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Abstract

We summarize our continuing efforts at model based
testing of reactive systems on the grounds of Constraint
Logic Programming. First experimental results give
rise to optimism w.r.t. scalability of our approach,
point at necessary improvements, and they help iden-
tify future areas of research. Among others, these in-
clude search strategies more powerful than backtracking
alone, appropriate (graphical) input languages for test
cases, and theoretical aspects such as the relationship
between test cases (traces) and system specifications.
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1 Introduction

Even though testing is considered the most prag-
matic and successful technique in (active) quality as-
surance, it still is a field that is insufficiently explored
and systematized. One of the major issues in testing
is a systematic and tool supported test case generation
process that supports the development of high quality
software systems.

Model based testing. In this paper we focus on
test case generation for conformance testing. Tradi-
tionally, conformance testing aims at establishing ev-
idence for the fact that an implementation conforms
with the observable behavior of a specification (or a
model in our case, i.e., an executable artifact written
in a sufficiently abstract–e.g., graphical–language). In
the context of an evolutionary software development
process, conformance testing can also be used to es-
tablish conformance between models of different refine-
ment levels as well as between different versions of the
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models (resp. implementations). Regression and con-
formance testing thus collapse. In addition, our ap-
proach also aims at finding test cases to locate errors
in the model itself (as a debugging aid). We refer to
all these testing activities as model based testing.

Contributions. The contribution of this paper is
twofold. Firstly, we present the prototypical imple-
mentation of a tool for the automatic generation of test
cases that is integrated into the CASE tool AutoFo-

cus [18, 21, 22, 27, 25, 26, 20]. The underlying ideas–
test case generation on the grounds of symbolic execu-
tion with constraint solving; separation of function def-
initions and control flow with finite state machines and
test generation strategies for both aspects; not trying
to prove equivalence or implication between two arti-
facts [30, 16] but rather focusing on incompleteness–are
described and related to other generation algorithms.

Secondly, we discuss some design decisions our ap-
proach is based on at length. This leads to further ques-
tions such as the relationship with verification meth-
ods, formalized refinement/abstraction concepts, certi-
fication issues, and incremental development processes,
thus pointing out our interest in the subject at the in-
terface between theory and practical SW engineering.

Overview. In Section 2, we introduce the (modeling)
concepts underlying the CASE tool AutoFocus. We
then give a brief introduction to our approach to gen-
erating test cases on the grounds of Constraint Logic
Programming [19]. Section 3 quite extensively dis-
cusses different aspects, application areas, advantages
and drawbacks of the proposed approach. Issues that
we consider important as being parts of future work
are described in Section 4.

Related work. Related work is cited in the respec-
tive context. The work of Ciarlini and Frühwirth [7]
as well as that of Marre and Arnould [23] are quite
similar to ours. However, the further differs from our
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work w.r.t. compositionality, the degree of automa-
tion as well as the combination of state machines with
specifications in a functional language for guards and
postconditions (the input language). The latter ap-
proach is based on Lustre as input language, and con-
straint solving is restricted to boolean and integer val-
ues. Both approaches do not rely on Constraint Han-
dling Rules [15] for the definition of customized con-
straint handlers but rather predefined constraint han-
dlers which, in our opinion, makes our approach more
flexible. Recently, Meudec [24] has used Constraint
Logic Programming (even Eclipse) for symbolic execu-
tion of SPARK (SPADE Ada Kernel) code in order to
compute test cases. The focus is, however, neither on
reactive nor on concurrent systems. In fact, SPARK is
used for high integrity software and deliberately does
not support tasks. Concurrency has then to be imple-
mented explicitly by writing appropriate schedulers.

Other approaches to generating test cases are sum-
marized in [34], and we omit their explicit discussion
in this paper.

Our terminology is that of [22]. A test case repre-
sents a set of test sequences. Test sequences are I/O
traces, and a test case can be a test sequence if it is
fully instantiated. If it is not, constraints are necessary
to define those sequences the test case describes.

2 Model Based Testing and AutoFocus

In this section we give a short overview over the
AutoFocus description techniques and our approach
to test case generation.

