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1

Introduction

Information theory deals with the mathematical description of information processing tasks.

Such tasks can often be treated in an abstract fashion such that the concrete physical realizations

do not enter the analysis. This is possible as many systems used for communication can be

described within the same stochastic formalism. However, with the development of quantum

mechanics it became apparent that the fundamental laws of physics were quite different from

what had been anticipated. In particular it was realized that no ordinary stochastic theory

could explain the experimental data, and a non-commutative stochastic theory was needed. As a

consequence also the classical information theory based on the classical probability theory has to

be replaced by a non-commutative quantum information theory, when considering information

processing tasks involving quantum systems.

This dissertation is about information theory in systems described by quantum Markov

processes. The Markov assumption says that the evolution of a system only depends on the

current state and time, and not on the particular history that lead to the current state. This

assumption is useful both in the classical and in the quantum theory to simplify the description

of a system. Most of the articles included in this dissertation are motivated by the transmission

of quantum information (represented by quantum states) over such quantum Markov processes.

1.1 Summary

I will begin with a brief summary of the articles included in this dissertation. Often, research

does not proceed in a linear fashion and these articles contain results on different topics in quan-

tum information theory. The main line of research concerns capacities and entropy-production

of continuous-time quantum Markov processes (articles I, III and IV). Some questions related

1



1. INTRODUCTION

to discrete-time quantum Markov processes are addressed in article II. Finally article V is not

directly related to quantum information theory. It emerged as a side project and addresses an

elementary matrix-theoretic problem.

1. Quantum capacities for continuous-time quantum Markov processes: Article I

A basic scenario of quantum Shannon-theory is the transmission of quantum informa-

tion through many copies of the same quantum channel. The quantum Shannon-capacity

quantifies the optimal amount of transmitted information per channel use (i.e. the opti-

mal rate) that can be transmitted when a suitable encoding is chosen before transmission

such that the error of decoding after transmission vanishes in the limit of infinitely many

channel uses. This framework can also be applied to quantify the optimal rate of storing

quantum information in an array of identical quantum memories each affected by the

same continuous-time Markovian noise. However, the standard Shannon-theory is too

restrictive in this case as we have direct access to the quantum memory and may ap-

ply additional coding channels (or even additional continuous-time Markovian processes)

during the storage time to counteract the noise. To apply ideas of quantum Shannon-

theory in such a scenario we introduce new capacities allowing for this additional freedom.

For the quantum subdivision capacity the noise channel may be subdivided into many

pieces with coding channels acting in between to protect the information. Depending on

which coding channels we allow different quantum subdivision capacities are obtained.

When all infinitely divisible quantum channels are allowed, we show that any noise can

be removed and perfect storage for arbitrary long times becomes possible. In the case

where only unitary quantum channels are allowed we show that the corresponding quan-

tum subdivision capacity is strictly positive for all times, but for depolarizing noise it

exponentially decays to zero. Besides quantum subdivision capacities we also introduce

the continuous quantum capacity, where an additional continuous-time Markov evolution

may be applied to the system in order to protect the information. This idea is similar to

continuous-time quantum error correction studied by several authors, e.g. [1, 2, 3]. How-

ever, these ideas have to my knowledge never been studied (even in the classical case) in a

Shannon-theoretic setting allowing for techniques like randomized coding and decoupling

to be applied.
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1.1 Summary

2. Positivity of linear maps under tensor powers: Article II

A linear map acting on a matrix algebra is called positive if the image of any positive

semidefinite matrix is again positive semidefinite. In this article we study how positivity

behaves under tensor products. In general even the simplest case of the second tensor

power, i.e. a tensor product of a positive linear map with itself, will fail to be positive.

Nevertheless, there are two trivial classes of positive linear maps (completely positive and

completely co-positive maps connected to the transposition) for which any tensor power

is again positive. In our work we study the question whether there are non-trivial (i.e.

not belonging to the two aforementioned classes) positive maps with this property called

tensor-stable positivity. Unfortunately, we were not able to show the existence of such a

map. However, we prove that their existence would lead to an NPPT bound-entangled

state and thereby solve the long-standing NPPT bound entanglement problem [4, 5]. As

a direct consequence the only tensor-stable positive maps with input or output dimension

two are trivial. The existence of tensor-stable positive maps would have other implications

in quantum information theory, e.g. upper bounds (even strong converse bounds) on the

quantum Shannon-capacity and proving that any ∞-entanglement annihilating channel

has to be entanglement breaking (see [6]). Finally we show that for any fixed number

n there is a positive linear map, neither completely positive nor completely co-positive,

with positive n-th tensor power. However, it is unclear, whether our construction also

yields such a map for all n.

3. Entropy-production of doubly stochastic quantum channels: Article III

Remark: This work was done in a collaboration, where the author contributed but did

not take the leading role.

This work originated from article I on quantum capacities for continuous-time Markov-

processes, where we used an entropy-production estimate to upper bound the unitary

quantum subdivision capacity (i.e. where unitary coding channels may be applied in the

intermediate steps) of depolarizing channels. To obtain similar bounds for more general

Liouvillians we study logarithmic-Sobolev inequalities. It turns out that for primitive and

doubly stochastic quantum Markov-processes the entropy increases exponentially fast to

its maximal value with an exponent proportional to the logarithmic-Sobolev constant. It

is usually difficult to compute the exact value of logarithmic Sobolev constants even in

the classical case. Additionally we need entropy-production estimates scaling well un-

der tensor powers of quantum channels to prove upper bounds on the unitary quantum

3



1. INTRODUCTION

subdivision capacity. We establish such bounds using in the first step a group-theoretic

technique and hypercontractivity to compute a bound on the logarithmic-Sobolev con-

stant for tensor powers of the depolarizing channel. Then by a comparison method we

obtain an estimate for the logarithmic-Sobolev constant of any doubly stochastic, primi-

tive continuous-time quantum Markov-process in terms of its spectral gap. This method

is new and our result improves on similar ones obtained by more complicated techniques.

Using the entropy production estimate derived this way we can prove exponential decay of

the unitary quantum subdivision capacity of any doubly stochastic, primitive continuous-

time quantum Markov-process.

4. Relative entropy convergence for depolarizing channels: Article IV

While the previous work dealt with logarithmic-Sobolev inequalities of unital continuous-

time quantum Markov processes in this article we go back to the case of depolarizing

channels now with general fixed points. Our main result is the computation of the

logarithmic-Sobolev constant for these kind of channels. We are able to show, that this

constant coincides with the logarithmic-Sobolev constant of a classical random walk on

a finite set with transition probabilities equal to the eigenvalues of the fixed point. Sur-

prisingly this constant seems to be unknown even in the classical case and by using

Lagrange-multipliers we compute it explicitly. As an application we derive an improved

concavity inequality for the von-Neumann (or Shannon) entropy of a convex combination

of two states with a correction term depending on the relative entropy of the states. This

improvement seems to be incomparable to other recent improvements to this inequality,

but in some cases gives better bounds than the previously known results (cf. [7]). Further

results contained in this paper are an optimal (in terms of spectral data of one of the two

states) Pinsker’s inequality and a proof of an entropy production bound for tensor powers

of a depolarizing channel (stated less general in [8]) using a quantum Shearer’s inequality.

5. Spectral-variation Bounds in Hyperbolic Geometry: Article V

This paper is not directly related to quantum information theory and arose from the

work of the second author. Given two complex n × n-matrices we consider the problem

of bounding the optimal matching distance between their spectra in terms of the norm

distance of the two matrices. Despite considerable interest in the question, the optimal

constants in these bounds are not known. We introduce an optimal matching distance

in the hyperbolic pseudometric on the Poincaré-disc model. To derive spectral-variation

4



1.2 Outline

bounds for this distance we use resolvent bounds from the theory of model operators [9]

and a Chebyshev-type interpolation result for Blaschke-products [10]. Due to properties

of the hyperbolic pseudometric our bound is hard to compare to previous results in the

Euclidean metric. However, if the distance between the two matrices is small enough we

obtain a Euclidean spectral-variation bound with a constant approaching the conjectured

optimal value in the limit of large dimensions.

1.2 Outline

In the following chapter I will introduce the necessary concepts of quantum information theory

to understand the articles included in this thesis. As these articles only deal with finite dimen-

sional spaces I will restrict my introduction to this case. Note that by doing so many technical

difficulties usually occurring in infinite-dimensional Banach-space theory can be avoided. How-

ever, even in finite dimensions there are still many open questions and hard problems mostly

due to the non-commutative nature of quantum theory. To make the exposition as simple

as possible I only consider matrix algebras and avoid introducing the framework on general

C∗-algebras. This does not restrict the theory in finite dimensions.

In section 2.1 I start with a brief introduction of the basic formalism of finite-dimensional

quantum mechanics. Section 2.2 contains a brief introduction to quantum channels (quantum

Markov chains) and mathematical tools needed to study their properties. Special emphasize is

put on continuous quantum Markov-processes towards the end of this section. In section 2.3

distance measures on matrix algebras and state spaces will be introduced. In particular I give

a brief introduction to completely bounded p-to-q-norms, which were introduced in operator

space theory [26]. In section 2.4 I introduce some information theoretic quantities necessary to

understand the articles and the rest of the introduction. Finally in section 2.5 I conclude with

a brief introduction to quantum Shannon-theory and the decoupling approach.

Throughout this introduction I will omit references for basic definitions well-known in the

field of quantum information theory. These definitions can be found in the standard textbook

by Michael A. Nielsen and Isaac L. Chuang [11]. Furthermore, I do not claim any credit for the

results summarized in this chapter even if a reference is missing.
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2

Finite-dimensional quantum

mechanics

Throughout this thesis the standard notation Cd1×d2 for complex d1 × d2-matrices is used. If

d1 = d2 = d we will also write Md := M
(
Cd
)

= Cd×d for the algebra of complex d×d-matrices.

Note that in finite dimensions we can simply define Md1⊗Md2 := {X⊗Y : X ∈Md1 , Y ∈Md2}
where the ⊗ (between matrices) denotes the Kronecker product (see [11]). By iterating this

definition we obtain M
(
Cd1 ⊗ · · · ⊗Cdn

)
:=
⊗n

i=1 Mdi . A matrix X ∈ Md is called positive

(denoted by X ≥ 0) if and only if (iff) it is Hermitian with spec (X) ⊂ [0,∞). The set of

positive matrices forms a cone and is denoted by M+
d ⊂ Md. For positive matrices on the

tensor product M
(
Cd1 ⊗ · · · ⊗Cdn

)
we will write M+

(
Cd1 ⊗ · · · ⊗Cdn

)
.

We will often consider linear maps between matrix algebras. Such maps could in principle

be represented by matrices again, but we will rarely do so as the properties we want to consider

would not have easy counterparts in these representations. Note that for linear maps S :

Md1
→ Md2

and T : Md3
→ Md4

we can define the tensor product S ⊗ T as the unique linear

map fulfilling (S⊗ T)(X ⊗ Y ) = S(X)⊗ T(Y ) for all X ∈Md1 , Y ∈Md2 .

Formulas quickly get complicated when tensor product spaces are involved. Therefore it

is sometimes useful to attach labels to matrices indicating the tensor structure of the space

they are contained in. For instance we write XAB ∈ M
(
CdA ⊗ CdB

)
. We might also write

V A→BE : CdA → CdB ⊗ CdE to emphasize that the matrix V (considered as a linear map)

maps to a system with a certain tensor structure. Most of the time when only dealing with

simple systems where such labels might cause confusion, we will simply omit them for better

readability.

7



2. FINITE-DIMENSIONAL QUANTUM MECHANICS

2.1 Quantum states and measurements

For d ∈ N we denote by Dd ⊂ Md the set of quantum states, i.e. positive matrices with

normalized trace, of a d-dimensional quantum system. These are the quantum mechanical

analogue of probability distributions. It is easy to see that Dd is compact, convex and the

extremal points of this set, called pure states, are the rank-1 projectors |ψ〉〈ψ| for |ψ〉 ∈ Cd.
Given n ∈ N quantum systems with dimensions d1, d2, . . . , dn ∈ N a composite (multi-

partite) quantum system can be formed by taking tensor products. The quantum states of

this multipartite quantum system are given by D
(
Cd1 ⊗ · · · ⊗Cdn

)
⊂ ⊗n

i=1 Mdi . A state

ρ ∈ D
(
Cd1 ⊗ · · · ⊗Cdn

)
is called separable if there are k ∈ N, a probability distribution

{pi}ki=1 and sets of quantum states {σmi }ki=1 ⊂ Ddm for all m ∈ {1, . . . , n} such that ρ =
∑k
i=1 piσ

1
i ⊗ σ2

i ⊗ . . . ⊗ σni . Any state ρ ∈ D
(
Cd1 ⊗ · · · ⊗Cdn

)
that is not separable is called

entangled.

For a multipartite quantum state the reduced states on a subsystem is obtained by applying

a trace map tr : Md → C to the rest of the system. Consider for instance a bipartite quantum

state ρAB ∈ D
(
CdA ⊗CdB

)
. Tracing out the ’A’ part of the state corresponds to applying

the partial trace trA = tr ⊗ iddB to ρAB . We will denote the quantum state after applying

the partial trace by simply omitting the corresponding labels, i.e. in the above case we have

ρB := trA (ρAB). The reduced state ρB corresponds to the quantum information of a local

observer having only access to the ’B’ part of the system.

Let 1d ∈ Md denote the identity matrix. We will use the notation πd := 1d
d ∈ Dd (or also

πA ∈ DdA if labels are used) for the maximally mixed state. Note that this is the analogue of

the uniform distribution in classical probability theory. Consider now the composition of two

d-dimensional systems. For any choice of orthonormal bases {|ψi〉}di=1 and {|φi〉}di=1 on the two

spaces we can define a maximally entangled state ωd := |Ωd〉〈Ωd| for |Ωd〉 = 1√
d

∑d
i=1 |ψi〉⊗ |φi〉.

Often all properties we are interested in are preserved under a local change of bases on the

two tensor factors. In this case we will consider the so called computational basis given by the

standard unit vectors {|i〉}di=1 with |i〉j = δij and refer to the maximally entangled state with

respect to this basis (on each tensor factor) simply as the maximally entangled state. When

labels are used we will sometimes write ωRA ∈ D
(
CdR ⊗CdA

)
for dA = dR for the maximally

entangled state. This might seem strange as CdA and CdR are mathematically the same space.

However, thinking about these spaces as different tensor factors will be helpful when studying

coding protocols where they represent different physical systems.

8



2.2 Quantum Markov chains

We will conclude this section with a brief description of quantum measurements. An ob-

servable on a quantum system is represented by a so called positive operator valued measure.

A set {Ei}ki=1 ⊂ M+
d is called positive operator valued measure (POVM) iff

∑k
i=1Ei = 1d.

Here the indices i ∈ {1, . . . , k} should be thought of as measurement outcomes. Performing the

measurement represented by the POVM {Ei}ki=1 ⊂ M+
d on a quantum system in a particular

state ρ ∈ Dd yields outcome i ∈ {1, . . . , k} with probability pi = tr (Eiρ). In the special case

where rk (Ei) = 1 and tr (EiEj) = δij , i.e. where Ei = |ψi〉〈ψi| for mutually orthogonal vectors

|ψi〉 ∈ Cd, the POVM is also called a von-Neumann measurement.

2.2 Quantum Markov chains

In the formalism of quantum mechanics physical processes are represented by linear maps

mapping quantum states on one physical system to quantum states on another. It is therefore

necessary for these maps to preserve both positivity of matrices and the trace. A linear map

T : Md1
→Md2

is called positive iff T (X) ≥ 0 whenever X ≥ 0, and it is called trace-preserving

if it preserves the trace, i.e. tr [T (X)] = tr [X] for any X ∈Md1
. An example of such a map is

the identity map idd : Md → Md given by idd(X) = X for any X ∈ Md (we might also write

idA : MdA →MdA when labels are used).

It turns out that these two conditions are not enough to properly model physical processes

in quantum mechanics. A positive map representing a physical process should even preserve

positivity when only applied to part of a quantum state describing a larger system (and leaving

the rest of the state unchanged). A linear map T : Md1
→Md2

is called completely positive iff

(idn⊗T) : M
(
Cn ⊗Cd1

)
→M

(
Cn ⊗Cd2

)
is a positive map for every n ∈ N [12]. An example

for a positive map that is not completely positive is the matrix transposition ϑd : Md → Md

given by ϑd(X) = XT in any fixed basis. A linear map is called a quantum channel iff it is

trace-preserving and completely positive. Note that the quantum channel (as defined here)

does not depend on the particular history leading to the input state. Therefore, the physical

processes described by such channels are Markovian and we will sometimes refer to quantum

channels as quantum Markov processes/chains.

In the mathematical model of quantum mechanics quantum states evolve by application

of quantum channels while observables represented by POVMs stay fixed. This is usually

referred to as “Schrödinger picture”. An equivalent model can be constructed by letting the

observables evolve and the states stay fixed. Note that for a quantum channel T : Md1 →Md2

9



2. FINITE-DIMENSIONAL QUANTUM MECHANICS

and any POVM {Ei}ki=1 ⊂ Md2
we can write the output probabilities of an evolved state as

pi = tr [EiT(ρ)] = tr [T∗ (Ei) ρ], where T∗ : Md2
→Md1

denotes the dual map of T with respect

to the Hilbert-Schmidt inner product. Thus, without changing the outcome probabilities of

measurements (which are the only quantities accessible by experiment) we could take the maps

T∗ to represent physical processes. This mathematical model of quantum mechanics is referred

to as “Heisenberg picture”. It is easy to see that the map T∗ is unital, i.e. T∗ (1d2
) = 1d1

,

whenever T is trace-preserving. Thus, the unital completely positive maps are quantum channels

in the Heisenberg picture.

2.2.1 Choi-Jamiolkowski isomorphism and representation theorems

In order to check complete positivity and other properties of linear maps between matrix alge-

bras the following theorem is useful.

Theorem 2.2.1 (Choi-Jamiolkowski isomorphism, [13]). The spaces {T : Md1 →Md2 : T linear}
and M

(
Cd1 ⊗Cd2

)
are isomorphic and an isomorphism is given by

T 7−→ CT := (idd1
⊗ T) (ωd1

) . (2.1)

The matrix CT ∈Md1
⊗Md2

is called Choi matrix of T.

Some properties of a linear map T : Md1
→ Md2

have useful characterizations in terms

of the Choi matrix. For example T is completely positive iff CT ≥ 0 [13]. It is not hard to

show (see for instance [13]) that via the Choi-Jamiolkowski isomorphism any rank-1 matrix

|ψ〉〈ψ| ∈ M+
(
Cd1 ⊗Cd2

)
corresponds to a completely positive map Lψ : Md1

→ Md2
of the

form Lψ(X) = AXA† for some fixed matrix A ∈ Cd2×d1 . For any completely positive map T

its positive Choi-matrix CT admits a spectral decomposition (and thus can be written as a sum

of rank-1 matrices). Linearity of the Choi-Jamiolkowski isomorphism then implies:

Theorem 2.2.2 (Kraus decomposition, [13, 14]). A linear map T : Md1
→Md2

is completely

positive iff there are matrices Ai ∈ Cd2×d1 such that for any X ∈Md1

T (X) =
k∑

i=1

AiXA
†
i .

The matrices {Ai}ki=1 are called Kraus operators of T. A completely positive map in the above

form is trace-preserving iff
∑k
i=1A

†
iAi = 1d1

.

The following theorem can be obtained as a consequence of the Kraus decomposition

(see [15]), but we will not go into the details of the proof.

10



2.2 Quantum Markov chains

Theorem 2.2.3 (Stinespring dilation, [16]). A linear map T : Md1
→ Md2

is a quantum

channel iff there exists dE ∈ N and an isometry V : Cd1 → CdE ⊗ Cd2 such that for any

X ∈Md1

T (X) = trE
[
V XV †

]
.

The isometry V is also called the Stinespring isometry of the channel T.

By the Stinespring dilation the output state of a quantum channel corresponds to the reduced

state of a larger system in which the initial state is embedded. This illustrates what is called

an open quantum system instead of a closed one. An observer of an open quantum system

can only access part of a quantum system and the rest of the quantum system often called the

environment might be much larger. This point of view is particularly useful for communication

scenarios involving privacy. The information that an adversary (not having access to the output

system of the quantum channel) can possibly have about the transmitted state are contained

in the environment system after the transmission. Given a quantum channel T : MdA → MdB

with Stinespring dilation T(X) = trE
[
V XV †

]
the complementary channel (see [17]) denoted

by Tc : MdA → MdE is defined as Tc(X) = trB
[
V XV †

]
, where the partial trace acts on

the output-system of T. The complementary channel Tc describes the information flow to the

environment, that occurs when the channel T is applied.

2.2.2 Entanglement breaking and completely co-positive channels

The transmission of quantum entanglement is a fundamental task of quantum information

processing. We will introduce two classes of quantum channels that are ill-suited for the

transmission of entanglement. A quantum channel T : Md1
→ Md2

is called entanglement

breaking iff (idn ⊗ T) (ρ) is separable for any n ∈ N and any state ρ ∈ D
(
Cn ⊗Cd

)
[18]. En-

tanglement breaking channels are not useful for any quantum information processing as they

destroy entanglement completely. It can be shown that any entanglement breaking channel

T : Md1
→ Md2

can be written as T (ρ) =
∑k
i=1 tr [Eiρ]σi, i.e. as a measurement with effect

operators {Ei}ki=1 ⊂Md1
followed by a preparation of new states {σi}ki=1 ∈ Dd2

depending on

the measurement outcome.

We need the following characterization (based on the Hahn-Banach theorem [19]) of sep-

arability and some facts about entanglement: A bipartite quantum state ρ ∈ D
(
Cd1 ⊗Cd2

)

is separable iff (idd1
⊗ P) (ρ) ≥ 0 for any positive map P : Md2

→ Md (with d ∈ N arbi-

trary) [20]. Therefore, we can use positive maps to detect entanglement as any bipartite state

11



2. FINITE-DIMENSIONAL QUANTUM MECHANICS

with (idd1
⊗ P) (ρ) � 0 for some positive map has to be entangled. It is clear that only positive

maps which are not completely positive yield a useful criterion, because for completely positive

maps the expression (idd1 ⊗ P) (ρ) is always positive. One possible choice is the transposition

map ϑd : Md →Md (in any basis) which is positive but not completely positive. A map of the

form (idd1
⊗ϑd2

) : M
(
Cd1 ⊗Cd2

)
→M

(
Cd1 ⊗Cd2

)
is called a partial transposition and states

ρ ∈ D
(
Cd1 ⊗Cd2

)
with (idd1

⊗ϑd2
)(ρ) � 0 are called NPPT (“non-positive partial transpose”).

Similar ρ is called PPT(“positive partial transpose”) if (idd1
⊗ ϑd2

)(ρ) ≥ 0. By the previous

discussion every NPPT state is entangled and it turns out that a state ρ ∈ D
(
Cd1 ⊗Cd2

)
with

d1d2 ≤ 6 is separable iff it is PPT [20]. However, this is not true for higher dimensions and

already for d1 = d2 = 3 there are entangled PPT states.

Using the transposition and a completely positive map we can build new positive maps by

composition. We call a linear map T : Md1 → Md2 completely co-positive iff T = ϑd2 ◦ S for

a completely positive map S : Md1
→ Md2

(see for instance [21] where these maps are called

copositive). This definition does not depend on the basis of the transposition (as positivity is

preserved under unitary transformations). Note that a linear map T : Md1
→Md2

is completely

co-positive iff T = S̃ ◦ ϑd1 for a completely positive map S̃ : Md1 → Md2 . There are quantum

channels which are also completely co-positive. For such a channel T : Md1 →Md2 states of the

form (idn ⊗ T) (ρ) are always PPT. It is easy to check that any entanglement-breaking channel

is a completely co-positive quantum channel and every completely co-positive quantum channel

T : Md1
→ Md2

for dimensions fulfilling d1d2 ≤ 6 is entanglement breaking (as the partial

transposition detects all entanglement in these dimensions by [20]). In larger dimensions this is

no longer true and there are completely co-positive quantum channels that are not entanglement

breaking.

2.2.3 Continuous-time quantum Markov processes

A quantum dynamical semigroup is a semigroup of quantum channels Tt : Md → Md indexed

by a (time-)parameter t ∈ R+ that is continuous in t and such that T0 = idd and Ts ◦Tt = Ts+t

for all s, t ∈ R+. We have the following representation theorem:

Theorem 2.2.4 (Lindblad [22]). For every quantum dynamical semigroup Tt : Md →Md there

is a Hermitian matrix H ∈Md and matrices {Ai}ki=1 ⊂Md such that Tt = etL for the generator

L : Md →Md of the form

L(X) = i [X,H] +

k∑

i=1

AiXA
†
i −

1

2
{A†iAi, X}. (2.2)

12
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The generator L in (2.2) is also called a Liouvillian. By differentiation it is easy to check, that

for any initial state ρ ∈ Dd the time-evolved state ρt := Tt (ρ) fulfills the following differential

equation:

d

dt
ρt = L (ρ) .

By setting Ai = 0 for all i ∈ {1, . . . , k} we obtain the Schrödinger equation describing the

time-evolution of a closed system with a Hamiltonian H. This is solved by ρt = U(t)ρU(t)†

for unitary U(t) = e−iHt. Therefore the first part of (2.2) can be interpreted as a unitary

time-evolution. The second part can be similarly interpreted as dissipation.

The Liouvillian (2.2) can also be written as

L(X) = S(X)−KX −XK†

for a completely positive map S : Md →Md and a matrix K ∈Md such that S∗(1d) = K +K†

(see [23]). By choosing S : Md → Md to be a quantum channel and K = 1
21d we see that

L = S − idd is the generator of a quantum dynamical semigroup. In the special case where

S(X) = tr [X]σ for a quantum state σ ∈ Dd this yields the depolarizing Liouvillian Lσ(X) =

tr [X]σ −X. This Liouvillian generates the depolarizing channel Tt(X) = (1 − e−t)tr [X]σ +

e−tX depolarizing onto the state σ [11].

A quantum dynamical semigroup Tt : Md →Md is called primitive iff there exists a unique

full-rank stationary state σ ∈ Dd such that Tt (ρ) → σ for any ρ ∈ Dd [24]. The depolarizing

Liouvillian Lσ generates an example of such a semigroup if σ ∈ Dd is full-rank. It is clear that

generic quantum dynamical semigroups are primitive. For any primitive quantum dynamical

semigroup it is easy to show, that there exists a finite time t0 ∈ R+ such that Tt is entanglement

breaking for any t ≥ t0.

2.3 Distance measures

We will need some distance measures on Md and on the set of linear maps acting on Md.

2.3.1 Matrix norms and induced norms for linear maps

For p ∈ [1,∞) the p-norm (also called Schatten-p-norm) of a matrix X ∈ Md is defined as

‖X‖p := tr [|X|p]1/p, where |X| =
√
X†X denotes the absolute value of X [25]. By the singular

value decomposition we can also write ‖X‖p =
(∑d

i=1 si(X)p
)1/p

, where {si(X)}di=1 ⊂ R+

13
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denote the singular values of X. As for commutative p-norms one consistently defines ‖X‖∞ =

limp→∞ ‖X‖p = supi{si(X)}. The Schatten-p-norms have the usual properties (Hölder in-

equality, ordering ‖ · ‖p ≥ ‖ · ‖q for p ≤ q, etc.) as their commutative counterparts [25]. The

Schatten-1-norm is also called trace norm.

