are synchronized.
When we modify the solution with the neighborhood, the graph representing the solution
can contain a cycle. In this case, the solution is not feasible. The figure 2 on the right
represents this case, activity 3 and 5 have caused a blocking position. We have developed
a simulation model to compute the starting date. This model also permits to detect the
cycle. In the following section, we will present this model.

3.2 Simulation model

We have developed a simulation model by using a programming language (Java). In the
first step, we are allocating the first activity at each resource according to the list given
by the metaheuristics. If an activity has enough resources to be carried out, we compute
the starting date and the resources are released. In the second step, we are allocating the
free resources at the next activity taken in the ordered list. We iterate the process while
all activities have not a starting date. If no activity cannot be carried out, the required
number of resource for the activities is not reached, the solution is not feasible. Otherwise
we have computed the starting dates and the criterion.

4 Results

We obtain results with Cplex on a dataset randomly generated. It is composed by
30 activities and 4 resources. Seven activites need 2 resources and 23 activities need one
resource. Two resources have the type nurse and two resources have the type doctors. We
give priority to each criterion and we limit the computational time to 60 minutes. The
small dataset permits to validate our method. We used our method in biggest datasets and
a real dataset.
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1 The s
heduling problem

We 
onsider the single ma
hine s
heduling problem de�ned in the 
ommonly used three

�eld notation as

1|seq − dep, inv, chains, dj|
∑

wjCj . (1)

The problem is motivated by a real-world appli
ation at a supplier 
ompany in an automo-

tive supply 
hain. The 
ompany operates a highly automated produ
tion line 
onsisting of

several stations for the assembly of 
ar 
omponents. Due to mass 
ustomization, a 
onsid-

erable number of di�erent 
omponent types is produ
ed by this ma
hine, in what follows,

denoted as produ
t versions. Changing from one produ
t version to another indu
es setup

a
tivities on all stations that are a�e
ted by a 
hange of the material build into the 
ompo-

nents. This leads to sequen
e dependent setup times (seq − dep) between jobs of di�erent

produ
t versions. As for every job the needed raw materials have to be available at its start

time in the s
hedule, inventory 
onstraints (inv) o

ur. The a
tual release date of a job in

the s
hedule is therefore determined by the maximum of the makespan for the s
heduled

prede
essors and the earliest point in time that ensures material availability after pro
ess-

ing all pre
eding jobs. All jobs of a single produ
t version have to be produ
ed in �xed order

(earliest due date sequen
ing) establishing a spe
ial set of pre
eden
e relations (chains)
among the jobs. As the supplier has to deliver the 
omponents on time, due dates (dj),

either given by the end manufa
turers or derived from the subsequent produ
tion stages,

have to be ful�lled. The obje
tive of the 
onsidered s
heduling problem is the �nding of a

feasible produ
tion s
hedule minimizing the total weighted 
ompletion time of all jobs.

2 Solution methodology

Exa
t solution approa
hes for NP-hard s
heduling problems usually employ enumer-

ation te
hniques like Bran
h and Bound or Dynami
 Programming or a 
ombination of

both. However, due to the signi�
ant 
omplexity, only instan
es with a moderate number

of jobs 
an be solved to optimality in reasonable time.

In their literature review on s
heduling with sequen
e dependent setup times, Zhu and

Wilhelm (2006) propose the appli
ation of integer programming te
hniques as a promising

future resear
h path. While optimally solving an IP model with all 
onstraints in one step

is not promising, we present a de
omposition of the problem. By de�ning a master problem,

we 
onstru
t by Bran
h and Pri
e a s
hedule for the original problem out of the solutions

of the arising subproblems. The solution pro
ess for the subproblems itself is based on

Bran
h and Cut.
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2.1 De
omposition

In order to derive a de
omposition we exploit the predetermined pre
eden
es among

the jobs and 
onsider the following set 
over:

De�nition 1 A 
hain partition C for the set of Jobs J is de�ned by the following prop-

erties:

1.

⋃
C∈C C = J .

2. C1 ∩ C2 = ∅ ∀ C1, C2 ∈ C, C1 6= C2.

3. The jobs 
ontained in every set C ∈ C (
hain) are in a pre
eden
e 
hain.

In our 
ase a default 
hain partition is given by the di�erent produ
t versions of the jobs.

A 
hain partition 
an also be dynami
ally determined by an analysis of the a
tual set of

pre
eden
es. In the following, let c(j) denote for every job j the unique 
hain C for whi
h

holds j ∈ C.

De�nition 2 A 
hain s
hedule for a 
hain C ∈ C is given by a s
hedule starting from

the initial state of the ma
hine. It in
ludes at least all jobs of 
hain C and ends with the


ompletion of the last job of 
hain C. A 
hain s
hedule is feasible a

ording to all 
onstraints

and its obje
tive value is given by the total weighted 
ompletion time of all jobs j ∈ C.

Any 
hain s
hedule in
luding all jobs yields a feasible s
hedule for the original s
heduling

problem and every feasible s
hedule for the original problem 
ontains a set of |C| 
hain
s
hedules. The s
hedules' total obje
tive value is given by the sum of the obje
tive values

of the in
luded 
hain s
hedules.

Instead of minimizing the total weighted 
ompletion time of all jobs, the resulting sub-

problems for every 
hain C ∈ C fo
us on the minimization of the total weighted 
ompletion

time for a given subset of all jobs with �xed sequen
ing.

2.2 Column Generation

In the 
olumn generation pro
ess for the master problem we have to �nd a sele
tion of


hain s
hedules with a minimal total obje
tive value while the 
ombination of the sele
ted

s
hedules has to yield a feasible s
hedule for the single ma
hine at hand. The main part of

the Linear Programming Master (LPM) 
onsists of two 
onstraint 
lasses. The 
onvexity


onstraints (Dantzig and Wolfe 1960) enfor
e the sele
tion of a single 
hain s
hedule for

every 
hain C ∈ C (In what follows, Sc
denotes the index set for the feasible s
hedules of


hain C, and λc
t ∈ [0, 1] is the variable indi
ating the use of the t-th s
hedule of 
hain C):

∑

t∈Sc

λc
t = 1 ∀ C ∈ C (2)

The se
ond 
lass of 
onstraints is based on a set partition. At every possible position

p = 1, . . . , |J | in a feasible s
hedule exa
tly one 
hain may pla
e an own job:

∑

C∈C

∑

t∈Sc

ǫc
ptλ

c
t = 1 ∀ p = 1, . . . , |J | (3)

with ǫc
pt =

{
1 if j ∈ C holds for the job j at position p in the t-th s
hedule of 
hain C

0 otherwise.
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A further set of valid inequalities for this 
hain 
oordination problem is obtained by the

following observation: If a 
hain s
hedule for 
hain C′
in
ludes a job j ∈ C, the dire
t

prede
essor i used by 
hain C to rea
h job j should also be used by 
hain C′
:

∑

t∈Sc(j)

γ
c(j)
tij λ

c(j)
t −

∑

t∈Sc′
γc′

tijλ
c′
t ≥ 0 ∀ (i, j) ∈ E, c′ 6= c(j) (4)

with γc
tij =

{
1 if i is a dire
t prede
essor of j in the t-th s
hedule of 
hain C

0 otherwise.

Constraints of this 
lass are added as 
uts during the 
olumn generation pro
ess. Moreover,

there are further 
lasses of valid inequalities that 
an be applied to this problem.

As an illustrative example for the de
omposition and the master problem we 
onsider

the job set J = {1, 2, 3, 4}with the pre
eden
e relations 1 ≺ 2 and 3 ≺ 4. The 
orresponding

hain partition is C = {C1 = {1, 2}, C2 = {3, 4}}. The s
hedule (1, 2, 3, 4) is feasible for the
original problem and also a 
hain s
hedule for C2. The 
hain s
hedule for C1 is then (1, 2).
The 
olumn 
oe�
ients of the 
onstraints for some 
hain s
hedules are given in Table 1.

Table 1. Column 
oe�
ients

Constraint (1, 2) (1, 2, 3, 4) (1, 3, 2, 4) (1, 3, 2)

(2) for C1 1 0 0 1

(2) for C2 0 1 1 0

(3) for p = 1 1 0 0 1

(3) for p = 2 1 0 1 0

(3) for p = 3 0 1 0 1

(3) for p = 4 0 1 1 0

(4) for (1, 3), c′ = C1 0 0 1 -1

2.3 The Subproblems

The subproblems, ea
h 
orresponding to a 
hain C ∈ C, are used for the �nding of 
hain

s
hedules with negative redu
ed 
osts. Their obje
tive is therefore the minimization of the

total weighted 
ompletion time of the jobs j ∈ C while the pro�ts for 
ertain de
isions

indu
ed by the dual pri
es of the LPMs' 
onstraints (2), (3) and (4) have to be maximized.

The following three de
ision problems have to be adressed simultaneously:

1. Every job j ∈ C has to be pla
ed at a spe
i�
 position in the s
hedule. We may get

bene�ts from the duals of (3) by the 
hoi
e of 
ertain positions.

2. Job subsets J1, . . . , J|C| ⊂ J\C, Jk ∩ Jl = ∅ ∀ k 6= l have to be determined, that are

used to �ll the emerging gaps before and between the jobs of 
hain C.

3. A s
hedule has to be 
onstru
ted by sequen
ing the jobs in every set J1, . . . , J|C|. The

osts of some sequen
ing de
isions are a�e
ted by the duals of (4).

A lower bound for the subproblem is derived by the appli
ation of a LP-Model in
luding

these three aspe
ts. By Bran
h and Cut promising regions for the �nding of a 
olumn

of negative redu
ed 
ost are dete
ted. Besides some 
lasses of valid inequalities that are

newly derived for this model, 
uts from literature developed for some in
luded problems

are applied. Every subproblem is also a sele
tive TSP (
f. e. g. Bérubé et. al. (2009)) and
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an ATSP with time windows (As
heuer et. al. 2001). The separation method for the tour-

nament 
onstraints (As
heuer et. al. 2000), that eliminate infeasible paths, is also used for

the �nding of upper bounds on the pri
ing problems.

As soon as the solution spa
e is redu
ed to an appropriate size by bran
hing as well as

by variable �xation, an adaptation of the dynami
 programming approa
h for the TSPTW

by Dumas et. al. (1995) is employed to solve the remaining problem. This also ensures the

feasibility of the 
hain s
hedules with regard to all 
onstraints given in (1).

2.4 Bran
hing Strategies

At every bran
hing step the LP-solutions of the master and the subproblems are an-

alyzed for ambiguities with regard to 
ertain s
heduling de
isions. The bran
hing de
i-

sions applied are based either on enfor
ing a pre
eden
e relation between two jobs (binary

bran
hing), in
luding/ex
luding a single edge or splitting the position window of a single

job. Every of these de
isions may lead to further pre
eden
e relations and further window

redu
tions, so in every tree node some prepro
essing routines are employed.

2.5 Prepro
essing

The prepro
essing aims at the redu
tion of the time windows for every job and at the

�nding of further pre
eden
es. The upper bound on the maximal possible position of a job is

de
reased by testing the de
ision version of a multidimensional and pre
eden
e 
onstrained

knapsa
k problem for feasibility. In order to pla
e a job on position p, p − 1 jobs have to

be in
luded before, while the needed pro
essing time may not 
ause a violation of the due

date of the job. Also the implied material usage by the sele
tion of prede
essors may not

ex
eed the given inventory levels at the due date of the job. The size of the time windows

is de
reased by 
onsiderations on the inventory levels and the ne
essary setup a
tivities as

well as the methods used in (Dumas et. al. 1995) and (As
heuer et. al. 2001).

3 Con
lusions

First tests on instan
es of type 1|chains, seq−dep, procj = 0| ∑wjCj derived from the

berlin52 instan
e from TSPLIB (Reinelt 1991) indi
ate the strength of the set partitioning

formulation (3) of the master problem as well as the need for further 
uts as given in

(4). An optimality proof in the root node is possible for some instan
es of this type. First


omputational results for the problem des
ribed in (1) will be presented at the 
onferen
e.
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1 Introduction

In this paper we present a scheduling problem observed in an injection molding plant.
The problem involves mold and plastics changeovers which are very time consuming oper-
ations. Thus the natural objective is to minimize the total setup time. At the same time it
is important to observe the order priorities. Additional constraints follow from the limited
availability of staff responsible for fixing and adjusting the molds. We propose a 2-stage
solution approach. At the first stage orders are assigned to machines and the sequence of
orders on each machine is fixed. At the second stage we decide in which sequence molds
are fixed and adjusted. We illustrate the approach with two numerical examples of real-life
data. The schedules obtained by our approach are compared with schedules generated by
a dedicated greedy heuristic and by an experienced dispatcher in the company. The results
show that automated approach may lead to significant improvement of the machine utiliza-
tion. The experiments will be continued. The ultimate goal of this research is to develop a
dispatcher decision support system.

2 Problem Description

We consider a scheduling problem observed in an injection plant in a real life company.
The plant consists of 35 injection molding machines. The machines differ in the pressure
exerted on the mold and the architecture of the machine including, e.g., an additional
hydraulic system controlling the core or the nozzle. In addition, some machines are able to
produce two-color molders. Taking into account the machine characteristics, ten groupings
of machines are distinguished.

Injection molds are very precise and quite complex elements involved in the production
of molders. The mold warehouse stores currently about one thousand pieces. Each mold is
assigned to a groupings of machines. Usually, a mold can be applied in a number of variants
defined by a so-called “insert”. Each variant corresponds to a different product (molder).

Plastics are the basic materials and represent the major cost associated with the pro-
duction of molders. The transport of plastics is fully automated and is done through the
so-called “plastics network”. The main problem with plastics is related to the planning of
changes of the colors. At each change of plastic it is necessary to clean the feeder and mill.
Therefore, it is advisable to reduce the number of color changes.

Production orders are generated by an ERP system. Additionally, a dispatcher priori-
tizes orders according to their due dates.

Several different orders may be related to the same product, so batching is decided at
the scheduling level. Each product is assigned to a given mold variant and in consequence to
a given machine grouping where the mold may be fixed. There are 3 persons (called fixers)
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at each shift responsible for the mold changeover. After fixing, the mold has to be adjusted
and tested. These tasks are performed by operators. There are six operators in the plant,
each one responsible for a different subset of machines, called a sector. Machines from the
same grouping may belong to different sectors and machines in the same sector may belong
to different groupings. Concluding, three alternative setups may occur: change of the mold
and plastics, change of the mold, change of plastics. Obviously, the alternatives lead to
different setup times. Minimization of the total setup time in a given planning horizon is
one of the scheduling objectives. Another objective is to maximize the priorities of orders
scheduled in the 48 hour timespan. Note that it is possible that not all orders are scheduled
in the time frame of 48 hours. If an order stays unscheduled, the order’s priority value is
incremented and the order is reconsidered in the subsequent planning horizon.

Although we present an existing production plant, the solution procedure is general
and does not depend on the specific number of machines, molds or staff. However, in order
to verify the approach we have compared schedules obtained by the proposed solution
approach with schedules developed by the dispatcher in the plant.

3 Solution Approach

3.1 2-stage heuristic

We propose a 2-stage heuristic for the scheduling problem that decomposes our problem
into two subproblems, a machine scheduling and an operator scheduling problem. At the
first stage of the algorithm, we solve the machine scheduling problem that decides on the
assignment of the orders to the machines and on the sequence of the orders. We leave it to
the second stage to assign the fixers and operators to the machines to set up and configure
the molds that are required for the production.

3.2 Stage I - Machine scheduling

The first stage of the algorithm is subdivided into a preprocessing and a machine
scheduling step which we further describe in detail.

Preprocessing step: Orders may be executed on a subset of machines that belong to the
same machine grouping. In other words, orders cannot be carried out on machines that
belong to different groupings. Thus, the machine scheduling problem naturally decomposes
for the machine groupings and can be solved independently.

Machine scheduling step: For each machine group, we solve a routing problem that
assigns orders to machines and decides on the sequence of the orders such that the sum
of the priority values is maximized and the planning horizon is respected. This problem
relates to the travelling salesman problem with profits (Feillet et. al. 2005) (TSP with
profits) that generalizes the well-known TSP by assigning profits to the customers. The
TSP with profits decides which customers are to be visited such that the total profit is
maximized and the total travel cost is minimized. Our problem at hand extends the TSP
with profits to multiple vehicles. We can consider each order as a customer, each machine as
a vehicle and the priority of an order as the customer’s profit. The travel cost between two
orders is defined by the setup time plus the preprocessing time of the first order. The setup
times are asymmetric and we are thus dealing with an asymmetric routing problem. Notice
that the TSP with profits is a bicriteria objective programming problem where “the overall
goal is the simultaneous optimization of the collected profit and the travel costs” (Feillet
et. al. 2005). However, most of the existing literature address the TSP with profits as a
single objective problem by either combining both of the objectives linearly or by treating
one of the objectives as a constraint. We follow the latter and consider the maximization of

101



3

the total sum of priority values as our main objective and the setup times as a constraint.
The TSP with profits has mainly been considered in the literature for the single vehicle
case. Feillet et. al. (2005) give an extensive literature overview on the various exact and
heuristic solution approaches. To our knowledge there is only one paper by Chao et. al.
(1996) which considers the TSP with profits for multiple vehicles. The authors propose a
neighboring heuristic based on a record-to-record improvement due to Dueck (1993). Since
the machine scheduling problem can be decomposed for the different machine groupings,
we obtain smaller problems that can be solved to optimality for some of the machine
groupings. We formulate these problems as mixed-integer programming models and solve
them by CPLEX.

3.3 Stage II - Operator scheduling

From the first stage of our solution approach, we obtain machine schedules for each of
the machine groupings. In the second stage, we synchronize all pre-determined machine
schedules by assigning the fixers and operators to the machines. In other words, we decide
in which sequence the molds are fixed and adjusted on the machines. Since we have a single
operator for each section, only one machine can be adjusted at a given time. Thus, if we
neglect the mold setups by the fixers, each section has to solve an operator scheduling prob-
lem to decide in which sequence the molds are configured by respecting the pre-determined
machine schedules of the first stage. Variants of this operator scheduling problem have been
addressed, e.g., by Kravchenko and Werner (1997) and Hall et. al. (2000). We, however,
have to deal with multiple operators that are synchronized by global operators (fixers). For
a preliminary computational study, we simply shift the pre-determined machine schedules
such that mold setups and mold configurations do not interfere. We have also started to
develop a more sophisticated neighboring heuristic where we control a neighborhood search
by a meta-heuristic.

4 Computational experiments

4.1 Greedy heuristic

We have developed the greedy heuristic since the computational times of the 2-stage
approach are rather long.

It is assumed that the scheduling horizon is 48 hours. It is practically justified because
new plan is delivered every day from the ERP system. In consequence, new orders with
high priorities arrive that may influence the schedule.

The greedy heuristic finds a feasible solution by scheduling orders on machines one by
one. The algorithm starts with a set of orders sequenced according to their non-increasing
priority. An order is assigned to a machine available within the 48 hour horizon with the
shortest setup time for that order. Ties are broken by choosing the machine that sooner
completes the orders already scheduled. The processing of the order on the selected machine
starts at the first moment when all the required resources are available.

4.2 Test instances

The test instances are prepared on the basis of actual production plans delivered from
the ERP system. Two real production plans are considered. Usually the plan contains
between 300 and 400 orders from which 60-80 are scheduled in the 48 hour horizon.

First experiments showed that computational time of the 2-stage heuristic may run into
hours. Thus, it is proposed to select a subset of orders with the highest priority and run
the heuristic on the subset. We considered subsets containing 100, 150 and 200 orders.
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Table 1. Computational experiment results for 48h time period

Number of orders Greedy heuristic 2-stage heuristic Hand planned
N P S N P S N P S

PLAN 1
100 29 6.00 2.17 54 4.56 1.98 79 4.11 2.60
150 41 6.07 1.93 69 4.39 1.62
200 46 5.87 2.15 73 4.48 1.63

PLAN 2
100 25 5.88 2.08 55 4.76 1.80 60 3.67 2.82
150 36 5.81 1.94 66 4.27 1.77
200 42 5.48 1.92 68 4.43 1.78

4.3 Results

In Table 1 we present the results obtained for plan 1 and 2 respectively. For each number
of orders selected for scheduling we present the values of objectives: number of setups (N),
average setup time (S) and average priority (P ) in a 48 hour horizon.

The computational time of the greedy heuristic is negligible, while for the 2-stage heuris-
tic it runs into hours.

It may be observed that the 2-stage heuristic schedules bigger number of shorter or-
ders while the greedy heuristics schedules long orders more likely. In consequence, average
priority as well as average setup time is higher for the greedy heuristics. The schedules
constructed by the dispatcher are clearly outperformed by both the heuristics. The exper-
iments are being continued.

5 Conclusions

We have presented two heuristic approaches to solving a scheduling problem occurring
in an existing injection mold plant. The problem is to select a subset of orders with possible
highest priorities and schedule them in the 48 hour horizon so that the total setup time
is minimized. Machine and order dependent setups are considered as well as additional
resources (operators and fixers). The results of preliminary experiments show that both
heuristics are able to find better solutions than solutions constructed manually by an
experienced dispatcher. We plan to develop a decision support system using the proposed
heuristics to assist the dispatcher.
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1. Introduction 

The original Program Evaluation and Review Technique (PERT) [1] is a probabilistic, 

activity-on-arrow network with one start and one finish event. In practice, the so-called three point 

estimation (optimistic (a), most likely (m), and pessimistic (b) duration) is used for describing the 

distribution of the activities, and to define mean and variance values of the probability density 

function (pdf).  

The main goal of the PERT analysis is to create the distribution of the project duration. The 

original PERT calculation is based on the central limit theorem of probabilistic theory. According 

to this, project duration will follow a normal distribution within the domain of practical interests. 

PERT has received a great deal of criticism since its “birth”.  The most important critiques and 

development of PERT are the following: 

• The critiques of the three-point estimation [2], [3], [4], [5],  

• Finding distributions that describe real life activity distributions better e.g. double 

truncated normal distribution [6], log-normal distribution [7], mixed beta and uniform distribution 

[8], triangular distribution [9], Parkinson distribution [10] etc. 

• Original PERT assumes one critical path in the network. In case of more possible critical 

paths, the project duration determined by the calculations is strongly optimistic. Procedures that 

give better solutions/assumptions can be divided into three groups according to the classification 

by Adlakha [11] and Elmaghraby [12], from estimations [13] [14] [15], through Monte Carlo 

simulation [16] [17] [18], [19] to analytical solutions [20]. 

• The common characteristic of the above developments are that activity calendars were 

omitted; they were not considered. Recently Hajdu [21] has shown the dramatic effects of activity 

calendars on the distribution of the project duration. An unusual result of this research for project 

duration can be seen on Fig.1. Minor changes in the calendars have caused the differences between 

the cases, while he used the same one-chain network consisting of ten activities for all the cases.  

The application of the beta distribution has been criticized by many researchers. During recent 

decades, researchers have suggested the usage of many different distributions. Some authors – 

among them Clark [2] - argue against the introduction of new probability distributions into PERT. 

According to him: “The author has no information concerning distributions of activity times; in 

particular, it is not suggested that the beta or any other distribution is appropriate.” The main goal 

of this paper is to bolster the statement of Clark, that is to prove that the usage of different 

distributions does not result in considerably great differences in the distributions of the project 

duration, or at least these are smaller than the difference caused by a 10% inaccuracy in the 

estimation of the most likely values of the activities. 

 

Figure 1. Density function for the project duration 
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2. The projects analyzed 

Three very simple artificial networks (Fig.2, Fig. 3, Fig. 4) are used in this paper for 

demonstration purposes. The simplest among them is a one-chain PERT network with similar 

activity attributions. The other two will be used to demonstrate the differences in case of multiple 

critical paths and the situation of inter-twined critical paths.  

 

 

Figure 2. Sample #1, one-chain network 

 

Figure 3. Sample #2  

 

Figure 4. Sample #3, inter-twined critical paths 

3. The effects of activity distributions on the project duration 

To investigate the effects of different activity distributions on the distribution of the project 

duration different activity distributions were assigned to the activities (beta (case a), triangular 

(case d), uniform (case e), lognormal (case f)) in case of all the artificial networks. Then to 

illustrate the possible inaccuracy of the estimation of the durations, activity durations were 

decreased (case b) and increased (case c) by 10 percent compared to the original duration (case a). 

Distributions of the project duration were produced for all the networks in every case (a-f). Table 1 

summarizes the durations and distributions applied. 

Table 1. Durations and distributions for cases a) – f) of Sample #1 - #3 

Cases Optimistic  (a) Most likely 

(m) 

Pessimistic (b) Distribution 

Type 

Legend  

Case a) 60 days 100 days 150 days PERT Beta 
 

Case b) 54 days 90 days 135 days PERT Beta 
 

Case c) 66 days 110 days 165 days PERT Beta 
 

Case d) 60 days 100 days 150 days Triangular 
 

Case e) 60 days 100 days 150 days Uniform 
 

Case f) 60 days 100 days 150 days Lognormal  
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Figure 5 shows the results for Sample #1. On the left-hand side of Figure 6 the distributions of 

the project duration of Sample #2 can be seen, while the results for Sample #3 are displayed on the 

right-hand side. It can be seen, that the different activity distributions cause smaller differences in 

the distribution of the project duration than the difference caused by a +/- 10% percent difference 

in the three-point estimation. 

 

Figure 5. Distributions for Sample #1 cases a) –f) 

 

 
 

Figure 6. Distributions for Sample #2 and #3 cases a) –f) 

 

 

4. Conclusions 

The results clearly show that the accuracy of the estimation of the activity durations has greater 

impact on the distribution of the project duration than the effect of the application of various 

activity distributions. However, justification on real-life projects is still necessary. 
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1 Introduction

We study the coordination of a decentralized system comprised of a subcontractor with
a single machine and several manufacturing agents having divisible jobs. By reducing the
finish-time, an agent achieves some monetary saving. The subcontracting problem consid-
ered in this paper was previously studied by Vairaktarakis and Aydinliyim (2007). The
model borrows from the concept of divisible jobs introduced in the context of job-shops by
Anderson (1981), and in the context of distributed computer systems scheduling by Bharad-
waj (1996). Given the characterization of efficient (optimal) centralized allocations for our
problem, we address the following question: how could efficient allocations be obtained in
decentralized settings, i.e. without a centralized authority to schedule jobs optimally?

For a subcontractor who knows the true processing times of the agents, we introduce
necessary and sufficient conditions for the existence of coordinating pricing schemes that
result in a situation where each agent’s optimal choice of subcontracting intervals coin-
cides with its allocation in the efficient schedule. In general such pricing schemes do not
necessarily exist (see Wellman et al. (2001)). We introduce a family of such coordinating
pricing schemes and investigate the subcontractor’s revenue under such pricing schemes
and obtain a lower bound for it.

Next, we allow each job’s processing time to be privately known by the agent owning
that job. We obtain a closed-form formula for the payments based on the pivotal mechanism
and prove that with this mechanism truth-telling is the unique optimal strategy for all
agents which is exceptional since the uniqueness of truth-telling strategies is not necessarily
implied by the pivotal mechanism. We prove that the total subcontractor’s revenue equals
the lower bound of the total payments with a coordinating pricing scheme.

2 The Problem and Efficient (Centralized) Solutions

Consider a set of agents N = {1, ..., n}. At time t = 0, every agent i ∈ N has a
divisible job with processing time pi. Let p = (p1, ..., pn) be the vector of processing times.
A subcontractor is available that can process any portion of any job on its machine. By
subcontracting, an agent’s job can be processed in parallel on both its private machine
and subcontractor’s machine which results in reduction of completion time of its job. Let
Ti = [ti, ti + t̄i) be the uninterrupted time allocated to agent i, i ∈ N , on subcontractor’s
machine, where ti ≥ 0 and t̄i > 0 are the start-time and the duration of the interval
respectively. Given allocation Ti, the saving from subcontracting to agent i is obtained in
the following manner. Assume that initially, agent i uses its private machine only in the
interval [0, pi]. If ti < pi, then a portion of the remainder of job i to be done after ti, i.e.
pi − ti, can be transferred to the subcontractor. The most efficient way to do this is for
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agent i to split the remainder equally between its private and subcontractor’s machines,
unless the duration of the interval t̄i is too short. Therefore, the agent i can reduce the
finish time of its job by an amount equal to

υi(Ti) = max {min {(pi − ti) /2, t̄i} , 0} .

We assume that the saving in time is equivalent to saving in money with an equal rate
for all agents. Therefore, υi(Ti) represents the monetary saving obtained by agent i under
allocation Ti. An allocation T = (T1, ..., Tn) is feasible if and only if for any i, and j, the
Ti and Tj do not overlap. Let T denote the set of all feasible allocations T for the agents
in N . We assume equal processing speeds for all machines. The total saving of a feasible
allocation T is the sum of savings of all agents, that is υ(T ) =

∑
i∈N υi(Ti).

An efficient allocation T = (T1, ..., Tn) is a feasible allocation that maximizes the total
saving, that is T ∈ arg maxT∈T υ(T ). Let Ti = [ti, ti+ t̄i) be the agent i’s efficient allocation
in an efficient allocation T . Every efficient (optimal) allocation ensures that (a) each job
finishes simultaneously on its own private and subcontractor’s machines, i.e. pi− t̄i = ti− t̄i,
and (b) the agents’ allocations on subcontractor’s machine are ordered based on non-
decreasing sequence of their processing times. We assume hereafter until Section 4 that N
is arranged in the non-decreasing order of processing times with ties broken according to
the first-come-first-serve rule. An efficient allocation can be fully determined by a vector
of efficient durations t̄ = (̄t1, ..., t̄n). Although multiple efficient allocation exists as long as
there are jobs with equal processing times, the allocations to jobs in the same positions are
the same in different efficient allocations. Let E be the set of all efficient allocations.

3 Coordinating Pricing Schemes

A pricing scheme q, defined on t ≥ 0, determines a price q(t) ≥ 0 for acquiring time t on
the subcontractor’s machine by any agent. The subcontractor announces its pricing scheme,
and subsequently agent i buys the time interval Ti in a first-come-first-serve manner. An
agent makes its decision so as to maximize its utility, which for a given q, and assuming
quasilinear utilities, equals uqi (Ti) = υi(Ti) − πq(Ti), where πq(Ti) =

∫
t∈Ti

q(t)dt is the
agent i’s payment for Ti made to the subcontractor. A coordinating pricing scheme results
in agents choosing the intervals that the efficient allocation prescribes.

Definition 1. The pricing scheme q is weakly coordinating if for any T ∈ E , and each
T /∈ E , πq(Ti)− πq(Ti) ≤ υi(Ti)− υi(Ti) for each i ∈ N . The pricing scheme q is strongly
coordinating if the latter always holds strictly.

A weakly coordinating pricing scheme may not necessarily result in the efficiency of the
system since an agent upon arrival may chooses an interval which is not a part of any
efficient allocation. However, the strong coordination requires all agents to exclusively
choose efficient allocations.

A natural class of pricing schemes to consider for scheduling consists of those with
non-increasing q where agents have to pay a higher price for buying earlier intervals. Let
πq(Ti) = πq(ti, ti + t̄i) for Ti = [ti, ti + t̄i). Our main results in this section are as follows:

Theorem 1. A non-increasing pricing scheme q is weakly coordinating if q(0) < 1 and for
an efficient allocation T :

C1. πq (ti − 2ε, ti)− πq (ti+1 − ε, ti+1) ≥ ε for i = 2, ..., n, and for 0 < ε ≤ t̄i−1/2;
C2. πq (ti, ti + 2ε)−πq (ti+1, ti+1 + ε) ≤ ε for i = 1, ..., n− 1 and for 0 < ε ≤ t̄i/2, and for

i = n and 0 < ε ≤ t̄n.
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We are now ready to give a family of non-increasing pricing schemes that are strongly
coordinating.

Theorem 2. Consider the coefficient set κ = {κ1, ..., κn} such that for i = 1, .., n − 1,
0 < κi < κi+1/2 and 0 < κn ≤ 2n−1δ/3 where 0 < δ ≤ 3/2n+1. The following pricing
scheme is strongly coordinating:

qO(t) =

{
1− 2i−1δ + κi [1− 2(t− ti)/̄ti] if ti ≤ t < ti + t̄i, i ∈ N
1− 2n−1δ − κn if t ≥ tn + t̄n

We now provide a necessary condition for any coordinating pricing scheme.

Theorem 3. Any coordinating pricing scheme q meets the following condition: for every
i = 2, ..., n it holds that 2q (t−)− q

(
t−i+1

)
≥ 1 for 0 < t < ti where t− = limε→0+ (t− ε) .

Let Πq =
∑
i∈N π

q(Ti) be the total payment from agents to the subcontractor under the
pricing scheme q.

Theorem 4. For any coordinating pricing scheme q, we have Πq ≥∑i∈N t̄i
(
1− 1/2n−i

)
.

For strongly coordinating pricing schemes this inequality holds strictly.

A closed form formula for the subcontractor’s revenue is ΠqO = υ(T )−δ∑i∈N 2i−1. Thus,
the coordinating pricing schemes from Theorem 2 can extract (almost) all of the total
saving υ(T ) from the agents by selecting δ small enough.

4 Private Processing Times

We allow each agent to report a processing time ri belonging to its individual type
space Pi ⊂ R+. Let P = P1× ...×Pn be the type space of all agents. We draw upon mech-
anism design theory Nisan (2007) and introduce a payment scheme that motivates agents
to report true processing times knowing the subcontractor’s intention of maximizing the
total savings. A mechanism M is defined by a (n + 1)-tuple (fM , πM1 , ..., πMn ) consisting
of an allocation function fM : P → T , and a payment scheme πM : P → Rn. Given a
vector of reported processing times r and the sequence in which the agents report them (to
break ties in the allocation), the payment scheme of a mechanism determines the monetary
amount πMi (r) that i ∈ N pays in return for receiving the allocation prescribed for i by
fM . The subcontractor is seeking to allocate the subcontracting intervals efficiently (opti-
mally), thus we focus on mechanisms where fM = T . We call such mechanisms efficient.
With quasilinear utilities, for i ∈ N an efficient mechanism M would result in the utility
uMi (T (r)) = υi(T (r))− πMi (r).

Definition 2. An efficient mechanismM is incentive compatible if for every reported pro-
cessing time vector r = (r1, ..., rn) and for every agent i ∈ N , uMi (T (pi, r

−i)) ≥ uMi (T (r))
where r−i is the vector r without its ith coordinate.

Green and Laffont (1977) show that with quasilinear utilities and general valuation func-
tions the Vickery-Clarke-Groves (VCG) mechanisms uniquely characterize the efficient and
weakly incentive compatible mechanisms. The payment scheme for VCG mechanisms is de-
fined as πV CGi (r) = hi(r

−i)−∑j∈N,j 6=i υj(T (r)) where hi is a function independent of agent
i’s announced processing time ri. Among the class of VCG mechanisms, the pivotal mech-
anism with hPMi (r−i) =

∑
j 6=i υj(T (r−i)) guarantees that all payments from the agents to

the mechanism are positive. Let [i], for i ∈ N , be the position of i in T (r). A closed-form
formula for payments obtained from the pivotal mechanism is given below.

Lemma 1. For all i ∈ N , we have πPMi (r) = t̄i(r)
(
1− 1

2n−[i]

)
.
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Our main result in this section is the following.

Theorem 5. Let r = (r1, ..., rn) be reported processing times and let pi be true processing
time of agent i. Then uPMi (T (pi, r

−i)) > uPMi (T (r)), provided that pi 6= ri and i is not in
the last position of T (r).

The last theorem implies that truth telling is the only strategy of each agent which is not
dominated by any other strategy.

Let us define ΠPM (p) =
∑
i∈N π

PM
i (p) as the total payment from agents to the sub-

contractor in pivotal mechanism under true announcement of processing times. Instances
can be made such that ΠPM (p)/υ(T (p)) be arbitrary close to zero. Based on the results
obtain by Moulin (1986), in the decentralized subcontracting problem, among all efficient,
incentive compatible, and individually rational mechanisms, pivotal mechanism generates
the highest total payment. Thus we have the following.

Theorem 6. Subcontractor’s revenue with any efficient mechanism is always dominated
by that with a coordinating pricing scheme.

Therefore, any coordinating pricing scheme provides the subcontractor with the revenue
higher than ΠPM (p).

5 Concluding Remarks

An important extension of this model is the asymmetric valuation case where the agents
obtain different amounts of savings for a unit time reduction in completion times of their
jobs. Although the efficient centralized allocations in this case are more difficult to obtain,
we show that it is impossible to devise a coordinating pricing scheme in general for this
case. An open problem is the complexity of finding the efficient allocations in this case.
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1 Introduction

In classical scheduling, a set of tasks is executed once while the determined schedule
optimizes objective functions such as the makespan or earliness-tardiness. In contrast, cyclic
scheduling means performing a set of generic tasks infinitely often while minimizing the
time between two occurrences of the same task. Cyclic scheduling has several applications,
e.g. in robotic industry (see Kats and Levner [1997]), in manufacturing systems (see Pinedo
[2005] and Hillion and Proth [1989]) or multiprocessor computing (see Hanen and Munier
[1995b]). It has been studied from multiple perspectives, since there exist several possible
representations of the problem such as graph theory, mixed integer linear programming,
Petri nets or (max,+) algebra. An overview about cyclic scheduling problems and the
different approaches can be found in Hanen and Munier [1995a].

However, a less known tool is the heaps of pieces approach. A first paper considering
this modelling for cyclic scheduling is Gaubert and Mairesse [1999]. The authors introduce
a method to represent safe Petri nets as particular automata which compute the height of
heaps of pieces. This approach enables to compute efficiently the throughput of a cyclic
schedule. In this paper, we use the heaps of pieces approach for solving cyclic scheduling
problems with resource constraints.

2 Cyclic scheduling problems

The basic cyclic scheduling problem (BCS) involves generic tasks and precedence con-
straints between tasks but no resource constraints are considered. In this problem, a set of
n generic operations are processed in parallel by an unbounded number of machines and
there is a set of q precedence constraints. We denote this set A = {a1, . . . , aq} where al
corresponds to a constraint represented by a triple (i, j, h). More precisely, the uniform
constraint (i, j, h) means that

si(k) + pi ≤ sj(k + h), ∀k ≥ 1

where si denotes the beginning of the operation i and pi is the processing time of i. In
this framework, the asymptotic cycle time α(S) is usually minimized (with S a feasible
schedule). Equivalently we can aim at maximizing the throughput r(S) = 1

α(S) .
We can distinguish two categories of cyclic schedules: the 1-periodic schedules and the

K-periodic schedules. The first category is characterized by a period α such that :

si(k + 1) = α+ si(k), ∀i ∈ T , ∀k ≥ 1,

where T is the set of tasks to perform. Whereas K-periodic schedules are also defined by
period which corresponds to a fixed interval time between any K consecutive occurences
of i :

si(k +K) = αK + si(k), ∀i ∈ T , ∀k ≥ 0.
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For our concern, we are interested in the cyclic job shop problem. In this case, tasks are
a priori mapped onto machines and the number of machines is smaller than the number
of tasks to perform .More precisely, a cyclic job shop is defined by :

• a set T of elementary tasks,
• a set R of machines,
• for each task t ∈ T , a processing time pt and a machine mt ∈ R on which the task has

to be performed,
• a set A of uniform constraints (as defined above),
• a set of jobs J corresponding to a production sequence of elementary tasks. More

precisely, a job J1 defines a sequence J1 = t11 . . . t1k to be executed in this order.

Previous studies of this problem have shown that K-periodic schedules are dominant (Ha-
nen and Munier [1995a]) and the problem is NP-hard (Hanen [1994]) for throughput max-
imization.

One can find the description of two classical methods of performance evaluation of
cyclic job shop in Hanen and Munier [1995a]. The first one is based on graph theory. In
this framework, the throughput computation problem of a cyclic job shop schedule becomes
the search of maximum circuit ratio in a graph. The second approach considers the job
shop as a (max,+)-linear system. Then, the spectrum of the evolution matrix of the system
gives the cycle time. In both approaches, the complexity of the evaluation of the cycle time
is the same (polynomial).

3 The heap of pieces model

We first recall some algebraic tools concerning (max,+) algebra. The (max,+) semiring
is the set R ∪ {−∞} endowed with the max operator, written a⊕ b = max(a, b), and the
usual sum written a⊗b = a+b. The sum (resp. product) admits a neutral element denoted
ε = −∞ (resp. e = 0), it leads to a ⊕ ε = a and a ⊗ e = a. For matrices, additions and
products give (A⊕B)ij = Aij ⊕Bij and (A⊗B)ij =

⊕n
k=1Aik ⊗Bkj .

An exhaustive presentation of (max,+) algebra can be found in Baccelli et al. [1992].
We now present the heap model structure that was introduced in Gaubert and Mairesse
[1999].

Definition 1 (Heap model). A heap model is composed by :

• P a finite set of pieces,
• S a finite set of slots,
• R gives the subset of slots occupied by a piece,
• l : P × S → R ∪ {−∞} gives the lower contour of a piece,
• u : P × S → R ∪ {−∞} gives the upper contour of a piece.

For each piece p (possibly non connected) of a heap model, we define the matrixM(p)
of dimension |S| × |S| by

M(p)sr =





0 if s = r, r /∈ R(p),
u(p)r − l(p)r ifr ∈ R(p), s ∈ R(p),
ε otherwise.

Calculus in the heap model are based on (max,+)-algebra. More precisely, if a piece p1
is piled up in an empty heap, the upper contour of the heap is given by x(p1) = I⊗M(p1)
where I is a 1 × |S| matrix defined by Ij = e, ∀j ∈ {1, . . . , |S|}. In the same manner,
the pile of two pieces p1 and p2 give the following upper contour of the heap : x(p1p2) =
I ⊗M(p1)⊗M(p2).
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4 Application to cyclic job shop

In this section, we show how to model the cyclic job shop problem as a heap of pieces.
We take the assumption that constraints ak ∈ A are such that h = 0 (see §2). As shown
in Gaubert and Mairesse [1999], the job shop problem admits a heap realization described
under

P = T
S = R∪ J

R(t) = m(t) ∪ {Ji|t ∈ Ji}
l(t, r) = 0 if m(t) = r, l(t, r) = ε otherwise
u(t, r) = p(t) if m(t) = r, l(t, r) = ε otherwise.

In this framework, each elementary task t is represented by a matrix M(t). Considering
the objective of the cyclic job shop problem, the problem is to find the sequence of pieces
piled up in the heap that maximize the throughput. The following theorem indicates how
to compute the cycle time

Theorem 1. The throughput of a job Ji for the cyclic sequence p1 . . . pn in a heap model
representing a job shop system is given by

λJi = |p1 . . . pn|Ji ⊗ (ρ(M(p1)⊗ . . .⊗M(pn)))
−1. (1)

where |p1 . . . pn|Ji denotes the number of jobs Ji completed under the sequence p1 . . . pn
and ρ(X) is the unique eigenvalue of the irreducible matrix X (see [Baccelli et al., 1992,
chap.2]).

Proof. Considering the heap, the cyclic sequence p1 . . . pn corresponds to a cyclic piled-up of
these pieces. Let v = p1⊗ . . .⊗pn. The matrixM(v) can be seen as the matrix representing
an unique piece p1 . . . pn. The evolution of the heap is now given by the pile up of v. As seen
in section 3, the upper contour of the heap is given by x(v . . . v) = I ⊗M(v)⊗ . . .⊗M(v).
Since the job shop is connected (and we assume it is), the matrix M(v) is irreducible.
After a certain number of iterations (that is called the transient time), a cyclic behaviour
appears for an irreducible matrix X : Xk+c = ρ(X)c ⊗Xk (see Cohen et al. [1983]). This
property hold for M(v) and after a certain number of iterations, the growth rate of the
heap become ρ(M(v)) and the throughput is given by (1).

Considering the heap of pieces model, the cyclic job shop problem is equivalent to
find a bounded sequence of pieces with the maximum throughput. Compared to classical
approaches, this model takes benefit fromK-cyclic schedules. Indeed, graph based approach
have to consider K×n number of nodes. Regarding mixed integer linear programming, the
number of variables grows substantially. To deal with this situation, the heap of pieces is
the best model since the number of slots is independant of K. Nonetheless the drawback of
this method is that we can only consider a work in progress of one and it can not represent
a "nested" sechedule since it can only represent patern that can be piled up (no intertwine).
We propose a branch and bound procedure to solve this problem. The branching rule chose
the piece to pile up in the heap and the evaluation fonction is the cycle time computation
of the pattern in the heap. We extend this model to consider several work in process inside
the pattern (but not nested pattern) through an extension of the number of slots.
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1. Introduction 

This paper deals with the Multi-Mode Resource-Constrained Project Scheduling 

Problem with sequence dependent Transfer Times (MMRCPSPTT). A sequence 

dependent transfer time is the time needed to transfer the required resource from the site 

of the preceding activity to the site of the succeeding one. Thus transfer time of a 

resource depends on the locations of the activities to execute as well as on the 

characteristics of the resource to transfer. 

In the studied problem we assume that preemption is not allowed, the used 

resources are either renewable or non-renewable, each activity has a discrete number of 

execution modes and precedence relations are zero-lag finish-to-start relations. Also we 

assume that activity durations and transfer times are known and deterministic. The 

objective is to determine start time and execution mode for each activity of the project 

such that the project duration is minimized. Recently Krüger and Scholl (2009 and 2010) 

considered the single-mode resource-constrained project scheduling problem with 

transfer times (SMRCPSPTT). They proposed priority rule based solution procedures 

and presented numerical results to assess their performance. 

To the best of our knowledge, the MMRCPSPTT has never been addressed 

before. Section 2 describes the considered MMRCPSPTT and section 3 presents a 

mathematical formulation of the problem. Section 4 presents a quick description of the 

heuristic we designed to solve large scale instances and section 5 describes the 

experiment conducted to assess the performance of the proposed heuristic.  

2. Problem description 

In the MMRCPSPSTT we have a set J of activities, a set P of finish-to-start 

precedence constraint, a set K of renewable resource and a set W of non-renewable 

resources. The limits on renewable resources are denoted Qk; kK and the availability 

over the entire project of the non-renewable resources is given by Nw; wW. Each 

activity i has a set of immediate predecessors PiJ, a set of immediate and indirect 

predecessors, denoted i, a set of immediate successors ZiJ and a set of immediate and 

indirect successors, denoted i.  

In addition, every activity i has a set of possible execution modes Mi. A mode 

mMi is characterized by qimk, the required number of units of the renewable resource k, 

nimw, the required number of units of the non-renewable resource w, and the 

corresponding duration dim. We also define    as the time window between the earliest 

start time and the latest start time of activity i. These times are calculated using the 

critical path method based on a feasible project duration T. 

We assume that activities are to be performed in a number of different locations 

(sites). The transfer of a unit of renewable resource k from the execution location of 

activity i to the execution location of activity j requires a transfer time denoted ijk. The 

sum of transfer times of non-renewable resources to the project activities is constant and 

consequently is not considered in the problem. 
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Without loss of generality we assume that project activities include a dummy start 

activity, activity 1, and a dummy finish activity, activity F. These two activities have 

only one execution mode of duration zero, require no non-renewable resources and 

requires the entire available amount Qk of the renewable resource k; kK (i.e., 

q11k=qF1k=Qk). This is because the dummy start activity should provide renewable 

resources to the other activities while the dummy finish activity should collect them 

back. Transfer times from the dummy start activity and to the dummy finish activity are 

nil (i.e., 1ik=iFk=0;iJ,kK).  

The objective in MMRCPSPTT is to assign a mode to each activity and to 

construct a schedule that minimizes the project duration while satisfying precedence, 

resource and transfer constraints.  

3. Mathematical formulation  

Decision variables 

         number of units of resource k directly transferred from activity i executed 

using mode m, to activity j executed using mode     

        a binary that takes the value 1 if and only if a unit or more of renewable 

resource k are transferred from activity i executed using mode m to activity j 

executed using mode    

     a binary that takes the value 1 if and only if activity i is executed using mode 

m and starts at the beginning of period t 

Mathematical model  

                       (1) 

Subject to: 

                               
  (2) 

                                     
                   

  (3) 

                 
                      

                      
 

       ,                       

 

(4) 

                 
                                      (5) 

                  
                                    (6) 

                                    

                          
                                   

 

(7) 

                         
           

                     
  (8) 

                         
            

                       
  (9) 

                                (10) 

                                             (11) 

                                                 (12) 

                                   (13) 

The objective function (1) minimizes the project duration. Constraints (2) ensure 

that each activity is performed in only one mode and is started within its time window. 

Constraints (3) are the precedence constraints. Constraints (4) and (5) ensure that the 

transfer time of the renewable resource k is taken into consideration when transferred 

from activity i performed using mode m to activity j performed using mode m’. 

Constraints (6) imply that if           then            Constraints (7) and (8) 

represent the flow conservation of renewable resources. Constraints (9) ensure that the 

used quantities of non-renewable resources do not exceed the imposed limits. 
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4. The proposed heuristic 

To solve the MMRCPSPTT we propose a three-phase heuristic. In the first phase, called 

the mode selection phase, we select an execution mode for each activity. We only 

require that the selected modes be feasible with respect to the non-renewable resource 

limits. This is done by solving an integer linear model. Two such models were tested. 

The first one (M1) is: 

Find: xim{0,1}; iJ, mMi which 

                                      (14) 

                      
    (15) 

                           (16) 

Where:  xim takes the value 1 if the mode m is assigned to the activity i.  

The second model (M2) has the same constraints but the object function is replaced by: 

                                  (17) 

In the second phase we use the execution modes obtained in phase I and solve the 

resulting Single-Mode Resource Constrained Project Scheduling Problem with transfer 

times (SMRCPSPTT). This is done by using a combination of selection rules. The 

activity selection rule is the MinSlk (activity with minimum slack) rule and the resource 

transfer rule is the MinTT (minimum transfer time) rule. These two rules are used within 

a parallel scheduling scheme. Kruger et al (2009) tested several combinations of priority 

rules and indicated that this is the most efficient way to solve the SMRCPSPTT. 

The third phase is an improvement phase. Two improvement procedures were 

tested. The first procedure (P1) is a simple hill climbing approach where we search the 

unit neighborhood where we modify the execution mode of only one activity, provided 

that this modification does not lead to requiring an amount of any non-renewable 

resource that exceeds its availability. Once a local optimal is reached, we use again the 

hill climbing procedure to search a pairwise neighborhood where we modify the 

execution mode of two activities simultaneously. The procedure stops when we reach a 

local optimum of this second neighborhood. The second improvement procedure (P2) is 

a multi-neighborhood improvement approached (see Boctor, 1993). The same two 

neighborhoods presented above are used within this approach. The multi-neighborhood 

approach is an iterative approach where each iteration consists of searching the first 

neighborhood until no more improvement can be achieved. Next we search the second 

neighborhood until a better solution is found. Then we go back to search the first 

neighborhood of the obtained solution. The procedure stops if no improvement can be 

achieved during a complete iteration. 