AutoFocus (autofocus.in.tum.de, [18]) is a tool
for developing graphical specifications of embedded
systems based on a simple, formally defined semantics.
It supports different views on the system model: struc-
ture, behavior, interaction, and data type view. Each
view concentrates on certain aspects of the specified
model, and is depicted by a certain kind of diagram.

The core items of AutoFocus specifications are
components. A component is an independent com-
putational unit that communicates with its environ-
ment via so called ports. The set of (typed) ports of
a component describes its complete interface. Two or
more components can be linked by connecting their
ports with directed channels. Thus, component net-
works arise which are described by System Structure
Diagrams (SSDs).

SSDs are hierarchic. This means that each compo-
nent can again be described as a set of communicating
subcomponents or another SSD, respectively. Atomic
components are components which are not further re-
fined. For these components a behavior must be de-

fined which is achieved by means of a variant of Mealy
machines (i.e., finite state machines with I/O).

Extended finite state machines are modeled by State
Transition Diagrams (STDs). An STD consists of a set
of control states, transitions and local variables. The
local variables form the component’s data state. Each
transition has several annotations: a label, a precondi-
tion, input statements, output statements and a post-
condition. Transitions can fire if the precondition holds
and the input statements match the actual input vector
at the component’s interface (the input ports; remem-
ber that channels are typed and that these types are
inductively defined in a functional language). Post-
conditions are assignments to local variables. After
execution of the transition, the local variables are set
accordingly, and the output port is bound to the values
denoted in the output statements. Pre- and postcondi-
tions are defined with the help of a Gofer-like functional
language that allows for the definition of possibly re-
cursive data types and functions.

AutoFocus components are timed by a common
global clock, i.e., they all perform their computations
simultaneously. Each clock cycle consists of two steps:
First each component reads the values on its input
ports and computes new values for local variables and
output ports. Then, the new values are copied to the
output ports where they can be accessed immediately
via the input ports of connected components. This
cyclic operation results in a time-synchronous commu-
nication scheme with buffer size 1.

In addition to SSDs and STDs, AutoFocus pro-
vides Message Sequence Charts (MSCs); they are used
to describe the interaction between components, either
for behavior specification, for the visualization of sim-
ulations, and for the specification of test cases [34].

Test sequence generation. Specification based test
sequence generation is the process of deriving suitable
input/output sequences from specifications and usu-
ally informal test purposes. The determined sequences
must be consistent with the specification and, later on,
will be used to verify the properties specified by the test
purposes on the implementation level. Test purposes
may be either functional (i.e., test a certain function-
ality) or structural (i.e., obtain a certain coverage like
branch coverage or path coverage). Due to the informal
character of test purposes, it is impossible to compute
executable test sequences directly from test purposes.
Thus, test purposes have to be manually turned into
formal test case specifications from which test cases can
be derived. A test case specification can be formulated
in many ways. Simple examples are input histories,
transition sequences, traces, or constraints over them.
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We chose to describe the test cases as constraints
over traces which include all parameters of the sys-
tem like input/output values, channels and variables,
as well as reached states and fired transitions. This
description technique is most general and is suitable
for both functional and structural test cases. Test se-
quence generation is now defined as the task of finding
suitable sequences which conform to the system spec-
ification and satisfy all constraints of the desired test
case. We have automated this task by using Constraint
Logic Programming (CLP).

Translation into CLP. The automatic transla-
tion of AutoFocus models into CLP (Eclipse,
www.icparc.ic.ac.uk/eclipse) code is straightfor-
ward. For each atomic component a step predicate is
introduced. This predicate represents one single step of
the component. Each transition of the corresponding
automaton is represented by a single rule of the step
predicate.

For each composed component consisting of a net-
work of communicating subcomponents, a special
scheduler rule is created that drives the subcompo-
nents and transfers messages between subcomponents
and the environment. The scheduler rule has the same
signature as the step predicates of the atomic compo-
nents. Thus, from a black box view, no difference is
made between an atomic and a composed component,
and the encoding in Prolog rules reflects the component
hierarchy of the AutoFocus model.

For the top level component, an additional “doStep”
rule is needed that successively calls the step rule and
collects the histories of states, local variables, inputs,
outputs, and transitions. The number of steps is lim-
ited by a variable ClockMax in order to avoid infinite
runs. Details of the concrete translation are discussed
in [21, 22].

