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Abstract. Access control is concerned with granting access to sensitive
data based on conditions that relate to the past or present, so-called
provisions. Expressing requirements from the domain of data protection
necessitates extending this notion with conditions that relate to the fu-
ture. Obligations, in this sense, are concerned with commitments of the
involved parties. At the moment of granting access, adherence to these
commitments cannot be guaranteed. An example is the requirement \do
not re-distribute data", where the actions of the involved parties may
not even be observable. We provide a formal framework that allows us
to precisely specify data protection policies. A syntactic classi�cation of
formulas gives rise to natural and intuitive formal de�nitions of provi-
sions and obligations. Based on this classi�cation, we present di�erent
mechanisms for checking adherence to agreed upon commitments.

1 Introduction

With the ever increasing use of modern communication technologies in the com-
mercial and public sectors, the adequate handling of personal data is a grow-
ing concern. Such data is often distributed across many public and commercial
databases, and processed by many applications. This opens the door to illegiti-
mate access and misuse of data. To prevent misuse, many countries have passed
data protection laws and privacy regulations, but these are often not adequately
re
ected in the distributed information systems that store and process sensitive
data. When building such systems, one needs �rstly to be able to precisely de�ne
and specify the underlying requirements, and secondly a means of ensuring that
personal data is handled in accordance with applicable laws and regulations. To
date, neither problem is solved in a fully satisfactory manner.

By controlling who may access which data, traditional access control mecha-
nisms solve one part of the problem. However, they are unable to make decisions
based on how the data will be used once accessed, and this is an essential aspect
of many data protection regulations. For instance, it should be possible to grant
read access to personal data under the stipulation that the data be used exclu-
sively for certain prede�ned purposes. An example is a database maintained by
one government agency that must not disclose citizen data to other administra-
tions unless the data is used solely for statistical purposes. Retention, protection,
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or redistribution of data are further examples of relevant issues in the context
of data protection. This paper discusses the handling of data protection require-
ments: statements that, in addition to specifying who may access which data,
also impose constraints on how the data may be used. Our formal framework
makes it possible to precisely de�ne and specify a large subset of data protection
requirements, and, upon implementation, also to control adherence to commit-
ments related to data protection. This makes the framework attractive as a
stepping stone to future, practical, data protection speci�cation languages. Nat-
urally, it also gives rise to the possibility of formally analyzing data protection
requirements, e.g. to determine their consistency.

Our system model consists of agents that own or request access to data.
Access is granted or denied by a reference monitor based on conditions that are
expressed in (formalized) data protection requirements. In the form of provisions,
these conditions can relate to the past or present, e.g. \explicit owner consent
must be presented when access to data is granted". In the form of obligations,
the conditions can also relate to the future, e.g. \data must be deleted within a
month", or \the further distribution of the data must be logged". We consider
obligations from two perspectives: time and observability, i.e. the possibility of
checking adherence to a commitment. Our formalization of obligations leads to
a natural classi�cation along these two dimensions.

1. Time: Obligations are either concerned with �xed time intervals, or are
de�ned as eternally valid conditional statements|invariants. We will argue that
unbounded eventuality|roughly, liveness|is not relevant in the context of data
protection.

2. Observability: We address the problem exempli�ed by the obligation to
delete data some time after it has been obtained from the reference monitor.
From the monitor's perspective, this is usually impossible to enforce and be-
cause it is not directly observable, di�cult to check. We show how to transform
non-observable events into observable ones, which then can be checked by the
reference monitor. Upon violation of an obligation, the reference monitor can
take necessary actions.

Existing generalizations of traditional access control models cannot capture
the entirety of the above data protection issues. Some omit certain classes of
data protection requirements and thus leave room for generalization; others do
not provide a precise semantics for their frameworks (Section 5).

To summarize, the problem that we tackle is the lack of precise de�nitions
of data protection requirements (that necessarily precede a practically useful
speci�cation language for data protection policies) and, in particular, the lack
of a precise understanding of how adherence to obligations can be checked. Our
solution consists of a conceptual and a methodological part. Conceptually, to pre-
cisely de�ne and understand the cornerstones of data protection requirements,
we show how to specify them in a logic that adds the dimension of distribution
to classical temporal logics. This allows for the intuitive distinction between
provisions and obligations on the one hand, and between observability and non-
observability on the other. Methodologically, we show how to specify mechanisms
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that rely on the transformation of non-observable parts of an obligation into ob-
servable ones. Overall, we see our contribution as (a) the extension of access
control models in the context of data protection with precisely de�ned concepts,
(b) a classi�cation of data protection requirements along the dimensions of time
and observability, and (c) the description of generic mechanisms to cope with
non-observable parts of obligations.

The remainder of this paper is organized as follows. We take an informal
look at data protection and set the scene at the beginning of Section 2. Then
we introduce Distributed Temporal Logic (DTL) [5, 6], which we use to de�ne
our formal framework and to classify data protection requirements. In Section 3
we show how non-observable requirements can be transformed into requirements
that can be checked by a central reference monitor. We use Section 4 to illustrate
the ideas of this paper with an example. In Sections 5 and 6 we describe related
work and our conclusions. Formal details on DTL can be found in the appendices.

2 Data Protection Requirements

In this section, we examine data protection requirements. First we introduce the
kinds of problems we are concerned with from an informal point of view. Then we
present our formalism and show how it can be used to formalize data protection
policies. We also present a classi�cation of data protection requirements based on
their temporal structure and the kinds of observations that di�erent principals
in a distributed system can make.