5. Computational results 

Test instances and optimal solutions 

We conducted a computational study to assess the performance of the proposed 

heuristic. To do this study we extended three ProGen instance sets: the sets J10, J20 and 

J30 of the MMRCPSP (Kolisch et al., 1996). Transfer times are randomly sampled from 

a uniform distribution between 0 and 10 periods. In all, we used 536 instances with 10 

non dummy activities, 554 instances with 20 non dummy activities and 552 instances 

with 30 non dummy activities. All coding was done in Matlab 2012 environment and all 

experiments were run on a computer with i7 core processor, 2 GHz and 6 GB of internal 

memory. GUROBI 5.5 was used to solve the proposed mathematical formulation with a 

run time limit of 3600 CPU-seconds per instance. Table 1 shows that the optimal 

solution was found for only 40% of the test-instances and that problems with 

RF=1(Resource Factor) are more difficult to solve than those with RF=0.5. Notice that 
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although we have not obtained the optimal solution for the 60 % other instances, we got 

at least a feasible one for each of them within the imposed run time limit. 

Table 1: Number of times the optimal solution was found and average percentage deviation 

Set RF RS 

Total 

number 

of 

instances 

Number of 

instances 

where the 

optimum is 

found 

Percentage 

of instances 

where the 

optimum is 

found 

Average percentage deviation from the  

optimum 

(calculated only over instances 

where the optimum is found) 

best found solution 

(calculated over all instances) 

M1P1 M1P2 M2P1 M2P2 M1P1 M1P2 M2P1 M2P2 

All 

J10, 

J20 

& 

J30 

0,5 

0.25 190 48 25,26% 7,99 6,46 5,40 6,33 5,56 3,84 4,76 3,69 

0.5 210 113 53,81% 9,67 7,77 9,52 8,64 8,24 6,33 6,85 6,20 

0.75 210 190 90,48% 8,21 6,84 6,88 6,39 8,31 6,98 6,82 6,29 

1 190 189 99,47% 5,78 4,74 4,80 4,48 5,82 4,78 4,85 4,53 

1 

0.25 209 0 0,00% - - - - 2,45 1,78 2,15 1,44 

0.5 210 7 3,33% 7,81 6,39 6,86 6,86 3,31 2,38 2,14 1,57 

0.75 212 31 14,62% 11,80 11,58 9,94 9,71 4,81 4,08 3,31 2,86 

1 211 73 34,60% 9,96 9,79 8,60 8,17 5,30 5,19 4,48 4,18 

All RF-RS 1642 651 39,65% 8,10 6,92 6,96 6,58 5,47 4,43 4,41 3,84 

 

Results obtained by four versions of the proposed heuristic 

As shown in Table 1, four versions of the heuristic were tested. These versions 

are the result of combining M1 or M2 in the first phase with P1 or P2 in the third one. 

The table gives the percentage deviation from the optimum (when the optimum is 

obtained) and the percentage deviation from the best found solution (for all instances) 

for each version. Table 2 gives the number of times the optimal and the best solutions 

are found. Many other results are in Kadri et Boctor (2014). 

Table 2: Number of times the optimal solution and the best solution are found by each version of the heuristic 

Set RF RS 

Total 

number 

of 

instances 

Number of 

instances where 

the optimum is 

found 

Number of times 

the optimum is found the best solution is found 

M1P1 M1P2 M2P1 M2P2 M1P1 M1P2 M2P1 M2P2 

J10, 

J20 

& 

J30 

0,5 
0.25-0.5 400 161 39 49 46 49 189 263 217 260 

0.75-1.0 400 379 154 172 154 166 255 299 281 305 

1 
0.25-0.5 419 7 1 1 1 1 214 263 256 297 

0.75-1.0 423 104 18 17 16 16 252 270 287 306 

All 1642 651 212 239 217 232 910 1095 1041 1168 
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1. Introduction 

Scheduling jobs onto a single machine to minimize the total tardiness (1||∑Tj) is a 

well-known problem of practical importance in virtually all industrial operations. 

Moreover, it is known to be strongly NP-hard (Lawler, 1977). As the problem is NP-

hard and therefore requires enumeration procedures like dynamic programming or 

branch & bound for its solution, precedence (dominance) theorems can help in 

determining pair-wise relations between jobs, e.g., that a job j precedes a job k in an 

optimum solution. We shall use the notation “j  k” to mean “j precedes k in some 

optimum sequence.” Each time we discover such a relation, the search space is reduced 

by as much as one half. Precedence relations are transitive, e.g., i  j and j  k  i  k, so 

the effect of their discovery can accumulate. Such theorems were first introduced by 

Emmons (1969) and later extended by Rinnooy Kan, Lageweg and Lenstra (1975) and 

Kanet (2007). Schedules adhering to such precedences are called dominant schedules. 

The proof tactics employed by Emmons to test if job j  k is to start with an assumed 

optimal sequence S where k precedes j. Now a schedule S’ is constructed in which j 

precedes k with minimal disturbance to the other jobs in the schedule. The two tactics 

are: 

- Tactic 1: Swapping positions of jobs k and j 

- Tactic 2: Inserting job k immediately after job j 

If it can be shown that the maneuver provides tardiness for S’ not higher than that for S, 

then it is possible to say that schedules in which k precedes j are not uniquely optimum, 

thus j  k. The new theorems follow exactly those tactics but consider one or more 

additional jobs in the maneuver. This report describes the current progress of this 

research effort. In the section to follow, we first introduce notation (2.1) and then 

describe in more detail two of the seven new theorems (2.2). Section 2.3 summarizes the 

seven new theorems. Section 3 provides initial findings of the computational results 

illustrating the marginal advantage (beyond Emmons’s theorems) that the two theorems 

provide. Section 4 projects the remaining research underway. 

2. The New Theorems 

2.1. Notation 

We consider the sequencing of a set N of n jobs available for processing at time t = 0 

by a continuously available machine. Each job i is characterized by a processing time  

pi > 0 and a due date di > 0. The goal is to determine the scheduled completion time for 

job i, Ci  i, such that total tardiness is minimum. We let Bi represent the set of jobs 

already known to precede i in some optimum sequence; Ai represents the set of jobs 

known to follow i in some optimum sequence. We use the notations Bi’ = N-Bi,  

and Ai’ = N-Ai. We use the notation P(X) to mean the total processing time of jobs in  
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set X. In determining if job j  k, the new theorems make use of P(Bk), P(Aj), as well as 

the information about one or more other jobs w  Bk or z  Aj. In proving the new 

theorems we use the concept of the tardiness improvement, TIi(di), tardiness decrement, 

TDi(di), for a job i that results from a maneuver (be it swapping or inserting after), where 

TI, TD are functions of the job’s due date. Finally, the notation UB(.), LB(.) denotes 

upper bound, lower bound, respectively. 

2.2. Using the swap and insert-after tactic with job w  Bk 

Theorem SW1: Given jobs j, k, w  Bk and pj ≤ pw,  

if dj ≤ max{dw, P(Bw)+pw}+min{max{0, P(Bk)+pk-dk}, pw-pj} then j  k. 

The proof involves beginning with a dominate sequence in which w and k precede j, then 

swapping w with j and observing if UB(TDw) ≤ LB(TIj)+LB(TIk). Figure 1 illustrates. 
 

 
 

Figure 1. New swap theorem considering three jobs 

 

Theorem IA1: Given jobs j, k, w  Bk,  

if max{dw, P(Bw)+pw}≥ max{dj, P(Aj’)-pw}-min{max{0, P(Bk)+pk-dk}, pw} then j  k. 

As above, the proof involves beginning with a dominate sequence in which w and k 

precede j, then inserting w after j and observing if UB(TDw) ≤ LB(TIj)+LB(TIk). Figure 

2 illustrates. 

 
 

Figure 2. New insert-after-theorem considering three jobs 
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2.3. The set of seven possible theorems 

We currently envision seven new theorems which are under investigation. Three of 

the possible new theorems follow the swap tactic while four new theorems follow the 

insert-after tactic. Figure 3 summarizes those concepts. SW1, SW3, IA1, and IA 3 

consider the case when one or more jobs w  Bk. Theorems SW2, IA2, and IA4 have 

one or more jobs z  Aj. There is no theorem SW4 because its condition would be too 

restrictive to discover further precedences (pj + ∑zwi <= pk). 

 

 
 

Figure 3. Current and possible new theorems 

3. Computational Results 

To gain an insight into the benefit of the new theorems a computational study was 

conducted to observe the number of precedence discoveries by the original theorems of 

Emmons (1969) and the additional discoveries of the new theorems over a specific set of 

known problem instances. For this analysis, we use a set of twelve 20-job problem 

instances from Baker and Trietsch (2009) and 40-job and 50-job problems from Beasley 

(1990) with 125 instances each. The study was performed in several steps. At first, we 

calculated the optimum objective function value for each instance with the CPLEX 

solver to create a validation reference. We then started to activate the theorems one after 

the other and let the program calculate until no further precedences were discovered. In 

this state, we captured the number of “hits” produced by the activated theorems.  

Table 1. Emmons 1,2,3 & new theorems applied on twelve Baker-/Trietsch’ 20-job instances 

E123

HITS
TOTAL 

HITS

INCR. 

[%]

+ HITS 

(SOLOS)

TOTAL 

HITS

INCR. 

[%]

+ HITS 

(SOLOS)

TOTAL 

HITS

INCR. 

[%]

+ HITS 

(SOLOS)

Baker 1 148 149 0,67 1 (0) 148 0,00 0 (0) 149 0,67 1 (0)

Baker 2 195 195 0,00 0 (0) 195 0,00 0 (0) 195 0,00 0 (0)

Baker 3 234 234 0,00 0 (0) 235 0,43 1 (0) 235 0,43 1 (0)

Baker 4 182 182 0,00 0 (0) 183 0,55 1 (0) 183 0,55 1 (0)

Baker 5 128 128 0,00 0 (0) 128 0,00 0 (0) 128 0,00 0 (0)

Baker 6 179 182 1,65 3 (0) 181 1,10 2 (0) 184 2,72 5 (0)

Baker 7 122 122 0,00 0 (0) 123 0,81 1 (0) 123 0,81 1 (0)

Baker 8 204 204 0,00 0 (0) 205 0,49 1 (0) 205 0,49 1 (0)

Baker 9 189 194 2,58 5 (0) 190 0,53 1 (0) 195 3,08 6 (0)

Baker 10 216 216 0,00 0 (0) 216 0,00 0 (0) 216 0,00 0 (0)

Baker 11 115 115 0,00 0 (0) 115 0,00 0 (0) 115 0,00 0 (0)

Baker 12 176 176 0,00 0 (0) 177 0,56 1 (0) 177 0,56 1 (0)

E123+SW1 E123+IA1 E123+SW1+IA1

Experiment(s)
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We compared the number of total theorem hits when applying the new theorems to 

the number of hits we received with Emmons’ theorems solely. The result is provided in 

the “Increase”-column. Furthermore, the number of hits provided by SW1, IA1, or both 

is provided in the last column of each test. The number in brackets specifies the quantity 

of solo hits, which means that only SW1 or only IA1 discovered a precedence relation. 

The results for the small Baker instances (cf. Table 1) reveal first hits of the new 

theorems, though providing no new information (no solo hits). This can be explained due 

to the fact that the new theorems are more likely to hit if there are many already known 

precedence relations (“Given jobs (…), w  Bk”). 

In contrast to this, table 2 depicts results for the bigger Beasley instances showing a 

lot of solo hits, especially by SW1. As there are 125 instances in each of the Beasley 

sets, the results are condensed. They provide the average number of hits throughout all 

the instances. Furthermore, the average and maximum increase of discovered 

precedences is stated. The last column in each test shows the amount of additional (solo) 

hits provided by the new theorem(s). 

Table 2. Emmons 1,2,3 and new theorems applied on 125 Beasley’s 40- and 50-job instances 

E123

Ø HITS
Ø TOTAL 

HITS

Ø INCR. 

[%]

MAX 

INCR. [%]

+ HITS 

(SOLOS)

Ø TOTAL 

HITS

Ø INCR. 

[%]

MAX 

INCR. [%]

+ HITS 

(SOLOS)

Ø TOTAL 

HITS

Ø INCR. 

[%]

MAX 

INCR. [%]

+ HITS 

(SOLOS)

Beasley's 125 

40-job 

instances

575 616 10,11 31,70
5781 

(596)
581 1,05 5,41 714 (8) 620 11,05 32,45

6415 

(599)

Beasley's 125 

50-job 

instances

862 919 9,49 30,83
7802 

(672)
870 1,01 5,17 958 (2) 925 10,42 31,39

8692 

(674)

Experiment(s)

E123+SW1 E123+IA1 E123+SW1+IA1

 

4. Outlook 

The results and first insights into the benefit of all the new theorems necessitate 

further research. At first, the full set of new theorems should be specified in detail. In 

regard of computational studies we expect a performance boost for the runtime of the 

solver which has not been analysed in detail yet. Those effects will arise especially when 

solving larger instances. After proving a benefit from those new theorems virtually all 

existing approaches for solving 1||∑Tj and its variants might be well served by 

application of those. 
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1 Introduction

Scheduling and Location Problems are two important areas of operations research.
While each of them individually has a large number of applications (e.g., manufacturing,
logistics) for many problems (e.g., supply chain management) both location and scheduling
decisions have to be made. To overcome weaknesses of a sequential approach, Hennes and
Hamacher (2007) introduced an integrated Scheduling-Location (ScheLoc) Problem. The
ScheLoc Problem is the problem of simultaneously finding machine locations and a sched-
ule, where release dates of jobs are given by the distance from job locations to the location
of the machine on which they are processed such that some scheduling objective function is
optimized. A large number of applications of this problem have been summarized in Kalsch
(2009). One of them can be found in the service sector. Some services (e.g., mammography
screenings) are not offered in one fixed location, but the service location can change on a
regular basis. For certain periods demand of customers and their locations are known or
can be estimated. Considering this demand already when locating the service station can
significantly reduce service times.
The Single Machine Network (SMN) ScheLoc Problem was further investigated by Hennes
(2005) and polynomial solvability of special cases was shown. Polynomial time algorithms
for the Single Machine Planar (SMP) Makespan ScheLoc Problem were given by Elvikis
et. al. (2008) and Kalsch and Drezner (2010). Kalsch (2009) introduced the Universal Sch-
eLoc Problem similar to the Ordered Weber Problems in location theory and applied it to
SMP ScheLoc Problems. Other Universal Combinatorial Problems were studied in Turner
(2013).
Related integrated scheduling problems like the Integrated Production and Outbound Dis-
tribution Scheduling (IPODS) Problem (see e.g., the survey by Chen (2010)) or the Schedul-
ing with Interplant Transportation (SIT) Problem (see e.g., Hurink and Knust (2001), Lee
and Chen (2001), Lee and Strusevich (2005)) consider simultaneous scheduling and trans-
portation decisions. The goal of the IPODS Problem is to simultaneously find a production
schedule and plan the delivery of finished products to customers, while SIT Problems con-
sider shop environments with transportation times between the machine. IPODS Problems
with individual and immediate delivery, i.e., where each finished job is directly taken to
the customer, are equivalent to the pure scheduling problem in many cases. The structure
is similar to the one of Network ScheLoc Problems. However, since the transportation is
done after the processing, such that it does not influence the scheduling data of the jobs,
and there are no location decisions made, solution approaches are not applicable to the
ScheLoc Problem.
The SIT Problem considers more difficult routing decisions and is therefore NP-hard except
for a few special cases. It is similar to a more involved ScheLoc Problem, the Shop ScheLoc
Problem, but again does not integrate location decisions, making algorithms unapplicable
to ScheLoc Problems.
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In this study we will consider a special case of the Single Machine Universal Network
(SMUN) ScheLoc Problem, that can be solved in polynomial time. We will formally intro-
duce the SMUN ScheLoc Problem in Section 2, introduce a polynomial time algorithm for
a Universal Scheduling Problem with preemption in Section 3 and use this algorithm in a
polynomial time algorithm for the SMUN ScheLoc Problem with preemption in Section 4.

2 Problem Definition

We consider the SMUN ScheLoc Problem. This is the problem of simultaneously finding
an optimal machine location in the network and a schedule that respects all given scheduling
constraints and the release dates induced by travel times of jobs to the machine location
minimizing the universal ScheLoc objective function. Formally, we consider the following
problem:
Let an undirected graph G = (V,E) with edge lengths le for all e ∈ E be given and let
A (G) denote the set of locations in the network, i.e., the nodes and arcs of the network.
A set of jobs J = {J1, . . . , Jn} is given that has to be processed on a single machine X.
To each job Ji a storage location ai ∈ V , a storage arrival time σi ≥ 0, and a travel speed
νi > 0 is associated. For processing jobs have to be taken from their storage location to the
machine location. Job Ji becomes available at time σi and will immediately move towards
the machine along the shortest path at its speed νi. Shortest paths dist (x, y) between
x, y ∈ A (G) in the network are calculated using the lengths of edges. For x, y ∈ V the
shortest path can be easily calculated by a shortest paths algorithm. For y located on edge
e = (vk, vl) we can write y = (e, α) for α ∈ [0, 1] with

dist (x, y) = min {dist (x, vk) + αle, dist (x, vl) + (1 − α) le} .

The arrival time of job Ji at the machine location X denotes the release date ri (X) of the
job, i.e., the earliest time at which it can start processing. Using travel speed and storage
arrival times of the jobs, location dependent release dates can be calculated as

ri (X) = σi + τidist (ai, X) ,

where τi = 1/νi > 0.
Denote by Sn the set of all feasible schedules with n jobs on a single machine that respect
the location dependent release dates and the restrictions of the scheduling problem. These
restrictions are dependent on the considered problem and may include e.g., preemption
(pmtn, processing of jobs can be interrupted and continued at a later point in time),
precedence constraints (if i → j, job Jj cannot be processed before the completion of job
Ji) or deadlines d̄i (each job i has to be completed before its deadline).
The objective is to find a location for machine X in A (G) and a schedule S = (S1, ..., Sn) ∈
Sn allocating time intervals for jobs Ji on machine X such that each job is fully processed
and the universal ScheLoc objective function F∆,φ (C (S,X)) is minimized. This function
is defined as F∆,φ (C (S,X)) =

∑n
i=1 δifφ(i)

(
Cφ(i) (S, X)

)
, where ∆ = (δ1, . . . , δn) ∈ Rn is

a weight vector and φ ∈ Πn a permutation satisfying

fφ(1)

(
Cφ(1) (S, X)

)
≤ . . . ≤ fφ(n)

(
Cφ(n) (S,X)

)
.

We denote by Cφ(i) (S, X) the completion time of job Jφ(i) dependent on the schedule
S ∈ Sn and the machine location X ∈ A (G). We assume fi to be non-decreasing functions
in the completion times, i.e., Cφ(i) (S, X) ≤ Cφ(j) (S, X) implies fφ(i)

(
Cφ(i) (S, X)

)
≤

fφ(i)

(
Cφ(j) (S, X)

)
.
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The SMUN ScheLoc Problem is formally defined as:

min F∆,φ (C (S,X)) =
n∑

i=1

δifφ(i)

(
Cφ(i) (S, X)

)
(1)

s.t. fφ(1)

(
Cφ(1) (S, X)

)
≤ . . . ≤ fφ(n)

(
Cφ(n) (S, X)

)
,

S ∈ Sn,

X ∈ A (G) .

If S and X are clear from the context we will shortly write F∆,φ (C) and fφ(i)

(
Cφ(i)

)

instead of F∆,φ (C (S,X)) and fφ (i)
(
Cφ(i) (S, X)

)
respectively. Note that the objective

function F∆,φ is a pure scheduling objective, the link between the two problems is in com-
puting a location-dependent schedule.
The big advantage of the universal objective function is its great modelling potential. It con-
tains as special cases some well-known scheduling objective functions, e.g., for fφ(i)

(
Cφ(i)

)
=

Cφ(i) for all i = 1, . . . , n we get for specific choices of ∆ the problem of minimizing the
makespan (∆ = (0, . . . , 0, 1)) or minimizing the total completion time (∆ = (1, . . . , 1)),
but also many new problems like the Total s-Maximum Completion Time ScheLoc Prob-
lem (∆ = (0, . . . , 0, 1, s. . ., 1)) with s ∈ {1, . . . , n} or the Balanced ScheLoc Problem (∆ =
(−1, 0 . . . , 0, 1)). By looking at the unified approach we can solve a large number of prob-
lems with the same general algorithm. For more details to Universal ScheLoc Problems we
refer the reader to Kalsch (2009). In the following we assume that ∆ ≥ 0.

Example 1. Consider the graph with 4 nodes and 4 jobs with job locations Ji = vi as
in Figure 1(a). Processing times are given by p1 = 5, p2 = 6, p3 = 3, and p4 = 2.
Furthermore, we have σi = 0 for all Ji and νi = 1 for all Ji, i.e., all jobs are at their storage
locations at time 0 and all move with the same speed τ = 1. We choose ∆ = (1, . . . , 1)
and fφ(i)

(
Cφ(i)

)
= Cφ(i), i.e., we want to minimize the total completion time. As special

scheduling constraints we allow preemption of jobs.
The optimal machine location can be found in X = (v2, α = 0.9). An optimal schedule for
this location is given in Figure 1(b).

v1

J1

v2

J2

v3

J3

v4

J4

X

8

1
2

10

4.5

0.5

7

4

(a) Graph G = (V, A) with
l (e) for e ∈ A and optimal
machine location X ∈ A (G)

3 2 4 2 1

r3 r2 r4 r1

t = 0.5 3.5 4.5 5.5 7.5 12.5 17.5

(b) Optimal schedule for machine location X

Fig. 1. A ScheLoc Instance
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3 The Universal Scheduling Problem

The Universal Scheduling Problem is defined as follows (see Kalsch (2009)):

min F∆,φ (C (S)) =

n∑

i=1

δifφ(i)

(
Cφ(i) (S)

)
(2)

s.t. fφ(1)

(
Cφ(1) (S)

)
≤ . . . ≤ fφ(n)

(
Cφ(n) (S)

)
,

S ∈ Sn.

It is the problem of finding a feasible schedule, minimizing a universal objective function
with weight vector ∆ and permutation φ that is dependent on the completion times in the
schedule S.
If we fix the machine location X in the Universal ScheLoc Problem, this implies fixed
release dates for all jobs. These release dates together with the scheduling constraints of
the ScheLoc Problem, yield a restricted set Sn that is dependent only on scheduling data.
Therefore, the Universal ScheLoc Problem with a fixed machine location is equivalent to a
pure Universal Scheduling Problem.
We consider the Universal Scheduling Problem 1|ri, pmtn|F∆,φ (C) with ∆ ≥ 0 and fi

non-decreasing for all i = 1, . . . , n. The following result is easy to show:

Theorem 1. Scheduling Problem 1|ri, pmtn|F∆,φ (C) for ∆ ≥ 0 and fi non-decreasing for
all i = 1, . . . , n can be solved by the shortest remaining processing time rule (SRPT).

4 A Polynomial Time Algorithm for the SMUN ScheLoc Problem with Pre-
emption

We look at the SMUN ScheLoc Problem with preemption for ∆ ≥ 0 and fi non-
decreasing and linear in the completion times for all i = 1, . . . , n, i.e., we look at the
ScheLoc problem where jobs may be interrupted during processing and the universal ob-
jective function F∆,φ (C) is minimized. We propose a polynomial time algorithm for this
problem.
In this algorithm we first want to find a finite dominating set (FDS) of locations of poly-
nomial size. In each location of the FDS we can transform the ScheLoc Problem into a
pure Scheduling Problem as in Section 3 and solve it by Theorem 1. Choosing the location
that yields the best scheduling objective function value gives an optimal solution to the
ScheLoc Problem.
Such an FDS can be obtained as follows: We know because of the linearity of fi that in
regions where the completion times are linear, the minimal objective function value for this
region is obtained in a borderpoint of this region. Since we consider a network, such regions
will be subedges and borderpoints will be their endpoints. Therefore, finding a polynomial
number of regions with linear completion times yields a polynomial FDS.
Let

BNs,t = {x ∈ A (G) | rs (x) = rt (x)} (3)

be the points in the network where release dates of jobs s and t coincide, called the bot-
tleneck points of s and t, and

BN =
∪

s,t∈J

BNs,t

the set of all bottleneck points. Let IP1 be the set of points where two jobs have identical
remaining processing times, and let IP2 be the points where rφ(i) = Cφ(i−1) (S,X). It
can be shown that these points together with the node set V of the graph yield regions
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with linear completion times and that there are only polynomially many of these points.
Therefore, we get the following result:

Theorem 2. V ′ = V ∪BN ∪IP1 ∪IP2 is a polynomial size FDS for the SMUN ScheLoc
Problem with preemption for ∆ ≥ 0 and fi non-decreasing and linear for all i = 1, . . . , n.

If we can find these points in polynomial time, we get a polynomial time algorithm for the
SMUN ScheLoc Problem. Since the remaining processing times and the completion times
are dependent on the schedule, we can calculate IP1 and IP2 only for a given schedule.
For this reason we consider one edge e = (vk, vl) at a time and start in one endnode of
the edge, say vk. In this location we can calculate the optimal schedule by the SRPT rule.
Then we consider small changes ϵ > 0 of the location, i.e., we move the location towards
vl. This change of location induces a change of the release dates, the remaining processing
times, and the completion times of the jobs. We can show that using the schedule of
node vk, we can find the minimum ϵ yielding a point vk1 in V ′ in polynomial time. Since
by Theorem 2 the completion times are linear on the subedge (vk, vk1), this subedge is
dominated by one of its endpoints. We calculate the optimal schedule in vk1 and continue
this procedure finding points vk2 , . . . , vks until the smallest ϵ yielding a point in V ′ is larger
than dist (vks , vl), i.e., there is no further point in V ′ on edge e. We calculate the optimal
schedule in node vl and continue with the next edge. This procedure yields the following
result:

Theorem 3. The SMUN ScheLoc Problem with preemption for ∆ ≥ 0 and fi non-decreasing
and linear for all i = 1, . . . , n can be solved in polynomial time.
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1 Introduction

The well-known classical multiprocessor scheduling problem is a fundamental and well-
investigated scheduling problem both in the o�ine and the online setting. A set of n
independent jobs is to be processed on m parallel, identical machines in order to minimize
the makespan. In the online scenario each job must be immediately and irrevocably assigned
to one of the machines without any knowledge on future jobs. This problem was �rst
investigated by Graham who showed that the list scheduling algorithm has a performance
ratio of exactly 2− 1/m (Graham 1966) and is best possible for m ≤ 3 (Faigle et al. 1989).
A long list of improved algorithms has since been published. The best heuristic known for
this problem is contained in (Fleischer and Wahl 2000). They designed an algorithm with
competitive ratio smaller than 1.9201 when the number of machines tends to in�nity. The
best lower bound is 1.88 (Rudin 2001).

Recent research has focused on scenarios between o�ine and online scenarios where the
online constraint is relaxed but no full information on the input data is available. For a
survey on recent advances we refer to (Albers 2013). In this paper we consider the online
multiprocessor scheduling with the additional assumption that the sum of processing times
is given in advance. The resulting problem is denoted as the semi-online scheduling problem.

A less general semi online problem has been introduced in (Azar and Regev 2001), who
labeled it as the online bin stretching problem . A sequence of items is given and we know
that these items can be packed into m bins of unit size. The items are to be assigned
online to the bins and the aim is to minimize the stretching factor of the bins, i.e., to
stretch the sizes of the bins as least as possible such that all items �t in the bins. Thus, the
bin stretching problem can be interpreted as a special case of the semi-online scheduling
problem where, instead of the total processing time, the value of the optimal makespan
is known in advance. In the semi-online scheduling problem a total processing time of m
gives a lower bound of one for the optimal makespan, but it is possible that some items
have length greater than one which makes the analysis more complicated. For the bin
stretching problem, a sophisticated proof for an algorithm with stretching factor 1.625 was
given in (Azar and Regev 2001). In (Kellerer and Kotov 2013) an algorithm with stretching
factor 11/7 was proposed by using techniques of grouping bins into batches.

In a previous paper (Kellerer et al. 1997), an algorithm with performance ratio 4/3 for
the semi-online scheduling problem on two machines was given. This bound is best possible
for m = 2. In (Cheng et al. 2005) an algorithm is presented with performance ratio 1.6
for semi-online scheduling for an arbitrary number of machines. Moreover, the authors
established a lower bound of 1.5 for m ≥ 6 machines (Angelelli et al. 2004) contains a
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deterministic algorithm with performance ratio (1 +
√
6)/2 ≈ 1.725 and a lower bound

of 1.565. Recently, an improved lower bound is developed showing that no deterministic
semi-online algorithm for semi-online scheduling can attain a competitive ratio smaller
than ≈ 1.585 when m tends to in�nity (Albers and Hellwig 2012). Moreover, the authors
give a simple algorithm with performance ratio 1.75.

In this paper we will present an algorithm with competitive ratio ≈ 1.585, which is
equal to the lower bound of Albers and Hellwig. Thus, our algorithm is best possible for
large values of m.

2 Problem De�nition and Notation

We are given m identical machines and a sequence of jobs 1, . . . , n with processing times
p1, . . . , pn, which are to be assigned online to one of the machines. We assume that the
sum S =

∑n
j=1 pj of the jobs processing times is given in advance. W.l.o.g., S = m. The

objective is to minimize the makespan. We will usually speak of bins B1, . . . , Bm instead
of machines and of items with weights pj instead of jobs with processing times pj .

The weight of a bin B is de�ned as the sum of the weights of all items assigned to B,
and is denoted by w(B). When we speak of time j , we mean the state of the system just
before item j is assigned.

Let α be the positive root of the function f(x) = 4x3+4x2− 2x− 1. We will show that
the competitive ratio of our algorithm is equal to 1 + α ≈ 1.58504.

The items are divided into several classes. Items with weights in (0; α ≈ 0.585] are
called small, items in (α; 1

2α ≈ 0.8546] are called medium and items larger than 1
2α are

called large.
A bin B with w(B) ∈ (0; α2 ≈ 0.2925] is called tiny , for w(B) ∈ (0; α] it is called small ,

for w(B) ∈ (α; 1
2α ] it is called medium , for w(B) ∈ ( 1

2α ; 1] it is called big and for w(B) > 1
it is called huge. Big and huge bins are also denoted as large. Notice that each tiny bin is
small. If B contains a large item, it is called a large item bin . The number of empty bins,
tiny bins, small bins, medium bins and big bins is abbreviated by eB, tB, sB, mB and bB,
respectively. When a bin is closed, no more items can be assigned to that bin. Otherwise, it
is called open. If we want to specify the time j, we write eBj , wj(B) instead of eB, w(B),
respectively.

We denote by LB a lower bound for the optimal makespan which is recalculated
throughout the algorithm. Since S = m, we have LB ≥ 1. Each bin of the heuristic has a
capacity of (1+α)LB and we say that an item j �ts in a bin B, if w(B)+pj ≤ (1+α)LB.

3 Description of the Algorithm

In this section we will present a best possible algorithm for the semi-online scheduling
problem with competitive ratio 1 + α ≈ 1.585. This algorithm is split into two parts. The
�rst part (called Phase 1) is an adaption of Phase 1 for the bin stretching problem as
described in (Kellerer and Kotov 2013). It runs until the number of empty bins is around
one third of the number of small bins.

Denote by q1, . . . , qj the weights of the items at time j sorted in decreasing order, i.e.,
q1 ≥ q2 ≥ . . . ≥ qj . Then, an obvious lower bound LB for the optimal makespan is given by

LB = max{1, q1, qm + qm+1}. (1)

A formal description of Phase 1 of the algorithm is depicted in Figure 1. Note that the
numbering re�ects the priority rules for the assignment of item j, i.e., a packing option is
skipped if no bin exists which ful�lls the related condition and the next option is checked.
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Initially, the lower bound LB is set to one and it is recalculated each time when a new
item j arrives. Moreover, all bins are open in the beginning.

Let j be the current item to be assigned. Recalculate LB according to (1).
1. j is small:

(a) Put j in a large item bin B if j �ts in B, i.e., if w(B) + pj ≤ (1 + α)LB.
(b) Put j in a small bin B if B remains small, i.e., w(B) + pj ≤ α.
(c) Put j in an empty bin.

2. j is medium:
(a) Put j in an empty bin.

3. j is large:
(a) Put j in the small bin with largest weight.
(b) Put j in an empty bin.

Stopping condition: If
sB = 3eB + λ, 0 ≤ λ ≤ 3, (2)

close all huge bins and goto Phase 2.

Fig. 1. Algorithmic description of Phase 1

It can be shown that after Phase 1, there are no small bins or no big bins, i.e., sB = 0 or
bB = 0. Hence, we distinguish two cases for the algorithm. Consider �rst sB = 0. W.l.o.g.,
assume that the bins B1, . . . , Bk are open after Phase 1 and the bins Bk+1, . . . , Bm are
closed. Moreover, the open bins shall be sorted in decreasing order of their weights. During
Phase 2a an item is assigned to the bin with largest weight. If it does not �t, it is packed in
the bin with smallest weight. Afterwards, the bin with largest weight is closed. Throughout
the algorithm the open bin with maximum weight is denoted by Bmax and the open bin with
minimum weight by Bmin, respectively. A formal description of Phase 2a of the algorithm
is depicted in Figure 2.

Initialization: Set s = k (number of open bins).

Iteration j:

1. Let j be the current item to be assigned. Recalculate LB according to (1).
2. If s = 1, assign the remaining items to the last open bin and stop.
3. Put j in bin Bmax if j �ts in it. If j is put in bin Bmax and w(Bmax) + pj > 1, close bin Bmax

and set s = s− 1.
4. If j does not �t in Bmax, put j in bin Bmin, close bin Bmin and set s = s− 1.

Fig. 2. Algorithmic description of Phase 2 with no small bins

Phase 2b deals with the case where there are no big bins. By condition (2) there are
4k + λ empty or small bins after Phase 1 for some integer k ≥ 0. Among these 4k + λ
bins there are k empty bins and the remaining 3k + λ bins are small. These bins are now
partitioned into k so-called 4-batches B1,B2, . . . ,Bk. Each 4-batch B consists of four bins,
where the fourth bin B4 is an empty bin. If λ > 0, there is an additional batch Bk+1 of at
most three non-empty bins. W.l.o.g., a possibly existing tiny bin shall correspond to bin
B1 of 4-batch B1. Therefore, we may assume that all other non-empty bins are small, but
not tiny. Set k′ = k + 1, if λ > 0 and k′ = k, otherwise.

Throughout Phase 2b denote the open medium bin with maximum weight by Mmax,
the open medium bin with second largest weight by M2 and the open medium bin with
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smallest weight by Mmin, respectively. For the assignment of items to batches, we will
always use First Fit. The algorithm tries to assign an item j to the bins in the following
order: Mmax,M2, an open batch with smallest index if pj ≤ (1+α)/2, an open batch with
largest index if pj > (1+α)/2, Mmin. A formal description of Phase 2a of the algorithm is
depicted in Figure 3.

Initialization: Set µ = ` (number of medium bins) and τ = k′ (number of open batches).
Iteration j:

1. Let j be the current item to be assigned. Recalculate LB according to (1).
2. µ ≥ 1, j �ts in Mmax: assign j to Mmax. If wj(Mmax) + pj ≥ 1, close Mmax.
3. µ ≥ 2, j �ts in M2: assign j to M2. Close the bin with largest weight amongMmax and M2 after

assigning item j. Set µ = µ− 1.
4. τ ≥ 2, pj ≤ (1 + α)/2: let Bi be the open batch with smallest index. Assign j to Bi if it �ts.

Otherwise, close batch Bi and set τ = τ − 1. If τ ≥ 2, assign j to Bi+1.
5. τ ≥ 2, pj > (1 + α)/2: let Bi be the open batch with largest index. Assign j to Bi if it �ts.

Otherwise, close batch Bi and set τ = τ − 1. If τ ≥ 2, assign j to Bi−1.
6. τ = 1: assign j to last open batch Br if it �ts.
7. µ ≥ 3: assign j to Mmin, close Mmin and set µ = µ− 1.

Fig. 3. Algorithmic description of Phase 2 with no big bins

4 Conclusions

In this paper we have presented a best possible algorithm for the semi-online multipro-
cessor scheduling problem. It is a challenging open problem to close the large gap between
lower and upper bound for the bin stretching problem.
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1 Introduction

Meta-heuristic solution techniques have long been popular to solve large machine schedul-
ing problems. These techniques often rely on neighbourhood operators to move trough the
solution space in search of near optimal solutions. The quality of a neighbourhood operator
can be judged based on the solution quality, measured by the relevant objective function,
attained within a given time frame. Hence, the optimal neighbourhood is the one which
yields the best performance within the available time frame.

Recent research [Kerkhove and Vanhoucke, 2013], has proven the effectiveness of meta-
heuristic solution techniques for solving parallel machine scheduling problems with ma-
chines allocated to geographically dispersed production locations. This paper extends this
previous research by investigating the behaviour of neighbourhood operators in greater
detail.

The experiments presented in this paper show that the optimal neighbourhood for
meta-heuristic solution procedures can be a combination of neighbourhoods, rather than
a pure neighbourhood operator. More importantly, when examining the performance of
different neighbourhood combinations by gradually increasing the relative fraction of one
type of operator, the evolution the performance is not always linear. More specifically, un-
predictable optimal points for certain combinations are consistently observed when testing
on large datasets.

The optimal set of neighbourhood operators is also influenced by the size of the problem
and the computation time available. Hence, the performance of neighbourhood strategies
has to be controlled against both these dimensions.

The remainder of this document is organised as follows: section 2 presents an overview of
the parallel machine scheduling problem being studied as well as the meta-heuristic solution
techniques used. Next, section 3 shows the computational experiments and results. Finally
conclusions are presented in section 4.
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2 Problem description

The research presented here is based on a case study at a Belgian textile manufacturer,
more precisely a production line of circular knitting machines used to produce fabrics
for mattresses. The complete production line comprises multiple geographically dispersed
production locations, at each of which a number of machines are operating in a parallel
setup. These machines are unrelated, indicating that the production times of orders on these
machines depend on both the type of job and the machine on which jobs are scheduled. The
changeover times of these machines are sequence dependent [Zhu and Wilhelm, 2006], and
jobs have release- and due-date restrictions. The former are strictly enforced, whereas the
latter are penalised in the objective function, which is a combination of weighted tardiness
and lateness. Lateness is defined as a binary variable indicating whether or not a job is late,
whereas tardiness is defined as an integer variable signifying the number of days a given
job is late. Since distinct costs are associated to these variables, they are both included in
the objective function calculation.

The inclusion of geographically dispersed production locations has two very important
implications for the scheduling problem. Firstly, the due date of a job is location dependent
because transportation times differ between different production locations. Hence, produc-
tion on distant production locations will have to be completed earlier if the same delivery
deadlines are to be respected. Secondly, the objective function weights are impacted by
the location where an order has been produced. More specifically, in case an order has
been produced late the company will attempt to reduce the transportation time as much
as possible, which of course means incurring additional costs. Naturally these costs depend
on the distance an order has to travel to its delivery location. Hence, tardy orders which
were produced at production locations further from customer delivery locations will have
a more substantial impact on the objective function than other orders.

To avoid overfitting the specific case study, a data generation procedure was used to cre-
ate sufficiently large datasets to allow for generalisations of the results. Three key datasets
were created: a dataset for preliminary calibration (P1, n = 162)5 containing a wide range
of problem sizes, a dataset with small theoretical examples with 8 to 14 jobs to be scheduled
on 2 machines (DS1, n = 180), and a dat set with realistically sized problem instances of
750 jobs to be scheduled on 50 to 75 machines (DS2, n = 810). More information on these
datasets can be found in [Kerkhove and Vanhoucke, 2013].

Given the NP-hard nature of unrelated parallel machine scheduling problems [Al-
lahverdi et al., 2008], and the very large size of the problem under study, meta-heuristic
solution techniques are arguably most suited. In [Kerkhove and Vanhoucke, 2013] a hybrid
meta-heuristic procedure was developed which combined simulated annealing and a genetic
algorithm to solve this problem.

This approach was based on literature suggesting that combinations of memetic and
local-search based meta-heuristic techniques are likely to outperform the individual strate-
gies using either memetic or local search meta-heuristics individually [Behnamian et al.,
2009]. Given that simulated annealing [Radhakrishnan and Ventura, 2000,Lin et al., 2011]
and genetic algorithms [Behnamian and Ghomi, 2013] are frequently used, these techniques
were chosen to be combined in an integrated solution procedure.

3 Computational experiments regarding neighbourhoods

Several neighbourhoods were tested for use in the simulated annealing component of
this solution procedure: insertion, inversion and k-swaps. A k-swap is defined as a swap
5 n signifies the number of problem instances in the dataset.
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of k elements in the chromosome. Preliminary experiments indicated that these k-swap
operators were superior to other neighbourhood operators and further experimentation
focused on these neighbourhood operators.

To determine which of the k-swap operators yielded the best performance, more exten-
sive experiments were carried out. These experiments also explored intermediate strategies,
which combine different neighbourhoods according to predefined probabilities. These prob-
abilities where varied with 20% increments. The results of these experiments are shown in
figure 1. The x-axis on this figure indicates the fractions of swap operators used, a 2.2-swap
operator indicating that a 2-swap operator is used 80% of the time and a 3-swap operator
is used for the remaining 20% of the local search moves. These tests were all carried out
on the preliminary dataset P1 with a stopping criterium of 40,000 schedule evaluations -
approximately 1 second on a 2.5GHz processor.
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Fig. 1. Performance analysis of combinations of 2-swap and 3-swap neighbourhood operators for
various problem sizes

This experiment led to the counter-intuitive result that the heuristic achieved the best
solution quality by using large neighbourhoods on the smaller problem instances, and
smaller neighbourhoods on the larger problem instances.

A second round of testing used a full-factorial approach testing all swap combinations up
to 5-swaps, while also varying the available computation time on datasets DS1 and DS2. For
smaller problems these tests confirmed the earlier observation that larger neighbourhoods
indeed improved the performance of the meta-heuristic. However, most of this upward
potential was tapped once 3-swap moves or higher were used.

The results for large problem instances (see table 1) revealed a much more complex
pattern, where the effectiveness of the meta-heuristics did not have a strictly linear re-
lationship with the increasing size of the neighbourhood. For relatively low computation
times (1 million schedule evaluations - approximately 25 seconds on a 2.5GHz processor)
the smallest neighbourhood remained the most effective. However, as the computation time
increases, so does the size of the optimal neighbourhood. For situations where at least 5
million schedule evaluations were allowed, the optimal neighbourhood becomes a 2.8-swap
operator.

This performance does not adhere to a simple linear trend. When first increasing the
size of the neighbourhood by moving towards larger fractions of 3-swaps combined with
2-swaps the performance appears to decrease rather than increase. Notably, if only the per-
formance of pure strategies had been tested, the optimal approach would still be the 2-swap
neighbourhood - the solution quality of which is more than five times worse than that of
the 2.8-swap move. This illustrates the potential gains from using combined neighbourhood
strategies.
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Table 1. Solution quality relative to best known solution for different neighbourhood combinations
and calculation limits used in a simulated annealing meta-heuristics with re-heating and re-start
capabilities.

Neighbourhood Calculation limit (mio schedule evaluations)
1 2.5 5 10 20 40

2-swap 3.5235 3.3576 2.5563 2.3528 2.0811 2.021
2.2-swap 4.4727 3.4395 3.1967 2.7143 2.3867 2.3039
2.4-swap 5.6972 4.8404 3.4471 2.8238 2.7078 2.3918
2.6-swap 6.5826 4.3332 3.273 3.1459 2.3322 2.0599
2.8-swap 5.5564 3.8029 1.4202 0.9023 0.5676 0.3551
3-swap 10.0078 7.5349 5.0586 4.1312 3.2752 3.0054
3.2-swap 10.9892 9.7402 5.6465 5.1900 3.5546 3.4276
3.4-swap 11.7841 9.4398 6.4652 4.7653 4.4662 3.7759
3.6-swap 10.1112 9.2014 7.5856 5.5393 5.0843 4.4215
3.8-swap 13.2901 10.6292 8.4436 6.6913 6.187 5.5942
4-swap 14.6333 12.6707 10.8864 10.0622 8.5004 7.2355

4 Conclusions

The computational experiments above have shown that neighbourhoods for parallel
machine scheduling problems may be substantially improved by using combined rather
than pure strategies. More importantly, it has been shown that while there are linear
trends in the behaviour of combined strategies, local optima which go against these trends
do exist, and uncovering them may yield substantial improvements in terms of schedule
quality.

The presentation at the PMS conference will focus on the following aspects. First of
all, the specific problem under study, solution approach and experiment design will be
explained in greater detail. Secondly, the detailed results of the computational experiments
will be discussed. Finally, a number of recommendations for neighbourhood design will be
presented.

Future research on this subject should uncover the degree in which these trends are
problem specific or generally encountered in scheduling practice.
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1 Introduction

We examine a generalization of the classic parallel machine scheduling problem P ||Cmax.
We schedule a set J = {1, . . . , n} of n independent jobs on a number of identical parallel
machines without preemption such that the maximum completion time, or makespan, is
minimized. Each job j has an associated processing time pj ∈ N0 and is to be assigned to a
single machine. The m parallel machines are gathered in set M = {1, . . . ,m} and can each
process at most one job at a time. An undirected graph G = (J,E), subsequently referred
to as conflict graph, is part of the input. If {j, j′} ∈ E then jobs j and j′ are conflicting
jobs, and they need to be assigned to different machines. We call the resulting problem
the parallel machine scheduling problem with conflicts (PMC). This problem is NP-hard,
because PMC contains both P ||Cmax as well as the vertex coloring problem (VCP) as
special cases. It can be seen that a feasible schedule exists if and only if the conflict graph
can be colored with at most m colors; we will assume m < n to avoid trivial solutions. We
conclude that the problem at hand combines two very hard problems. Moreover, VCP is
hard to approximate, and it can turn out to be hard to quickly find even a feasible schedule
for a given instance.

The PMC is theoretically important because it generalizes two well-known problems
in combinatorial optimization, but it also naturally arises as (sub-)problem in a number
of practical applications in multiprocessor scheduling, TV advertisement scheduling and
audit scheduling. Concretely, PMC is for instance a subproblem of scheduling computing
services posed as the ROADEF/EURO Challenge 2012, which was furnished by Google; see
ROADEF (2012). Another example stems from Gaur et al. (2009), who schedule television
commercials in program breaks, where insertion of competing commercials into the same
break is undesirable.

PMC was already studied by Bodlaender et al. (1994). They obtained some hardness
and approximation results for specific graph types, but they did not develop any exact
algorithm. Bodlaender et al. (1994) present approximation algorithms for the case where
a k-coloring of the conflict graph is known a priori, where k + 1 ≤ m; the worst-case ratio
depends only on k and when m

k tends to infinity then the worst-case ratio tends to 2.
They also prove that, unless P = NP , no approximation algorithm can improve upon the
worst-case ratio of 2.

Problem P ||Cmax can be seen as a sort of “dual” to the bin packing problem (BPP),
where the bin capacities correspond to the makespan and the number of bins corresponds to
the number of parallel machines. A similar pairing can be observed between PMC and the
bin packing problem with conflicts (BPPC): the latter problem consists of packing items
in a minimum number of bins of limited capacity while avoiding joint assignments of items
that are in conflict. We immediately see that BPPC generalizes both BPP and VCP. This
problem has been recently studied by a number of researchers, see Sadykov and Vanderbeck
(2013) and Muritiba et al. (2010). The best exact algorithm was developed by Sadykov
and Vanderbeck (2013). They used their black-box branch-and-price solver BaPCod, which
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relies on a generic branching scheme and certain primal heuristics, together with a specific
pricing oracle. We will use this relationship between PMC and BPPC to obtain an exact
algorithm for PMC.

Notice that PMC is intuitively harder than BPPC: in PMC one has to assign jobs to
m machines in such way that conflicting jobs are assigned to different machines and such
that the makespan is minimized. From a VCP viewpoint, there is a hard constraint on the
number of colors that can be used (namely m). As a result, for a given PMC instance we
first need to verify whether there exists a m-coloring for the conflict graph: this is a priori
not known for a given instance. In some sense, we have to control (minimize) the makespan
and the number of colors at the same time to obtain a “good” feasible solution for PMC,
whereas in BPPC we only need to control (minimize) the number of bins (colors).

2 A MIP formulation for PMC

We formulate a natural Mixed Integer Program (MIP) model for PMC, as follows. For
every job j and machine i we introduce a binary variable xij that is equal to 1 if job j is
assigned to machine i and 0 otherwise. We also introduce a real variable y that will equal
the makespan of the schedule. A possible MIP model for PMC is then given by:

minimize y (1)

subject to
∑

i∈M

xij = 1 ∀j ∈ J (2)

xij + xij′ ≤ 1 ∀{j, j′} ∈ E,∀i ∈M (3)
∑

j∈J

pjxij ≤ y ∀i ∈M (4)

xij ∈ {0, 1} ∀j ∈ J, ∀i ∈M (5)
y ∈ R. (6)

The first set of constraints (2) ensures that every job is scheduled on exactly one machine.
Inequalities (3) force conflicting jobs to be scheduled on different machines. Inequalities (4)
guarantee that for each machine the makespan y is at least the total processing time
consumed on that machine. Although correct, this formulation is quite unpractical. One
reason for the high intractability of the formulation is the inherent symmetry: re-arranging
the indices of the machines leads to equivalent solutions. This has undesirable consequences
in a branch-and-bound (B&B) scheme: the number of equivalent solutions is exponential in
m and can lead to a lot of redundant work by a linear solver. One could resort to symmetry-
breaking constraints for reducing the redundant work by a linear solver; see Berghman et
al. (to appear). The work of Dell’Amico et al. (2008), however, suggests that the following
approach will perform better.

Looking closely at formulation (1)–(6), one can see that the formulation is almost
of a form on which Dantzig-Wolfe decomposition can be applied (see Martin, 1999). To
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elaborate this, we first rewrite the formulation (1)–(6) in matrix notation, as follows:

minimize y (7)

subject to
∑

i∈M

Inxi = en , (8)

(
−y
0

)
+

(
p
A

)
xi ≤

(
0
e|E|

)
∀i ∈M (9)

xi ∈ {0, 1}n ∀i ∈M (10)
y ∈ N0, (11)

where xi = (xi1, . . . , xin)
′ for each i ∈ M , p = (p1, . . . , pn), A is the edge-node incidence

matrix of the graph G = (J,E), en = (1, . . . , 1)′ ∈ {0, 1}n, e|E| = (1, . . . , 1)′ ∈ {0, 1}|E| and
In is the unity matrix of size n. In order to be able to apply Dantzig-Wolfe decomposition
we will switch to the decision variant of the optimization problem: we introduce an upper
bound C on the value of the objective function, and we denote the resulting decision
problem by PMC-DC (decision problem of PMC with makespan C), which is to determine
whether there exists a feasible schedule without conflicts and with maximum makespan C.
Variable y then disappears form the constraints and the resulting constraint matrix has a
block-angular structure.

PMC can then be solved by determining the smallest C for which PMC-DC yields a
“yes” answer; this will be achieved by a binary search algorithm. We have identical machines
and hence PMC-DC can be reformulated as follows: is it possible to partition the jobs in
at most m stable sets of G = (J,E) such that each stable set corresponds to a machine
that consumes at most C time units? This coincides with the decision form of BPPC.