In addition to the Prolog rules which model the tran-
sitions of the system, constraint solvers for the eval-
uation of the predicates (functions, data types) are
needed. For integer type variables, constraint solvers
for finite domain variables are available, and for the
functional data types as well as function definitions, a
corresponding constraint solver is generated automati-
cally by using Constraint Handling Rules (CHR, [15]).

Generating sequences. Test sequences are now
generated by querying the Prolog system. An uncon-
strained query will result in successively computing all
system traces, i.e. all traces that are consistent with
the given AutoFocus specification. Each of these sys-
tem traces can be seen as a test sequence which is
possibly capable of finding errors in the implementa-

tion. The number of these test sequences is too large
for an effective test strategy. Thus, the traces have
to be constrained according to a given test case, and
if possible, several traces should be executed simulta-
neously. This is done by transforming the test case
into constraints over the appropriate history variables
of the doStep-rule of the top level component (and
these constraints can represent several traces, e.g., in-
equality constraints). Constraints can be defined and
solved either by using predefined standard operators
(e.g., boolean constraints) or by using more sophisti-
cated self-defined constraint handlers (e.g., constraints
that model temporal operators). Specialized constraint
handlers can be effectively defined by using CHRs.
Thus, the queries for computing actual test sequences
consist of calling the doStep rule and further constrain-
ing its history variables. The Prolog system then sym-
bolically executes the model. In this way more and
more history variables get instantiated, and the appro-
priate constraint handlers are called. If the constraint
handler fails to satisfy some constraints, the rule can-
not be applied and the Prolog system performs a step
backward, i.e., backtracks.

We kept the following three concepts mostly orthog-
onal: the basic executable model that reflects the spec-
ification, the additional constraints that define the test
case and the search algorithm that guarantees an effec-
tive and efficient search strategy. They are orthogonal
in the sense that altering one of them does not affect
the others. The search strategy, for instance can be
altered without changing the translation of the model.
First experiences show that this design strategy allows
for a very adaptive test sequence generation method.

3 Discussion

Our description of a system for the generation of
test cases immediately raises some questions. We con-
sider the most important ones to be those concerning
scalability as well as those concerning a (quantitative)
assessment of the system’s performance in terms of ef-
ficiency and quality of the generated set of test cases.
Space limitations necessarily render this discussion in-
complete.

Scalability by interaction. A feasibility study [26]
with a large German manufacturer of smart cards has
given us some reason to be optimistic w.r.t. scalability
of our approach. While there are principal problems
with the explicit generation of the state space (cf. the
discussion of the relationship with model checking be-
low), this optimism is motivated by the interaction op-
portunities as provided by CLP, and, more particularly,
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by CHRs (see also the treatment of appropriate input
languages below). These interaction opportunities are
founded on the fact that, with CLP/CHR, one can ex-
plicitly and simultaneously refer to the model and the
property to be tested. With temporal logics, one can-
not, for instance, explicitly formulate properties about
the firing of certain transitions without instrumenting
the underlying model.1 Our approach, on the other
hand, not only allows for taking into account observ-
able behavior, i.e., inputs and outputs, but also for ex-
plicitly phrasing properties such as “do not enter state
S” or “choose the transitions out of state S from a set
T” without altering the model. This model can thus
be interactively sliced (abstracted in an ad-hoc man-
ner; we consider slicing in the sense of [29] for correct
abstractions in the context of “programs”, i.e., Auto-

Focus models), resulting in an alleviation of the state
space explosion problem. This alleviation is mainly
based on CLP’s facilities of a-priori pruning the search
tree [19]. Our experience is that users are often capable
of understanding the reason for the system’s inability
to compute a certain solution, and of using this infor-
mation to “help” the system. We do not think that in
the near future, push-button approaches to this kind
of problem will yield satisfactory results; we consider
interactivity as the key to a “graceful degradation” of
our approach.