When working on tensor products M
(
Cd1 ⊗Cd2

)
it will be useful to introduce norms acting

like an r-norm on the first tensor factor, but like a p-norm on the second tensor factor. Such

norms have been introduced in the context of non-commutative vector-valued Lp-spaces [26].

See also [27] for a more readable presentation of this topic in the special case of finite dimen-

sional matrix algebras. Following their presentation we first define this notion for r = ∞. For

X ∈M
(
Cd1 ⊗Cd2

)
we set

‖X‖(∞,p) = sup
A,B∈Md1

‖(A⊗ 1d2)X(B ⊗ 1d2)‖p
‖A‖2p‖B‖2p

.

Now one can define the (r, p)-norm as

‖X‖(r,p) = inf
X=(A⊗1d2

)Y (B⊗1d2
)

A,B∈Md1

‖A‖2r‖B‖2r‖Y ‖(∞,p).

Note that for a tensor product of matrices this norm fulfills ‖X ⊗ Y ‖(r,p) = ‖X‖r‖Y ‖p, which

is consistent with the interpretation stated above. Furthermore, we have ‖ · ‖(p,p) = ‖ · ‖p and

‖ · ‖(r,p) = ‖ · ‖p on M
(
C⊗Cd2

)
'Md2 .

For a linear map T : Md1 →Md2 and p, q ∈ [1,∞] the p-to-q-norm (see [28]) is given by

‖T‖p→q = sup
X∈Md1

‖T(X)‖q
‖X‖p

.

The p-to-q-norms behave well with respect to composition and it can be shown, that ‖S ◦
T‖p→q ≤ ‖S‖p→r‖T‖r→q for linear maps T : Md1

→ Md2
, S : Md2

→ Md3
[28]. In many cases

we will deal with the cases p = q = 1 or p = q = ∞. In these cases (which are dual to each

other) there is an interesting connection between the above norms and positivity of the linear

map T.

Theorem 2.3.1 (Russo-Dye and converse to Russo-Dye, see [25]).

(i) For a positive map T : Md1 →Md2 we have ‖T‖∞→∞ = ‖T(1d1)‖∞.

(ii) If for a unital linear map T : Md1 →Md2 we have ‖T‖∞→∞ = 1, then T is positive.

It is easy to see (by duality of norms [25]), that for a positive map T : Md1
→Md2

we also

have ‖T‖1→1 = ‖T∗(1d2)‖∞ and therefore ‖T‖1→1 = 1 for a trace-preserving positive map T.

14



2.3 Distance measures

Despite all these nice properties the p-to-q norms have some drawbacks when applied to

tensor products of linear maps. More specifically we may have ‖S ⊗ T‖p→q > ‖S‖p→q‖T‖p→q
(consider for instance p = q = 1 and S = id2, T = ϑ2) for linear maps S and T. To resolve this

issue one can define stabilized versions of the p-to-q-norms. Consider first the case where p = q.

For p ∈ [1,∞] the completely bounded (CB) p-to-p norm (see [27]) of T : Md1 → Md2 is given

by

‖T‖CB,p→p = sup
n∈N
‖idn ⊗ T‖p→p. (2.3)

In the special case where p = 1 the above norm ‖ · ‖CB,1→1 = ‖ · ‖� is also called the �-
norm. For p = ∞ the norm ‖ · ‖CB,∞→∞ = ‖ · ‖CB is often just called the CB-norm. In finite

dimensions the computation of these norms simplifies and for any linear map T : Md1
→ Md2

we have ‖T‖� = ‖idd1
⊗T‖1→1 (see [12]). By the Russo-Dye theorem we have ‖T‖� = 1 for any

quantum channel T. The converse to the Russo-Dye theorem shows that for any trace-preserving

linear map T : Md1
→Md2

that is not completely positive we have ‖T‖� > 1.

Note that with the above definition we have ‖S ⊗ T‖CB,p→p = ‖S‖CB,p→p‖T‖CB,p→p which

makes these norms useful for quantum information theory. Also it can be shown that for any

completely positive map T : Md1
→Md2

and p ∈ [1,∞] we have ‖T‖CB,p→p = ‖T‖p→p [27].

With the (p, p)-norms the completely bounded p-to-p can be written as

‖T‖CB,p→p = sup
n∈N
‖idn ⊗ T‖(p,p)→(p,p)

This definition applies a p-to-p norm on the first tensor factor where the n-dimensional identity

acts. When q < p we have to be careful as ‖idn‖p→q = n
1
q− 1

p → ∞ as n → ∞. Therefore

the naive definition “‖T‖CB,p→q = supn∈N ‖idn ⊗ T‖(p,p)→(q,q)” does not work in general. The

completely bounded p-to-q norm (see [27]) of a linear map T : Md1 →Md2 is given by

‖T‖CB,p→q = sup
n∈N
‖idn ⊗ T‖(s,p)→(s,q)

with ‖ · ‖(s,p) as defined above and for an arbitrary s ∈ [1,∞]. It turns out that the choice

of s ∈ [1,∞] on the first tensor factor is irrelevant and the above norm has the same value in

any case [26]. The completely bounded p-to-q-norm has some nice properties. First it is clear

that ‖T‖CB,p→q ≥ ‖T‖p→q. The property ‖S ⊗ T‖CB,p→q = ‖S‖CB,p→q‖T‖CB,p→q holds for

completely positive maps S and T [27]. For q ≥ p and a completely positive map T we have

‖T‖CB,p→q = ‖T‖p→q [27]. Finally as the Riesz-Thorin interpolation theorem holds for the

p-to-q-norms (see [29, 30]) it also holds for the completely bounded p-to-q norms [31]:
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Theorem 2.3.2 (Riesz-Thorin theorem). For any linear map T : Md1
→Md2

and p0, p1, q0, q1 ∈
[1,∞] and θ ∈ [0, 1] we have

‖T‖CB,p(θ)→q(θ) ≤ ‖T‖θCB,p0→q0‖T‖1−θCB,p1→q1

for 1
p(θ) = θ

p0
+ 1−θ

p1
and 1

q(θ) = θ
q0

+ 1−θ
q1

.

2.3.2 Fidelity

The fidelity of two quantum states ρ, σ ∈ Dd is defined as

F (ρ, σ) = tr
[√

ρ1/2σρ1/2
]
. (2.4)

Note that F (ρ, ρ) = 1 and F (ρ, σ) = 0 if supp (ρ) ∩ supp (σ) = ∅. For pure states the above

definition simplifies and we have

F (|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|

for |ψ〉, |φ〉 ∈ Cd. We will also write F (|ψ〉, |φ〉) for the fidelity of two pure states. The following

theorem relates the fidelity with the metric induced by the trace-norm:

Theorem 2.3.3 (Fuchs-van de Graaf-inequalities [32]). For quantum states ρ, σ ∈ Dd we have

1− F (ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F (ρ, σ)2. (2.5)

The fidelity has some properties, that make it a useful quantity in quantum information

theory. It can be shown that the fidelity F (ρ, σ) can be interpreted in terms of how well ρ and

σ can be distinguished by measurements. More specifically for ρ, σ ∈ Dd we have

F (ρ, σ) = min
{Ei}ki=1

k∑

i=1

√
tr [ρEi] tr [σEi]

where the minimization is over POVMs {Em}ki=1 ⊂ M+
d [11]. It is a simple consequence of

this representation (using that adjoints of positive maps are positive) that the application of

a positive and trace-preserving map P : Md1 → Md2 two both states ρ, σ ∈ Dd1 increases the

fidelity, i.e. F (P(ρ),P(σ)) ≥ F (ρ, σ). Furthermore, the fidelity is jointly concave in its two

arguments (see [11]), i.e. for quantum states ρi, σi ∈ Dd and pi ∈ R+ such that
∑k
i=1 pi = 1

we have

F (

k∑

i=1

piρi,

k∑

i=1

piσi) ≥
k∑

i=1

piF (ρi, σi).
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The fidelity of two quantum states can be expressed as the fidelity of two pure states on a

larger system. A purification of a quantum state ρA ∈ DdA is a pure state |ψAB〉 ∈ CdA ⊗CdB

such that ρA = trB [|ψAB〉〈ψAB |] [11].

Theorem 2.3.4 (Uhlmann [33]). For quantum states ρA, σA ∈ DdA and any dB ≥ dA we have

F (ρA, σA) = max
|ψAB〉,|φAB〉

F (|ψAB〉, |φAB〉) = max
|ψAB〉,|φAB〉

|〈ψAB |φAB〉|.

where the maxima are over purifications |ψAB〉, |φAB〉 ∈ CdA ⊗CdB of ρA and σA respectively.

It can be shown that two pure states |ψAB〉 ∈ CdA ⊗CdB and |φAB′〉 ∈ CdA ⊗CdB′ with

dB ≤ dB′ are purifications of the same state ρA ∈ DdA iff they are related by an isometry

V : CdB → CdB′ , i.e. |φAB′〉 = (1A ⊗ V )|ψAB〉 [11]. Together with Uhlmann’s theorem this

implies that for pure states |ψAB〉, |φAB〉 ∈ CdA ⊗CdB and any isometry V : CdB → CdB′ we

have F ((1A ⊗ V )|ψAB〉, (1A ⊗ V )|φAB〉) = F (|ψAB〉, |φAB〉). As an immediate consequence we

can write the statement of Uhlmann’s theorem for fixed purifications |ψAB〉 ∈ CdA ⊗CdB and

|φAB′〉 ∈ CdA ⊗CdB′ of ρ, σ ∈ DdA and with dB ≤ dB′ as

F (ρ, σ) = max
V

F ((1A ⊗ V )|ψAB〉, |φAB′〉). (2.6)

Here the maximum is over isometries V : CdB → CdB′ .

2.3.3 Relative entropy

Throughout this thesis we will write log for the logarithm to base 2. The relative entropy (also

known as quantum Kullback-Leibler-divergence) of quantum states ρ, σ ∈ Dd is defined as

D(ρ‖σ) :=

{
tr[ρ(log ρ− log σ)], if supp(ρ) ⊂ supp(σ)

+∞, otherwise
. (2.7)

The relative entropy fulfills a so called data-processing inequality, i.e. for any quantum chan-

nel T : Md1
→ Md2

and quantum states ρ, σ ∈ Dd1
we have D(T (ρ)‖T (σ)) ≤ D(ρ‖σ) [34].

Furthermore it is jointly convex in its arguments (see [35]), i.e.

D(
k∑

i=1

piρi‖
k∑

i=1

piσi) ≤
k∑

i=1

piD(ρi‖σi)

for quantum states ρi, σi ∈ Dd and pi ∈ R+ with
∑k
i=1 pi = 1. The relative entropy also has

the following property with respect to tensor-powers: For any quantum states ρ1, σ1 ∈ Dd1
and

ρ2, σ2 ∈ Dd2 we have D(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) = D(ρ1‖σ1) + D(ρ2‖σ2). We can lower bound the

relative entropy in terms of the trace-distance
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Theorem 2.3.5 (Pinsker inequality [36]). For quantum states ρ, σ ∈ Dd we have

1

2
‖ρ− σ‖1 ≤ D(ρ, σ).

2.4 Information-theoretic quantities

In this section we will introduce some quantities commonly used in quantum information theory.

2.4.1 Von-Neumann entropy and conditional entropy

The von-Neumann entropy of a quantum state ρ ∈ Dd is defined as S(ρ) = −tr [ρ log(ρ)]. It

can be shown that S (ρ) ∈ [0, log(d)] for any ρ ∈ Dd and that S(ρ) = 0 iff ρ is a pure state [11].

Furthermore the entropy is a concave function [11]. Note that the relative entropy can be

written as D(ρ‖σ) = −S(ρ) − tr [ρ log(σ)] and many properties of the von-Neumann entropy

are related to properties of the relative entropy.

For a bipartite quantum state ρAB ∈ D
(
CdA ⊗CdB

)
we have the subadditivity inequality

S(ρAB) ≤ S(ρA)+S(ρB) [11]. For a tripartite quantum state ρABC ∈ D
(
CdA ⊗CdB ⊗CdC

)
we

can use the monotonicity of the relative entropy under quantum channels (more specifically the

partial trace) to show D (ρAB‖ρA ⊗ ρB) ≤ D (ρABC‖ρA ⊗ ρBC). By rewriting this inequality

in terms of the von-Neumann entropy we obtain the so called strong subadditivity inequality

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) [11].

The von-Neumann entropy is the quantum version of the Shannon-entropy. As its classi-

cal counterpart it has an operational interpretation in a source coding (or data compression)

protocol. We will need the following lemma:

Lemma 2.4.1 (Typical subspace theorem [11]). Let ρ ∈ Dd be a quantum state and ε > 0

fixed. Then for any δ > 0 there exists an N ∈ N such that for any n ≥ N there is a projector

P (n, ε) with:

1. tr [P (n, ε)ρ⊗n] ≥ 1− δ

2. (1− δ) 2n(S(ρ)−ε) ≤ tr [P (n, ε)] ≤ 2n(S(ρ)+ε)

The subspace Im (P (n, ε)) ⊂ Cdn is also called ε-typical subspace.

As a direct consequence for any fixed ε > 0, some δ > 0 and n sufficiently large we can write

ρ⊗n = pnρ
n
typ + (1− pn)ρnrest

with pn = tr [P (n, ε)ρ⊗n], a state ρntyp supported on the typical subspace and a state ρnrest with

no support on the typical subspace. Note that for S (ρ)� log(d) the dimension of the typical
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subspace dtyp = tr [P (n, ε)] ≤ 2n(S(ρ)+ε) � dn will be much smaller than the dimension of the

full space. As ‖ρ⊗n − ρntyp‖1 ≤ 2(1 − pn) ≤ 2δ we can (for δ small enough) compress ρ⊗n to

ρntyp without introducing much error. This compression can be performed by measuring the

2-outcome POVM given by {P (n, ε), (1dn −P (n, ε))}. This will successfully compress ρ⊗n with

probability pn ≥ 1 − δ, which is close to 1 when δ > 0 is chosen small enough. It can also be

shown that it is not possible to compress the state further without introducing large errors in

the limit n→∞, i.e. the von-Neumann entropy is the optimal upper bound for the compression

rate of a quantum state in the asymptotic limit of many copies [11].

Similar to the classical case where one can consider the Shannon entropy of a conditional

probability distribution one can define the conditional entropy in the quantum case. Given

a bipartite quantum state ρAB ∈ D
(
CdA ⊗CdB

)
the conditional (von-Neumann) entropy of

system A given system B is defined as S(A|B)ρAB := S(ρAB) − S(ρB). This quantity can be

interpreted as the information that an observer can gain about system A when allowed access

to system B. It is a well-known fact, that due to entanglement of ρAB the conditional entropy

S(A|B)ρAB can be negative unlike its classical analogue [37]. For a quantum channel T : MdA →
MdB and a quantum state σRA ∈ D

(
CdR ⊗CdA

)
with dR = dA we define Icoh (σRA,T) :=

−S(R|B)(idR⊗T)(σRA). Then the coherent information of T is given by

Icoh (T) := max
σRA∈D(CdR⊗CdA)

Icoh (σRA,T)

The coherent information quantifies how much information can be transmitted through the

quantum channel.

2.4.2 Conditional min-entropy

The von-Neumann entropy and the quantities derived from it are useful in scenarios involving

asymptotic limits of many copies of the same object (usually quantum states or quantum

channels). They seem to be less useful in one-shot scenarios where only one instance of an

object is considered. To analyze such scenarios many useful quantities have been introduced

(see for instance [38, 39]). We will only use one such quantity namely the conditional min-

entropy first introduced in [38].

For a bipartite positive and subnormalized matrix XAB ∈ M+
(
CdA ⊗CdB

)
, i.e. with

tr [X] ≤ 1, the conditional min-entropy of A given B (see [39]) is defined as

Smin(A|B)XAB := − log
(
min{tr [YB ] : YB ∈M+

dB
, XAB ≤ 1dA ⊗ YB}

)
.
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The optimization in the conditional min-entropy is a semidefinite program and hence this

quantity can be efficiently computed [39]. For any matrix XAB ∈ M+
(
CdA ⊗CdB

)
with

tr [XAB ] ≤ 1 we have XAB ≤ 1dA ⊗1dB , which implies Smin(A|B)XAB ≥ − log(dB). It can also

be shown (see [39]) that for any subnormalized XAB ∈ M+
(
CdA ⊗CdB

)
and any isometries

V : CdA → CdA′ and W : CdB → CdB′ we have

Smin(A′|B′)(V⊗W )XAB(V⊗W ) = Smin(A|B)XAB .

The conditional min-entropy of a quantum state has an operational interpretation as the

maximum achievable overlap with a maximally entangled state [40]. More specifically for

ρAB ∈ D
(
CdA ⊗CdB

)
with dA ≤ dB we have

2
−Smin(A|B)ρAB = dA max

T
F ((idA ⊗ T) (ρAB) , ωAB)

where the maximum is over quantum channels T : MdB →MdB .

For ε > 0 the ε-smooth conditional min-entropy of A given B (see [39]) of a bipartite

quantum state ρ ∈ D
(
CdA ⊗CdB

)
is defined as

Sεmin(A|B)ρAB = max
X∈B(ρAB ,ε)

Smin(A|B)XAB

where B(ρ, ε) = {XAB ∈ M+
(
CdA ⊗CdB

)
: tr [X] ≤ 1,

√
1− F (ρ,X)2 ≤ ε} denotes an

ε-ball around ρ in the purified distance (where the fidelity F (ρ,X) for subnormalized X can

be defined as in (2.4)). By the above lower bound for Smin(A|B)XAB for subnormalized and

positive XAB we also have

Sεmin(A|B)ρAB ≥ − log(dB) (2.8)

for any state ρAB ∈ D
(
CdA ⊗CdB

)
. The invariance under local isometries mentioned above

for Smin also holds for the smooth version, i.e. for any ε > 0, any state ρAB ∈ D
(
CdA ⊗CdB

)

and any isometries V : CdA → CdA′ and W : CdB → CdB′ we have

Sεmin(A′|B′)(V⊗W )ρAB(V⊗W ) = Sεmin(A|B)ρAB . (2.9)

When the ε-smooth conditional min-entropy is applied to tensor-powers of a quantum state

the usual (von-Neumann) conditional entropy can be recovered as a limit [39]. More specifically

for a quantum state ρAB ∈ D
(
CdA ⊗CdB

)
we have for any ε ∈ (0, 1) that

lim
n→∞

Sεmin(An|Bn)ρ⊗nAB
= S(A|B)ρAB .

We will not need this property directly, but only the following bound known as asymptotic

equipartition property :
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2.5 Quantum capacities

Theorem 2.4.1 (Fully quantum AEP, [41]). For a density operator ρAB ∈ D
(
CdA ⊗CdB

)
and

ε > 0 there exists a sequence ∆(n, ρAB , ε) → 0 as n → ∞ and such that for all n ≥ 8
5 log

(
2
ε2

)

we have

1

n
Sεmin(An|Bn)ρ⊗nAB

≥ S(A|B)ρAB −∆(n, ρAB , ε) . (2.10)

2.5 Quantum capacities

In this section we will introduce two capacities describing the transmission of quantum infor-

mation over quantum channels. First we will talk about the quantum analogue of the Shannon

capacity. In the second part we will introduce the two-way quantum capacity where the trans-

mission is assisted by arbitrary classical communication between the sender and the receiver.

Note that there are many other capacities and communication settings not mentioned here de-

scribing for instance the transmission of classical information or using different channel models

(e.g. scenarios with more than one in- and/or output-systems, see [42] or channels varying in

time). Also we will assume that the sender and receiver know the the quantum channel used

for transmission exactly. This might not be the case in realistic scenarios.

2.5.1 Quantum Shannon-capacity

Definition 2.5.1 (Quantum capacity, see [43]). For a quantum channel T : MdA → MdB its

quantum capacity is defined as

Q(T) = sup{r ∈ R+ : r achievable rate }.

A number r ∈ R+ is called achievable rate iff there are sequences (nν)ν∈N ∈ NN and (mν)ν∈N ∈
NN with nν →∞ as ν →∞ and r = lim supn→∞

nν
mν

such that

inf
E,D

∥∥∥id⊗nν2 −D ◦ T⊗mν ◦ E
∥∥∥
�
→ 0 as ν →∞ (2.11)

where the infimum is over encoding quantum channels E : M⊗nν2 →M⊗mνdA
and decoding quan-

tum channels D : M⊗mνdB
→M⊗nν2 .

Note that by choosing the identity channel in (2.11) to be two-dimensional we take the qubit

as the unit of quantum information. By choosing a different dimension d we obtain essentially

the same capacity just scaled by a factor of 1/ log2(d) [43]. It can be shown (see [43]) that a

rate r > 0 is achievable iff the communication error in (2.11) vanishes for the sequences nν = rν

and mν = ν.
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2. FINITE-DIMENSIONAL QUANTUM MECHANICS

There are many equivalent definitions for the quantum capacity of a quantum channel using

different error-measures. Instead of the �-norm it is sometimes useful to consider the so called

channel fidelity (see for instance [43]) of a quantum channel T : MdA →MdB defined as

Fc(T) := F ((idR ⊗ T)(ωRA), ωRB)2 . (2.12)

This error-measure quantifies how much entanglement is transmitted through T. Requiring

supE,D Fc (D ◦ T⊗mν ◦ E) → 1 as ν → ∞ instead of (2.11) to express the vanishing communi-

cation error yields an equivalent definition of the capacity. For convenience we will summarize

the argument given in [43] to show this fact. The following theorem is a direct consequence of

[43, Proposition 4.5].

Theorem 2.5.1 ([43]). Let T : Md → Md and k ≤ d. Then there exist quantum channels

Vk : Mk →Md and Sk : Md →Mk such that

∥∥∥idk − Sk ◦ T ◦ Vk
∥∥∥
�
≤ 8

(
1− Fc (T)

1− k
d

)1/4

.

With this theorem it is possible to see, that the capacity does not change when the �-norm

is replaced by the channel fidelity to quantify the communication error in (2.11). Assume that

there is a rate r > 0 and sequences (nν)ν and (mν)ν with r = lim supν→∞
nν
mν

such that for

a sequence of encodings Eν : M2nν → Mdmν and decodings Dν : Mdmν → M2nν we have

Fc (Dν ◦ T⊗mν ◦ Eν) → 1 as ν → ∞. Now applying the above theorem for each kν = 2nν−1

yields modified encodings Ẽν = Eν ◦ Vν and modified decodings D̃ν = Sν ◦ Dν such that∥∥∥id
⊗(nν−1)
2 − D̃ν ◦ T⊗mν ◦ Ẽν

∥∥∥
�
→ 0 as ν → ∞. As lim supν→∞

nν−1
mν

= r this rate is also

achievable when using the �-norm as in (2.11) to quantify the communication error. The other

direction that any rate achievable with respect to the �-norm is also achievable with respect to

the channel fidelity is straightforward [43].

From the above definition it is still unclear how to compute the quantum capacity for a

concrete channel. The following theorem relates the above capacity to the coherent information

introduced before:

Theorem 2.5.2 (LSD-theorem [44, 45, 46]). For a quantum channel T : MdA →MdB we have

Q (T) = lim
n→∞

1

n
Icoh

(
T⊗n

)
.
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2.5 Quantum capacities

The limit over tensor-powers in the above theorem, also called regularization, is essential

and for any n ∈ N there are examples of quantum channels T such that Icoh (T⊗n) = 0 but

Icoh
(
T⊗(n+1)

)
> 0 [47]. At the time of writing it is not known whether there is a formula for

the quantum capacity possibly involving other quantities and avoiding a regularization.

Even with Theorem 2.5.2 computing the quantum capacity for a given quantum channel is

hard in general, but in some cases the computation simplifies. A quantum channel T : MdA →
MdB with complementary channel Tc : MdA → MdE is called degradable (see [17]) iff there is

a quantum channel S : MdB → MdE such that S ◦ T = Tc. For degradable quantum channels

the regularization can be removed in Theorem 2.5.2 which simplifies the computation of the

capacity. A quantum channel T : MdA →MdB with complementary channel Tc : MdA →MdE is

called anti-degradable (see for instance [48]) iff there exists a quantum channel S : MdE →MdB

such that S ◦ Tc = T. It can be shown that anti-degradable channels have vanishing quantum

capacity. Note that every entanglement-breaking channel is also anti-degradable [48].

We finish this section by stating the well-known transposition bound on the quantum ca-

pacity. Let ϑd : Md →Md denote a matrix transposition in any fixed basis.

Theorem 2.5.3 (Transposition bound [49]). For a quantum channel T : MdA →MdB we have

Q (T) ≤ log2(‖ϑdB ◦ T‖�) .

Using the properties of ‖·‖� the transposition bound implies that any completely co-positive

quantum channel (i.e. a quantum channel T for which ϑ ◦ T is also a quantum channel) has

vanishing quantum capacity. At the time of writing the completely co-positive quantum chan-

nels and the anti-degradable channels are the only classes of quantum channels for which the

quantum capacity is known to vanish.

2.5.2 The decoupling approach

In this section we will illustrate how to show the existence of suitable coding channels in

Definition 2.5.1 of the quantum capacity using the decoupling approach. While this method

can be used to prove Theorem 2.5.2 in its full generality (see [50, 51]) we will only show that for

a quantum channel T : MdA →MdB any rate r < Icoh (ωA′A,T) is achievable. This is sufficient

to understand the articles contained in this dissertation and the argument will be slightly easier

while equally illuminating. The following discussion is based on results stated in [51].

The idea of the decoupling approach can be described using the following lemma, which is

a consequence of Uhlmann’s theorem.
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2. FINITE-DIMENSIONAL QUANTUM MECHANICS

Lemma 2.5.1 ([51]). Let T : MdA → MdB be a quantum channel with Stinespring isometry

V A→BE : CdA → CdB ⊗ CdE and a purification of its Choi-matrix is given by |σRBE〉 =

(1R ⊗ V A→BE)|ΩRA〉. If

∥∥∥(idR ⊗ Tc) (ωRA)− πR ⊗ σE
∥∥∥

1
≤ ε ,

then there exists a quantum channel D : MdB →MdA′ for dA = dA′ such that

Fc(D ◦ T) ≥
(

1− ε

2

)2

.

Proof. Using the Fuchs-van de Graaf (Theorem 2.3.3) inequalities we have:

F ((idR ⊗ T c) (ωRA) , πR ⊗ σE) ≥ 1− ε

2
.

Note that a purification of πR⊗σE is given by |ΩRA′〉⊗|σR′B′E〉 ∈ CdRdA′⊗CdR′dB′dE and also a

purification of (idR⊗T c) (ωRA) is given by |σRBE〉 ∈ CdR⊗CdB⊗CdE . By applying Uhlmann’s

theorem (in the form (2.6)) there is an isometry WB→A′R′B′ : CdB → CdA′ ⊗CdR′ ⊗CdB′ such

that

1− ε

2
≤ F ((1R ⊗WB→A′R′B′ ⊗ 1E)|σRBE〉, |ωRA′〉 ⊗ |σR′B′E〉)

≤ F ((iddR ⊗D ◦ T) (ωRA) , ωRA′).

In the last step we used monotonicity of the fidelity under quantum channels (in this case partial

traces) and introduced the quantum channel D : MdB →MdA′ as

D (ρ) = trR′B′

[
WB→A′R′B′ρ

(
WB→A′R′B′

)†]
.