2.1 An Informal View on Data Protection

Privacy is concerned with anonymity and data protection. Our work focuses on
data protection, i.e. controlling the access to and the usage of sensitive personal
data. By personal data, we denote any data that is, or can be, associated with a
person. We consider systems consisting of two kinds of agents: a server reference
monitor r and a set of subjects Sub. Dat is a set of personal data objects.
The reference monitor1 controls access to the data items in Dat. We consider
scenarios where a subject si 2 Sub attempts to access a data object dk 2 Dat.
In this case, we also refer to si as the requester.

We examine policies that de�ne how to control the 
ow of sensitive data in a
distributed environment (this involves access control decisions made by r as well
as controlling the further distribution of data between the subjects), and how the
data must be used by the subjects. Sources for the di�erent kinds of requirements
were existing privacy policy description languages like P3P [19], scienti�c papers
such as [11], and data protection regulations from di�erent countries.

Data protection requirements include (1) access control requirements, which
should be as 
exible as possible, i.e. able to express di�erent access control

1 We will use the term reference monitor rather liberally to describe control programs
that can not only monitor and prohibit actions, but can also trigger corrective actions
such as the application of penalties.
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paradigms; (2) actions that must be performed prior to the access, e.g. presenting
a certi�cate or gathering the consent of the data owner; (3) actions that must be
performed within a certain time period or on a recurring basis, e.g. informing the
data owner about the access or about any usage of the data; (4) restrictions on
the further distribution of the data; (5) restrictions on the possible purposes for
which the data may be used; (6) limitations on the retention time; (7) mandatory
uses of protection mechanisms; and (8) duties of keeping the data up-to-date.

2.2 Gentle Introduction to DTL

We use Distributed Temporal Logic (DTL) to formally express privacy require-
ments. In this section, we give a brief, high-level overview of DTL, relegating
the formal presentation to Appendix A.

DTL [5, 6] can be seen as a generalization of Linear Temporal Logic (LTL)
[13] and our explanation here will focus on the di�erences. DTL contains tem-
poral operators for reasoning about the past and the future. In addition, it
provides a distributed view of systems. Whereas LTL formulas express a global
view of a distributed system in terms of temporal properties of its traces, DTL
formulas formalize system properties from the local view of the system's agents.
Statements ' refer to an agent a's local data space; this is expressed as @a['].
@�[�] formulas cannot be nested. Intuitively, ' includes state propositions such
as \a possesses a certi�cate", and actions such as \a deletes a �le". ' may also
express temporal behavior relative to the agent's past or future. Action sym-
bols and state propositions are domain dependent and must be de�ned for each
concrete scenario. Examples are given later in this section and in Section 4.

Agents a and b can communicate messages time-synchronously and reliably
via snd/rcv pairs, which are parts of their respective set of local actions: the
action snd(b;m) denotes the sending of message m to agent b and rcv(b;m)
denotes the simultaneous reception of message m from agent b.

DTL future-time operators are the unary operators X (next) and G (always),
and the binary U operator (weak until). DTL past-time operators are the unary
operators Y (previous), P (sometime in the past), and H (always in the past), and
the binary operator S (since). Xn is shorthand for n repeated applications of X.
As further syntactic sugar, we de�ne F�n' �

Wn
i=0 X

i ' for any n 2 N. We will
employ a similar shorthand with G (replacing _ by ^ in the above). Analogously,
by substituting X with Y in the de�nition F�n' (respectively G�n '), we get the
de�nition of P�n ' (H�n ').

Grossly simplifying matters, the semantics of DTL|formally de�ned in Ap-
pendix A|is similar to LTL and it takes into account that (a) propositions can
be true only for speci�c agents and (b) there is communication (synchronization)
between agents.

2.3 Formal Representation of Data Protection Policies

We now show how the kinds of systems introduced in Section 2.1 can be described
using DTL, and how privacy policies can be formally expressed. To simplify
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notation, we assume discrete time, e.g. one time step per day for the examples
given later.

We de�ne two subsets of DTL formulas: provisional formulas and obligational
formulas. Provisional formulas are formulas @a['] for an agent a that contain no
future-time temporal operators. Obligational formulas are formulas of the same
form that do contain future-time temporal operators, but no past-time temporal
operators. Further, obligational formulas must not contain temporal operators
that are under the scope of a negation, respectively on the left-hand side of an
implication.2

We also divide DTL formulas into observable formulas and non-observable
formulas. These are de�ned from the reference monitor r's point of view. In-
tuitively, observable formulas are only concerned with r's local state or actions
that r can observe. Actions that r can observe are either local actions of r or
communication involving r. More formally, observable formulas are of the form
@r['] or @si [snd(r;msg)], for a subject si and a message msg . Non-observable
formulas are all other formulas.

The policies we consider are conjunctions of decision rules, which are formulas
of the form

@r[authorize(si; dk)]) (p1 ^ ::: ^ pm ^ o1 ^ ::: ^ on);

where p1; :::; pm are observable provisional formulas, o1; :::; on are obligational
formulas, and m;n � 0. The action authorize(si; dk) stands for authorizing
subject si to access data dk. Such decision rules may exist for each possible
subject/object pair. Of course, access policies are often expressed in a simpler
and more compact way by introducing hierarchies or roles, thereby eliminating
the necessity of having an entry for each subject/object pair. Without loss of
generality, we assume that decision rules of the form presented above may be
derived from a more compact representation.

Note that the right-hand side of the implication is only a necessary pre-
condition for the access to be authorized. One reason is that we do not re
ect
the fact that an access is only authorized after it has been requested by the
subject. The acceptance of obligations (explained in Section 2.5) is not re
ected
in our representation of a decision rule either. Thus, we formulate an implication
rather than an equivalence.