Performance and abstractions. When talking
about performance, two issues arise: (1) Speed and
memory requirements, and (2) quality of the generated
traces. The first point is closely related to scalability.
Experiments have shown that the choice of the maxi-
mum length of some traces is crucial w.r.t. the perfor-
mance in terms of time ([25] contains an example where
the time needed to compute a transition tour differs as
much as four orders of magnitude where the maximum
length differs by 20). This originates in Prolog’s back-
tracking mechanism and renders the need for more in-
telligent search strategies obvious. Currently, we have
implemented two different selection strategies. (1) In
order to avoid loops that are caused by Prolog’s depth-
first search strategy, a simple heuristic was chosen: For
each state the last transition that was taken is mem-
orized, and when the same control state is re-entered,
another transition is chosen (according to some user-
definable pattern; the standard choice consists of trying
one after the other, but sometimes it is useful to take a
transition twice, etc.). (2) In our studies, it turned out
that occasionally probabilities in choosing transitions
are helpful (cf. [28]). Consider, for instance, a state

1This is with the exception of Unity. Note that for other
temporal logics, this choice is deliberate.

with as many as fifteen emanating transitions and the
test case requires one of them to be fired ten times in
a row. A high probability for this particular transition
helps in computing the corresponding test case.

As stated above, the opportunity to slice (or ab-
stract) a model in an ad-hoc manner by prohibiting
certain states or transitions is also crucial in an efficient
computation of test sequences. We have implemented
abstractions on the grounds of interval arithmetics sim-
ilar to [17, 12] for integers and reals: Guards and post-
conditions are used in order to compute abstract data
types (intervals) which, subsequently, yield induced op-
erators on these abstracted data types (and the origi-
nal operators in the postconditions may iteratively be
applied in order to refine the abstraction and, conse-
quently, the induced data types). This corresponds
to abstract interpretation [9] on the level of function
definitions; the power set lattice of the original data
type and the–automatically computed–abstract data
type can be shown to form a Galois Connection. Ab-
stract interpretation on the level of transitions as, for
instance, proposed by Dams et al. [11] is the subject
of future work.

A problem with this approach is that computing in-
duced functions on the basis of intervals only makes
sense for data types with an intuitive notion of an in-
terval. For inductively defined data types the induction
order gives rise to “intervals” but seems less convincing
than the ordering on numbers (is an abstraction for the
“append” function on lists of length, say, zero and one,
a good idea?). For embedded systems, however, sen-
sor values usually are boolean or continuous, and the
approach may well be applicable to this class of sys-
tems. Nonetheless, the usefulness of such abstractions
still remains to be assessed.

In terms of quality of the computed test cases, a
quantitative assessment is usually done on the basis
of coverage metrics. A test purpose [22] can consist of
the motivation behind such a metric (e.g., transition or
state coverage), and the coverage criterion is used for
the computation of test cases in an a-priori manner.
Functional test purposes, as opposed to these struc-
tural tests, should origin in early phases of the devel-
opment process; their “quality” is rather hard to assess
quantitatively (they lead to a trace that exhibits the
specified functionality, or they do not–“inconclusive”
verdicts in our context occur for nondeterministic spec-
ifications). The use of coverage criteria for models is
discussed below.

Incremental Development Process. With the ad-
vent of what has become known as Extreme Program-
ming (XP, [3]), rapid/evolutionary prototyping ap-
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proaches have gained increasing popularity. The spi-
raling nature of such development processes exhibits,
among other things, the advantage of early interaction
with the customer and thus an early requirements val-
idation: at the end of each loop, an executable (e.g.,
AutoFocus) model should be available. We consider
the use ofmodeling rather than programming languages
in a model based incremental development process the
main prerequisite for a model-based generation of test
cases. This is due to their higher degree of abstraction
as well as the necessity of a formally defined semantics
(cf. [25]; the ideas behind Extreme Modeling (XM, [5])
are similar to ours in terms of modeling, but our focus
is rather on validation). The use of different specifi-
cation formalisms is also found in the Cleanroom Ref-
erence Model [28]; our work in terms of development
processes aims at a synthesis of the CRM, XP, XM,
and classical prototyping approaches.

As a side benefit, an incremental development lends
itself to model based regression testing: Test cases for
an earlier increment can and should be used for testing
later increments, and test cases for models have to be
converted into test cases for implementations if code
generators turn out to yield inefficient or inadequate
code. However, the composition of components (one
incremental step) may exclude some behaviors of one
of the two components; computed test cases for the ear-
lier increment will then lead to–erroneously detected–
errors in the later one. This issue will be discussed later
in the context of specified (“good”) as opposed to un-
specified (“bad”) behaviors, or test cases, respectively.