3 Solving PMC-DC

Since PMC-DC is the decision variant of BPPC, one natural approach is to obtain sufficient
conditions for a negative answer; this is done by searching for lower bounds for BPPC. Let
L(I) be a lower bound for an instance I, then we know that the answer to PMC-DC is
“no” if L(I) > m. Muritiba et al. (2010) developed some heuristics and lower bounds for
BPPC. The algorithms for the computation of the lower bound that they propose, do not
make any assumptions on the conflict graph, and so we can implement their bounds into
the binary search procedure. For this procedure, however, we also need an exact procedure
for PMC-DC , for the cases where the lower bounds are less than m. Here we can turn
to solving the optimization version of PMC-DC , which is of course BPPC. Notice that
sometimes it can suffice to calculate the minimum objective of the LP relaxation of the
optimization version of PMC-DC .

Let SC be the set containing all the inclusion-maximal stable sets S of G = (J,E) with∑
j∈S pj ≤ C. We introduce a binary variable λS for each S ∈ SC such that λS is equal

to 1 if the stable set is chosen and 0 otherwise. The goal is to minimize the number of
stable sets of G = (J,E), that we select, such that each job is contained in one machine
schedule:

minimize
∑

S∈SC

λS (12)

subject to
∑

S∈SC :j∈S

λS ≥ 1 for each j ∈ J (13)

λS ∈ {0, 1} for each S ∈ SC (14)
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Objective function (12) minimizes the number of machines required for allowing a feasible
solution. Constraints (13) impose that every job has to be executed on a machine. The
answer to PMC-DC is “yes” if and only if the optimal solution to the problem (12)–(14)
has a value that is smaller than or equal to m.

Formulation (12)–(14) is solved using branch and price (B&P): at each node of a B&B
search tree, the linear relaxation of the above formulation is solved by column generation
to provide a lower bound. The calculation of this bound is achieved by iteratively solving
the restricted master problem (RMP), which is the linear relaxation of (12)–(14) with a re-
stricted number of variables, and the pricing problem, which determines whether to include
extra variables λS in the variable pool of RMP to improve its current solution (columns
with negative reduced cost). The pricing problem can be seen to be a knapsack problem
with conflicts (KPC); for solution procedures for KPC, we refer to Yamada et al. (1998),
where both heuristics (greedy algorithm and local search) as well as an exact algorithm
(implicit enumeration combined with an interval reduction method) are developed.

4 Some remarks

In our description supra, we utilize the relation between PMC and BPPC in the same way
as Dell’Amico et al. (2008) used the relation between P ||Cmax and BPP to obtain an exact
algorithm for P ||Cmax, but their overall algorithm for P ||Cmax was composed of a scatter
search heuristic followed by an exact algorithm based on binary search and B&P. They
were able to solve to optimality all the tested instances for the parallel machine scheduling
problem, which was at least partially the merit of the scatter search component of the
overall algorithm. This metaheuristic was able to solve a large number of instances within
few seconds on average, and provided good approximations for the remaining instances,
for which the B&P component subsequently found the optimal solution quickly, because
the gap between upper and lower bound was small. In order to produce a fully functional
and efficient algorithm, we still need to introduce heuristics (local-search-based or other):
for the overall algorithm to perform well, it is essential that the difference between lower
bound and upper bound be small before we start the binary search. For PMC, however,
finding a feasible schedule without conflicts amounts to coloring the associated conflict
graph with at most m colors, which is not an easy task. A possible avenue to pursue to
this respect is to follow Gaur et al. (2009) in turning the incompatibility constraint into a
“soft” constraint, allowing incompatible job pairs to be allocated to the same machine at
the expense of a penalty. Verifying the benefits of this idea will require further research.
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ti
ious a
tivities are in the set V ni.De�nition 1. A 
alendar is a fun
tion B : Z≥0 → {0, 1} with:
B(t) :=

{
1, if period t + 1 is a working period
0, if period t + 1 is a break.For ea
h resour
e k ∈ R a 
alendar BR

k that des
ribes the time periods where k is notavailable (e.g., weekends or holidays) is given. Based on the resour
e 
alendars of a proje
tone 
an derive 
alendars for ea
h a
tivity and time lag. With Ri := {k ∈ R | rik > 0} we
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2denote the set of resour
es that is ne
essary to 
arry out a
tivity i ∈ V . Then, an a
tivity
alendar Bi : Z≥0 → {0, 1} with
Bi(t) :=

{
mink∈Ri BR

k (t), if Ri 6= ∅
1, else
an be 
onstru
ted for ea
h a
tivity i ∈ V . A
tivities i ∈ V bi 
an only be interruptedat a point in time t with Bi(t) = 0. Furthermore, the exe
ution has immediately to be
ontinued at the next point in time t′ > t with Bi(t

′) = 1. This 
onvention is generallya

epted in pra
ti
e, in parti
ular, if the pro
essing of a
tivities requires the setup of
ertain resour
es like ma
hines or rea
tors. For non-interruptable a
tivities, i ∈ V ni, Ci :=
Si + pi = Si +

∑Si+pi−1
t=Si

Bi(t) holds, i.e., a non-interruptable a
tivity has to start at apoint in time su
h that pi working periods follow in the a
tivity 
alendar. The 
ompletiontime of the interruptable a
tivities, i ∈ V bi, depends on Si and is given by Ci := min{t ≥
Si + pi|

∑t−1
τ=Si

Bi(τ) = pi}.When regarding 
alendars we still 
on
entrate on start-to-start time lags be
ause arbi-trary time lags 
an be 
onverted into start-to-start ones by introdu
ing dummy a
tivitiesand dummy ar
s (Fran
k 1999). For every time lag between a
tivities i, j ∈ V an ar

alendar Bij resulting from the a
tivity 
alendars 
an be 
al
ulated.The renewable resour
es are divided into two groups. We di�erentiate between resour
esthat remain engaged during an interruption of a
tivity i ∈ V bi, like most ma
hines, andresour
es that are released during an interruption, e.g., workers. Moreover, parameter ρk ∈
{0, 1}, k ∈ R, equals 1 if resour
e k stays engaged during an interruption of an a
tivity ithat requires k. If resour
e k is released during an interruption of a
tivity i, it 
an be usedto 
arry out other a
tivities and ρk equals 0.Given a s
hedule S and a point in time t the a
tive set is the set of a
tivities that are inpro
ess (Neumann et al. 2003). Just like in proje
t s
heduling without 
alendars the a
tiveset 
an be given by A(S, t) := {i ∈ V |Si ≤ t < Ci}. The resour
e utilization rcal

k (S, t) ofresour
e k ∈ R at time t a

ording to s
hedule S 
an be 
omputed by
rcal
k (S, t) :=

∑

i:i∈A(S,t)∧Bi(t)=1

rik +
∑

i:i∈A(S,t)∧Bi(t)=0

rik ρk.Fran
k (1999) formulated the following 
on
eptional model for the RCPSP/max-
al,where d
cal is an upper bound for the shortest proje
t duration in 
alendarization:Minimize Sn+1subje
t to Sj−1∑

t=Si

Bij(t) −
Si−1∑

t=Sj

Bij(t) ≥ δij 〈i, j〉 ∈ A (1)
Si+pi−1∑

t=Si

Bi(t) = pi i ∈ V ni (2)
Bi(Si) = 1 i ∈ V bi (3)
rcal
k (S, t) ≤ Rk k ∈ R, t ∈ {0, 1, . . . , d

cal} (4)
Si ∈ {0, 1, . . . , d

cal} i ∈ V (5)Constraints (1) ensure the given temporal 
onstraints. Equalities (2) for
e a
tivities i ∈ V nito start at a point in time with pi working periods following, i.e., a
tivities i ∈ V ni are
arried out without interruption. Every a
tivity i ∈ V bi starts at the beginning of a workingperiod be
ause of 
onstraints (3). Inequalities (4) ensure that the given resour
e 
apa
ities
Rk are not ex
eeded at any time and 
onstraints (5) restri
t the domain of the start timesof a
tivities.
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33 MIP formulations for RCPSP/max-
alTo the best of our knowledge MIP formulations or exa
t solution pro
edures for theRCPSP/max-
al have not been dis
ussed in the literature before. Based on the introdu
ed
on
eptional model we will present di�erent MIP formulations for the RCPSP/max-
al.The models are based on time-indexed binary de
ision variables xit for ea
h a
tivity i andpoint in time t. In the �rst MIP formulation xit = 1 if a
tivity i starts at time t and xit = 0otherwise (Formulation-START). In the se
ond formulation xit = 1 if a
tivity i starts attime t or earlier (Formulation-CHANGEOVER), and in the third formulation xit = 1 ifa
tivity i is in progress at time t, where xit = 0 if Bi(t) = 0 (Formulation-EXECUTION).For reasons of spa
e we fo
us on one of the three formulations in the following, namelyFormulation-START. In our performan
e study all three formulations are investigated.Pro
edures to determine the earliest (ESi) and latest start time (LSi) for ea
h a
tivity(i ∈ V ) were developed by Fran
k (1999), Fran
k et al. (2001b), and Neumann et al. (2003).The set of all integer values from ESi to LSi is given by Wi and T represents the planninghorizon. The absolute time that has to pass between the start times of avtivities i and j(〈i, j〉 ∈ A) if a
tivity i starts at time t 
an be 
al
ulated with respe
t to the ar
 
alendar
Bij and is denoted by dijt. Then, Formulation-START 
an be given as follows:Minimize ∑

t∈Wn+1

t xn+1,tsubje
t to ∑

t∈Wi

xit = 1 i ∈ V (6)
∑

t∈Wi

(t + dijt)xit ≤
∑

t∈Wj

t xjt 〈i, j〉 ∈ A (7)
∑

t∈Wi

xit

min(T,t+pi−1)∑

τ=t

Bi(τ) = pi i ∈ V ni (8)
∑

t∈Wi

xit Bi(t) = 1 i ∈ V bi (9)
∑

i∈V

rik

∑

τ∈Tit

xiτ Bkit ≤ Rk k ∈ R, t ∈ {0, 1, . . . , T } (10)
xit ∈ {0, 1} i ∈ V, t ∈ Wi (11)The obje
tive is to minimize the proje
t duration. Constraints (7) ensure the given timelags. Equations (8) guarantee that a
tivities from set V ni are not interrupted during theirexe
ution. Due to 
onstraints (6),(9), and (11) every a
tivity starts at a feasible point intime where the 
orresponding a
tivity 
alendar equals 1. Constraints (10) are the resour
e
onstraints where Tit :=

{
max

{
τ ∈ {0, 1, . . . , t − pi} | ∑t−1

z=τ Bi(z) = pi

}
+ 1, . . . , t

}
∩ Wi
ontains all feasible start times of a
tivity i for whi
h i is in pro
ess at time t (max ∅ := −1).

Bkit := Bi(t)+(1−Bi(t)) ρk is always 1 if resour
e k stays engaged during an interruptionof a
tivity i. If resour
e k is released during an interruption of a
tivity i, Bkit is 1 if thea
tivity 
alendar of a
tivity i at time t is 1 and 0 otherwise. Therefore the left side of
onstraints (10) displays the resour
e requirement on resour
e k at time t and due to theseequations all resour
e 
onstraints are ful�lled.In order to redu
e the number of de
ision variables and with this to improve the MIPformulations, we determine an upper bound d
cal on the proje
t duration by adapting the se-rial s
hedule generation s
heme with uns
heduling step for the RCPSP/max (Fran
k 1999).
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4Con
erning 
alendarization the length of a longest path (indire
t temporal 
onstraint) be-tween a pair of a
tivities i, j ∈ V in the proje
t network N depends on the start timeof a
tivity i. In order to 
reate a matrix of longest path lengths between every pair ofa
tivities, we developed a method based on the Floyd-Warshall triple algorithm (Ahuja etal. 1993). With the help of this method a set of infeasible start times Ii 
an be 
al
ulatedfor ea
h a
tivity i ∈ V and the MIP formulations START and CHANGEOVER 
an befurther improved. The improved formulations have the su�x d
cal and I, respe
tively.4 Performan
e analysis & 
on
lusionThe 
omputational tests have been performed on instan
es that we adapted fromthe UBO test instan
es (Fran
k et al. 2001a). The planning horizon T was set to T :=∑

i∈V max
{
pi, max〈i,j〉 {δij}

}, four di�erent 
alendars were assigned to the resour
es, andthe amount of interruptable a
tivities was set to 60% and 80%, respe
tively. The MIPformulations were tested in the di�erent versions basi
, d
cal, and I. All tests were 
on-du
ted on an Intel Core i7 CPU 990X with 3.47 GHz and 24 GB RAM under Windows7 with CPLEX 12.5. The following table summarizes the results, where ea
h blo
k withalways 90 instan
es is denoted by the number of a
tivities and per
entage of interruptablea
tivities. Besides the average 
omputation times in se
onds, the per
entage of a
tivitiesfor whi
h an optimal solution was found and proven, for whi
h infeasibility was proven,and for whi
h neither optimality nor infeasibility was proven within six hours are given forthe best version of ea
h formulation.Table 1. Average runtimes in se
onds and per
entage of instan
es solvedSTART CHANGEOVER EXECUTIONtest set basi
 d

cal I opt inf h>6 basi
 d
cal I opt inf h>6 basi
 d

cal opt inf h>610-60 0.7 0.3 0.1 79 21 0 0.7 0.3 0.2 79 21 0 17.1 9.7 79 21 010-80 0.5 0.4 0.1 84 16 0 0.7 0.3 0.2 84 16 0 17.0 6.1 84 16 020-60 1316.5 841.9 560.7 75 25 0 69.4 50.6 35.1 75 25 0 4754.9 2193.8 75 19 620-80 992.1 788.8 636.5 78 21 1 52.2 41.0 35.1 78 22 0 4887.9 1696.0 78 18 450-60 / / 8264.7 60 4 36 / / 6226.2 69 8 23 / / / / /50-80 / / 7930.2 66 0 34 / / 6210.3 72 5 23 / / / / /As expe
ted, the average runtimes de
rease if fewer de
ision variables have to betaken into a

ount. Therefore, the best versions of the three formulations are START-
I, CHANGEOVER-I, and EXECUTION-dcal. As EXECUTION 
annot sti
k with theother formulations the instan
es with 50 a
tivities are tested ex
lusively with START-Iand CHANGEOVER-I. Summarizing, CHANGEOVER-I a
hieves the best results.Referen
esAhuja R.K., T.L. Magnanti, and J.B. Orlin, 1993, �Network Flows", Prenti
e Hall, EnglewoodCli�s.Fran
k B., 1999, �Prioritätsregelverfahren für die ressour
enbes
hränkte Projektplanung mit undohne Kalender", Shaker, Aa
hen.Fran
k B., K. Neumann, and C. S
hwindt, 2001a, �Trun
ated bran
h-and-bound, s
hedule-
onstru
tion, and s
hedule-improvement pro
edures for resour
e-
onstrained proje
t s
hedul-ing", OR Spektrum, Vol. 23, pp. 297�324.Fran
k B., K. Neumann, and C. S
hwindt, 2001b, �Proje
t s
heduling with 
alendars", OR Spek-trum, Vol. 23, pp. 325�334.Neumann K., C. S
hwindt, and J. Zimmermann, 2003, �Proje
t S
heduling with Time Windowsand S
ar
e Resour
es", Springer, Berlin.Zhan J., 1992, �Calendarization of time-planning in MPM networks", ZOR - Methods and Modelsof Operations Resear
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1 Introduction

In reality projects are subject to high levels of uncertainty. This might lead to sched-
ule disruptions that make the schedules obtained by solving the traditional resource-
constrained project scheduling problem (RCPSP) completely di�erent from the actually
executed schedules. That fact triggered the incorporation of uncertainty in the models and
methods for solving the RCPSP that were developed during the last decade.

The RCPSP is a complex problem to solve even when deterministic parameters are
assumed (Blazewicz et al. 1983). Consequently, solving the RCPSP incorporating uncer-
tainty is an extremely challenging problem. Therefore, the published methods for solving
the RCPSP under uncertainty have been based on its division into two easier steps. One is
the generation of an initial proactive robust baseline schedule, which is protected as much
as possible against disruptions. The second step aims to de�ne a reactive policy, which is
deployed when a disruption occurs. The drawback of such a division is that it does not con-
sider the dependency between the two steps, given that all the used robustness measures
(solution stability, expected makespan and timely project completion probability) depend
on both the proactive schedule and the reactive policy.

The contributions of this work are the following. First, we introduced a new robustness
measure, de�ned as the probability that the actually executed policy is identical to the
baseline schedule, which is independent of the reactive policy applied. Second, we propose a
formulation for the deterministic RCPSP, which is easily extensible for the case of stochastic
parameters. Finally, we developed a branch and cut algorithm to e�ciently �nd a robust
(purely) proactive baseline schedule, considering this new robustness measure.

2 Problem formulation

The most frequently considered approach in the literature in order to cope with uncer-
tainty is to assume that the non-dummy activity durations are stochastic variables with
a known probability distribution. Thus, we extend the traditional RCPSP as the problem
of �nding a non-preemptive schedule of minimal makespan subject to the probability that
the actually executed policy is identical to the baseline schedule is larger than or equal to
a prede�ned level.

We introduce a chance-constrained programming formulation for the RCPSP (C-C
RCPSP), based on the disjunctive graph G (V,E) introduced in Balas (1969). Therefore,
we will assume an activity-on-the-node (AoN) representation of the project. Each node
i ∈ V represents an activity and each edge (i, j) ∈ E represents a precedence relation.
Also, we will use the concept of a minimal forbidden set that was introduced in Igelmund
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and Radermacher (1983). A forbidden set is a set of activities (without precedence relations
between them) that cannot be in progress simultaneously because of resource limitations
due to some resource type. A minimal forbidden set is a forbidden set such that each of its
subsets is not a forbidden set. Let Φ be the set of all minimal forbidden sets.

Binary variable xij is equal to 1 if edge (i, j) is selected and 0 otherwise. Positive integer
variable Si represents the starting time of activity i ∈ V .

min Sn+1 (1)

subject to

xij = 1 ∀(i, j) ∈ E (2)

xij + xji ≤ 1 ∀(i, j) ∈ V × V, i 6= j (3)
∑

(i,j)∈F×F,i6=j

xij ≥ 1 ∀F ∈ Φ (4)

P

(
Sj − Si ≥M (xij − 1) + di
∀ (i, j) ∈ V × V, i 6= j

)
≥ 1− α (5)

xij ∈ {0, 1} ∀(i, j) ∈ V × V, i 6= j (6)

Si ∈ Z+ ∀i ∈ V (7)

Objective function (1) represents the starting time of (dummy) activity n+ 1 which is
equivalent to the project makespan. The set of constraints (2) states that for each original
precedence relation in E there is a selected edge in the graph. Constraints (3) ensure that
if i preceeds j, then j does not preceed i (and vice versa). Constraints (4) state that for
each minimal forbidden set F there is at least one selected edge. Constraint (5) ensures
that the probability that all the precedence relations hold is larger than or equal to the
con�dence level 1 − α (with M any upper bound on the project makespan). Constraints
(6) and (7) are the integrality constraints. Given the assumption that the vector of activity
durations d is integer, the integrality constraints (7) can be relaxed.

The above model is based on a formulation for the RCPSP that is slightly di�erent from
the one introduced in Alvarez-Valdés and Tamarit (1993). In the latter, the edges represent
either direct or transitive precedence relations, whereas in the formulation (1)-(7) the edges
represent only direct precedence relations. An advantage of our formulation is that it does
not require the introduction of the transitivity constraints.

3 Solution method

There are three main di�culties that make the C-C RCPSP model impractical to solve
by directly using the mixed integer programming methods: the feasible region de�ned by
the probabilistic constraint is not convex (Luedtke and Ahmed 2008), the probabilistic
constraint is hard to compute (Luedtke and Ahmed 2008) and the number of minimal
forbidden sets is exponential in the number of activities. The �rst and second di�culties
are tackled by a sample average approximation. The last di�culty is approached by a
branch-and-cut algorithm.

We use the sample average approximation (SAA) that is presented in Luedtke et al.

(2010). In such a method, the original distribution of the random parameters, in our prob-
lem the activity durations d ∈ Nn+2

0 , is replaced by an empirical distribution obtained
from a random sample. Under some conditions, a feasible solution of the SAA problem will
be feasible in the original C-C programming problem with a high probability. The only
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assumption made on the distribution of the random parameters is that it can be sampled
from.

A sample W is a set of realizations of the random activity durations vector, such that
W =

{
d1, . . . , d|W |

}
. Let a scenario w ∈ {1, . . . , |W |} be a realization dw ∈W .

The basic idea of the reformulation introduced in Ruszczynski (2002) is to solve a
problem that is infeasible for at most b|W | · εc realizations, thus the solution will be feasible
with a con�dence level (for the SAA problem) of at least (1− ε), with (1− ε) > (1− α).
Based on that idea, we reformulate C-C RCPSP as follows:

Let yw be a binary variable that takes the value 1 if the obtained solution is not
necessarily feasible for scenario w and 0 otherwise.

Probabilistic constraint (5) can then be replaced by the following constraints:

Sj − Si ≥M (xij − 1) + (1− yw) diw ∀(i, j) ∈ V × V, i 6= j, w ∈W (8)
∑

w∈W
yw ≤ b|W | · εc (9)

yw ∈ {0, 1} ∀w ∈W (10)

Constraints (8) state that each precedence relation holds if yw = 0. Constraint (9)
imposes that the maximum number of scenarios for which the solution is not necessarily
feasible is b|W | · εc. Thus, the SAA formulation for the original C-C RCPSP (SAA RCPSP)
is: minimize (1) subject to: (2)-(4), (6)-(10).

The lower bound obtained by solving the LP relaxation of the SAA RCPSP is weak
in general. We include a set of strong valid inequalities for general chance constrained
programming problems that were introduced in Luedtke et al. (2010). Also we propose a
heuristic method for the generation of good feasible solutions and a lower bound for the
SAA problem.

Given that the number of minimal forbidden sets is exponential in the number of
activities, we implement a delayed constraint generation method for including constraints
(4) in SAA RCPSP only when they are violated. We have proven that the separation
problem for these constraints is NP-hard. However, if we consider (non-necessarily minimal)
forbidden sets, the constraints (4) can be separated in polynomial time. We also propose a
heuristic separation method for generating only one violated forbidden set constraint per
iteration.

We embedded the constraint generation methods in the branch-and-bound tree, adding
the violated constraints as cuts. The combination of both methods generates a branch-and-
cut algorithm.

4 Results and conclusions

We tested the presented procedures on the 480 instances composed by 30 non-dummy
activities and 4 types of resources belonging to the PSPLIB library (Kolisch and Sprecher
1997). Since those instances were created for the deterministic RCPSP, we modi�ed them
in the following way: the activity durations di for each non-dummy activity i follow a
discretized beta distribution with shape parameters 2 and 5 and an expected value equal to
the duration in the original RCPSP instances. Also, we will consider three di�erent levels of
variability, which are obtained by changing the upper and lower limits of the distributions:
low variability [0.75 · E (di) , 1.625 · E (di)], medium variability [0.5 · E (di) , 2.25 · E (di)]
and high variability [0.25 · E (di) , 2.875 · E (di)].

The branch-and-cut algorithm was implemented in C++ using the CPLEX 12.5 API

and ran on a personal computer equipped with an Intel R© Core
TM

i7-2720QM 2.20 GHz
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and 4 Gb RAM. All the remaining algorithms presented in this paper were implemented
in C++ and ran on the same computer as well.

Our algorithm took an average time of approximately 1 second for optimally (or ap-
proximately) solving the instances. However, as soon as the con�dence level decreases, the
performance of the algorithm drastically decreases. It was possible to obtain feasible so-
lutions for all the instances with con�dence levels larger than 70% in computation times
smaller than 10 seconds. As expected, our algorithm in general outperformed two alter-
native methods published in the literature (Bruni et al. 2011, Van de Vonder et al. 2008)
considering this new robustness measure. Even more, it tended to outperform the other
methods considering the traditional measures.

Finally, we found two contributions from an algorithmic point of view. First, our branch-
and-cut algorithm can be applied to solve the traditional deterministic RCPSP. We can
predict a good performance, considering the relatively good computation times for the
RCPSP with stochastic activity durations. Also, the presented methods for obtaining lower
and upper bounds are quite �exible, therefore they could be applied for general mixed
integer chance-constrained programming problems.
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1 Introduction

In the context of highly congested call centers, the use of an alternative service channel

can be proposed to customers so as to balance workload and avoid excessive abandonments.

For example, the call back option can increase performance measures (see Armony and

Maglaras (2004a,b)).

In this project, we consider a call center modeling with a single customer type and a

callback option. We develop a method based on Markov chains to evaluate its performance

measures. We also provide an e�cient routing policy based on the number of reserved

agents for the inbound calls and the number of outbound calls.

First, we present the modeling of a call center with a callback option. Second, we

evaluate the performance measures. Third, we numerically study the general form of the

optimal curve relating the threshold and the number of waiting outbound calls.

2 Modeling

The arrival process of inbound calls is assumed to be a homogeneous Poisson process

with rate λ. There are s identical agents who can handle both types of jobs. We assume

that the service times of inbound or outbound calls are exponentially distributed with the

same rate µ.

154



2

The callback option is proposed to a newly arrival only when her expected waiting time

is too long (i.e. too many waiting calls in queue 1). We de�ne a limit k (k ∈ N) in the

number of waiting calls in queue 1. Upon her arrival, a customer can �nd three situations.

If at least one agent is available then she is routed to one of the idle agents. Otherwise if

the number of waiting calls in queue 1 is strictly lower than k, the callback option is not

proposed and she waits in queue 1. If this number is higher than or equal to k the callback

option is proposed. The customer reaction is assumed to be probabilistic. Directly upon

arrival, she decides to accept the callback with a probability q and goes to queue 2 or she

decides to wait in queue 1 with a probability 1 − q (q ∈ [0, 1]).

We consider a threshold policy inspired by Bhulai and Koole (2003) and Legros et al.

(2013). The inbound calls have a non preemptive priority over the outbound ones. Let us

denote the threshold by c, 1 ≤ c ≤ s. When an agent becomes idle, she handles the call

in queue 1, if any. If not, the agent may either handle a call in of queue 2 if any, or she

remains idle. If the number of idle agents (excluding her) is at least s − c, then the agent

in question handles an outbound call (from queue 2). Otherwise, she remains idle. In other

words, there are s − c agents that are reserved for inbound calls.

In this project, we propose a threshold policy which adjusts the threshold as a function

of the number of outbound calls in queue 2, denoted by y (y ∈ N). We want to minimize the

expected waiting time of the outbound calls, denoted by E(W2) and respect a constraint

of service level, denoted by w∗
1 on the expected waiting time of the inbound calls, denoted

by E(W1).

3 Performance Measures in the case c(y) = c

In Theorem 1, we give the expression of the expected waiting time for inbound calls,

E(W1), and the proportion of customers who asks for a callback, π. We also provide a

numerical method to compute E(W2).

Theorem 1. For 1 ≤ c ≤ s, we have

π = p0,0

q
(

a
s

)k as−cc!
s!

1 − a(1−q)
s

ac

c!

1 − q a
c

as−cc!
s!
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, (1)
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4 Optimal Curve via Dynamic Programming

In this section we propose to �nd the optimal curve via dynamic programming. We

denote by c1 and c2 the costs of a waiting customer in queue 1 and in queue 2, respectively.

Note that we assume c2 < c1. We denote by Vn(x, y) the expected costs over n steps. We

have

V ′
n+1(x, y) = c1(x − s)+ + c2y (3)

+
λ

λ + sµ
(1x<k+sVn(x + 1, y) + 1x≥k+s(qVn(x, y + 1) + (1 − q)Vn(x + 1, y))

+
µ

λ + sµ
(min(x, s)Vn(x − 1, y) + (s − min(x, s))Vn(x, y)) ,

and

Vn+1(x, y) =





V ′
n+1(x, y) if x ≥ s

min(V ′
n+1(x, y), V ′

n+1(x + 1, y − 1)) if x < s
(4)

The long-term average optimal actions are a solution of the optimality equation TV =

g + V . Another way of obtaining them is through value iteration, by recursively de�ning

Vn+1 = TVn, for arbitrary V0. In the expression it is optimal to schedule an outbound call

only if V (x + 1, y − 1) < V (x, y). With this relation we can numerically build the optimal

curve y(c).

5 Numerical Analysis

In Figure 1 we present various examples of optimal curves corresponding to di�erent

values of the parameters c2, λ and q. Note that the impact of k would be similar to the

one of q. The optimal curves c(y) are increasing and concave in y. Figure 1(a) informs

that the threshold decreases as c2 decreases. The reason is the relative importance to

inbound calls compared to outbound ones. When this di�erence is important there is an

opportunity to reserve agents for inbound calls. The opposite is true when this di�erence

is not signi�cant (see example with c2 = 0.8). Figure 1(b) reveals that the threshold is
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not a monotonic function of the workload. For light workload (see example with λ = 1)

because most of the calls do not wait, the reservation for inbound calls does not need to

be important. Recall that the reservation always deteriorates the overall expected waiting

time. For higher workload, when the expected waiting time is signi�cant for inbound and

outbound calls, we have shown with the evaluation of the performance measures that the

proportion of outbound calls increases as a function of the workload. Thus the reservation

for inbound calls has to reduce since the inbound calls are relatively less numerous in the

call center. This explains the position of the curves in Figure 1(b). Figure 1(c) con�rms the

impact of q. As q increases, the proportion of outbound calls increases and the overall cost

of outbound calls in queue 2 also increases. Thus the reservation for inbound calls should

decreases and the threshold increases.

�

�

��

��

��

��

��

� �� �� �� �� �� �� �� 	�


����	


�����


�����


������


�������

�

�

�

�

(a) Impact of c2 (λ = 4, q =
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(c) Impact of q (c2 = 0.05,

λ = 4)

Fig. 1. Optimal curve(µ = 0.2, s = 28, c1 = 1, k = 5)

6 Conclusion

The optimization problem is answered through the building of an optimal curve c(y).

The general equation of this curve is c(y) = cn∗(y) + Iy≥y1 + Iy≥y2 + · · · + Iy≥yr , with

1 ≤ n∗ < y1 < y2 < · · · < yr and 1 ≤ r ≤ s − n∗. For future research, it would

be interesting to evaluate via closed form expressions, the performance measures on the

optimal curve.

157



Bibliography

Armony, M. and Maglaras, C. (2004a). Contact Centers with a Call-Back Option and

Real-Time Delay Information. Operations Research, 52:527�545.

Armony, M. and Maglaras, C. (2004b). On Customer Contact Centers with a Call-Back

Option: Customer Decisions, Routing Rules and System Design. Operations Research,

52(2):271�292.

Bhulai, S. and Koole, G. (2003). A Queueing Model for Call Blending in Call Centers.

IEEE Transactions on Automatic Control, 48:1434�1438.

Legros, B., Jouini, O., and Koole, G. (2013). Adaptative Call Center Blending. Working

paper. Ecole Centrale Paris.

158



1

Payment models and net present value optimisation for
project scheduling

Pieter Leyman1 and Mario Vanhoucke1,2,3

1 Ghent University, Belgium
2 Vlerick Business School, Belgium
3 University College London, UK

pieter.leyman@ugent.be, mario.vanhoucke@ugent.be

Keywords: Net present value, payment models, project scheduling.

1 Introduction

Project scheduling, and in specific resource scheduling, has been extensively discussed
in academic literature. Based on the overview of Hartmann and Briskorn (2010) it can
be seen that recently relatively little research has been done regarding net present value
(NPV) maximisation. We hope to remedy this by doing research on project scheduling,
net present value and payment models. The latter determine when and how much cash
is received and paid, and have a direct influence on the project NPV. Furthermore, the
payment models in literature typically assume payment times which are fixed in advance,
whereas e.g. Dayanand and Padman (2001) determine the payment times as part of their
proposed solution method. We aim to find a middle ground between on the one hand the
payment models with fixed payment times and the method proposed by Dayanand and
Padman (2001) on the other hand, by fine–tuning our algorithm on a selected payment
model and not simply take the payment structure as given.

In this abstract, a brief overview is given of the current focus of the research with
respect to payment models and NPV. As such, section 2 discusses the concrete problem
under consideration. In section 3 the crucial parts of the proposed algorithm are highlighted,
whereas section 4 displays some preliminary results. Finally, section 5 offers both a brief
summary and ideas for future research.

2 Problem description

The project scheduling problem which we discuss is the multi–mode resource–constrained
project scheduling problem with discounted cash flows (MMRCPSPDC). This problem ex-
tends the traditional resource–constrained project scheduling problem (RCPSP) by adding
multiple execution modes for each activity, and by including cash flows. This means any
method which aims to solve the MMRCPSPDC will have to make an additional trade–off,
i.e. between the different modes of each activity. Furthermore, the problem’s objective is
no longer to minimise project duration, but rather to maximise the project NPV. Hence,
both extensions greatly increase the problem’s complexity. For a mathematical model for-
mulation of the MMRCPSPDC, we refer to Mika et. al. (2005).

In the presentation we will discuss the MMRCPSPDC and make use of the payment at
activities’ completion times (PAC) payment model, others may be discussed as extensions.
We analyse the model from the point of view of the contractor and assume cash outflows
occur once an activity has been completed, since this is often the case when we work with
subcontractors and these are paid once an activity has been completed. For the PAC model
cash inflows also occur at the end of each activity. As such, both cash flows can be summed
up to yield a single net cash flow, which will be either positive or negative. This way, each

159



2

activity will contribute either positively or negatively to the project NPV, and the former
should be scheduled as early as possible, whereas the latter as late as possible.

3 Methods

Although the MMRCPSPDC has already been discussed in several papers (see e.g.
Ulusoy et. al. (2001) and Mika et. al. (2005)), none of these algorithms are fine–tuned on
a specific payment model. We propose a genetic algorithm (GA), where for each payment
model a set of scheduling methods and genetic operators is chosen, which lead to the best
results for that payment model. Since the majority of our current research is on the PAC
model, we will only discuss our proposed algorithm for this model.

For preprocessing we employ the same three steps as used by Hartmann (2001) in order
eliminate unfeasible and inefficient modes, and redundant non–renewable resources. We
start from a population consisting of both a set of elements with random mode lists, and
one with mode lists determined based on the best performing mode selection rules. Doing
so results in a quite diverse initial population.

Next, we have tested several schedule generation schemes, and our results are in line
with Vanhoucke (2010), who conclude that a bi–directional generation scheme combined
with a multi–pass forward–backward improvement method performs best. For testing, we
have employed the j10, j20 and j30 datasets from PSPLIB. Since these datasets do not
contain any data on activity cash flows, we have generated our own cash flow data. As
stated above (see section 2.2) for the PAC payment model a single net cash flow suffices
since both cash in– and outflows occur at activity completion times. Therefore, we have
decided to generate cash flows with a predetermined percentage of negative cash flows,
which varies throughout the datasets from 0 to 100% in steps of 20%. The results are
shown in table 1. Note that the table illustrates some of the alternatives which we tested,
but definitely not all of them.

The first column shows the datasets, whereas the next columns display the results
for the GA with the proposed scheduling method, with only a serial schedule generation
scheme (SSGS), and with a SSGS extended with a backward improvement. It is clear that
the GA–Bi option outperforms both others for all three datasets, based on an ANOVA
test. Only the difference between GA–Bi and GA–SS+ for the j10 dataset is not significant
at the 5% significance level.

Table 1. Comparison of scheduling methods

Dataset GA–Bi GA–SS GA–SS+
j10 2330.59 2318.34 2326.75
j20 4195.02 4159.72 4168.19
j30 5871.30 5797.44 5808.87

In terms of a selection operator, tournament selection performed best, whereas the one–
point crossover outperformed all other crossover operators. Finally, for mutation we apply
a swap operator which not only swaps modes in the mode list, but also activities in the
priority list. Furthermore, the mutation percentage changes dynamically as the algorithm
progresses.
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4 Results

We have compared our GA with a memetic algorithm (MA) proposed by Chen and
Chyu (2008). The results are shown in table 2. The first column displays the tested dataset,
whereas columns 2 and 3 show the average NPV for both algorithms. Column 4 gives the
percentage improvement of the GA compared to the MA, and the final column displays
the p–value of the corresponding paired–samples T–test.

Table 2. Comparison between GA and MA

Dataset GA MA GA vs MA p–value
j10 2330.59 2239.87 +3.87% 0.000
j20 4195.02 3887.28 +7.92% 0.000
j30 5871.30 5335.07 +10.05% 0.000

Based on the results in table 2 it should be clear that our proposed GA outperforms
the MA for all three datasets. Furthermore, the larger the number of activities in a project,
the better the GA performs in comparison with the MA.

5 Conclusions and future research

In this abstract we have discussed payment models for project scheduling problems, con-
cretely for the MMRCPSPDC. Next, we have given an overview of our GA and compared
it with an existing algorithm from literature. Finally, we have shown that our proposed
algorithm outperforms the MA of Chen and Chyu (2008).

In the future, we aim not only to compare our GA with more algorithms from literature,
but also to extend it so it can be efficiently applied to other payment models.
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1. Introduction 

Computational grid is a computing environment dedicated to execute applications with large 

computational requirements. These applications are mainly scientific applications developed for 

using in many areas, such as astronomy, bioinformatics, biology, climatology, high-energy 

physics, meteorology, oceanography, seismology and others. Many of them are composed of 

multiple simpler components (tasks) that process large data sets, execute scientific simulations, 

communicate and interact with each other over the course of the application in order to share data 

and pass the control. The tasks are very often precedence-related, and the precedence constraints 

usually follow from the transmission of data files (i.e.,  output of one task becomes an input for the 

next task) and/or the control flow between two computational tasks. Such complex applications 

consisting of various precedence-related transformations (tasks) performed on certain data 

between which data files have to be transmitted very often are called workflow applications. In 

general, two types of workflows can be distinguished: data-intensive, where transmitted files are 

very large and therefore file transfer times are comparable or greater than the times of 

computational tasks, and compute-intensive, for which file transmission tasks do not occur or 

transferred files are so small that the transfer times can be neglected. Workflow applications are 

usually very time-consuming (even if single tasks are short) and input/output data files for tasks 

can be large. Execution time of a single workflow application usually ranges from several hours to 

several days, although it may as well be much larger. For efficient execution of both types of 

workflows, high computing power is required, due to a large amount of computations and data 

involved. This computational power can be provided by a computational grid, because the tasks of 

workflow applications have one interesting feature – they can be executed asynchronously.  

There are at least several approaches to grid resource allocation. They differ among themselves 

depending on the grid architecture, purpose of a particular grid, and grid management policies. 

Depending on the architecture, two types of grids can be distinguished: peer-to-peer and 

centralized grids. In the peer-to-peer grid all services are equal and communicate using a peer-to-

peer model of the network. In the centralized grid a grid resource management system plays a 

central role and is surrounded by many other grid services structured in a layered architecture. In 

such grids, there is usually one common, central grid broker or grid resource manager that serves 

all users and their jobs. Such a situation is considered in this work. 

The modern grid resource management involves possibly several layers of schedulers. At the 

highest level are metaschedulers (or grid-level schedulers), which usually have a more general 

view of the resources but it does not own any resource of the grid where the application will 

eventually run. At the lowest level is a local resource management system that manages a specific 

resource or a set of resources, but it does not know too much about other resources of the grid. In 

this paper we consider the metascheduler level only as a mechanism which should be superior to 

others. 

2. Problem formulation 

In this paper we use the model which was presented by Mika et al. (2011) where the following 

assumptions were made concerning both the workflow application and the computational grid. 

The workflow application consists of two sets   and   of interrelated tasks. These sets contain  

computational and data transmission tasks, respectively. The structure of a workflow is 

represented by a directed acyclic graph        , where each vertex corresponds to a 

computational task, and each arc represents a precedence relation between two computational 
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tasks. Each arc (     )    corresponds to a transmission task, i.e., represents a data transmission 

between two successive computational tasks      and     . Computational tasks are 

nonpreemptable, i.e., once started they have to be completed with no interruptions and no changes 

in resource allocation. Each computational task      may be executed in exactly one node, and 

is characterized by three values: its size   , i.e., the execution time on a standard processor 

(processors), the number    of processors  required for its execution, and the minimal speed factor 

   of the processors required. The actual processing time of a task      executed on processors 

with speed factor     (such that      ) is calculated using function          . We assume that 

   is calculated by dividing the task size by the speed factor of the processor (processors) on which 

this task is scheduled, i.e.,           . Transmission tasks (     )    are also 

nonpreemptable, and they are characterized by two values: the size     of the data file (files) to be 

transmitted, and the required bandwidth     between the two nodes between which the 

transmission is to be performed. The transmission time (i.e. the execution time of a transmission 

task) is calculated as                    can take one of the following two values: the data file 

size divided by the bandwidth, when successive computational tasks    and    are executed in 

different resource nodes, or zero, when they are executed in the very same resource node. 

A grid is a set of network nodes connected by fast network links. Its topology is represented by 

an undirected multigraph        , where   is the set of nodes and   is the set of network links. 

There are two types of nodes in the network: resource nodes (containing computational resources) 

represented by set   and non-resource nodes (considered only with respect to the network 

topology) represented by set  . Of course,      . Between two given network nodes     

and     there can be more than one network link                         , and these 

links may have different parameters. Bandwidth   
  

 of each network link between each two 

connected nodes (i.e. links       ) is given, and it is identical in both directions.  However, these 

are alternative links and they cannot be merged in order to increase bandwidth. Bandwidth within 

a given node is unlimited. Processors in each resource node   ,             are divided into 

types, depending on their power. The power (processing speed) of each processor is given by a 

function of some standard unit. The form of this function is identical for all processors of a given 

type. We assume a linear form of the processing speed function, as "a speed factor multiplied by 

the standard unit", where speed factor is equal to   . A processor with a speed factor equal to 1 we 

call a standard processor. The number of processors of type   available in resource node    is 

equal to    . 

3. Resource allocation 

There are several types of computational applications, which can be executed in the 

computational grid environment. Some of them consists of many short computational tasks which 

often communicate among themselves sending small volumes of data. But there exist other types 

of applications, commonly known as workflow applications, which consist of a set of precedence-

related and very time consuming computational tasks performed on some large data files.  

It is not justified to apply procedures of metascheduler for the first case, because the time 

necessary to obtain a good schedule may be longer than the time by which the schedule length will 

be improved, but it is strongly recommended in the case of workflow applications, because the 

time necessary to find a good resource allocation is very short in comparison to the execution time 

of the workflow application. 

In this paper we propose a metascheduling approach consisting of two phases. In the first 

phase a set of feasible resource allocation for the workflow is found. In the second phase, we try to 

find the one resource allocation for which the obtained schedule optimizes the chosen optimization 

criterion. In this work we consider the makespan as a scheduling criterion, but some other 

measures like resource levelling or financial objectives including energy saving. 

The first phase of the presented approach is used to find a feasible resource allocation, which 

is defined as a process of assigning computational tasks to resource nodes, and assigning 

transmission tasks to connections of required bandwidths. For this the algorithm RA-TT proposed 

by Mika et al. (2011) is used to find feasible resource allocations for so called tri-tasks. A tri-task 

〈     〉 is defined as a triple (   (     )   ) consisting of two consecutive computational tasks    

and    as well as a transmission task (     ) between them. A feasible resource allocation      for  
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tri-task 〈     〉 is a pair of resource nodes (     ) such that: (i) each computational task is 

assigned to a resource node which is capable of executing this task, (ii) a transmission task is 

performed over the path such that bandwidths of all network links of this path are greater than or 

equal to the required bandwidth of the transmission task. Algorithm RA-TT is executed for each 

tri-task 〈     〉 in the following way. Firstly, it removes from the graph representing the structure 

of the grid all connections for which transmission requirements are not fulfilled. Next, it finds in 

the reduced graph, all maximal connected subgraphs (so called subgrids). For each subgrid it finds 

two sets of resource nodes: a set    of locations where task    can be executed and a set    where 

task    can be executed. As a result a set     that is the set of all feasible resource allocations       

for tri-task 〈     〉 of a workflow   is obtained. This set contains pairs of locations (     ), 

where    is a location where task     can be performed,    is a location where task    can be 

performed, and there exists a path between these locations with bandwidth at least equal to the 

required bandwidth of a transmission task (     ). 

After the execution of the algorithm RA-TT for each tri-task occurring in the workflow 

application we obtain a set of all feasible resource allocations for all tri-tasks. Unfortunately, some 

of these resource allocations, i.e., pairs of locations         are infeasible, if task dependencies 

are taken into account. There are three types of task dependencies. Two tri-tasks 〈     〉 and 

〈     〉 are dependent tri-tasks, if one of the following cases occur: 1)    , 2)    , or 3) 

   . Resources have to be allocated to dependent tri-tasks in such a way that the computational 

task occurring in both dependent tri-tasks is assigned to the same resource node of the grid  . 

Thus, another algorithm  is required to remove all such infeasible resource allocations resulting 

from tri-task dependencies. Mika et al. (2011) proposed for this purpose another algorithm called 

RA-W, which results in finding one feasible resource allocation. In this work an alternative 

approach is proposed. We use a part of the algorithm RA-W to remove all infeasible resource 

allocations for all dependent tri-tasks, i.e., it removes from the sets     all resource allocations for 

which there is a conflict with resource allocations for at least one dependent tri-task. As a result we 

obtain sets of resource allocations   
  

.  The generation of the feasible resource allocation for the 

entire workflow has been moved to the second phase of the presented approach.     

4. Metascheduling 

The problem of finding a schedule for which the makespan is minimized is NP-hard because if 

we take into account only one resource allocation then the problem can be treated as MRCPSP, 

which is also NP-hard. Thus, it is justified to use metaheuristic approaches to solve the considered 

problem. Since, some time ago (Józefowska et al. 2001) developed a simple and effective 

simulated annealing algorithm for the MRCPSP, we use some ideas from that approach in this 

work developing simulated annealing algorithm for the considered problem. The main idea of the 

new approach is to use a representation of the solution that allow to represent different feasible 

resource allocation as well as different schedules for this resource allocation. The representation 

will be described later. Now it will be described how this algorithm works. 

After the execution of the resource allocation phase we have the sets of feasible resource 

allocations   
  

 of all tri-tasks, and we can start to construct a feasible resource allocation for the 

entire workflow  . Let’s assume that pairs   
  

 (     ) can be treated as domino bones with   

spots on the left end, and   spots on the right end. Now, the problem consist in covering all arcs of 

workflow   with those domino bones in such a way that arc         is covered with a bone from 

set   
  

 and, of course, in each node every bone must have the same of spots on the nod-adjacent 

end. Notice, that the orientation of a domino bone is important, because we try to cover directed 

graph, and therefore the left end of the domino bone have to be placed to the start of the arc, and 

right end of the same domino bone have to be placed to the end of the same arc. Of course, it is 

possible that in some cases there will be more than one feasible resource allocation for the entire 

workflow possible. In such a case it is necessary to define rules for choosing only one such 

allocation. In the proposed approach feasible resource allocation is generated according to the part 

of the solution representation responsible for assigning computational tasks to resource nodes, and 

assigning transmission tasks to connections of required bandwidths. 

Now, for a given feasible resource allocation the scheduling algorithm works as follows. 

Firstly, we remove all resource constraints and find the length of the critical path using the Critical 
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Path Method (CPM) assuming that all computational tasks are executed on the fastest available 

processors, and the transmission tasks are performed over the shortest connection path. The 

obtained schedule length is treated as a lower bound for the considered instance of the problem. 

Next we check if any resource conflict occurs. If not, then the obtained schedule is the optimal one 

for this resource allocation, and the obtained schedule as well as feasible resource allocation are 

stored in the memory, and we pass to the generation of the next feasible resource allocation. If yes, 

then we check if it concerns network resources only. In such a case, we try to find alternative path. 

If it is impossible or resource conflicts concern computational resources we treat this schedule as 

infeasible one, and try to find a schedule in another more complicated way using simulated 

annealing algorithm in which a special representation of the solution as well as the corresponding 

neighbourhood generation mechanism are used. 

In this representation we use three lists. The first one, with size equal to the number of tri-

tasks, represents the choices of elements from sets   
  

. Of, course these choices have to represent a 

feasible resource allocation for the entire workflow  . The second one, which size is equal to the 

number of computational tasks, contains the execution modes of the corresponding computational 

tasks. The third one, which size is equal to the sum of numbers of computational tasks and 

transmission tasks is a precedence feasible lists of tasks (both computational and transmission 

ones), which represent the priority of the task. This priority is used during the procedure which is 

used to construct a feasible schedule. A list of tasks is precedence feasible if: i) each computational 

task occurs after all its direct predecessors and before all its direct successors, ii) each transmission 

task (     ) occurs after the computational tasks    and before computational task   . We use a 

modified version of the well-known Serial SGS (Schedule Generation Scheme) as a decoding rule 

which is used to construct a schedule from the considered two list representation of the solution. 

The main idea of this procedure is very simple. It takes consecutive tasks from the list of tasks 

according to their priorities and try to schedule them as soon as possible. It means that the earliest 

feasible start time for a given task always occurs after the completion time of all the direct 

predecessors of it. Moreover, in order to schedule a given task at time   it have to be guaranteed 

that all required resources are available in sufficient amounts for the whole duration of this task. 

The main differences between the standard version of the serial SGS and our modified version is 

that in the presented approach we have resources distributed over several locations, and that we 

have two types of tasks. Computational tasks are scheduled as soon as possible after all its directly 

preceding transmission tasks are completed and sufficient amounts of required resources are 

available for the duration of this activity in the proper location. Transmission tasks are scheduled 

as soon as possible after the directly preceding computational task is finished. Network resources 

are allocated to the transmission task according to the shortest (in terms of the number of nodes) 

path calculated during the execution of the considered procedure. 

Now, when we have defined the representation of the solution and the decoding rule we can 

define the neighbourhood generation mechanism. The first list is always generated in random way 

taking into account the dependencies of tri-tasks. The new mode assignment is obtained by 

randomly choosing an activity and executing it on the next group of processors with lower or 

higher speed factors. Finally, the priority of all tasks defined by the third list can be changed using 

the shift operator. 

The performance of the proposed approach has been checked on the basis of computational 

experiment that uses some synthetic data. 
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1. Introduction 

The classical resource-constrained project scheduling problem (RCPSP) deals with scheduling 

of n activities to minimize the project makespan, subject to the technological precedence constraints 

and the limited availability of resources. While the resource allocation over the duration of each 

activity is given and normally constant in the RCPSPs, in this research, it is not necessarily the case. 

Here, we allow resource usage to vary over the activity duration, thus, yielding a nonconstant 

resource usage profile. Under these new circumstances, the resource usage in each time period and 

the duration of each activity are unknown a priori and, thus, need to be simultaneously determined 

while scheduling activities by their starting times. This problem is termed here as the RCPSP with 

Flexible resource profiles (FRCPSP), a generalization of the RCPSP. 

The FRCPSP simultaneously determines an optimal schedule of activities and their resource 

profiles that minimize the project makespan. Each activity requires, once started, one nonpreemptive 

profile per resource over its entire processing time. The project schedule must also observe all 

precedence requirements depicted in a precedence network, namely finish-start with zero time lag 

between two activities. The flexible profiles must additionally satisfy the following constraints: (1) 

The total amount of each required resource assigned to each activity over its duration must at least 

satisfy its resource requirement. (2) There must be at least a number of consecutive periods having 

a constant resource usage, called the minimum block length (Fündeling and Trautmann 2010). (3) 

The resource usage per time must be within a specified range designated by a lower and an upper 

bound. In this research, all resource amounts are assumed continuous and all resources are 

renewable.  