2.4 Provisions

A provisional formula that appears in a decision rule is called a provision. Intu-
itively, provisions cover traditional access control requirements. This is because
the information stored in r's local state (cf. Section 2.3) can contain attributes

2 By restricting this, we cannot express liveness properties in our formalism. This is
intentional and it is not a restriction in our context since liveness does not appear
to be of practical relevance for formulating privacy requirements. In practice, one
generally sets a time limit for carrying out an action.
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about the other subjects and about the data objects, which enables us to ex-
press rules in di�erent access control paradigms. Many practical examples can
therefore be found in the access control area, e.g. \si has the role manager".
This could be formalized as @r[role(si;manager)], where role(si ;manager) is a
local state proposition that holds whenever si has the role manager .

Provisions may also concern actions that must have occurred before the au-
thorization. This is referred to as provisional authorization in the literature [8].
For brevity, we focus only on the results of such provisional authorizations (e.g.
that the owner's consent must be present before allowing access), and not on
how this result is achieved (e.g. how and when the owner's consent is gathered).
Therefore, we assume that all aspects of r's past that are relevant for the current
access decision are re
ected in r's current local state, and we restrict ourselves to
expressing provisions without using past-time temporal operators. This can be
done without loss of generality. For example, instead of stating that a certi�cate
must be submitted before access is authorized, we demand that the certi�cate
be present at the time of the access decision.

As the reference monitor needs to be able to evaluate provisions before au-
thorizing access, we restrict the allowed provisional formulas to observable ones.
In other words, we allow only provisions that r is able to check. Addressing
non-observable provisions is an area for future work.

2.5 Obligations

Obligations impose conditions on the future (i.e. the time after an access is
authorized) that an agent is bound to ful�ll. An obligational formula becomes
an obligation when a binding is established. Such a binding may be created
in many ways, for example by the subject explicitly committing himself to an
obligation, or by a law that applies to all agents of a system. For simplicity's
sake, we assume that the reference monitor ensures that for all obligational
formulas in a decision rule, the bindings are established before the access is
authorized and, consequently, we do not explicitly state this in the decision
rules. In the remainder of this paper, we hence drop the conceptually important
distinction between obligations and obligational formulas, and we will use the
term obligation for all obligational formulas in the context of a data protection
policy.

We now explain what it means for an obligation to be violated. We give an
intuitive description here, and refer to Appendix B for a formal de�nition of
this notion. Consider a decision rule of the form @r[authorize(si; dk)]) (::: ^
ol ^ :::), where ol is an obligation. We assume that each action authorize(si; dk)
occurs at most once,3 which allows us to uniquely relate an obligation to a
speci�c access decision. The obligation ol is violated at a time point tk if the
action @r[authorize(si; dk)] occurred at a previous time point tj , and the formula
@r[authorize(si; dk)] ^ :ol holds at tj for all possible futures after tk.

3 This is without loss of generality. From a theoretical perspective, one may safely
assume arbitrarily many copies of each rule, each copy uniquely indexed.
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Consider the example @r[authorize(s; d)])@s[F
�3send(r;m)] for a subject

s, data item d, and message m. This decision rule states that s must send m

to r within three time steps after the authorization. Let t0 be the time point
where authorize(s; d) occurs, and tl be l time steps later. If send(r;m) does not
occur in the time span between t0 and t3, then the obligation @s[F

�3send(r;m)]
is violated at t4 and at every subsequent time step. If send(r;m) does not occur
at times t0, t1, or t2, then the obligation is not violated at any of these time
points: send(r;m) could still occur at t3, and thereby satisfy the decision rule.

We have classi�ed data protection requirements in terms of provisions and
obligations. As provisions have been thoroughly analyzed in the literature (see
Section 5 for references), we henceforth focus on the part of the landscape that
is not yet as well-understood: obligations.

2.6 Classi�cation of Obligations

We classify obligations along two dimensions: temporal structure and distribu-
tion. This categorization provides a useful mapping from requirements to en-
forcement mechanisms, as we will see in Section 3. In the temporal dimension,
we have the categories of bounded future and invariance properties.

We call an until statement 'U temporally bounded if there is an upper time
limit for the occurrence of  , i.e., there is a constant n 2 N such that 'U can
be rewritten as

Wn
j=1

�
X
j  ^

Vj�1
i=0 X

i '
�
without changing the semantics of the

formula that contains the until statement. We require that temporally bounded
until statements be transformed into the equivalent statement that contains only
X operators. With this transformation, we can syntactically distinguish between
bounded future (in particular, no U) and invariance properties.4

Bounded Future Only X as the temporal operator

Invariance Properties At least one G or U, and any number of X operators

In the distribution dimension, we distinguish between observable and non-
observable formulas as de�ned in Section 2.3. This classi�cation results in four
categories of obligations named CI through CIV .

Time/Distribution Observable Non-Observable

Bounded Future CI CII
Invariance Properties CIII CIV

For each category of obligations, we describe their intuitive nature, present prac-
tical examples, and show how some of these examples can be formalized. We
continue the convention of calling the reference monitor r and the requester si.

4 The transformation of temporally bounded until statements into sequences of X is
decidable because we are concerned with propositional statements only.
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Category I|Bounded future, observable: Intuitively, CI -obligations make state-
ments about properties and events that are observable for r and cover a limited
time frame. A classical example comes from the domain of e-commerce: the obli-
gation to pay a fee within a �xed number of days. Data protection examples
for CI -obligations include \Data item dk may not be accessed for x days" or \r
must notify the data owner about the access within x days". The latter could
be formalized as @r[F

�xsnd(Owner ; released(dk ; si))], where Owner is the data
owner, and released(dk ; si) is a message indicating that dk was given to si.

Category II|Bounded future, non-observable: This category is similar to CI ,
with the di�erence that we are dealing with non-observable formulas. Privacy-
relevant examples include \dk must be deleted within x days" or \must not be
redistributed in the next x days". The former obligation could be formalized as
@si [F

�x(del(dk))], where the action del(dk) corresponds to deleting dk.