Model Checking vs. Constraint Solving. We
consider testing and model checking different ap-
proaches with different goals, advantages, and short-
comings [34]. Model checking based approaches are
restricted to small, finite systems; they aim at math-
ematical completeness and soundness in terms of the
significance of their results (cf. [6, 16, 30] for a re-
lationship with different–formal–notions of testing as
well as test case generation procedures that, unlike
ours, aim at completeness). In an incremental de-
velopment process, some increments may be so small
that model checking can be applied to them. Model
checking, however, usually does not exhibit a graceful
degradation (see above). Instead, if a certain size of
the model is exceeded, no results can be expected any
more. The solution to this problem is abstraction (the
“missing link” between model checking and constraint
solving). Our test case generation technique exhibits
some similarities with bounded model checking [4, 34]
where the maximum length of the system runs in ques-
tion has to be provided, too; on the other hand, it can,

at least conceptually, cope with infinite systems (real
numbers [27], recursive data structures [21]; see also
[7, 30]). The a-priori-pruning technique as provided
by constraint handling makes our approach somewhat
similar to non-symbolic on-the-fly model checking, as,
for instance, supported by the model checker SPIN. In
[14], Fribourg points out the similarity between model
checking, CLP, and abstract interpretation of infinite
systems (e.g., hybrid systems [1, 32, 7, 27]; see also [10]
for work on tabled resolution with XSB-Prolog and [33]
for the relationship between top-down and bottom-up
fixed point computations in LP). Model checkers are
also used as generators of test cases. As stated above,
we are not dogmatic about which technique is the bet-
ter one. Instead, we see them as complementary ap-
proaches.

4 Future Work

The issues that have been discussed in the previous
section give rise to a plethora of further questions, or
future work, respectively. In order to structure these
issues, we non-orthogonally divide them into theoreti-
cal, methodical, and implementation issues. These may
overlap, as illustrated in Fig. 1.

Traces vs. Systems. We see the seemingly the-
oretical question of how to relate sets of traces with
systems at the heart of our future scientific endeavors.
It is motivated by the observation that the “equiva-
lence classes” usually deployed in testing do rarely cor-
respond to any sensible congruence relation–instead,
they are usually extracted in an ad-hoc manner (cf. the
selection criteria in [16]). This immediately led to the
question for the relationship between a test suite and
the system that is to be tested. Note that Tretmans,
for instance, takes a conceptually different approach:
starting with an implementation relation ioco, a test
suite is generated that is able to decide whether or not
an implementation belongs to the equivalence class of
the system to be tested; and the notion of (observa-
tional) equivalence is defined by ioco [30, 6]).

However, in order to relate systems (automata) with
I/O traces (test sequences or cases), traces have to be
converted into corresponding systems or vice versa (cf.
[8] for the relationship of different semantics). We do
not consider the problem of relating finite and infinite
traces (systems) here. When talking about reactive
systems, the systems in question should obviously be
input-enabled, i.e., be able to react to any stimulus
in any situation. This leads to the notion of comple-
tion. In terms of mathematics, chaos completion en-
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Figure 1. Issues in test case generation

ables one to define a natural concept of refinement on
the grounds of trace inclusion or logical implication,
respectively. Chaos completion allows the system to
behave erratically (non-deterministically) whenever a
non-specified event occurs. Default completion, on the
other hand, makes the system remain in its current
state whenever such a situation occurs: it idles (cf.
the notion of repetitive quiescence in [30]). In terms
of simulation environments (engineering), we consider
default completion to be a better choice, however diffi-
cult the mathematical treatment of abstraction and/or
refinement concepts may become.

The problem now is twofold. Firstly, for nondeter-
ministic systems it becomes difficult to relate “con-
crete” with “abstract” systems. While chaos completed
systems as induced by deterministic test cases are ab-
stractions of the system to be tested, the corresponding
trace inclusion relationship usually cannot be main-
tained for nondeterministic systems. In addition, for
default completion such a simple formalization on the
basis of trace inclusion is complicated. The idea here
is to explicitly separate completed idle transitions from
specified behaviors (δ outputs in [30]). Abstraction or
refinement, respectively, may then be defined as trace
inclusion modulo idle transitions; a transfer of the ideas
of [30, 31] to the state machines with associated func-
tion definitions of AutoFocus may well solve these
problems.