Resources required by an activity are categorized here into the three categories, namely 

principal, dependent, and independent resources. A principal resource of an activity is the main 

resource whose usage amount may be depended upon or used as a computational basis by dependent 

resources. Although different principal resources may be required by different activities, only one 

principal is designated per activity. Dependency between resources is characterized by a linear 

resource function. An independent resource, on the other hand, is independent from other resources, 

although its start and finish times must synchronize with those of other resources required by the 

same activity. Regardless of the resource category, the availability of all resources per time is 

constant, independent, and not subject to any resource function. 

The FRCPSP was firstly introduced by Kolisch et al. (2003) and subsequently studied by, for 

example, Fündeling and Trautmann (2010) and Ranjbar and Kianfar (2010). Most existing works 

propose heuristic methods for solving the FRCPSP with discrete resources. Lately, Naber and 

Kolisch (2013) propose and compare four discrete-time MIP models, in which the discrete-time 

system is commonly used for all activities and resources. As such, each activity must start at the 

beginning of a time period and finish at the end of a time period. According to Koné et al. (2011) 

who evaluate efficiency of several discrete- and continous-time models for the RCPSP, the 

continuous-time models, in general, are more efficient for instances of large scheduling horizons 

than the discrete-time models. Thus, we propose, in this paper, a continuous-time event-based model 

for the FRCPSP, using a single continuous-time grid system (Castro and Grossmann, 2012) to 

syncronize activities and resources. 

2. Outline of A Continuous-Time MIP Model for FRCPSPs 

In this section, we outline a continuous-time MIP model formulation for the FRCPSP, based 

on the FT-DT3 discrete-time model proposed by Naber and Kolisch (2013) and the Start/End event-
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based model of Koné et al. (2011). We define three types of events that may occur, namely Start, 

End, and Change (in resource quantity per time) events. Events of several activities may occur 

simultaneously at the same point in time. Through time, the interval between two consecutive events 

designates the time difference between the occurrences of the two events.  

 
 

 
 

Figure 1. Example of events and a continuous-time schedule 

 

Figure 1 demonstrates, as an example, for activity 2, Start at event 2 or at the beginning of 

interval 2, Change at event 3 or at the beginning of interval 3 and End at event 4 or at the beginning 

of interval 4 or the end of interval 3. Despite their different definitions, events and intervals are used 

here interchangeably. 

In terms of decision variables, we define ϕe as the duration of interval e, e E , the set of discrete 

intervals, given an upper bound of the number of intervals or events. Continuous durations of 

intervals are, thus, to be solved by the model to minimize the project makespan, which is indeed the 

sum of all interval durations. Additional continuous variable qrje, termed interval quantity, is defined 

as the cumulative quantity of resource r allocated to activity j in interval e. In Figure 1, qrje is a 

rectangle area equal to ϕe (width) multiplied by the resource quantity per time (height). Similarly 

defined as in the model FP-DT3 of Naber and Kolisch (2013), binary decision variables are used to 

indicate Starting and Stopping events of activities and Change events in resource quantity per time. 

The main constraints are outlined as follows: (1) A lower and an upper bound on the continuous 

makespan; (2) Nonpreemption requiring the continuity of processing status of activity j, once started; 

(3) Precedence relationships between activities; (4) Total resource requirement for each activity; (5) 

Resource functions between dependent and principal resources; (6) Upper and lower bounds on 

resource quantity per time; (7) Limited resource availability; (8) Change in resource quantity per 

time from one event to the next. The change is characterized by either change in interval quantity or 

time duration or both. 

3. Implementation and Preliminary Results 

Similar to other RCPSP models, our continuous-time MIP model is also pseudo-polynomial in 

the number of events. It is, thus, useful to evaluate an upper bound of the makespan. Given a heuristic 

discrete schedule obtained by Naber and Kolisch (2013), we perform a simple right-cut-left-paste of 

each activity, where possible. Starting from Time 0, the algorithm iteratively cuts short an activity 

to which excessive resources are allocated due to the discrete time periods and left-pastes the 

successively scheduled activities, so they can start earlier. To shorten an activity, the minimum block 

length must also be observed. Figure 2 illustrates an example of the continuous-time schedule (b) 

obtained from applying the right-cut-left-paste algorithm to a discrete-time schedule (a).  

Through the forward and backward preprocessing calculations as presented in Naber and 

Kolisch (2013) for the discrete-time models, we can also compute the continuous earliest and latest 

start and finish times of activity j. These time parameters are then ordered in a nondecreasing order 

to form intervals, which are, in turn, divided by the minimum value among the minimum block 
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length of activities that concurrently compete for resources. The earliest and latest time parameters 

are then heuristically mapped to the earliest and latest event parameters accordingly. 

 

        
(a)                                                             (b) 

Figure 2. An example of the continuous-time schedule derived from a discrete-time schedule 

 

The number of events in this model is, in general, significantly lower than the number of 

discrete-time periods in the discrete-time models, implying more than 50% lower number of both 

binary and continuous variables. However, the preliminary computational results, even on small 

instances, do not at all suggest faster computational times in solving the continuous-time model. On 

the contrary, we observe that, although optimal solutions are often found relatively fast in earlier 

branches, the convergence to optimality is indeed poor, due to the nonimprovement of the lower 

bound of the branch-and-cut tree. This phenomenon suggests a possibility to obtain good heuristic 

solutions from the truncated branch-and-cut. 

One may conjecture of a very loose LP relaxation polytope in comparison with the convex hull 

of MIP solutions, due to the infinite number of possible time durations and consequently resource 

allocations. In contrast to the discrete-time models, the standard cuts implemented in IBM ILOG 

CPLEX cannot be applied to the continuous-time model as aggressively and effectively. Especially, 

the clique and cover inequalities are rarely applied to the continuous-time model. In order to tighten 

the LP relaxation polytope, our first attempt to speed up the solution times is then to append simple 

global valid inequalities to the model. These inequalities are imposed on the relations between time 

durations and activity variables. However, the need for further research to derive stronger valid 

inequalities for faster convergence is still evident. 
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1 Introduction

A famous cumulative global constraint is the cumulative one which leads to the Cu-
mulative Scheduling Problem (CuSP). In this problem, given a resource with a limited
capacity and a set of activities each one having a release date, a due date, a duration and a
resource requirement, we want to schedule all activities in their time window and without
exceeding the capacity limit of the resource.

For this NP-complete problem, solution methods exist and, recently, techniques using
satis�ability formulas have been developed. Considering more particularly constraint-based
scheduling, which can be seen as a way to solve scheduling problems using constraint pro-
gramming (Baptiste et. al. 2001), a technique using energetic reasoning provides a strong
(although incomplete) polynomial satis�ability test known as the "left-shift/right-shift"
conditions (Baptiste et. al. 1999).

In this paper, the idea is to use the "left-shift/right-shift" test and energetic reasoning
propagation algorithms (Erschler and Lopez 1990), (Lopez and Esquirol 1996) in order
to compute a polynomial satis�ability test for a generalization of CuSP, the Continuous
Energy-Constrained Scheduling Problem (CECSP). The CECSP has the following particu-
larity: activities use a continuously-divisible resource and each of them can take any shape
bounded by its time window, a minimum and maximum resource requirement and a �xed
energy requirement that has to be brought via a power processing rate function.

As the CECSP deals with a continuous resource, propagation techniques already de-
veloped can not be applied directly. Thus, it is an interesting question to know whether a
polynomial satis�ability test can be found for CECSP. In our study, we adapt the "left-
shift/right-shift" test for CuSP to CESCP.

2 Problem statement

In the CECSP problem, we have as input a set A = {1, . . . , n} of activities and a
continuous resource which is available in a limited capacity B. Each activity has to be
performed between its release date ri and its deadline d̃i. Instead of being de�ned by
its duration and resource requirement, in CECSP an activity is de�ned by an energy
requirement Wi, a minimal and maximal resource requirement bmini and bmaxi .

To solve the CECSP, we have to �nd for each activity its starting time sti, its �nishing
time fti and a function bi(t), for all t ∈ T (where T = [mini∈A ri,maxi∈A d̃i]), representing
the amount of the resource allocated to this activity. These variables have to verify the
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following equations :

ri ≤ sti ≤ fti ≤ d̃i (i ∈ A) (1)

bmini ≤ bi(t) ≤ bmaxi (i ∈ A; t ∈ [sti, fti]) (2)

bi(t) = 0 (i ∈ A; i ∈ T \ [sti, fti]) (3)
∫ fti

sti

fi(bi(t))dt =Wi (i ∈ A) (4)

∑

i∈A
bi(t) ≤ B (t ∈ T ) (5)

where fi(b) is a continuous non-decreasing power processing rate function.
We de�ne pi = fti − sti as the activity duration. We remark that if bmini = bmaxi = bi

and fi(bi(t)) = bi(t), ∀i ∈ A, then we can set pi to
Wi

bi
and, if all inputs are integers, we

obtain an instance of CuSP. Thus, the CECSP is NP-complete.
We �rst have looked at the case where function fi(b) is linear or piecewise linear. In these

cases, we have adapted a satis�ability test for the CECSP, where fi(bi(t)) = bi(t), ∀i ∈ A
(Artigues et. al. 2009), to this more complex case.

3 Energetic reasoning for linear function

We �rst present the case where the function fi(b) has the form aib+ ci with ai > 0 and
ci > 0.

Before explaining how energetic reasoning yields a polynomial satis�ability test for
CECSP, we present an elementary satis�ability condition to check whether the activity
data is consistent. This condition is the following: if we can �nd an activity i ∈ A such
that fi(b

max
i )(d̃i− ri) < Wi then the CECSP can not have a solution. This comes from the

fact that, since fi(b) is a non-decreasing function, scheduling i at its maximum resource
requirement bmaxi inside [ri, d̃i] gives the largest amount of energy.

In order to apply energetic reasoning to our problem, we have considered the minimum
energy requirement and resource consumption of an activity i over an interval [t1, t2]. These
values are denoted by w(i, t1, t2) and b(i, t1, t2) respectively and de�ned by :

w(i, t1, t2) = min

∫ t2

t1

fi(bi(t))dt subject to (1)�(4)

b(i, t1, t2) = min

∫ t2

t1

bi(t)dt subject to (1)�(4)

We have used these values to compute the slack of interval [t1, t2] which is de�ned by:
SL(t1, t2) = B(t2 − t1) −

∑
i∈A b(i, t1, t2). The satis�ability test consists to determine

whether there exists an interval [t1, t2], with t1 < t2, such that SL(t1, t2) < 0. If such an
interval exists then the CECSP has no solution.

This proposition is the center of the "left-shift/right-shift" necessary condition. In (Baptiste
et. al. 1999), it was shown that this test can be performed only on a polynomial number of
intervals for CuSP. For CECSP, we have to check whether a polynomial number of intervals
is su�cient to perform the satis�ability test.

To achieve this, we have analyzed possible con�gurations of the minimum resource con-
sumption. First, since fi(b) is a non-decreasing function, we can observe that, given an
interval [t1, t2] , the minimum consumption always corresponds to a con�guration where
activity i is either left-shifted (the activity starts at ri and is scheduled at its maximum
requirement between ri and t1) or right-shifted (the activity ends at d̃i and is scheduled
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at its maximum requirement between t2 and d̃i), or both. We will denote by I the interval
over which the activity is scheduled at bmaxi outside interval [t1, t2]. Then, the minimum
energy requirement in [t1, t2] is: w(i, t1, t2) =Wi − |I| ∗ fi(bmaxi ).
We still have to compute the minimum required resource consumption over [t1, t2] \ I to
obtain this energy. There are two cases to consider :

� the remaining interval is su�ciently large to schedule the activity at its minimum

requirement, i.e. |[t1, t2] \ I| ≥ w(i,t1,t2)
fi(bmin

i )
, and then b(i, t1, t2) = bmini (w(i,t1,t2)

fi(bmin
i )

)

� the remaining interval is not large enough to schedule the activity at its minimum
requirement and �nding b(i, t1, t2) is equivalent to solving :

minimize

∫

[t1,t2]\I
bi(t)dt

subject to

∫

[t1,t2]\I
fi(bi(t))dt ≥ w(i, t1, t2)

Then b(i, t1, t2) =
1
ai
(w(i, t1, t2)− |[t1, t2] \ I|ci)

The function b(i, t1, t2) de�ned in this way is a bivariate continuous piecewise linear func-
tion. This remark allows us to establish a theorem which states that we can perform the
satis�ability test only on a polynomial number of intervals. Indeed, we want to check
whether an interval [t1, t2] over which the slack function is negative exists. Since the slack
function is a two dimensional piecewise linear function, we only have to check whether this
occur at the extreme point of one of the convex polygon on which it is linear.

The break line segments of the slack function is the same as the ones of the sum of the
minimum consumption for each activity. Thus, each extreme point of the slack function
is the intersection of two segments, each segment corresponding to the break line segment
of an individual minimum consumption function. Thus, we only have to perform the sat-
is�ability test on these intersection points whose number is quadratic in the number of
activities.

4 Piecewise linear function

Consider now the case where fi(b) is a continuous non-decreasing piecewise linear func-
tion. As the function is non-decreasing we can perform the same test as the one for linear
functions to check whether the activity data is consistent. The minimum required energy
and resource consumption w(i, t1, t2) and b(i, t1, t2) are de�ned in the same way.

To compute the slack function of an interval [t1, t2], we need an analytical expression of
function b(i, t1, t2). To achieve this, the function w(i, t1, t2) is computed. Actually, possible
con�gurations of the minimum resource consumption are the same as for the case of linear
functions (left-shifted activity, right-shifted or both). Thus, we can compute w(i, t1, t2) in
the same way.

For a piecewise linear function, the di�culty lies in the computation of b(i, t1, t2). In
this case, we are not able to derive the expression of minimum resource consumption from
a linear program. However, we can analyze the function fi(b) to �nd the point of best

energetic e�ciency, i.e. the point for which fi(b)
b is maximal for bmini ≤ b ≤ bmaxi . Let γ

be this point. Once γ is calculated, we can use it to exhibit a lower bound for b(i, t1, t2).
Indeed, we know that to provide the required energy to the activity, the minimum resource
consumption is obtained by allocating this amount of energy to it during a su�ciently large

time. Thus, b(i, t1, t2) ≥ γ w(i,t1,t2)
fi(γ)

.

We can perform the satis�ability test by setting b(i, t1, t2) to γ
w(i,t1,t2)
fi(γ)

and (as b(i, t1, t2)
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is also a bivariate continuous piecewise linear function) a polynomial number of intervals
is su�cient. However, the time required to compute γ depends on the number of de�ni-
tion intervals of the function fi(b). But it seems di�cult to compute b(i, t1, t2) in a time
independent of this number.

5 Conclusion

We have presented a polynomial satis�ability test for two variants of the CECSP. This
work is still in progress, especially for �nding the exact minimum required resource con-
sumption expression for piecewise linear function.

For future research, in order to provide better applications to actual scheduling prob-
lems under energy constraints, it will be interesting to study the case where function fi(b)
is no longer linear. Another interesting problem is to integrate energetic reasoning in other
bounding techniques such as linear programming or network �ow. In addition we may also
extend the time windows adjustment included in energetic reasoning for the CuSP to our
problem.
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1 Introduction

In this paper we present a method for computing tight lower bounds on the optimum
objective function value of resource leveling problems arising in project management or
production scheduling. The method relies on the representation of a schedule as a sequence
of antichains of the precedence order. By associating a decision variable with the execution
time of each antichain, leveling criteria like resource usage variance or resource overload cost
can be expressed as linear objective functions. By substituting the precedence relationships
between the activities into disjunctive constraints and allowing activities to be interrupted
during their execution, the leveling problem is relaxed to a large-scale linear program.
This linear program can be solved using a column generation procedure, where the pricing
problem represents a convex stable set problem on a perfect graph. To enhance the quality
of the lower bounds that arise from solving the linear program, we tighten the relaxation
by identifying antichains that must be executed in each feasible schedule. We evaluate the
quality of the lower bounds using different test sets from literature.

Resource leveling deals with the problem of smoothing the usage of renewable resources
over time subject to a prescribed maximum project duration. The first procedures for
resource leveling date back to the early days of project scheduling in the 1960’s. A recent
review of exact algorithms for resource leveling can be found in Rieck and Zimmermann
(2014). The performance of these algorithms strongly depends on the effectiveness of the
lower bounding procedures. Computing tight lower bounds for resource leveling problems
is difficult because lower approximations to the resource usage over time that are based on
interval workload considerations tend to be rather loose. This observation is particularly
true for the resource usage variance problem, which will be investigated in more detail in
what follows. The concepts presented in this paper carry over to further leveling problems
like the resource overload cost problem. Related models for computing lower bounds on
the minimum duration of resource-constrained projects with ordinary precedence relations
were considered by Mingozzi et al. (1998) and Brucker and Knust (2000).

Consider a project with activities i ∈ V of durations pi > 0 for which a schedule S
assigning the start times Si has to be determined. During its execution, each activity i
requires rik units of several renewable resources k ∈ R like personnel or machinery. We
assume that the activities must not be interrupted once they have been started. For cer-
tain pairs of activities (i, j) ∈ E, prescribed time lags δij between start times Si and Sj

define generalized precedence relationships Sj ≥ Si + δij that have to be observed when
scheduling the activities. Furthermore, the project must be completed within a specified
maximum time period d. The resource leveling problem consists in scheduling the activities
in such a way that some given measure in the variability of the resource usages over time
is minimized. We assume that the variability is expressed in terms of the weighted sum
of usage variances. By removing the constants, the objective function can be written as∑

k∈R wk

∫ d

0
r2
k(S, t) dt with weights wk ≥ 0 and rk(S, t) :=

∑
i∈V :Si≤t≤Si+pi

rik denoting
the usage of resource k at time t. The leveling problem under consideration can now be
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formulated in the following way:

(P )





Minimize f(S) =
∑

k∈R wk

∫ d

0
r2
k(S, t) dt

subject to Sj ≥ Si + δij ((i, j) ∈ E)

Si + pi ≤ d (i ∈ V )

Si ≥ 0 (i ∈ V )

The balance of the paper is organized as follows. In Section 2 we reformulate prob-
lem (P ) using the antichain representation of schedules and explain how we obtain a linear
relaxation of the problem. The column generation algorithm for solving the relaxation is
explained in Section 3. In Section 4 we describe preprocessing techniques that were ap-
plied to tighten the relaxation and the resulting lower bounds. Section 5 is devoted to an
experimental performance analysis of different variants of our lower bounding procedure.

2 Reformulation and linear relaxation

Let dij denote the transitive time lag between activities i and j that is implied by the
prescribed time lags δgh with (g, h) ∈ E and the project deadline d. Time lags dij can be
calculated as longest path lengths in an appropriate activity-on-node network (see, e. g.,
Neumann et al. 2003, Sect. 1.3 for details). The generalized precedence relations give rise
to a precedence order Θ = {(i, j) ∈ V × V | dij ≥ pi} among the activities. The set A
of antichains of strict order Θ contains all sets A ⊆ V of activities that can be processed
simultaneously at some point in time. Each feasible schedule S can be encoded as a sequence
of antichains with durations xA > 0 and resource requirements rAk =

∑
i∈A rik. Based on

this encoding, the objective function value f(S) can be expressed as the linear function
g(x) =

∑
A∈A(

∑
k∈R ckr2

Ak) xA. Considering xA with A ∈ A to be decision variables leads

to the following reformulation (P ′) of leveling problem (P ), where cA =
∑

k∈R wkr2
Ak.

(P ′)





Minimize g(x) =
∑

A∈A cAxA

subject to
∑

A∈A:i∈A xA = pi (i ∈ V )
∑

A∈A xA = d

xA ≥ 0 (A ∈ A)

Side constraints

(1)

(2)

From equations (1) and (2) it follows that within the project lifespan, each activity i ∈ V
is carried out completely and that the project is terminated on time. The side constraints
ensure that the original time lags δij between single activities i, j ∈ V are satisfied and
that no activity i is interrupted during execution. It is easily seen that these conditions can
be represented as the constraints of a single machine problem with generalized precedence
relations among the jobs, where the jobs correspond to the antichains A with positive
durations xA > 0. By deleting the side constraints from problem (P ′), we obtain a linear
program (LP) whose size grows exponentially with the number of activities. Solving (LP)
delivers a lower bound on the optimum objective function value of leveling problem (P ). In
the next section, we explain how (LP) can be solved efficiently using column generation.

3 Column generation algorithm

The main idea of column generation consists in generating the columns of the coefficient
matrix of the linear program as required rather than in advance (see Goldfarb and Todd
1989, Sect. 6). Starting with an initial basic solution x, in each iteration a nonbasic variable
xA with minimum reduced costs ζA is computed; the problem of identifying such a nonbasic
variable is called the pricing problem. If ζA < 0, the procedure pivots according to the
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minimum ratio rule and proceeds with the resulting basic solution until the pricing problem
proves the optimality of x by yielding ζA = 0. The runtime of the algorithm is mainly
determined by the time required to solve the pricing problems. That is why the tractability
of the pricing problem is crucial to the performance of the algorithm.

Let ui and v denote the simplex multipliers associated with equations (1) and (2). Given
some basic solution x with corresponding basic matrix B, the values of the multipliers are
computed as (u⊤, v) = ([cB ]⊤, 0) · B−1. Since the constraint

∑
i∈A ui + v ≤ cA (A ∈ A) of

the dual of (LP) is equivalent to optimality condition ζA ≥ 0 (A ∈ A), we know that

ζA = cA − ∑
i∈A ui − v (A ∈ A)

The pricing problem consists in finding an antichain A∗ with minimum reduced costs ζA∗ .
To formulate the problem we introduce a binary variable yi for each activity i ∈ V , where
yi = 1 means that i ∈ A∗. Using the variables yi, cost coefficient cA∗ can be expressed as∑

k∈R wk(
∑

i∈V rikyi)
2 and the pricing problem can be stated as binary convex program

(PP(u, v))





Minimize h(y) =
∑

k∈R wk(
∑

i∈V rikyi)
2 − ∑

i∈V uiyi − v

subject to yi + yj ≤ 1 ((i, j) ∈ Θ)

yi ∈ {0, 1} (i ∈ V )

(3)

The disjunctive constraint (3) models the requirement that A∗ must be an antichain of
precedence order Θ. The pricing problem can be interpreted as a stable set problem on the
comparability graph G of Θ. More precisely, it represents a convex stable set problem on
a perfect graph, since G is transitively orientable and h is a convex quadratic function. In
the experimental performance analysis discussed in Section 5 it turned out that this type
of problem is solved quite efficiently by commercial MIQCP solvers.

4 Preprocessing techniques

The quality of the lower bounds can be improved by tightening the linear program using
preprocessing techniques. We applied two different methods:

1. Replace positive completion-to-start-time lags δij − pi by dummy activities.

2. Identify unavoidable antichains A, which must be in execution in any feasible schedule.

The first method is very simple, but it may be of considerable benefit because the disjunc-
tive constraints between activities i, j and the new dummy activity are taken into account
in the pricing problem. The second method is of particular interest to resource leveling
problems. For this method we take advantage of the following

Proposition 1. Let ∅ 6= A ⊆ V . Then all activities i ∈ A are processed in parallel during
at least p(A) = max{0, mini,j∈A(dij +pj)} time units. The bound is tight, i. e., there always
exists a feasible schedule with xA = p(A) provided that the problem is feasible.

It is easily seen that p(A) = mini∈A p(A \ {i}) for all antichains A with |A| ≥ 2. Therefore
the unavoidable antichains can be computed recursively as cliques in a graph G′ = (V, E′)
with set of edges E′ = {{i, j} | p({i, j}) > 0}. The second preprocessing method now
works as follows. We start by selecting some inclusion-maximal clique A of graph G′.
Next, we add the corresponding antichain A as a new activity iA with duration piA

=
p(A) and resource requirements riAk = rAk to the project. Then, we reduce the min-
imum durations p(A′) of all intersecting antichains A′ by the maximum overlap time
∆ = [min{p(A), p(A′), − maxi∈A,j∈A′ max{dij + pi, dji + pj}}]+ between A and A′ and
update the edge set E′ of graph G′ accordingly. We proceed in the same way until E′ = ∅.
Finally, we enhance pricing problem (PP (u, v)) by the disjunctive constraint yiA

+yiA′ ≤ 1
for all new activities iA, iA′ with A 6= A′ and A ∩ A′ 6= ∅. This condition ensures that any
two intersecting antichains A and A′ added to the project are not executed in parallel. To
facilitate the construction of a feasible initial basic solution, the condition is added to the
pricing problem via a penalty term in the objective function.

175



4

5 Computational results

We tested the efficiency of our methods using three standard test sets from literature.
The column generation algorithm was coded under GAMS 24.0 invoking Gurobi 5.0 as LP
and as MIQCP solver. The computational experiments were performed on a dual core PC
with 3.16 GHz clock pulse and 3 GB RAM operating under Windows 7. Four variants of
the lower bounding method were tested: column generation without preprocessing (CG1),
with positive completion-to-start-time lags as dummy activities (CG2), with pre-generated
unavoidable antichains (CG3), and with both preprocessing techniques (CG4).

Table 5 summarizes the results that we obtained for the j10, j20, and j30 test sets
of Kolisch et al. (1999), each containing 270 instances with 10, 20, or 30 activities. The
hardness of the instances is largely influenced by the deadline factor DF , which varies
between 1.0, 1.1, and 1.5 for all test sets. The deadline factor is defined to be the ratio
of the project deadline d and the minimum project duration maxi,j∈V (dij + pj). Roughly
speaking, the higher the deadline factor the harder the instances of a resource leveling
problem. The values displayed in Table 5 are the mean relative deviations from the optimum
objective function values published by Rieck et al. (2012) for the three test sets. Reference
values for the j30 test set with DF = 1.5 are not available. As expected, the quality of the
lower bounds gradually improves from CG1 to CG4. Especially for the hard instances with
DF = 1.5, variant CG4 performed quite well, yielding gaps of less than one percent. The
mean computation time per instance varied between 4 to 343 sec. with a mean number
of pivot iterations between 11 and 1159. The relatively high maximum CPU times and
iteration numbers are due to the fact that for certain instances the preprocessing techniques
generated several hundreds of dummy activities. Similar mean relative deviations from
optimum objective function values were obtained for the resource overload cost problem.

Table 1. Mean relative deviations from optimum objective function values

j10 j20 j30
DF 1.0 1.1 1.5 1.0 1.1 1.5 1.0 1.1
CG1 7.78 % 6.06 % 1.86 % 8.85 % 5.43 % 1.85 % 9.64 % 5.79 %
CG2 4.43 % 5.23 % 1.83 % 5.51 % 4.73 % 1.83 % 6.16 % 4.91 %
CG3 2.66 % 4.42 % 1.01 % 3.38 % 4.20 % 0.79 % 4.75 % 5.15 %
CG4 1.93 % 3.96 % 0.99 % 2.49 % 3.67 % 0.78 % 3.27 % 4.30 %
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1 Introduction

Interfering jobs problems, or multi-agent scheduling problems, consist on scheduling
jobs from different sets, each one with its own objective, and competing for the same
machines (Agnetis et. al. 2004). This is an emergent topic, and a recent review of the
problem is presented by Perez-Gonzalez and Framinan (2013), from whom we adopt the
notation. In this paper, we consider a single machine scheduling problem with two sets
of jobs J A and J B (J A ∩ J B = ∅), each one with nA and nB jobs respectively. Let
J = J A ∪ J B with n = nA + nB jobs. Given a sequence σ formed by jobs in both sets,
the completion time of job i ∈ J A is denoted as CA

i (σ) and CA
sum(σ) =

∑
i∈JA CA

i (σ)

is the total flowtime of σ for jobs in J A. The total flowtime of jobs in J B is CB
sum(σ) .

The objective considered here is to minimize CA
sum subject to CB

sum ≤ ε, and the problem
is denoted 1||ε(CA

sum/C
B
sum). This problem is shown to be weakly NP-hard by Agnetis

et. al. (2004), who present a Dynamic Programming (DP) algorithm with running time
O(nAnBε). In this paper, we try to gain some understanding of this problem. In Section
2, we analyse their structure of solutions, as it is well-known that NP-hard problems can
be easy to be solved by heuristic methods since there may be many solutions close to the
optimal), and vice versa. In Section 3, we derive some specific properties of this problem
and a more efficient codification of solutions, which is embedded in a Branch and Bound
procedure that outperforms existing exact methods.

2 Analysis of the structure of solutions

The problem under consideration is weakly NP-hard, so it is not possible to find the op-
timal solution in polynomial time. However, there are strongly NP-hard problems for which
is not “difficult” to find solutions close to the optimum due to its structure of solutions. For
example, Perez-Gonzalez and Framinan (2009) study a strongly NP-hard scheduling pro-
blem which, in some cases, almost all solutions (99.6%) have an approximation percentage
to the optimal value of the objective function less than 2%. So, finding a good solution by
heuristic methods is “easy”. Taillard (1990) and Armentano and Ronconi (1999) concludes
that other scheduling problems are “harder” using the same approach. To the best of our
knowledge, this kind of studies have been not carried out for interfering jobs problems. In
our case, not all schedules are feasible so the analysis must be based on two aspects:

1. The percentage of feasible solutions. The hardness of the problem depends on the
percentage of feasible solutions with respect to the total number of solutions. This
ratio clearly depends on the value of ε. In our case, we compute ε as in Agnetis et.
al. (2009), ε ∈ [εmin, εmax], for a given δ ∈ (0, 1): ε = εmin + δ(εmax − εmin), with
εmin = CB

sum(σB
SPT ∪ σA

SPT ), and εmax = CB
sum(σA

SPT ∪ σB
SPT ).
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2. The distribution of solutions provides the distance to the optimal solution of each fea-
sible solution obtained by complete enumeration for each instance. Unfeasible solutions
are discarded. If a high proportion of feasible solutions are close to the optimal solution,
the problem is considered to be “easy”.

We have generated ten small instances (since the computational time to evaluate all
sequences of each instance is high) for each problem combining all values of nA ∈ {5, 10, 15},
nB ∈ {5, 10, 15} and δ ∈ {0.2, 0.4, 0.6, 0.8}. Table 1 shows the percentage (average) of
feasible solutions for the 10 instances solved for each problem. Moreover, the distributions
of feasible solutions for all cases have the same shape (see Figure 1 as an example for
instances of size 15×15). Regarding δ, Table 1 shows that as ε (δ) increases, the number of
feasible solutions increases too. Figure 1 shows that as ε increases, the solutions are more
distant to the optimal. Then, the difficulty of the problem suggests different approaches
to tackle it depending on the value of ε, i.e.: a) Smaller values of ε (δ ∈ {0.2, 0.4}) mean
few feasible solutions, however, the distribution shows that feasible solutions in this case
are close to the optimal, so any feasible solution can be a good solution. Then, the main
focus is on finding feasible solutions. b) Bigger values of ε (δ ∈ {0.6, 0.8}) mean a great
percentage of feasible solutions, however, the distribution shows that feasible solutions in
this case may be far from the optimal. Then, the main difficulty here is on finding good
solutions (among the feasible solutions).

With respect to problem sizes, in Table 1 it can be seen that, on average, the problem
seems more difficult when nA ≤ nB : 5× 10 (64.5704) vs 10× 5 (68.4882); 5× 15 (64.6340)
vs 15× 5 (68.7018); 10× 15 (68.6646) vs 15× 10 (68.7524). This conclusion is the opposite
that the obtained by Agnetis et. al. (2009) for the weighted case 1||ε(CA

wsum/C
B
wsum).

Table 1. Percentage of feasible solutions

δ
nA nB 0.2 0.4 0.6 0.8 Aver.
5 5 19.2063 55.3968 84.2857 96.6270 63.8790

10 14.9950 56.2970 88.3350 98.6547 64.5704
15 13.1127 56.4880 89.8013 99.1338 64.6340

10 5 19.8968 63.4266 91.5018 99.1275 68.4882
10 13.8711 65.6915 95.3331 99.8345 68.6825
15 11.2345 66.8304 96.6568 99.9368 68.6646

15 5 18.2598 64.0473 92.9870 99.5130 68.7018
10 11.5637 66.8426 96.6568 99.9464 68.7524
15 8.6749 68.3683 98.0317 99.9868 68.7654

3 Codification of Solutions and Branch and Bound procedure

The classical encoding scheme used to represent a sequence for one-machine scheduling
problems is the permutation codification, where each job j ∈ J is represented by a number,
j = 1, . . . , n. However, our problem has some properties that allow developing a more
efficient codification. More specifically, Agnetis et. al. (2004) show that, in an optimal
schedule, jobs in J A and jobs in J B follow the shortest processing time first rule (SPT).
Schedules verifying this property are called SPT schedules. Note that the SPT rule does
not apply for jobs belonging to different sets. Without loss of generality, we will assume
that processing times of jobs in J A and J B are given in SPT order respectively. Based on
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Fig. 1. Distribution of feasible solutions for nA × nB = 15× 15 for different δ

this property, we can define a new encoding scheme called binary codification, where jobs
in J A are coded by zeros, and jobs in J B by ones. Any schedule formed by zeros and ones
represents only one SPT schedule. The first zero in the schedule is the job in J A with the
smallest processing time, the second is the second one in J A with smallest processing time,
and so on. Note that this codification reduces the search space from n! possible schedules
to only (nA+nB)!

nA!nB !
of SPT schedules.

Taking into account this binary codification as well as some properties of the problem
that are omitted due to the lack of space, we develop a Branch and Bound (B&B) algorithm
(pseudo-code in Figure 2), where UB is the upper bound used in the method, computed by
the total flowtime of J A for a given sequence provided by the fastest method presented by
(Perez-Gonzalez and Framinan 2012). It is compared to the DP algorithm by Agnetis et. al.
(2004) and to a MILP model of the problem using the Gurobi solver. Ten instances of sizes
nA ∈ {5, 10, 15, 20} and nB ∈ {5, 10, 15, 20} are generated with random [1, 99] processing
times. δ has been randomly generated in the interval [0.4, 0.6]. Table 2 shows the average
CPU time for each problem size. Note that Gurobi and DP are slower (not being able to
find the optimal solution in less than 24 hours per instance for the largest size), while the
B&B is faster for all instances except for the smallest sizes (5× 5 and 5× 10).
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procedure B&B
% STEP 1: Initial Solution and Upper Bound
σ := Initial_Improved_Solution;
UB = CA

sum(σ);
σ = ∅; σA = [0, . . . , 0]; σB = [1, . . . , 1];
% STEP 2: UpdateTree(σ)
while σ 6= ∅ do

if σ is complete;
if CA

sum(σ) < UB

UB = CA
sum(σ);

end if
else

LBA = CA
sum(σ

S
σA)

LBB = CB
sum(σ

S
σB)

if σA 6= ∅
if LBB ≤ ε & LBA ≤ UB

σ = σ
S

0; σA = σ − 0;
UpdateTree(σ)

end if
end if
if σB 6= ∅

if LBB ≤ ε & LBA ≤ UB

σ = σ
S

1; σB = σ − 1 ;
UpdateTree(σ)

end if
end if

end if
end while

Fig. 2. Pseudo-code of B&B

Table 2. Average CPU time (seconds)

sizes DP Grb BB
5× 5 0.0004 0.0478 0.0045

5× 10 0.0013 0.0744 0.0060
5× 15 0.0058 0.2234 0.0030
5× 20 0.0201 0.4674 0.0075
10× 5 0.0016 0.0711 0.0030

10× 10 0.0857 0.5811 0.0120
10× 15 1.5313 5.3496 0.0369
10× 20 15.2514 31.2691 0.2383
15× 5 0.0107 0.1795 0.0030

15× 10 1.8997 5.7652 0.0324
15× 15 83.5664 170.3985 1.1713
15× 20 1875.0860 2629.9187 14.6230
20× 5 0.0454 0.4195 0.0060

20× 10 23.1112 39.2189 0.1683
20× 15 2236.2690 2330.0252 11.2597
20× 20 > 86400 > 86400 439.5048

Average 282.4591 347.6006 29.1925
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1 Introduction

In this work we propose a tabu search algorithm for the resource-constrained project
scheduling problem (RCPSP) with transfer times. This problem has been introduced in
Krüger and Scholl (2009) and Krüger and Scholl (2010) where an IP formulation and
priority-based heuristics were developed. In the RCPSP with transfer times a set R con-
sisting of r renewable resources k = 1, . . . , r with limited capacities Rk ≥ 0 as well as a
set V consisting of n activities i = 1, . . . , n with processing times pi ≥ 0 and resource
requirements rik ≥ 0 for k ∈ R are given. Furthermore, a dummy source activity 0 as
well as a dummy sink activity n + 1 with processing times p0 = pn+1 = 0 and resource
requirements r0k = rn+1,k = Rk for all k ∈ R are introduced. It is assumed that all
resource units are initially located at the dummy source activity 0 and have to be col-
lected by the dummy sink activity n + 1 at the end of the project. In the following, let
Vall = {0, 1, . . . , n, n + 1}, V0 = {0, 1, . . . , n} and V∗ = {1, . . . , n, n + 1}. Furthermore,
precedence constraints A = {(i, j) | i, j ∈ Vall} between pairs of activities i, j ∈ V, i 6= j
may exist requiring that activity j can only start after activity i has been completed. Ad-
ditionally, sequence- and resource-dependent transfer (or changeover) times ∆ijk ≥ 0 are
given for all i, j ∈ Vall and k ∈ R denoting the amount of time required to transfer resource
k from activity i to activity j (e.g. for transporting a crane from one construction site to
another or for cleaning a resource between producing different products). The special case
∆ijk = 0 corresponds to the classical RCPSP. All parameters are assumed to be integer.
The objective is to schedule all activities j ∈ V∗ without preemption with respect to the
given precedence and resource constraints. Additionally, if some units of resource k ∈ R
are transferred from activity i ∈ V0 to activity j, the transfer time ∆ijk has to be observed
between the completion time Ci = Si+pi of activity i and the starting time Sj of activity j,
i.e. Sj ≥ Ci+∆ijk has to hold. We consider the makespan objective Cmax, i.e. we minimize
the time required to complete all activities of a given project which is determined by the
completion time Cn+1 of the dummy sink activity n+ 1.

2 Solution Representation

For the classical RCPSP different solution representations have been proposed. Heuris-
tics often operate on an indirect representation based on activity lists. These activity lists
are then transformed into a schedule by using a schedule generation scheme that schedules
the activities in the order specified by the activity list. For the RCPSP with resource trans-
fers (where each resource transfer needs a certain time), a drawback of this representation
is that it does not represent from which activities resource units are transferred to other
activities. Instead, resource transfers have to be selected separately, for example, based on
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a priority rule. Due to this drawback, we use an alternative solution representation based
on resource flows (cf. Fortemps and Hapke (1997) and Artigues and Roubellat (2000)).
The disadvantage of a larger solution space is compensated by the fact that with this
representation it is ensured that the solution space always contains an optimal schedule.

Resource flows are an extension of the disjunctive graph model for shop scheduling
problems. While a disjunctive graph represents the sequence in which disjunctive machines
are used to process operations in a shop scheduling problem, this representation is extended
for the RCPSP to also denote the amounts of resources k ∈ R transferred from an activity
i ∈ V0 to another activity j ∈ V∗. In the following, fijk denotes the amount of resource
k ∈ R transferred from activity i ∈ V0 to activity j ∈ V∗. All resource transfers fijk of a
resource k ∈ R between activities i ∈ V0 and j ∈ V∗ are then collected in a resource flow
Fk while a set of resource flows Fk for all resources k ∈ R is denoted by F .

A feasible resource flow F is defined as a flow that satisfies the following conditions. First
of all, all resource units are initially located at the dummy source activity 0 and have to be
collected by the dummy sink activity n+1 at the end of the project. Furthermore, for each
activity i ∈ V and each resource k ∈ R, the amount of all incoming resource units as well as
the amount of all outgoing resource units have to be equal to the resource requirement rik
(flow conservation constraints). Finally, the resource flow has to be acyclic, i.e. no activity
sends (directly or indirectly) resource units to itself and the flow must observe the given
precedence constraints (i.e. for (i, j) ∈ A activity j may not send (directly or indirectly)
resource units to activity i).

A feasible resource flow F can be represented by a (multi-)graph where each activity
i ∈ V is modelled as a node and each resource transfer fijk > 0 of a resource k ∈ R from
activity i ∈ V0 to activity j ∈ V∗ is represented by a directed arc (i, j)k from node i to
node j. Similar to the disjunctive graph model for shop scheduling problems, an AON-flow
network (cf. Artigues et. al. (2003)) incorporates the activity-on-node network representing
the precedence constraints (i, j) ∈ A as well as the graph representing a resource flow F .
In this graph, each precedence arc (i, j) ∈ A is weighted with the processing time pi of
activity i, each flow arc (i, j)k satisfying fijk > 0 is weighted with the value pi +∆ijk.

In the same way as for the classical RCPSP, for each extended AON-flow network
it is possible to generate an earliest start schedule (in which all activities start as early
as possible with respect to the given precedence constraints (i, j) ∈ A and the resource
transfers fijk from the given resource flow F) by longest path calculations. Here, the length
of the arc (i, j) equals max

{k|fijk>0}
{pi +∆ijk} for a flow arc and pi for a precedence arc.

Theorem 1. For the RCPSP with transfer times the set of schedules represented by re-
source flows always contains an optimal schedule.

3 A Tabu Search Algorithm

Based on the resource flow solution representation, we use neighborhoods defined by
parallel and serial modifications as suggested in Fortemps and Hapke (1997). However, in
Fortemps and Hapke (1997) the ideas are only sketched and no further results are reported
(neither experimental not theoretical).

First of all, a neighborhood Nreroute is introduced based on the parallel modification.
For a modification in this neighborhood, two arcs (i, j)k and (u, v)k between activities i, u ∈
V0 and j, v ∈ V∗ representing resource transfers fijk > 0 and fuvk > 0 of a resource k ∈ R
are selected in a resource flow F such that no directed path exists from either activity j to
activity u or from activity v to activity i. Then, an amount of q ∈ {1, . . . ,min{fijk, fuvk}}
units of resource k is rerouted from activity i to activity v as well as from activity u to
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activity j. This results in a resource flow F ′ with the modified resource transfers f ′ijk =
fijk − q, f ′uvk = fuvk − q, f ′ivk = fivk + q, and f ′vjk = fvjk + q between the activities.

Next, a neighborhood Nreverse is introduced based on the serial modification. For a
modification in this neighborhood, two activities i ∈ V and j ∈ V are selected in a resource
flow F such that at least one arc (i, j)k for a resource k ∈ R with fijk > 0 exists between
these activities and such that (i, j) 6∈ A and no other path exists from activity i to activity j
via other activities h ∈ V in the AON-flow network. Furthermore, groups Uk with fuik > 0
for all activities u ∈ Uk as well as groups Vk with fjvk > 0 for all activities v ∈ Vk have to be
selected for each resource k ∈ R with fijk > 0 such that

∑
u∈Uk

fuik ≥ fijk and
∑

v∈Vk

fjvk ≥

fijk holds. Then, a serial modification first reverses the direction of all arcs (i, j)k for
resources k ∈ R with fijk > 0 between activities i and j such that an amount of f ′jik = fijk
units of resource k ∈ R is transferred from activity j to activity i in the resulting resource
flow F ′. Additionally, fijk units of each resource k ∈ R with fijk > 0 have to be redirected
from activities u ∈ Uk to activity j as well as from activity i to activities v ∈ Vk in order
to maintain flow conservation in the resulting resource flow F ′.

It can be shown that neither the neighborhood Nreroute nor the neighborhood Nreverse

alone is connected (and even not opt-connected) for the RCPSP (and hence also not for
the more general situation with transfer times). However, the larger neighborhood N1 =
Nreroute ∪Nreverse is connected.

Theorem 2. For the RCPSP with transfer times the neighborhood N1 is connected.

Due to the large size of this neighborhood, we reduce both neighborhoods. First of
all, similar to Fortemps and Hapke (1997), we introduce the neighborhood N ca

reverse in
which reverse moves are limited to critical activities i, j ∈ V . It can be shown that these
neighbors are always feasible. The size of this reduced neighborhood is limited to O(n).
Next, we introduce a neighborhood Nmax,ca

reroute in which one critical arc (i, j)k as well as an
arbitrary arc (u, v)k representing resource transfers fijk > 0 and fuvk > 0 are selected
instead of two arbitrary arcs. Additionally, similar to Fortemps and Hapke (1997), always
the maximal amount of q = min{fijk, fuvk} units of resource k is rerouted. The size of this
neighborhood is then limited to O(rn3).

In order to evaluate the solution representation as well as the neighborhoods de-
scribed above, we implemented a tabu search algorithm. An initial solution is generated
by a parallel schedule generation scheme as it has been described in Krüger and Scholl
(2009). In each iteration of the tabu search, a solution is chosen from the neighborhood
N2 = Nmax,ca

reroute ∪ N ca
reverse. Here, a priority rule ES is used to select sets Uk for a reverse

modification according to non-decreasing earliest arrival times of the resource units at
the receiving activity while a priority rule TT is used to select sets Vk according to non-
decreasing transfer times between the activities. It should be noted that only modifications
that are not tabu are evaluated. If an improving solution with an objective function value
smaller than the objective function value of the current solution is found, this solution
is selected immediately. Otherwise, the best non-tabu solution from the neighborhood is
chosen. Afterwards, the tabu list is updated based on the selected modification.

4 Computational Results

In order to evaluate the tabu search algorithm presented above, we implemented it in
Java and tested it on a computer with an Intel Core 2 Quad Q6600 (2.4 GHz) processor
with 4 GB RAM. We used this algorithm to solve the problem instances for the classical
RCPSP consisting of 30, 60, 90, and 120 activities as they have been generated by Kolisch
and Sprecher (1997). Furthermore, we solve the problem instances for the RCPSP with
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transfer times consisting of 30 and 60 activities generated by Krüger and Scholl (2009).
The tabu search algorithm is stopped after at most 10 000 iterations.

Computational results for the classical RCPSP instances are presented in the left part
of Table 1. In the column ∆av we report the average deviations (in %) from the optimal
solutions for the problem instances with 30 activities as well as the average deviations
from the critical path lower bound LB0 for the problem instances with 60, 90, and 120
activities. Furthermore, the average computation times tav (in seconds) are listed. Finally,
in the column ∆UB we present the average deviations of the currently best known heuristic
solutions reported at http://www.om-db.wi.tum.de/psplib/main.html from LB0.

Results for instances with transfer times are presented in the right part of Table 1. Since
the optimal values for all these instances are known, we report the average deviations ∆av

from the optimal solutions. Additionally, in the column ∆GA analogous deviations are
shown for the best results of the genetic algorithm by Krüger (2009) stopping after 5 000
generated schedules.

Table 1. Computational results for classical RCPSP instances and instances with transfer times.

n ∆av tav ∆UB

30 0.66 7.8 −
60 13.02 74.1 10.37
90 12.79 250.2 9.48

120 38.32 1298.0 29.18

n ∆av tav ∆GA

30 1.27 8.8 0.16
60 0.98 31.8 0.38

It can be seen that the tabu search algorithm obtains ample solutions in an acceptable
amount of time. For the classical RCPSP it is clearly outperformed by the state-of-the-art
heuristics especially designed for this special situation. This may be explained by the fact
that the solution space of the flow based representation is quite large and it is difficult to
guide the neighborhood search to good solutions. However, the flow based approach offers
a promising adaptability for further extensions of the RCPSP, in particular the RCPSP
with higher-tier resource transfers as it has been introduced in Krüger and Scholl (2010).
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1 Introdu
tion

The Fren
h 
ar manufa
turer Renault is daily fa
ing a NP-hard 
ombinatorial optimization

problem � 
alled here the Renault tru
k loading problem (RTLP ) � where items need to

be pla
ed in a tru
k while satisfying di�erent 
onstraints. More than a thousand tru
ks are

daily 
onsidered, whi
h have to deliver goods to several 
ar fa
tories. As a single tru
k 
an

deliver goods to di�erent delivery points, 
lasses of items have been de�ned, where a 
lass

is asso
iated with a delivery point. Ea
h problem instan
e 
ontains the size of the tru
k

(in millimeters) and the various sizes of all the items that must �t in (in millimeters). The

heights of the items 
an be ignored as they rely on 
omplex fa
tory 
onstraints whi
h are

supposed to be already satis�ed. At �rst sight, this problem seems related to a strip-pa
king

2D problem with rotation, whi
h has been already 
overed by many resear
h papers (Lodi

et. al. 2002). New features are proposed by Renault in RTLP : di�erent 
lasses of items,

and a signi�
ant number of items per tru
k in 
onjun
tion with a large standard deviation

of the sizes of the items. Su
h elements make the 
onsidered problem more 
omplex, but

more relevant to modern and realisti
 issues. In this paper, we propose to ta
kle RTLP
with Constru
tive Ant Systems (CAS), whi
h are evolutionary population-based meta-

heuristi
s. A good survey on ant algorithms 
an be found in (Dorigo et. al. 2006).

Based on (Respen and Zu�erey 2013), the problem and the solution spa
e stru
ture are for-

mally des
ribed in Se
tion 2, where an e�
ient de
oding greedy algorithm is also designed.

In Se
tion 3 are proposed di�erent ant algorithms for RTLP . Numeri
al experiments are

reported and dis
ussed in Se
tion 4.

2 Des
ription of the problem and solution spa
e stru
ture

RTLP 
an be formally des
ribed as follows. A number n of re
tangular items have to be

pla
ed in a tru
k (of width Wt and length Lt), and 90◦
rotations of items are allowed.

For ea
h item i, we know its width wi, its length li, its initial orientation, and its 
lass

Cj (where j ∈ {1, . . . , m} with m ≤ n). In addition, the 
lasses must be pla
ed in an

in
reasing fashion from the front to the rear of the tru
k. More pre
isely, the ordinate of

the origin item whi
h belongs to 
lass Ci (label 1 on Figure 1) must be stri
tly smaller

than the ordinate of the extremity of any item of 
lass Ci+1 (label 2 on Figure 1). The goal


onsists in minimizing the ordinate f of the extremity item (the 
losest one to the rear) of


lass Cm (label 3 on Figure 1).

To ta
kle bin-pa
king problems, one 
an work either with dire
t 
oded solutions or indire
t


oded solutions. A dire
t 
oded solution dire
tly represents a real loading of the items in
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the tru
k, whi
h means that the position of ea
h item has to be 
ontinuously known. Then,

if an item is added to or removed from the tru
k, the new position of the loaded items is

very hard to re
ompute, whi
h is a major drawba
k. Working with indire
t 
oded solutions

require the use of a de
oding algorithm to built the asso
iated dire
t 
oded solution and

to get its value. Su
h an approa
h has the main advantage of being very �exible when

adding (resp. removing) an item to (resp. from) the solution. Therefore, a de
ision has

been made to work with indire
t 
oded solutions. More formally, an indire
t 
oded solution

s is a sequen
e of elements. To build a dire
t 
oded solution ŝ and 
ompute its value f(s), a
de
oding greedy algorithm (DGA) is performed on the indire
t 
oded solution s. Component

i of the indire
t 
oded solution s takes the form si = (IDi, Ci), where ID ∈ {1, . . . , n}, and
C ∈ {1, . . . , m}. DGA de
odes the ve
tor s into a real solution ŝ (i.e. a true loading) by

inserting in ŝ the items from s in a FIFO order. At ea
h step, DGA pops the next item

i of s and orients it greedily (i.e. by minimizing the augmentation of the loading length).