Category III|Invariance properties, observable: A practical example for a CIII -
obligation is \Re-access the data at least every x days", which can be formalized
as @si [G(F

�xsnd(r; request(dk)))], where request(dk) is a message used to re-
quest dk. This obligation is relevant to data protection since the freshness of
data is sometimes demanded by existing data protection regulations.

Category IV|Invariance properties, non-observable: CIV -obligations occur often
in practice. Examples include \Only for statistical analysis", \Do not distribute
further", \Each usage of the data must be reported immediately", or \Must be
protected with protection level L until it is declassi�ed by the owner". We for-
malize the latter obligation as @si [protect(dk; L)U rcv(Owner; declassi�y(dk ))].
Here protect(dk; L) re
ects that dk is protected according to protection level L,
Owner is the data owner, and declassi�y(dk ) is a message that indicates the
declassi�cation of dk.

3 Coping with the Non-Observable

In this section we address the question of how a central reference monitor can
ensure that data protection requirements are adhered to. In some sense, this is
an impossible task, because it is di�cult to imagine how a reference monitor can
enforce something that it cannot even observe. We use a generalized notion of
enforcement here. It covers not only the strict sense of enforcement de�ned in
[14] (the prevention of unwanted executions of a system through system mon-
itoring and denying actions that would violate the policy), but also execution
monitoring combined with compensating actions (e.g. penalties) in case the ex-
ecution violates the policy. More speci�cally, such a penalty can be applied once
an obligation is violated (as de�ned in Section 2.5 and in the Appendix).

Therefore, a crucial point for achieving enforceability is to be able to monitor
the relevant parts of the system. We show how a reference monitor can use non-
technical mechanisms, such as audits or legal means, to support the task of
making non-observable actions observable, and how the use of such mechanisms
can be re
ected in the policy of the reference monitor.
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As in the previous section, our focus is on obligations. Enforcing provisions
is something that has been studied in many variations (see Section 5) and is
well understood. We �rst show how observable obligations can be enforced, and
then we show how we can use those enforcement mechanisms also for enforcing
non-observable obligations.

3.1 Enforcing Observable Obligations

For observable obligations, suitable enforcement mechanisms have already been
described by other authors, e.g. [3]. We give a short overview here, as these
mechanisms will play a role in enforcing the non-observable obligations as well.
Among the observable obligations in CI and CIII , we have three cases, which
require di�erent means of enforcement.

First, obligations that are requirements on r's local actions or r's local state
are called r-obligations. An example is that r must notify the owner of a data
item after it has been accessed, or that r must gather evidence about the usage of
a data item after some prede�ned time. Such obligations are of the form @r['],
and they are enforced by specifying and implementing r such that it always
respects them. In other words, we consider r to be a \trusted system". Thus no
additional mechanisms are needed.

Second, those obligations that are enforceable by preventing unwanted exe-
cutions (EM enforceable in the sense of [14]) form a strict subset of the CI and
CIII -obligations. This is, for example, the case for an obligation that prohibits a
subject from accessing a certain data object in the future. Here, r can just deny
the respective access requests in order to enforce the obligation.

Third, an approach for enforcing all other CI -obligations is presented in [3].
A reference monitor can check if the obligation is violated at the end of the
bounded time period. If this is the case, the reference monitor can penalize the
subject, e.g by reducing its service level, lowering some trust or credibility rating
of the subject, or taking legal action. This approach can also be applied to CIII -
obligations. In this case, the obligation must be continuously monitored, not
only for a prede�ned amount of time.

3.2 Enforcing Non-observable Obligations

How can we enforce non-observable obligations? We show how, in some cases, it is
possible to reuse existing mechanisms for provisions and observable obligations.
Namely, we present three strategies for transforming a non-observable obligation
into a set of provisions and observable obligations that specify a similar goal.
It is likely that the transformed policy will not specify exactly the goals the
original policy expresses. This is the cost of observability. To what extent the
original goals are weakened by such a transformation depends on the mechanisms
that are used and is explored in the remainder of this section as well as in the
next section. The �rst two strategies we present below aim at making the non-
observable parts of an obligation observable, thereby enabling r to monitor their
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ful�llment. The third strategy limits possible executions to prevent violations of
the obligations.

(1) Reserving the right to pull evidence: In this strategy, the reference mon-
itor reserves the right to obtain evidence in the future, for example through an
audit. This right could be executed after some deadline (in CII ) or whenever r
suspects that the obligation has been violated (in CIV ). Conceptually, the aim of
such an audit is to make certain local events and parts of the local state of the
subject visible to the reference monitor. To obtain the above mentioned right,
r demands a legal binding (e.g. in the form of a digitally signed statement from
the requester) that allows it to trigger an investigation in the future. Demanding
a legal binding is now a requirement that can be evaluated in the present, and
therefore a provision. As we illustrate in the next section, this provision is ac-
companied by a set of r-obligations that de�ne when and under which conditions
r must perform an investigation, and how it should react to the result.

(2) Imposing the duty to push evidence: Another strategy is that the requester
must commit himself to delivering evidence. The evidence could be delivered by
presenting the results of an audit performed by a trusted third party. Delivery
of such evidence can occur just once (as a prerequisite for gaining access, which
can be expressed by a provision), or on a recurring basis (which constitutes a
CIII -obligation). As in strategy (1), this requirement needs to be accompanied
by a set of r-obligations.