By the above lemma a decoding channel D achieving high channel fidelity exists when

after information transmission the environment (labeled by ’E’) is decoupled from the reference

system (labeled by ’R’). Surprisingly, by choosing a random encoding prior to transmission this

can be ensured. The following theorem is also called decoupling theorem:

Theorem 2.5.4 (Decoupling Theorem [51]). For a quantum state ρRA ∈ D
(
CdR ⊗CdA

)
and a

quantum channel T : MdA →MdE with Choi matrix σA′E = (idA′ ⊗ T) (ωA′A) and an arbitrary

ε > 0 we have
∫

U(dA)

∥∥∥ (idR ⊗ T ◦ U) (ρRA)− ρR ⊗ σE
∥∥∥

1
dU ≤ 2−

1
2S

ε
min(A

′|E)
σ
− 1

2S
ε
min(A|R)ρ + 12ε

where the integral is with respect to the Haar measure on the group of unitary matrices U(dA) ⊂
MdA .
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2.5 Quantum capacities

To apply the decoupling approach consider a quantum channel T : MdA → MdB with

Stinespring isometry V A→BE : CdA → CdB ⊗CdE and purified Choi-matrix |σA′BE〉 = (1A′ ⊗
V A→BE)|ΩA′A〉. For any rate 0 < r < Icoh (ωA′A,T) let ωRR′ ∈ D

(
CdR ⊗CdR′

)
be the

maximally entangled state for dR = dR′ = 2rν . To show that r is achievable in the sense of

Definition 2.5.1 we set ρRAν = (idR ⊗Wν) (ωRR′) for isometric channels Wν (·) = Wν ·W †ν with

isometries Wν : CdR′ → CdνA . Note that by (2.9) and (2.8) we have

Sεmin (Aν |R)ρRAν = Sεmin (R′|R)ωRR′ ≥ − log(dR).

Now consider the quantum channel (Tc)
⊗ν

and note that the Choi-matrix of this channel is

given by σ⊗νA′E . Using the asymptotic equipartition property (see Theorem 2.4.1) we have

Sεmin ((A′)ν |Eν)σ⊗ν
A′E
≥ S(A′|E)σA′E −∆(ν, σA′E , ε) = Icoh (ωA′A,T)−∆(ν, σA′E , ε).

Applying Theorem 2.5.4 with ε = 1
ν implies the existence of unitary channels Uν ∈ UdνA such

that

∥∥∥
(

idR ⊗ (Tc)
⊗ν ◦ Uν ◦Wν

)
(ρRR′)− ρR ⊗ σ⊗νE

∥∥∥
1
≤
√
dR2−

1
2 Icoh(ωA′A,T)+ 1

2 ∆(ν,σA′E ,ε) +
12

ν
.

Finally we can use the Lemma 2.5.1 to obtain quantum channels Dν : MdνB
→M2rν such that

Fc(Dν ◦ T⊗ν ◦ Uν ◦Wν) ≥
(

1− 1

2

(
2
ν
2 (r−Icoh(ωA′A,T)+∆(ν,σA′E ,ε)) +

12

ν

))2

.

As r < Icoh (ωA′A,T) we have that Fc(Dν ◦ T⊗ν ◦ Uν ◦Wν) → 1 in the limit ν → ∞. By the

discussion after Theorem 2.5.1 we can slightly modify the above coding scheme such that the

communication error (2.11) in �-norm vanishes in the limit ν →∞. This proves that any such

rate is an achievable rate for the quantum capacity.

2.5.3 Quantum capacity assisted by classical communication

The quantum capacity introduced in the previous section only describes a very basic scenario

of information transmission, which often does not capture all resources that the sender and the

receiver could use. In this section we introduce another quantum capacity taking into account

that the sender and receiver might be able to exchange arbitrary classical information for free.

For more information concerning this and similar scenarios see [52]. It should be emphasized

that we restrict to the idealized case where the quantum channel used for transmission is known

to both communicating parties.
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2. FINITE-DIMENSIONAL QUANTUM MECHANICS

In the following we consider a bipartite system with its two parts labeled ’A’ and ’B’. The

’A’ part should be thought of as a system controlled by the sender, and in the same way the

’B’ part is a system controlled by the receiver. We introduce essentially classical systems both

at the sending and the receiving side where the two parties can store classical information. To

distinguish the quantum- and the classical part of our states we will use labels Aq, Bq to refer

to the quantum part at A or B and labels Ac, Bc for the classical part.

We will start with a central definition of the special class of quantum channels that can

be implemented using local quantum channels and arbitrary classical communication. This set

can be found in similar form in [53] where its mathematical properties are discussed.

Definition 2.5.2 (Local operations and classical communication (LOCC) [53]). A quantum

channel T : M
(
CdA ⊗CdB

)
→ M

(
CdA′ ⊗CdB′

)
is called an LOCC-channel with respect

to the bipartition A : B if it can be written as a sequential concatenation of any number

of channels L : M
(
C
dAqdAc ⊗CdBqdBc

)
→ M

(
C
dA′qdA′c ⊗CdB′qdB′c

)
of the following form

(
for XAqAcBqBc ∈M

(
C
dAqdAc ⊗CdBqdBc

))
:

L(XAqAcBqBc) =
∑

i,j

(KA
i ⊗KB

j )XAqAcBqBc(K
A
i ⊗KB

j )† ⊗ |j〉〈j|A′c ⊗ |i〉〈i|B′c , (2.13)

where KA
i : CdAqdAc → C

dA′q and KB
j : CdBqdBc → C

dB′q are Kraus operators of quantum

channels mapping system AqAc to A′q and system BqBc to B′q respectively (i.e.
∑
i(K

A
i )†KA

i =

1AqAc and
∑
j(K

B
j )†KB

j = 1BqBc), and |j〉A′c and |i〉B′c are orthonormal bases belonging to

(effectively classical) systems Ac and Bc.

As the definition of LOCC-channels is complicated it is often helpful to consider the following

class of quantum channels, which contains the LOCC-channels as a proper subset [53]:

Definition 2.5.3 (Separable operations [53]). A quantum channel T : M
(
CdA ⊗CdB

)
→

M
(
CdA′ ⊗CdB′

)
is called separable iff it can be written as

T(X) =
∑

i

(
KA
i ⊗KB

i

)
X
(
KA
i ⊗KB

i

)†

for matrices {KA
i }i ⊂ CdA′×dA and {KB

i } ⊂ CdB′×dB .

Separable quantum channels are easier to analyze than LOCC quantum channels. Never-

theless, they still have enough structure for interesting properties to hold; examples of this can

be found in the articles contained in this dissertation. With the previous definitions we can

define a capacity assisted by unlimited classical two-way communication.
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2.5 Quantum capacities

Definition 2.5.4 (Quantum capacity assisted by unlimited 2-way classical communication [52]).

For a quantum channel T : MdA → MdB the 2-way classical communication assisted capacity

is defined as

Q2 (T) = sup{r ∈ R+ : r achievable rate}.

A number r ∈ R+ is called achievable rate iff there are sequences (nν)ν∈N ∈ NN and (mν)ν∈N ∈
NN with r = lim supν→∞

nν
mν

and such that

inf
L1,...,Lmν+1

∥∥∥id⊗nν2 −Lmν+1 ◦ (idAc ⊗ TA1→Bmν ⊗ idBcB1···Bmν−1
) ◦ · · ·

· · · ◦ L2 ◦ (idAcA1···Amν−1
⊗ TAmν→B1

⊗ idBc) ◦ L1

∥∥∥
�
→ 0

as ν → ∞. In each step the channel T brings one system of size dA from the ’A’ side to the

’B’ side. The infimum is over LOCC-quantum channels

Li : M
(
C
dAcdA1

···dAmν−i+1 ⊗CdBcdB1
···dBi−1

)
→M

(
C
dA′cdA1

···dAmν−i+1 ⊗CdB′cdB1
···dBi−1

)

for 1 < i ≤ mν and

L1 : M
(
C

2nν
)
→M

(
C
dAcdA1

···dAmν ⊗CdBc
)

and

Lmν+1 : M
(
C
dAc ⊗CdBcdB1

···dBmν
)
→M

(
C

2nν
)

where the label c indicates classical systems (as explained above) of arbitrary size and dAk = dA

and dBl = dB for all k, l.

The above capacity is connected to the task of entanglement distillation, i.e. the generation

of a maximally entangled state from many copies of a given state. We have the following precise

definition:

Definition 2.5.5 (Entanglement distillation [4]). A bipartite quantum state ρAB ∈ D
(
CdA ⊗CdB

)

is called distillable iff

inf
Ln

∥∥∥ω2 − L
(
ρ⊗nAB

) ∥∥∥
1
→ 0

with infimum over LOCC-quantum channels Ln : M
(
Cd

n
A ⊗CdnB

)
→M

(
C2 ⊗C2

)
.

It can be shown that a quantum channel T : MdA →MdB has Q2 (T) > 0 iff its Choi-matrix

CT ∈ D
(
CdA ⊗CdB

)
is distillable. By using properties of the transposition map it can be

shown that PPT states are not distillable [4]. As there are entangled PPT states this leads to

the surprising fact that there are entangled states, which are not distillable. Such states are

called bound entangled states. As PPT states are not distillable it is natural to ask, whether

conversely all NPPT states are distillable. This problem of the existence of an NPPT bound

entangled state is often referred to as the NPPT bound entanglement problem. It is despite

considerable effort [5, 54, 55, 56] still an open problem.
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Quantum Subdivision Capacities and Continuous-time
Quantum Coding

A. Müller-Hermes, D. Reeb and M. Wolf May 20, 2015

The quantum Shannon capacity quantifies the optimal rate of transmitting quantum
information via many copies of a quantum channel. Here we study the optimal storage
rates of an array of identical quantum memories each affected by continuous-time
Markovian noise in a Shannon theoretic framework. The noise affecting each memory
is modeled by a quantum dynamical semigroup generated by a Liouvillian L, i.e.
quantum channels Tt = etL [2] describing the accumulated noise up to times t. We
introduce new quantum capacities where coding channels can also be applied during
the storage time. This possibility is not captured by the quantum Shannon capacity.
The ideas of our capacities might be also useful in a classical setting where they seem
to be new as well.

1 Quantum subdivision capacities

For a subset C of quantum channels we define the C-quantum subdivision capacity of
a noise Liouvillian L : Md → Md at time t denoted by QC (tL) as the supremum
over achievable rates R ∈ R+. A rate R is called achievable iff there exist sequences
(nν)

∞
ν=1 and (mν)

∞
ν=1 such that R = lim supν→∞

nν
mν

and such that the approximation
error vanishes asymptotically

inf
k,E,D,C1,...,Ck

∥∥∥∥∥id⊗nν2 −D ◦
k∏

l=1

(
Cl ◦

(
e

L
k

)⊗mν)
◦ E
∥∥∥∥∥
�
→ 0 as ν →∞. (1)

The latter infimum is over the number of subdivisions k ∈ N, arbitrary encoding and
decoding quantum channels E and D and appropriate intermediate coding channels
Cl ∈ C taken from the chosen subset C.

In the case where C = ID is the set of infinitely divisible quantum channels, i.e.
quantum channels of the form

∏l
i=1 e

Li for some l ∈ N and Liouvillians {Li}ki=1 we
prove:

Theorem 1.1. For any Liouvillian L :Md →Md and any time t ∈ R+ we have

QID (tL) = log2(d).

Note that log2(d) is the capacity of a noiseless channel on a d-dimensional system.
The proof constructs a coding scheme by cutting the Markovian noise into pieces each
close to the identity channel and hence with capacity close to log2(d). By successive
de- and encoding in between these pieces we can achieve any rate below log2(d) when
arbitrary coding channels are allowed. The final part of the proof uses the decoupling



approach and a typical subspace argument to show that only a small overhead of
channel uses is needed to implement this coding scheme using unitaries and strong
depolarizing noise.

When C = U is the set of unitary quantum channels the above techniques cannot be
applied anymore. In this case we use Schumacher compression to prove that QU (tL) >
0 for any Liouvillian L :Md →Md and any time t ∈ R+. However, we also prove an
upper bound:

Theorem 1.2. For the depolarizing Liouvillian Ldep : Md → Md with fixed-point
ρ0 ∈ Dd defined as Ldep(ρ) = tr (ρ) ρ0 − ρ we have

QU

(
tLdep
r

)
≤ log2(d)−

(
1− e−t

)
S (ρ0) .

The proof uses an estimate for the entropy produced by any tensor-product of the
depolarizing channel. The unitary coding maps cannot remove the entropy from the
system and as it accumulates the transmission rate decreases.

2 Continuous quantum capacity

We also introduce a more general continuous quantum capacity allowing for continuous-
time coding Liouvillians to be applied in addition to the noise. These capacities
take techniques like continuous error correction [3] and algorithmic cooling [1] into
account to quantify the limitations of quantum memories in a setting of quantum
Shannon theory. Surprisingly even purely dissipative coding Liouvillians can assist
the information storage. As an additional result we give an example of Liouvillians
L,Lc such that Lc is purely dissipative and Q

(
eL
)
< Q

(
eL+Lc

)
holds for the usual

quantum Shannon capacity Q.

3 Legal statement

The project was assigned by Michael Wolf. In all parts of this work I was significantly
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Positivity of Linear Maps under Tensor-powers

A. Müller-Hermes, D. Reeb and M. Wolf May 18, 2015

A linear map P : Md1 → Md2 is called positive iff P
(
M+

d1

)
⊂ M+

d2
. We call a

linear map P n-tensor-stable positive iff P⊗n is positive and tensor-stable positive iff
it is n-tensor-stable positive for any n ∈ N. There are two trivial classes of tensor-
stable positive maps: Completely positive maps and completely co-positive maps (i.e.
compositions of completely positive maps and a transposition). It is currently not
known, whether there exist non-trivial tensor-stable positive maps. We connect this
question to several open problems in quantum information theory (NPPT-bound en-
tanglement [2, 1], capacity bounds, existence of quantum channels with entanglement
annihilating properties [3]) and obtain some results on n-tensor-stable positivity.

1 Existence of n-tensor-stable positive maps

A set of product states {|αi〉 ⊗ |βi〉}ki=1 is called an unextendible product set if there is

no product vector in (spani (|αi〉 ⊗ |βi〉))⊥.

Theorem 1.1. For any n ∈ N and any d1, d2 ≥ 2 there exists an n-tensor-stable
positive map P :Md1 →Md2 .

The proof uses unextendible product sets to construct a Choi-matrix staying block-
positive under tensor-powers. In the proof we need a quantified version of the ten-
sorization property of unextendible product bases. This is shown using multiplicativity
of the minimal output eigenvalue of an entanglement breaking channel.

2 Tensor-stable positivity and NPPT-bound entanglement

We denote by dCP(P) := 1
2 (‖CP‖1 − tr (CP)), which measures the distance of P to

the cone of completely positive maps. The following lemma connects tensor-stable
positivity to distillation problems:

Lemma 2.1. Let P :Md1 →Md2 be an n-tensor-stable positive map. Then

dCP(P)

||P||�
≤ inf
S sep
||ωd1 − S

(
C
⊗(n−1)
P

)
||1, (1)

where the infimum is taken over all separable completely positive maps S : Mdn−1
1
⊗

Mdn−1
2
→Md1 ⊗Md1 .

Thus, any tensor-stable positive map for which there is a sequence Sn of separable
completely positive maps fulfilling ||ωd1 − Sn

(
C⊗nP

)
||1 → 0 as n → ∞ has to be

completely positive. We show how such a sequence of separable completely positive
maps can be constructed by generalizing entanglement distillation protocols (originally
only defined for quantum states) to block-positive matrices. By doing so we prove:



Theorem 2.1 (Non-trivial tensor-stable positivity implies NPPT-bound entangle-
ment). If there exists a non-trivial tensor-stable positive map P : Md1 →Md2 , then
there exist NPPT bound-entangled states in Md1 ⊗Md1 as well as in Md2 ⊗Md2 .

As there is no NPPT-bound entanglement [1] in 2-dimensional systems we have:

Theorem 2.2. Any tensor-stable positive map P :Md1 →Md2 with d1 = 2 or d2 = 2
is trivial.

3 Connection to other open problems

We generalize the well-known transposition bound by using any surjective tensor-
stable positive map. Furthermore, we show how to obtain strong converse bounds on
the quantum capacity using tensor-stable positive maps. For the quantum capacity
assisted by 2-way classical communication we show that the transposition bound is
actually a strong converse bound.

A quantum channel T is called∞-locally entanglement annihilating if for any n ∈ N
and any input state ρ the output state T ⊗n (ρ) is fully separable (with respect to the
n tensor factors). If any tensor-stable positive map is trivial, then any ∞-locally en-
tanglement annihilating channel would be entanglement breaking. This would answer
an open question posed in [3].

4 Legal statement

The project was assigned by Michael Wolf. In all parts of this work, except the strong
converse bounds, I was significantly involved. I proved an upper bound on Q2, which
was replaced by the strong converse bound.
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I. INTRODUCTION AND MAIN RESULTS

Within the set Md of complex d × d-matrices we denote the cone of positive matrices by
M+

d (we call “positive semidefinite matrices” simply “positive matrices”). A linear map P :

Md1 →Md2 is called positive if P
(
M+

d1

)
⊆M+

d2
, and we then write P ≥ 0. We want to study

how positivity of a linear map behaves when taking tensor powers. Therefore we consider the
following:

Definition 1 (Tensor-stable positivity).

(i) A linear map P : Md1 → Md2 is called n-tensor-stable positive for some number
n ∈ N if the map P⊗n :Mdn1

→Mdn2
is positive.

(ii) A linear map P :Md1 →Md2 is called tensor-stable positive if the map P is n-tensor-
stable positive for all n ∈ N.

Note that every n-tensor-stable positive map is in particular a positive map. The following
example displays some maps that are easily seen to be tensor-stable positive. We will call all
maps from these classes trivial tensor-stable positive maps.

Example I.1 (Trivial tensor-stable positive maps).

1. All completely positive maps are tensor-stable positive, i.e. all linear maps T : Md1 →
Md2 such that (idd ⊗T ) :Md ⊗Md1 →Md ⊗Md2 is positive for all dimensions d ∈ N.

2. All maps of the form ϑd2 ◦ T for a completely positive map T : Md1 → Md2 and the
transposition ϑd :Md →Md are tensor-stable positive. The maps of this form are called
completely co-positive.

We will be concerned with three basic questions:

1. Are there any non-trivial tensor-stable positive maps?

2. How far away can an n-tensor-stable positive map be from the cones of completely positive
and completely co-positive maps (i.e. from the two cones of trivial tensor-stable positive
maps from Example I.1)?

3. What are the implications of question 1. for quantum information theory?

Our main results are the following. In section III we use (non-orthogonal) unextendible
product bases to show:

Theorem 1 (Existence of n-tensor-stable positive maps). For any n ∈ N and any d1, d2 ≥ 2
there exists an n-tensor-stable positive map P :Md1 →Md2 that is not a trivial tensor-stable
positive map.

Our construction used to obtain this theorem does not seem to suffice for constructing a
non-trivial tensor-stable positive map (i.e. one for all n ∈ N), and at the time of writing we do
not know whether such a map exists.

In section IV we discuss applications and implications of tensor-stable positive maps for quan-
tum information theory. We show that the existence of an ∞-locally entanglement annihilating
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channel [11, 12, 21] which is not entanglement breaking [18] implies the existence of non-trivial
tensor-stable positive maps. A quantum channel is called ∞-locally entanglement annihilating
if any state when sent through arbitrarily many copies of the channel becomes fully separable.
It is currently not known whether such channels exist outside the set of entanglement breaking
channels [10].

In Section IV B we generalize the well-known transposition bound [14] to show that tensor-
stable positive, but not completely positive, maps yield upper bounds on the quantum channel
capacity as well as strong converse rates for this task (Section IV D). In Section IV C we show
that the transposition bound is an upper bound even on the LOCC-assisted quantum capacity
(see also Corollary 2) and constitutes a strong converse rate for this task.

In light of these implications, deciding question 1. would have important consequences for
quantum information theory. Whereas we cannot resolve this question in general, in section V we
use techniques from the theory of entanglement distillation and a generalization of a technique
used in [27] to prove:

Theorem 2 (Only trivial tensor-stable positive maps in d = 2). There are no non-trivial
tensor-stable positive maps P :M2 →Md or P :Md →M2 for any d ∈ N.

Furthermore, a non-trivial tensor-stable positive map exists iff one exists within the following
one-parameter families based on Werner states [30]:

Theorem 3 (One-parameter family of candidates for non-trivial tensor-stable positivity). Let
d1, d2 ∈ N, d ∈ {d1, d2}, and for p ∈ [−1, 1] let

Pp :=Wp ⊗
(
ϑd ◦Wp

)
: Md ⊗Md →Md ⊗Md , (1)

where we define for X ∈Md:

Wp (X) :=
1

d2 − 1

(
(d− p) tr (X)1d − (1− dp)XT

)
. (2)

(i) If there exists a non-trivial tensor-stable positive map P :Md1 →Md2, then there exists
p ∈ [−1, 0) such that the map (1) is tensor-stable positive.

(ii) If for some p ∈ [−1, 0) the map (1) is tensor-stable positive, then it is non-trivial tensor-
stable positive (i.e. it is neither completely positive nor completely co-positive).

The aforementioned connection to the theory of entanglement distillation has the following
direct implication:

Theorem 4 (Non-trivial tensor-stable positivity implies NPPT-bound entanglement). If there
exists a non-trivial tensor-stable positive map P :Md1 →Md2, then there exist NPPT bound-
entangled states [8, 9, 17] in Md1 ⊗Md1 as well as in Md2 ⊗Md2.

After completion of this work, we learned that tensor-stable positive maps have been in-
troduced by M. Hayashi under the name “tensor product positive maps” in [13, chapter 5],
where it was furthermore shown that the quantum relative entropy does not increase under the
application of any trace-preserving tensor product positive map.
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II. NOTATION AND PRELIMINARIES

For every d ∈ N, we fix an orthonormal basis {|i〉}di=1 of the Hilbert space Cd, and denote
by ϑd(X) := XT the transposition w.r.t. that basis, the d-dimensional maximally entangled
state by |Ωd〉 := 1√

d

∑d
i=1 |ii〉 ∈ Md2 and the corresponding projection by ωd := |Ωd〉〈Ωd|. The

d× d−identity matrix will be denoted by 1d. The following Lemma collects two frequently used
and well-known techniques involving the maximally entangled state and linear maps that can
be proved by direct computation.

Lemma 1 (Tricks using the maximally entangled state).

1. For any d2 × d1-matrix X we have (1d1 ⊗X) |Ωd1〉 =
√

d2
d1

(
XT ⊗ 1d2

)
|Ωd2〉.

2. For any map L :Md1 →Md2 that is hermiticity-preserving (i.e. maps hermitian matrices
to hermitian matrices), we have (idd1 ⊗ L) (ωd1) = d2

d1
(ϑd1 ◦ L∗ ◦ ϑd2 ⊗ idd2) (ωd2).

In the above L∗ denotes the adjoint w.r.t. the Hilbert-Schmidt inner product.

We will frequently make use of the Choi-Jamiolkowski isomorphism between linear maps
L :Md1 →Md2 and matrices C ∈Md1⊗Md2 . The Choi matrix of such a linear map is defined
as CL := (idd1 ⊗ L) (ωd1). Note that we used the normalized maximally entangled state in this
definition. The following implications are well known:

• L : Md1 → Md2 is positive iff CL is block-positive, i.e. (〈φ| ⊗ 〈ψ|)C (|φ〉 ⊗ |ψ〉) ≥ 0 for
all |φ〉 ∈ Cd1 , |ψ〉 ∈ Cd2 .

• L :Md1 →Md2 is completely positive iff CL ≥ 0.

• L :Md1 →Md2 is completely co-positive iff CT2L ≥ 0.

For C ∈ Md1 ⊗Md2 we denote by CT2 := (idd ⊗ ϑd) (C) the partial transpose w.r.t. to the
second tensor-factor. The paradigm of a block-positive matrix that is not positive is the Choi
matrix of the transposition ωT2d = 1

dFd. Here Fd : Cd ⊗Cd → Cd ⊗Cd denotes the flip operator
with Fd|ij〉 = |ji〉.

Matrices C ∈ Md1 ⊗Md2 with CT2 ≥ 0 will be called PPT (positive partial transpose). A
matrix is called NPPT (non-positive partial transpose) if it is not PPT. The question of NPPT-
bound entanglement [8, 9, 17] concerns the problem of creating a maximally entangled state
from many copies of an NPPT-state using only local operations and classical communications
(LOCC) [6]. While it is clear that no maximally entangled state can be created from many
copies of a PPT-state it is currently unknown whether the same can be true for an NPPT-state.

The �-norm [23] is defined as ‖L‖� := supn∈N sup‖X‖1=1 ‖ (idn ⊗ L) (X) ‖1 for a linear map
L :Md1 →Md2 .

III. PROOF OF THEOREM 1

Our proof of Theorem 1 uses the following quantitative version of the result [7, Lemma
22] about tensor products of generalizations of unextendible product bases [1], whose elements
are not necessarily mutually orthogonal. For the following, we call a matrix P ∈ Md1 ⊗Md2

separable if it can be written as P =
∑k

i=1Ai ⊗ Bi for some k ∈ N and matrices Ai ∈ Md1 ,
Bi ∈Md2 with Ai ≥ 0 and Bi ≥ 0.
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Lemma 2 (Multiplicativity of minimal overlap with product states). For a separable matrix
P ∈Md1 ⊗Md2, define

µ := min{(〈ψ| ⊗ 〈φ|)P (|ψ〉 ⊗ |φ〉) : |ψ〉 ∈ Cd1 , |φ〉 ∈ Cd2 , 〈ψ|ψ〉 = 〈φ|φ〉 = 1}.

Then, for all n ∈ N, we have

min{(〈Ψ| ⊗ 〈Φ|)P⊗n (|Ψ〉 ⊗ |Φ〉) : |Ψ〉 ∈
(
C
d1
)⊗n

, |Φ〉 ∈
(
C
d2
)⊗n

, 〈Ψ|Ψ〉 = 〈Φ|Φ〉 = 1} = µn.

In particular, if there is no nonzero product vector in the kernel of P , then there is none in the
kernel of P⊗n.

The connection to [7, Lemma 22] becomes clear by noting that any separable matrix P ∈
Md1⊗Md2 admits a decomposition of the form P =

∑N
i=1 |ψi〉〈ψi|⊗|φi〉〈φi| such that ker (P ) =(

span{|ψi〉 ⊗ |φi〉}Ni=1

)⊥
. Hence for µ > 0 the set {|ψi〉 ⊗ |φi〉} forms an unextendible product

set.
For the following proof we will need the minimal output eigenvalue of a completely positive

map T :Md1 →Md2 defined as

λmin
out [T ] := min

ρ∈Dd1
λmin (T (ρ)) . (3)

Here λmin (·) denotes the minimal eigenvalue and Dd1 is the set of quantum states in Md1 . For
any entanglement breaking map T and any completely positive map S we prove in Theorem 9
(Appendix B) that

λmin
out [T ⊗ S] = λmin

out [T ]λmin
out [S] .

Thus, λmin
out is multiplicative for entanglement breaking maps.

proof of Lemma 2. Consider the completely positive map T :Md1 →Md2 such that P = CT .
Then we have

(〈Ψ| ⊗ 〈Φ|)P⊗k (|Ψ〉 ⊗ |Φ〉) =
1

dk1
〈Φ|T ⊗k

(
|Ψ〉〈Ψ|

)
|Φ〉

for all k ∈ N and all |Ψ〉 ∈
(
Cd1

)⊗k
, |Φ〉 ∈

(
Cd2

)⊗k
. Using the minimal output eigenvalue (3)

we have for any k ∈ N

λmin
out (T ⊗k) = dk1 min

{
(〈Ψ|〈Φ|)P⊗k (|Ψ〉|Φ〉) : |Ψ〉 ∈ (Cd1)⊗k, |Φ〉 ∈ (Cd2)⊗k, ‖Ψ‖ = ‖Φ‖ = 1

}
.