The 
omplexity of DGA is O(n). For instan
es with n = 60, DGA requires less than 0.1

se
ond (on the used 
omputer) to de
ode a solution into a real loading. In summary, DGA
is requested to built a dire
t 
oded solution (i.e. a loading of the tru
k) from an indire
t


oded solution (i.e. a loading sequen
e of items) and to 
ompute the length of the obtained

loading (i.e. the value of the solution).

Preliminary tests showed that the performan
e of DGA is rather poor. Indeed, at ea
h

iteration, DGA orients the involved item without having any visibility on the next items

to insert. To redu
e this drawba
k, the following look-ahead pro
ess is proposed. At ea
h

iteration, DGA evaluates the orientation of the involved unloaded item (say i) as follows.
DGA examines the insertion of the next σ (parameter tuned to 3) insertions subsequent

to the insertion of item i (i.e. a total number of σ + 1 items are tested). DGA tries ea
h

possible orientation (i.e. 90◦
-rotated or not-rotated) for ea
h of the σ + 1 items in order to

minimize the augmentation of the resulting loading length (in other words, 2(σ+1)
options

are evaluated). The orientation of item i is then the one asso
iated with the best option.

For instan
es with n = 60, DGA requires less than 0.5 se
ond (on the used 
omputer) to

de
ode a solution into a real loading.

3
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Ci+1

Ci+1

Ci

Ci

Ci

C1

C1

C1

21
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x
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o
n
t
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a
r

Fig. 1. A possible solution for RTLP

3 Ant algorithms for RTLP

We propose three di�erent 
onstru
tive ant algorithms to ta
kle RTLP (denoted CAS(1),
CAS(2) and CAS(3)), where ea
h ant is a 
onstru
tive heuristi
 able to build an indire
t


oded solution, and thus a loading. N (parameter tuned to 10) ants are used at ea
h

generation. For ea
h ant, at iteration i of its 
onstru
tion pro
ess, let s = (s1, s2, . . . , si−1)
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be the partial indire
t 
oded solution 
ontaining i−1 items. As in 
lassi
al ant algorithms,

the sele
tion of the next move (
orresponding here as the next item to load) is based on

the greedy for
e (de�ned as the short term pro�t) and the trail system (whi
h is a 
entral

memory based on the history of the sear
h, allowing ants to ex
hange information). In the

proposed ant algorithms, the GF 's and the TR's are normalized within interval [0,1℄ in

order to better 
ontrol these two types of information.

The greedy for
e GF (i) of an item i is given by GF (i) = UB − DGA(s + {i}), where
UB = 4 · Lt is an upper bound of the loading. We 
an see that the larger GF (i) is, the

shorter is the loading s + {i}, whi
h is 
onsistent with the notion of short term pro�t.

To de�ne the trail TR(i) of item i, we �rst de�ne the attra
tiveness Attract(j, k) between
two items j and k in an indire
t 
oded solution s as n − dist(j, k), where dist(j, k) is

de�ned as the number of items between j and k in s (but dist(j, k) = 0 if k appears

before j in s). At the end of ea
h generation (i.e. when ea
h ant of the population has

provided a solution), ea
h trail TR(j, k) is updated as follows: TR(j, k) = ρ · TR(j, k) +
(1 − ρ) · ∆TR(j, k), where ρ ∈]0, 1[ is an evaporation 
oe�
ient (�xed to 0.9, as in most

of the ant algorithms) and ∆TR(j, k) is a reinfor
ement term. ∆TR(j, k) is de�ned as the

average attra
tiveness between j and k in the b% (parameter tuned to 50%) best solutions

of the 
urrent generation. The trail value TR(i) of item i 
an now be de�ned as TR(i) =∑
j∈s wji · TR(j, i), where wji is a weight de�ned as index(j)/index(i), where index(j) is

for example three is item j is the 3rd 
omponent of s. These weights allows to give more

importan
e to pairs of items whi
h are 
loser in s (a

ording to the distan
e fun
tion dist).
In CAS(1), when 
onstru
ting an indire
t 
oded solution, ea
h ant sele
ts the next item

i to load � in the set Ω of non already inserted items � using the standard probability

fun
tion prob de�ned as in Equation (1), where α and β are parameters. Interestingly,

preliminary experiments showed that better results are obtained with parameter α (tuned

to 0.5) smaller than parameter β (tuned to 2). It means that more importan
e should be

given to the greedy for
e rather than to the trail.

prob(i) =
GF (i)α · TR(i)β

∑
j∈Ω

GF (j)α · TR(j)β
(1)

In CAS(2), an ant 
hooses the next item i using Equation (1) with probability p (parameter

tuned to 0.35), but the item whi
h maximizes GF (j)·TR(j) otherwise (i.e. with probability

(1 − p)). In other words, CAS(2) is more aggressive than CAS(1) as the usual tradeo�

between the greedy for
es and the trails only o

urs with probability p.
In CAS(3), ea
h ant sele
ts the next item i as follows. First, it generates the set A with

the q% (parameter tuned to 0.75) largest TR values. Then among the set A, it sele
ts the
item with the largest GF value (ties are broken randomly). In 
ontrast with CAS(1) and
CAS(2), the greedy for
es and the trails are su

essively used in order to sele
t the next

item (instead of jointly).

4 Results

In order to better ben
hmark the results, we 
ompare the ant algorithms with an exhaustive

greedy method EG. EG builds an indire
t 
oded solution s from s
rat
h, and at ea
h step

greedily inserts the next item in s (with the use of the look-ahead pro
ess). We 
onsider a

set of 30 real ben
hmark instan
es provided by Renault. Tests were performed on an Intel

Quad-
ore i7 � 3.4 GHz with 8 GB DDR3 of RAM memory, with a time limit T of 900

se
onds. In order to have fair 
omparisons, EG is restarted as long as T is not rea
hed,
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whereas the CAS's results are averaged over 10 runs. Table 1 presents the results of the

di�erent algorithms. For ea
h instan
e ID are �rst given the number n of items and the

number m of 
lasses. Column f⋆
indi
ates the best obje
tive fun
tion value returned by any

of the 
onsidered algorithms. The se
ond 
olumn EG shows the per
entage gap between

the best solution value returned by EG and f⋆
. The remaining 
olumns show the same

information for the ant algorithms. The last row indi
ates the average gap of ea
h method.

We remark that all the CAS methods outperform EG, whi
h means that the trail system

is relevant. CAS(2) outperforms CAS(1), whi
h shows that an aggressive sele
tion pro
ess

seems to be more interesting than the use of Equation (1). As the best methods is CAS(3),
it seems that a sequential use of the trails and the greedy for
es in the sele
tion pro
ess

of an ant seems to be more e�
ient than the joint use of these quantities (as in CAS(1),
CAS(2), and most of the state-of-the-art ant algorithms). This 
on�rms the observations

of (Zu�erey 2012) for the famous graph 
oloring problem.

Table 1. Obtained results

ID n m f⋆ EG CAS(1) CAS(2) CAS(3)
1 23 1 12970 1.62% 0.80% 1.63% 0.13%

2 25 1 13226 2.07% 0.70% 0.64% 1.48%

3 24 1 12950 2.59% 1.06% 1.38% 0.70%

4 25 1 13170 2.75% 1.32% 1.02% 2.37%

5 26 1 13470 0.07% 1.02% 0.80% 1.02%

6 20 2 14000 2.07% 2.07% 1.73% 1.77%

7 23 1 12980 4.21% 2.74% 2.24% 1.26%

8 25 1 14288 3.26% 1.95% 2.31% 2.37%

9 18 4 13369 0.44% 3.55% 3.40% 4.50%

10 23 3 13068 3.48% 3.92% 3.46% 4.02%

11 20 2 13560 2.06% 1.79% 1.92% 1.89%

12 17 3 12992 2.42% 0.81% 0.88% 0.80%

13 25 1 13470 1.97% 0.93% 1.23% 0.54%

14 20 2 13240 3.55% 3.50% 3.74% 3.44%

15 20 4 13685 2.26% 2.83% 3.27% 2.99%

16 24 1 13070 3.21% 1.71% 2.10% 0.88%

17 23 4 13078 2.03% 1.43% 1.05% 2.09%

18 24 1 13380 4.56% 1.45% 2.27% 0.68%

19 24 1 13380 4.56% 1.45% 2.27% 0.68%

20 23 1 13070 5.05% 2.41% 2.28% 1.29%

21 25 1 13146 2.84% 1.64% 1.44% 2.03%

22 25 1 13470 1.60% 1.04% 1.00% 0.09%

23 24 1 13380 4.04% 1.34% 1.75% 0.97%

24 18 2 11640 2.41% 2.72% 1.67% 1.86%

25 23 1 12550 1.20% 1.87% 1.16% 1.79%

26 19 2 12220 1.06% 1.91% 1.48% 1.69%

27 23 1 13250 5.86% 1.35% 2.08% 0.77%

28 25 1 13416 1.97% 1.66% 1.14% 0.64%

29 20 1 13500 10.74% 5.13% 4.02% 4.79%

30 25 1 13196 3.80% 1.93% 1.07% 2.10%

AVG 2.99% 1.93% 1.88% 1.72%
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1 Problem description

The paper addresses the short-term underground mine production scheduling problem

that consists in specifying the sequence in which blocks should be removed from the mine.
The aim is to minimize the makespan subject to a variety of constraints that are related
to the mining extraction sequence, resource capacities, and safety-related conditions. The
interaction of constraints lead to synergy effects resulting in an efficient utilization of
resources (machines). A comprehensive survey on problems and optimization methods in
mining is given by Newman et al. (2010).

The extraction of the considered German potash mine is done by the room-and-pillar
method. Hence, the mined material is extracted across a horizontal plane while leaving pil-
lars of untouched material to support the roof of the mine. Thus, open areas (rooms) emerge
between pillars and a grid-like pattern of rooms and pillars is formed. The excavation of
potash is usually performed by drilling and blasting. This kind of underground mining is
characterized by nine consecutive steps (operations): (1) scaling the roof, (2) removing the
scaled material, (3) bolting the roof with expansion-shell bolts, (4) drilling large diameter
boreholes, (5) removing the drilled material, (6) drilling blast holes, (7) filling blast holes
with explosive substances, (8) blasting, and (9) transporting broken material to a crusher.
The execution of all steps can be treated as a “production cycle”. For each step, except
for (8) blasting, one special mobile machine is required, i.e. (1) requires scaling machines,
(2) small loaders, (3) anchor drilling trucks etc. In order to excavate one block of a certain
underground location, e.g., block j6 at location a2 in Fig. 1, it is necessary that all steps of
the preceding production cycle have been finished, i.e., the preceding block j5 is removed.

3 14

7 56

15

16

2

5

1

12

13

4

14

2

10 811 39

17

18

6

19

Fig. 1. Mining region: Six underground
locations (a1 –a6 ) and 2–4 blocks per
underground location (j1 –j19 )

Stage 1

(scaling)
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Stage 2

(bolting)
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Stage 3

(drilling)

j12

j15
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Fig. 2. Planning situation: Assignment of
jobs (blocks) to machines on different stages
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After the completion of step (1), the remaining operations ought to be finished within
a certain time limit τ ≥ 0. If an operation cannot be finished within τ time units, a safety
precaution is needed in which the roof is scaled once more.1 When the scaling process is
then finished, the next operation of the original production cycle is continued.

The described excavation process represents a manufacturing environment with eight
stages (steps (1)–(7) and (9) of the production cycle). Each stage k consists of M (k) ma-
chines and the jobs (blocks) must visit the stages consecutively. Figure 2 shows a planning
situation at a specific point in time, where six underground locations are in progress and
five of the corresponding six first jobs are assigned to idle machines on stages (1)–(3).
The problem can be identified as a hybrid flow shop scheduling problem (e.g., Ruiz and
Vázquez-Rodríguez 2010) with additional underground mining restrictions.

2 Multi-start procedure

In Schulze and Zimmermann (2011) a mathematical formulation for the described un-
derground mine scheduling problem is given that can be used to solve small-scale instances
with up to 25 jobs. In what follows, we will present a priority rule-based construction
heuristic that is developed in order to solve medium- and large-scale instances heuristi-
cally. The underlying schedule generation scheme is shown in Fig. 3 and is adapted from
the classical parallel schedule generation scheme (Kolisch 1996).

Determination of 

schedule time and 

stage k

Queue 

not empty?

Job selection
Assignment 

problem

Further idle 

machines?

All jobs finished?STOP

Initialization

true

truefalse

falsetrue

false

Fig. 3. Flow chart of the priority rule-based construction heuristic

All jobs that have to be processed at a certain stage are inserted in an artificial queue
in front of the stage (cf. Fig. 2). Then, the initialization comprises the insertion of the first
jobs (that are available at time zero) of the underground locations into the corresponding
queues depending on the current mining progress. In the main part of the procedure, the
schedule time t ≥ 0 is determined, i.e., the earliest point in time at which a machine, say
for example machine m on stage k, is available for use.2 The queue Qk in front of stage k
contains all unscheduled jobs that are candidates for scheduling. In case the queue is not
empty, a job is selected. The job selection chooses job j with the best priority-value. In the
assignment problem, job j is assigned to machine m (if several machines are available on k
the “fastest” idle machine is used). With the assignment, the completion time Cjk ≥ 0 of

1 The problem in which jobs can visit each stage several times is called re-entry or recirculation,
cf. Pinedo (2008) or Kim and Lee (2009).

2 If several stages have the same schedule time, the stage with the smallest index is selected.
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job j on stage k is clearly recognizable. If k is the last stage (i.e., k = 8), job j is set as
finished and its possible successor in the underground location is initiated. If k < 8 and time
limit τ is not exceeded, job j follows the steps of the production cycle, otherwise j returns
to step (1). The job selection and the assignment problem are solved on stage k as long
as further idle machines exist and queue Qk is not empty (the respective loop is depicted
by dotted arrows). The algorithm terminates if all jobs are finished. The construction
heuristic is embedded in a multi-start procedure that generates different solutions, where
priority-values are employed directly in order to determine selection probabilities for jobs
(Kolisch 1996).

Within the assignment problem, we also used a more sophisticated method for the case
that only a single machine is idle at stage k in time interval [t, t + δ]. At that point, the
procedure returns to the job selection in order to search for a job j′ 6= j, where j′ /∈ Qk, j′

will arrive at k within δ ≥ 0 time units, and its priority-value is better than the one of j.
If such a job can be found, the current machine is blocked for j′. Consequently, job j has
to wait and its start time is delayed.

3 Experimental study

The computational tests have been performed on instances that were derived from real-
world data. The instances comprise 60 and 120 jobs and consist of 10 and 15 underground
locations, respectively. In a first setting, the number of jobs per underground location is
always identical, whereas the number of jobs in the second setting (average) varied between
a predefined range. For each setting, five instances are generated, where the processing times
are randomly determined between stage-job-related bounds and the progress of the first
jobs is generated uniformly from the set {stage (1), . . ., stage (8)}. Regarding the number
of parallel machines at each stage, we distinguish between three cases: each stage contains
exactly one machine, exactly two machines, or the number of machines is determined
randomly between one and three. In total, we investigated 2 · 2 · 5 · 3 = 60 instances.

Preliminary tests have shown that the use of expedient priority rules (e.g., first-in first-
out, shortest processing time first) in the course of our multi-start procedure leads to similar
results. This is due to the fact that the number of jobs per queue is relatively small; it is up
to 10 (15) for instances with 60 (120) jobs. However, we identified the most-work-remaining

(MWR) rule as an adequate rule and used it in our experiments. The MWR-value of job j
is defined as the total time it takes to process j and all its succeeding jobs in the respective
underground location, assuming that each job is always processed on the fastest machine.
We generated 10,000 solutions for each instance, where we defined δ to be equal to 0%,
20%, or 30% of the average processing time of all jobs. The procedure was implemented
in C++ under Windows 7 and compiled with Microsoft Visual Studio 2010. Table 1 shows
the results. In column “#Opt” the number of optimal solutions found (at most 5 in each
cell) is given; for these instances the lower bound is equal to the heuristic solution. Column
“∅Gap” displays the average gap [%] between the best solution found and a lower bound;
“maxGap” shows the maximal gap [%] in the respective test set. In column “∅Range” the
average deviation [%] between the best and the worst solution found is given; “maxRange”
shows the maximal value [%]. Lower bounds are calculated on the basis of stage-based
lower bounds adapted from Hidri and Haouari (2011).

4 Discussion and future research

Table 1 shows that both the multi-start procedure and the lower bounds perform well
for instances with exactly one machine per stage or with one to three parallel machines per
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Table 1. Computational results

identical average
60 jobs #Opt ∅Gap maxGap ∅Range maxRange #Opt ∅Gap maxGap ∅Range maxRange

1 machine 3 1.2 4.3 11.9 14.6 2 1.0 3.0 19.9 25.3
2 machines 0 9.6 12.5 19.5 22.2 0 6.8 9.9 22.3 27.4

1-3 machines 1 1.2 2.5 16.3 20.5 0 2.2 4.3 21.6 29.4

identical average
120 jobs #Opt ∅Gap maxGap ∅Range maxRange #Opt ∅Gap maxGap ∅Range maxRange

1 machine 2 0.6 1.4 7.1 9.4 3 0.1 0.4 10.5 11.6
2 machines 0 8.5 10.4 18.5 22.6 0 7.9 9.1 21.8 26.0

1-3 machines 1 3.1 8.6 14.6 26.9 2 0.6 1.6 12.1 14.7

stage. 50% of all instances with one machine and 20% of all instances with 1–3 machines
could be solved to optimality and for the remaining instances the gaps are relatively small
(lower than, or equal to, 3.1%). The “maxGap”-value of 8.6% for one instance can be ascribed
to the fact that for this instance many (2–3) machines exist on the stages and no bottleneck
can be identified. A bottleneck occurs if the average waiting time of all jobs at a stage is
relatively high (i.e., many jobs in the corresponding queue, large average processing times
at the stage, and/or few parallel machines).

The results for instances with exactly two machines per stage are not as good as ex-
pected. The main reason for this is that the stage-based lower bounds are weak in envi-
ronments without bottlenecks.

Regarding the average (and maximal) range between the generated solutions, the values
are higher for instances with an “average” number of jobs per underground location. In this
case, the number of jobs per queue is usually smaller than in the “identical” case and the
selection probability of a job with a small priority-value is overvalued.

Our further research will contain the improvement of lower bounds and the development
of a local search heuristic, where the presented multi-start procedure is used as a basis.
Moreover, a larger test set must be investigated in order to analyze the behavior of the
procedure if the number of machines/jobs increases, or the number of jobs per underground
location fluctuates strongly.
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1 Introduction

Resource-allocation problems arise in new product development, engineering, software
development, and other projects. In general, such resource-allocation problems pose in-
tractable combinatorial optimization problems. One of the most extensively studied prob-
lems in this area is the resource-constrained project scheduling problem RCPSP. This prob-
lem consists in scheduling a given set of activities subject to completion-start precedence
and renewable-resource constraints such that the project duration is minimized.

In the literature, several mixed-integer linear programming (MILP) formulations of the
RCPSP have been presented (cf., e.g., Koné et al. 2011). A major advantage of such MILP
formulations is the �exibility to account for additional constraints or modi�ed planning
objectives. Despite improvements in optimisation software and computer hardware, nowa-
days such MILP formulations are applicable to small-sized problem instances only. Besides
these MILP formulations, a large variety of heuristic methods have been proposed (cf., e.g.,
Kolisch and Hartmann 2006 for a review); however, these heuristic methods make use of
speci�c schedule-generation schemes, that need to be adapted individually when additional
constraints or modi�ed planning objectives must be taken into account.

In this paper, we present a heuristic method that combines mixed-integer linear pro-
gramming with a network-based decomposition. Under this heuristic, at �rst the project
network is decomposed into subsets of activities. Then, the subsets of activities are itera-
tively added to the partial schedule, applying an exact MILP Model. Thereby, the activities
which have already been scheduled may be delayed, but may not be shifted earlier in time;
this reduces the number of variables in the corresponding MILP and allows to insert new
activities between activities which have already been scheduled. Our computation results
indicate that the heuristic is able to devise optimal solutions to non-trivial problem in-
stances, and outperforms the MILP of Pritsker et al. (1969) on medium-sized instances.

To the best of our knowledge, such a decomposition has not been proposed in the litera-
ture. Other decomposition heuristics for the RCPSP have been proposed by, e.g., Sprecher
(2002) and Debels and Vanhoucke (2007). In contrast to our approach, in these approaches
�rst a feasible schedule for the entire project is computed using a constructive heuristic;
then, subsets of activities being in progress according to this schedule within certain time
intervals are selected, and the corresponding parts of the schedule are improved by ap-
plying a branch-and-bound method or a genetic algorithm to these subsets of activities,
respectively.

The remainder of this paper is organized as follows. In Section 2, we present the new
heuristic approach. In Section 3, we apply the heuristic to an illustrative example. In
Section 4, we report the computational results. In Section 5, we provide some concluding
remarks.
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2 Heuristic approach

The heuristic consists of two phases. In the �rst phase, the set of all project activities is
partitioned into several subsets. In the second phase, these subsets are scheduled iteratively.

In the �rst phase, we assign a priority value to each activity. Then we determine a
path with maximum priority (i.e. sum of the priority values of all activities of the path)
in the activity-on-node network. The nodes of this path form the �rst subset. Then, we
iteratively form further subsets as follows. In the �rst step, we determine an activity with
highest priority in the path that had been determined in the preceding iteration; for the
reminder of the decomposition phase, we set the priority value of that activity to zero.
In the second step, we again determine a path with maximum priority in the resulting
network. All nodes of this path which do not belong to any subset yet form the next
subset; if this subset is empty, we delete it from the partition. We repeat these two steps
until the partition is complete.

In the second phase, we iteratively schedule the subsets of activities in the order as they
have been formed in the �rst phase. In the �rst iteration, the start times of the activities of
the �rst subset are determined; in the subsequent iterations, the start times of the activities
in the current subset as well as the start times of the activities in all preceding subsets are
subject to decision. In order to determine these start times, we apply the MILP of Pritsker
et al. (1969). After solving the MILP, we perform a left-shift of all activities that have been
scheduled. Then, we set the earliest start time of each activity that has been scheduled to
its start time in the left-shifted schedule and set the length of the scheduling horizon to
the current makespan increased by the sum of the durations of the activities in the next
subset and the product of the maximum duration of all activities that have been scheduled
multiplied by the cardinality of the next subset. Eventually, we update the earliest and the
latest start times of all activities. We continue until all subsets have been scheduled.

3 Illustrative example

For the purpose of illustration, we apply our method to an illustrative example intro-
duced in Sprecher (2002). The project comprises 7 activities and one resource with capacity
R1 = 6. The activity-on-node network is shown in Figure 1, where the node labels indicate
the durations di and the resource requirements ri,1 of the activities i = 1, . . . , 9.

In the decomposition phase, we set the prior-
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Fig. 1. Example network

ity value of an activity to its duration, i.e. a path
with maximum priority correspond to a critical
path in the activity-on-node network. We obtain
the subsets {4, 8}, {3, 7}, {2, 5}, and {6}. Fig-
ures 2, 3 and 4 show the schedules obtained af-
ter the �rst, the second and the third iteration,
respectively. In the third iteration, activities 2
and 5 are inserted in the partial schedule; to
this end, activities 4, 7 and 8 are scheduled at
a later position than in the second iteration. In
the fourth and last iteration, activity 6 is added

to the schedule. In the course of this, all the other activities may again be shifted later
but not earlier in time. The schedule obtained by our heuristic is shown in Figure 5 and
represents an optimal solution to this example.
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1 5 10 15 20

1

2

3

4

5

6

2

3

4
5

6 7

8

Fig. 5. Final schedule (optimal solution)

4 Computational results

We have implemented the heuristic method presented in Section 2 in AMPL; we have
used Gurobi version 5.5 for solving the MILP models. All computations have been per-
formed on a standard PC with a 3.40GHz Intel i7 CPU and 4GB RAM.

A large variety of priority rules have been proposed in the literature (cf., e.g., Klein
2000). In our test, our approach performed best when using the activities' duration as
priority values. Tables 1 and 2 list the respective results of our heuristic (RT) for some
instances from j60 set from the PSPLIB presented in Kolisch et al. (1999). The third and
fourth column indicate the current best known upper and lower bound. We have used
the formulation of Pritsker et al. (1969) as a reference (PWW), and we have prescribed a
CPU time limit of 1800s. The entry lim indicates that the solution of the reference model
has been stopped due to the time limit. Entries in boldface indicate that the makespan
obtained by the new heuristic approach is smaller or equal to the makespan obtained with
the reference model. Entries marked with ∗ indicate that the solution obtained is optimal.

The results shown in Tables 1 and 2 correspond to a mean makespan of 104.7. With
priority rules GRD and GRPW* applied to our heuristic, the mean makespan is 105.7 and
106.0 respectively.

5 Conclusions and outlook

In this paper, we have proposed a novel MILP-based heuristic for the RCPSP. The
heuristic decomposes the project network into subsets of activities, which are then sched-
uled iteratively by applying an MILP formulation. Our computational results indicate that
for several instances, an optimal solution is obtained with this heuristic approach, and for
instances with a large resource factor, the heuristic approach outperforms an exact MILP
model.

The heuristic approach could be extended by a third phase, in which subsets of activ-
ities would be unscheduled and rescheduled in order to improve the project schedule; the
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Table 1. Results on some instances with 60
activities, RS = 0.20 and NC = 1.50

Instance
RF

Best RT PWW

j60 UB LB MS tCPU MS tCPU

1_1 0.25 77 77 77 ∗ 2 77 2
1_2 0.25 68 68 68 ∗ 3 68 14
1_3 0.25 68 68 68 ∗ 3 68 3
1_4 0.25 91 91 91 ∗ 2 91 3
1_5 0.25 73 73 73 ∗ 3 73 8
1_6 0.25 66 66 66 ∗ 3 66 13
1_7 0.25 72 72 74 6 72 59
1_8 0.25 75 75 76 2 75 14
1_9 0.25 85 85 85 ∗ 3 85 9

1_10 0.25 80 80 80 ∗ 4 80 1
5_1 0.50 76 76 78 111 82 lim
5_2 0.50 109 109 109 ∗ 48 129 lim
5_3 0.50 80 80 82 6 83 lim
5_4 0.50 72 72 80 33 79 lim
5_5 0.50 108 108 112 45 136 lim
5_6 0.50 74 74 76 11 89 lim
5_7 0.50 75 75 80 27 91 lim
5_8 0.50 78 78 82 6 78 1468
5_9 0.50 83 83 84 4 83 37

5_10 0.50 81 81 83 14 85 lim
9_1 0.75 87 82 92 259 107 lim
9_2 0.75 82 82 87 23 100 lim
9_3 0.75 100 99 105 511 130 lim
9_4 0.75 87 87 93 46 306 lim
9_5 0.75 85 80 91 84 113 lim
9_6 0.75 111 105 116 609 388 lim
9_7 0.75 109 100 124 480 350 lim
9_8 0.75 96 94 104 712 131 lim
9_9 0.75 99 98 105 100 111 lim

9_10 0.75 93 88 98 581 111 lim
13_1 1.00 112 104 118 86 333 lim
13_2 1.00 106 101 115 799 309 lim
13_3 1.00 88 82 93 1082 109 lim
13_4 1.00 103 97 108 834 137 lim
13_5 1.00 97 91 109 901 308 lim
13_6 1.00 94 90 99 207 321 lim
13_7 1.00 87 80 95 735 153 lim
13_8 1.00 120 112 129 1230 341 lim
13_9 1.00 102 95 105 867 348 lim

13_10 1.00 117 112 127 1552 354 lim

Table 2. Results on some instances with 60
activities, RS = 0.20 and NC = 2.10

Instance
RF

Best RT PWW

j60 UB LB MS tCPU MS tCPU

33_1 0.25 105 105 112 9 105 16
33_2 0.25 100 100 100 ∗ 3 100 2
33_3 0.25 79 79 79 ∗ 2 79 2
33_4 0.25 81 81 83 2 81 20
33_5 0.25 108 108 109 4 108 71
33_6 0.25 75 75 75 ∗ 2 75 30
33_7 0.25 78 78 78 ∗ 3 78 31
33_8 0.25 79 79 80 3 79 672
33_9 0.25 108 108 108 ∗ 10 108 14

33_10 0.25 84 84 88 3 84 34
37_1 0.50 97 97 102 39 113 lim
37_2 0.50 95 95 100 29 120 lim
37_3 0.50 139 139 144 44 218 lim
37_4 0.50 101 101 103 16 329 lim
37_5 0.50 98 98 107 44 107 lim
37_6 0.50 102 102 107 83 346 lim
37_7 0.50 110 110 120 340 347 lim
37_8 0.50 93 93 97 11 93 414
37_9 0.50 96 96 97 18 318 lim

37_10 0.50 96 96 104 7 96 453
41_1 0.75 122 122 129 364 306 lim
41_2 0.75 113 113 119 118 202 lim
41_3 0.75 98 89 103 495 304 lim
41_4 0.75 133 133 143 79 � lim
41_5 0.75 115 109 123 770 340 lim
41_6 0.75 134 134 143 699 339 lim
41_7 0.75 132 132 142 735 � lim
41_8 0.75 135 135 141 284 351 lim
41_9 0.75 131 131 137 146 � lim

41_10 0.75 111 105 116 415 364 lim
45_1 1.00 96 89 105 928 304 lim
45_2 1.00 144 134 154 1534 � lim
45_3 1.00 143 133 156 1147 363 lim
45_4 1.00 108 101 119 636 � lim
45_5 1.00 106 99 119 865 307 lim
45_6 1.00 144 132 159 1351 382 lim
45_7 1.00 122 113 134 1542 305 lim
45_8 1.00 129 119 144 1140 362 lim
45_9 1.00 123 114 135 1407 328 lim

45_10 1.00 114 102 125 440 312 lim

selection of these subsets would depend on the structure of the partition resulting from the
decomposition phase.
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1 Introduction

The resource-constrained project scheduling problem (RCPSP) is a complex problem
even in its simplest form. Due to the difficulties encountered when solving it and much
more when handling its various extensions and variations (Barrios, Ballestin & Valls 2011,
Deblaere, Demeulemeester & Herroelen 2010, Pan, Hsaio & Chen 2008, Rivera & Celin
2010, Hartmann 2013, Böttcher, Drexl, Kolisch & Salewski 1999, Kolisch & Padman 2001),
even today, there is a lack of generic models that integrate all the different facets of a project
that should be scheduled and provide a solution process (Hartmann & Briskorn 2010).
However, in practice projects often fail to fall precisely in a sole case of those studied in
the literature.

To fill in this research gap, a holistic model is proposed in order to provide a way to
define most of the desired characteristics, and provide a solution process that will generate
project schedules adaptable to different project settings, organisational sizes and strategies
and scalable according to the size and criticality of the undergoing project.

2 Problem Definition and Proposed Mathematical Formulation

The objectives to be pursued during project scheduling are defined by translating sched-
ule characteristics, to actual objectives to be optimised during project scheduling.

Project planning entails defining which activity should be executed, when should its
execution start and what amount of resources per resource type will be used. An activity
can have one or more execution modes, meaning that it can be executed using various
resource types and amounts of resources, resulting in different durations. The activities can
be splittable or not based on the specificities of the task. Splits can happen in predefined
points of time or in any time period. The activities can either require constant amounts of
renewable resources, that is, the per-period request for a resource remains unchanged until
the activity has been completed or the resource requests can vary with time. However, it
is not very probable that all activities will have variable demands so a subset of activities
with variable demands should be defined. To start executing an activity all its immediate
predecessors should have been finished. This precedence concept in practical situations
is extended by allowing start-start, finish-start, start-finish and finish-finish precedence
constraints with both minimal and maximal time lags. Three different kinds of resources
are considered: renewable, non-renewable and doubly constrained. Resource availabilities
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usually are assumed to be constant over time. This assumption is not very close to what
actually happens in practical cases where changing availability of workers due to vacations,
maternity leaves, sickness or varying equipment capacities due to maintenance or damage
is very common.

The proposed variation of the resource constrained project scheduling problem can
be mathematically formulated introducing the binary decision variables ximqt which are
defined as follows:

ximqt =

{
1, if the segment pimq of i in mode m starts at t
0, otherwise . (1)

The mathematical formulation, shown in Equations (2)-(10), is an extension of the
model first presented by Pritsker, Watters & Wolfe (1969) to include preemption, multi-
mode activities and generalised constraints. It is also based on the formulations provided
by De Reyck & Herroelen (1999) and Hartmann (2013) for the MRCPSP-GPR and the
RCPSP/t respectively.

min f(ximqt) , (2)

subject to:

∑

m∈Mi

T−1∑

t=0

zim∑

q=0

ximqt = 1, ∀i = 0, 1, . . . , n+ 1 , (3)

( ∑

m∈Mi

T−1∑

t=0

txim0t

)
+ δimjn ≤

∑

n∈Mj

T−1∑

t=0

txjn0t ,∀(i, j) ∈ A , (4)

n∑

i=1

∑

m∈Mi

zim∑

q=0

rρimkτimximqt ≤ α
ρ
kt ,∀k ∈ Rρ ,∀t = 0, 1, . . . , T − 1 , (5)

tl(x+1)−1∑

t=0

n∑

i=1

miλ∑

m=1

zim∑

q=0

rνimlτimximqt ≤ ανlIlx ,∀l ∈ Rν ,∀x = 0, . . . , Xl − 1 , (6)

x0000 = 1 , (7)

T−1∑

t=0

tximzimt ≤
T−1∑

t=0

tx(n+1)00t ,∀i = 0, 1, . . . , n , (8)

T−1∑

t=0

txim(q−1)t + dimq ≤
T−1∑

t=0

tximqt ,∀i = 0, 1, . . . , n ,∀m ∈Mi ,∀q = 1, . . . , zim , (9)

ximqt ∈ {0, 1} ,∀i = 0, 1, . . . , n+ 1 ,∀m ∈Mi ,∀t = 0, 1, . . . , T − 1 . (10)

The objective function (2) minimises the selected objective; for example the objective
of minimising the makespan can be written as

min
T−1∑

t=0

tx(n+1)00t .

Constraints (3) ensure that each activity is assigned exactly one mode and exactly one
start time.
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Constraints (4) denote the generalised precedence relations with minimal and maximal
time lags, where the actual values for each time lag, whether they originate from a minimal
time lag or a maximal time lag are given by δimjn.

The resource constraints are given in Equations (5) and (6) for renewable and non-
renewable resources, respectively.

Equations (7) and (8) ensure that the first activity of the schedule is the dummy source
and the last the dummy sink.

Constraints (9) ensure that the splitted activities will be executed in the correct order.
Equation (10) forces the decision variables to assume binary values.

3 Solution Process

The proposed solution algorithm can handle a variety of problems such as the simple
RCPSP, the multi mode RCPSP, with or without generalised precedence constraints, hav-
ing or not variable renewable and/or non renewable resource demands and requirements.

The backbone, of the whole process, is a Genetic Algorithm (GA) that acts as a mod-
erator of the solution process. The proposed process essentially lets the GA decide which
algorithm and decoding procedure is promising and work with it. In other words, the evo-
lution is used not only to find a good solution for the problem but also a good algorithm
to solve the problem. The genetic algorithm adapts itself to the problem instance actually
solved. This way not only the list of activities to be scheduled but also the algorithm itself
and the decoding algorithm are subject to genetic optimisation.

Initially, the input data are analysed and transformed to a predefined form for ease of
usage and to eliminate redundant data. Then an initial solution set is randomly generated
and crossover and mutation operators are used to generate the offspring population.

The moderator GA is responsible for mutation, crossover and selection of the next gen-
eration and the auxiliary algorithms (tabu search (TS), simulated annealing (SA), particle
swarm optimisation (PSO) and genetic algorithm(GA)) are responsible for the search of a
sub-space of the solution space, based on the lists of activities that were given as input,
causing this way the update of the given lists of activities in relation to the results found
and the calculation of the fitness. As a result, the auxiliary algorithms effectuate a parallel,
local or global search, depending on the algorithm, in the solution space of a chromosome
or a group of chromosomes belonging to the current generation and exchange the given
chromosomes with better ones, having better fitness value.

Finally, the fitness is calculated straightforward using the corresponding objective func-
tion on each decoded chromosome.

4 Computational Results

A comparison of the results given by the proposed holistic model and algorithm to each
specific problem that was integrated in our model was conducted. The experiment was
designed to prove that the proposed method leads to as good results as the best known for
each variation and in specific cases it has been seen to give even better results.

In Table 1, a summary of the experimental results, is shown. In all cases the proposed
algorithm gives the same optimal or best known results with those that are published in
PSPLib and in most cases has a higher accuracy with a percentage of deviation from the
best known value lower than 2% for each category of cases. Therefore, the aim to be at
least as good as the best known algorithm has been achieved.
1 The algorithm offered in some cases better results than that appearing in literature. These
better results are appearing here as deviations.
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Table 1. Comparative results for single-objective instance
Instances Average Deviation Max Deviation Hit of Optimal/UB

RCPSP J30 0.25% 3% 96.7%
RCPSP J120 1.42% 8% 34.46% 1

PRCPSP J30 0.12% 2.5% 98.7%
PRCPSP J120 1.21% 5% 42.73% 1

MRCPSP C15 0.23% 1% 98.9%
MRCPSP C21 0.01% 1% 99.9%
MRCPSP J10 0.01% 0% 99.9%
RCPSP-t J30 0.05% 1% 99.7%
RCPSP-t J120 0.22% 1.5% 99.5%
RCPSPmax J30 0.12% 1.8% 90.12%

5 Conclusions

Summarising, this research has the following innovative parts:

– a holistic mathematic model integrating all the known extensions and variations of the
resource constrained project scheduling problem, namely, preemption, multiple modes
of execution, generalised precedence constraints, variable resources availabilities and
requests over time and its binary formulation,

– an adaptive hybrid algorithm that handles the selection of the auxiliary algorithms
that will be used for the solution of each problem’s instance and the ways that the
schedules will be generated (s-GS or p-SGS),

– achievement of good optimisation results as the proposed moderator algorithm leads
to as good results as the best known for each variation and in specific cases, although
more experiments should take place, it has been seen to give even better results,

The proposed work is a first step towards flexible models of complicated situations,
adaptable solution methods and results aiming at supporting the decision makers without
giving aphorisms about which solution is the best one and which is not.

The next step on this research is to enhance it by adding a mechanism for automatically
dealing with infeasibilities instead of interactively doing it.
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Appendix 1

Table 2. Basic Notation

Symbol Definition
V = {0, 1, . . . , n, n+1} the set of activities i
n number of real activities
G(V,A) directed graph of precedence or temporal constraints
T the planning horizon, sum of maximal durations of all activities
t periods, index of T
[t, t+ 1) time interval corresponding to period t
Act(t) set of all the activities of which a time unit is in progress at t, t = 0, 1, . . . , T
Rρ set of renewable resources
αρkt variable amount of available units of renewable resource k, t = 0, . . . , T − 1
Rν set of non-renewable resources
tlx each non renewable resource l ∈ Rν is associated to a subset {tlx|x = 0, . . . , Xl}

of {0, 1, . . . , T} with 0 = tl0 < . . . < tlx < tl(x+1) < . . . < tlXl = T
Ilx subintervals Ilx = [tlx, tl(x+1)],

x = 0, . . . , Xl − 1 composing a partition of [0, T )
ανlIlx variable amount of available units of non-renewable resource l
Mi set of modes (alternative ways of execution) of activity i
Mp′
i set of non-preemptive modes of activity i

Mp
i set of preemptive modes of activity i

dim duration of activity i in mode m
rρimkτim per period usage of activity i of renewable resource k in mode m
rνimlτim per period consumption of activity i of non-renewable resource l in mode m
zim number of splits on activity i in mode m, zim = 0, ..., dim − 1
pimq segment of the preempted activity i with q = 0, 1, 2, . . . , zim
dimq duration of segment q of activity i in mode m
simq start time of segment q of activity i in mode m
fimq finish time of segment q of activity i in mode m
sim0 start time of activity i
fimzm finish time of activity i
s000 start time of project
f(n+1)00 finish time of project
S = (simq) schedule, vector of start times of all segments of all activities
SSminimjn/SSmaximjn min/max time lag between start of activities i and j in modes m and n
SFminimjn/SFmaximjn min/max time lag between start of activity i in mode m and finish of j in mode n
FSminimjn/FSmaximjn min/max time lag between finish of activity i in mode m and start of j in mode n
FFminimjn/FFmaximjn min/max time lag between finish of activities i and jin modes m and n
δimjn min/max time lag between start of activities i and j in modes m and n
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1. Introduction 

In this paper we propose methods for improving efficiency of the general approach for solving 

a machine scheduling problem with an additional, doubly-constrained resource. In this problem 

preemptable jobs are to be scheduled on parallel identical machines in order to minimize 

makespan. A general dynamic model of a job execution is used to express the relation between a 

processing rate of a job and its resource usage. This way one can model e.g. the practical problem 

of scheduling computational jobs on an advanced multicore processor where available amounts of 

power and energy should be respected. The problem belongs to the class of laptop problems 

(Bunde (2006)).  

The general approach for solving the problem bases on the work of Węglarz (1981) and has 

been adopted to machine scheduling case in Różycki, Węglarz (2009). In this approach an optimal 

schedule is found by solving a nonlinear mathematical programming problem, in which the 

number of variables and the number of constraints exponentially grows with a size of an instance. 

We propose some preprocessing procedures that applied to an instance of the problem allow in 

some cases to find an optimal solution in a simpler way. The computational complexity of the 

procedures is linear, thus it is highly recommended to use them before the optimal solution is 

found using the general approach. 

2. Problem formulation 

We consider a problem where n independent, preemptable jobs should be processed on m 

parallel identical machines. The ready time of each job is equal to 0. Each job requires both a 

machine and an amount of a single doubly-constrained resource for its processing. The processing 

time of job i is unknown in advance, since its processing rate at time t depends on a temporal 

usage of the resource - pi(t). This relation is expressed by an increasing speed function si 

(si(0) = 0). Moreover, a completion time Ci of job i is also related to its size wi. As a consequence 

the considered model of job processing may be expressed in the following form: 

    
iC

iii dttpsw
0

))((    (1) 

It is worth stressing that each job may be characterized by different speed function in model 

(1).  

The resource is shared among jobs and its doubly-constrained nature is expressed by the 

following inequalities: 


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
n

i

i Ptp
1

)(  for every t > 0   (2) 

 
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
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i Edttp

C

1 0

max

)(     (3) 

where Cmax is the completion time of a last job in a schedule.  

Let us assume that P and E denote respectively: the known limit for available power and the 

available amount of energy. The problem is to find both: an assignment of jobs to machines and an 

allocation of the resource to jobs that lead to a schedule with the minimal length. 
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3. General approach 

The general approach is based on the result of Weglarz (1981) which, for given limits of P and 

E, allows to find a time-optimal resource allocation to n independent jobs if n ≤ m. In this case, for 

the considered class of speed functions the shortest schedule is obtained by fully parallel execution 

of all jobs, where each job is processed using constant amount of power and all jobs are finished at 

the same moment. Of course, in the case where n > m only m jobs may be performed in parallel. 

Thus in the general approach, in order to construct an optimal schedule we have to consider all m-

element combinations from the set of n jobs. Each combination represents a part of the final 

schedule, i.e. a single group of jobs that may be performed in parallel on limited number of 

processors. Since the processors are identical, an order of jobs in such combination may be 

neglected. Although the jobs are preemptable, we assume that preemption of a job within a 

combination is forbidden. However,  a job is still able to migrate among processors because in 

consecutive combinations it may be allotted to different processors at no additional cost. 

For a sequence of all combinations (an order of combinations in the sequence is arbitrary) a 

nonlinear mathematical programming (NLP) problem has to be solved to find a schedule with a 

minimal makespan. A division of energy and job sizes among the combinations leading to a time-

optimal schedule is found by solving such NLP problem.  

Denote combinations by Zk, k = 1 ,2 ,..., 








m

n
r . Denote also by Ki, i = 1, 2,..., n,  the set of 

indices of Zk’s containing job i and by wik part of job i processed in Zk. Let Tk  and Ek, k = 1, 2,..., r, 

denote respectively: the length of the part of the schedule corresponding to Zk and an amount of 

energy consumed for processing all parts of jobs from Zk.  Notice that for a given level of P, Tk, 

k = 1, 2, ..., r, is a function of wik, Ek, which are unknown a priori. An exemplary division of job 

sizes among all combinations is presented in Fig.1. 

   

 

 

 

 

 
w11 w12 w13 w14 w15 w16 w27 w28 w29 w3,10 

w21 w22 w23 w34 w35 w46 w37 w38 w49 w4,10 

w31 w42 w53 w44 w55 w56 w47 w58 w59 w5,10 

 T1   T2   T3   T4   T5   T6   T7   T8   T9  T10 

Figure 1. An example of the division of sizes of jobs among all possible combinations in the case of n = 5 jobs 

and m  = 3 machines   

  The NLP problem has the following form in the reminded general approach: 

  

Problem NLP1 
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wik ≥ 0, Ek > 0, i = 1, 2,..., n; kKi     (7) 

 

where Tk
* is found as the only positive root of the equation: 
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or equation:  




 

kZi

kiki PTws )/(1
   (10) 

otherwise. 

 

Notice that (8) and (10) are direct consequences of, respectively: (3) and (2). To find the 

shortest k-th part of the schedule for the given wik, i  Zk, and Ek it is better to start with equation 

(8), since it is usually of simpler form than (10). For example, for practically justified functions: 

      

         (11) 

 

and αi = {2, 3, 4}, both: (8) and (10) are  analytically solvable algebraic equations of an order less 

than or equal to 4, however (8) is of an order less by 1, and thus is analytically solvable also for 

αi = 5. If the sum of power allocated to jobs using (8) exceeds available amount P, we have to 

solve (10), but the information obtained by solving (8) is valuable anyway. Nevertheless, it is 

worth mentioning that at least equation (8) and inequality (9) has to be solved for each of r parts of 

the schedule in NLP1. Thus, it is strongly reasonable finding the cases where this approach may be 

simplified. 

4. Special instances of the problem 

In this section we show the methods for determining the instances for which one can formulate 

simpler nonlinear problems than NLP1. The new formulations of NLP problem differ mainly with 

the way a current value of the criterion function is calculated.  

Let us start with an observation that relation between energy Ei consumed by job i and its 

constant power usage pi may be represented by the function: 
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iii
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p
wpE     (12) 

Below we present two basic lemmas for which the proofs are obvious.  

  

Lemma 1 

Let us assume that job i  is processed using a constant amount of power pi. Then energy Ei 

consumed during processing of job i is an increasing function of pi for pi  (0,∞).  

 

Lemma 2 

Let us assume that job i  is processed using a constant amount of power pi. If the speed 

function si fulfills the condition:  

 
0   ,

/1

1
)(  i

ii

ii p
ps

ps     (13) 

then energy Ei consumed during processing of job i is strictly concave function of of pi for 

pi  (0,∞). 

 

Of course, Lemma 2 is valid e.g. for processing speed functions (11) and αi > 1. As a 

consequence of these two lemmas one can propose conditions (without proofs) which allow 

identify the special instances of the problem.   

4.1. Energy related instances 

Corollary 1 

For instances of the problem where all the speed functions satisfy both: (13) and the following 

inequality: 

       niPpEi  2,..., ,1   ,     (14) 

where pi
E is the (only) positive root of the equation: 
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in order to find an optimal solution the following nonlinear programming problem has to be solved 

instead of NLP1: 

 

Problem NLP2 

(minimize)   (4) 

s.t.:             (5), (6), (7), 

where “=” should be put in (5)  and Tk*, k = 1, 2,..., r is calculated from (8). 

 

4.2. Power related instances 

Corollary 2 

For instances of the problem where the following inequality is fulfilled: 

  

      
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
n

i i

i E
Ps
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     (16) 

 

in order to find an optimal solution the following nonlinear programming problem has to be solved 

instead of NLP1: 

 

Problem NLP3 

(minimize)   (4) 

s.t.:             (6), (7), 

where Tk*, k = 1, 2,..., r is calculated from (10). 

5. Summary 

Corollaries 1 and 2 may be utilized on a preprocessing step of a procedure of an optimal 

schedule generating. For a given instance of the problem one can determine if (14) or (16) is 

satisfied. If one of the two cases happens, the simpler nonlinear programming problem may be 

solved to reach optimality. If we assume that (15) is analytically solvable (what is the case for the 

speed functions (11)) such preliminary procedure has the computational complexity O(n).   

Of course, Corollaries 1 and 2 do not exhaust all the cases where  power or energy constraint is 

inactive. One can observe that among all formulated NLP problems, NLP2 is the easiest to solve. 

Therefore, for instances for which (14) and (16) are not satisfied, we suggest the following 

procedure. Firstly one can try to find an optimal schedule by solving NLP2. If the amount of 

power used by jobs in each part of schedule in the obtained solution does not exceed P, then the 

solution is optimal. Otherwise one can try to solve the problem using NLP3. The solution obtained 

in this way is optimal if the total energy consumption in the schedule is not greater than E.     

If neither NLP2 nor NLP3 produce the optimal solution, the only way to solve the problem is 

to use the described general methodology and solve NLP1. 
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1 Introduction

The Distributed Permutation Flowshop Problem (DPFSP) was recently introduced
by Naderi and Ruiz (2010) as a generalization of the flowshop layout where more than
one factory is available to process jobs. Distributed manufacturing is common in large
enterprises in today’s globalized market. The problem entails two decisions: assigning jobs
to factories and scheduling each factory. This short abstract summarizes the main elements
of a recently introduced scatter search (SS) method to optimize the maximum makespan
among the factories. It is shown that the proposed algorithm produces better results than
existing methods by a significant margin.
In the DPFSP the set N of n jobs must be processed by a set G of F factories. Each
factory has an identical set M of m machines. The processing times of of the jobs are
the same for all factories and are denoted by pij . Once assigned to a factory, a job has
to be completed in that factory by being processed in all machines. The objective is to
minimize the maximum makespan among all factories. Naderi and Ruiz (2010) referred to
this problem as DF/prmu/Cmax. It was also demonstrated that no factory should be left
empty with no jobs assigned (if n > F ) for makespan improvement. The total number of

possible solutions in the DPFSP is
(
n− 1
F − 1

)
n! Furthermore, the DPFSP reduces to the

regular flowshop if F = 1, so it can be concluded that the DPFSP is also an NP-Hard
problem. Naderi and Ruiz (2010) proposed six different Mixed Integer Linear Programming
models for the DPFSP together with 12 heuristics that resulted from applying two different
job to factory assignment rules to six heuristics for the regular PFSP: 1) Assign a given job
j to the factory with the lowest current Cmax, not including job j and 2) Assign job j to the
factory which completes it at the earliest time, i.e., the factory resulting in the lowest Cmax
after assigning job j. The rules are applied each time a job is scheduled. From the six tested
heuristics the NEH method with the second job to factory assignment rule of Naderi and
Ruiz (2010) (referred to as NEH2) resulted in the best heuristic performance. They also
presented a simple Variable Neighborhood Descent (VND) starting with the NEH2 solution
with two neighborhoods, referred to as VND(a). As Naderi and Ruiz (2010) pointed out,
prior to 2010 there was almost no literature on distributed flowshop scheduling. Later,
Lui and Gao (2010) presented a complex electromagnetism metaheuristic (EM). In the
computational evaluation, EM was not compared against VND(a). Furthermore, EM’s CPU
times are significantly larger than those of VND(a). Later, Gao and Chen (2011a) presented
a Hybrid Genetic Algorithm with local search (HGA) which reported better solutions than
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VND(a) but at the expense of much larger CPU times (about 246 times larger). Gao and
Chen (2011b) presented an improvement of the NEH heuristic and the NEH2 of Naderi and
Ruiz (2010) referred to as NEHdf. In the computational experiments the method is shown
to slightly outperform NEH2 (however, in a provided statistical experiment, NEHdf is not
shown to statistically outperform NEH2). More recently, Gao et. al. (2012b), presented a
genetic algorithm which is shown to slightly outperform the HGA of Gao and Chen (2011a).
Gao et. al. (2012a) presented a revised VNS method. Gao et. al. (2013) have presented a
tabu search method. Lin et. al. (2013) have presented an iterated greedy method (IGV ST ).
Wang et. al. (2013) have proposed an estimation of distribution algorithm (EDA) needing
no less than almost 788 times more CPU time than VND(a). As our critical review shows,
many of the recently proposed methods have not been compared against each other. Most
comparisons are done only against VND(a), which is no more than a heuristic with some
local search.