(3) Limiting possible executions: The third possibility for the reference mon-
itor is to limit of possible executions of the agents to those that do not violate
the obligation. In order to achieve this, r may put the data into an environment
that imposes restrictions on how the data can be used. Basically, this is the idea
of digital rights management (DRM) [16{18]. It remains to be seen how suitable
DRM is for enforcing data protection policies, since any data which is output out-
side the DRM environment can be re-recorded. At the very least, DRM can act
as a support mechanism to the two strategies listed above and thereby increase
the likelihood that the obligations are ful�lled, or at least prevent unintended
violations resulting from carelessness.

These three strategies are not necessarily applicable to all non-observable
obligations. In the case of further distribution, for example, implementing one
of the �rst two strategies might be di�cult as r might not be able to audit every
subject that could possibly have received the data. The three strategies can at
least be applied to some non-observable obligations, however, and the question
of which enforcement mechanisms can enforce a given set of requirements is the
subject of future work. In the following example, we examine the application of
the pull-evidence strategy (1) to enforce CII -obligations.

4 Example

We now show how a simple data protection policy containing provisions, observ-
able obligations, and non-observable obligations can be formalized and enforced.
We sketch the semantics of the di�erent requirements and use the pull-evidence
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strategy to transform the non-observable obligations into observable ones. We
also discuss the results of this transformation, and how they relate to the original
policy.

Our system consists of two government agencies A and B, a citizen Owner,
and a trusted auditor T . A acts as the reference monitor and maintains a
database of citizen information, where data items d1 and d2, belonging to Owner,
are stored. These data items are sensitive, e.g. medical records, criminal records,
or tax statements. B is the only subject in the sense introduced in Section 2,
whereas T and Owner are additional agents introduced for di�erent purposes.

Recall that our policies contain decision rules for each subject/object pair. To
keep things simple, we just present the entries for the pairs (B; d1) and (B; d2).
A's policy requires the following for authorizing B to access d1: (R1) B must
have role statistician; (R2) A must notify Owner immediately after the access;
and (R3) B must delete d1 after at most 90 days. For the pair (B; d2), the policy
requires that (R4) B must have trust level high; (R5) B must notify Owner
immediately after the access; and (R6) B must ensure that its copy of d2 is
never older than 30 days.

R1 and R4 are provisions because the roles and trust levels of the di�erent
agents can be re
ected in state propositions of A. R2 is a CI -obligation for A
(recall the notion of r-obligations introduced in Section 2). R3 is a CII -obligation
because it is non-observable and belongs to the bounded future category. R5
looks similar to R2, but is also a CII -obligation because the action of B notifying
Owner is not observable to A in our de�nition. To formalize R6, we must de�ne
more precisely what it means for B to ensure that the data is kept fresh. In order
to get a new copy of the data, B must request it again, A must grant the request
and send the data to B, and B must update its local record of the data with the
new version received. B cannot be responsible for the request being granted and
the data being sent. Therefore we only demand the following two things in our
policy: that B regularly (at least every 30 days) requests d2, and that B updates
its local record every time it receives the new version. This corresponds to a
CIII -obligation for the regular requests and a CIV -obligation for the updating.
Therefore, we will formalize this as two separate requirements in our policy.

4.1 Formalization

We need to de�ne appropriate actions and state propositions for our agents,
as well as the messages that are exchanged. We also introduce the actions and
state propositions that will be used when transforming the policy later. In these
de�nitions, we use the convention that si is an arbitrary subject, dk is a data
item, obl is the textual representation of an obligation, and penalty 2 Penalties,
where Penalties is a set of applicable penalties in case a requirement is violated.
This could be the lowering of a trust or credibility rating, or a legal action.

For the agency A, acting as the reference monitor, we de�ne authorize(si; dk),
the action of allowing si to access dk (this includes delivering the data item, i.e.
sending dk to si), and penalize(si; penalty), the action of penalizing si by apply-
ing penalty. The state propositions include: role(si ; statistician), for re
ecting

11



that si is a statistician, trustlvl(si ; high), for re
ecting that si has trust level
high, and investigate, which re
ects the value of a function that outputs true or
false (we will use this later for implementing the pull-evidence approach).

For the agency B, we de�ne del(dk ), the action of deleting dk (i.e. no copies
of dk's value are retained), update(dk ), the action of updating the previously
stored value of dk, and no state propositions.

The snd and rcv actions are de�ned for all agents as explained in Section
2.2. In addition, the following messages may be exchanged, where procedure is
an element of a set of procedures like push or pull :

� request(dk ) | message that a subject uses to request dk from A;
� released(si ; dk ) | message that A uses to indicate the release of dk to si;
� accessed(dk ) | message that B uses to indicate that it accessed dk;
� doc(dk) | document containing data item dk;
� accept(obl ; procedure; penalty) | message that a subject sends to accept that
A may use the indicated procedure for checking the obligation, and to accept
the penalty in case the obligation is violated;

� reqAudit(obl) | message that A uses to request an audit regarding obl; and
� viol(obl) | message sent as the result of an audit, indicating that the obli-
gation represented by obl is violated.

Now we are in a position to write down the two policy entries for (B; d1) and
(B; d2). We again assume discrete time with one day per time step. We formalize
the policy entries regarding B accessing d1 and d2 as

@A[authorize(B ; d1 )]) (@A[role(B; statistician)]
^@A[X snd(Owner ; released(d1 ;B))] ^@B [F

�90del(d1)])

and
@A[authorize(B; d2)])(@A[trustlvl(B; high)]^@B [X snd(Owner; accessed(d2))]

^@B [GF
�30snd(A; request(d2))] ^@B [G(rcv(A; d2 )) X update(d2 ))]):

4.2 Transformation

We have three non-observable obligations in this policy as discussed above:
one CII -obligation deriving from R3, one CII -obligation deriving from R5, and
one CIV -obligation that de�nes a part of R6. We now transform the obligation
@B [F

�90del(d1)] into a set of provisions and observable obligations. We do this
in two steps. In the �rst step, we follow our notion of enforcement introduced in
Section 3 and require that if B does not delete d1 within 90 days, then it will
be penalized within a certain time period, say an additional 30 days. This goal
can be formalized as

(G1) @B [G
�90(:del(d1))])@A[X

90
F�30penalize(B ; pen)];

where pen 2 Penalties.
In the second step, we de�ne how this goal should be achieved using the

pull-evidence approach. Roughly, the strategy is as follows. A must obtain B's
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permission to perform audits that check whether the obligation is violated (recall
that this is in addition to accepting the obligation itself, which is done implicitly
as stated in Section 2). 90 days after the access, A can ask the auditor to check
whether d1 was really deleted by B. For this to work, we must address the
following issues.