As P is separable the map T is entanglement breaking [18] and we can apply Theorem 9 from
Appendix B. This shows that λmin

out (T ⊗n) = λmin
out (T )n and finishes the proof.

With this ingredient we prove Theorem 1:

proof of Theorem 1. Choose orthonormal bases {|i〉} ⊆ Cd1 and {|j〉} ⊆ Cd2 and define the
operator

P :=
(
|1〉|1〉+ |2〉|2〉

)(
〈1|〈1|+ 〈2|〈2|

)
+ |1〉|2〉〈1|〈2| + |2〉|1〉〈2|〈1|

+
∑

(i,j)
i>2 or j>2

|i〉|j〉〈i|〈j| ∈ Md1 ⊗Md2 . (4)
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It is easy to verify that

P =

3∑

k=1

1

3
|ξk〉〈ξk| ⊗ |ξk〉〈ξk|+

∑

(i,j)
i>2 or j>2

|i〉〈i| ⊗ |j〉〈j|

for |ξk〉 = |0〉+ e
2πik
3 |1〉. This shows that P is separable as a sum of positive product operators.

Now define

µ := min{(〈ψ| ⊗ 〈φ|)P (|ψ〉 ⊗ |φ〉) : |ψ〉 ∈ Cd1 , |φ〉 ∈ Cd2 , 〈ψ|ψ〉 = 〈φ|φ〉 = 1}

and apply Lemma 2 showing that for any k ∈ N:

min{(〈Ψ| ⊗ 〈Φ|)P⊗k (|Ψ〉 ⊗ |Φ〉) : |Ψ〉 ∈
(
C
d1
)⊗k

, |Φ〉 ∈
(
C
d2
)⊗k

, 〈Ψ|Ψ〉 = 〈Φ|Φ〉 = 1} = µk.

As the kernel ker(P ) = span{|1〉|1〉 − |2〉|2〉} of P in (4) contains no nonzero product vector we
have µ > 0. With this we can compute

(
〈Ψ| ⊗ 〈Φ|

)
(P − ε1d11d2)⊗n

(
|Ψ〉 ⊗ |Φ〉

)
≥
bn
2
c∑

k=0

(
n

2k

)
ε2kµn−2k −

bn+1
2
c∑

k=1

(
n

2k − 1

)
ε2k−1‖P‖n−2k+1

∞

(5)

=
(µ+ ε)n + (µ− ε)n

2
− (‖P‖∞ + ε)n − (‖P‖∞ − ε)n

2
≥ µn − (‖P‖∞ + ε)n + ‖P‖n∞ ≥ 0

for any 0 ≤ ε ≤ n
√
‖P‖n∞ + µn−‖P‖∞. This means that (P − ε1d1d2)⊗n ∈ (Md1)⊗n⊗ (Md2)⊗n

is a block-positive operator for any ε ∈
[
0, n
√
‖P‖n∞ + µn − ‖P‖∞

]
, which by the Choi-

Jamiolkowski isomorphism (Section II) corresponds to a positive linear map P⊗nε : (Md1)⊗n →
(Md2)⊗n. The map Pε : Md1 → Md2 with Choi matrix (P − ε1d1d2) is thus n-tensor-stable
positive. Note that P is rank-deficient and as P T2 equals the expression (4) with the first terms
replaced by (|1〉|2〉+ |2〉|1〉)(〈1|〈2|+ 〈2|〈1|) + |1〉|1〉〈1|〈1|+ |2〉|2〉〈2|〈2| it is rank-deficient as well.
Hence, the Choi matrices (P − ε1d1d2) and (P T2 − ε1d1d2) of P respectively ϑd2 ◦ P are not
positive for ε > 0, which finally shows that Pε is not a trivial tensor-stable positive map for any

ε ∈
(

0, n
√
‖P‖n∞ + µn − ‖P‖∞

]
.

IV. APPLICATIONS TO QUANTUM INFORMATION THEORY

Deciding the existence of non-trivial tensor-stable positive maps could lead to a solution of
other open problems in quantum information theory. Here we will discuss two such connections.

A. Entanglement annihilating channels

In [10–12, 21] the authors study how entanglement in a multipartite setting can be destroyed
by dissipative processes. They define the set of k-locally entanglement annihilating channels.
These are quantum channels T : Md1 → Md2 such that T ⊗k (ρ) is k-partite separable for all

input states ρ ∈ Mdk1
, i.e. for all ρ ≥ 0 we have T ⊗k (ρ) =

∑m
i=1 piσ

(1)
i ⊗ σ

(2)
i ⊗ · · · ⊗ σ

(k)
i for
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some m ∈ N, states σ
(j)
i ∈ Md2 and pi ∈ R+ depending on ρ. Furthermore, a channel is called

∞-locally entanglement annihilating if it is k-locally entanglement annihilating for all k ∈ N.
It is clear that entanglement breaking channels [18] are∞-locally entanglement annihilating.

In [11, 21] examples of 2-locally entanglement annihilating channels are constructed that are not
entanglement breaking. However it is not known whether there exist an∞-locally entanglement
annihilating channel, which is not entanglement breaking.

We can prove the following theorem connecting k-locally entanglement annihilating channels
to tensor-stable positive maps.

Theorem 5. If the quantum channel T : Md1 → Md2 is k-locally entanglement annihilating
for some k ≥ 2, but not entanglement breaking, then there exists a positive map S :Md2 →Md1

such that P :Md21
→Md21

defined as

P = (S ◦ T )⊗ (ϑ ◦ S ◦ T ) (6)

is a bk2c-tensor-stable positive map that is not a trivial tensor-stable positive map.
Thus, the existence of a non-entanglement breaking ∞-locally entanglement annihilating

channel implies the existence of a non-trivial tensor-stable positive map.

Proof. Assume that T : Md1 →Md2 is a k-locally entanglement annihilating channel. If T is
not entanglement breaking, then there exists a positive map S : Md2 →Md1 such that S ◦ T
is not completely positive [16]. Now consider the map P : Md21

→ Md21
defined in (6). As

T : Md1 → Md2 is k-entanglement annihilating, P is bk2c-tensor-stable positive. Furthermore
it is neither completely positive nor completely co-positive.

By our Theorem 4, the existence of a ∞-locally entanglement annihilating but not entangle-
ment breaking channel then implies the existence of NPPT-bound entanglement.

B. Upper bounds on the quantum capacity

The existence of non-trivial tensor-stable positive maps would imply new bounds on the
quantum capacity of a quantum channel. By generalizing the proof of the transposition cri-
terion [14, 19] we obtain a quantitative bound on the quantum capacity Q (T ) of a quantum
channel. Recall that the quantum capacity is defined as:

Definition 2 (Quantum capacity Q, see [19, 20]).
The quantum capacity of a quantum channel T :Md1 →Md2 is defined as

Q (T ) := sup{R ∈ R+ : R achievable rate},

where a rate R ∈ R+ is called achievable if there exist sequences (nν)∞ν=1 , (mν)∞ν=1 such that

R = lim supν→∞
nν log2(d)

mν
and the approximation error vanishes in the asymptotic limit, i.e.

inf
E,D

1

2

∥∥id⊗nνd −D ◦ T ⊗mν ◦ E
∥∥
� → 0 as ν →∞. (7)

Here, the infimum runs over all encoding and decoding quantum channels E :M⊗nνd →M⊗mνd1

and D : M⊗mνd2
→ M⊗nνd , and d ≥ 2 is any fixed integer (note, the value of Q (T ) does not

depend on the choice of d [19]).
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Currently all channels known to have zero quantum capacity come from two classes [26].
These are the classes of anti-degradable channels [2, 5] and of completely co-positive quantum
channels. The latter can be shown using the quantitative transposition bound [14]

Q (T ) ≤ log2 (||ϑd2 ◦ T ||�) (8)

on the quantum capacity of any quantum channel T : Md1 → Md2 . We will now prove a
generalization of this bound using any surjective, unital and tensor-stable positive map P :
Md3 →Md2 that is not completely positive. Note that any surjective linear map P : Md3 →
Md2 has a linear right-inverse P−1 :Md2 →Md3 (generally not unique) satisfying P ◦ P−1 =
idd2 .

Theorem 6. Let T :Md1 →Md2 be a quantum channel and P :Md3 →Md2 be a surjective,
unital and tensor-stable positive map that is not completely positive, and let P−1 be any right-
inverse of P. Then we have

Q (T ) ≤ log2

(
||P−1 ◦ T ||�||P∗ (1d2) ||∞

)
log2(d2)

log2 (||P∗||�)
Note that the transposition bound (8) is retrieved for P = ϑd2.

Proof. As P∗ is trace-preserving but not completely positive, we have ||P∗||� > 1 [23], and from
the definition of the diamond norm it is furthermore ||P∗||� = ||ϑd3 ◦ P∗ ◦ ϑd2 ||�. Now we can do
the following calculation, which generalizes the proof of the transposition bound [14, 19]. Let
E :M⊗nνd2

→M⊗mνd1
and D :M⊗mνd2

→M⊗nνd2
denote arbitrary quantum channels. Then:

||ϑd3 ◦ P∗ ◦ ϑd2 ||nν� = ||(ϑd3 ◦ P∗ ◦ ϑd2)⊗nν ◦
(

id⊗nνd2
−D ◦ T ⊗mν ◦ E +D ◦ T ⊗mν ◦ E

)
||�

≤ || (ϑd3 ◦ P∗ ◦ ϑd2)⊗nν ◦ (id⊗nνd2
−D ◦ T ⊗mν ◦ E)||� + || (ϑd3 ◦ P∗ ◦ ϑd2)⊗nν ◦ D ◦ T ⊗mν ◦ E||�

≤ 2εν ||ϑd3 ◦ P∗ ◦ ϑd2 ||nν� + || (ϑd3 ◦ P∗ ◦ ϑd2)⊗nν ◦ D ◦ P⊗mν ||� ||P−1 ◦ T ||mν� ,

where we abbreviated the approximation error by εν := ||id⊗nνd2
− D ◦ T ⊗mν ◦ E||�/2 and used

well-known properties [23] of the �-norm. Note that by Lemma 1 we have
(

iddmν3
⊗
[
(ϑd3 ◦ P∗ ◦ ϑd2)⊗nν ◦ D ◦ P⊗mν

]) (
ω⊗mνd3

)

=

(
d2

d3

)mν
ϑ
d
⊗(mν+nν )
3

◦ (P∗)⊗(mν+nν) ◦ϑ
d
⊗(mν+nν )
2

◦
(

iddmν2
⊗D

)(
ω⊗mνd2

)
≥ 0,

since P∗ is also tensor-stable positive. Thus, the map (ϑd3 ◦ P∗ ◦ ϑd2)⊗nν ◦D◦P⊗mν is completely
positive, and by unitality of P we have

|| (ϑd3 ◦ P∗ ◦ ϑd2)⊗nν ◦ D ◦ P⊗mν ||� = ||P∗ (1d2) ||mν∞
for all quantum channels D, as any positive map attains its operator norm at the identity
matrix [23, Corollary 2.9]. Inserting this into the above calculation we have

(1− 2εν) ||P∗||nν� = (1− 2εν) ||ϑd3 ◦ P∗ ◦ ϑd2 ||nν� ≤ ||P∗ (1d2) ||mν∞ ||P−1 ◦ T ||mν� .

Applying the logarithm and taking the limit ν →∞ we obtain

R = lim sup
ν→∞

nν log2(d2)

mν
≤ log2

(
||P−1 ◦ T ||�||P∗ (1d2) ||∞

)
log2(d2)

log2 (||P∗||�)
for any achievable rate R (see Definition 2) and corresponding coding schemes E ,D with εν →
0.
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To apply Theorem 6 it is enough to have a surjective and tensor-stable positive map R :
Md3 →Md2 which is not completely positive. Note that as R is surjective, it is easy to see that
the operator R(1d3) is strictly positive, and thus the map P :Md3 →Md2 defined by P(X) :=
R(1d3)−1/2R(X)R(1d3)−1/2 is unital, surjective and tensor-stable positive. Furthermore, P is
completely (co-)positive if and only if R was completely (co-)positive. Thus, we constructed a
map P as needed for Theorem 6.

Note that for completely co-positive maps P the capacity bound from Theorem 6 is worse than
the transposition bound given by (8). To prove this let P = ϑd2 ◦ S for a surjective, unital and
completely positive map S :Md3 →Md2 . Then, due to the invertibility of ϑd2 , any right-inverse
P−1 of P can be written as P−1 = S−1 ◦ ϑd2 with a right-inverse S−1 :Md2 →Md3 of S. By
unitality of P and basic properties of the �-norm (see for instance [23, Exercise 3.11 and Corollary
2.9]) we have ||P∗||� ≤ d2||P∗||1→1 = d2, and furthermore ||P∗ (1d2) ||∞ = ||S∗ (1d2) ||∞ = ||S||�
since S is completely positive. Thus, for any quantum channel T :Md1 →Md2 we have:

log2

(
||P−1 ◦ T ||�||P∗ (1d2) ||∞

)
log2 d2

log2 (||P∗||�)
≥ log2

(
||S−1 ◦ ϑd2 ◦ T ||�||S||�

)
≥ log2 ||ϑd2 ◦ T ||� ≥ Q (T ) .

Therefore, to obtain a capacity bound stronger than the transposition bound (8), one would
need a non-trivial tensor-stable positive map P.

Similarly, if P :Md1 →Md3 is a trace-preserving and tensor-stable positive map that is not
completely positive and that has a left-inverse P−1 : Md3 → Md1 , then the following bound
holds for any quantum channel T :Md1 →Md2 :

Q (T ) ≤ log2

(
||T ◦ P−1||�

)
log2(d1)

log2 (||P∗||�/||P (1d1) ||∞)
. (9)

The proof works in the same way as the proof of Theorem 6, and again, this bound reduces to
the transposition bound (8) for P = ϑd1 .

C. Transposition bound as a strong converse rate for the two-way quantum capacity

We now prove that the transposition bound (8) is even an upper bound on the capacity
Q2(T ) ≥ Q(T ) of any channel T for forward communication of quantum information assisted
by unrestricted two-way classical side communication between both parties and arbitrary local
quantum operations (LOCC).

For this, we first define an LOCC channel (w.r.t. bipartitions A : B and A′ : B′ of the input
and output systems, respectively) to be any quantum channel LA:B→A′:B′ : MdA ⊗MdB →
MdA′ ⊗ MdB′ that can be written as a sequential concatenation of any number of channels
LAq :Bq→A′qA′c:B′qB′c of the following form (XAqBq ∈MdAq

⊗MdBq
):

LAq :Bq→A′qA′c:B′qB′c(XAqBq) =
∑

i,j

(KA
i ⊗KB

j )XAqBq(K
A
i ⊗KB

j )† ⊗ |j〉〈j|A′c ⊗ |i〉〈i|B′c , (10)

whereKA
i : C|Aq | → C

|A′q | andKB
j : C|Bq | → C

|B′q | (i ∈ I, j ∈ J) are Kraus operators of quantum

channels mapping system A to A′q and system B to B′q respectively (i.e.
∑

i(K
A
i )†KA

i = 1Aq

and
∑

j(K
B
j )†KB

j = 1Bq), and |j〉A′c and |i〉B′c are orthonormal bases belonging to (effectively
classical) systems Ac and Bc of dimension |J | and |I| (see [6] for more details). When one of the
systems, such as B, is trivial (i.e. one-dimensional), we also speak of a LOCC channel LA→A′:B′ ,
omitting the indices of the trivial subsystems. From the definition it is clear that any LOCC
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channel LA:B→A′:B′ :MdA ⊗MdB →MdA′ ⊗MdB′ is PPT preserving (w.r.t. bipartitions A : B
and A′ : B′), meaning that the map (idA′⊗ϑB′)LA:B→A′:B′(idA⊗ϑB) is completely positive and
therefore a quantum channel, whose �-norm equals 1. We can now define the two-way quantum
capacity.

Definition 3 (Two-way quantum capacity Q2).
Given a quantum channel T : Md1 → Md2, we define an (N,m, ε)-scheme for quan-

tum communication with two-way classical communication to be any set of LOCC channels
LAi:BtiBi→Ati+1Ai+1:Bi+1

for i = 0, . . . ,m, where the initial A-system and final B-system are of

the same dimension N = |A0| = |Bm+1| and are identified with each other, A0 = Bm+1, the
initial B-system and final A-system are trivial, |Bt

0| = |B0| = |Atm+1| = |Am+1| = 1, and the sub-
systems used for quantum transmission (hence the superscript “t”) are of dimensions |Ati| = d1

and |Bt
i | = d2 for i = 1, . . . ,m, and ε is the �-norm error of the scheme,

ε =
∥∥idA0→Bm+1−LAm:BtmBm→Bm+1

◦ TAtm→Btm ◦ LAm−1:Btm−1Bm−1→AmAtmBm ◦ TAtm−1→Btm−1
◦ . . .

. . . ◦ TAt2→Bt2 ◦ LA1:Bt1B1→At2A2:B2
◦ TAt1→Bt1 ◦ LA0→At1A1:B1

∥∥
� / 2 , (11)

omitting for brevity the action of the identity channel on some subsystems, e.g. in TAti→Bti ≡
(TAti→Bti ⊗ idAi ⊗ idBi).

We call R ∈ R+ an achievable rate for quantum communication over the channel T assisted
by two-way classical communication if there exists for each ν ∈ N a (Nν ,mν , εν)-scheme as just

defined in such a way that R = lim supν→∞
log2(Nν)
mν

and limν→∞ εν = 0. The two-way quantum
capacity Q2(T ) is defined to be the supremum of all such achievable rates.

To prove the following statements about Q2 we need only the PPT preserving property of
the LOCC channels in the above coding scheme. The statements hold therefore more generally
for quantum communication assisted by any PPT preserving channels.

Lemma 3 (Error of two-way coding schemes). Let T :Md1 →Md2 be a quantum channel and
suppose there exists a (N,m, ε)-scheme for quantum communication with two-way classical side
communication. Then:

ε ≥ 1−
∥∥ϑd2 ◦ T

∥∥m
�

N
.

Proof. The following proof generalizes ideas from the examples in [22, Section III]. We fol-
low through the m steps of the given (N,m, ε)-scheme (cf. Definition 3) and examine how
the partially transposed communication channel between the two parties evolves. For this, let

S(1)

A0→At1A1B1
:= LA0→At1A1B1

and for i = 1, . . . ,m,

S(i+1)

A0→Ati+1Ai+1Bi+1
:= (LAi:BtiBi→Ati+1Ai+1:Bi+1

) ◦ (TAti→Bti ⊗ idAi ⊗ idBi) ◦ S
(i)

A0→AtiAiBi
.

As each LOCC map in the communication scheme is PPT preserving and using that the trans-
position is an involution, i.e. ϑBtiBi ◦ (ϑBti ⊗ ϑBi) = idBtiBi we have:
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∥∥(idAti+1Ai+1
⊗ ϑBi+1) ◦ S(i+1)

A0→Ati+1Ai+1Bi+1

∥∥
�

=
∥∥(idAti+1Ai+1

⊗ ϑBi+1) ◦ (LAi:BtiBi→Ati+1Ai+1:Bi+1
) ◦ (idAi ⊗ ϑBtiBi) ◦

◦ (idAi ⊗ ϑBti ⊗ ϑBi)(TAti→Bti ⊗ idAi ⊗ idBi) ◦ S
(i)

A0→AtiAiBi
∥∥
�

≤
∥∥(idAti+1Ai+1

⊗ ϑBi+1) ◦ (LAi:BtiBi→Ati+1Ai+1:Bi+1
) ◦ (idAi ⊗ ϑBtiBi)

∥∥
�

·
∥∥ϑBti ◦ TAti→Bti

∥∥
� ·
∥∥(idAtiAi ⊗ ϑBi) ◦ S

(i)

A0→AtiAiBi
∥∥
�

=
∥∥ϑd2 ◦ T

∥∥
� ·
∥∥(idAtiAi ⊗ ϑBi) ◦ S

(i)

A0→AtiAiBi
∥∥
�

for i = 1, . . . ,m, and ‖(idAt1A1
⊗ ϑB1) ◦ S(1)

A0→At1A1B1
‖� = ‖(idAt1A1

⊗ ϑB1) ◦ LA0→At1A1B1
‖� = 1.

From these relations we obtain inductively, recalling that Atm+1 and Am+1 are trivial one-

dimensional systems whereas A0 = Bm+1 are N -dimensional and abbreviating S := S(m+1)
A0→Bm+1

:
MN →MN :

∥∥ϑN ◦ S
∥∥
� =

∥∥ϑBm+1 ◦ S
(m+1)
A0→Bm+1

∥∥
� ≤

∥∥ϑd2 ◦ T
∥∥m
� . (12)

Next, we bound the �-norm error ε of the communication scheme (see Definition 3) from
below by evaluating at the N -dimensional maximally entangled state ωN = ωA0R between the
two N -dimensional systems A0 and R and twirling over a representation of the unitary group
U(N). For this we note that the twirled state is

∫

U(N)
dU (U ⊗ U) (S ⊗ idN )(ωN ) (U ⊗ U)† = pωN + (1− p)(1N2 − ωN )/(N2 − 1)

with p := tr (ωN (S ⊗ idN )(ωN )) by Appendix A.

ε =
1

2

∥∥idN − S
∥∥
� ≥

1

2

∥∥((idN − S)⊗ idN )(ωN )
∥∥

1

=
1

2

∫

U(N)
dU
∥∥(U ⊗ U)(ωN − (S ⊗ idN )(ωN ))(U ⊗ U)†

∥∥
1

≥ 1

2

∥∥ωN −
∫

U(N)
dU (U ⊗ U) (S ⊗ idN )(ωN ) (U ⊗ U)†

∥∥
1

=
1

2

∥∥(1− p)ωN − (1− p)
(
1N2 − ωN

)
/(N2 − 1)

∥∥
1

= 1− p .

We now derive an upper bound on p, by using similar steps starting from (12) and noting that
N(ϑN ⊗ idN )(ωN ) = FN is the flip operator:
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∥∥ϑd2 ◦ T
∥∥m
� ≥

∥∥ϑN ◦ S
∥∥
� ≥

∥∥((ϑN ◦ S)⊗ idN
)
(ωN )

∥∥
1

=

∫

U(N)
dU
∥∥(U ⊗ U)

(
(ϑN ◦ S)⊗ idN

)
(ωN ) (U

† ⊗ U †)
∥∥

1

≥
∥∥∥∥∥
(
ϑN ⊗ idN

)
(∫

U(N)
dU (U ⊗ U) (S ⊗ idN )(ωN ) (U † ⊗ U †)

)∥∥∥∥∥
1

=

∥∥∥∥
(
ϑN ⊗ idN

)(
pωN +

1− p
N2 − 1

(1N2 − ωN )

)∥∥∥∥
1

=

∥∥∥∥
Np+ 1

N(N + 1)

1N2 + FN
2

+
Np− 1

N(N − 1)

1N2 − FN
2

∥∥∥∥
1

= |Np+ 1|/2 + |Np− 1|/2 ≥ Np .

Combining this bound with the above relation between p and ε yields the claim.

We can now state our capacity bound:

Theorem 7 (Strong converse upper bound on the two-way capacity Q2(T )). Let T : Md1 →
Md2 be a quantum channel. Then:

Q2(T ) ≤ log2 (‖ϑd2 ◦ T ‖�) .

Moreover, let for each ν ∈ N an (Nν ,mν , εν)-scheme for quantum communication over T
assisted by two-way classical communication be given in such a way that limν→∞mν =∞, and
define the lower code rate Rinf := lim infν→∞

log2(Nν)
mν

. If Rinf > log2 (‖ϑd2 ◦ T ‖�), then the
�-norm error εν of the sequence converges to 1 (exponentially fast in mν).

Proof. To prove the first statement, suppose that a rate R = lim supν→∞
log2(Nν)
mν

> log2(‖ϑd2 ◦
T ‖�) is achievable by schemes with parameters (Nν ,mν , εν) (cf. Definition 3). Then, for any
χ ∈ R with ‖ϑd2 ◦ T ‖� < χ < 2R, we have Nν ≥ χmν for infinitely many values of ν ∈ N. Thus,
by Lemma 3,

lim sup
ν→∞

εν ≥ 1− lim inf
ν→∞

‖ϑd2 ◦ T ‖mν�
Nν

≥ 1− lim inf
ν→∞

(‖ϑd2 ◦ T ‖�
χ

)mν
> 0 .

which contradicts the requirement limν→∞ εν = 0.
The second statement follows similarly by noting that for any χ < 2Rinf , one has Nν ≥ χmν

for almost all ν ∈ N.

The second part of Theorem 7 means that log2(‖ϑd2 ◦T ‖�) is not only an upper bound on the
two-way capacity Q2(T ), but even a strong converse rate for quantum communication over T
assisted by free two-way classical communication. This generalizes the examples in [22, Section
III], which are obtained for completely co-positive channels T , whereQ2(T ) = log2(‖ϑd2◦T ‖�) =
0, and for the identity channel T = idd, where log2(‖ϑd ◦ T ‖�) = log2(d) = Q2(T ). The
entanglement cost EC(T ) has been established as a strong converse rate for Q2 [3], although
it can be larger than our bound. In recent work [29] is has been shown that the upper bound
log2(‖ϑd2 ◦T ‖�) from Eq. (8), and improvements thereof, are strong converse rates for the usual
quantum capacity Q from Definition 2, even when allowing for arbitrary LOCC operations at
the beginning and the end of the protocol. The case of free LOCC communication during the
protocol as in Definition 3 has however not been resolved in ref. [29].
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Even the capacity bound on Q2(T ) from the first part of Theorem 7 seems to be new. In
particular, an upper bound on Q2(T ) for pure-loss bosonic channels was derived in [28, Section
6] based on the squashed entanglement of T . And while this was noted for pure-loss channels
T to agree with the transposition bound (8) on Q(T ), the question was left open whether the
transposition bound is a general upper bound on two-way capacity Q2(T ).

D. Strong converse rate from tensor-stable positive maps

With ideas from the proofs of Lemma 3 and Theorem 6, we can use any surjective, unital and
tensor-stable positive map P : Md3 → Md2 that is not completely positive to derive a strong
converse rate for the usual quantum capacity Q(T ) of any quantum channel T : Md1 → Md2

(see Definition 2). The strong converse rate we obtain is

log2

(
‖P−1 ◦ T ‖� ‖P∗ (1d2) ‖∞

)
log2(d2)

log2 (‖(P∗ ⊗ idd2)(ωd2)‖1)
, (13)

which is always at least as big as our upper bound on Q(T ) from Theorem 6, due to ‖P∗‖� ≥
‖(P∗ ⊗ idd2)(ωd2)‖1. The proof that (13) is a strong converse rate for the desired task follows
from the following Lemma in the same way as Theorem 7 follows from Lemma 3.