2 Some aspects of the proposed scatter search method

In the proposed algorithm we employ some advanced techniques like a reference set
made up of complete and partial solutions along with other features like restarts and local
search. The allowed space in this short abstract is not enough to explain the proposed
SS in detail so we basically summarize the most important aspects. The solution for the
DPFSP is a list of jobs per factory. This jointly indicates the assignment of jobs to factories
and the processing order at each factory. In the proposed DPFSP SS procedure we employ
two different sets inside the reference set. The first is set H which contains a number b of
the best ever found solutions. The second set, denoted as S, contains l factory assignment
vectors. The union of these two sets makes the reference set, i.e., RefSet = H ∪ S of size
b+ l. Set H contains full solutions and set S only contains factory assignments for jobs. For
the initial construction of set H we start with a Psize of 25 random job permutations. 24
of these permutations are used as an initial ordering that is passed to the NEH2 method
of Naderi and Ruiz (2010). For the last 25th permutation we use the regular NEH initial
ordering instead of random. After, the best b solutions among these 25 are included in set
H . Note that this applies to the initial H set construction. Later, at each iteration of the SS
procedure, set H contains the best b visited solutions. As for set S, used for diversification,
we simply initialize it with random job to factory assignments. At each iteration of the SS
algorithm, sets H and S are combined. Therefore, and in order to keep the diversity, set S
is randomly regenerated at each iteration of the SS method. The subset generation method
is also different from most scatter search applications given the two sets H and S inside
RefSet. The procedure consists of selecting all possible combinations of solutions in set H
with factory assignments in set S. Therefore, at each iteration, b · l pairs are considered.
The combination method is an important step and all pairs are combined. We refer to the
solution selected from set H as p1 and to the factory assignment vector selected from S as
p2. The new combined solution, referred to as pn is at first identical to p1. The combination
method has n iterations. At each iteration, a job from pn is randomly selected, without
repetition, so at the end all jobs have been selected. We refer to this randomly selected
job as h. If a random number uniformly distributed between 0 and 1 (rand) is less than a
given value p the combination method checks if job h is assigned to different factories in pn
and in the job to factory assignment vector p2. If this is the case, job h is extracted from
its current factory in pn and tested in all possible positions of the factory indicated in p2.
The final placement of job h is the position resulting in the lowest makespan at the factory
indicated in p2. If rand is greater or equal than p then the job is not assigned to another
factory and left untouched. We apply an improvement procedure at each iteration of the
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SS to each solution pn obtained by the solution combination method. The improvement
algorithm is a simplification of the VND procedure of Naderi and Ruiz (2010).
After the improvement method is applied to pn we check if the new solution pn is incor-
porated into the set H of RefSet. The inclusion happens if and only if: 1) The makespan
of pn is better than the makespan of the worst solution in set H and 2) It is unique, i.e.,
there are no other identical solutions in set H . Finally, we include a procedure to restart set
H after a number of iterations without improvements in the best solution. The procedure
is simple; after a iterations without improvements in the best solution, the worst 50% of
solutions in set H are discarded and the diversification generation method is employed to
generate new solutions. The previous parameters are calibrated by means of the Design of
Experiments (DOE) approach and a full factorial design. The details are not given due to
space constraints but suffice to say that the parameters b, l and a are set to 10, 10 and 40,
respectively.

3 Computational evaluation and conclusions

We briefly detail the results of the experimental evaluation of the proposed SS method.
We take the 120 instances of Taillard and augment them with different number of factories
F = {2, 3, 4, 5, 6, 7}. This results in a total of 720 instances available at http://soa.iti.es.
We compare the following methods from the literature: 1) The EM method of Liu and Gao
(2010), 2) HGA of Gao and Chen (2011a), 3) The improved NEH of Gao and Chen (2011b),
referred to as NEHdf, 4) VNS(B&B) of Gao et. al. (2012a), 5) The TS of Gao et. al. (2013),
6) The best iterated greedy (IG) algorithm of Lin et. al. (2013). 7-10) The existing methods
proposed in Naderi and Ruiz (2010), namely NEH1, NEH2, VND(a) and VND(b). Finally,
the 11th method compared is the proposed SS method. Some of the previous cited existing
algorithms from the literature were not tested as it was clear that their performance was
not competitive. All methods have been carefully coded in C++. The stopping criterion of
all metaheuristic methods has been changed so that all algorithms use the same CPU time
following the expression n×m×F×C where C has been tested at several values: 20, 40, 60,
80 and 100. Testing all methods with 720 instances and with so many stopping times that
range from a few seconds to almost two hours guarantees a full range of results. Moreover,
all algorithms have been coded in the same language and are run on the same computers
with the same CPU time stopping criterion, resulting in comparable computational cam-
paign. NEH1, NEH2 and NEHdf are heuristics and do not have a stopping criterion and
therefore are only tested once with each instance. All other 8 methods are tested with the
720 instances and with the 5 aforementioned different stopping times which means that
we have 3 × 720 = 2, 160 results for the heuristics and 8 × 5 × 720 = 28, 800 results for
the metaheuristics. The total CPU time needed for the metaheuristic results is almost 165
days. For the computational experiments we have used a cluster with 30 computing blades
running at 2.5 GHz. and 16 GBytes of RAM memory. The response variable is the average
relative percentage deviation (AVRPD) over the best solution known for all 720 instances
and replicates.
In a succinct way, NEH1, NEH2 and NEHdf have AVRPD values of 8.31, 5.15 and 4.91,
respectively, while the employed CPU times are 0.006, 0.023 and 0.035 seconds, respec-
tively. In some statistical experiments (not shown) it is demonstrated that NEHdf is not
statistically better than NEH2 while being slower. For the metaheuristic methods, Table 1
shows the main results. From the summarized results given, it is clear (and statistically
significant) that the proposed SS method produces much better results than the competing
methods for all tested CPU times.
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Table 1. Average Relative Percentage Deviation (AVRPD) and CPU time used (in seconds)
for the tested metaheuristics grouped by CPU time limit C.

C EM HGA IG SS TS VND(a) VND(b) VNS(B&B) CPU Time
20 5.15 3.58 2.60 1.50 3.18 3.63 3.78 2.68 164.63
40 5.23 3.52 2.39 1.36 3.11 3.63 3.78 2.67 329.25
60 5.26 3.49 2.30 1.27 3.04 3.63 3.78 2.68 493.88
80 5.17 3.47 2.24 1.24 3.05 3.63 3.78 2.68 658.50
100 5.25 3.43 2.16 1.19 3.02 3.63 3.78 2.67 823.13

To conclude, we have presented an Scatter Search method for the Distributed Permuta-
tion Flowshop Problem that has shown, through a series of comprehensive computational
experiments, to be much better than recent proposed competing methods. The proposed SS
method incorporates some high-performing characteristics and constitutes the new state-
of-the-art for the considered problem.
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Abstract: We consider multiagent scheduling problems in which agents (customers, work-

ers, etc.) have to share the same identical parallel machines to execute their jobs without

preemption. Each agent has its own objective function (minimizing the number of tardy

jobs) which depends only on the schedule of its jobs. In addition, the obtained scheduling

sequence of all jobs should minimize a global objective function (fmax) introduced by the

owner of the system (production manager or resource manager). An ε-constraint approach

is used to determine comprise solutions.

Introduction

Scheduling problems in which agents (customers, production managers, etc.) have to share

the same set(s) of machines are at the frontier of combinatorial optimization and coopera-

tive game theory ([1]). The key assumption of our models is that each agent has a disjoint

set of jobs to perform and each one has its own objective function which only depends on

the schedule of its jobs, except for the resource manager who seeks to determine a schedule

that optimizes an objective function which depends on the schedule of all jobs. According to

[2], this scheduling problem is called multiagent scheduling problem with a global objective

function. Such problems may be identified in many manufacturing systems. For example,

consider a given company which produces different types of products. One type has a due

date to be respected (perishable articles) and the production manager wants to minimize

jobs in-progress.

Agnetis et al (2004) [1] introduced the multiagent scheduling problems called Competing

scheduling problems. They considered two disjoint sets of jobs, each one is associated with

one agent and one objective function. The jobs have to be executed on the single machine

and the goal is to find the solutions of best compromise between the two agents. When
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the ε-constraint approach is used, Agnetis et al. proposed an O(n3) algorithm for problem

1||∑UA,
∑
UB and anO(n log n) algorithm for problem 1||∑UA, fBmax. In [4], the authors

studied the 1||∑UA
j ,
∑
CB

j problem, and they presented an NP -hardness proof and a

dynamic programming algorithm. Recently, Huynh et al (2011) [2] extended these results

to interfering job set scheduling problems. For the case of parallel machines, Sadi et al. [5]

identified some polynomial and pseudo-polynomial cases.

1 Problem formulation

Let J be the set of n jobs to be executed without preemption on m identical parallel

machines (m is fixed). Each agent k (k = 1, . . . ,K) is associated with one job subset

J k ⊂ J , such that |J k| = nk and ∀k 6= k′ J k ∩ J k′
= ∅. Machines are always available

and can only process one job at a time. For each job Jj we have pj the integer processing

time and dj the due date. We assume that all jobs are available at time zero. Let Cj be

the completion time of job Jj . We aim at minimizing some monotonically non-decreasing

function fmax = maxnj=1{fj(Cj)} (fj(t) depends on Jj ) subject to number of tardy jobs of

each agent. To obtain a Pareto solution, ε-constraint approach is used. Hence, for a given

vector ε = (Q1, . . . , Qk, . . . , QK) the number of tardy jobs of each agent k does not exceed

Qk (i.e.,
∑

j∈J k Uk
j ≤ Qk, k = 1, . . . ,K). According to multicriteria scheduling notation

when the ε-constraint approach is used, the studied problems are: (i) Identical processing

times, denoted Pm|pj = p,
∑
Uk
j ≤ Qk, k = 1, . . . ,K|fmax; (ii) Arbitrary processing times,

denoted Pm|∑Uk
j ≤ Qk, k = 1 . . . ,K|Cmax.

2 Identical processing times

For problem Pm|pj = p,
∑
Uk
j ≤ Qk, k = 1, . . . ,K|fmax, the objective functions are

assumed regular. Hence there is no advantage to keep a machine idle. Because processing

times are identical, we can easily prove that the last job is completely executed at t = d nmep
which corresponds to the optimal makespan value C∗max. Without loss of generality, we

consider that the due dates are all larger than p. We also admit that n is a multiple of m.

Otherwise, we add dummy jobs Jh, such that fh(t) = 0 and dh = np. So, we can show that

there exists an optimal solution where these dummy jobs are processed not earlier than the

other jobs. Based on the general setting of Lawler’s procedure [3], we propose algorithm 1

to determine an optimal solution.

Theorem 21 Problem Pm|pj = p,
∑
Uk

j ≤ Qk, k = 1, . . . ,K|fmax can be solved by algorithm 1

in O(n2) time.
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Algorithm 1: For problem Pm|pj = p,
∑
Uk
j ≤ Qk, k = 1, . . . ,K|fmax

Input: n, m, nk, p, dj , Qk, j = 1, . . . , n, and k = 1, . . . ,K

1 t = d n
m
ep, S = J , qk = 0, π = ∅; (qk is the number of tardy jobs of agent k)

2 while S 6= ∅ do

3 i = 1; t = t− p; (i is a machine index)

4 while i ≤ m do

5 j = argmin{fj(t) : Jj ∈ J k and qk < Qk};
6 Schedule Jj on Mi at time t;

7 π = {Jj}\\π; (a\\b stands for the concatenation of a and b)

8 if (t+ p > dj) then

9 qk = qk + 1; (when Jj ∈ J k)

10 i = i+ 1; S = S\{Jj};

11 Return π;

3 Arbitrary processing times and fmax = Cmax

Let us consider now fmax = Cmax. The problem Pm|∑Uk
j ≤ Qk, k = 1, . . . ,K|Cmax is

NP-hard (Pm||Cmax is NP-hard). To obtain an optimal solution, we propose a pseudo-

polynomial time dynamic programming algorithm. We assume in the following that the

jobs are numbered according to their earliest due date order. Under this numbering, there

always exists an optimal schedule that verifies: on each machine, the early jobs are processed

before the tardy jobs and in their increasing index order.

Dynamic programming. Let UB be the upper bound for the makespan. For each machine

i, we introduce two parameters: Pi is the completion time of the last early job scheduled

on machine Mi; and ti is the completion time of the last job assigned to machine Mi (this

last job can be tardy). To illustrate our approach, let us consider the case of two machines

(m = 2). Function Cj(P1, t1, P2) gives the completion time of the last job assigned to

machine M2 when the first j jobs are already scheduled. Depending on the decision of

assigning job Jj to machine that minimizes Cj(P1, t1, P2), the number of tardy jobs of

agent Ag(j), denoted UAg(j)(P1, t1, P2) can be deducted.

Whether if Jj is scheduled early or tardy on Mi, the recursive function is:

C0(0, 0, 0) = 0;C0(P1, t1, P2) = +∞, ∀(P1, t1, P2) 6= (0, 0, 0);Uk(0, 0, 0) = 0;
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Cj(P1, t1, P2) = +∞, if Pi < 0 or t1 < 0, Uk < 0 or Uk > Qk

Cj(P1, t1, P2) =





+∞ if UAg(j) > QAg(j)

min





min
(
Cj−1(P1 − pj , t1 − pj , P2);Cj−1(P1, t1, P2 − pj)− pj

)
if Pi ≤ dj

min
(
Cj−1(P1, t1 − pj , P2);Cj−1(P1, t1, P2)− pj

)
otherwise

According to the best decision for Cj(P1, t1, P2), the number of tardy jobs of agent Ag(j) is up-

dated. It means that if we decide to schedule job Jj tardy on machine M1 for example, we have:

UAg(j)(P1, t1, P2) = UAg(j)(P1, t1 − pj , P2) + 1.

Then, the optimal makespan value is given by: min
∀t1≤UB,∀Pi≤UB,i=1,2

{
max

(
t1;Cn(P1, t1, P2)

)}

In the case of m machines, notice that the worst-case time (and space) complexity needed

to compute Cj(P1, t1, P2) is O(UBm−1). And for each agent k, the worst-case space com-

plexity needed to save the number of its tardy jobs is O(nkUB
m−1).

Theorem 31 Problem Pm|∑Uk
j ≤ Qk, k = 1 . . . ,K|Cmax can be solved in O(nUBm−1) time.

4 Further research

For further research, it would be interesting to develop strong heuristics for Pm|∑Uk
j ≤

Qk, k = 1 . . . ,K|fmax. The models considered in this study can also be extended in various

directions: analyze other combination of criteria and search of the Pareto front. Some

approximation schemes can be constructed as well as exact and approximated heuristic

methods.
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1 Introduction

Our research topic is the analysis of new exact approaches for the multi-mode resource-
constrained project scheduling problem (MRCPSP).

For variants of the single-mode RCPSP (SRCPSP) recent exact algorithms combine
Branch and Bound (BaB)-based search with principles from Constraint Programming (CP),
Mixed-Integer Programming (MIP) and Boolean Satis�ability Solving (SAT). Ohrimenko
et al. (2009) introduced the CP-SAT hybrid lazy clause generation (LCG) and successfully
applied it to the Open Shop Scheduling Problem. Schutt et al. (2009) were the �rst to
generalize LCG to the SRCPSP with the aim of makespan minimization. Up to now,
LCG is the state-of-the-art exact approach for the SRCPSP with standard and generalized
precedence relations and the objective of makespan minimization and for the SRCPSP with
discounted cash �ows (See Schutt et al. (2013a), Schutt et al. (2013b) and Schutt et al.
(2012)).

With our work, we aim at generalizing the ideas of LCG for the solution of RCPSP
instances with multi-mode jobs as it is an e�cient approach for variants of the SRCPSP.
Therefore, we use the Constraint Integer Programming (CIP)-framework SCIP (See Achter-
berg (2009)). To generalize the CP-SAT approaches to the MRCPSP, we implemented two
new constraint handlers precedencemm(. . . ) and cumulativemm(. . . ) for SCIP with which
one can model standard precedence relations and renewable resource constraints for multi-
mode jobs, respectively. The precedencemm(. . . )- and the cumulativemm(. . . )-constraint
capture domain propagation rules for the above problem characteristics. Moreover, to
enforce the integration of our constraints in the SCIP-intern SAT mechanisms, we also
implemented explanation generation algorithms for the above constraints. Explanation
generation algorithms have to deliver clauses consisting of boolean literals which represent
the reasons for the domain propagation and cuto�s deduced by our constraints (See Schutt
et al. (2013a)). All in all, by modeling and solving the MRCPSP with our new constraints
precedencemm(. . . ) and cumulativemm(. . . ) in SCIP, we can solve the latter problem by
a BaB algorithm in combination with CP, SAT and MIP techniques which is provided by
SCIP and thus realize an approach similar to LCG for the MRCPSP.

2 Modeling and solution principles

A MRCPSP instance consists of a set of jobs J = {0, . . . , n+1}, whereas every job j ∈ J
can be processed in a number mj of modes k ∈Mj = {1, . . . ,mj}. Note that 0 and n+1 are
dummy jobs representing the start and the end of the project. Every job's duration dj,k and
nonrenewable (renewable) resource consumption cνj,k,r, r ∈ N(cρj,k,r, r ∈ R) is dependent
on the selected mode k ∈ Mj . Moreover, every nonrenewable (renewable) resource r ∈ N
(r ∈ R) has a maximal capacity of Cνr (C

ρ
r ) units. In addition, every job j ∈ J has a set
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of successors Sj whereas j cannot end after a job from its successor set Sj has started,
i.e. we only consider standard precedence relations. As objective, we consider makespan
minimization.

For the modeling of the starting time of job i in mode k and the mode assignment of job
i, we use the integer variables si,k and the binary variables xi,k. With the above notation,
the MRCPSP can be formulated as follows in SCIP:

min sn+1,1 (1)

s.t.
∑

k∈Mi

xi,k = 1, ∀i ∈ J (2)

si,k + di,k · xi,k ≤ sj,l,
∀j ∈ Si,∀i ∈ J, ∀k ∈Mi, ∀l ∈Mj (3)
∑

i∈J

∑

k∈Mi

cνi,k,r · xi,k ≤ Cνr , ∀r ∈ N (4)

precedencemm(s,x,d,S), (5)

cumulativemm(s,x,d, cr, Cρr ), ∀r ∈ R (6)

sj,k ∈ {lb(sj,k), . . . , ub(sj,k)} ,
∀j ∈ J, k ∈Mj (7)

xj,k ∈ {0, 1} , ∀j ∈ J, k ∈Mj (8)

where

s = s0 ◦ · · · ◦ sn+1, where sik = si,k, ∀k ∈Mi, i ∈ J (9)

x = x0 ◦ · · · ◦ xn+1, where xik = xi,k, ∀k ∈Mi, i ∈ J (10)

d = d0 ◦ · · · ◦ dn+1, where dik = di,k, ∀k ∈Mi, i ∈ J (11)

cr = c0,r ◦ · · · ◦ cn+1,r,where ci,rk = cρi,k,r,∀k ∈Mi, i ∈ J, r ∈ R (12)

With (2) and (4), we formulate the uniqueness of the mode-assignments and the nonre-
newable resource constraints, respectively. In (5) and (6), we apply the precedencemm(. . . )-
and the cumulativemm(. . . )-constraint to model the multi-mode precedence constraints and
renewable resource constraints, respectively. Thereby, we use the variable vectors s and x
and the parameter vectors d and cr which are given in (9)-(12). In this context, the op-
erator ◦ is de�ned as the concatenation of two vectors, whereas the vector c = a ◦ b is
obtained by appending the elements of b coordinate-wise to a. Note that, (3) are valid
inequalities to model standard precedence relations between multi-mode jobs. We add the
latter to strengthen our model.

The key principle of the domain propagation algorithms captured in the precedencemm

and the cumulativemm(. . . )-constraint is the computation of a single-mode representation
from the multi-mode data in the nodes of the BaB tree. We determine a SRCPSP instance
from the multi-mode input based on the domains of the mode-assignment variables xj,k.
With the single-mode data at hand, our constraint handlers can apply standard propagation
algorithms for the SRCPSP. Note that, cumulativemm(. . . ) integrates an implementation of
timetable propagation (See Baptiste et al. (2001)). The explanation generation algorithms
are extensions of the ones used by Schutt et al. (2013b) for the SRCPSP. We additionally
include information on the binary variables xj,k to represent the multi-mode data which
after transformation lead to the domain updates or cuto�s to be explained.
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3 Computational Results and Conclusion

We implemented the constraint handlers precedencemm(. . . ) and cumulativemm(. . . )
with SCIP 3.0.0 in combination with the programming languages C/C++. Moreover, we
modeled and solved the formulation of Sect. 2 with the latter version of the framework
SCIP. We apply our model in two ways which di�er in the generation of the initial domains
Dj,k = {lb(sj,k), . . . , ub(sj,k)}:

SCIPMax Dj,k is evaluated by forward (backward) recursion (See Brucker & Knust (2006))
based on the trivial upper bound (UB) Tmax =

∑
j∈J d

max
j , where dmax

j is the maximal
mode duration of job j.

SCIPBest The initial domains Dl
j,k are generated based on 24 di�erent UBs T1, . . . , T24

where T1 equals the best known UB from the literature and Tl = Tl−1 + 2, ∀l =
2, . . . , 24. A model is run on the processor l = 1, . . . , 24 with the initial domain Dl

j,k

based on Tl. Hence, in this case we apply a parallel approach which applies 24 proces-
sors. In the end, we take the best results w.r.t. to all 24 processors.

Our approaches are tested on the 552 feasible MRCPSP-instances with 30 jobs (J30mm)
from the PSPLIB introduced by Kolisch & Sprecher (1997) and on the new 540 MRCPSP-
instances with 50 and 100 jobs (MMLIB50 and MMLIB100) provided by the Operations Re-
search and Scheduling research group of the University of Ghent (2011). We use a time
limit of 3600s, 5400s and 7200s for the instance sets J30mm, MMLIB50 and MMLIB100, respec-
tively. We compare SCIPMax and SCIPBest to the state-of-the-art exact approach of Zhu
et al. (2006) (MMBAC) on the instances J30mm (See Table 1). Table 1 shows the number of in-

#opt #best ttot GLB(%)

SCIPMax 488 502 465.28 13.52
SCIPBest≥18 500 513 413.52 12.82
SCIPBest 502 517 393.12 12.77
MMBAC 506 529 393.13 -

Table 1. 30 Jobs

stances solved to optimality (#opt), the number of best known solutions detected (#best),
the average solution time (ttot) and the percentage gap to the critical path lower bound
(GLB(%)). The results of our approaches are highly competitive but still inferior to the
results obtained by Zhu et al. (2006). However, as their Branch-and-Cut approach is based
on a MIP formulation of the MRCPSP, it is highly dependent of a starting solution with
a small makespan to reduce the number of binary variables. They use starting solutions
computed by a problem speci�c heuristic whose makespan on average only deviates by
2.18% from the best known makespans of the PSPLIB. Our model still produces solutions
of useful quality in comparable average solution times when using the trivial upper bound
Tmax (SCIPMax). Moreover, if we only integrate UBs which have a relative deviation of more
than 18 units w.r.t. the best known makespan, we obtain competitive results compared to
SCIPBest (See column SCIPBest≥18 in Table 1). This corresponds to an average deviation
of more than 57% over all 30-job instances. Thus, our approach can also produce high
quality solutions without a good starting solution at hand.

Tables 2 and 3 show the results for the MRCPSP-instances with 50 and 100 jobs. To
our knowledge, we are the �rst to exactly solve these instances. We are able to prove
optimality for ≈ 77% (57%) of the 50(100)-job instances. Moreover, we improved the best
known makespans for 70 (93) instances with 50 (100) jobs (See column #Imp).
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#opt #best ttot GLB(%) #Imp
SCIPMax 400 414 1497.65 41.81 57
SCIPBest 417 444 1329.57 25.96 70

Table 2. 50 Jobs

#opt #best ttot GLB(%) #Imp
272 301 3776.05 389.71 77
310 355 3280.41 32.83 93

Table 3. 100 Jobs

To conclude, we successfully generalized the state-of-the-art exact solution principles
for the SRCPSP to the MRCPSP by introducing two new constraint handlers prece-
dencemm(. . . ) and cumulativemm(. . . ) for the framework SCIP. In addition, the proposed
model can be transformed to variants of the MRCPSP with more general linear constraints
like e.g. generalized precedence relations or time-dependent resource pro�les and also more
general objective functions like e.g. the net present value. However, there is still ample
room for an improvement of our approach. At the moment, our implementation of the
cumulativemm(. . . )-constraint only contains a timetable propagation algorithm (See Bap-
tiste et al. (2001)) for multi-mode jobs. We plan to integrate stronger propagation algo-
rithms like e.g. edge �nding or energetic reasoning in the latter constraint.
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1 Introduction and motivation

In the primal Resource Constrained Project Scheduling Problem (RCPSP) each re-
source allocation for an activity is constant during all periods of its execution. However, in
some practical applications, being restricted to these rigid resource pro�les is not satisfy-
ing, so in the past researchers developed more �exible planning models to incorporate the
resource allocation and the activity duration as variables in the decision problem (cf. e.g.
(Kolisch et. al. 2003), (Fündeling 2001)).

Previous researchers have shown that this �exible RCPSP (FRCPSP) is even harder
to solve by Mixed Integer Programming (MIP) than the standard RCPSP, so they �nally
adapted the very fast and well-known activity lists with schedule generation schemes (SGS)
for solving schedules (cf. e.g. (Fündeling and Trautmann 2010), (Zhang and Sun 2011)).
That led to reasonable computation times with the drawback of being settled to regular
objective functions (e.g. CMax). For nonregular objectives as used for example for robust
scheduling or rescheduling, there is no known heuristic for the FRCPSP.

In this work, we combine the for the FRCPSP modi�ed serial SGS from Kolisch et.

al. (2003) with the genetic algorithm (GA) from Hartmann (1998) to create a competitive
solution method for the FRCPSP. In addition, we extend that serial SGS and the repre-
sentation of the GA to enable this new algorithm to support various time-based objective
functions for single and multi-project schedules. To show its e�ectiveness, we provide the
results of two experiments. First, we consider the CMax objective on a single project test
set with �exible resource demands. Second, we consider multi project instances with �exible
resource demands and solve them under the objectives of minimizing activities tardiness,
and minimizing tardiness combined with maximizing robustness, to demonstrate the ability
of handling various objectives. Overall, all results are compared with those of a standard
MIP approach and (for the �rst two objectives) with the random sampling approach of
Kolisch et. al. (2003) and with several priority rules of Fündeling and Trautmann (2010).

2 Problem statement

We consider the �exible resource constrained project scheduling problem (FRCPSP),
the decision variables are the �nish times fi ∈ N+

0 and the durations di ∈ N+
0 of each

activity i and the resource allocation rikt ∈ R+
0 for each demand for resource k by activity

i for all execution periods t ∈ {fi − di, . . . , fi − 1}. Furthermore we de�ne si = fi − di as
an auxiliary variable for the starting time.

Activities are non-preemptable and connected by end-to-start precedence relations in
an activity on node (AoN) network. The allowed duration is limited by the constraint
di ≤ di ≤ di. A release time tR and/or a due time tD may be assigned to selected activities.
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The activity network is comprised by two additional dummy activities, one at the start (no
inbound arcs) and another at the end (no outbound arcs), both with no resource demands
and a duration of 0. If a schedule contains multiple projects, the activities of each project
are comprised by additional dummy activities which connect the �rst resp. last activities
of the project with the �rst resp. last dummy activity of the whole schedule network.

Only renewable, continuous resources are considered with an availability of akt ∈ R+
0 for

each resource k and each time period t. Each nondummy activity can have several resource
demands. The actual resource allocation rikt for a demand for resource k by activity i is
restricted by rik ≤ rikt ≤ rik for t ∈ {si, . . . , fi − 1}. A resource demand may be constant
as in the classical RCPSP or �exible. For constant resource demands, rik = rikt = rik holds
so that the amount of allocated resources is equal in all execution periods of the activity. For
�exible resource demands, rik < rik applies and the constraint

∑fi−1
t=si

rikt = wik is added
to enforce the total requested workload wik. If an activity i has only constant demands,
di = di should be set in the input data to make also the activity duration constant.

In this work, this problem will be solved under three di�erent objectives:

O1 is the classical CMax function for minimizing the makespan of a single project schedule.
O2 is the weighted tardiness objective function

∑
max(0, fi− tDi ) ∗wD

i for minimizing the
tardiness of all activities with a due date tDi and a weight factor wD

i .
O3 is a combination of two objectives. For minimizing tardiness, we de�ne O31 = O2. For

robust optimization we de�ne O32 =
∑

i∈B bi, where bi denotes the bu�er time behind
the end of activity i and the begin of its earliest successor, and B denotes a set of
selected activities behind whom we want to have bu�er time. The �nal objective is
de�ned by minimizing O3 = O31 − 0.01 ∗ O32 so that minimizing activity lateness is
much more important than maximizing the bu�er time.

3 Constructing the initial solution set

Due to the fact that a genetic algorithm is for improving existing solutions, the �rst
step of solving the FRCPSP is to generate a set of initial valid solutions. By �xing di to a
value between di and di and �xing rikt =

wik

di
for t ∈ {si, . . . , fi − 1}, we obtain a possible

constant solution for each �exible demand (if no such �xing exists, there would be no other
possible setting for the �exible demand). Assuming that the overall planning horizon is
long enough and rikt ≤ akt always holds, there is a feasible solution with only constant
demands and durations so the problem can be solved with standard RCPSP methods.
We use randomized priority lists with serial SGS (as described by Demeulemeester and
Herroelen (2002)) to generate an initial set of solutions.

4 Modifying the serial SGS for various time-based objectives

The set of all possible placements for an activity i can be de�ned as

Pi =
{
(si, di)|si ∈ {ESTi, . . . , LSTi} ∧ di ∈

{
di, . . . , di

}
∧ si + di ≤ LFTi

}

where ESTi, LSTi, LFTi are the earliest resp. latest possible start times and the latest
possible �nish time of an activity i according to critical chain calculation. Furthermore,
we de�ne an activity �tness function ki : (si, di) → R to assign each possible placement
a �tness value. The original serial SGS, and also the extended version of Kolisch et. al.

(2003) for �exible resource demands, which is the foundation in this work, try to schedule
an activity as early as possible with respect to its predecessors and the resource availability.
We adapted this behavior in the following way: assuming that ki(s

1
i , d

1
i ) > ki(s

2
i , d

2
i ) always
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holds when (s1i , d
1
i ) is a more desirable placement than (s2i , d

2
i ), and k

∗
i denotes the �tness

value of the most desirable placement, then the SGS tries to schedule i to the placement
(si, di) with the lowest value of |k∗i −ki(si, di)| which is resource and precedence feasible. To
schedule an activity i as early as possible, we de�ne ki : (si, di)→ −si and set k∗i = −ESTi.
In this modi�ed SGS we assume this as default for all activities.

To support a certain time-based objective function, we now identify the set φ of
activities whose placements have direct in�uence on the objective value, and for each
i ∈ φ we adjust ki and k∗i . For objective O1 the only measured activity is the last ac-
tivity in the network and it shall be placed as early as possible, so because of the de-
faults no adjustment is needed. For O2, φ contains all activities which have a due date,
ki : (si, di) → −min(0, fi − tD) and k∗i = 0. For the robust optimization part of O3,
we extend φ of O2 by all succeeding activities j of each activity i ∈ B and set their
kj : (sj , dj)→ sj and k

∗
j = LSTj to schedule them as late as possible.

5 Solution representation for the genetic algorithm

A genetic algorithm is used to improve the initial set of solutions towards the selected
objective function. Each individual Ip within the population P represents a possible solu-
tion of the decision problem and is de�ned as Ip = (V,K∗,m,O).

Tuple V = (v1, . . . , vN ) assigns each activity i a continuous priority value vi ∈ [0, 1].
This priority value is used to determine the scheduling order of the activities for the serial
SGS. Given a set C containing all candidate activities that could be scheduled next because
all of their predecessors have already been scheduled, we take the activity i ∈ C with
vi = max {vj |j ∈ C}. Hartmann (1998) tested this random key encoding in his GA but
rejected it in his tests in favor of a slightly better list representation. We tested both
representations and came to the conclusion that priority values perform better in our case.

Tuple K∗ = (k∗1 , . . . , k
∗
N ) contains the current desired �tness value (cf. section 4) for

each activity. ∀j /∈ φ : k∗j = −ESTj to schedule them always as early as possible. ∀j ∈ φ, we
�rst set k∗j = kj(sj , dj) where (sj , dj) is the placement of the activity in the initial solution.
In further steps the algorithm will try to improve this value by mutation to achieve perhaps
better objective values. m ∈ φ denotes the activity whose k∗m can be subject to mutation
in the next iteration. Thus, when an improvement of one k∗ results in a better objective
value, the information which k∗ was modi�ed is inherited to the next generation.

Tuple O = (dO1 , . . . , d
O
N ) contains o�sets for the minimum duration for each activity.

That is, the minimum allowed duration for an activity i in the SGS is set to di+ d
O
i where

dOi ∈
{
0, . . . , di − di

}
to enforce the elongation of the activity and thus lower the greedy

resource allocation per time period.

6 Crossover, mutation, and selection operators

In each iteration, the GA �rst doubles its population P by successively creating two new
individuals I ′1, I

′
2 by taking randomly two individuals I1, I2 ∈ P and applying the two-point

crossover operator (cf. (Hartmann 1998)) to them. Second, several mutation operators are
applied to all new individuals. Last, the modi�ed SGS is used to calculate the �tness of
all new individuals and then, the n best individuals out of all old and new individuals are
selected for the next generation so that P regains its original size. For mutation, �rst each
vi ∈ V is replaced by a random new value with a chance of 5%. Second, each dOi ∈ O
is increased or decreased by 1 with a chance of 5%. Third, m is changed to any other
activity ∈ φ with a chance of 10%. Last, also with a chance of 10%, k∗m ∈ K is replaced by
k

′∗
m = min {km(sm, dm)|km(sm, dm) > k∗m}, if such exists.
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Table 1. Arithmetic average results over all instances and 3 runs/instance

Algorithm Objective O1 Objective O2 Objective O3

∅ Gap # MIP≤ ∅ Gap # MIP≤ ∅ Gap # MIP≤

GA (30 seconds) -0.5% 100/150 11.1% 14/50 6.4% 15/50

Random Sampling (30 seconds) 0.9% 84/150 16.0% 14/50 n/a n/a
GA (300 seconds) -3.3% 111/150 - 8.7% 18/50 4.4% 16/50

Random Sampling (300 seconds) -0.3% 95/150 8.2% 16/50 n/a n/a
PR: Longest path following 1.4% 89/150 45.1% 5/50 n/a n/a
PR: Most total successors 5.1% 56/150 52.9% 3/50 n/a n/a
PR: Most work content remaining 5.2% 61/150 53.7% 3/50 n/a n/a

7 Computational results

The GA has been tested on 150 single project instances (30-90 activities) for O1, and
50 multi project instances (50-115 activities on 3-5 projects) for O2 and O3. The projects
of the instances were taken from PSPLIB instances, a subset of resource demands were
�exibilized randomly, resource availabilities were combined with a random factor between
50%-85%, and due dates were set randomly in the range of either 70-100% or 100-140%
of the best known project length (depending on whether the due date should be tight or
not). Table 1 shows the results of the GA and several other heuristics (for a description
of the priority rules, see (Fündeling and Trautmann 2010)). Column �∅ Gap� denotes the
average gap of the heuristic objective value to the best known MIP objective value (solved
by Gurobi 5.6 on 4 cores, time limit = 1 hour). Column �# MIP≤� denotes the number of
instances whose heuristic objective value is better or equal to the MIP objective value.

8 Conclusion

We could show that the presented GA is superior to all known heuristic solution meth-
ods for the FRCPSP with the CMax objective. In addition, for minimizing tardiness or
increasing robustness, in average it leads to better results in shorter time than a MIP ap-
proach. The next step we recommend is to test other objectives, like moving an activity into
a certain time window for rescheduling, or optimizing the net present value of a schedule.
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1 Introduction

In this work, we introduce a single machine scheduling problem, in which the processing
time of a job increases when its start time deviates from a given job dependent ideal time.
This problem differs from similar problems found in literature by the fact that most time
dependent problems only allow monotonic change in processing time. Its application lies
in scheduling of a single worker who successively picks up components and takes them to
a moving conveyor belt, for assembling them into a product. We solved the problem by
developing a branch and bound procedure.

Consider a conveyor line which moves a product with a constant speed along a straight
line. The assembly consists of several independent jobs that need to be scheduled. We focus
on a single worker only. In each of his or her jobs, he or she first picks up a component, then
builds it into the product. Every part has its own fixed storage location along the conveyor
line. Thus, the worker needs to walk from the product to the storage location and back.
As this distance depends on the current product position, it is time dependent. Minimum
distance occurs at the point in time when the product passes the storage location, to which
we will refer as the ideal time. As the distance increases both before and after the ideal
time, it is a nonlinear function of time. We assume a constant walking speed that is faster
than the conveyor speed. Then, the walking time equals distance divided by speed. This
walking time is added to the assembly time of a job, thus the processing time is nonlinearly
time dependent.

Scheduling with time dependent processing times has increasingly been studied in the
last two decades. Often considered are learning or deterioration effects, sometimes both,
e.g. Biskup (2008), Janiak, Krysiak & Trela (2011), as well as controllable processing times
with influence on the cost (Shabtay & Steiner 2007). Monotonous functions of time, either
increasing or decreasing, are most common (Gawiejnowicz 2008, p. 51), especially linear or
piecewise linear cases (Alidaee & Womer 1999, Cheng, Ding & Lin 2004). What has been
studied to a lesser extent are convex functions that are both decreasing and increasing over
time. These could be used to model our application, because the walking time is minimum
at the ideal time, and increases when deviating in both directions.

One of the simplest objective functions in scheduling is to minimize the completion time
of all jobs, namely Cmax. In our application, this leads to a maximization of the number of
products assembled per time frame. Therefore, minimizing Cmax matches the application
case.

2 Problem Description

Given a set of n jobs j, 1 ≤ j ≤ n. Each job j has an ideal start time Tj ∈ R+

and a base length lj ∈ R+. We define its processing time as pj(t) = lj + a |t − Tj |, a
function on the job starting time t. A given penalty factor 0 < a < 1, common for all jobs,
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reveals the processing time increase when t deviates from Tj . A schedule orders the jobs
consecutively such that the start time of a job corresponds to the completion time of the
preceding job. The objective is to find a schedule that minimizes the completion time for
the last job, Cmax. Note that there are no further restrictions on the order of jobs so that
each sequence is feasible. We can denote this problem as 1

∣∣pj(t) = lj + a |t − Tj |
∣∣Cmax in

standard three-field notation (Graham, Lawler, Lenstra & Rinnooy Kan 1979).

t

pj(t)

lj

Tj

Fig. 1. The processing time pj(t) of a job j depends on its start time t, with ideal start time Tj .

Looking at the problem, we see that the processing time pj(t) is a piecewise linear
function of time, see also Figure 1. It is also nonmonotonic because before Tj it decreases,
and after Tj it increases. Also, it is a convex function, as is the absolute value function.

Coming from the application, the factor a states the relation between the conveyor
speed and the worker speed. The factor a must lie in the interval between 0 and 1. Note
that with a = 0, the problem would become trivial as it is no longer time dependent. Also,
this would mean a nonmoving conveyor. With a ≥ 1, the worker would walk the same speed
or even slower than the conveyor moves, which is an unlikely scenario. Also, this would
not permit to start a job after its ideal time, because the worker would never be able to
reach back to the product. We assume the same factor a on both sides of Tj , because this
simplifies formulating the problem, though we are aware that this assumption needs to be
dropped in future research as the conveyor moves during walking.

As the time duration increases when scheduling a job not at its ideal time, we observe
some similarity of our problem to just in time scheduling, where it is costly to schedule
a job not at its due date. Especially the single machine earliness and tardiness minimiza-
tion problem is similar, as the costs increase linearly when scheduling a job apart its due
date (Abdul-Razaq & Potts 1988, Bauman & Józefowska 2006, Billaut & T’kindt 2006).
Thus, jobs should be scheduled near their due dates. This is similar to our problem, but
instead of billing the deviation as costs, we include it within the processing times, thereby
influencing other jobs.

Because the position in the schedule determines a job’s deviation from its ideal time,
thereby changing the processing time, common proof techniques are hard to use. Especially
the pairwise interchange argument for obtaining precedence relations is hard to apply,
because when swapping two jobs, other jobs move along and change their processing times.
Therefore is it difficult to ensure that the objective function is not worsened, rendering this
often used proof technique to be complicated.

That the given problem is very hard to solve is underlined by the fact that a very similar
nonlinear problem is also very difficult, namely the problem presented by Kunnathur &
Gupta (1990). Here, the processing time is constant until its due date, and then grows by
a linear factor. They solve the problem by heuristics and a branch and bound algorithm.
Later on, Kononov (1997) showed that this related problem is strongly NP-hard.
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3 Branch and Bound Algorithm

To solve this problem exactly, we present a branch and bound algorithm that minimizes
the objective Cmax. To implement it, we need both upper and lower bounds for Cmax.

3.1 Special Cases of the Problem

To derive bounds, we set the objective to minimize the makespan Cmax − tmin.
Case (S1): Say we only allow jobs to start after a certain start time tS , and all the ideal

times lie before tS , meaning Tj ≤ tS for all jobs j. Then, the makespan is minimum when
the jobs start at tS , non-decreasingly ordered by the value of pj(tS).

Case (S2): Is like case (S1), but Tj ≥ tE for a certain end time tE and all jobs j. Then,
scheduling the jobs non-increasingly by the value of pj(tE), and such that the last job
completes at tE , delivers a minimum makespan.

For a proof of (S1) we refer to e.g. Kunnathur & Gupta (1990, Lemma 1), and as (S2)
is symmetric to (S1), the proof is similar.

3.2 Lower Bound

To calculate a lower bound, we relax the problem definition by allowing the parallel
execution of jobs. Now, each job can be started at its ideal time, where its processing time
will be minimum. Then, the sum of individual processing times leads to a first lower bound.

We improve this lower bound as soon as we are able to state bounds to the time interval
where the jobs are scheduled in, denoted by the interval (tS , tE). Then we can apply the
presented special cases (S1) and (S2) to plan jobs j that have Tj before tS or after tE ,
which results in a much higher lower bound for the processing times.

3.3 Upper Bound

As an upper bound, we devised the following heuristic. First, it generates a random job
order. Then, it repeatedly interchanges consecutive jobs until a local optimum is reached.
This local search is similar to a heuristic for the earliness and tardiness minimization
problem, where it proved to perform quite well (Sourd 2006).

3.4 Branch and Bound Procedure

We utilized our findings to develop a branch and bound procedure. The heuristic ini-
tializes the upper bound, this also gives a value for tE , as there is obviously no possible
way for a job to start after the upper bound.

Then, a depth first search runs until it finishes with the optimum Cmax. For this, jobs
are successively appended to the end of the schedule. The variable tS is initially set to 0
and is afterwards always set to the completion time of the last job of the partial schedule.
Should the lower bound exceed the upper bound, a branch is fathomed. A branch completes
when all jobs are scheduled, updating the upper bound and tE to the new best Cmax.

4 Conclusion

A single machine scheduling problem with time dependent processing times is analyzed
for minimizing maximum completion time Cmax. We present a branch and bound procedure,
with a lower bound which uses the fact that the problem is polynomially solvable in two
presented special cases. Given the stated practical relevance of the problem, we recommend
further development of fast solution algorithms for this problem type.
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1 Introduction

We consider an NP-hard single machine scheduling problem, denoted (P). It takes into
account: earliness and tardiness penalties, sequence dependent setup times and costs, and
rejection penalties associated with the non selected jobs. Due to the desire of clients to
customize the goods, there is a trend in today's companies to adopt a make-to-order produc-
tion system. This is, for instance, the case in computers, cars, bags, and watches factories
(Mansouri et al. 2012). The just-in-time paradigm comes then naturally as a way to reduce
inventory costs. Depending on the sale politic and on the company's organization, schedul-
ing operations at the workshop level in such environments can be characterized by the need
to reject some orders (O§uz et al. 2010), and the use of earliness penalties. An application
of such a problem to a numerically controlled machine can be found in Atan and Akturk
(2008). Despite the practical importance of such problems, and the abundant literature on
scheduling with rejections and on scheduling with earliness and tardiness penalties, only a
few papers take into account these two elements (e.g., Atan and Akturk (2008), Shabtay
et al. (2012)). All these considerations motivate us to propose an e�cient metaheuristic to
tackle (P), namely a variable neighborhood search (VNS ).
VNS has been applied to single machine problems in di�erent scheduling environments
(e.g., Liao and Cheng (2007)). When all jobs must be scheduled, the neighborhood struc-
tures are generated by slightly changing the production sequence (often with moves REIN-

SERT or SWAP as de�ned in Section 3). In this work, we propose to strategically use the
move DROP, consisting in rejecting some jobs. This paper is a sequel of the work presented
in Thevenin et al. (2013), where the authors propose a tabu search (TS ) for a problem
similar to (P). Readers are referred to Gendreau and Potvin (2010) and Zu�erey (2012)
for more information on metaheuristics (e.g., tabu search, variable neighborhood search).
Problem (P) is formally described in Section 2. Based on Thevenin et al. (2013), Section 3
presents the existing TS for (P). Section 4 proposes a VNS method for (P). Experiments
are discussed in Section 5. Finally, a conclusion ends up the paper.

2 Formal description of problem (P)

Problem (P) is formally stated bellow (Thevenin et al. 2013). A set of n jobs is given, and a
subset of these jobs have to be selected and scheduled on a single machine, which can handle
only one job at a time. For each job j, the following data are given: a processing time pj ,
an available date r̄j , a release date rj , a due date dj , a deadline d̄j , and a rejection penalty
uj . Let Cj and Sj , respectively, denote the completion time and the starting time of job
j. In a feasible solution, each accepted job j satis�es Cj ≤ d̄j and Sj ≥ r̄j . Then, for each
accepted job j which is not fully performed within time window [rj , dj ], a penalty must be
paid. More precisely, an earliness penalty Ej(Sj) is incurred for each job j started before its
release date (Sj < rj), and a tardiness penalty Tj(Cj) has to be paid for each job j which
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ends after its due date (Cj > dj). Note that Ej(·) (resp. Tj(·)) are non increasing (resp.
decreasing) functions. Also, between two consecutive jobs j and j′ of di�erent families, a
setup time sjj′ must be performed, and a setup cost cjj′ is incurred. Preemptions are not
allowed, and it is possible to insert idle times in the schedule.
A solution s is modeled by a set Ω(s) of rejected jobs and a sequence σ(s) of accepted jobs.
To compute the earliness and tardiness penalties associated with s, a starting and an ending
time must be assigned to each job of σ(s). Due to the possibility to insert idle times in the
schedule, this is a complex task accomplished by a so-called timing procedure (Thevenin
et al. 2013). The objective function is given in Equation (1), where ps(j) represents the
predecessor of job j in σ(s). Note that the predecessor of the �rst job is a dummy job,
which represents the initial state of the machine.

f(s) =
∑

j∈σ(s)

[
Ej(Sj) + Tj(Cj) + cps(j)j

]
+

∑

j∈Ω(s)

uj (1)

3 Tabu Search (TS)

Tabu search is a local search metaheuristic. Starting from an initial solution, it generates at
each iteration a neighbor solution s′ from the current solution s. The set N(s) of neighbors
of s is obtained by performing moves on s, which are slight modi�cations of the solution
structure. To avoid cycling, a tabu list forbids to perform the reverse of recently performed
moves. The best non tabu move is generally performed at each iteration.
In TS proposed for (P) in Thevenin et al. (2013), the initial solution is generated by a
greedy procedure GR. In GR, jobs are sorted by increasing slack times (d̄j − r̄j − pj),
and inserted one by one in the solution at the position which minimizes the costs (but a
job is put in Ω(s) if it is cheaper than to perform it). In TS , four types of moves were
proposed for (P): ADD takes a job from Ω(s) and inserts it in σ(s); DROP removes a job
from σ(s) and puts it in Ω(s); REINSERT changes the position of one job in σ(s); SWAP

exchanges the positions of two jobs in σ(s). Four di�erent tabu structures were designed.
The �rst (resp. second) forbids to add (resp. drop) a dropped (resp. added) job during τ1

(resp. τ2) iterations. The third forbids to move a job which has been added, reinserted or
swapped, during τ3 iterations. The fourth forbids to move a job j between its two previous
neighboring jobs during τ4 iterations, if j has been reinserted or swapped. The τi's were
tuned as follows: (τ1, τ2, τ3, τ4) = (20, 30, 20, 80) for instances with more than 50 jobs, and
(τ1, τ2, τ3, τ4) = (20, 20, 15, 25) otherwise. At each iteration, only a random proportion r%
(parameter tuned to 30) of the neighbor solutions are evaluated.

4 Variable neighborhood search (V NS)

VNS is a local search method which sequentially uses di�erent neighborhood structures.
A generic version of VNS is given in Algorithm 1, where N1, N2, . . . , Nr denote a �nite set
of neighborhoods, and Ni(s) is the set of solutions in the ith neighborhood of solution s.
In VNS proposed for (P), the way to go from one neighborhood to the next di�ers from
the generic version. The neighborhood Ni(s) consists in dropping i% of the jobs in σ(s),
which then enter in Ω(s). Removing jobs from the accepted sequence deletes a part of the
solution structure while keeping other information unchanged. In other words, move DROP

is used to diversify the search. The proportion i of deleted jobs is controlled to guide the
search away from the incumbent solution when no improvement has been made for a long
period. More precisely, i is initialized to imin and takes values in [imin, imax] (where imin

and imax are parameters respectively tuned to 5 and 50). In step (3), if s′′ is worse than s,
then i is set to 1.1 · i (but if i is larger than imax, it is set to imax), whereas if s′′ is better
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than s, then i is set to imin. In this way, the fraction of deleted jobs grows exponentially
with the number of iterations without improvement.
In step (1) of our VNS , the selected solution is the best among a sample of k (parameter
tuned to 50) solutions generated at random in Ni(s). Preliminary tests showed that using
such shaking strategies allows to obtain better results than choosing a single solution at
random in Ni(s), or dropping the jobs of σ(s) one by one by removing the job which leads
to the minimum costs at each step.
In step (2), the previously de�ned TS is used without move DROP, and is run during I
(parameter tuned to 500) iterations. The initial solution of VNS is generated by GR.