First, we must specify under which conditions A requests such an audit. The
reason for employing the pull-evidence strategy instead of the push-evidence
strategy is that such an audit is not necessary in all cases. This reduces the
auditing overhead. Generally, there are two options for triggering audits. One
option is that audits are performed randomly as control samples, and the other
option is to perform an audit only when suspicion arises. For both options, the
state proposition investigate indicates whether an audit should be performed.

Second, we assume that the auditor is able to determine if the data was
actually deleted, given that B allows the audit to be performed. B must agree
to this audit beforehand. Furthermore, we assume that upon request from A,
the auditor T always performs an audit and returns the result within a given
time period, say one day. This assumption can be formalized as follows (where
o1 is the textual representation of the obligation @B [F

�90del(d1)]):

(A1) (@A[snd(T; reqAudit(o1))]^:@B [P
�90 del(d1)]))@T [X(snd(A; viol(o1)))]

Note that this assumption also expresses that the auditor is able to decide a
violation at run-time: we know that the audit request will (if ever) be sent 90
days after the access decision, and therefore the obligation is violated at that
point if the data has not been deleted within the last 90 days.

Applying the pull-evidence strategy yields an new set of requirements:

(P1) @B [snd(A; accept(o1 ; pull ; pen))]
(P2) @A[X

90 (investigate () snd(T ; reqAudit(o1)))]
(P3) @A[X

91 (rcv(T ; viol(o1 ))) X penalize(B ; pen))]

Requirement P1, which is a provision, expresses the fact that B must accept
the procedures and penalties used for enforcing the original obligation. P2 is in
CI and states that, after 90 days, if an audit should be performed then A sends
an audit request to T . Requirement P3 is in CIII and de�nes when a penalty
must be applied.

4.3 Comments

G1 is a consequence of A1 and P1{P3 under the semantics of DTL, provided that
investigate is always true when the obligation is violated. This means that if the
audit is always performed, our goal can be achieved. If audits are only performed
at random, then this is not always the case and the success of the enforcement
strategy depends on whether the possibility of being penalized acts as a deterrent
or not. This depends on the agents of a particular system, and is not within the
scope of this paper. But the example shows how the application of such a strategy
works, and the kinds of assumptions it requires. These assumptions derive from
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the fact that the result of such a transformation is usually only an approximation
of the original policy, as mentioned in Section 3.

We have also shown that to give a formal semantics to data protection re-
quirements, we need to de�ne the actions and state propositions for a concrete
system. In this example, we have kept these de�nitions at a relatively abstract
level, but for a practical application this needs to be done in more detail.

The representation of the policy we introduced in Section 2 has its focus on
the semantics of the requirements. It does not de�ne when the reference monitor
has to authorize an access. There are two reasons for this. First, we only have
an implication in a decision rule, not an equivalence (cf. Section 2.3). Second, if
obligations are involved, the reference monitor will not be able to decide whether
to authorize the access or not, because it does not yet know if the obligations will
be violated. This can only be determined from a global point of view where we
know the full, potentially in�nite executions. In a concrete realization of such a
reference monitor, one would authorize the access exactly when all the provisions
are satis�ed and the obligations are accepted by the subject.

Finally, note that our formalism is rich enough to allow formulas that do not
make sense from a practical point of view. For example, it is possible to express
the requirement @A[X rcv(B;msg)], which is equivalent to @B [X snd(A;msg ].
However, it does not make sense from a practical point of view to make A
responsible for receiving a message that may never be sent. Addressing this
problem is the subject of future work.

5 Related Work

Many extensions and generalizations of access control have been proposed. Jajo-
dia et al. [9] present a framework for combining multiple access control policies
within a single system. Temporal criteria may also be used for access decisions
whereby access to data is only allowed at certain time points or intervals [2, 15] or
based on temporal attributes of data, such as the creation date [7]. In our model,
these are all provisions, given that the current time is re
ected in the reference
monitor's state. Policies of the same expressiveness are considered in [10], which
introduces the concept of policy automata. Policy automata combine defeasi-
ble logic with state machines and represent complex policies as combinations of
simpler policies. A variant of access control called provisional authorization is
discussed in [8]. Provisional authorization stipulates that access be only autho-
rized if the requester or the system takes certain actions prior to authorizing
the request. In our model, this corresponds to provisions that contain action
symbols.

The UCON model [12, 21] extends access control by introducing decision
continuity and attribute mutability. In terms of our model, UCON covers both
provisions (including temporal criteria and provisional authorization) and CI -
obligations (provided they do not contain negations). The latter are also dis-
cussed in [3], where the authors present a logical framework for monitoring these
obligations, and for taking compensating actions when obligations are violated.
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EPAL [1] is a description language for privacy policies (data protection policies
in our terminology) that can express all categories presented in this paper, but
does not specify a semantics for obligations. An XML-based syntax for describing
privacy statements for web sites is de�ned in the P3P standard [19].