Lemma 4. Let T : Md1 → Md2 be a quantum channel and P : Md3 → Md2 be a surjective,
unital and tensor-stable positive map that is not completely positive, and let P−1 be any right-
inverse of P. Let n,m ∈ N. Then:

inf
E,D

1

2

∥∥∥id⊗nd2 −D ◦ T
⊗m ◦ E

∥∥∥
�
≥ 1− 1

d2n
2

−
(
‖P∗(1d2)‖∞ ‖P−1 ◦ T ‖�

)m
+ 2

‖(P∗ ⊗ idd2)(ωd2)‖n1
,

where the infimum is over all quantum channels E :M⊗nd2 →M
⊗m
d1

and D :M⊗md2 →M
⊗n
d2

.

Proof. Fix E , D. As in the proof of Lemma 3, we bound the �-norm with the maximally
entangled state ωdn2 of dimension dn2 and then twirl:

1

2

∥∥∥id⊗nd2 −D ◦ T
⊗m ◦ E

∥∥∥
�
≥ 1

2

∥∥∥∥∥ωdn2 −
∫

U(dn2 )
dU (U ⊗ U) ρ (U ⊗ U)†

∥∥∥∥∥
1

= 1− p ,

where we denoted ρ := ((D ◦ T ⊗m ◦ E) ⊗ iddn2 )(ωdn2 ), and used
∫
dU (U ⊗ U) ρ (U ⊗ U)† =

pωdn2 +(1−p)(1d2n2 −ωdn2 )/(d2n
2 −1) for p := tr (ωN ρ). For any unitary U ∈ U(dn2 ) we now define

the unital quantum channel CU :M⊗nd2 →M
⊗n
d2

by CU (X) := UXU † for all X ∈M⊗nd2 and reuse
some arguments from the proof of Theorem 6:

‖P∗(1d2)‖m∞ ‖P−1 ◦ T ‖m� ≥
∫

U(dn2 )
dU
∥∥(ϑd3 ◦ P∗ ◦ ϑd2)⊗n ◦ CU ◦ D ◦ P⊗m

∥∥
�
∥∥(P−1)⊗m ◦ T ⊗m ◦ E

∥∥
�

≥
∫

U(dn2 )
dU
∥∥(((ϑd3 ◦ P∗ ◦ ϑd2)⊗n ◦ CU ◦ D ◦ T ⊗m ◦ E)⊗ CU

)
(ωdn2 )

∥∥
1

≥
∥∥∥∥
(
(ϑd3 ◦ P∗ ◦ ϑd2)⊗n ⊗ iddn2

)(
pωdn2 +

1− p
d2n

2 − 1
(1d2n2 − ωdn2 )

)∥∥∥∥
1

≥ pd2n
2 − 1

d2n
2 − 1

∥∥((ϑd3 ◦ P∗ ◦ ϑd2)⊗n ⊗ iddn2
) (
ωdn2
)∥∥

1
− 1− p
d2n

2 − 1

∥∥∥
(
(ϑd3 ◦ P∗ ◦ ϑd2)⊗n ⊗ iddn2

) (
1d2n2

)∥∥∥
1

≥
(
p− 1

d2n
2

)
‖(P∗ ⊗ idd2) (ωd2)‖n1 − 2 .
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Converting this to an upper bound on p and combining with the above relation, we obtain the
claim.

V. DISTILLATION SCHEMES FOR TENSOR-STABLE POSITIVE MAPS

A. Quantifying the distance from the completely positive maps

For a given hermiticity-preserving map P :Md1 →Md2 we define a distance from the set of
completely positive maps as

dCP (P) :=
1

2
(||CP ||1 − tr (CP)) . (14)

By the Choi-Jamiolkowski isomorphism, P is completely positive iff CP ≥ 0, i.e. iff dCP(P) =
0, whereas dCP(P) > 0 otherwise. The distance dCP(P) is just the absolute value of the sum
of negative eigenvalues of the Choi matrix CP of P. The following lemma gives a useful upper
bound on dCP:

Lemma 5. Let P :Md1 →Md2 be a positive map. If there exists a linear map R :Md1 →Md1

such that R⊗P is a positive map, then

dCP(P) ≤ ||idd1 −R||�||P||�. (15)

Proof. By elementary properties of the �-norm and using positivity of R⊗P we have

||idd1 −R||�||P||� ≥ ||ωd1 − (R⊗ idd1) (ωd1) ||1||P||� ≥ ||(idd1 ⊗ P)(ωd1)− (R⊗P)(ωd1)||1
≥ inf

X≥0
||CP −X||1.

And for any hermitian matrix H we have infX≥0 ||H − X||1 = 1
2 (||H||1 − tr (H)) by Weyl’s

inequalities [4, Corollary III.2.2].

Note that in the case of P :Md1 →Md2 being completely positive we can use R = idd1 in
order to verify that dCP(P) = 0 using Lemma 5.

To apply Lemma 5 for an n-tensor-stable positive map P : Md1 → Md2 we have to find a
suitable map R :Md1 →Md1 such that R⊗ P is positive and R is close to the identity map.
A convenient way to construct such an R is by considering generalized “coding schemes” of the
form

R =
m∑

i=1

Di ◦ P⊗(n−1) ◦ Ei (16)

with completely positive maps Ei :Md1 →Mdn−1
1

and Di :Mdn−1
2
→Md1 . Indeed, as P⊗n ≥ 0

we have

R⊗P =
m∑

i=1

(Di ⊗ idd2) ◦
(
P⊗n

)
◦ (Ei ⊗ idd1) ≥ 0.

As R⊗P is positive for all choices of Ei and Di in (16) we can optimize over these completely
positive maps trying to make ||idd1 −R||� as small as possible. This proves:
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Corollary 1. Let P :Md1 →Md2 be an n-tensor-stable positive map, P 6= 0. Then

dCP(P)

||P||�
≤ inf

m,Ei,Di
||idd1 −

m∑

i=1

Di ◦ P⊗(n−1) ◦ Ei||�, (17)

where the infimum is taken over m ∈ N and completely positive maps Ei,Di.

The map R in (16) can be interpreted as a coding scheme where quantum information is
encoded by the completely positive maps Ei, sent through (n−1) uses of the map P, and decoded
using the maps Di. The indices i can be seen as classical information which is communicated
from the sender to the receiver for free and without noise. A special case of this technique for
m = 1 and projectors E1,D1 has been used in ref. [27].

If P is tensor-stable positive we can take the limit n→∞ of the approximation error on the
right-hand-side of (17). As the left-hand-side in (17) does not depend on n, the approximation
error cannot vanish in the limit n→∞ unless P is completely positive.

As a first application of this idea we derive sufficient criteria for a quantum channel
T : Md1 → Md2 to have Q2 (T ) = 0 (see Definition 3). For this, note that the alternating
application of the LOCC maps and the m channel uses in Eq. (11) can be written as

LAm:BtmBm→Bm+1
◦ . . . ◦ TAt1→Bt1 ◦ LA0→At1A1:B1

(ρ) =
∑

k

KB
k T⊗m

(
KA
k ρ (KA

k )†
)

(KB
k )† ,

where here the KA
k (with a multi-index k) are simply all the time-ordered products of Kraus

operators (KA
i ⊗|j〉) on the sender’s side from (10) occurring in the LOCC maps in (11); similarly

for KB
k on the receiver’s side. Thus, by defining completely positive maps Ek : MA0 → M⊗md1

and Dk : M⊗md2 → MBm+1 by Ek(X) := KA
k X (KA

k )† and Dk(Y ) := KB
k Y (KB

k )†, we have
shown the existence of completely positive maps Ek, Dk such that

‖idN −
∑

k

Dk ◦ T ⊗m ◦ Ek‖� = 2ε ,

whenever there exists a (N,m, ε)-scheme for LOCC-assisted quantum communication according
to Definition 3. If the quantum channel T has positive two-way capacity Q2(T ) > 0, then for
any fixed N , one can certainly transmit an N -dimensional quantum system with arbitrarily low
error (ε→ 0) in the limit of arbitrarily many channel uses (m→∞).

Now consider the case where the quantum channel T with Q2(T ) > 0 is of the form T =∑
j Vj ◦P ◦Wj for a tensor-stable positive map P :Md3 →Md4 that is not completely positive

and for completely positive maps Vj : Md1 → Md3 and Wj : Md4 → Md2 . Then, by setting
N := d3 in the previous paragraph, we have

0 = lim
m→∞

inf
Dk,Ek

‖idd3 −
∑

k

Dk ◦ T ⊗m ◦ Ek‖�

= lim
m→∞

inf
Dk,Ek

∥∥∥idd3 −
∑

k,j1,...,jm

(
Dk ◦

m⊗

`=1

Vj`

)
◦ P⊗m ◦

(
m⊗

`=1

Wj` ◦ Ek
)∥∥∥
�
.

But this leads to a contradiction since, by interpreting D̃i := Dk ◦ (
⊗m

`=1 Vj`) and Ẽi :=
(
⊗m

`=1Wj`) ◦ Ek with the multi-index i ≡ (k, j1, . . . , jm) as the encoding and decoding maps
for the map P, Corollary 1 would imply that dCP(P) = 0, meaning that P would be completely
positive contrary to assumption. This proves the following:
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Corollary 2. Let T be a quantum channel of the form T =
∑

j Vj ◦ P ◦Wj for a tensor-stable
positive map P that is not completely positive and for completely positive maps Vj, Wj. Then:

Q2 (T ) = 0.

The special case T = V◦ϑ of this theorem, i.e. where T is completely co-positive, was already
established in [24]. It however appears that Corollary 2 could give new channels T = P ◦W or
T = V ◦ P with Q(T ) = 0 beyond Theorem 6 and Eq. (9), at least when P does not possess a
right- or left-inverse.

Using Corollary 2 one can show that any non-trivial tensor-stable positive map P :Md1 →
Md2 will immediately yield new channels T : Md → Md with Q2(T ) = 0 (for both d = d1

and d = d2). To see this, note that by writing the separable map S from Lemma 6 into single
Kraus operators as in Section V C, we can construct completely positive maps Vj , Wj such that∑

j Vj ◦ P ◦ Wj = Wp̃, where Wp̃ : Md → Md with p̃ ∈ [−1, 0) is a quantum channel from
the family (2) whose Choi matrix is an entangled Werner state. Thus, by Corollary 2 and the
depolarizing idea from Section V C, all the channels Wp with p ∈ [p̃, 0) have vanishing two-way
capacity Q2(Wp) = 0, although these channels are not detected as such by the existing criterion
from [24] (or by Theorem 7) as they are not completely co-positive. The channels constructed in
this way are however already known to have vanishing one-way quantum capacity Q(Wp) = 0,
since they possess a symmetric extension (note, the case d ≤ 2 does not occur here due to
Theorem 2) and are thus anti-degradable [2, 5, 26].

In the following chapters we will use another way of thinking about coding schemes of the form
(16). Recall that a completely positive map S :Md1⊗Md3 →Md2⊗Md4 is called separable if its
Kraus operators are product operators {Ai ⊗Bi}mi=1, i.e. S (X) =

∑m
i=1 (Ai ⊗Bi)X (Ai ⊗Bi)†

for all X ∈Md1 ⊗Md3 .
The application of a separable map S :Mdn−1

1
⊗Mdn−1

2
→Md1 ⊗Md1 to (n− 1) copies of

the Choi-matrix CP of some linear map P :Md1 →Md2 corresponds via the Choi-Jamiolkowski
isomorphism to a map R as

CR = S
(
C
⊗(n−1)
P

)
,

with R (X) =
∑m

i=1BiP⊗(n−1)
(
ATi XAi

)
B†i . The map R is of the form (16), which by slightly

modifying the proof of Lemma 5 implies:

Corollary 3. Let P :Md1 →Md2 be an n-tensor-stable positive map. Then

dCP(P)

||P||�
≤ inf
S sep
||ωd1 − S

(
C
⊗(n−1)
P

)
||1, (18)

where the infimum is taken over all separable completely positive maps S : Mdn−1
1
⊗Mdn−1

2
→

Md1 ⊗Md1.

If the Choi-matrix CP is a quantum state, then the problem of finding separable maps S to
minimize the error on the right-hand-side of (18) is well-studied in quantum information theory:
A state CP ∈ Md1 ⊗Md2 is distillable iff there exists a sequence of LOCC-maps Sn such that
Sn
(
C⊗nP

)
→ ωd1 . As LOCC-maps are in particular separable this sequence leads to a vanishing

(in the limit n→∞) right-hand-side in (18).
Note that any positive map that is not completely co-positive has an NPPT, but not necessar-

ily positive, Choi-matrix. We generalize distillation schemes from quantum states to arbitrary
block-positive matrices to show (using Corollary 3) that tensor-stable positivity implies complete
positivity for certain classes of non-completely co-positive maps.



17

B. Proof of Theorem 2 and Theorem 4

To prove Theorem 2 and Theorem 4 we will use the theory of entanglement distillation. For
convenience we collect some basic definitions and results in Appendix A. The central result we
will need is Lemma 8, which shows that applying the twirl [30] to a block-positive and NPPT
matrix yields (up to normalization) a Werner state, i.e. it yields in particular a positive matrix.
This allows us to extend the theory of entanglement distillation to block-positive matrices. We
will start with a basic lemma:

Lemma 6 (Werner states from positive maps). Let P : Md1 → Md2 be a positive map and
d ∈ {d1, d2}. If P is not completely co-positive, then there exists a separable completely positive
map S :Md1 ⊗Md2 →Md⊗Md such that S (CP) is an entangled d-dimensional Werner state
(see Appendix A).

Proof. This proof works similar to the protocol introduced in [15] for states. Consider d = d2

now, and we will treat the case d = d1 later. As P is not completely co-positive, there exists
a normalized vector |ψ〉 ∈ Cd1 ⊗ Cd2 with 〈ψ|CT2P |ψ〉 < 0. Express this vector as |ψ〉 = (A ⊗
1d2)|Ωd2〉 for some d1×d2 matrix A and the maximally entangled state |Ωd2〉. Now define a new
linear map P ′ via the Choi-Jamiolkowski isomorphism by applying a local filtering operation

CP ′ := (A† ⊗ 1d2)CP(A⊗ 1d2) ∈Md2 ⊗Md2 ,

i.e. P ′ (X) := P
(
AXAT

)
for all X ∈Md2 .

The matrix CP ′ is block-positive and fulfills tr (CP ′Fd2) = d2〈ψ|CT2P |ψ〉 < 0. Therefore we
can use Lemma 8 and conclude that applying the UU -twirl leads to a positive matrix. After
normalization we obtain a Werner state

ρW =
1

tr (CP ′)

∫

U∈U(d2)
(U ⊗ U)CP ′ (U ⊗ U)† dU ∈Md2 ⊗Md2 .

Due to tr (CP ′Fd2) < 0, this state is entangled. Finally, the composition of the twirl (which is
separable, see Appendix A) with the filtering map is a separable completely positive map.

If one chooses d = d1, then write |ψ〉 = (1d1 ⊗ B)|Ωd1〉 with a d2 × d1-matrix B, and define
CP ′ := (1d1 ⊗BT )CP(1d1 ⊗B). The proof goes then through similarly.

From this Lemma we get:

proof of Theorem 4. For d ∈ {d1, d2} the Choi-matrix CP of every non-trivial tensor-stable
positive map P :Md1 →Md2 yields an entangled Werner state by the application of a separable
completely positive map S according to Lemma 6. If this Werner state is distillable, there exists
a sequence of separable (even LOCC) completely positive maps (Sn)n∈N such that ||ωd − Sn ◦
S⊗n

(
C⊗nP

)
||1 → 0 as n → ∞. But then Corollary 3 implies that P is completely positive

contradicting the assumptions.

proof of Theorem 2. As all entangled Werner states onM2⊗M2 are distillable [15, 17] there is
no non-trivial tensor-stable positive map P :M2 →Md or P :Md →M2 for d ∈ N according
to Theorem 4.
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C. Proof of Theorem 3

Using the techniques from section V B we can define one-parameter families of non-trivial
positive maps such that there exists a non-trivial tensor-stable positive map iff it exists within
this family.

proof of Theorem 3. ad (ii): For p ∈ [−1, 0) the Werner state ρ
(p)
W ∈ Md2 is NPPT. Therefore

the map Pp : Md2 → Md2 is neither completely positive nor completely co-positive, as its

Choi-matrix is ρ
(p)
W ⊗

(
ρ

(p)
W

)T2
.

ad (i): For a non-trivial tensor-stable positive map P :Md1 →Md2 , neither P nor ϑd2 ◦ P
are completely co-positive. According to Lemma 6 there exist p1, p2 ∈ [−1, 0) and separable
completely positive maps S1,S2 :Md1 ⊗Md2 →Md ⊗Md such that

ρ
(p1)
W = S1(CP) ,

ρ
(p2)
W = S2(Cϑd2◦P) = S2 ◦ (idd1 ⊗ ϑd2)(CP).

It is obvious that for the separable completely positive map S2(X) =
∑

i(Ai ⊗Bi)X(Ai ⊗Bi)†
the map S̃2 = (idd ⊗ ϑd) ◦ S2 ◦ (idd1 ⊗ ϑd2) is again separable completely positive. Thus, the
separable map S1 ⊗ S̃2 applied to two tensor copies of CP gives:

(
S1 ⊗ S̃2

)
(CP ⊗ CP) = ρ

(p1)
W ⊗

(
ρ

(p2)
W

)T2
.

By applying a depolarizing channel Dα :Md →Md of the form Dα(X) = (1−α)tr (X) 1dd +

αX (with α chosen appropriately) to one half of either ρ
(p1)
W (if p1 < p2) or

(
ρ

(p2)
W

)T2
(if p1 > p2)

we can increase the corresponding parameter to obtain the desired state ρ
(p)
W ⊗

(
ρ

(p)
W

)T2
with

p = max (p1, p2) < 0. Thus, there exists a separable and completely positive map R : (Md1 ⊗
Md2)⊗2 → (Md ⊗ Md)

⊗2, given by the composition of S1 ⊗ S̃2 with (Dα ⊗ idd) ⊗ idd2 or

idd2 ⊗ (Dα ⊗ idd), such that CPp = ρ
(p)
W ⊗

(
ρ

(p)
W

)T2
= R(CP⊗2) =

∑
i(Ci ⊗Di)CP⊗2(Ci ⊗Di)

†

where Pp was defined in (1). By the Choi-Jamiolkowski isomorphism we can thus write Pp(X) =∑
iDiP⊗2(CTi XCi)D

†
i , which shows that Pp is tensor-stable positive as P was.

Note that the construction from the proof of Theorem 3 also works for an n-tensor-stable
positive map P : Md1 → Md2 . The positive map Pp of the from (1) obtained this way is
bn2 c-tensor-stable positive.

D. Generalization of the reduction criterion

In this section we will generalize the reduction criterion and use the well-known recurrence
protocol [15] to prove bounds on dCP (P) for an n-tensor-stable positive map P.

We will need the following lemma (an analogue of Lemma 6):

Lemma 7 (Reduction criterion). Let P :Md1 →Md2 be a positive map. Let Γd :Md →Md

denote the reduction map Γ(X) := tr (X)1d −X. Then we have:

1. If Γd2 ◦ P is not completely positive there exists a separable completely positive map S :
Md1 ⊗Md2 →Md2 ⊗Md2 s.th. S (CP) is an entangled isotropic state (see Appendix A).
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2. If P ◦ Γd1 is not completely positive there exists a separable completely positive map S :
Md1 ⊗Md2 →Md1 ⊗Md1 s.th. S (CP) is an entangled isotropic state (see Appendix A).

Proof. Again the proof works similar to the protocol introduced in [15] for states. We will start
with the first case.

As Γd2 ◦P is not completely positive the Choi-matrix CΓd2◦P = P∗ (1d2)T ⊗1d2−CP , derived

using Lemma 1, is not positive. Thus, there exists a normalized vector |ψ〉 ∈ Cd1 ⊗Cd2 with

1

d1
〈ψ|P∗(1d2)T ⊗ 1d2 |ψ〉 < 〈ψ|CP |ψ〉.

Express this vector as |ψ〉 = (A⊗ 1d2)|Ωd2〉 for some d1 × d2-matrix A and define a new linear
map P ′ with Choi matrix

CP ′ = (A† ⊗ 1d2)CP(A⊗ 1d2) ∈Md2 ⊗Md2 .

Note that by construction P ′ is a tensor-stable positive map obtained from P via a separable
(even local) completely positive map. Furthermore we have using Lemma 1

tr (CP ′) =〈Ωd1 |AA† ⊗ P∗(1d2)|Ωd1〉

=〈Ωd2 |A†P∗(1d2)TA⊗ 1d2 |Ωd2〉 ·
d2

d1

=〈ψ|P∗(1d2)T ⊗ 1d2 |ψ〉 ·
d2

d1
< d2〈ψ|CP |ψ〉.

Therefore we have tr (CP ′ωd2) = 〈ψ|CP |ψ〉 > tr(CP′ )
d2

> 0. Note that tr (CP ′) > 0 as CP ′ is
block-positive and CP ′ 6= 0 as Γd2 ◦ P is not completely positive. By applying Lemma 8 we
conclude that

ρ
(p)
I =

1

tr (CP ′)

∫

U∈U(d2)

(
U ⊗ U

)
CP ′

(
U ⊗ U

)†
dU ∈Md2 ⊗Md2 .

is an isotropic state, with p =
tr(CP′ωd2)

tr(CP′ )
> 1

d2
. Thus this state is entangled and the composition

of the twirl (which is a separable completely positive map, see Appendix A) with the filtering
map is separable and completely positive.

The second part works similar to the first part. Note that P ◦ Γd1 not being completely
positive is equivalent to the existence of a normalized vector |ψ〉 ∈ Cd1 ⊗Cd2 with

1

d1
〈ψ|1d1 ⊗ P (1d1) |ψ〉 < 〈ψ|CP |ψ〉.

Express this vector as |ψ〉 = (1d1 ⊗B)|Ωd1〉 for some d2 × d1-matrix B and define a new linear
map P ′ with Choi matrix

CP ′ = (1d1 ⊗B†)CP(1d1 ⊗B) ∈Md1 ⊗Md1 .

Now by a similar calculation as before we have tr (CP ′) = 〈ψ|1d1 ⊗ P (1d1) |ψ〉 < d1〈ψ|CP |ψ〉.
The rest of the proof works the same as for the first case.
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Lemma 7 shows how to obtain an entangled isotropic state from the Choi-matrix of a positive
map violating the reduction criterion. It is well-known that these states are distillable by
the recurrence protocol [15]. More precisely there exists a separable completely positive map
S :Md2 →Md with

TUU ◦ S
(

(ρ
(p)
I )⊗2

)
= ρ

(r(p))
I , (19)

where TUU denotes the UU -twirl and where

r(p) =
1 + p

(
pd(d2 + d− 1)− 2

)

p2d3 − 2pd+ d2 + d− 1
.

It can be easily seen that for p > 1
d we have r(m)(p)→ 1 as m→∞, where the notation r(m)(p)

means that we concatenate m applications of the function r, i.e. r(m)(p) := r(r(. . . r(p))). There-

fore iterating the protocol using up many copies of the input state ρ
(p)
I leads to isotropic states

close to the maximally entangled state ωd. In the following we use this protocol and Corollary 3
to upper-bound the distance of an n-tensor-stable positive map violating the reduction criterion
to the cone of completely positive maps.

Note that the original protocol [15] has a sufficiently small but non-zero probability of failure.
As the separable completely positive maps S in Corollary 3 do not have to be trace-preserving
we can avoid the possibility of failure by choosing only the Kraus operators corresponding to a
successful measurement for S.

Theorem 8 (Bound from the recurrence protocol). Let P :Md1 →Md2 be a positive map and
such that P ◦ Γd1 is not completely positive, i.e.

p := sup
|ψ〉∈Cd1⊗Cd2

〈ψ|CP |ψ〉
〈ψ|1d1 ⊗ P (1d1) |ψ〉 (20)

= λmax
[(
1d1 ⊗ P (1d1)

)−1/2
CP
(
1d1 ⊗ P (1d1)

)−1/2] ∈ (1/d1, 1] , (21)

using generalized inverses and denoting by λmax[ · ] the maximum eigenvalue. If P is n-tensor-
stable positive, then

dCP(P) ≤ 2(1− p) (gd1(p))blog2(n−1)c (22)

where gd(p) := d(d+1)−2−p(pd(d−1)+2(d−1))
(1−p)(p(pd3−2d)+d2+d−1)

. Note that gd(p) ∈ [0, 1) for p ∈ (1
d , 1].

Proof. By Lemma 7 (and its proof) there is a separable completely positive map S1 :

M(d1d2)(n−1) → M(d12)(n−1) with S1(C
⊗(n−1)
P ) = (ρ

(p)
I )⊗(n−1). By (19) we can apply the recur-

rence protocol for blog2(n−1)c levels yielding ρ
(p′)
I ∈Md21

with p′ = r(blog2(n−1)c)(p). Composing
these two protocols gives a separable completely positive map S :M(d1d2)(n−1) →M(d21) with

||ωd1 − S
(
C
⊗(n−1)
P

)
||1 = 2(1− p′).

A simple calculation gives

1− p′ = 1− r(blog2(n−1)c)(p) ≤ (gd1(p))blog2(n−1)c (1− p),
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since gd1(p) = 1−r(p)
1−p is strictly monotonously decreasing for p ∈ ( 1

d1
, 1) and is equal to the

expression above.
By Corollary 3 we finally have

dCP(T )

||P||�
≤ 2(1− p) (gd1(p))blog2(n−1)c .

For dimension d1 = 2 we have Γ2 = U ◦ ϑ2 for some unitary conjugation U : M2 → M2.
Therefore the positive maps P :Md →M2 such that Γ2 ◦P is completely positive are precisely
the completely co-positive maps. For general maps P :Md1 →Md2 , if Γd2 ◦P is not completely
positive, then ϑd2 ◦ P is not completely positive, i.e. P is not completely co-positive.

VI. CONCLUSION

We have introduced the notions of n-tensor-stable positive and tensor-stable positive maps,
and have investigated whether such maps exist outside of the cones of completely positive or
completely co-positive maps. We showed that tensor-stable positive maps outside these families
would provide novel bounds on the quantum capacity of quantum channels. Our main technique
was to apply coding schemes from distillation theory to block-positive operators rather than to
density matrices. Thereby and by the Choi correspondence between block-positive operators and
positive maps, we related the existence of tensor-stable positive maps to the existence of NPPT
bound entanglement. We also showed that the cb-norm bound coming from the transposition
map yields a strong converse rate for the two-way quantum capacity Q2, and established strong
converse rates on the usual quantum capacity Q coming from other tensor-stable positive maps.

The main question left open by our work is whether non-trivial tensor-stable positive maps
exist at all, i.e. maps outside of the above cones that are n-tensor-stable positive for all n ∈ N.
We have reduced this existence question to certain one-parameter families of candidate maps
(Theorem 3). But can this reduction be used to decide the existence, or at least to prove the
non-existence result of Theorem 2 directly?

Furthermore, the converse of Theorem 4 is open: Does the existence of NPPT bound en-
tanglement imply the existence of non-trivial tensor-stable positive maps? Note that such an
equivalence would be rather different from the equivalence result of [8], linking NPPT bound
entanglement to completely co-positive maps which are not completely positive but such that
all their tensor powers are 2-positive. The map of interest in the latter scenario lies within the
completely co-positive cone, which is among the trivial cases for our work.

Our existence result of an n-tensor stable positive map for every n ∈ N (Theorem 1) is
analogous to the result in the theory of entanglement distillation which guarantees for every
n the existence of NPPT states that are not n-copy distillable [8, 9]. Our Lemma 2 however
appears to be to weak to show the existence of a map that is n-tensor stable positive for all n,
see Eq. (5).