Algorithm 1 Variable Neighborhood Search

Generate an initial solution s and set i := 1

While no stopping criterion is met, do

1. Shaking: generate a solution s′ in Ni(s).
2. Local search: apply some local search method with s′ as initial solution, and let s′′ be

the resulting solution.
3. Move or not: if s′′ is better than s, move there (i.e. set s := s′′), and continue the

search with N1 (i.e. set i := 1); otherwise set i := i + 1, but if i > r, set i := r.

5 Experiments

To generate instances for (P), two critical values are used: the number n of jobs, and a
parameter α which controls the interval of time in which release dates and due dates are
generated. More precisely, a value Start is chosen large enough, and End is equal to Start+
α

∑
j pj . Then, rj is randomly chosen in interval [Start, End], and dj in [rj + pj , End]. To

highlight the ease of adaptation of the proposed methods to di�erent penalty functions,
we consider both linear and quadratic penalties in each instance of the experiments. More
precisely, the earliness (resp. tardiness) penalties are equal to wj(rj −Sj)

qj (resp. w′
j(Cj −

dj)
q′

j ). The weights wj and w′
j are randomly chosen in {1, 2, 3, 4, 5}, whereas qj and q′

j are

chosen in {1, 2}. d̄j and r̄j are chosen such that Tj(d̄j) = Ej(r̄j) = uj . Value pj is an integer
randomly chosen in interval [50, 100], and uj = β ·pj , where β is an integer randomly picked
from interval [50, 200]. A number of job families is chosen randomly between 10 and 20.
Setup times and costs are likely to be related in realistic situations, therefore the setup
time sFF ′ between jobs of families F and F ′ is chosen randomly in [50, 200], and the setup
costs cFF ′ are set to ⌊γ · sFF ′⌋, where γ is randomly chosen in interval [0.5, 2]. Note that
the uniform distribution has been used to generate all the data.
To compute the cost of a solution in TS and VNS , we have adapted the timing procedure
proposed in Hendel and Sourd (2007), which is to our knowledge the fastest method for the
above de�ned penalty functions. The solution methods (namely, GR, TS , and VNS ) were
implemented in C++ and performed on a computer with a processor Intel Quad-core i7
2.93 GHz with 8 GB of DDR3 RAM memory, and a time limit of n/2 minutes. Note that
GR is restarted as long as the time limit is not reached, and provides the best generated
solution. Table 1 presents the results. Column Best (in $) indicates the best known result
for each instance. Then, for each method the percentage gap between the average result
over 10 runs and Best is given. The best result for each instance appears in bold face.
It is clear from the results that both local search methods outperform GR. The average
gap obtained by GR is 55.67%, versus 16.78% and 8.88% for TS and VNS , respectively.
The results also show the superiority of VNS over TS : VNS obtains the best results for 11
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instances out of 15, versus 5 for TS . Obviously, the structured and controlled use of move
DROP in VNS is e�cient to tackle (P).

n α Best [$] GR [%] TS [%] V NS [%]

25

0.5 46,860 0.40 0.13 0.05
1 35,866 6.50 0.00 0.00
2 8,172 21.25 0.75 1.33

50

0.5 137,567 6.47 4.26 2.32
1 69,671 44.34 10.15 11.26
2 6,123 166.39 30.91 19.52

75

0.5 198,633 19.68 6.52 6.06
1 126,052 33.93 5.15 0.60
2 11,199 246.30 41.58 32.86

100

0.5 332,731 21.32 8.36 6.63
1 175,237 50.36 25.65 4.60
2 20,459 124.39 39.34 17.98

150

0.5 561,422 23.49 3.92 4.80
1 320,225 53.85 11.76 15.60
2 66,585 16.34 63.20 9.59

Average 55.67 16.78 8.88

Table 1. Comparison of GR, TS , and VNS

6 Conclusion

We propose in this paper a simple but e�cient VNS method for a realistic scheduling
problem. Experiments show that a well conducted use of move DROP as an exploration
tool is a powerful ingredient. A relevant avenue of research would consist in adapting VNS
for order acceptance and scheduling problems in di�erent scheduling environments (e.g.,
parallel machines, job shops).
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1 Introduction and Problem Statement

In this work we consider the resource-constrained project scheduling problem (RCPSP)
with �exible resource pro�les (FRCPSP), in which a set of non-preemptive activities has
to be scheduled subject to �nish-start precedence relations and resource availability limita-
tions. For each activity only the total required amount of each resource is known. Activity
durations, however, are not given and the resource allocation during the processing time
of an activity must be determined. As the allocation of resources can be adjusted between
time periods, the resulting �resource pro�le� (Naber and Kolisch 2013) of an activity is
�exible and not limited to a rectangular shape over the entire processing time of the ac-
tivity. The FRCPSP, therefore, consists of determining for each activity the start time,
the duration, and the resource allocation per time period in order to minimize the project
makespan.

Based on the discrete-time FRCPSP formulation of Naber and Kolisch (2013), the �ex-
ible resource pro�le of an activity for a speci�c resource must ful�ll at least the activity's
resource requirement, adhere to lower and upper bounds of resource usage, and maintain a
�minimum block length� (Fündeling and Trautmann 2010) of time periods in which resource
usage is not changed. Resources are assumed continuous and renewable with time-variant
resource capacities and can belong to three categories: principal, dependent and indepen-
dent. The principal resource of an activity is the main resource, whose allocated amount
during the processing time of the activity de�nes the required amounts of dependent re-
sources through non-decreasing linear functions. The allocated amount of an independent
resource is not a�ected by the quantities of other resources. A project can contain multiple
resources of all three kinds, but each activity has just one single principal resource.

The motivation of our research on this NP-hard problem (Kolisch et al. 2003) is to
develop a genetic algorithm for the FRCPSP that can solve problem instances of practical
size close to optimality and to gain insights on the problem structure in order to further
improve heuristic methods.

2 Literature Review

The FRCPSP was initially studied by Kolisch et al. (2003), who de�ned the problem in
the context of a real-world application in pharmaceutical research projects. Whereas the
underlying RCPSP has been extensively covered, literature that studies the FRCPSP is
relatively scarce.

Nearly all existing approaches for the FRCPSP consider discrete resources and are lim-
ited to a single principal resource only. Kuhlmann (2003) applied genetic algorithms to a
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problem containing several speci�c requirements from practice. Ranjbar and Kianfar (2010)
employed a genetic algorithm on a generated set of feasible resource pro�les, which is, how-
ever, limited to speci�c shape types. Priority rule heuristics were proposed by Kolisch et al.
(2003), Fündeling (2006), Fündeling and Trautmann (2010), and Zhang and Sun (2011).
Most recently, Naber and Kolisch (2013) provided exact mixed integer programming (MIP)
methods for the FRCPSP with continuous resources and multiple resource categories.

Related to the FRCPSP is the discrete time-resource tradeo� problem (DTRTP). In
the DTRTP, activity processing time is a function of resource usage, which is assumed
constant and integer for the duration of an activity. De Reyck et al. (1998) and Ranjbar
et al. (2009) applied metaheuristics to solve the problem by selecting modes, which relate
to rectangular-shape resource pro�les, from a set of feasible modes. For related RCPSP
formulations in which activities can be processed at di�erent continuous processing rates,
exact solution methods were proposed by, e.g., Kis (2006).

Our work founds upon the problem formulation of Naber and Kolisch (2013) for which
we propose a solution approach inspired by the work of Hartmann (2002).

3 Proposed Solution Approach

As continuous resources lead to an unlimited number of potential resource pro�les, the
FRCPSP cannot be solved through enumeration of resource pro�les. Therefore, our solu-
tion approach consists of a genetic algorithm (GA) with self-adaptive parameter control
(Hartmann 2002), which determines the sequence of activities, and a schedule generation
scheme (SGS), which schedules activity start times and employs heuristic resource alloca-
tion methods.

3.1 Genetic Algorithm

Our proposed GA works on an activity list representation (Kolisch and Hartmann 1999)
of the FRCPSP. An activity list is any precedence feasible permutation λ = (a1, ..., an) of
a set of n activities ai with i ∈ {1, ..., n}. The list position p(ai) ∈ {1, ..., n} of an activity
de�nes its priority for scheduling. In order to transform an activity list into a schedule we
have to apply a SGS. Kolisch and Hartmann (1999) distinguish the serial and the parallel
SGS, which can be combined with di�erent resource allocation methods in the FRCPSP.
As proposed by Hartmann (2002), the parameter which SGS type to use is encoded into
solution candidates and undergoes evolution itself. As a result, the GA can self-adapt the
SGS type to the respective problem instance. Thus, a solution candidate is represented by
a tuple (λ, s), where s denotes the selected SGS type.

Following the approach of Hartmann (2002), we employ a priority rule based biased
sampling heuristic to generate activity lists for the initial population of candidates. We
incorporate diversity into the initial population by using di�erent priority rules in the sam-
pling process, including the longest path following (LPF) rule, which, according to Fündel-
ing and Trautmann (2010), provided good results for the discrete FRCPSP. Furthermore,
we randomly assign SGS types s. To create a new generation of solution candidates, we
modify λ and s with the crossover and mutation operators of Hartmann (2002). Candidates
for the next generation are selected based on their �tness, which relates to the makespan
of a candidate's resulting schedule, as generated by the SGS.

3.2 Schedule Generation Scheme and Resource Allocation Method

Based on the sequence of activities and the selected SGS type, we can schedule activities
and allocate resources. Whereas the set of schedules generated by a serial SGS contains

231



optimal solutions in the RCPSP, this is not necessarily the case in the FRCPSP (Fündeling
and Trautmann 2010). A study by Fündeling (2006) showed no clear dominance of the serial
or the parallel SGS on all considered problem instances. Hence, we apply both SGS types
in order to generate a broad variety of schedules and to not exclude promising solutions.

The serial SGS as proposed by Naber and Kolisch (2013) employs a greedy resource
allocation method. The algorithm iterates through activities in λ in the sequence de�ned by
the GA. An unscheduled activity ai is eligible in a time period if the activity can be started
in this period based on precedence relations. In each iteration the algorithm schedules a
single eligible activity ai as early as possible and allocates resources as much as possible.
Iterating over time periods, the algorithm allocates the maximum possible resource amount
to ai until the resource requirements of ai are ful�lled and the activity �nishes. If resource
constraints are violated, the algorithm returns to the period in which the current block
starts and reallocates resources. If resources do not su�ce to ful�ll the minimal resource
usage bounds, the starting period of ai is revised. The algorithm terminates when all
activities have been completed.

We adapted the parallel SGS of Fündeling (2006) for multiple continuous resource types.
The parallel SGS increments time periods and considers in each iteration a decision period
t. First, it allocates resources to active (i.e., ongoing) activities to guarantee that minimum
block lengths and minimal resource usage bounds are met. The remaining resources are
then distributed among active activities which qualify for a change in resource allocation
and, if su�cient resource capacities remain, eligible activities. To determine the resource
amounts allocated to each activity, the sequence of activities in λ, as de�ned by the GA,
and the minimal resource usage bounds are considered. If resource constraints are violated,
the algorithm returns to the starting period of the current block and reallocates resources.
If resources do not su�ce to ful�ll the minimal resource usage bounds, an activity is
unscheduled and reconsidered for scheduling in later periods. The algorithm terminates
when all activities have been completed.

4 Computational Study and Further Research

In our computational study we will evaluate the performance of the proposed method
on a dataset of Fündeling and Trautmann (2010), which contains instances of up to 200
activities. We will also compare the quality of our metaheuristic solutions to those of the
exact MIP model FP-DT3 of Naber and Kolisch (2013) on instances with up to 40 activities
from the dataset of Fündeling and Trautmann (2010).

For further research, local search techniques shall be explored to improve solution qual-
ity. Other attempts may include the incorporation of linear programming models to more
e�ciently allocate continuous resources.
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1 Introduction

In hierarchical production control systems, planning decides on capacities and opera-
tions to meet the demand, while scheduling should guarantee the execution of production
plans even in face of uncertainties. Aiming at reducing the complexity of the production
control system, uncertainties are handled as close to the root of their sources as possible,
i.e., at the level of production scheduling. The key idea is trying to stop the propagation
of local disruptions to other production phases or departments, let them be in or outside
of the boundaries of the enterprise. In particular, we focus on a single resource stochastic
scheduling model that captures release and processing time uncertainties of a set of jobs.
This framework fits the production of tailored items, where products are specifically de-
signed for a customer and then produced in very small lots. Uncertainty affects the release
dates due to the possible delays coming from the raw materials suppliers or from previous
production phases, but also the processing time, since the customised design of the prod-
uct quite often entails the need of fine tuning the process to obtain the desired quality. In
order to avoid the propagation of local disruptions downwards in the production chain, the
scheduling approach aims at minimising a risk measure of the maximum lateness.

In its deterministic version, this problem is a classical scheduling problem 1|ri|Lmax
and has been demonstrated to be strongly NP − hard. In particular, without release
dates, the resulting scheduling problem (1|Lmax) is rather simple and can be solved to
optimality using the earliest due date (EDD) rule. If we consider arbitrarily distributed
processing times and deterministic due dates, the EDD rule still minimises the expected
maximum lateness (Pinedo 2008) for non-preemptive static list and dynamic policies and
for preemptive dynamic policies. Since the EDD schedule provides the optimal maximum
lateness for any sample of the processing times, the cumulative distribution of the maximum
lateness for the EDD schedule bounds from above all the cumulative distributions of the
maximum lateness obtained with any possible schedule. This behaviour can be formalized in
terms of stochastic order relations (Ross 1983). Rearrangement inequalities and scheduling
problems have been addressed in (Chang and Yao 1993) where a closed form solution for
the stochastic counterpart of many classical deterministic scheduling problems is obtained.
These results have been rephrased and further exploited in (Zhou and Cai 1997, Cai et al.
2007, Wu and Zhou 2008).

The introduction of the release dates (either deterministic or stochastic) makes the
problem more difficult to solve. However, with independent generally distributed release
dates and processing times and deterministic due dates, the EDD rule still minimises
Lmax but only in the preemptive case and further extension are available but only under
additional constraints on the distributions of release dates and processing times (Pinedo
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2008). Referring to stochastic objective functions other than the expected value, a trade-off
between mean and variance is one of the most simple and used risk measure (De et al. 1992).
Other common objective functions in the stochastic scheduling are the flow time and the
completion time. Moreover, (Sarin et al. 2009) provide closed form equations of mean and
variance for a large set of scheduling problems. However, no algorithm, neither exact, nor
heuristic has been proposed for the maximum lateness single machine scheduling problem
to optimise a stochastic objective function different from the expected value.

2 Using a Risk Measure as Objective Function

The financial research has paid particular attention to the definition of risk measures
to cope with uncertainty. In particular the study of extreme events, i.e., the tails of the
distribution has received due attention. Risk measures as the Value-at-Risk are extensively
used in the portfolio management and a large amount of literature has been written on
their mathematical properties and effectiveness in protecting assets investments.

If we consider a vector of decision variables x and a random vector y governed by a
probability measure P on Y independent on x, they univocally determine the value of a
performance indicator z = f(x, y) with f(x, y) continuous in x and measurable in y and
such as E [|f(x, y)|] ≤ ∞. Given x and the performance indicator z, we define the associated
distribution function ψ(x, ·) on R as:

Ψ(x, ζ) = P (y|f(x, y) ≤ ζ) (1)

The Value-at-Risk α (α− V aR) of the value of the performance indicator z associated
with the decision x is (Rockafellar and Uryasev 2002):

ζα(x) = min{ζ|Ψ(x, ζ) ≥ α} (2)

A different case refers to discrete distributions as in scenario-based uncertainty models
where the uncertainty is modelled through finitely many points yk ∈ Y , z = f(x, y) is
concentrated in finitely many points and ψ(x, ·) is a step function. Under these hypotheses,
the definition of either the Value-at-Risk in (2) must be rephrased (Rockafellar and Uryasev
2002). Given x, if we assume that the different possible values of zk = f(x, yk) with
P (z = zk) = pk can be ordered as zi < z2 < · · · < zN and given kα such that

kα∑

k=1

pk ≥ α ≥
kα−1∑

k=1

pk (3)

then the α− V aR is given by ζα(x) = zkα
Being the Value-at-Risk a quantile of the objective function distribution, the stochastic

dominance between two cumulative distribution functions (cdf) also implies a dominance
between the respective Value-at-Risk, for any given α.

3 A Branch and Bound Approach

We consider a single machine scheduling problem where a set of jobs A containing n
jobs that must be processed on a machine M . Let pj be the processing time of job j ∈ A
and sj its starting time. Each job is subject to a release date rj and a due date dj . The aim
is at finding an optimal schedule minimising the α − V aR of the maximum lateness. We
restrict the problem to static non-preemptive list policies with unforced idleness allowed.
Both the release dates rj and the processing times pj of the jobs are independent stochastic
variables with general discrete distributions. The objective function is a stochastic variable
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itself whose distribution depends on the values of the stochastic variables pj and rj and on
a set of decisions defining how the jobs are scheduled.

The adopted branching scheme starts from a root node (level 0) where no job has
been scheduled. Starting from this node, it is possible to sequence each of the jobs to be
scheduled, hence, there are n branches departing from the root node and going down to n
nodes (level 1) having different jobs executed first in the schedule. In general, at each node
at level k−1 in the branching tree, the first k−1 jobs in the schedule are already sequenced
and n− k + 1 branches lead to a new node at level k with a different jobs scheduled next.
Hence, at level k there are n!/(n− k)! nodes (Pinedo 2008).

Let us consider two jobs i, j ∈ A, with stochastic processing times pi and pj described
by their cumulative distribution functions Fi(t) and Fj(t). The two jobs are executed in
series, first i then j and no release date is considered. Being ∗ the convolution operator,
the cumulative distribution functions of the completion times of jobs i and j (ci and cj)
can be calculated as:

Fci(t) = Fi(t) , Fcj = Fci(t) ∗ Fj(t) = Fi+j(t) = Fi(t) ∗ Fj(t)

If we consider a stochastic release date for job j, it can be modelled as an additional job k
with processing time rj to be executed before j. Moreover, given the cdf of the completion
time of j and its due date dj , the cdf of the lateness Lj can be calculated as:

FLj (t) = Fcj (t− dj) (4)

Provided the cdf of the lateness for all the considered jobs, the cdf of the maximum
lateness is:

FLmax(t) =
∏

j∈A
FTj (t) (5)

At each node in the tree, a subset of the jobs (AS ∈ A) is already scheduled. For
these jobs the maximum lateness cdf can be calculated using Equation 5. The execution
of the remaining jobs (A\AS ∈ A) has not been sequenced yet and, hence, the cdf of the
maximum lateness of the complete schedule cannot be univocally calculated. Given a not
yet scheduled jobs in j ∈ A\AS , a lower bound for its lateness can be obtained assuming it
starts immediately after the already scheduled jobs (AS) or, if more constraining, after its
release date rj . An upper bound for the lateness Lj of a not jet scheduled job j ∈ A\AS
can be obtained assuming that it will be sequenced as the last job in the schedule in
the following scheme. We compute the maximum cdf between the completion time of the
currently scheduled jobs and the release dates of the jobs in A\AS . Then, we calculate the
convolution between this cdc and all the cdfs Fi(t) with i ∈ A\AS . Hence, we compute
the maximum cdf between the one just obtained and the release date of job j, convolute
it with Fj(t) and consider its value in t− dj to have the Lj .

4 Results

In total, 160 instances of 10 activities have been generated and solved considering two
different risk levels (5% and 25%) for 320 experiments. The algorithm has been coded
in C++ using the BoB++ library (Djerrah et al. 2006) and executed two Intel X5450
processors. The results in Table 1 show the performance of the algorithm in terms of the
time to find the optimal solution and the fraction of nodes of the branching tree visited.

The results show that the algorithm was able to find the optimal solution in an average
time of 6.7 seconds, with a variability ranging from a minimum value of 0.547 seconds to a
maximum value of 114.781 seconds. Moreover, the average number of nodes visited during
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Table 1. Solution time (in seconds).

Min. Max. Mean. St. dev.

VaR

Risk=5%
Solution time (seconds) 0.810 114.780 7.350 14.030
% visited nodes 0.017 2.438 0.126 0.266
% difference vs EDD 0 228.570 6.43 24.37

Risk=25% Solution time (seconds) 0.547 97.625 6.042 9.156
% visited nodes 0.012 1.785 0.111 0.190
% difference vs EDD 0 98.50 5.09 15.52

the search is about 0.12% of the total number of nodes in the branching tree (6235300).
In addition, the results seem to show a slightly increase of the solution time when dealing
with a risk level of 5%. This is reasonable since, the more the considered quantile resides in
the tail of the distribution, the more the value for different schedules are packed together
in a strict range and the effectiveness of the bounding and pruning rules is decreased.

A second class of results reported in Table 1 are the comparison of the optimal solution
obtained with the approach against the schedule obtained using the Earliest Due Date
(EDD) rule. To compare the two solutions, first the EDD rule is used to obtain a schedule.
Hence, the schedule is evaluated with the exact approach to calculate the real VaR associ-
ated. This value is then compared with the VaR of the optimal schedule. The results shows
that the proposed approach perform on average between 5.09% and 6.43% better respect
to a simple rule as the EDD. Performing better means that the solution provided by the
EDD rule has a VaR different from that associated to the considered risk level.
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1 Introduction

A new benchmark of hard instances for the permutation flowshop scheduling problem
with the objective of minimising the makespan is proposed. The new benchmark consists of
240 large instances and 240 small instances with up to 800 jobs and 60 machines. One of the
objectives of the work is to generate a benchmark which satisfies the desired characteristics
of any benchmark: comprehensive, amenable for statistical analysis and discriminant when
several algorithms are compared. An exhaustive experimental procedure is carried out
in order to select the hard instances, generating thousands of instances and selecting the
hardest ones from the point of view of a GAP computed as the difference between very good
upper and lower bounds for each instance. The permutation flowshop scheduling problem
(PFSP) consists of determining a processing sequence of n jobs in a set of m machines that
are disposed in series. All jobs must be processed sequentially in all machines. Each job
j, j = {1, . . . , n} needs a processing time of pij units at each machine i, i = {1, . . . ,m}.
This processing time is a non-negative, deterministic and known amount. The completion
time of a job in the factory is denoted as Cj . The most common objective for the PFSP
is the minimisation of the maximum Cj . This is referred to as makespan and denoted as
Cmax. The most widely used benchmark for flowshop scheduling is that of (Taillard 1993)
which comprises 120 instances that range from 20 jobs and 5 machines to 500 jobs and
20 machines. At the time of this writing, only 28 instances in the benchmark are “open”
meaning that the optimum solution is not known. Several authors have recently been unable
to find statistically better performance using Taillard’s benchmark and showed that using
other randomly generated instances of their own, better performance was observed. In a
sense, Taillard’s benchmark is reaching exhaustion.

2 New benchmark

The new benchmark consists of 240 large instances and 240 small instances. Small
instances are a set of 240 with the following combinations of number of jobs (n) and
number of machines (m): n = {10, . . . , 60}, m = {5, . . . , 20}. For each combination 10
instances are generated, so in total we have 6 × 4 × 10 = 240 small instances. Note that
small instances are up to 60 jobs and 20 machines, so we can consider this set to be
actually small-medium sized. If we compare with Taillard’s, the smallest size is 20 jobs
and 5 machines, after 20 jobs, the next size is 50 jobs, so there is an important GAP .
Regarding the number of machines, there are also GAPS, from 10 to 20 machines in some
of the instances. Moreover, Taillard’s instances are not equidistant. For example, from
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20 jobs and 5 machines to 20 jobs and 10 machines and 20 jobs and 20 machines. The
difference between the two first instances is 5 machines and from the second to the third
is 10 machines. All these differences make the statistical analysis of the results difficult. In
the same way, our benchmarks allow the orthogonal analysis in design of experiments, i.e.,
all combinations of n and m are present. That way, two-factor interactions between the
number of jobs and machines can also be studied. This is not possible with Taillard’s, as
some n×m combinations are missing, like 200×5, 500×5 and 500×10. Regarding the large
instances, they are also a set of 240 where n= {100, . . . , 800} and m = {20, 40, 60}. For each
combination 10 instances are generated, in total 8 × 3 × 10 = 240 large instances. In this
way, two of the three desired characteristics are satisfied: they are exhaustive and amenable
for statistical analysis. Regarding the generation, an exhaustive and detailed experimental
procedure is carried out. The process is the same for both small and large instances, and
consists of generating thousands of instances and to select the hardest ones. Specifically,
for small instances, 2,000 instances are generated for each combination. From these 2,000
instances per combination, the hardest 10 are chosen to be part of the new benchmark.
For large instances, the procedure is the same, but a 1,000 instances are generated for
each combination instead of 2,000. Therefore, a total of 48,000 small instances and 24,000
large instances are generated. From these ones, 240 small and 240 large will be chosen to
be part of the new benchmark, those that result as the hardest to solve. The difference
between two instances of the same size (n×m) is the matrix of processing times. To test
how difficult it is to solve an instance we have on the one hand, two effective algorithms for
the permutation flowshop scheduling problem with the objective to minimise the makespan
(Ruiz et al. 2006) and (Ruiz and Stützle 2007). On the other hand, four lower bounds, one
from (Taillard 1993) and the three best polynomial bounds of (Ladhari and Haouari 2005),
are computed for each instance. All the generated instances (48,000 small and 24,000
large) are solved by the two effective algorithms, denoted as HGA (Ruiz et al. 2006) and IG
(Ruiz and Stützle 2007), since they are considered the most effective for this problem. Both
algorithms are metaheuristics so each one is run three times on each instance. Regarding the
stopping criterion for the methods, a maximum elapsed CPU time is set to n · (m/2) · 120
milliseconds (small instances) and n · (m/2) · 90 milliseconds (large instances) in order
to obtain good upper bounds. These values, 120 and 90, were chosen after checking the
algorithms converged. Therefore, for each instance we have six makespan values (three
for each run of both algorithms) and four lower bounds. We obtain, for each instance, an
upper bound (UB) from the minimum makespan among the six makespan values, and a
lower bound (LB) from the maximum value among the four computed lower bounds. The
objective is to obtain the GAP between the upper bound and the lower bound for each
instance, following the expression GAP = (UB − LB)/LB. The higher the GAP value,
the harder the instance is. If the upper bound is very close or equal to the lower bound, a
GAP near zero will be obtained. In order to obtain the hardest instances per combination,
GAP values for the 2,000 instances (small case) or 1,000 instances (large case) are sorted
from highest to lowest. The 10 first instances per combination are selected to be part of
the new benchmark. The same procedure is applied for both, small and large instances,
and as a result of the experimental process, the new benchmark with 240 small instances
and 240 large instances is generated.

3 Computational evaluation

Once the new benchmark is generated (denoted as VRF), the objective is to empirically
test if it is harder to solve than the most used benchmark for this problem (Taillard’s). That
is, to satisfy the third desired characteristic: to obtain a discriminant benchmark. In order

239



3

to check how hard the new proposed benchmark is, several experiments were carried out
based on the comparison of heuristics and metaheuristics methods using both benchmarks
(Taillard and VRF). Some of the most important results are remarked in this work (due
to space restrictions it is not possible to detail the computational evaluation which in total
needed almost 6 years of CPU time). To measure the effectiveness of the methods, the
Average Relative Percentage Deviation (RPD) is computed for each instance according to
the following expression RPD = (Methodsol −Bestsol)/Bestsol where Bestsol is the best
known solution and Methsol is the solution obtained by the metaheuristic method.

The NEH heuristic by (Nawaz et al. 1983) and NEHD heuristic, which is a modification
and improvement of NEH, proposed by (Dong and Ping Chen 2008) were selected since they
are considered the most effective ones for the PFSP. In Table 1 we can see the average RPD
for both methods and benchmarks. We can observe that, on average, results are very similar
for both benchmarks. Heuristic NEHD seems to be more effective than NEH. In order to
check if these differences in the RPD values are statistically significant, we apply an analysis
of variance (ANOVA). If we focus our attention on the tables, differences, on average,
seem to be very similar for both benchmarks. However, the statistical analysis states that
these differences are not statistically significant for Taillard’s benchmark (intervals are
overlapped). Results are very different for VRF (large instances), we can clearly see that
there are statistically significant differences between the average RPD values (Figure 1).
The result with our independent coding and testing of the NEHD matches that of the
original authors as they used their own benchmark since there were no differences using
Taillard’s. So the conclusion is that we have been able to obtain statistically significant
differences with our new benchmark which Taillard’s benchmark could not.

Table 1. RPD for the heuristic methods (Taillard and VRF benchmarks)

Heuristic Taillard VRF
NEH 3.37 3.35

NEHD 2.91 2.88
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Fig. 1. Means Plot and Tukey HSD intervals at 99% confidence level for the heuristic
methods (Taillard’s instances left side, VRF (large instances) right side).

For the metaheuristics, the previous HGA and IG methods are selected in order to
test the proposed benchmark and to obtain a comparison with Taillard’s. Metaheuristic
methods are run until a stopping criterion is met: maximum CPU time is set to n·(m/2)·60
milliseconds. The effectiveness of the methods is measured with the RPD but in this case
five replicates of each algorithm are run as both methods are stochastic. Results can be
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seen in Table 2. The statistical analysis is shown in Figure 2, where we can observe that the
differences are much larger than those obtained for Taillard’s and they are also statistically
significant. We see that with both benchmarks we otain statistically significant differences
but with our proposed benchmark, the differences are much larger.

Table 2. RPD for the metaheuristic methods (Taillard and VRF benchmarks)

Method Taillard VRF
HGA 0.36 0.94
IG 0.25 0.72
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Fig. 2. Means Plot and Tukey HSD intervals at the 99% confidence level for the meta-
heuristic methods (Taillard’s instances left side, VRF (large instances) right side).
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1 Introduction

The aim of project scheduling is the allocation of time intervals to the processing
of activities, which can be executed by using a set of scarce resources. In the classical
resource-constrained project scheduling problem (RCPSP), this set of available resources
is limited and it is not allowed to exceed the available resources. The main focus lies
in the minimization of the total duration of the project subject to precedence relations
between the activities and the limited renewable resource availabilities. Various exact and
(meta-)heuristic procedures for the RCPSP are already proposed in the literature. For an
overview of the literature on the RCPSP, see, e.g., Hartmann and Kolisch (2000), Kolisch
and Hartmann (2006) and Hartmann and Briskorn (2010).

Another problem in project scheduling, the resource availability cost problem (RACP),
focuses on the minimization of the resource cost. In contrast to the ’problem of scarce
resources’ (Möhring 1984), the resources are not constrained by limited capacities, but
a predefined deadline is imposed on the project duration. Mohring (1984) refers to this
problem as the ’problem of scarce time’. The aim is to reduce the cost which is associated
to the use of resources. The objective is to schedule the activities such that all precedence
constraints are observed, the deadline for project termination is met, and the total resource
availability cost is minimized.

The Time-Constrained Project Scheduling Problem is a variant on the RCPSP and
RACP. Although a fixed set of resources is available, additional resources can be tem-
porarily allocated in certain periods to meet the given deadline. The problem consists of
determining a schedule such that the project is completed on time and the total additional
cost for the resources is minimized. Since the TCPSP has a nonregular objective function,
the existing solution techniques of the RCPSP and the RACP are not suitable for the
TCPSP.

Although the problem is of high practical relevance, it has been considered in the
literature only rarely. Deckro and Herbert (1989) proposed a mixed-integer formulation for
the problem and introduced the concept of project crashing. Kolisch (1995) presented a
heuristic for the TCPSP with limited hiring. Furthermore, the priority-rule based heuristics
initially proposed for resource levelling by Neumann and Zimmermann (1999) may also be
applied for the TCPSP, even considering minimum and maximum time-lags. The same
is true for the branch and bound procedure developed by Zimmermann and Engelhardt
(1998). Finally, Guldemond et. al. (2008) proposed a two stage heuristic for the TCPSP,
where it is also allowed to hire additional capacity in overtime. In the first stage of the
heuristic, partial schedules are constructed, while in the second stage, an ILP formulation
is used to turn a partial schedule into a feasible schedule, and to perform a neighborhoud
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search. In a later paper, the authors also presented an algorithm for the problem with
adjacent resources (Hurinck et. al. 2011).

Nevertheless, the development of an efficient and effective algorithm has a large rele-
vance in project management, since the use of deadlines often occurs in projects in practice.
In commercial project management software, the parameters values of TCPSP, e.g. over-
time cost, can usually be specified, however, the capabilities of these packages concerning
TCPSP are rather restricted. Experimental results show that the proposed solution proce-
dure gives state-of-the-art results for the problem under study. The remainder of the paper
is organised as follows: the next section describes the general formulation of the problem,
while section 3 describes shortly the solution procedure designed for the TCPSP. In section
4 some preliminary results of the computational experiments are reported.

2 Problem formulation

The TCPSP can be stated as follows. A set of activities N , numbered from a dummy
start node 0 to a dummy end node n + 1, is to be scheduled without pre-emption on a
set R of renewable resource types. Each activity i ∈ N has a deterministic duration di and
requires rik units of resource type k ∈ R. A set of R resources each with an availability
equal to ak, which is assumed constant throughout the project horizon, is available for each
resource type k. A project network is represented in an activity-on-the-node format where
A is the set of pairs of activities between which a finish-start precedence relationship with
time lag 0 exists, and a dummy start node 0 and end node n + 1 representing the start
and completion of the project. These dummy nodes have zero duration while the other
activities have a non-zero duration; the dummies also have zero resource usage. We assume
graph G(N,A) to be acyclic.

The precedence relations are given by sets of activities Pj , denoting all direct prede-
cessors of activity j, that have to complete before j starts. Sj denotes the set of all direct
successors of activity j which are allowed to start only after activity j is finished.

The project should be finished before the pre-specified deadline δ. Since this deadline
can be too tight in order to be realized with the resources initially provided, additional
resources can be temporarily be allocated in certain periods resulting in additional cost
depending on the respective resource type. The non-negative variable Hkt represent the
amount of capacity hired of resource type k in time unit t. The variable ck indicates the
cost to hire one resource of resource type k for one time unit. A schedule S is defined by
a vector of activity finish times fi and is said to be feasible if all precedence constraints
are satisfied and the project finishes within the predefined deadline δ. The objective of the
TCPSP is to find a feasible schedule within the pre-specified project deadline δ such that
the total additional cost is minimized. The time-constrained project scheduling problem
can be represented as m, 1|cpm, δn|vrc using the classification scheme of Herroelen et. al.
(1999) or as PSm,∞|d, prec|

∑
Ckmax(0, Rk − rk(S, t) following the classification scheme

of Brucker et. al. (1999).
The TCPSP can be conceptually formulated as follows:

Min.
∑

k∈R

δ∑

t=0

Hktck (1)
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s.t.

fi + dj ≤ fj ∀(i, j) ∈ A (2)
∑

i∈S(t)
rik ≤ ak +Hkt ∀k ∈ R, t = 1, ..., δ (3)

fn+1 ≤ δ (4)
f0 = 0 (5)
ak ≥ 0 ∀k ∈ R (6)
Hkt ≥ 0 ∀k ∈ R, t = 1, ..., δ (7)

The objective function (1) minimizes the total additional resource cost of the project.
Constraint (2) takes the finish-start precedence relations with a time-lag of zero into ac-
count. The renewable resource constraints are satisfied thanks to constraint (3), where S(t)
represents the set of activities in progress during the time interval ]t− 1, t]. Constraint (4)
imposes a pre-specified deadline δ to the project and constraint (5) forces the project to
start at time instance zero. Constraints (6) and (7) denote the domain of the variable ak
and Hkt.

3 Proposed solution procedure

A solution method is proposed for the time-constrained project scheduling problem,
based on the metaheuristic framework of the artificial immune system. The term artificial
immune system represents a broad range of algorithms based on the biological processes of
the human immune system. According to Gendreau and Potvin (2010) there are 3 categories
of artificial immune systems: negative selection algorithms, immune networks and clonal
selection algorithms. Only this last category is used to optimize complex combinatorial
problems like the TCPSP.

The proposed AIS for TCPSP consists of 4 components: population initiation, selection,
hypermutation and a local search. During the population initiation, we generate top∗childs
initial schedules using a Greedy Random Adaptive Search Procedure (GRASP) in order
to obtain a start population. In the second component, all the initial solutions are sorted
according to their fitness function (from low to high). Subsequently we select the first
top elements as our procreation basis. For every top element, childs amount of clones are
created using a hypermutation process. To prevent the loss of good schedules, an elitism
extension was added as mentioned by De Jong (1975). More specifically, the best solution
(the first top element) will be added to the new population without modification. After
the hypermutation procedure the new schedules are repaired and their fitness value is
computed. The fourth component is a local search procedure that tries to reposition deficit
activities, which are activities that are scheduled on time periods were extra resources
are hired, in order to reduce the total cost of the schedule. The local search procedure is
executed on every solution of the new population.

4 Computational results

The quality of the proposed solution procedure is compared to an existing solution
procedure of Guldemond et. al. (2008). In their study, the authors present computational
results for tests on the J30, J60, J90 and J120 set of the PSPLIB dataset. All costs were set
equal to 1 and the deadline of each instance was set equal to the optimal (or the best known)
project makespan found on the PSPLIB website (http://www.om-db.wi.tum.de/psplib/).
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As a consequence, the optimal solution for each of these instances has an objective function
of 0.

Table 1. Comparison algorithms

Guldemond et. al. (2008) AIS (this paper)
Jobs Average cost Perc. optimal Av. CPU-time Average cost Perc. optimal Av. CPU-time
30 3.2 61.25 2.9 0.89 68.54 0.05
60 13.4 57.50 17.2 8.40 68.33 0.18
90 22.6 58.75 53.0 21.77 66.88 0.38
120 72.4 12.50 308.2 92.24 20.33 1.60

These results clearly illustrate that our algorithm performs better in respect to cost
as well as percentage optimal solutions found for all datasets except the j120. Finally, our
solution method is also drastically faster than the method proposed by Guldemond et. al.
(2008).
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1 Introduction

The resource renting problem (RRP), originally proposed by Nübel (2001), is one of the
extensions of the well-known resource-constrained project scheduling problem (RCPSP).
The RRP distinguishes itself from the common RCPSP or its other extensions by the
addition of time-dependent costs for the use of renewable resources. Time-dependent costs
are costs that are encountered each time unit a renewable resource is in the resource set.
For instance, the wages of the staff working on a specific activity can be considered as
renting costs. Further on, these costs will be called renting costs. Renting costs need to
be paid every time a resource is in the company portfolio, even though it might not be
used at that particular time unit.

Next to renting costs, the problem also takes into account time-independent costs. These
costs are made every time a company adds a resource to the existing resource set. From
this point on, they shall be referred to as procurement costs.

In the RRP the best times to procure and to lose resources are being sought. The
objective is to minimize the sum of the total procurement costs and the renting costs. It
can be more opportune to keep resources in the company, although, at that moment, they
do not participate in any activity of the project. In this case the total amount of renting
costs will be smaller than the cost to procure the resources later on again.

A small example might work enlightening. A project consists of three activities, A,
B, and C. These activities should be processed one after another, as the activity-on-the-
node project network in figure 1 shows. We only consider one resource type. The resource
requirement of each activity is indicated above the respective activity node, whereas the
activity’s duration is indicated below the activity’s node. The procurement cost cp in this
example equals 10. If the renting cost cr is relatively low, for example 2, it is cheaper to
keep the earlier procured resources in the portfolio. This situation is depicted as situation
(a). However, if the renting cost is relatively high, for example if this cost equals 5, it is
cheaper to lose the resources at time t = 1 and procure them again at time t = 4. The
optimal renting policy for this case, is depicted as situation (b). An overview of the total
costs of all situations is presented in the table in figure 1.

The remainder of this extended abstract is structured as follows. In section 2 a short
overview of the publicized literature is presented. Our approach to solve the RRP is ex-
plained in section 3. Next, in section 4, we show the results of an experimental design on
which the scatter search procedure is tested. Lastly, a conclusion can be found in section
5.
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Fig. 1: Example

2 Related literature

In literature, the RRP has rarely been studied. Nübel (2001) introduced the problem
and has proposed a branch-and-bound (B&B) technique to solve the RRP, extended with
generalized precedence relations. Therefore, the problem Nübel handles is addressed to
as RRP/max, where the max stands for the minimum and maximum time lags that are
observed between the start and end times of the activities.

Another author that has applied the RRP is Ballestín (Ballestín (2007), Ballestín
(2008)). He developed a number of algorithms, based on the well-known genetic algorithm,
to solve the RRP. The main difference with Nübel’s work is the sequence of the solution ap-
proach. Ballestín defines the optimal renting policy for a given schedule, whereas the B&B
approach of Nübel determines the optimal policy while constructing the schedule. The
added value of Ballestín’s work is that his algorithms are able to handle larger instances
than the B&B technique as proposed by Nübel.

To the best of our knowledge, there are no other procedures to solve the RRP.

3 Solution approach

As can be read in the previous section, there are only two known methods that can solve
the basic RRP, this in large contrast to the numerous methods to solve the common RCPSP
or popular expansions, such as the multi-mode resource constrained project scheduling
problem (MRCPSP). For an overview of these methods, a good overview is presented in
Kolisch and Hartmann (2006).

Because we want to elaborate several expansions on the RRP, we have developed a
scatter search procedure that is able to handle both the basic RRP and potential expansions
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for the RRP. The scatter search exists of the five traditional building blocks, as proposed
by Glover et al. (2000), being the diversification generation method, the subset generation
method, the solution combination method, the improvement method and the reference set
update method. We mainly have focussed on the solution combination method and the
improvement method. For these two methods we developed approaches that are related to
the minimization of idle resources in the project schedule.

4 Preliminary results

One of the expansions is the addition of setup and setoff costs to the basic RRP. Without
going too much into detail, two different kinds of setup costs and two different kinds of
setoff costs exist:

– Setup costs if a resource is procured.
– Setup costs to restart an idle resource.
– Setoff costs if a resource is removed from the resource set.
– Setoff costs if a resource is made idle.

All four of them can be related to examples from real-life, which justifies their use in the
RRP.

We have adapted the known methods, mentioned in section 2, towards this extended
problem and developed a new set of projects through the project generator RanGen2
(Vanhoucke et al. (2008)). This set consists of 270 projects in total, all with their own
specific characteristics. These 270 projects are tested with the known methods and our own
procedure, on numerous assumptions, regarding to the level of the procurement, renting
and setup/setoff costs and the imposed deadline.

In order to perform the test experiment and validate the quality of the results, a lower
bound based on Nübel (2001) is used. This lower bound basically searches for the max-
imum amount of resources per time instance that will definitely be required. It is found
by accumulating the resource requirements of every near-critical activity i for every t ∈
[LSi, ESi + durationi] and, if opportune, also incorporating the resource requirements of
non-near-critical activities. Since in each schedule there will be a setup and afterwards a
setoff of at least this maximum amount of resources, the sum of the costs of the setup and
setoff will be added to the lower bound of Nübel. This lower bound is used in all the tests
of the computational experiment.

Table 1 shows a few results of the tests we have done. They give the average deviation
from the lower bound, for different combinations of procurement, renting and setup/setoff
costs, with our own developed scatter search (ScS), Ballestín’s genetic algorithm (GA)
and Nübel’s exact algorithm (B&B), averaged over different deadlines. All algorithms are
truncated after 1,000 generated schedules. As can be seen, the scatter search procedure
has a smaller deviation from the lower bound, which proves its efficacy.

Table 1: Overview of the results: % average deviation from the lower bound
ScS GA B&B
47.84 73.57 71.70
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5 Conclusion and future research

In the presentation, the value-adding features of our scatter search procedure will be
presented. Further on, additional results will be presented. Questions that will be answered
are, amongst others: which project network indicators relate to lower project costs and
does the stopping criterium has an influence on the performance of the three procedures?
Additionally, other expansions to the basic RRP will be proposed. Lastly, some managerial
insights will be presented.
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1. Problem formulation 

We consider the Discrete-Continuous Resource-Constrained Project Scheduling Problem with 

Discounted Cash Flows (DCRCPSPDCF), defined as follows (Waligóra 2014). Given is a project 

consisting of n precedence-related, nonpreemptable activities which simultaneously require for 

their processing discrete and continuous renewable resources. We assume that R discrete resources 

are available and ril, i = 1,2,…,n; l = 1,2,…,R, is the (fixed) discrete resource request of activity Ai 

for resource l. The total number of units of discrete renewable resource l available in each time 

period is Rl. Additionally, a single continuous resource occurs which can be allotted to activities in 

(arbitrary) amounts from the interval [0,1]. The total amount of the resource available at a time is 

equal to 1. The amount (unknown in advance) of the continuous resource ui(t), allotted to activity 

Ai at time t determines the processing rate of activity Ai, as described by Eq. (1): 

iiiiii
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i xCxxtuf
dt

tdx
tx ~)(   ,0)0(   )],([

)(
)(   (1) 

where xi(t) is the state of activity Ai at time t, fi is a continuous, increasing function, fi(0) = 0, 

ui(t) is the continuous resource amount allotted to activity Ai at time t, Ci is the completion time 

(unknown in advance) of activity Ai, ix~  is the processing demand (final state) of activity Ai. State 

xi(t) of activity Ai at time t is the progress in the processing of activity Ai up to time t. A positive 

cash flow CFi is associated with the execution of activity Ai. The problem is to find a feasible 

assignment of discrete resources and, simultaneously, a continuous resource allocation that 

maximize the Net Present Value (NPV) of all cash flows of the project. The way of calculating the 

NPV depends on the payment model assumed. We consider three models well-known from the 

literature (see, e.g., Mika et al. 2005): Lump-Sum Payment at the completion of the project (LSP), 

Payments at Activity Completion times (PAC), and payments at Equal Time Intervals (ETI). 

2. General methodology 

It has been shown that for concave processing rate functions of activities parallel schedules are 

optimal, and the general methodology based on so-called feasible sequences has to be applied. 

Such a case is considered in this work. 

A feasible sequence is a sequence of combinations of activities executed in parallel in 

corresponding intervals in a schedule. The ends of the intervals are defined by completions of 

successive activities. Such a sequence has to be precedence- and resource-feasible (with respect to 

discrete resources), as well as it has to assure nonpreemptability of activities. It means that each 

activity appears in exactly one or in consecutive combinations in the sequence. For a given 

feasible sequence and an assumed payment model, a nonlinear mathematical programming 

problem can be formulated to find the NPV-optimal continuous resource allocation (Waligóra 

2014). Thus, we can find an optimal continuous resource allocation and, in consequence, an NPV-

optimal schedule for this particular sequence. Next, a globally optimal schedule can be found by 

solving the mathematical programming problem for all feasible sequences, and choosing the one 

with the maximal NPV. Still, the number of all feasible sequences grows exponentially with the 

number of activities, and therefore local search algorithms can be applied to examine the space of 

all feasible sequences. 

Below we present the nonlinear mathematical programming problems to be solved to find an 

optimal continuous resource allocation for a given feasible sequence and a chosen payment model: 
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 kkM x~*
 is the minimum length of the part of the schedule generated by the k-th combination 

Zk  S, Ki is the set of all indices of Zk's such that Ai  Zk, and s is the number of combinations in 

the feasible sequence S. Cmax is the completion time of the project, and β is the discount factor. 

 

Payments at Activity Completion times: 
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is the completion time of activity Ai, and  kkM x~*
is the positive root of Eq. (6). 

 

Payments at Equal Time Intervals: 
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and Cmax is given by Eq. (5) in which  kkM x~*
 is the positive root of Eq. (6). 

3. Identical processing rate functions 

In this work a special case of the DCRCPSPDCF is considered, where the processing rate 

functions of all activities are identical and concave, i.e. fi(ui) = f(ui), i = 1,2,…,n. Such situations 

can often occur in practice, when activities of a project have the same processing characteristic. 

Notice that according to Eq. (1) the change of the state of an activity over time is a function of the 

amount of the continuous resource allotted to the activity at a time. The change of the activity state 

represents the progress in processing the activity or, in other words, its processing rate. If the 

processing rate functions of all activities are the same, then each activity will be processed with the 

same rate dependent on the allotted resource amount only. If we temporarily assume that the 

continuous resource allocation is close to uniform (i.e. each activity gets approximately the same 

amount of the resource) in a given interval, then the actual duration of activity Ai depends only on 

its processing demand (i.e. its final state) ix~ . This brings an idea that, in order to construct a 

schedule, continuous resource division may be temporarily neglected, and processing demands of 

activities can be treated as their actual durations. Next, a feasible schedule can be constructed 
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satisfying all precedence and discrete resource constraints. In that way, at this stage we obtain a 

problem similar to the classical discrete RCPSPDCF in which a feasible schedule with the 

maximal NPV is to be found. As it is known, the common solution representation for the 

RCPSPDCF is an activity list (AL), for which a feasible schedule can be constructed using the 

serial Schedule Generation Scheme (SGS) decoding rule. The scheme acts quite simply. It just 

takes the first yet unscheduled task Ai from the list, and schedules it at the earliest possible starting 

time that does not violate precedence or resource constraints. The same can be now done for our 

DCRCPSPDCF problem. Next, based on the constructed schedule, the completion times of 

consecutive activities define the ends of successive intervals, and for each interval a combination 

of activities processed in parallel can be constructed. In consequence, a feasible sequence can be 

obtained as a sequence of such combinations, as discussed in Section 2. Finally, an optimal 

continuous resource allocation can be found by solving a nonlinear mathematical programming 

problem for the constructed feasible sequence. Below we present a version of the DCSGS 

procedure designed for the criterion of maximization the NPV. It is named DCSGS-NPV, and the 

main difference to the original one is Step 4 where a nonlinear mathematical programming 

problem related to the assumed payment model has to be solved. 

 

PROCEDURE DCSGS-NPV 

Step 1. For each activity Ai, i = 1,2,…,n, set di equal to ix~ . 

Step 2. Construct a precedence- and discrete resource-feasible schedule for the given instance 

of the DCRCPSPDCF and the given activity list AL, using the serial SGS decoding rule and 

assuming di as the duration of activity Ai. 

Step 3. Construct a feasible sequence S of combinations of activities processed in parallel in 

successive intervals, where the intervals are defined by completion times of consecutive activities. 

Step 4. Find an optimal NPV for feasible sequence S by solving a relevant nonlinear 

mathematical programming problem for this sequence and the given payment model (see Sect. 2). 

4. Local search approach 

Solution representation. As already mentioned, we can find an NPV-optimal schedule for a 

given feasible sequence. Thus, a feasible solution for a local search algorithm should correspond to 

a feasible sequence. Such a feasible solution is represented by two n-element lists. The first one is 

a precedence-feasible permutation of activities in which each activity has to occur after all its 

predecessors and before all its successors. This structure is called the Sequence of Activity Starts 

(SAS), and defines the order in which activities are started. The second one is also a precedence-

feasible permutation of activities, and defines the order in which activities should be completed in 

order to fulfil the discrete resource constraints. This list is called the Sequence of Activity 

Completions (SAC). The rule transforming a pair of lists (SAS, SAC) into a feasible sequence S is 

quite simple. The two-list representation has been previously used for some discrete-continuous 

project scheduling problems (see, e.g., Waligóra 2008). 