A collection of obligations encountered in practice is given in [11]. The au-
thors have a more operational view of obligations, and di�erentiate between
short-term obligations, long-term obligations and ongoing obligations. Formal
de�nitions of the corresponding predicates are not given, but practical examples
are provided for each category.

The terms obligation and provision are often but not consistently used in
the literature to describe di�erent types of data protection requirements. Some
authors (e.g. [12]) use obligations to refer to actions that principals must perform,
or must have performed before an access is authorized. For other authors (e.g.
[3]), obligations concern actions that must be performed in the future, after the
access is authorized. We adopt and generalize the latter de�nition: obligations are
agreed-upon conditions that not only concern actions that are to be performed in
the future, but also more general propositions about the future, for example the
mandatory presence of certain protection mechanisms. From [3], we also adopt
and generalize the notion of provisions. In our model, provisions are conditions
that must hold before an access is authorized, whereas in [3], they are speci�c
actions that must be taken before an access is authorized.

6 Conclusions and Future Work

In this paper, we showed how di�erent aspects of data protection can be handled
by an extension of access control models. This extended model allows us to
precisely specify a broad range of data protection requirements|provisions and
obligations|that take into account observable and non-observable elements. We
showed how existing approaches to enforcing non-observable obligations �t into
our conceptual and formal framework.

We are aware that our syntactic classi�cation imposes a restriction on the
presentation of requirements. For example, a provisional formula may have a
semantic equivalent that does not �t the syntactic criterion for a provisional
formula. This restriction does not seem too strong when the criterion is used
a-priori rather than a-posteriori, e.g. by describing policies in a dedicated pol-
icy editor that simply forbids certain constructs. Whether or not our syntactic
separation into provisions and obligations leaves out some important semantic
constructs remains to be investigated.

One promising direction for future work is to use the framework as a ba-
sis for a practically useful policy language that caters for both provisions and
obligations. It is likely that \policy patterns" in such a language can address
many recurring data protection needs. Since our framework language (DTL) has
a formal semantics, it is amenable to formal reasoning about policies and their
composition (interesting aspects include consistency and subsumption). Another
direction to explore, by case studies, is the practical applicability of the mech-
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anisms presented in this paper. This is important in identifying the boundary
between those requirements that can be technically enforced and those that re-
quire non-technical mechanisms, such as legal ones. It will also shed light on how
much non-observable requirements must be weakened when transforming them
into observable ones. Our long-term goal here is to design a server-side reference
monitor controlling access to sensitive personal data. Finally, the use of DRM
mechanisms for handling obligations, as mentioned in Section 3, also requires
further investigation. In particular, we currently do not know how much can
be achieved by using client-side reference monitors. A related question concerns
honest subjects, where we need only to prevent careless, but not malicious, be-
havior. In this case, the mechanisms are likely to be weaker than in the case of
potentially malicious subjects.

Acknowledgments. P. Hankes Drielsma, F. Klaedtke, P. E. Sevin�c, C. Sprenger
and L. Vigan�o provided useful comments on earlier versions of the paper.
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A Distributed Temporal Logic

In this appendix, which is adopted from [4], we explain the basics of DTL.
The syntax of DTL is de�ned over a distributed signature

� = hId; fActigi2Id; fPropigi2Idi

of a system, where Id is a �nite set of agent identi�ers and, for each i 2 Id, Acti
is a set of local action symbols and Propi is a set of local state propositions. The
global language L is de�ned by the grammar L ::= @i[Li] j ? j L)L ; for i 2 Id,
where the local languages Li are de�ned by

Li ::= Acti j Propi j ? j Li )Li j Li ULi j Li SLi j j:Lj

with j 2 Id. Locally for an agent, U and S are respectively the weak until5

and since temporal operators. Actions correspond to true statements about an
agent when they have just occurred, whereas state propositions characterize the
current local states of the agents. Note that the global formula @i['] means that
' holds at the current local state of agent i. A local formula j:' appearing inside
a formula in Li is called a communication formula and it means that agent i has
just communicated with agent j for whom ' held. The interpretation structures
of L are suitably labelled distributed life-cycles, built upon a simpli�ed form of
Winskel's event structures [20]. A local life-cycle of an agent i 2 Id is a pair
�i = hEvi;!ii, where Evi is the set of local events and !i � Evi � Evi is

5 In contrast to the strong until operator, the weak until operator does not require 

to eventually happen in the formula 'U 
.
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A e1 // e4 // e5 // e8 // : : :

B e2 // e4 // e7 // e8 // : : :

C e3 // e4 // e6 // e7 // e9 // : : :

Fig. 1. A distributed life-cycle for agents A, B and C.

the local successor relation, such that the transitive closure !�
i de�nes a well-

founded total order on Evi, called local causality. A distributed life-cycle is a
family � = f�igi2Id of local life-cycles such that the transitive closure !� of
! =

S
i2Id !i de�nes a partial order on the set Ev =

S
i2IdEvi of all events,

called global causality. This last condition is essential since events can be shared
by several agents at communication points.

We can check the progress of an agent by collecting all the local events
that have occurred up to a certain point. This yields the notion of the local
con�guration of an agent i: a �nite set �i � Evi closed under local causality, i.e. if
e!�

i e
0 and e0 2 �i then also e 2 �i. The set �i of all local con�gurations of an

agent i is clearly totally ordered by inclusion and has ; as the minimal element.
In general, each non-empty local con�guration �i is reached, by the occurrence
of an event that we call last(�i), from the local con�guration �i n flast(�i)g. We
can also de�ne the notion of a global con�guration: a �nite set � � Ev closed for
global causality, i.e. if e!� e0 and e0 2 � then also e 2 �. The set � of all global
con�gurations constitutes a lattice, under inclusion, and has ; as the minimal
element. Clearly, every global con�guration � includes the local con�guration
�ji = � \ Evi of each agent i. Given e 2 Ev, note that e#= fe0 2 Ev j e0 !� eg
is always a global con�guration.