Finally, note that one may relate the existence of a tensor-stable positive map to the stability
of operator norms under tensor products [23]: a positive unital map T :Md1 →Md2 is n-tensor
stable positive if and only if the induced operator norm ‖T ⊗n‖∞→∞ = 1.
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Appendix A: Twirling and families of symmetric matrices

The main ingredient in the distillation protocols we will apply is the UU-twirl operation
TUU :Md ⊗Md →Md ⊗Md [30], defined as

TUU (X) :=

∫

U∈U(d)
(U ⊗ U)X (U ⊗ U)† dU.

An application of the Schur-Weyl duality gives [30] (for d ≥ 2)

∫

U∈U(d)
(U ⊗ U)X (U ⊗ U)† dU =

[
tr (X)

d2 − 1
− tr (XFd)
d(d2 − 1)

]
(1d ⊗ 1d)−

[
tr (X)

d(d2 − 1)
− tr (XFd)

d2 − 1

]
Fd.

(A1)

It is easy to verify that this matrix is positive iff tr (XFd) ∈ [−tr (X) , tr (X)] (and tr (X) ≥ 0);
the twirled matrix has positive partial transpose iff tr (XFd) ∈ [0, dtr (X)] (and tr (X) ≥ 0).

Using unitary 2-designs [25] it is well-known that the twirl is a separable completely positive
map, i.e. there exists a finite set of unitary product matrices {Ui⊗Ui}mi=1 such that TUU (X) =
1
m

∑m
i=1 (Ui ⊗ Ui)X (Ui ⊗ Ui)†.

States of the form (A1) are clearly invariant under the UU -twirl operation and are called

Werner states [30]. We denote these states by ρ
(p)
W , parametrized by p := tr

(
ρ

(p)
W Fd

)
∈ [−1, 1]

and satisfying tr
(
ρ

(p)
W

)
= 1. It is well-known that these states are entangled (and NPPT) for

p ∈ [−1, 0) and separable for p ∈ [0, 1] (thus, PPT). Furthermore for d = 2 all entangled Werner
states are distillable [15, 17]. But for d > 2 it is not known whether all entangled Werner states
are distillable.

By partially transposing the matrices of form (A1) we obtain matrices invariant under the
UU -twirl operation, i.e. invariant under the operation

X 7→
∫

U∈U(d)

(
U ⊗ U

)
X
(
U ⊗ U

)†
dU.

We will denote the states obtained in this way by ρ
(p)
I , which are the isotropic states [15]

parametrized by p := tr
(
ρ

(p)
I ω

)
= 1

dtr
(

(ρ
(p)
I )T2Fd

)
∈ [0, 1] and normalized to tr

(
ρ

(p)
I

)
= 1.

These states are entangled (and NPPT) for p ∈ (1
d , 1], and separable for p ∈ [0, 1

d ] (thus, PPT).
It is well-known that all entangled isotropic states are distillable [15].

To obtain distillation schemes as needed in our proofs we will apply suitable twirling opera-
tions to the Choi-matrix CP of a positive map P :Md →Md. The matrix CP is in general not
positive, but the next lemma proves that under certain conditions the UU -twirl leads to positive
matrix, which can then be distilled using the existing theory.
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Lemma 8 (Twirl of block-positive matrices). If C ∈ Md ⊗Md is block-positive and such that
tr (CFd) ≤ 0, then

∫

U∈U(d)
(U ⊗ U)C (U ⊗ U)† dU ≥ 0. (A2)

Similarly, if C ∈Md2 is block-positive and such that tr (Cωd) ≥ 0, then

∫

U∈U(d)

(
U ⊗ U

)
C
(
U ⊗ U

)†
dU ≥ 0. (A3)

Proof. By block-positivity we have tr (C) ≥ 0 and

tr (C (1d ⊗ 1d + Fd)) ≥ 0

because the Werner state ρ
(1)
W = (1d ⊗ 1d + Fd)/(d(d + 1)) is separable. Together with the

assumption tr (CFd) ≤ 0 this implies tr (CFd) ∈ [−tr (C) , 0] which shows the first statement
(A2).

Secondly, as the Werner state ρ
(0)
W is also separable we get by block-positivity

tr

(
CT2

(
1d ⊗ 1d −

1

d
Fd
))
≥ 0,

which implies dtr
(
CT2

)
≥ tr

(
CT2Fd

)
. Together with the assumption tr

(
CT2Fd

)
=

dtr (Cωd) ≥ 0 this implies that the UU -twirl of CT2 has positive partial transpose. As[
(U ⊗ U)XT2 (U ⊗ U)†

]T2
=
(
U ⊗ U

)
X
(
U ⊗ U

)†
this finishes the proof.

Appendix B: Minimal output eigenvalue

Here we prove the multiplicativity of the minimal output eigenvalue (3) for entanglement
breaking completely positive maps.

Theorem 9. Let T :Md1 →Md2 be entanglement breaking, i.e. (idn ⊗ T ) (ρ) is separable for
all n ∈ N and positive ρ ∈ Mn ⊗Md1, and S : Md3 → Md4 be completely positive. Then we
have

λmin
out [T ⊗ S] = λmin

out [T ]λmin
out [S] .

Proof. By inserting product states it is clear that λmin
out [T ⊗ S] ≤ λmin

out [T ]λmin
out [S].

For the other direction, let the minimum in (3) for the computation of λmin
out [T ⊗ S] be

attained at ρ = τ . Then there exists a pure state |φ〉 such that

λmin
out [T ⊗ S] = 〈φ|(T ⊗ S)(τ)|φ〉

= 〈φ|
k∑

i=1

[σi ⊗ S(ρi)] |φ〉
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using that there exist non-zero σi ≥ 0 and ρi ≥ 0 such that (T ⊗ idd3) (τ) =
∑k

i=1 σi ⊗ ρi as T
is entanglement breaking. Note that T (tr2 (τ)) =

∑k
i=1 tr (ρi)σi. Thus:

λmin
out [T ⊗ S] = 〈φ|

k∑

i=1

[
tr(ρi)σi ⊗ S(

ρi
tr (ρi)

)

]
|φ〉

≥ λmin
out [S] 〈φ|

k∑

i=1

tr (ρi)σi ⊗ 1d4 |φ〉

= λmin
out [S] tr [T (tr2 (τ)) tr2 (|φ〉〈φ|)]

≥ λmin
out [S]λmin

(
T (tr2 (τ))

)

≥ λmin
out [S]λmin

out [T ] .
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We study the entropy increase of quantum systems evolving under primitive, dou-
bly stochastic Markovian noise and thus converging to the maximally mixed state.
This entropy increase can be quantified by a logarithmic-Sobolev constant of the Li-
ouvillian generating the noise. We prove a universal lower bound on this constant
that stays invariant under taking tensor-powers. Our methods involve a new com-
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similar results established before and as an application we prove an upper bound on
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production estimates of discrete-time doubly-stochastic quantum channels by extending
the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.
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A. Hypercontractivity via group theory 19

1. Introduction

Consider a quantum system affected by Markovian noise driving every initial state to the maximally
mixed state. For such a, so-called doubly stochastic and primitive, noise the von-Neumann entropy
S will steadily increase in time. Here we want to quantify how much entropy is produced by such
a noise channel. More specifically let the Markovian noise channel be modeled by a quantum
dynamical semigroup Tt = etL and recall that the von-Neumann entropy of a state ρ is given by
S(ρ) = −tr(ρ log(ρ)). We want to establish bounds of the form

S(Tt(ρ))− S(ρ) ≥ Ct(log(d)− S(ρ)) (1)

for some time-dependent Ct < 1 independent of the state ρ. To find good Ct for a given noise
channel Tt in the above bound we apply the framework of logarithmic Sobolev (LS) inequal-
ities [OZ99, KT13]. For special channels bounds of the form of (1) have been considered in
[ABIN96]. Similar bounds have also been studied in terms of contractive properties of the channel
with respect to different norms in [Str85, Rag02, cf. Remark 4.1]. However, in these cases the
lower bound is given in terms of the trace or Hilbert-Schmidt distance between the state ρ and
the maximally mixed state, which are upper bounded by a constant independent of the dimension,
while the left-hand side of (1) is of order log (d). The entropy production of quantum dynamical
semigroups has also been investigated in a more general setting in [Spo78].

For many applications in quantum information theory it will be important to quantify the entropy
production of tensor-powers T⊗nt of the noise channel. In our main result we obtain bounds of this
form, where Ct does not depend on n. We improve on recent results by Temme et al. [TPK14]
who established such bounds using spectral theory. The invariance under taking tensor-powers
makes these bounds important for many applications including the study of stability in Markovian
systems [CLMP13], mixing-time bounds [TPK14] and quantifying the storage time in quantum
memories [MHRW15].

In the second part of this paper we consider entropy production estimates of the form (1)
for discrete-time doubly stochastic quantum channels. We introduce the framework of discrete LS
inequalities, which allows us to generalize results from classical Markov chains, where there already
is a vast literature on the subject [DSC96, DSC93, BT06, Mic97].

This paper is organized as follows:

• In section 2 we introduce our notation, definitions and show how the framework of logarithmic
Sobolev inequalities relates to the entropy production of a doubly stochastic Markovian time-
evolution.

• In section 3.1 we prove our main result. This is an improved lower bound on the LS
constant of tensor powers of doubly stochastic semigroups (Theorem 3.3), which directly
implies an entropy production estimate (Corollary 3.3) for tensor-products of Markovian
time-evolutions. Previous approaches to this problem focused on spectral and interpolation
techniques [BZ00, TPK14]. Here we obtain better bounds with simpler proofs using group
theoretic techniques similar to the ones developed in [JPPP15] and comparison inequalities.

• In section 3.2 we consider Liouvillians of the form L = T − id, where T is a quantum channel.
We show how to use LS constants of classical Markov chains to analyze the entropy production
of such semigroups. As an application of our techniques we compute the LS constant of all
doubly stochastic qubit Liouvillians of this form.

• In section 4 we extend techniques from LS inequalities to analyze discrete-time quantum
channels. Here we not only get bounds on the entropy production (Theorem 4.2) but also
on the hypercontractivity (Theorem 4.5) of these channels. However, the obtained bounds
are in general weaker and become trivial as we increase the number of copies of the channel.
These results are mostly a generalization of [Mic97].
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• In section 5 we apply the results from section 2 to unitary quantum subdivision capacities
introduced by some of the authors [MHRW15]. We show (Theorem 5.1) that the unitary
quantum subdivision capacity of any doubly stochastic and primitive Liouvillian has to decay
exponentially in time. Our bound improves similar results found in [ABIN96, BOGH13]. In
the second part of the section we compute entropy production estimates for random Pauli
channels.

2. Notations and preliminaries

Throughout this paper Md will denote the set of complex d × d-matrices and M+
d ⊂ Md the

cone of strictly positive matrices. The set of d-dimensional density matrices or states, i.e. positive
matrices in Md with trace 1, will be denoted by Dd and the set of strictly positive states will be
denoted by D+

d . The d× d identity matrix will be denoted by 1d.
We will call a completely positive, trace preserving linear map T :Md →Md a quantum channel

and will denote its adjoint with respect to the Hilbert-Schmidt scalar product by T ∗. A quantum
channel T is said to be doubly stochastic if

T (1d) = T ∗ (1d) = 1d.

A family of quantum channels {Tt}t∈R+
parametrized by a nonnegative parameter will be called

a quantum dynamical semigroup if T0 = idd (the identity map in d dimensions), Ts+t = TsTt
for any s, t ∈ R+ and Tt depends continuously on t. Physically a quantum dynamical semigroup
describes a Markovian evolution in continuous time. It is well known [Lin76, GKS76] that any
quantum dynamical semigroup is generated by a Liouvillian L :Md →Md of the form

L(X) = Φ(X)− κX −Xκ†,
for κ ∈Md and Φ :Md →Md completely positive such that Φ∗(1d) = κ+ κ†.

A quantum dynamical semigroup generated by a Liouvillian L is said to have a fixed point
σ ∈ Dd if L(σ) = 0. Then all quantum channel in {etL}t∈R+ have σ as a fixed point. In the special

case where the fixed point is σ = 1d
d we call the quantum dynamical semigroup and its Liouvillian

doubly stochastic. If the generator is hermitian with respect to the Hilbert-Schmidt scalar product,
i.e. L = L∗, we will call it reversible. We will be interested in the asymptotic behavior of quantum
dynamical semigroups. A quantum dynamical semigroup Tt : Md → Md with a full-rank fixed
point σ ∈ Dd is called primitive if lim

t→∞
Tt(ρ) = σ for all states ρ ∈ Dd. In the following we will be

interested in particular in tensor-products of quantum dynamical semigroups. Given a Liouvillian
L :Md →Md we denote by

L(n) :=
n∑

i=1

id⊗i−1d ⊗ L⊗ id
⊗(n−i)
d (2)

the generator of the quantum dynamical semigroup (etL)⊗n.
We will need distance measures on the set Md. Recall the family of Schatten p-norms for

p ∈ [1,∞) defined as

‖X‖p :=

(
d∑

i=1

si(X)p

)1/p

where si(X) denotes the i-th singular value of X ∈ Md and s(X) ∈ Rd is the vector contain-
ing the ordered singular values of X as entries. Note that we can consistently define ‖X‖∞ :=
supi∈{1,...,d} si(X) for any X ∈Md.

Another distance measure (although not a metric) on the set Dd of states is the relative entropy
(also known as Kullback-Leibler divergence):

D(ρ‖σ) =

{
tr[ρ(log ρ− log σ)], if supp(ρ) ⊂ supp(σ)

+∞, otherwise
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for ρ, σ ∈ Dd. Recall Pinsker’s inequality:

D(ρ‖σ) ≥ 1

2
‖ρ− σ‖21

for any ρ, σ ∈ Dd. This inequality implies in particular that D(ρ‖σ) = 0 iff ρ = σ.

2.1. The LS-1 Constant

Consider an inequality of the form:

D

(
Tt(ρ)

∥∥∥1d
d

)
≤ e−2αtD

(
ρ
∥∥∥1d
d

)
(3)

for some doubly stochastic Liouvillian L : Md → Md, and where Tt = etL, ρ ∈ Dd and α ∈ R+

is a constant independent of ρ. Using D
(
ρ
∥∥1d
d

)
= log(d) − S(ρ) the above inequality is clearly

equivalent to (1) for Ct = (1 − e−2αt). The framework of logarithmic Sobolev-1-inequalities (LS-
1 inequality) allows us to determine the optimal α such that (3) holds. To this end define the
function f(t) = D

(
Tt(ρ)

∥∥1d
d

)
. If we can show

df

dt
≤ −2αf (4)

for some α ∈ R+ it follows that f(t) ≤ e−2αtf(0). The time derivative of the relative entropy at
t = 0, also called the entropy production[Spo78], is given by:

d

dt
D

(
Tt(ρ)

∥∥∥1d
d

) ∣∣∣∣
t=0

= tr[L(ρ)(log(d) + log(ρ))]

= tr[L(ρ) log(ρ)]

as tr(L(ρ)) = 0 for any ρ ∈ Dd. This motivates the definition of the LS-1 constant:

Definition 2.1 (LS-1 constant). Let L :Md →Md be a doubly stochastic Liouvillian. We define
its LS-1 constant as

α1(L) := inf
ρ∈D+

d

−1

2

tr[L(ρ) log(ρ)]

D(ρ
∥∥1d
d )

(5)

By the above discussion (3) is valid for α = α1(L) as it is true for small times and the time can
be extended by iterating the bound. Also by definition it is the optimal constant such that (3)
holds independent of ρ. Note that we may only consider states with full rank in the optimization
of Definition 2.1 due to the continuity of the relative entropy and entropy production. Also note
that if the Liouvillian L has another fixed point different from 1d

d , then α1(L) = 0 and (3) reduces
to the data processing inequality. In the following we will always consider primitive Liouvillians
and thereby avoid this issue.

Using D
(
ρ
∥∥1d
d

)
= log(d)− S(ρ) the following theorem follows from (3):

Corollary 2.1 (Entropy increase). Let L : Md → Md be a doubly stochastic Liouvillian and
α ≤ α1 (L) then

S(Tt(ρ))− S(ρ) ≥ (1− e−2αt)(log(d)− S(ρ))

for any ρ ∈ Dd and where Tt = eLt denotes the semigroup generated by L.
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2.2. The LS-2 Constant

The non-linearity of the optimization problem in (5) makes it hard to compute the LS-1 constant
analytically. In fact there are only few examples even for classical Markov chains [BT06] where
the LS-1 constant is known. For many applications, however, it will be enough to have good lower
bounds on α1. Here these lower bounds will be in terms of the so-called LS-2 constant:

Definition 2.2 (LS-2 constant). Let L :Md →Md be a doubly stochastic Liouvillian. We define
its LS-2 constant as

α2(L) := inf
X∈M+

d

E2L(X)

Ent2(X)
.

Here we used the so-called 2-Dirichlet form

E2L(X) := −1

d
tr[L(X)X]

and the so-called 2-relative entropy given by

Ent2(X) :=
1

2d
tr

[
X2

(
log

(
X2

tr(X2)

)
+ log(d)

)]

It is well known that a Liouvillian is primitive iff we have a unique strictly positive density
matrix in the kernel of L. From this it is easy to see that α2(L) = 0 if the Liouvillian is not
primitive, as in this case there exists X ∈ M+

d s.t. X 6∈ span{1} and EL2 (X) = 0. We will later
see that the LS-2 constant is strictly positive if the Liouvillian is primitive.

As the 2-Dirichlet form is bilinear, α2 is easier to compute than α1, where a logarithm occurs in
the numerator (see (5)). Also by α2(L) = α2(L+L

∗

2 ) we may always suppose that the Liouvillian
is reversible when computing α2. Another advantage of the LS-2 constant in comparison to the
LS-1 constant is the following hypercontractive characterization. This characterization allows the
use of tools from other areas of mathematics, such as interpolation theory, to compute the LS-2
constant.

Theorem 2.1 (Hypercontractive picture [OZ99]). Let L : Md → Md be a primitive doubly
stochastic Liouvillian and Tt = etL its associated semigroup. Then:

1. If there exists α > 0 such that ‖Tt(X)‖
p(t),

1d
d
≤ ‖X‖

2,
1d
d

for all X ∈ M+
d , where p(t) =

1 + e2αt, it follows that α2(L) ≥ α.

2. For α2(L) > 0, we have ‖Tt(X)‖
p(t),

1d
d
≤ ‖X‖

2,
1d
d

for all X ∈M+
d , with p(t) = 1 + e2α2t for

L reversible and p(t) = 1 + eα2t if not.

Here we used the 1d
d -weighted lp-norm on Md given by:

‖Y ‖
p,

1d
d

:=
1

d
1
p

(tr[|Y |p]) 1
p

We will state the connection between the LS-2 and the LS-1 constants in Theorem 2.2 below.

2.3. The spectral gap and relations between the LS-constants

Another important constant for studying the convergence properties of quantum dynamical semi-
groups is the spectral gap. Usually a unital Liouvillian L : Md → Md is said to have a spectral
gap λ′ if the 0 eigenvalue corresponding to 1d

d is the only eigenvalue with real part 0 whereas
|Reλi| ≥ λ′ for all other eigenvalues of L. In the context of LS-inequalities the following definition
is used:
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Definition 2.3 (Spectral Gap). Let L : Md → Md be a doubly stochastic Liouvillian. The
spectral gap is defined as:

λ(L) := inf
X∈Md:X=X†

E2L(X)

Var(X)
.

Here we used the variance with respect to the maximally mixed state defined as

Var 1d
d

(Y ) := ‖Y − tr(Y )
1d

d
‖2
2,

1d
d

.

It agrees with the usual definition for reversible Liouvillians and is the spectral gap of the
additive symmetrization L+L

∗

2 . Indeed, for reversible Liouvillians the spectrum is nonpositive and
we may assume w.l.o.g. that the eigenvector Xi corresponding to an eigenvalue λi is hermitian.
By the orthogonality of eigenvectors, we have that tr[1dXi] = 0, thus all eigenvectors that do
not correspond to the eigenvalue 0 are also traceless and are invariant under the transformation
X 7→ X − tr[X]1d . By these considerations,

inf
X∈Md:X=X†

E2L(X)

Var(X)
(6)

is the second largest eigenvalue of −L if L is reversible or the of −L+L∗2 if not, coinciding with the
usual definition.

Finally we can state how the LS-constants and the spectral gap relate to each other.

Theorem 2.2 ([KT13]). Let L :Md →Md be a doubly stochastic Liouvillian. If L is reversible,
the spectral gap, LS-2 and LS-1 constant satisfy:

λ(L)
2(1− 2

d )

log(d− 1)
≤ α2(L) ≤ α1(L) ≤ λ(L)

If L is not reversible they satisfy:

λ(L)
(1− 2

d )

log(d− 1)
≤ α2(L)

2
≤ α1(L) ≤ λ(L)

For d = 2 the function d 7→ 2(1− 2
d )

log(d−1) can be extended continuously by 1.

The previous theorem establishes a connection between the LS-1 and LS-2 constants. We will
use this connection as it is usually easier to derive bounds on the LS-2 constant than on the LS-1
constant directly. Note that by combining Theorem 2.2 with Theorem 2.1 we immediately obtain
the bound

S(Tt(ρ))− S(ρ) ≥ (1− e−α2(L)t)(log(d)− S(ρ)) (7)

for any ρ ∈ Dd and where Tt = eLt denotes the semigroup generated by L.

3. Continuous LS inequalities for doubly stochastic Liouvillians

3.1. Tensor-stable LS-inequalities

For doubly stochastic and primitive Liouvillians L : Md → Md we consider the generator L(n)

(see (2)) of the tensor-product semigroup
(
etL
)⊗n

. We will prove a lower bound on α2

(
L(n)

)
that

does not depend on n. By (7) such bounds directly lead to entropy production inequalities for
tensor-products of quantum dynamical semigroups (see Corollary 3.3). These inequalities turn out
to be useful for the analysis of quantum memories (see section 5.1).

6



For our bounds on the LS-2 constant we will first compute a lower bound on α2

(
L(n)
dep

)
, where

Ldep :Md →Md denotes the depolarizing Liouvillian given by

Ldep(X) = tr(X)
1d

d
−X . (8)

Then we use a comparison technique to derive the desired bound for general doubly stochastic and
primitive Liouvillians.

We will need the following theorem proved in [TPK14] showing that it suffices to show hyper-
contractivity for one fixed time to lower bound α2(L):

Theorem 3.1. [TPK14, Theorem 5] Let L : Md → Md be a reversible, doubly stochastic Liou-
villian with spectral gap λ. Suppose that for some t0 ∈ R+ we have ‖Tt0‖2→4,

1d
d
≤ 1. Then:

α2(L) ≥ λ

4λt0 + 2

Using the group theoretic techniques and definitions introduced in the appendix we prove the
following bound on the 2→ 4 norm of tensor powers of the depolarizing channel. Similar bounds
have been developed in [JPPP15].

Theorem 3.2. Let Tt : Md →Md denote the semigroup Tt = etLdep generated by Ldep : Md →
Md as defined in (8). Then we have

‖T⊗nt0 ‖2→4, 1
dn
≤ 1 (9)

for t0 = log(3) log(d2−1)
4(1−2d−2) .

Proof. Note that the Weyl system (52) forms an almost commuting unitary eigenbasis (see Defini-
tion A.1) for the depolarizing Liouvillian Ldep. The unitaries of the Weyl system can be associated
to characters on Zd ×Zd. As explained in the appendix we can associate a classical semigroup Pt
(see (54)) acting on the space V (Zd × Zd) of complex functions on Zd × Zd. It is easy to verify
that the generator L of this classical semigroup coincides with the generator of the random walk
on the complete graph with d2 vertices and uniform distribution. In [DSC96, Theorem A.1] it was
shown that:

α2(L) =
2
(
1− 2d−2

)

log(d2 − 1)
(10)

Also it is known that for classical semigroups [DSC96, Lemma 3.2]

α2(L1 ⊗ id + id⊗ L2) = min{α2(L1), α2(L2)}. (11)

Thus, by the hypercontractive characterization of the LS-2 constant[DSC96, Theorem 3.5] we have

‖P⊗nt ‖2→p(t) ≤ 1,

for any n ∈ N where p(t) = 1 + e2α2(L)t. With t0 = log(3)
2α2(L)

we have p(t0) = 4 and the the claim

follows if we apply Theorem A.1 inductively.

As the spectral gap of Ldep is 1 we obtain the following corollary by applying Theorem 3.2 and
Theorem 3.1.

Corollary 3.1 (Lower bound on LS-2 for tensor powers of the depolarizing channel). Let Ldep :
Md →Md be the depolarizing Liouvillian (8). Then:

α2(L(n)
dep) ≥

(
1− 2d−2

)

log(3) log(d2 − 1) + 2 (1− 2d−2)
.
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Note that any doubly stochastic Liouvillian L commutes with the depolarizing Liouvillian Ldep.
We can use this simple observation to prove the following comparison theorem, which will lead to
our main result.

Theorem 3.3 (Comparison with the depolarizing Liouvillian). Let L : Md → Md be a dou-
bly stochastic and primitive Liouvillian with spectral gap λ and ‖L+L∗2 ‖ the operator norm of its
additive symmetrization. For any n ∈ N we have

∥∥∥L+ L∗
2

∥∥∥α2(L(n)
dep) ≥ α2(L(n)) ≥ λα2(L(n)

dep)

where L(n) is defined as in (2).

Proof. When working with the LS-2 constant (see Definition 2.2 and the discussion following this
definition) we may consider the additive symmetrization L+L∗2 instead of L. Therefore, we may
assume that L is reversible without loss of generality.

Using tr(L(Y )) = 0 for all Y ∈ Md and L(1d) = 0 it is easily seen that [Ldep,L] = 0. This

shows that L and Ldep can be simultaneously diagonalized. The same also holds for L(n) and L(n)
dep.

Let {Yi}0≤i≤d2−1 be an orthonormal basis forMd with respect to the normalized Hilbert-Schmidt
scalar product 〈·|·〉 1d

d
= 1

d 〈·|·〉HS consisting of eigenvectors of L and Ldep with Y0 = 1d. Let λi

denote the corresponding eigenvalues of L, i.e. such that L(Yi) = λiYi. We will show that

1

‖L‖E
2
L(n)(X) ≤ E2L(n)

dep

(X) ≤ 1

λ
E2L(n)(X)

for X ∈M+
dn .

Given a multi-index ν ∈ [d2 − 1]n, where [d2 − 1] = {0, ..., d2 − 1}, we define

Yν :=
n⊗

i=1

Yν(j).

Clearly {Yν}ν∈[d2−1]n forms an orthonormal basis of eigenvectors of L(n) and L(n)
dep. For a multi-

index ν ∈ [d2 − 1]n we define supp (ν) := {i ∈ {1, 2, . . . , n} : ν(i) 6= 0}. As L(Y0) = Ldep(Y0) = 0
we have

L(n)(Yν) =


 ∑

i∈supp(ν)
λν(i)


Yν

and

L(n)
dep(Yν) = −|supp (ν) |Yν

for any multi-index ν ∈ [d2 − 1]n. With

λν :=
∑

i∈supp(ν)
λν(i)

we can express the 2-Dirichlet forms (see Definition 2.2) as

E2L(n)(X) = −
∑

ν∈[d2−1]n
λν

∣∣∣〈X|Yν〉 1dn
dn

∣∣∣
2

(12)

and

E2L(n)
dep

(X) =
∑

ν∈[d2−1]n
|supp (ν) |

∣∣∣〈X|Yν〉 1dn
dn

∣∣∣
2

. (13)

8



We know that the spectral gap is given by λ = min
i 6=0
{−λi} and ‖L‖ = max

i
{−λi}. As a consequence

we have
− λν ≥ |supp (ν) |λ, (14)

− λν ≤ |supp (ν) |‖L‖. (15)

Combining (12) and (14) leads to

E2L(n)(X) ≥ λE2L(n)
dep

.