Objective function. The objective function for a feasible solution is defined as the optimal 

NPV for the corresponding feasible sequence, calculated under an optimal continuous resource 

allocation obtained as a solution of the relevant nonlinear mathematical programming problem. 

Starting solution. The initial SAS and SAC lists are generated by setting all activities on both 

the lists in an ascending order. 

Neighbourhood. Neighbours of the current solution are generated by swapping activities on 

lists SAS and SAC. More precisely, an activity swap operator is used which swaps two activities 

on the list that may be swapped without violating the precedence constraints. This operator can be 

applied to both the SAS and the SAC list. 

Stop criterion. The stop criterion has been defined as an assumed number of visited solutions, 

i.e. an assumed number of the objective function calculations (equal to 1000). 

Metaheuristics. We have implemented Simulated Annealing (SA) and Tabu Search (TS) 

metaheuristics to compare their performances for the considered problem. In the SA 

implementation, the adaptive cooling scheme, known as polynomial-time (Aarts and Korst 1989), 

is used to control the cooling process where the only exception is the stop criterion. In the TS 

algorithm, the Tabu Navigation Method (TNM) (Glover and Laguna 1997) is used to manage the 

tabu list. Also an aspiration criterion is applied in order to allow a tabu move if it leads to a 

solution better than the best found so far. The length of the tabu list has been set at 7. 
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5. Computational experiment 

The experiment is divided in two parts. In the first experiment a comparison to optimal 

solutions is made for n = 10 activities. To this end, each generated instance was solved to 

optimality by fully enumerating the set of all feasible sequences. The second experiment was 

performed for n = 12, 15, and 20 activities. In this experiment optimal solutions are not known, 

thus, the relative solution is the best one found by either of the algorithms tested. 

The results obtained by both the metaheuristics are very promising, although we can state that 

SA performs slightly better especially in terms of the number of optimal solutions found. Up to 

60% instances solved to optimality (for SA), keeping the average relative deviation from optimum 

below 0.5% for SA and 0.6% for TS, suggests that both the proposed implementations can be on 

average quite effective for the considered problems. However, the number of optimal solutions 

found (especially by TS) for such a small size problem (n = 10) is not overwhelming. It shows that 

when optimal solutions are desired, searching over feasible sequences cannot be replaced by 

searching over activity lists, even for identical processing rate functions. SA produces better 

results for smaller number of activities, whereas TS starts to perform better when the problem size 

grows. It can be concluded that SA is rather predisposed for smaller DCRCPSPDCF problems, 

whereas TS for larger ones. This, however, should still be confirmed by further experiments with 

more activities. SA performs better for smaller values of the discount rate, whereas TS for larger 

values of . SA is visibly better for the LSP model, for the PAC model both the algorithms are 

rather comparable. For the periodic payment model ETI, SA is better when the payments are made 

less often, whereas larger number of payments improve the performance of TS. 

6. Conclusions 

The conclusions from the experiments are, in general, the following. SA produces better 

results for smaller problem sizes, and, under an assumed number of activities, for smaller values of 

the discount rate. TS performs better for larger problems as well as for greater values of the 

discount rate. Besides, for periodic payments TS gets better when the number of payments grows, 

whereas SA prefers payments made more rarely, and becomes most effective for one payment at 

the end (LSP model). Moreover, the comparison to optimal solutions shows that if optimum 

schedules are required, feasible sequences have to be examined, not activity lists, even for 

identical processing rate functions. The future research can be carried out in three directions. 

Firstly, improvements of the proposed metaheuristics are very likely possible and/or implementing 

other (also hybrid) metaheuristic approaches. Secondly, generalizing the considered problem can 

be done in several ways, e.g. by incorporating negative cash flows or multiple execution modes. 

Finally, heuristic procedures for allocating the continuous resource should be developed, in order 

to shorten the computational times, as well as to analyze larger problem instances. 

Acknowledgements 

This research was partially supported by the Polish National Science Centre. 

References 

Aarts E.H.L. and J.H.M. Korst, 1989, “Simulated Annealing and Boltzmann Machines: A 

Stochastic Approach to Combinatorial Optimization and Neural Computing”, Wiley, 

Chichester. 

Glover F. and M. Laguna, 1997, “Tabu Search”, Kluwer, Norwell. 

Mika M., G. Waligóra and J. Węglarz, 2005, “Simulated annealing and tabu search for multi-mode 

resource-constrained project scheduling with positive discounted cash flows and different 

payment models”, European Journal of Operational Research, Vol. 164 (3), pp. 639-668. 

Waligóra G., 2008, “Discrete-continuous project scheduling with discounted cash flows – a tabu 

search approach”, Computers & Operations Research, Vol. 35 (7), pp. 2141-2153. 

Waligóra G., 2014, “Discrete-continuous project scheduling with discounted cash inflows and 

various payment models – a review of recent results”, Annals of Operations Research, Vol. 

213 (1), pp. 319-340. 

 

253



1

Optimal scheduling policies for k-out-of-n systems with
imperfect tests

Wenchao Wei1, Fabrice Talla Nobibon2 and Roel Leus1

1 KU Leuven, Belgium
{ Wenchao.Wei; Roel.Leus }@kuleuven.be

2 Federal Express (FedEx), Brussels, Belgium
tallanob@gmail.com

Keywords: system diagnosis, k-out-of-n, imperfect tests, sequencing and scheduling.

1 Introduction

System health monitoring for complex systems, such as a space shuttle, an aircraft or
integrated circuits, is crucial for reducing the likelihood of accidents due to sudden failures,
and for improving system availability. It is also imperative that systems be tested before
being put into operation, in order to ascertain their functionality. The same inspection
procedure may be repeated thousands of times, and so it is important to minimize the total
expected costs in the long run. We focus on the k-out-of-n configuration, which requires
that, for the overall system to be functional, at least k out of the total n components
must be working. This configuration has a wide range of applications in both industrial
and engineering systems (Ünlüyurt 2004). The functionality of the system is discovered by
testing its components. A solution is an inspection strategy, which is a dynamic decision rule
that decides in which order to test the components, which respects specific stopping criteria.
More specifically, we develop algorithms for finding optimal strategies that minimize the
expected testing expenses. Throughout the text, we use the terms ‘strategy’ and ‘policy’
interchangeably.

In this paper, we study the case where individual component tests are imperfect, which
means that a test can observe a component as working when in reality it is down, and vice
versa. In a computer’s operating system, for example, system check-up may be wrongly
alarmed by a fault that does not exist, and the system might operate improperly, possibly
leading to extra memory usage. In the policy classes studied below, decisions are made
dynamically, meaning that they are conditional on the observations (the outcomes) of the
previous tests.

The contributions of our work are fourfold: (1) we describe a general setting for k-out-of-n
testing with imperfect tests; (2) we underline the importance of the possibility of fixing
error probabilities conditional on the test outcomes rather than on the actual state of the
components; (3) we examine different classes of scheduling policies and discuss global op-
timality of each of the classes; and (4) we present a polynomial-time algorithm to find a
globally optimal policy. In the process, we also define and analyze other problem variants
of k-out-of-n testing.

2 Definitions and problem statement

We consider a system consisting of n components with component set N = {1, 2, . . . , n}.
The functionality of the system is discovered by testing sequentially its components on
a single test machine. Each component is in one of two states: either working (up) or
not working (down). The system functions (succeeds) if at least k (k ≤ n) out of the n
components are working and malfunctions (fails) if at least (n−k+1) components are not
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working. Each component i is tested at most once, a setting that has been called ‘single-
pass’ testing (Nachlas et al. 1990). We refer to this single test of component i as ‘test i.’
The outcome of test i is written as xi ∈ B = {0, 1} and is also binary: it is either positive
or negative; positive (corresponding with xi = 0) means the test detects a fault, negative
(xi = 1) means the opposite. All outcomes can be gathered in an n-dimensional binary
vector x = (x1, x2, . . . , xn) ∈ Bn.

Each component i ∈ N has a probability pi to be working, which is known a priori.
We study the situation where the measurements (tests) are imperfect: the outcome can be
positive while the component is actually working, and vice versa. We assume that each test
has a probability α of producing the wrong outcome; we will refer to α as the predictive
error rate. Such a common error probability α for all component tests may for instance
be inherent in the design of a single unreliable test machine. Specifically, for component i,
if the test result is positive then we know the actual state of i is down with probability
(1− α) and up with probability α, and mutatis mutandis for a negative outcome. Clearly,
we can assume α < 0.5, because we can invert the clue of the test otherwise. We define
χi as the probability that the outcome of test i is negative (xi equals 1); it holds that
pi = χi(1− 2α)+α (i = 1, 2, . . . , n). For ease of notation, we also define λi = 1−χi as the
probability that test outcome i is positive. Let Xi represent outcome i before testing, which
is a Bernoulli random variable with parameter χi, and denote by X = (X1, X2, . . . , Xn)
the associated vector of random variables. The realization of each Xi is known only at the
end of test i. We assume all variables to be mutually independent.

A schedule s = (s1, s2, . . . , s|s|) is an ordered subset of N ; st is the index of the test in
position t in the schedule s. Let Σ be the set of all schedules, and value ci represents the
cost of test i. We define cost function f(s) for schedule s as f(s) =

∑|s|
t=1 cst .

A solution to the sequencing problem under study is a testing policy, which uses diagno-
sis experience from test outcomes gathered over time. At each stage, the policy prescribes
the next step to be taken: either select a new test to conduct, or stop; the stop/continue
decision when not all components have been tested yet is based on the accuracy regard-
ing the system’s state. We study the optimization problem of designing a test policy Π
with minimum expected total diagnostic costs. The inspection procedure stops as soon as a
specified threshold value T is reached (e.g., T = 95%) for the probability that the system is
either functional or disfunctional. If this stop criterion is never fulfilled then all the n tests
are performed. Below, we will use the terms ‘guarantee’ and ‘accuracy’ interchangeably
to refer to value T ; in the context of isolating a single failure source, this value has been
referred to as a ‘level of confidence.’ The value of T should be determined from historical
data or by the requirements of the system.
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Fig. 1. An illustration of a policy for a k-out-of-5 system

255



3

A policy can also be represented by a binary decision tree (BDT). In such a BDT,
each non-leaf node is labeled with the index of a component to be tested and has two
child nodes. If the component is faulty then the left branch is entered, otherwise the right
subtree is taken. Each leaf node either represents a conclusion of a specific system state
(successful (S) or failed (F)) with the required accuracy, or indicates that all components
have been tested but the state of the system is not identified (labeled by −). For a given
outcome, the policy generates the schedule stepwise from the root node to a leaf node.
Figure 1 depicts a policy for a k-out-of-5 system where four working or failing components
are needed to draw a conclusion with the required accuracy; for the intermediate cases, the
system state remains indeterminate.

Following the literature on stochastic scheduling (Igelmund and Radermacher 1983), a
policy Π can also be seen as a function Π : Bn → Σ that maps outcomes x to schedules.
Note that several outcomes may be mapped to the same schedule. Our objective is to find
a policy Π∗ within a specific class that minimizes E[f(Π(X))], with E[·] the expectation
operator with respect to X. Specifically,

E[f(Π(X))] =
∑

x∈Bn

( ∏

i:xi=1

χi

)( ∏

i:xi=0

λi

)
f(Π(x)). (1)

We call a policy globally optimal if it achieves the minimum expected cost over all possible
policies. A decision is dominant if by applying it, we do not lose global optimality. Tests
are conducted one at a time, so a sequence of (a subset of) jobs indeed defines a schedule;
this is a dominant decision for our objective function (but the same is not true for other
objectives such as makespan minimization).

3 Optimal policies and complexity results

We define a new testing problem (with perfect tests) called generalized testing problem,
defined similarly as the classic k-out-of-n testing problem in that an instance is defined by
a component set N with parameters ci and pi, but instead of parameter k a generalized
testing instance takes two parameters k1 and k0 and the system diagnosis continues until
either k1 working components or k0 failing components are found. Clearly, the classic
k-out-of-n testing problem is a special case of the generalized problem where k1 = k and
k0 = n−k+1. The conservative k-out-of-n testing problem is defined similarly as traditional
k-out-of-n testing (with perfect tests), except that we perform tests either until we have
observed k tests with negative outcomes, or we have performed all n tests. This problem
is a subproblem of generalized testing with k1 = k and k0 = n.

We define the guarantees θ1(r, t) and θ0(r, t) as the probability that the system works
or fails conditional on the number r of tested components and the number t of observed
negative or positive outcomes respectively. Let a (0 ≤ a ≤ n) be the smallest integer such
that T ≤ θ1(n, a), and integer b (0 ≤ b ≤ n) is the lowest integer such that T ≤ θ0(n, b).
The time complexity of finding values a and b is O(n4) (Wei et al. 2013). The following two
lemmas show how to transform an instance of k-out-of-n testing with imperfect tests into
an instance of generalized testing with perfect tests. All proofs are in our working paper
Wei et al. (2013).

Lemma 1. For imperfect testing, if the outcome of the current test is the a-th negative
one then it is a dominant decision to stop the test procedure immediately.

Lemma 2. For imperfect testing, if the outcome of the current test is the b-th positive one
then it is a dominant decision to stop the test procedure immediately.
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For the example instance described supra, for instance, depending on the parameters, it
might be that k = 3 but a = b = 4. It also follows that when b does not exist then the
conclusion of system failure can never be drawn with the required accuracy. If neither a
nor b exist then the testing sequence becomes irrelevant because the diagnosis will conduct
all the n tests under all possible outcomes. The setting in which both a and b exist and
a+ b ≤ n, can be considered as, in some sense, undesirable.

Lemma 3. If a + b ≤ n then there exist outcomes x∗ and policies Π1 and Π2 such that
Π1 under x∗ will first observe a working components while less than b failing components
are found (and thus conclude that the system functions with the pre-specified accuracy T ),
whereas Π2 under x∗ will first observe b failing components while less than a working
components are found (and thus halt the diagnosis with the conclusion of system failure).
This phenomenon will never occur when a+ b > n.

Below, we examine optimal policies for the following two cases: exactly one of the param-
eters a and b does not exist, and both a and b exist and a+ b > n.

A policy is called dominant when identical decisions are made at all decision moments
for which the decisions made in the past lead to a situation with the same number of
components tested and the same number of negative outcomes observed.
Lemma 4. There always exists a dominant policy that is globally optimal.

In general the input size of a policy is exponential in the number of jobs. Therefore a
more compact description is useful. Inspired by priority policies for standard scheduling
problems (Pinedo 2012), we also study elementary policies, which are characterized by
a total order of the component set N . Such an order can be represented by a list (or
permutation) L = (l1, l2, . . . , ln) of the elements of N . The policy tests the components
one by one in the order of the list (so first l1, then l2, etc.) until the system’s guarantee
reaches the threshold value. For a given outcome x of a k-out-of-n system with imperfect
tests, the elementary policyΠ characterized by a list L generates a unique scheduleΠ(x;L)
by iterating through the list from left to right. The schedule stops when either θ1 or θ0
reaches threshold value T or all the components have been tested.

Proposition 1. For conservative k-out-of-n testing with perfect tests, the elementary pol-
icy represented by the permutation of all n components arranged in nondecreasing order of
ci/χi is optimal.

Proposition 2. For conservative k-out-of-n testing with perfect tests, an optimal elemen-
tary policy is also globally optimal.

It can also be seen that when either a or b does not exist, then the k-out-of-n testing
problem with imperfect tests reduces to conservative a(b)-out-of-n testing.
Corollary 1. When exactly one of the parameters a or b does not exist then the imperfect
k-out-of-n testing problem is polynomially solvable.

When both a and b exist, then the k-out-of-n testing problem with imperfect tests
reduces to generalized testing with a = k1 and b = k0. There exist counterexamples showing
that the class of elementary policies in this case may ‘miss’ the global optimum. We can
describe another class of compact policies, however, namely the class of interrupted block
walking (IBW) policies, for which it can be shown that there always exists a globally
optimal IBW policy. More details and illustrations can be found in our working paper Wei
et al. (2013). This lead to:

Theorem 1. The generalized testing problem is polynomially solvable when k0 + k1 > n.

Corollary 2. When a+ b > n then there always exists a globally optimal IBW policy for
the imperfect k-out-of-n testing problem; such a policy can be found in polynomial time.
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1 Introduction

A recurring military problem concerns how training is planned. Since training programs
can utilize multiple training devices with varying costs and training capabilities, selecting
the types of devices required is a complex trade-off problem. The placement of these devices
is critical due to the time and costs involved in travelling to the training device. Here we
introduce a scheduling-based model, Training Device Estimation (TraDE), to study the
device mixes per location which enable completing training and are the most favourable
considering costs and training time.

The paper is organized in the following manner. We give a detailed problem description
and literature overview in Section 2. In Section 3, we outline the TraDE model. Section 4
gives an overview of the preliminary results. Section 5 contains some concluding remarks.

2 Problem Description and Literature Overview

Every soldier has to complete mandatory training consisting of a set of tasks such as
quick aim shooting or safe handling. All tasks must be completed. For each task, there is
a list of compatible devices that can be used to complete the task. Device types can vary
from a rifle at a range to a computer-simulated combat environment. It is assumed that
all compatible device types for a task are used to achieve the same level of proficiency in
that task. Their training effectiveness is measured in the time duration of the task. Device
types also vary in cost incurred for completing a training task.

Soldiers needing military training are stationed at various locations. When training is
required, the unit (or a part of it) may have to travel to the training location, complete
the training, and return to their home base. Since some tasks can take multiple days to
train, each soldier incurs costs for staying in the training location until the training task
has been completed.

The goal of this study is to determine a device mix per location, i.e. the number of
devices of each type required at a given location, and to make a device use schedule while
minimizing the capital, operating and travel costs, and the total time spent in training.

Given the wide variety of the training tasks and the large number of possible training
devices, finding a good device mix is difficult (Cohn 2008). There are many key param-
eters to take into account. For example, the triangle model (Daly et. al. 2009) considers
device fidelity, training delivery method, and training content to determine good device
mixes. On the other hand, the FAPV approach analyzes the stage of the trainee’s learn-
ing process to select an effective training environment (Franki et. al. 2000). The Army
Training (Murty et. al. 1995) and the Stochastic Fleet Estimation (SaFE) (Wojtaszek et.
al. 2013) models approach the problem from a resource allocation standpoint. The problem
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of selecting devices is similar to two-dimensional bin or strip packing (Lodi et. al. 2002),
where bins correspond to training devices. However, in TraDE, device types differ in their
capacities, and, hence, bins are not identical. Thus, the usual bin-pakcing techniques are
not applicable.

3 TraDE Model

Training device selection is similar to the well-understood fleet mix analysis prob-
lem (Wojtaszek et. al. 2012). Our solution to training device selection adapts and extends
SaFE (Wojtaszek et. al. 2013), which uses a multi-objective evolutionary optimization al-
gorithm to obtain an approximation of the Pareto Front for an aircraft fleet mix problem.
The main difference between SaFE and TraDE is the necessity in the training problem
to also determine training device locations. In SaFE, there is a single base/depot for all
aircraft. In addition, a large number of tasks needs to be completed by each aircraft or set
of aircraft. In TraDE, soldier capacity of a training device is similar to cargo/passenger
capacities in the fleet mix problem for transport aircraft. In the training problem, bins
have two dimensions (soldier capacity and training duration) while in the fleet mix prob-
lem there is a one-dimensional bin for aircraft sortie (i.e., flight from point A to point B)
duration.

In TraDE, the two main input variables are training tasks (such as rifle position and
hold, or marksmanship exercise) and training devices, which can vary from a fire range to a
simulator or a computer. Each device type is characterized by the following four values: the
soldier capacity, c(i), the acquisition cost, the annual operating cost, and possible locations
where the device can be placed, limitted due to weather, terrain or other constraints. A
device configuration is a tuple specifying the number of devices of each type used. Given the
soldier capacities for each device type, we determine all possible minimum configurations of
devices adequate for a given training task of all soldiers. The set of all device configurations
for each task is the configuration set and is used to bound our solution space. Considering
the number of training tasks and the number of locations where we can place each device
in a configuration, we obtain a vast solution space. This space is then searched using an
implementation of NSGA-II (Deb 2001).

The members of the population in the algorithm have two-part chromosomes. Each
gene corresponds to one training task and has the following form:

(n1, n2, . . . , nD)×((l11, l12, . . . , l1n1), (l21, l22, . . . , l2n2), . . . , (lnD1, lnD2, . . . , lnDnD
)) , (1)

where D is the number of device types. The first part corresponds to the device configu-
ration and

∑D
i=1 ni · c(i) ≥ total number of soldiers. In the second part, eligible locations

are assigned to each device in the chosen configuration. n.
The fitness of each population member is evaluated with respect to four objective

functions:
– acquisition cost : the total cost of obtaining new devices;
– operating cost : the sum over all tasks and all soldiers of device-dependent task comple-

tion costs;
– travel cost : sum over all tasks and all soldiers of all travel costs between the home base

and the device location;
– training time: the sum over all soldiers of the time spent to complete all training tasks

at allocated devices.
For the computation of the operating cost, travel cost and training time, we schedule

soldiers for a training task on a device at a particular location giving us a training schedule
as a co-product of the objective functions evaluation. Although cost objectives could be
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aggregated into one cost objective, this is not done given the different types of budget these
costs represent; i.e., most governments usually have distinct budgets for different purposes:
capital acquisitions, personnel travel and operating funds. Moreover, we are interested
in looking at the trade-off space between all these values without having to set different
weights on each objective (determining weights according to decision maker preferences is
a very complex problem (Abbass et. al. 2009)).

The population is randomly initialized. In addition, the user has the option of intro-
ducing "seeds" with some approximate best-fit solutions in order to bootstrap the genetic
algorithm. A seeding mechanism has been implemented in order to generate an optimal
or nearly optimal solution with respect to each objective separately from all the other
objectives.

In each generation, population members are sorted in nondominated fronts. A member
in front i has a probability of 1

i of being picked as a parent for the next generation.
In this way, members that are more likely to produce better solutions are picked with
higher probability to be parents, which speeds convergence for a small number of objectives
(Wagner et. al. 2013). The crossover and mutation operators consider one task at a time.
The crossover operator picks with equal probability from one of the two parents the device
configuration and locations for the task. Then, the mutation operator with equal probability
keeps or replaces the child’s device configuration for the task with a randomly chosen
configuration from the configuration set. If the device configuration is replaced, new device
locations are randomly assigned.

Finally, for every population member, we compute the device mix per location as follows.
First, we determine the total time the devices of each type at a given location are used.
Given our restrictions on annual device usage, we compute the number of required devices
of each type at the given location.

4 Results

Subject matter experts helped in devising the input data set. We implemented NSGA-II
and our optimization objectives in MATLAB.We performed 10 experiments on aWindows7
PC with 3GHz 12-core CPU and 18GB RAM. For each experiment, we set the following
parameters: a population of 200, 10,000 generations and a mutation rate of 0.25. Each
experiment took approximately 12 hours to complete. The results of all 10 experiments were
combined and re-sorted to obtain a new nondominated front consisting of 1030 solutions.
Comparing the four-tuples of the objective values, the nondominated fronts of individual
experiments had on average 51.3% of solutions present in the combined nondominated
front, with a standard deviation of 0.71%1.

Our solution set exhibits certain expected traits. The correlation coefficient between
two devices with almost the same training characteristics was -0.7773. Even though these
devices have similar functionality, their training time per task and cost per use differ; hence,
they cannot completely replace one another.

No solution in the combined nondominated front utilizes all of the existing devices,
indicating that some of the existing resources are redundant. Solutions which have capital
cost equal to zero (but high operating costs) use only a subset of the existing devices.
Solutions with the smallest operating cost (for example, see Fig. 1) favour the use of
’Device B’ at almost all locations. The cost per use of ’Device B’ in training is on average
2.2% of the cost per use of other compatible devices for the given training tasks, but its
capacity is considerably smaller (on average only 9.8% of the capacity of other devices).
Figure 2 shows a solutions for the minimum total training time (similar to the minimum
1 For better convergence, the number of generations should be increased.
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travel cost solution). Notice that the majority of devices in these solutions are placed at
Locations 1, 4 and 5, which are the home bases for 66% of all soldiers. As expected, this
lowers the travel cost and indicates that new devices can be used at these locations for
more time efficient training.

Fig. 1. A device mix with minimum opti-
mal cost objective value

Fig. 2. A device mix with minimum train-
ing time objective value

5 Conclusion

Scheduling devices to accomplish training missions is a complex problem, especially
when one must consider the optimal location placement of the devices. TraDE provides a
set of solutions which indicate trade-offs between multiple objectives. Solutions can also
be used to identify existing devices which are redundant and to identify device locations
for more efficient training.
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1 Introduction

The planning situation we deal with has been reported to us by a Swiss service provider
in the human resources sector. The service provider organizes assessment centers for com-
panies; in such an assessment center, so-called assessors (e.g., psychologists or senior man-
agers) assess the potential and the skills of candidates for a position to be �lled.

During an assessment center, each candidate performs a series of exercises. Each exercise
consists of three phases. First, the candidate prepares the exercise; for some exercises, this
preparation phase is omitted. Second, the candidate performs the exercise and is thereby
observed by one or, for some exercises, two assessors; in some exercises (so-called role
plays), additionally an actor takes part. Third, the assessor(s) and the actor evaluate the
performance of the candidate during the exercise; for some exercises, this evaluation phase
is omitted. To prevent time-consuming discussions between the assessors, and to ensure
an objective overall assessment, each candidate should be observed by approximately half
of all available assessors. In addition, some assessors may not observe certain candidates
because they know each other (no-go relationship). Eventually, for each candidate a lunch
break has to be scheduled within a prescribed time window. In total, the assessment center
may not take longer than one working day. The planning problem at hand consists of
determining start times for all exercises and lunch breaks and of assigning the required
number of assessors to the candidates for each exercise, such that the duration of the
assessment center is minimized.

In Grüter et. al. (2013), we have presented a problem-speci�c formulation of this prob-
lem as a mixed-integer linear program (MILP). Apart from that, to the best of our knowl-
edge, this problem has not been treated in the literature.

In this paper, we formulate this problem as a resource-constrained project scheduling
problem, and we provide a corresponding MILP formulation based on the resource-�ow
formulation presented in Koné et. al. (2011). We use the resource-�ow information to
assign the candidates and the exercises to the assessors. We enhance the model performance
by adding some symmetry-breaking constraints, valid inequalities, lower bounds, and an
integrality constraint. Our computational results indicate that for two real-world problem
instances, the model outperforms the model presented in Grüter et. al. (2013).

The remainder of this paper is structured as follows. In Section 2, we present our MILP
formulation. In Section 3, we report our computational results. In Section 4, we conclude.

2 Model formulation

For each candidate, we interpret the execution of each exercise as an individual activity
of the project; furthermore, the lunch break of each candidate also represents an activity.
The resources of the project are as follows: (a) each candidate is modeled as a renewable
resource with capacity 1; (b) the set of all assessors is modeled as one renewable resource,
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the capacity of which equals the number of assessors; (c) the set of all actors is modeled
as one renewable resource, the capacity of which equals the number of actors. There are
no time lags or precedence constraints between the activities of the project. However, we
must take into account that due to the preparation phase and the evaluation phase, the
various resource types are not always utilized during the entire duration of the activities.

We use the following notation. The asterisks indicate decision variables.

K Set of resources
KC ⊂ K Set of resources corresponding to candidates
KO ⊂ K Set of assessors and actors resources (KO = {kA, kR})
A, R Sets of assessors and actors, respectively
N Set of candidate-assessor pairs (c, a) with a no-go relationship
I Set of activities i = 1, . . . , n
Ik Set of activities that require resource k
IS Set of identical activities that belong to an arbitrarily chosen exercise
IL Set of lunch breaks
ESL,LSL Earliest (ESL) and latest (LSL) start time for the lunch breaks
pi Duration of activity i
δCi Preparation time of activity i for candidates
δAi ,δ

R
i Evaluation time of activity i for assessors and actors, respectively

rik Amount of resource k required by activity i
kA, kR Resources representing the sets of all assessors (kA) and actors (kR)
M Su�ciently large number (i.e., length of a working day)
∗ D Duration of the assessment center
∗ FC

cij = 1, if there is a �ow on resource c ∈ KC from activity i to j; = 0, else
∗ FO

kij Amount of resource k ∈ KO transferred from activity i to activity j

∗ Si Start time of activity i
∗ XC

cij = 1, if activity i is executed before act. j > i on resource c ∈ KC ; = 0, else
∗ XO

kij = 1, if activity i is executed before activity j on resource k ∈ KO; = 0, else

∗ Yca = 1, if assessor a is assigned to candidate c at least once; = 0, else
∗ Zia = 1, if assessor a is assigned to activity i; = 0, else

To handle the time-varying resource utilization during the course of the activities, we
introduce sequencing variables XO

kij for each resource k ∈ KO. XO
kij must be equal to 1

if one or several units of resource k are transferred from activity i (at the completion) to
activity j (at the start). Otherwise the value of XO

kij can be 0, i.e., activities i and j are
processed simultaneously, or j �nishes some time before the start of i. Since each activity
requires exactly one candidate, any �ow of resource c ∈ KC between two activities will be
either 0 or 1. By de�ning the variable FC

cij as binary for all c ∈ KC , we can use the variable

as a resource �ow and as a sequencing variable, respectively. As a sequencing variable, FC
cij

equals to 1 if and only if activity j is executed directly after activity i. We additionally
introduce sequencing variables XC

cij for formulating a valid inequality. With this notation
the model reads as depicted in Figure 1.

The objective (1) is to minimize the duration D of the assessment center; D must be
larger than or equal to the largest completion time of an activity of the project. Con-
straints (3)�(5) enforce a sequence of the activities for the sets of candidates, assessors,
and actors, respectively. Constraint (6) links the �ow variables to the sequencing variables
for all k ∈ KO. Constraints (7a)�(10) are the resource-�ow conservation constraints. For
any activities i and j, constraint (11) ensures that either i precedes j, or j precedes i, or
i and j are processed in parallel. Constraint (12) ensures that all lunch breaks are exe-
cuted within the prescribed time window. Constraint (13) implies that to each activity the
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Fig. 1. Model formulation
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Min. D (1)

s.t. D ≥ Si + pi (i ∈ I) (2)

Sj − Si ≥ −M + (pi − δAi +M)FCcij
(
c ∈ KC ; i, j ∈ Ic

)
(3)

Sj − Si ≥ −M + (pi − δCj +M)XO
kAij (i, j ∈ IkA) (4)

Sj − Si ≥ −M + (pi − (δAi − δRi )− δCj +M)XO
kRij (i, j ∈ IkR) (5)

FOkij ≤ min(rik, rjk)X
O
kij

(
k ∈ KO; i ∈ Ik ∪ {0}; j ∈ Ik ∪ {n+ 1}

)
(6)

∑
j∈Ic∪{0,n+1} F

C
cij = ric

(
c ∈ KC ; i ∈ Ic ∪ {0, n+ 1}

)
(7a)

∑
j∈Ik∪{0,n+1} F

O
kij = rik

(
k ∈ KO; i ∈ Ik ∪ {0, n+ 1}

)
(7b)

∑
i∈Ic∪{0,n+1} F

C
cij = rjc

(
c ∈ KC ; j ∈ Ic ∪ {0, n+ 1}

)
(8a)

∑
i∈Ik∪{0,n+1} F

O
kij = rjk

(
k ∈ KO; j ∈ Ik ∪ {0, n+ 1}

)
(8b)

FCc,n+1,0 = 1
(
c ∈ KC

)
(9)

FOk,n+1,0 = r0k
(
k ∈ KO

)
(10)

XO
kij +XO

kji ≤ 1
(
k ∈ KO; i, j ∈ Ik ∪ {0, n+ 1} : i < j

)
(11)

ESL ≤ Si ≤ LSL
(
i ∈ IL

)
(12)

∑
a∈A Zia = rikA (i ∈ IkA) (13)

XO
kAij +XO

kAji ≥ Zia + Zja − 1 (a ∈ A; i, j ∈ IkA ∪ {0, n+ 1} : i < j) (14)

Yca = 0 ((c, a) ∈ N) (15)
∑
i∈Ic\IL

Zia
|Ic\IL| ≤ Yca ≤

∑
i∈Ic\IL Zia

(
c ∈ KC ; a ∈ A

)
(16)

b 1
2
|A|c ≤∑a∈A Yca ≤ d 12 |A|e+ 1

(
c ∈ KC

)
(17)

Si ≤ Sj
(
i, j ∈ IS : i < j

)
(18)

Sj ≥
∑
i∈Ic: i<j(pi − δ

A
i )X

C
cij +

∑
i∈Ic: i>j(pi − δ

A
i )(1−XC

cji)
(
c ∈ KC ; j ∈ Ic

)
(19)

XC
cij ≥ FCcij

(
c ∈ KC ; i, j ∈ Ic ∪ {0, n+ 1} : i < j

)
(20)

XC
cij ≥ XO

kij

(
c ∈ KC ; k ∈ KO; i, j ∈ Ic ∩ Ik : i < j

)
(21)

XC
cij +XC

cjl + (1−XC
cil) ≤ 2

(
c ∈ KC ; i, j, l ∈ Ic : i < j < l

)
(22)

D ≥∑i∈I1(pi − δ
A
i ) (23)

D ≥
⌈∑

i∈I:r
ikA=1

(pi−δCi )

|A| +
∑
i∈I:r

ikA=2

(pi−δCi )

b|A|/2c

⌉
(24)

D ∈ Z≥0 (25)

Si ≥ 0 (i ∈ I ∪ {0, n+ 1}) (26)

FCcij ∈ {0, 1}
(
c ∈ KC ; i, j ∈ Ic ∪ {0, n+ 1}

)
(27)

FOkij ≥ 0
(
k ∈ KO; i, j ∈ Ik ∪ {0, n+ 1}

)
(28)

XC
cij ∈ {0, 1}

(
c ∈ KC ; i, j ∈ Ic ∪ {0, n+ 1} : i < j

)
(29)

XO
kij ∈ {0, 1}

(
k ∈ KO; i, j ∈ Ik ∪ {0, n+ 1}

)
(30)

Yca, Zia ∈ {0, 1}
(
c ∈ KC ; a ∈ A; i ∈ IkA ∪ {0, n+ 1}

)
(31)
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required number of assessors is assigned. Constraint (14) means that if an assessor a is as-
signed to both activities i and j, then there must be a sequence between the two activities.
Constraint (15) models the no-go relationships. Constraint (16) determines whether an as-
sessor a has been assigned to a candidate c at least once. Constraint (17) limits the number
of di�erent assessors that can be assigned to a candidate. Constraint (18) removes some
symmetric solutions from the search space: for an arbitrary chosen exercise, we impose an
arbitrary sequence of the corresponding activities; thereby we exclude the activities that
belong to candidates for which a no-go relationship exists. Constraint (19) corresponds to
the half-cuts proposed by Applegate and Cook (1991), i.e., the constraint represents a valid
inequality for all activities of each candidate. Constraints (20)�(22) determine the values of
the sequencing variables that are required by the valid inequality. Constraint (23) and (24)
represent lower bounds; constraint (23) states that D must be greater than or equal to the
total duration of all activities that require the same candidate c = 1, and constraint (24)
states that D must be greater than or equal to the total duration of all activities (except
lunch breaks) distributed among the assessors. Constraint (25) enforces that D must be
integer; although all input variables are integer and therefore this constraint is redundant,
we observed that this constraint improves the model performance.

3 Computational results

Table 1. Results

Inst. |C| |A| |R| |N | TZ14 GTZ13

D gap D gap

1 7 10 2 0 87 8.0% 88 9.1%
2 11 11 3 0 121 8.3% 119 7.6%
3 9 11 3 1 96 6.3% 102 11.6%
4 6 9 3 0 83 3.6% 82 2.4%

We implemented the model presented in
Section 2 in AMPL, and used version 5.5 of
the Gurobi Solver. All computations were per-
formed on a workstation with 2 Intel Xeon
CPU with 3.1GHz and 128GB RAM. We set
the Gurobi Solver option mipfocus=1, and we
limited the number of threads used for the
computations to 8. Based on four real-life in-
stances, we compare our model (TZ14) against
the model presented in Grüter et. al. (2013)
(GTZ13). For all instances and both models, a CPU time limit of 3600sec was prescribed.
The characteristics of the instances and the results are shown in Table 1. For instances 1
and 3, the new model outperforms the (GTZ13) model.

4 Conclusion

This paper deals with an application of resource-constrained project scheduling in ser-
vice operations management. We have devised an MILP formulation based on the resource-
�ow model of Koné et. al. (2011). Our computational results indicate that for two real-world
instances this project-scheduling based MILP outperforms a speci�c MILP formulation.

In future research, further symmetry-breaking constraints, valid inequalities, and lower
bounds should be developed in order to further improve the model performance.
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1Graph Coloring and Job S
heduling: from Models toPowerful Tabu Sear
h Solution MethodsNi
olas Zu�erey1GSEM - University of Geneva, Switzerland, n.zufferey�unige.
hKeywords: graph 
oloring, job s
heduling, tabu sear
h metaheuristi
.1 Graph 
oloring as a modeling tool for job s
hedulingConsider on the one hand the s
heduling problem SCHED where n jobs have to be per-formed while minimizing the makespan. The following assumptions are made: (A1) theduration of ea
h job is one time period; (A2) all the time periods have the same duration;(A3) the produ
tion system 
onsists in m ≥ n identi
al parallel ma
hines; (A4) during ea
htime period, ea
h ma
hine 
an perform a maximum of one job; (A5) some pairs of jobs arein
ompatible and their pro
essing 
an thus not overlap in time. On the other hand, 
onsiderthe famous graph 
oloring problem COL (see (Malaguti and Toth 2010) for a survey). Let
G = (V, E) be a graph with vertex set V (with |V | = n) and edge set E. COL 
onsists inassigning a 
olor (i.e. an integer between 1 and n) to ea
h vertex su
h that two adja
entverti
es have di�erent 
olors, while minimizing the number of di�erent 
olors used. COL
an model SCHED as follows: a vertex x represents a job x, an edge [x, y] indi
ates thatjobs x and y are in
ompatible, and a 
olor t 
orresponds to a time period t. Therefore, theprodu
tion terminology (e.g., job, time period, SCHED) and the graph 
oloring terminol-ogy (e.g., vertex, 
olor, COL) 
an be indi�erently used. Three variations of SCHED arealso 
onsidered in this work from the graph 
oloring perspe
tive: (1) maximize the numberof performed jobs if the makespan is upper bounded; (2) 
onsider pre
eden
e 
onstraintsbetween some pairs of jobs; (3) allow to perform in
ompatible jobs during the same timeperiod if in
ompatibility 
osts are paid (i.e. relax assumption (A5)).This paper, whi
h relies on (Zu�erey 2013), does not aim to redo the literature reviewand the experiments for ea
h of the 
onsidered produ
tion problems (detailed in the nextse
tions), but rather to dis
uss these problems, with a uni�ed view, under the su

essfullight of the graph 
oloring model and the tabu sear
h (TS) methodology. For this reason,only a key referen
e is given for ea
h problem, whi
h provide detailed information on thepseudo-
odes of the algorithms, the NP-hard aspe
ts, the literature review, and the presen-tation of the results. The 
ommon point of these key referen
es is that for ea
h 
onsideredproblem, TS proved to have 
ompetitive results a

ording to various 
riteria (e.g., qualityof the obtained solutions, speed, ease of adaptation, ability to take advantage of problemstru
ture).TS is a powerful lo
al sear
h method where a neighbor solution s′ is generated at ea
hiteration from a 
urrent solution s by slightly modifying the latter. Su
h a modi�
ationis 
alled a move. In order to avoid 
y
ling (i.e. returning to a previously visited solutionin the re
ent past), when a move is performed, its reverse is tabu (forbidden) during tab(parameter) iterations. At ea
h iteration, TS usually performs the best possible non tabumove. The method 
an be stopped when a time limit is rea
hed. The reader is referred to(Gendreau and Potvin 2010) for more information on metaheuristi
s (in
luding TS).2 Minimizing the makespanThe most e�
ient metaheuristi
s for SCHED generally work with a �xed number k ofperiods, whi
h leads to the k-SCHED problem, 
onsisting in assigning a time period in
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2
{1, . . . , k} to ea
h job, so as not to generate 
on�i
ts (a 
on�i
t o

urs if two in
ompati-ble jobs are performed at the same time). If a feasible solution is found (also known as a
k-s
heduling without 
on�i
t), the pro
ess is restarted with k − 1 periods, and so on untilthe used method 
annot �nd a feasible solution (i.e. without 
on�i
t). SCHED is thereforeta
kled by solving a series of k-SCHED problems, beginning for example with k = n.A well-known TS for k-SCHED is TabuCol as proposed in (Galinier and Hao 1999). Asolution is modeled by s = (C1, C2, . . . , Ck), where ea
h Ct 
ontains the set of jobs per-formed during period t. Given that a solution s is a partition of all the jobs into k sets (also
alled 
lasses), it may 
ontain 
on�i
ts. The obje
tive fun
tion f to minimize is thereforethe number of 
on�i
ts, and the algorithm 
an stop if a solution s with f(s) = 0 is found.A move (j, Ct, Ct′) 
onsists in assigning a time period t′ to a 
on�i
ting job j whi
h is
urrently in Ct. It is then tabu (forbidden) to reallo
ate period t to job j during tab (pa-rameter) iterations, where tab depends on the number of 
on�i
ts in the 
urrent solution.The e�
ien
y of TabuCol mainly relies on two ingredients: (1) a powerful in
remental 
om-putation (it is qui
k to evaluate the quality of a move (j, Ct, Ct′) as follows: number of jobsin Ct′ whi
h are in
ompatible with j minus number of jobs in Ct whi
h are in
ompatiblewith j); (2) at ea
h iteration, the fo
us is only put on 
on�i
ting jobs (the size of theexplored neighborhood is therefore drasti
ally redu
ed).Another powerful approa
h to ta
kle k-SCHED 
onsists in working with solutions modeledwith s = (C1, C2, . . . , Ck; O), whi
h is a partition of the n jobs into k + 1 
lasses. Ea
h
lass Ct is 
on�i
t-free and 
ontains the jobs performed at period t, and O is the set ofunperformed jobs and allows 
on�i
ts. The fun
tion to minimize is |O|: if it rea
hes zero, afeasible k-s
heduling is found. Therefore, there are mainly two e�
ient solution spa
es for
k-SCHED: (1) the spa
e E (c) of k-
omplete s
hedules whose 
on�i
ts have to be minimized;(2) the spa
e E (p) of k-partial s
hedules without 
on�i
ts, where the number of unperformedjobs has to be minimized. Two algorithms A1 and A2 respe
tively asso
iated with E (c) and
E (p) 
an be 
ompared by 
omputing the smallest k for whi
h A1 �nds a k-s
hedule without
on�i
t, and the smallest k for whi
h A2 �nds a k-s
hedule without unperformed jobs.3 Maximizing the number of 
ompleted jobsConsider the k-SCHED problem with assumptions (A1) to (A5). The obje
tive is to max-imize the number of performed jobs with a makespan limited to k time periods. Evenif the sear
h spa
es E (c) and E (p) are asso
iated with the same k-SCHED (and therefore
SCHED) problem, an important distin
tion 
an be made from a produ
tion standpoint:performing n jobs while minimizing the makespan is very di�erent from minimizing thenumber of 
ompleted jobs for a given upper bound on the makespan. The latter problemis parti
ularly relevant when the number of in
ompatibilities between jobs is large, so thatit is not possible to perform the n jobs. In su
h a 
ase, the appropriate sele
tion of jobsto perform, as well as the produ
tion sequen
es, are important issues, parti
ularly in thesituation where ea
h produ
tion a
tion is triggered only by an order from a 
lient. Thisleads to the literature on the order a

eptan
e and s
heduling problems (Slotni
k 2011).A powerful TS for k-SCHED is PartialCol proposed in (Bloe
hliger and Zu�erey 2008),whi
h works in E (p). A move (j, Ct) 
onsists in two steps: (1) assign a time period t to ajob j ∈ O (i.e. put job j in 
lass Ct); (2) put in O all the jobs of Ct whi
h are in
ompatiblewith j. It is qui
k to evaluate the value of a move (j, Ct) as the number of jobs in Ct whi
hare in
ompatible with j (as for TabuCol, an e�
ient in
remental 
omputation is used).When a move (j, Ct) is performed, it is tabu for tab iterations to reinsert in Ct a job whi
hwas just removed in the above step (2) (in order to avoid removing from Ct the job jwhi
h has just entered it). The value of tab depends on the variability ∆f of the obje
tivefun
tion f = |O| in the last 
y
le of iterations (a 
y
le 
ontains several hundred iterations).
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3As it was the 
ase for TabuCol, PartialCol has then often been used as an intensi�
ationpro
edure for k-SCHED in the best 
oloring methods.In (Zu�erey et. al. 2008) is 
onsidered an extension of this problem with di�erent ma
hines(relaxation of assumption (A3)), ea
h job has a spe
i�
 duration (relaxation of (A1)), andtime window 
onstraints are imposed. For ea
h job j are known: the set of ma
hines Mjable to pro
ess j, its pro
essing time pij if it is performed on ma
hine i, and its time window
[rij , dij ] asso
iated with ea
h ma
hine i. The obje
tive is to s
hedule a maximum numberof jobs within their time windows. A solution 
an be expressed as s = (C1, . . . , Cm; O),where Ci 
ontains all the jobs performed on ma
hine i, and O 
ontains the bumped jobs.A 
on�i
t o

urs between two jobs if there is an interse
tion between their pro
essing in-tervals. As in PartialCol, a move basi
ally 
onsists in �rstly introdu
ing a job j ∈ O into a
lass Ci, and then removing from Ci the 
on�i
ting jobs (su
h jobs are introdu
ed in O).4 Pre
eden
e 
onstraintsConsider SCHED with pre
eden
e 
onstraints. For ea
h job j ∈ V , the set P (j) ⊂ Vof its immediate prede
essors is known. If j′ ∈ P (j), it indi
ates that job j′ must be
ompleted before job j begins. The obje
tive is to assign a time period t to ea
h job j whileminimizing the makespan and satisfying the in
ompatibility and pre
eden
e 
onstraints.Let SCHED-PREC denote this problem, whose version with a number of periods �xed to
k is expressed as k-SCHED-PREC. Similarly to SCHED, SCHED-PREC 
an be ta
kledby solving a series of k-SCHED-PREC problems, beginning for example with k = n.
SCHED-PREC 
an be modeled with the mixed graph 
oloring model, denoted MCOL. Amixed graph G = (V, E, A) is a graph with a set of verti
es V , a set of edges E, and a set ofar
s A. By de�nition, an edge is undire
ted, and an ar
 is a dire
ted edge. An edge linkingverti
es x and y is denoted [x, y], whereas an ar
 from x to y is denoted (x, y). MCOL
onsists in giving a 
olor to ea
h vertex in order to minimize the number of di�erent 
olorsused, while satisfying in
ompatibility (if edge [x, y] exists in E, the verti
es x and y mustget two di�erent 
olors) and pre
eden
e 
onstraints (if ar
 (x, y) exists in A, the 
olor of xmust be stri
tly smaller than the 
olor of y). One 
an easily see the equivalen
e between
MCOL and SCHED-PREC: a vertex represents a job j, an edge [j, j′] indi
ates that thejobs j and j′ are in
ompatible, an ar
 (j′′, j) indi
ates that the job j 
an only be initiatedwhen the job j′′ is 
ompleted, and a 
olor t represents a time period t.The e�
ient TS for k-SCHED-PREC proposed in (Meuwly et. al. 2010) is an extensionof PartialCol. Let tj denote the period assigned to job j. There is a 
on�i
t between jobs
j and j′ if (1) or (2) is satis�ed: (1) [j, j′] ∈ E and tj = tj′ (in
ompatibility 
onstraintviolation); (2) (j, j′) ∈ A and tj ≥ tj′ (pre
eden
e 
onstraint violation). A solution s ismodeled by s = {C1, . . . , Ck; O}, where Ct is the set of jobs performed during period t(without any 
on�i
t). The fun
tion f = |O| must be minimized (all the jobs without aperiod are in O). The neighborhood stru
ture is the same as for PartialCol: assign a 
olor tto an un
olored vertex j, and then remove the 
olor of the verti
es of Ct in 
on�i
t with j.When su
h a move is performed, it is then tabu to remove j from Ct during tab iterations,whi
h is a number depending on the number of 
on�i
ts in the 
urrent solution.5 In
ompatibility 
ostsConsider the problem k-SCHED-INC derived from k-SCHED by relaxing assumption(A5). If two in
ompatible jobs j and j′ are performed during period t, an in
ompatibility
ost c(j, j′) = c(j′, j) is in
urred. If j is performed during t, an assignment 
ost a(j, t)must also be paid. The in
ompatibility 
ost c(j, j′) represents that the same resour
e mustperform jobs j and j′, whi
h implies the mobilization of additional resour
es to perform j
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4and j′ simultaneously. The assignment 
ost a(j, t) represents for example the 
ost of theresour
es required if one wants to perform job j during period t. The obje
tive 
onsists inassigning a time period to ea
h job in order to minimize the in
ompatibility and assignment
osts. A solution s is modeled by s = (C1, . . . , Ck), and an in
ompatibility graph 
an bebuilt: an edge [j, j′] between two verti
es j and j′ indi
ates that if the same 
olor is givento verti
es j and j′, then the 
ost c(j, j′) > 0 is en
ountered. This model is able to alsoreasonably a

ount for pre
eden
e 
onstraints and forbidden periods for some jobs.In the e�
ient TS for k-SCHED-INC proposed in (Zu�erey et. al. 2012), a move (j, Ct, Ct′)
onsists in giving period t′ instead of period t to job j. However, to avoid evaluating all thepossible moves at ea
h iteration, only the most promising moves are examined, that arethe ones whi
h 
ontribute the most to the obje
tive fun
tion. When a move (j, Ct, Ct′) isperformed, it is tabu to assign period t to job j during tab iterations. A re�ned managementof the tabu status is used, based on the following idea: if the diversity of the visited solutionswithin the last 
y
le of iterations is below a spe
i�
 threshold δ (parameter), the value of
tab is in
reased for a 
ouple of iterations in order to favor the exploration of new zones ofthe solution spa
e (diversi�
ation phase). On the 
ontrary, if the diversity is greater than
δ, the value of tab is redu
ed for a 
ouple of iterations in order to favor a deeper explorationof the sear
h spa
e zone in whi
h the 
urrent solution lies (intensi�
ation phase).6 Con
lusionIn this work, various NP-hard s
heduling problems on parallel ma
hines have been exam-ined under the light of graph 
oloring models. It was showed that TS 
an be easily adaptedto spe
i�
 produ
tion problems. This su

ess mainly relies on four aspe
ts: (1) an e�
ientrepresentation of a solution, allowing in
remental 
omputation; (2) the use of an auxiliaryobje
tive fun
tion di�erent from the given obje
tive fun
tion asso
iated with the problem;(3) the use of aggressive moves (e.g. whi
h eliminates at least one 
on�i
t at ea
h iteration,even it 
reates other 
on�i
ts somewhere else in the solution); (4) an e�
ient managementof the tabu durations. This paper 
ontributes to build bridges between the graph 
oloringand the produ
tion s
heduling 
ommunities.Referen
esBloe
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