An interpretation structure � = h�; �; �i consists of a distributed life-cycle
� plus families � = f�igi2Id and � = f�igi2Id of local labelling functions. For
each i 2 Id, �i : Evi ! Acti associates a local action to each local event, and
�i : �i ! }(Propi) associates a set of local state propositions to each local
con�guration.

Fig. 1 illustrates the notion of a distributed life-cycle, where each row com-
prises the local life-cycle of one agent. In particular, EvA = fe1; e4; e5; e8; : : : g
and!A corresponds to the arrows in A's row. We can think of the occurrence of
the event e1 as leading agent A from its initial con�guration ; to the con�gura-
tion fe1g, and then of the occurrence of the event e4 as leading to con�guration
fe1; e4g, and so on; the state-transition sequence of agent A is displayed in Fig. 2.
Shared events at communication points are highlighted by the dotted vertical
lines. Note that the numbers annotating the events are there only for conve-
nience since no global total order on events is in general imposed. Fig. 3 shows
the corresponding lattice of global con�gurations.

We can then de�ne the global satisfaction relation at a global con�guration
� of �, where �i is the set of all local con�gurations of agent i in �, as

{ �; � 
 @i['] if �; �ji 
i ';
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�A(;)
�A(e1)

// �A(fe1g)
�A(e4)

// �A(fe1; e4g)
�A(e5)

// �A(fe1; e4; e5g)
�A(e8)

// : : :

Fig. 2. The progress of agent A.
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fe1; e3g fe1e2; e3g fe1; e2; e3; e4g
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T
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fe3g
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fe2; e3g

ppppp
fe1; e2; e3; e4; e6g

Fig. 3. The lattice of global con�gurations.

{ �; � 6
 ?;

{ �; � 
 
) � if �; � 6
 
 or �; � 
 �,

where the local satisfaction relations at local con�gurations are de�ned by

{ �; �i 
i act if �i 6= ; and �i(last(�i)) = act;

{ �; �i 
i p if p 2 �i(�i);

{ �; �i 6
i ?;

{ �; �i 
i ')  if �; �i 6
i ' or �; �i 
i  ;

{ �; �i 
i 'U if the following holds: if there exists �00i 2 �i with �i  �00i
such that �; �00i 
i  , then �; �0i 
i ' for every �0i 2 �i with �i  �0i  �00i ;
otherwise, �; �0i 
i ' for every �0i 2 �i with �i  �0i;

{ �; �i 
i 'S if there exists �00i 2 �i with �
00
i  �i such that �; �00i 
i  , and

�; �0i 
i ' for every �0i 2 �i with �
00
i  �0i  �i;

{ �; �i 
i j:' if �i 6= ;, last(�i) 2 Evj and �; (last(�i) #)jj 
j '.

We say that � is a model of � � L if �; � 
 
 for every global con�guration
� of � and every 
 2 � . Fig. 4 illustrates the satisfaction relation with respect
to communication formulas of our running example. Clearly �; ; 
 @B [ UA:'],
because �; �0 
 @B [A:']. Note however that �; � 6
 @B [A:'], although �; � 


@A['].
Other usual logical operators are de�ned as abbreviations, e.g. :, >, _, and

^. We also de�ne the following temporal operators:

X' � ?U' (weak next)
Y' � ?S' (previous)
P' � >S' (sometime in the past)

G' � 'U? (always in the future)
H' � :P:' (always in the past)

Let Msg be a (not necessarily �nite) set of messages. For each agent a 2 Id,
the set of actions Acta includes snd(b;m) (send message m to agent b) and
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// : : :
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// e8
A:'

// : : :

Fig. 4. Satisfaction of formulas.

rcv(b;m) (receive message m from agent b), where b 2 Id is another agent, and
m 2 Msg . Now we introduce the following axiom.

8 a; b 2 Id;m 2 Msg : @a[snd(b;m) () b:rcv(a;m)]

This axiom de�nes a reliable and synchronous communication channel for
each pair of agents. In this paper, we do not make other use of the j:' operator,
i.e. the local languages Li are only de�ned by

Li ::= Acti j Propi j ? j Li )Li j Li ULi j Li SLi;

in the body of this paper. The reason is that we do not need this operator for
our policy language, but only to de�ne the semantics snd and rcv. Moreover,
omitting this simpli�es the syntactical classi�cation between observable formulas
and non-observable formulas that we introduce in Section 2.

B Violation of Obligations

Let � = h�; �; �i be an interpretation structure with � = fhEvi;!iigi2Id and
� =

S
i2IdEvi a global con�guration of �. We consider a formula of the form

@j [a] ) ', where a is a local action symbol that is only de�ned for agent j
and has exactly one pre-image under �j , and ' 2 Li for some i 2 Id. The sub-
formula ' is violated with respect to � i� there exists �0 2 � with �0 � � such
that �; �0 
 a ^ :'.

The reason why a must only be related to one single event is that otherwise,
there could be �00; �000 2 � with �00 � �; �000 � �; �; �00 
 a^:' and �; �000 6
 a^:'.
In our context of obligations and authorization actions, this would mean that
the actions that follow two di�erent authorizations could interfere.

Note that this formal de�nition of violation cannot be used by a reference
monitor at runtime. This is because our characterization is with respect to a
�xed interpretation structure of the logical formulas that make up our models
of a system. Because this interpretation is �xed, and, in this sense, encompasses
everything that has happened, it does not leave any room for decisions of the
agents. Without formalizing it here, we hence assume an \operational" de�nition
that allows the auditor to decide violation at runtime.
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