By Definition 2.2 of the LS-2 constant this shows α2(L(n)) ≥ λα2(L(n)
dep).

In the same way combining (15) and (12) implies α2(L(n)) ≤ ‖L‖α2(L(n)
dep).

The previous result tells us that, considering Liouvillians with fixed operator norms, the de-
polarizing channel is the most hypercontractive one, as it has the largest LS-2 constant in this
class.

One can also introduce LS constants for Liouvillians L having a stationary state σ ∈ D+
d that is

not necessarily maximally mixed[KT13, OZ99]. When L is primitive and reversible the same proof
as for Theorem 3.3 yields

‖L‖α2(L(n)
dep,σ) ≥ α2(L(n)) ≥ λα2(L(n)

dep,σ)

for the generalized depolarizing Liouvillian Ldep,σ(X) := tr(X)σ −X.
By combining Theorem 3.3 with Corollary 3.1 we can finally establish an explicit lower bound

on α2(L(n)). For an explicit upper bound we can also apply Corollary 3.1 to

α2(L(n)
dep) ≤ α2(Ldep) =

2(1− 2
d )

log(d− 1)

where we used that the LS-2 constant can only decrease when taking tensor-powers (see Definition
2.2). We also used the explicit formula for the LS-2 constant of a single depolarizing Liouvillian
Ldep :Md →Md calculated in [KT13]. Summarizing these observations we obtain the following
corollary:

Corollary 3.2. Let L :Md →Md be a doubly stochastic and primitive Liouvillian with spectral
gap λ and ‖L+L∗2 ‖ the operator norm of its additive symmetrization. Then:

∥∥∥L+ L∗
2

∥∥∥
2(1− 2

d )

log(d− 1)
≥ α2(L(n)) ≥ λ

(
1− 2d−2

)

log(3) log(d2 − 1) + 2 (1− 2d−2)
.

Note that the lower bound in Corollary 3.2 is slightly better than the one that follows from the
results in [BZ00, TPK14] given by

α2(L(n)) ≥ λ

5 log(d) + 11
.

Using (7) we obtain the following corollary on the entropy production of a tensor-product semi-
group:

Corollary 3.3 (Entropy production of tensor-product semigroups). Let L : Md → Md be a
doubly stochastic and primitive Liouvillian with spectral gap λ. Then we have

S(T⊗nt (ρ))− S(ρ) ≥ (1− e−2tα(d)) (log(dn)− S (ρ))

with α (d) =
λ(1−2d−2)

log(3) log(d2−1)+2(1−2d−2) for the quantum dynamical semigroup Tt = etL generated by

L.
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In [Kin14][Theorem 3] the multiplicativity of the 2 → q norm for q ≥ 2 has been proven for
doubly stochastic and reversible quantum channels T : M2 → M2. That is, for a completely
positive map Ω :Md′ →Md′ we have

‖Ω⊗ T‖2→q = ‖Ω‖2→q‖T‖2→q .

It then follows from the hypercontractive characterization (Theorem 2.1) of the LS-2 that α2(L(n)) =
α2(L) for any doubly stochastic, primitive and reversible qubit Liouvillian L :M2 →M2, but for
non-reversible Liouvillians it only follows that α2

(
L(n)

)
≥ λ

2 .
Here we give a proof of this lower-bound without needing reversibility:

Corollary 3.4. Let L :M2 →M2 be a doubly stochastic and primitive Liouvillian with spectral
gap λ. Then:

α2(L(n)) = α2(L) = λ

Proof. In [KT13, Lemma 25], it was proven that α2(L(n)
dep) = α2(Ldep) = 1. Theorem 3.3 then

implies α2(L(n)) ≥ λ. But, by Theorem 2.2, α2(L(n)) ≤ λ, which proves the claim.

Note that if we are interested in the hypercontractivity of L(n) :M2n →M2n , this result implies

‖etL(n)‖
2→p(t), 12n2n

≤ 1

with p(t) = 1 + e2λt if L is reversible and with p(t) = 1 + eλt if L is not reversible.

3.2. Qubit Liouvillians of the form L = T − id

In this section we consider quantum dynamical semigroups on a qubit system generated by Liou-
villians of the form L = T − id2 for a doubly stochastic quantum channel T : M2 → M2. For
these Liouvillians we will compute the LS-1 and LS-2 constants using the corresponding constants
for classical Markov chains [DSC96]. By the general theory of LS-inequalities (see Section 2) this
leads to entropy production estimates for this kind of Liouvillians.

We start with the LS-2 constant: to establish the connection with classical Markov chains note
that we can split the infimum in Definition 2.2 and optimize over spectrum and basis separately. Let
Ud denote the set of unitary d× d-matrices and denote the diagonal matrix with entries s ∈ Rd by
diag(s). For a doubly stochastic quantum channel T :Md →Md and the Liouvillian L = T − idd
the definitions of E2L and Ent2 lead to:

α2(L) = inf
U∈Ud

inf
s∈Rd+

E2L(Udiag(s)U†)
Ent2(Udiag(s)U†)

(16)

= inf
U∈Ud

inf
s∈Rd+

−2 〈s| (MU − 1d) |s〉∑
i s

2
i (log( si

‖s‖2 ) + log(d))
. (17)

Here MU ∈Md is a doubly stochastic matrix depending on U ∈ Ud defined as

(MU )ij = 〈j|U†T (U |i〉〈i|U†)U |j〉 (18)

for some fixed orthonormal basis {|i〉} ⊂ Cd. Note that MU is doubly stochastic for any U ∈ Ud
and thus the matrix MU − 1d defines a classical Markov kernel on a d-point set. Finally let

α
(c)
2 (MU − 1d) denote the classical LS-2 constant [DSC96, equation (3.1)] of the Markov kernel
MU − 1d. By direct comparison we have

α2(L) = inf
U∈Ud

α
(c)
2 (MU − 1d). (19)
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The LS-1 constant of the Liouvillian L = T − idd can be treated in the same way as the LS-2
constant above. A similar reasoning then leads to

α1(L) = inf
U∈Ud

α
(c)
1 (MU − 1d) (20)

where α
(c)
1 (MU−1d) denotes the classical LS-1 constant [BT06, Equation 1.5] of the Markov kernel

MU − 1d, see (18).
The above technique works for every dimension d ≥ 2. We will now restrict to d = 2, i.e.

T : M2 → M2 is a doubly stochastic qubit quantum channel. Such a quantum channel can be
represented as an affine transformation on R3, the so-called Bloch sphere representation [NC00].
In this representation quantum states ρ ∈ D2 are identified with vectors x ∈ R3 by

ρ =
12 +

∑3
i=1 xiσi
2

where we used the Pauli-matrices, i.e.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In this representation a doubly stochastic quantum channel T :M2 →M2 corresponds to a matrix
T̂ ∈M3 acting on the corresponding vectors in R3. Note that the adjoint channel T ∗ with respect

to the Hilbert-Schmidt scalar product corresponds to the transposed matrix (̂T ∗) = (T̂ )T .
We now show how to express the LS constants of a doubly stochastic qubit Liouvillian of the

form L = T − id2 in terms of the matrix T̂ representing the action of the quantum channel T .

Theorem 3.4. Let L : M2 → M2 be a doubly stochastic and primitive Liouvillian of the form
L = T − id2, where T :M2 →M2 is a doubly stochastic quantum channel. Then we have

α2 (L) = 1−
∥∥∥ T̂ + T̂T

2

∥∥∥

where T̂ ∈M3 is the matrix representing T on the Bloch sphere.

Proof. Note that we may replace L by the symmetrized Liouvillian L+L
∗

2 as we are computing the

LS-2 constant. Thus, we may consider T+T∗

2 , which is represented by a symmetric matrix, instead
of T .

Diaconis and Saloff-Coste showed that the LS-2 constant of a Markov kernel M − 1d on a two-
dimensional state space is given by 2M1,2 [DSC96, Corollary A.3]1. For U ∈ Ud consider MU , see
(18). Using (19) and the aforementioned result we get:

α2(L) = inf
U∈Ud

α
(c)
2 (MU − 1d) = 2 inf

U∈Ud
〈1|U†

(
T + T ∗

2

)(
U |0〉〈0|U†

)
U |1〉 (21)

Let x be the vector corresponding to U |0〉 on the Bloch sphere. Then−x is the vector corresponding
to U |1〉. By changing to the Bloch sphere representation we get:

〈1|U†
(
T + T ∗

2

)(
U |0〉〈0|U†

)
U |1〉 =

1

2
−
〈x|
(
T̂+T̂T

2

)
x〉

2
. (22)

Taking the infimum over Ud in (21) corresponds to taking the infimum over all unit vectors in R3

in (22). This gives

α2 (L) = 1− sup
x∈R3:‖x‖=1

〈x|
(
T̂ + T̂T

2

)
x〉 = 1−

∥∥∥
(
T̂ + T̂T

2

)∥∥∥.

1Note that our definition of the 2-entropy in Definition 2.2 is half of the corresponding function in [DSC96]. This
explains the difference by a factor of 2 between our results.
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Similarly we can also compute the LS-1 constant:

Theorem 3.5. Let L : M2 → M2 be a doubly stochastic and primitive Liouvillian of the form
L = T − id, where T :M2 →M2 is a quantum channel. Then,

α1 (L) = 1− sup
x∈R3:‖x‖=1

|〈x|T̂ x〉| ,

where T̂ ∈M3 is the matrix representing the action of T on the Bloch sphere.

Proof. For fixed U ∈ U2 we define p := (MU )1,2, see (18). As MU is doubly stochastic for a doubly
stochastic quantum channel T we may write the Markov kernel as:

MU − 12 =

(
−p p
p −p

)
=: 2pQ, (23)

where Q :=

(
− 1

2
1
2

1
2 − 1

2

)
denotes the kernel of a random walk on the complete graph with two

vertices and uniform distribution. In [DSC96] the classical LS-1 constant is defined as

α
(c)
1 (MU − 12) = inf

s∈R2
+

−1

2

〈2pQ log (s) |s〉
Ent1 (X)

= 2pα
(c)
1 (Q)

where we used (23). It has been shown in [BT06] that α
(c)
1 (Q) = 1. By (20) we can now compute

α1(L) = inf
U∈Ud

α
(c)
1 (MU − 1d) = inf

U∈Ud
2 〈1|U†T

(
U |0〉〈0|U†

)
U |1〉 .

Changing to the Bloch sphere representation as in the proof of Theorem 3.4 finishes the proof.

Using Theorem 2.1 we obtain the following entropy production estimate from Theorem 3.5:

Corollary 3.5 (Entropy production of qubit Liouvillians of the form T − id).
Let L : M2 →M2 be a doubly stochastic and primitive Liouvillian of the form L = T − id for a
quantum channel represented by T̂ ∈M3 in the Bloch sphere picture with r = sup

x∈R3:‖x‖=1

|〈x|T̂ x〉|.

Then

S(Tt(ρ))− S(ρ) ≥ (1− e−2(1−r)t)(log(d)− S(ρ))

for any ρ ∈ Dd and where Tt = eLt denotes the semigroup generated by L.

The results from the previous section show that for doubly stochastic, primitive and reversible
qubit Liouvillians of the form L = T − id we have α1 (L) = α2 (L). However, in general we might
have α1 (L)� α2 (L) even for reversible Liouvillians of this type. This is demonstrated for instance
by the depolarizing Liouvillian L(X) = tr(X)1d −X where

α2(L) =
2(1− 2

d )

log(d− 1)
→ 0 as d→∞ , but α1(L) ≥ 1

2
.

Therefore, methods based on hypercontractivity may lead to entropy production estimates that
are far from optimal, as the optimal constant is described by the LS-1 constant and the separation
between LS-2 and LS-1 can be arbitrarily large. For the depolarizing channels in any dimension the
authors succeeded in computing the exact LS-1 constant and thus the optimal entropy production
in [MHSFW15].
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4. Discrete LS inequalities for doubly stochastic channels

In this section we show how LS inequalities may be used to derive an entropy production estimate
for doubly stochastic quantum channels in discrete time. We build upon and generalize some
results of [Mic97]. As for continuous time-evolutions, we say that a doubly stochastic quantum
channel T :Md →Md is primitive iff lim

n→∞
Tn(ρ) = 1d

d for any ρ ∈ Dd. We will need the following

characterization of primitive channels:

Theorem 4.1 ([SPGWC10]). Let T : Md → Md be a doubly stochastic quantum channel. The
following are equivalent:

1. T is primitive.

2. There exists n ∈ N such that we have Tn (ρ) > 0 for any ρ ∈ Dd.

3. T has only one eigenvalue of magnitude 1 counting multiplicities.

We define the discrete LS constant of a quantum channel T : Md → Md by the usual LS-2
constant, see Definition 2.2, of a continuous semigroup associated to T .

Definition 4.1 (Discrete LS constant). Let T :Md →Md be a doubly stochastic quantum channel
such that T ∗T is primitive. Define the discrete LS constant of T as

αD (T ) :=
1

2
α2 (T ∗T − idd) (24)

This definition is motivated by the following entropy production estimate:

Theorem 4.2. Let T : Md → Md be a doubly stochastic quantum channel such that T ∗T is
primitive. Then for any ρ ∈ Dd we have:

D

(
T (ρ)

∥∥∥1d
d

)
≤ (1− αD (T ))D

(
ρ
∥∥∥1d
d

)
(25)

Note that this is equivalent to the entropy production estimate:

S(T (ρ))− S(ρ) ≥ αD(T )(log(d)− S(ρ))

Proof. Suppose first that ρ ∈ D+
d and define X = dρ. Our goal is to show the following inequality:

D

(
T (ρ)

∥∥∥1d
d

)
≤ D

(
ρ
∥∥∥1d
d

)
− E2T∗T−id

(
X

1
2

)
. (26)

For that we will use the theory of discrete LS inequalities for classical Markov chains introduced
in [Mic97]. Let {|ai〉}1≤i≤d and {|bj〉}1≤j≤d be orthonormal bases of Cd consisting of eigenvectors
of X and T (X), respectively. As T is a doubly stochastic quantum channel the matrix P ∈ Md

defined as (P )i,j := 〈bi|T (|aj〉〈aj |) |bi〉 is doubly-stochastic. In the following denote by s(X) ∈ Rd+
the vector of eigenvalues of X decreasingly ordered.

Using that as 1d commutes with any d × d-matrix we have D(ρ‖1dd ) = D(c)(s(ρ)‖πd) and

D(T (ρ)‖1dd ) = D(c)(Ps(ρ)‖πd) where D(c) (·‖·) denotes the classical relative entropy and πd the
d-dimensional uniform distribution. Then with [Mic97, Equation 8] 2 one can easily show:

D

(
T (ρ)

∥∥∥1d
d

)
≤ D

(
ρ
∥∥∥1d
d

)
− 1

d

d∑

i,j=1

√
s (X)i

(√
s (X)i −

√
s (X)j

) (
PTP

)
i,j
. (27)

2Note that in [Mic97] the evolution of a probability distribution is given by a left multiplication with the transition
matrix P , while we work with right multiplication. This explains why the order of P and PT is reversed.
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Let V ∈ Ud be a unitary operator such that
[
V T (X)V †, T

(
X

1
2

)]
= 0, i.e. both opera-

tors have the same eigenvectors {|ck〉}1≤k≤d. Now define the doubly-stochastic matrix (Q)i,k =

〈ck|T (|ai〉〈ai|) |ck〉. As Q is doubly-stochastic so is QTQ and we have:

d∑

i,k=1

s (X)i
(
QTQ

)
i,k

= tr (X) . (28)

By construction, Qs
(
X

1
2

)
= s

(
T
(
X

1
2

))
and so:

d∑

i,k=1

s
(
X

1
2

)
i
s
(
X

1
2

)
k

(
QTQ

)
i,k

= 〈Qs
(
X

1
2

)
|Qs

(
X

1
2

)
〉 = tr

[
T
(
X

1
2

)2]
(29)

Using unitary invariance of the relative entropy, (27) and equations (28) and (29) we have that:

D

(
T (ρ)

∥∥∥1d
d

)
= D

(
V T (ρ)V †

∥∥∥1d
d

)
(30)

≤ D
(
ρ
∥∥∥1d
d

)
− 1

d

d∑

i,k=1

√
s (X)i

(√
s (X)i −

√
s (X)k

) (
QTQ

)
i,k

(31)

= D

(
ρ
∥∥∥1d
d

)
− 1

d
tr

(
X − T

(
X

1
2

)2)
(32)

= D

(
ρ
∥∥∥1d
d

)
− E2T∗T−id

(
X

1
2

)
. (33)

By Definition 4.1 of the discrete LS-2 constant and by definition of X we have

D

(
T (ρ)

∥∥∥1d
d

)
≤ D

(
ρ
∥∥∥1d
d

)
− E2T∗T−id

(
(dρ)

1
2

)
≤ (1− αD (T ))D

(
ρ
∥∥∥1d
d

)

for full rank ρ. The inequality follows for all states by a continuity argument.

Note that if T ∗T is primitive, then αD(T ) is strictly positive by the lower bound given in Theorem
2.2 as primitivity implies the existence of a positive spectral gap by Theorem 4.1.

If the channel T is normal, i.e. T ∗T = TT ∗, it was shown in [BCG+13, Proposition 13] that
T ∗T being primitive is also a necessary condition for T being primitive. However, as being a strict
contraction w.r.t. the relative entropy is not a necessary condition for primitivity, it can’t hold that
αD(T ) > 0 for all primitive channels T . We now show that the assumption of T being primitive is
sufficient to ensure that αD (Tn) > 0 for some n ∈ N and also derive another characterization of
primitive, doubly stochastic channels:

Theorem 4.3. Let T : Md → Md be a doubly stochastic quantum channel. The following are
equivalent:

1. T is primitive

2. ∃n ∈ N such that (T ∗)n Tn is primitive

Proof. If T is primitive, then by Theorem 4.1 there exists n ∈ N such that Tn (ρ) > 0 for all
ρ ∈ Dd. As T is doubly stochastic, also (T ∗)n Tn (ρ) > 0 holds, which implies that (T ∗)n Tn is
primitive. On the other hand, if (T ∗)n Tn is primitive for some n ∈ N, then αD (Tn) > 0. By
Theorem 4.2 we have lim

k→∞
T kn (ρ) = 1d

d . As 1d
d is a fixed point the convergence for a subsequence

implies the convergence of the sequence.
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We were not able to determine if inequality (25) is tight, i.e. whether there is a primitive doubly
stochastic channel T :Md →Md with

sup
ρ∈Dd,ρ6= 1

d

D
(
T (ρ) ‖1d

)

D
(
ρ‖1d

) = 1− αD(T ).

However, it is clear that the best constant in the equation (25) is not always given by the discrete
LS constant. Consider for instance the completely depolarizing channel T (ρ) := tr (ρ) 1d

d . Then,

αD (T ∗T − id) =
(1− 2

d )
log(d−1) < 1 [KT13, Corollary 27].

Now we want to determine a bound on the discrete LS constant. For this we need:

Theorem 4.4. Let T : Md →Md be a doubly stochastic, primitive quantum channel. Then the

function k 7→ α2

(
(T ∗)k T k − idd

)
is monotone increasing.

Proof. As T is doubly stochastic, the operator Schwarz inequality[Pau02, Proposition 3.3] implies
that for X ∈M+

d

T k+1 (X)
2 ≤ T

(
T k (X)

2
)
. (34)

As T is trace-preserving we get

‖T k+1 (X) ‖2
2,

1d
d

=
1

d
tr
(
T k+1 (X)

2
)
≤ 1

d
tr
(
T k (X)

2
)

= ‖T k (X) ‖2
2,

1d
d

(35)

where again ‖X‖22,σ = 1
d tr
(
X2
)
. Observe that

E2(T∗)kTk−idd (X) = −1

d
tr
((

(T ∗)kT k
)

(X)X −X2
)

= ‖T k (X) ‖22, 1d − ‖X‖
2
2, 1d
.

Then we have by (35) that E2(T∗)k+1Tk+1−idd ≥ E
2
((T∗)kTk)−idd , which implies the claim by the

variational definition of the LS-2 constant.

The next corollary shows that the discrete LS constant becomes less useful if the dimension d of
the system grows large.

Corollary 4.1. Let T :Md →Md be a doubly stochastic quantum channel s.t. T ∗T is primitive.
Then

min{λ
2
,

(
1− 2

d

)

log (d− 1)
} ≥ αD (T ) ≥ λ

(
1− 2

d

)

log (d− 1)
, (36)

where λ is the spectral gap of T ∗T − id. Again we have
2(1− 2

d )
log(d−1) = 1 for d = 2 by continuity.

Proof. By Theorem 4.4, for k ∈ N we have αD (T ) ≤ αD
(
T k
)

and so

αD (T ) ≤ lim inf
k→∞

αD
(
T k
)

(37)

By Theorem 3.3:

lim inf
k→∞

αD
(
T k
)
≤ lim
k→∞

‖ (T ∗)k T k − idd‖
(
1− 2

d

)

log (d− 1)

For primitive channels lim
k→∞

T k = T∞, where T∞ (X) = tr (X) 1d
d . By the continuity of norms,

multiplication and conjugation of linear operators and ‖idd − T∞‖ = 1:

αD (T ) ≤
(
1− 2

d

)

log (d− 1)

The lower bound follows from [KT13, Corollary 27] and the upper bound in terms of the spectral
gap from Theorem 2.2.
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With Theorem 4.2 we immediately get the following entropy production estimate for a doubly
stochastic quantum channel T :Md →Md

S(T (ρ))− S(ρ) ≥ λ
(
1− 2

d

)

log (d− 1)
(log(d)− S(ρ)) (38)

for any ρ ∈ Dd, where λ denotes the spectral gap of T ∗T − id.

Remark 4.1. The bound given in Equation (38) is similar to the one in [Str85, Lemma 2.1], given
by

S(T (ρ))− S(ρ) ≥ λ

2
‖ρ− 1

d
‖22,

where λ is again the spectral gap of T ∗T − id. However, if αD(T ) and λ are of the same order of
magnitude, then (25) gives an improvement of order log(d). Similar holds for the bound in [Rag02].

Given the usefulness of the hypercontractive characterization of the LS-2 constant in continuous
time, it is natural to ask whether we have a similar characterization of the discrete LS constant.
We now show that the discrete LS constant implies hypercontractivity of the channel, but first we
will prove some technical lemmas. The following lemma is the generalization of [Mic97, Lemma 3]
to the quantum case.

Lemma 4.1. For X ∈M+
d and q ≥ 2:

‖X‖
q,

1d
d
− ‖X‖

2,
1d
d
≤ q − 2

q
‖X‖1−q

q,
1d
d

Ent2

(
X

q
2

)
(39)

Proof. Working in the eigenbasis of X, the proof is identical to [Mic97, Lemma 3].

Lemma 4.2. Let T : Md → Md be a doubly stochastic quantum channel, X ∈ M+
d and q ≥ 2.

Then:
‖T (X) ‖q

q,
1d
d

− ‖X‖q
q,

1d
d

≤ −E2T∗T−id
(
X

q
2

)
(40)

Proof. As the r.h.s. of 40 is equal to

1

d

[
tr

(
T
(
X

q
2

)2)
− tr (Xq)

]
(41)

and the l.h.s. is equal to

1

d
[tr (T (X)

q
)− tr (Xq)] , (42)

the claim is equivalent to tr (T (X)
q
) ≤ tr

(
T
(
X

q
2

)2)
. As T is a doubly stochastic channel and

q ≥ 2 [Dav57]:

T (X) ≤ T
(
X

q
2

) 2
q

(43)

Both T (X) and T
(
X

q
2

) 2
q are positive operators, which implies by Weyl’s monotonicity theo-

rem [Bha97, Corollary III.2.3]:

s (T (X))i ≤ s
(
T
(
X

q
2

) 2
q

)

i

(44)

As tr (T (X)
q
) =

d∑
i=1

s (T (X))
q
i , we have:

tr (T (X)
q
) ≤

d∑

i=1

s
(
T
(
X

q
2

))2
i

= tr

(
T
(
X

q
2

)2)
(45)

and the claim follows.
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Theorem 4.5 (Discrete hypercontractivity). Let T :Md →Md be a doubly stochastic quantum
channel s.t. T ∗T is primitive. Then ‖T‖

2→q, 1dd
≤ 1 for q ≤ 2 + 2αD (T )

Proof. For X ∈M+
d , we have by Lemma (4.1):

‖X‖
q,

1d
d
− ‖X‖

2,
1d
d
≤ q − 2

q
‖X‖1−q

q,
1d
d

Ent2

(
X

q
2

)
(46)

As the function g (x) = x
1
q is concave on R+, we have the following inequality for a, b ∈ R+:

a
1
q − b 1

q ≤ 1

q

(
b

1
q−1 (a− b)

)
(47)

Plugging in a = ‖T (X) ‖q
q,

1d
d

and b = ‖X‖q
q,

1d
d

we get:

‖T (X) ‖
q,

1d
d
− ‖X‖

q,
1d
d
≤ 1

q
‖X‖1−q

q,
1d
d

(
‖T (X) ‖q

q,
1d
d

− ‖X‖q
q,

1d
d

)
(48)

Summing inequalities (46) and (48) and applying Lemma (4.2), we finally get:

‖T (X) ‖
q,

1d
d
− ‖X‖

2,
1d
d
≤ 1

q
‖X‖1−q

q,
1d
d

(
(q − 2)Ent2

(
X

q
2

)
− E2

(
X

q
2

))
(49)

By the definition of the discrete LS inequality, if q ≤ 2 + 2αD (T ) the right-hand side in (4.2) is
negative, which implies for X ∈M+

d :

‖T (X) ‖
q,

1d
d

‖X‖
2,

1d
d

≤ 1 (50)

As shown in [Aud09, Wat05], we may restrict ourselves to positive semi-definite operators when
considering the 2 → q norm of completely positive maps. By continuity, inequality (50) is also
valid for all positive semi-definite operators, implying ‖T‖

2→q, 1dd
≤ 1.

It is not to be expected that the other direction holds, at least in a naive way. That is, that a
bound of the form:

‖T‖
2→q, 1dd

≤ 1

for some q > 2 and a doubly stochastic quantum channel T : Md →Md gives a lower-bound on
αD(T ) that is independent of the dimension d, as we have for continuous time.

To see why this is the case, consider a doubly stochastic qubit channel T : M2 →M2. As we
have mentioned before, we have [Kin14]:

‖T⊗n‖
2→q, 1dndn

= ‖T‖n
2→q, 1dd

If hypercontractivity of the channel would imply a lower-bound on αD(T ) that is independent of
the dimension, we would then obtain a lower-bound strictly positive for T⊗n for all n ∈ N. But it
follows from Corollary 4.1 that lim

n→∞
αD (T⊗n) = 0.