The refinement/abstraction relation induces a com-
plete lattice of systems w.r.t. to the refinement order-
ing (the induced topology is at least a complete partial
order for nondeterministic systems). The existence of
least upper bounds in complete lattices may allow one
to determine a semantic distance between different sys-
tems which, in turn, could lead to a new characteriza-

tion of the quality of test cases. What we thus need is
a concept of approximation for (extended) finite state
machines.

This is particularly interesting for systems that are
induced by “good” as well as “bad” test cases–test
cases that correspond to system runs and test cases
that do not. This can occur when systems are com-
posed: The composed system may exhibit fewer or
more behaviors than the single components alone. The
question is then how to relate test cases for compo-
nents with test cases for the composed system. Fur-
thermore, when completed idle transitions are ignored,
previously computed test cases may become impossi-
ble system traces. This problem is also related with
the problem of incomplete specifications or implemen-
tations: forgotten else-branches, for instance, that are
quietly “completed” with “default” behavior. How-
ever, problems seem to occur in parts of the specifi-
cation that have been forgotten rather than in those
that have been specified–test case generators should
take this into account (e.g., by simple heuristics).

The above discussion also indicates that computed
test cases may be used as abstractions of systems that
can be used for further analysis.

Increments. The above discussion of a theoretical
refinement relation (a topic that has been the subject
of intense research in the last decades) raises the ques-
tion of how this refinement relation is to be embedded
in the understanding of an incremental development
process. In particular, it has to be defined what exactly
an increment (or an incremental step) is: Is it the addi-
tion of special cases to function definitions? Structural
morphisms as propagated by Refactoring [13]? The ad-
dition of further functionality? Data refinement? Re-
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finement in the sense of a top-down development as
advocated by, among others, Dijkstra? Stepping from
host to target architectures (A-B-C stages in prototyp-
ing)? A suitable formalization of some development
steps that leads to increments that are correct by defi-
nition surely has to focus on some of these aspects and
discard others.

Certification. The usability of formal test case com-
putations is dependent on the expected payoff. We
consider safety-critical systems one domain in which
it actually may pay off. However, corresponding stan-
dards as, e.g., DO-178B for aircraft, require a set of test
cases that is based on coverage on (object) code rather
than on models (e.g., states or transitions). Test cases
satisfying a certain coverage criterion on models have
thus to be transformed into test cases satisfying a simi-
lar criterion on the code level (also cf. [31]). We believe
that techniques similar to those employed in our code
generators may be used for this purpose. However, the
AutoFocus specific distinction between (Gofer-like)
function definitions and functionality implemented by
automata requires a thorough investigation of sensi-
ble coverage criteria even on the level of models. The
main difficulty is that in AutoFocus, there is a sepa-
ration between control and data states, where the latter
can contain elements of the further. Transformations
on the data space are usually achieved by referring to
functional programs, and coverage criteria for a mix-
ture of those programs and state machines remain to
be defined.

Input language. One of the driving forces behind
our approach is its practical usability (this is why we
devote a lot of work to an efficient implementation).
This also raises the question of suitable input languages
for test cases. As indicated above, predicates on the ba-
sis of CHR surely are a good idea as a back end, but
(graphical) notations (Message/Live Sequence Charts,
automata, or even temporal formulae) have to be con-
sidered as input languages [34]. In terms of sequence
diagrams and automata, for instance, constructs (and
semantics) for negation will probably be needed. This
also implies an investigation of the different properties
(bounded liveness, safety) that are to be tested.

Applications. In addition to several toy examples
(timer/blinker [21, 22], ATM [25], Mars Polar Lander
[27]), we have used our approach for testing an inhouse
smart card system in a feasibility study [26]. Further-
more, it has been used in the determination of test
cases for firewalls [20]. However, experience shows that
every example leads to new ideas on how to augment

our test generation techniques. We are thus evaluating
the approach with other medium-scale systems (cur-
rently, these include more smart card systems as well
as a mixed discrete-continuous control system for the
slats–leading edges–of a military aircraft wing).

Constraint instantiations. An issue that has not
been addressed thus far is the intelligent instantiation
of constraints. Our approach differs from that of Marre
et al. [23] not only in the input language (Lustre vs.
AutoFocus) but also in that we have implemented
(recursive) function inversion and, thereby, explicit in-
stantiations are performed whenever functions are eval-
uated. This leads to fewer constraints to be instanti-
ated at the end of a symbolic execution ([23] explicitly
uses boolean constraint solvers and thus enforces lazy
evaluation of boolean connectives while we consider ea-
ger evaluation to be a more practical approach: “de-
laying” parts of logical formulae seems, to us, to occur
at a too high level and, since not enough information
is available, to significantly complicate the choice of
suitable transitions). However, the problem remains
of how to instantiate remaining constraints. Random
testing has proven to be quite powerful in detecting er-
rors, but since the set of test cases sometimes should
be kept minimal, different heuristics have to be inves-
tigated (some of which exist). This issue is also related
to that of certification and that of model based cover-
age vs. coverage on the level of implementations.

Search strategies. In the last chapter, the need for
intelligent strategies for the selection of transitions was
motivated. We consider the use of A*-like algorithms
beneficial; the problem here is, however, the definition
of suitable fitness functions. In terms of control flow
on the grounds of control states, these may be based
on the topological structure of the state machine, in
terms of data flow, common techniques from program
analysis seem good candidates for this kind of prob-
lem. Changing the communication semantics from a
synchronous to an asynchronous one is likely to have
an influence on the choice of transitions, too.

Implementation language. Our CLP based ap-
proach exhibits several advantages: relatively sim-
ple code generation, built-in backtracking, etc. In
particular, the possibility of binding free variables
is a prerequisite for our symbolic execution. How-
ever, more control over the search process would be
desirable, and an a-priori lazy evaluation would be
helpful, too (which is in particular the case for the
translation of complicated function definitions as in
the case of [20]). Functional logic languages such as

7



Curry (www.informatik.uni-kiel.de/~curry/) with
Needed Narrowing [2] as its optimal operational seman-
tics seem to be a better choice than Prolog alone. So
far, the lack of efficient implementations as well as a
connection with CHR or a comparable constraint solv-
ing meta tool has prevented us from discarding Prolog
in favor of such languages. We conjecture that lazy
functional languages will exhibit a poorer performance
than Prolog (explicit representation of lists with data
type extensions), but they surely facilitate the defini-
tion of different search strategies.

5 Conclusion

This paper is supposed to give an overview of the
work in our group on testing and, more particularly,
on test case generation. We have thus presented and
extensively discussed an approach that is integrated
in the CASE tool AutoFocus. Experiments with
other techniques than Constraint Logic Programming,
namely propositional logics [34], have highlighted the
need for interactivity in the process of generating test
cases. Interactivity is naturally supported by ap-
proaches that are based on symbolic execution, and
our first experiences shows that CLP and CHRs are
well suited to this kind of generation technique.

Test case generation is just one problem in the test-
ing process. We acknowledge that in practice, the cur-
rent problems are concerned with test management is-
sues rather than with test case generation. This is,
however, not the focus of our current work.
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[17] S. Graf and H. Säıdi. Construction of abstract state
graphs with PVS. In Proc. 9th Conf. on Computer-
Aided Verification (CAV’97), 1997.

[18] F. Huber, B. Schätz, and G. Einert. Consistent Graph-
ical Specification of Distributed Systems. In Industrial
Applications and Strengthened Foundations of For-
mal Methods (FME’97), LNCS 1313, pages 122–141.
Springer Verlag, 1997.

[19] J. Jaffar and J.-L. Lassez. Constraint Logic Program-
ming. In Proc. 14th. ACM Symposium on Principles of
Programming Languages (POPL’87), pages 111–119,
Munich, 1987.

[20] J. Jürjens and G. Wimmel. Specification-Based Test-
ing of Firewalls, 2001. To appear in Proc. Andrei Er-
shov 4th Intl. Conf. on Perspectives of System Infor-
matics.

8
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