5. Applications

5.1. Upper bounds on unitary quantum subdivision capacities

In [MHRW15] some of the authors introduced quantum capacities for continuous Markovian time-
evolutions. These capacities are similar to the usual quantum capacity, but in addition to applying
encoding and decoding operations in the beginning and end of the protocol additional operations
may be applied in intermediate steps. Here we will only consider the case where these additional op-
erations are unitary quantum channels. The precise definition of this unitary quantum subdivision
capacity is:
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Definition 5.1 (Unitary quantum subdivision capacity QC[MHRW15]).
The U-quantum subdivision capacity of a Liouvillian L : Md → Md at a time t ∈ R+ is

defined as

QU (tL) := sup{R ∈ R+ : R achievable rate}

where a rate R ∈ R+ is called achievable if there exist sequences (nν)
∞
ν=1 , (mν)

∞
ν=1 such that

R = lim supν→∞
nν
mν

and we have

inf
k,E,D,U1,...,Uk

∥∥∥∥∥id⊗nν2 −D ◦
k∏

l=1

(
Ul ◦ T⊗mνt

k

)
◦ E
∥∥∥∥∥
�
→ 0 as ν →∞. (51)

The latter infimum is over the number of subdivisions k ∈ N for which the channels T t
k

:= e
t
kL

are defined, arbitrary encoding and decoding quantum channels E : M⊗nν2 → M⊗mνd and D :
M⊗mνd →M⊗nν2 and unitary channels Ul ∈ U from the chosen subset.

The unitary quantum subdivision capacity quantifies the highest possible rate of information
storage in a quantum memory, when unitary gates may be applied to protect the information
against the noise. Using our Corollary 3.2 we obtain the following upper bound on QU:

Theorem 5.1. (Upper bound for doubly stochastic, primitive Liouvillians)
Let L :Md →Md be a doubly stochastic and primitive Liouvillian with spectral gap λ. Then

QU (tL) ≤ e−2tα(d) log(d) .

with α(d) =
λ(1−2d−2)

log(3) log(d2−1)+2(1−2d−2) .

Proof. Using Corollary 3.3 gives

S(T⊗nt (ρ)) ≥ (1− e−2tα(d)) log(dn) + e−2tα(d)S (ρ)

≥ (1− e−2tα(d)) log(dn)

where Tt = etL and n ∈ N. The rest of the proof follows the lines of the proof in [MHRW15,
Theorem 5.1].

The above theorem shows that in a quantum memory affected by a doubly stochastic, primi-
tive and self-adjoint noise Liouvillian the storage rate is exponentially small in time, when only
unitary correction operations are allowed. This result is similar in flavor to results by Ben-Or et
al. [BOGH13, ABIN96].

5.2. Entropy production for random Pauli channels

As an application of the discrete LS inequalities from Section 4, we derive an entropy production
estimate for random Pauli channels.

Definition 5.2 (Random Pauli channel). A channel T :M2 →M2 is said to be a random Pauli
channel if it can be written as

T (ρ) = p1σ1ρσ1 + p2σ2ρσ2 + p3σ3ρσ3 + (1− p1 − p2 − p3) ρ,

for a probability distribution (p1, p2, p3, 1− p1 − p2 − p3). Here σ1, σ2, σ3 are the Pauli matrices.

First we use the results from Section 3.2 to prove:

Theorem 5.2. Let T : M2 → M2 be a random Pauli channel and L : M2 → M2 given by
L = T − id2. Then the LS-2 constant (Definition 2.2) can be computed as

α2 (L) = 2 min{p1 + p2, p2 + p3, p3 + p1}.
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Proof. Note that we have α2 (L) = 0 if L is not primitive. Therefore, we only have to show the
claim for L primitive. As T is reversible, Corollary 3.4 implies α1 (L) = α2 (L) = λ (L). One can
check that the spectrum of a random Pauli channel is given by:

{1, 1− 2 (p1 + p2) , 1− 2 (p3 + p2) , 1− 2 (p1 + p3)}

and thus the spectral gap of L is given by 2 min{p1 + p2, p2 + p3, p3 + p1}.

Theorem 5.3. Let T :M2 →M2 be a random Pauli channel. Define

p = 2 min{p1p2 + p1p3, p2p1 + p2p3, p3p1 + p3p2}.

Then S(T (ρ))− S(ρ) ≥ p(log(d)− S(ρ)).

Proof. It is easy to check that if T is a random Pauli channel,

T ∗T (ρ) = q1σ1ρσ1 + q2σ2ρσ2 + q3σ3ρσ3 + (1− q1 − q2 − q3) ρ

is a random Pauli channel as well with q1 = 2p2p3, q2 = 2q1q3 and q3 = 2q1q2. By Theorem 5.2,
αD (T ) = p and the claim follows from Theorem 4.2.

6. Conclusion

We have extended the use of group theoretic techniques to study LS inequalities for doubly stochas-
tic, primitive Markovian time-evolutions. These bounds lead to entropy-production estimates for
tensor-powers of this kind of semigroups, which are independent of the number of tensor-powers.
We applied these estimates to derive upper bounds on quantum subdivision capacities. For discrete
doubly stochastic quantum channels we generalized discrete LS inequalities to the quantum case.

There are some directions of possible future research which should be emphasized. It would be
desirable to try our group theoretic approach with other relevant semigroups and generalize it to
semigroups that are not doubly stochastic. Another concrete open question is, whether the LS-2
constant can actually decrease under taking tensor powers.

Concerning LS inequalities for discrete channels there are similar open problems. Again prov-
ing analogous statements for channels with arbitrary fixed points and determine the discrete LS
constant for more channels would be interesting. New techniques that would yield bounds stable
under tensor powers of discrete channels would also be of great interest.

We believe that our proofs illustrate how comparison inequality techniques can be useful and
finding systematic methods to establish them, as there are for classical Markov chains, would be
interesting.

Acknowledgements

A. Müller-Hermes and M. Wolf acknowledge support from the CHIST-ERA/BMBF project CQC.
D. Stilck França acknowledges support from the graduate program TopMath of the Elite Network
of Bavaria, the TopMath Graduate Center of TUM Graduate School at Technische Universität
München and the Deutscher Akademischer Austauschdienst(DAAD). M. Wolf is also supported
by the Alfried Krupp von Bohlen und Halbach-Stiftung and by grant #48322 from the John
Templeton Foundation. The opinions expressed in this publication are those of the authors and
do not necessarily reflect the views of the John Templeton Foundation.

A. Hypercontractivity via group theory

Here we will consider reversible quantum dynamical semigroups with an eigenbasis consisting of
unitaries commuting up to a phase. By relating such quantum semigroups to classical semigroups
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defined on finite abelian groups we can use the classical theory to prove hypercontractivity. We
explore and extend ideas similar to [JPPP15]. In particular we get a bound on the 2 → 4 norm
of tensor products of depolarizing channels. We start by reviewing some basic facts about Fourier
analysis on abelian groups, the proofs of which can be found in [SS11, Chapter 7].

Given a finite abelian group G of order |G| we will denote by V (G) the vector space of all
functions f : G→ C. For f ∈ V (G) we define its lp-norm by

‖f‖pp =
1

|G|
∑

g∈G
|f(g)|p

and for linear operators A : V (G)→ V (G) we define

‖A‖p→q = sup
f∈V (G)

‖Af‖q
‖f‖p

.

The characters of G are functions χ : G → {z ∈ C : |z| = 1} such that χ(g1g2) = χ(g1)χ(g2)
holds for any g1, g2 ∈ G. We will denote by Ĝ the set of all characters of G, which is again a group
isomorphic to G under multiplication. The characters form an orthonormal basis for the space of
functions V (G) under the scalar product

〈f |h〉 =
1

|G|
∑

g∈G
f(g)∗h(g).

We have f =
∑
χi∈Ĝ

f̂(i)χi for f̂(i) = 〈f |χi〉. We also define G×G′ to be the direct product of two

groups G,G′ and we have

Ĝ×G′ ∼= Ĝ× Ĝ′,

i.e. all characters of G×G′ are of the form χχ′ for χ ∈ Ĝ and χ′ ∈ Ĝ′

Definition A.1 (Almost commuting unitary Basis). A set of unitaries {Ui}0≤i≤d2−1 ⊂Md with
U0 = 1d is called an almost commuting unitary basis (associated to an abelian group G) if:

1. tr[U†i Uj ] = dδi,j for all 0 ≤ i, j ≤ d2 − 1.

2. The {Ui}0≤i≤d2−1 are a projective representation of G, i.e. for all 0 ≤ i, j ≤ d2 − 1 we have
UiUj = φ(i, j)UjUi and UiUj = φ′(i, j)Ui+j for some φ′(i, j), φ(i, j) ∈ C with |φ′(i, j)| =
|φ(i, j)| = 1, where in the index we mean addition in the group G.

We can then associate each unitary to a character in Ĝ.

A prominent example of an almost commuting unitary basis is the discrete Weyl system of
unitaries {Uk,l}0≤k,l≤d ⊂Md given by:

Uk,l =

d−1∑

r=0

νrl |k + r〉 〈r| , ν = e
2iπ
d . (52)

It is easy to check the properties:

1. tr
(
U†i,jUk,l

)
= dδi,kδj,l for any i, j, k, l ∈ {0, . . . , d− 1}.

2. Ui,jUk,l = νjkUi+k,j+l

3. U−1k,l = νklU−k,−l for any k, l ∈ {0, . . . , d− 1}.
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These unitaries are a projective representation of Zd×Zd in PU(d). This basis has been explored
in [JPPP15] to derive similar results on hypercontractivity. However, it should be noted that there
are other examples of almost commuting bases and that tensoring leads to further examples.

By associating an almost commuting basis on Md to the orthonormal basis of characters on
V (G) we can also relate norms on Md to corresponding norms on V (G). For any X ∈ Md we
define

fX :=

d2−1∑

i=0

f̂X(i)χi (53)

with f̂X(i) = 〈Ui|X〉 1
d
.

Lemma A.1. Let {Ui}0≤i≤d2−1 be an almost commuting unitary basis and G the group associated
to it. For any X ∈Md and fX as in (53) we have

‖X‖22, 1d = ‖fX‖22.

Proof. It follows immediately from the definition of an almost commuting unitary basis that it is
an orthonormal basis w.r.t. 〈·|·〉 1

d
and so we have:

‖X‖2
2,

1d
d

= 〈X|X〉 1
d

=
d2−1∑

i=0

|〈Ui|X〉 1
d
|2 =

d2−1∑

i=0

|f̂(i)|2 = ‖f‖2

as by Plancherel’s identity ‖f‖22 =
d2−1∑
i=0

|f̂(i)|2.

In the following L : Md → Md will denote a unital, reversible Liouvillian with spectrum
{λi}0≤i≤d2−1 ⊂ R and with unitary eigenvectors {Ui}0≤i≤d2−1 forming an almost commuting
unitary basis. To such a Liouvillian we associate a classical semigroup Pt : V (G)→ V (G) defined
as:

Ptf :=
d2−1∑

i=0

eλitf̂(i)χi. (54)

With this definition we can state the following theorem:

Theorem A.1. Let L :Md →Md be a unital, reversible Liouvillian with an almost commuting
unitary eigenbasis and Pt : V (g)→ V (g) the associated classical semigroup as in (54). Then:

‖etL‖2→4, 1d
≤ ‖Pt‖2→4

Proof. Let {λi}0≤i≤d2−1 denote the spectrum of L and {Ui}0≤i≤d2−1 the almost commuting unitary

eigenbasis. Any X ∈ Md can be written as X =
∑d2−1
i=0 f̂(i)Ui with f̂X(i) = 〈Ui|X〉 1

d
and we can

also define fX as in (53). Then we have:

‖X‖44, 1d =
1

d
tr[X†XX†X] =

1

d

∑

i1,i2,i3,i4

f̂X (i1)
∗
f̂X (i2) f̂X (i3)

∗
f̂X (i4) tr[U†i1Ui2U

†
i3
Ui4 ]

The unitaries {Ui}d
2−1
i=0 commute and form a group up to a phase. Also by the orthogonality

condition we have tr(Ui) = 0 for any i 6= 0, which implies

1

d
|tr[U†i1Ui2U

†
i3
Ui4 ]| = δi2+i4−i3−i1,0.
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By the triangle inequality we have:

‖X‖44, 1d ≤
∑

i2+i4−i3−i1=0

|f̂X (i1) f̂X (i2) f̂X (i3) f̂X (i4) | (55)

Now define f ′X ∈ V (G) as f ′X =
∑d2−1
i=0 |f̂X (i) |χi and note that

‖fX‖44 = ‖f ′X‖44 =
1

d2

∑

g∈G

∣∣∣∣∣∣

d2−1∑

i=0

∣∣∣f̂X (i)
∣∣∣χi (g)

∣∣∣∣∣∣

4

=
1

d2

∑

g∈G

∑

i1,i2,i3,i4

∣∣∣f̂X (i1) f̂X (i2) f̂X (i3) f̂X (i4)
∣∣∣χi2+i4−i3−i1(g).

where we have used the identities χi(g)∗ = χ−i(g) and χi1(g)χi2(g) = χi1+i2(g) for any g ∈ G. By
the orthogonality of characters we have

∑
g∈G χa(g) = d2δa0 and therefore

‖fX‖44 =
∑

i2+i4−i3−i1=0

|f̂X (i1) f̂X (i2) f̂X (i3) f̂X (i4) |.

It then follows from (55) that ‖X‖4
4, 1d
≤ ‖fX‖44.

The semigroup etL acts as a multiplication operator in the almost commuting unitary eigenbasis
{Ui}d

2

i=0. By construction the classical semigroup Pt from (54) associated to etL acts in the same
way in the basis of characters. This implies:

‖etLX‖4, 1d ≤ ‖PtfX‖4 ≤ ‖Pt‖2→4‖fX‖2 = ‖Pt‖2→4‖X‖2, 1dd (56)

using Lemma A.1 for the last equality.

Note that the proof of the previous theorem can be used for any 2 → q norm with q an even
integer [JPPP15].

Consider two unital, reversible Liouvillians L1 :Md1 →Md1 and L2 :Md2 →Md2 with spectra

{λi}d
2
1−1
i=0 and {µj}d

2
2−1
j=0 and almost commuting unitary eigenbases {U1

i }0≤i≤d21−1 and {U2
j }0≤j≤d22−1

associated to abelian groups G1 and G2. Now we can apply the above theorem to the tensor product
semigroup etL = etL1 ⊗ etL2 generated by L = L1 ⊗ idd2 + idd1 ⊗ L2. It can be verified easily
that {U1

i ⊗ U2
j }0≤i≤d21−1,0≤j≤d22−1 is an almost commuting unitary eigenbasis for L associated to

the abelian group G1 × G2. Let Qt denote the classical semigroup acting on V (G1) ⊗ V (G2) ∼=
V (G1 × G2) associated to etL as in (54). Also let P 1

t and P 2
t denote the classical semigroups

associated in the same way to etL1 and etL2 respectively. Note that for any χi,j ∈ ̂G1 ×G2 we
have

Qtχi,j = Qtχiχj = eλiteµjtχiχj = P 1
t ⊗ P 2

t χi,j

and hence Qt = P 1
t ⊗ P 2

t as the characters (in ̂G1 ×G2) form a basis of V (G1 ×G2). This proves
the following corollary:

Corollary A.1. Let L1 : Md1 → Md1 and L2 : Md2 → Md2 be unital, reversible Liouvillians
with almost commuting unitary eigenbases associated to abelian groups G1 and G2. Furthermore,
let P 1

t and P 2
t be the associated classical semigroups as in (54) acting on V (G1) and V (G2). Then:

‖etL1 ⊗ etL2‖2→4, 1
d1d2

≤ ‖P 1
t ⊗ P 2

t ‖2→4
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Relative Entropy Convergence for Depolarizing Channels

A. Müller-Hermes, D. Stilck França and M. Wolf May 19, 2015

We study quantum Markovian time-evolutions generated by general depolarizing Li-
ouvillians, i.e. Lσ : Md →Md given by Lσ(ρ) = tr(ρ)σ − ρ for some quantum state
σ ∈ Dd. Here we restrict to the case where σ is full-rank (otherwise the logarithmic-
Sobolev framework is not well-defined). The logarithmic-Sobolev constant α1 (Lσ) can
be seen as the optimal exponent α ∈ R such that

D(Tσt (ρ)‖σ) ≤ e−2αtD(ρ‖σ) (1)

holds for any ρ ∈ Dd and any t ∈ R+.

1 Main result

Our main result is the computation of α1 (Lσ). As a direct consequence of (1) we have
to solve the following optimization problem:

α1 (Lσ) = inf
ρ∈D+

d

1

2

(
1 +

D(σ‖ρ)

D(ρ‖σ)

)
.

The quotient of relative entropies appearing in the optimization is a quasi-linear func-
tion in the entries of the doubly stochastic matrix Pij = |〈vi|wj〉|2 depending on the
eigenbases {|vi〉} and {|wj〉} of ρ and σ. Then Birkhoff’s theorem implies that the
optimal ρ has to commute with σ. By applying Lagrange-multipliers we obtain:

Theorem 1.1. Let Lσ :Md →Md be the depolarizing Liouvillian with full-rank fixed
point σ ∈ Dd. Then we have

α1 (Lσ) = min
x∈[0,1]

1

2

(
1 +

D2(smin(σ)‖x)

D2(x‖smin(σ))

)
,

where smin(σ) denotes the minimal eigenvalue of σ.

Our proof shows, that the above constant is also the logarithmic-Sobolev constant
for a classical random walk on {1, . . . , d} with transition probabilities equal to the
eigenvalues of σ. To the best of our knowledge this constant has not been computed
before.

2 Concavity of von-Neumann entropy

As an application of Theorem 1.1 we improve the concavity inequality of the von-
Neumann entropy:



Theorem 2.1 (Improved Concavity of the von-Neumann Entropy). Let ρ ∈ Dd and
σ ∈ D+

d with minimal eigenvalue smin(σ). Then for q ∈ [0, 1] we have

S((1− q)σ + qρ) ≥ (1− q)S(σ) + qS(ρ) + q(1− qc(σ))D(ρ‖σ),

with

c(σ) = min
x∈[0,1]

D2(smin(σ)‖x)

D2(x‖smin(σ))

The proof is a straightforward rewriting of (1) with α = α1 (Lσ). Our result seems
to be incomparable to similar improvements [2] using different quantities for the cor-
rection terms. While in some cases our bound performs better (by numerical value),
there are other cases where it performs worse. Furthermore, our proof gives a similar
result for the Shannon entropy.

3 Tensor-powers

Let L(n)
σ denote the generator of the semigroup (Tσt )⊗n. In the special case where

σ = 1d

d is the maximally mixed state we can prove the lower bound

α1

(
L(n)

1d
d

)
≥ 1

2

for any n ∈ N and any d ≥ 2. This bound is a direct consequence of the following
entropy-production estimate:

Theorem 3.1. For any σ, ρ ∈ Dd (not necessarily full rank) we have

S((Tσt )⊗n(ρ)) ≥ e−tS(ρ) + (1− e−t)S(σ⊗n).

This theorem was first considered (though with wrong proof) in [1] for the special
case σ = 12

2 . We prove the above theorem using a quantum version of Shearer’s
inequality for entropies.

4 Legal statement

In all parts of this work, except the section on the improved Pinsker’s inequality, I was
significantly involved.

References

[1] Dorit Aharonov, Michael Ben-Or, Russell Impagliazzo, and Noam Nisan. Limita-
tions of noisy reversible computation. arXiv preprint quant-ph/9611028, 1996.

[2] Isaac Kim and Mary Beth Ruskai. Bounds on the concavity of quantum entropy.
Journal of Mathematical Physics, 55(9), 2014.



Relative Entropy Convergence for
Depolarizing Channels
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We study the convergence of states under continuous-time depolarizing
channels with full rank fixed points in terms of the relative entropy. The
optimal exponent of an upper bound on the relative entropy in this case is
given by the log-Sobolev-1 constant. Our main result is the computation
of this constant. As an application we use the log-Sobolev-1 constant of
the depolarizing channels to improve the concavity inequality of the von-
Neumann entropy. This result is compared to similar bounds obtained
recently by Kim et al. and we show a version of Pinsker’s inequality, which
is optimal and tight if we fix the second argument of the relative entropy.
Finally, we consider the log-Sobolev-1 constant of tensor-powers of the
completely depolarizing channel and use a quantum version of Shearer’s
inequality to prove a uniform lower bound.

1. Introduction

LetMd denote the set of complex d×d-matrices, Dd ⊂Md the set of quantum states,
i.e. positive matrices with trace equal to 1, and D+

d the set of strictly positive states.
The relative entropy (also called quantum Kullback-Leibler divergence) of ρ, σ ∈ Dd
is defined as

D(ρ‖σ) :=

{
tr[ρ(log ρ− log σ)], if supp(ρ) ⊂ supp(σ)

+∞, otherwise
. (1)

∗muellerh@ma.tum.de
†dsfranca@mytum.de
‡wolf@ma.tum.de

1



The relative entropy defines a natural distance measure to study the convergence of
Markovian time-evolutions. For some state σ ∈ Dd consider the generalized depolar-
izing Liouvillian Lσ :Md →Md defined as

Lσ (ρ) := tr [ρ]σ − ρ. (2)

This Liouvillian generates the generalized depolarizing channel Tσt :Md →Md with
Tσt (ρ) := etLσ (ρ) = (1−e−t)tr [ρ]σ+e−tρ, where t ∈ R+ denotes a time parameter. As
Tσt (ρ)→ σ for t→∞ we can study the convergence speed of the depolarizing channel
with a full rank fixed point σ ∈ Dd by determining the largest constant α ∈ R+ such
that

D(Tσt (ρ)‖σ) ≤ e−2αtD(ρ‖σ) (3)

holds for any ρ ∈ Dd and any t ∈ R+. This constant is known as the logarithmic
Sobolev-1 constant [1, 2] of Lσ, denoted by α1 (Lσ). In the following we will compute
this constant and then use it to derive an improvement on the concavity of von-
Neumann entropy.

2. Preliminaries and notation

Consider a primitive1 Liouvillian L with full rank fixed point σ ∈ Dd and denote by
Tt := etL the quantum dynamical semigroup generated by L. Consider the function
f(t) := D

(
Tt(ρ)

∥∥σ
)

for some initial state ρ ∈ Dd and note that if

df

dt
≤ −2αf

holds for some α ∈ R+, then it follows that f(t) ≤ e−2αtf(0). The time derivative of
the relative entropy at t = 0, also called the entropy production [3], is given by:

d

dt
D
(
Tt(ρ)

∥∥∥σ
) ∣∣∣∣

t=0

= −tr[L(ρ)(log(σ)− log(ρ))] (4)

as tr(L(ρ)) = 0 for any ρ ∈ Dd. This motivates the following definition:

Definition 2.1 (log-Sobolev-1 constant, [1, 2]). For a primitive Liouvillian L :Md →
Md with full rank fixed point σ ∈ Dd we define its log-Sobolev-1 constant as

α1(L) := sup
{
α ∈ R : tr[L(ρ)(log(σ)− log(ρ))] ≥ 2αD (ρ‖σ) ,∀ρ ∈ D+

d

}
(5)

1A Liouvillian is primitive if, and only if, it has a unique full rank fixed point σ and for any ρ ∈ Dd

we have etL(ρ) → σ as t→ ∞.
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For a primitive Liouvillian L : Md →Md the preceding discussion shows that (3)
holds for any α ≤ α1(L). Furthermore, α1(L) is the optimal constant for which this
inequality holds independent of ρ ∈ Dd (for states ρ not of full rank this follows from
a simple continuity argument).

In the following we will need some functions defined as continuous extensions of
quotients of relative entropies. We denote by Qσ : D+

d → R the continuous extension

of the function ρ 7→ D(σ‖ρ)
D(ρ‖σ) (see Appendix B) given by

Qσ(ρ) :=

{
D(σ‖ρ)
D(ρ‖σ) , ρ 6= σ

1, ρ = σ
. (6)

Note that for x ∈ [0, 1] and y ∈ (0, 1) the binary relative entropy is defined as

D2(x‖y) := x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
. (7)

This is the classical relative entropy of the probability distributions (x, 1 − x) and
(y, 1 − y). For y ∈ (0, 1) we denote by qy : (0, 1) → R the continuous extension of

x 7→ D2(y‖x)
D2(x‖y) given by

qy(x) :=

{
D2(y‖x)
D2(x‖y) , x 6= y

1, x = y
. (8)

3. Log-Sobolev-1 constant for the depolarizing
Liouvillian

Note that for the depolarizing Liouvillian Lσ with σ ∈ D+
d as defined in (2) we have

tr[Lσ(ρ)(log(σ)− log(ρ))] = D(ρ‖σ) +D(σ‖ρ).

Inserting this into Definition 2.1 we can write

α1(Lσ) = inf
ρ∈D+

d

1

2

(
1 +Qσ(ρ)

)
. (9)

Our main result is the following theorem:

Theorem 3.1. Let Lσ :Md →Md be the depolarizing Liouvillian with full rank fixed
point σ ∈ Dd as defined in (2). Then we have

α1 (Lσ) = min
x∈[0,1]

1

2

(
1 + qsmin(σ)(x)

)
,

where smin(σ) denotes the minimal eigenvalue of σ.
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Figure 1: α1 (Lσ) for smin(σ) ∈ [0, 1].

In Figure 1 the values of α1 (Lσ) depending on smin(σ) ∈ [0, 1] are plotted. Note that
by Theorem 3.1 we have α1 (Lσ)→ 1/2 in the limit smin(σ)→ 0 (as D2(smin(σ)‖x)→
0 and D2(x‖smin(σ))→∞ in this case).

Before we state the proof of Theorem 3.1 we need to make a technical comment. By
(6) we have Qσ(ρ) → +∞ as ρ → ∂Dd, i.e. as ρ converges to a rank-deficient state.
Therefore, the infimum in (9) will be attained in a full rank state ρ̃ ∈ D+

d and we can
restrict the optimization to the compact set Kσ ⊂ Dd (depending on σ) defined as

Kσ = {ρ ∈ D+
d : smin(ρ) ≥ smin (ρ̃)− ε} (10)

for some fixed ε ∈ (0, smin (ρ̃)) and where smin(·) denotes the minimal eigenvalue. Note
that the minimizing state ρ̃ is contained in the interior of Kσ. Now we have to solve
the following optimization problem for fixed σ ∈ D+

d :

inf
ρ∈D+

d

Qσ(ρ) = inf
ρ∈Kσ

Qσ(ρ). (11)

To prove Theorem 3.1 we will need the following lemma showing that the infimum
in (11) is attained at states ρ ∈ Dd commuting with the fixed point σ.

Lemma 3.1. For any σ ∈ D+
d we have

inf
ρ∈Kσ

Qσ (ρ) = inf
ρ∈Kσ,[ρ,σ]=0

Qσ (ρ)

where Qσ : D+
d → R denotes the continuous extension of ρ 7→ D(σ‖ρ)

D(ρ‖σ) (see (6)).
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Proof. Consider the spectral decomposition σ =
∑d
i=1 si|vi〉〈vi| for s ∈ Rd+ and fix a

vector r ∈ Rd+ which is not a permutation of s and which fulfills mini(ri) ≥ smin (ρ̃)−ε
(see (10)) and

∑d
j=1 rj = 1. For some fixed orthonormal basis {|wj〉}j consider ρ :=

∑d
j=1 rj |wj〉〈wj | ∈ Kσ. Inserting ρ into Qσ gives:

Qσ(ρ) =
D(σ‖ρ)

D(ρ‖σ)
=
−S(σ)− tr[σ log(ρ)]

−S(ρ)− tr[ρ log(σ)]
=
−S(σ)− 〈s, P log(r)〉
−S(ρ)− 〈log(s), P r〉 =: F (P ) (12)

where we introduced P ∈ Md given by Pij = | 〈vi|wj〉 |2 and log(s), log(r) ∈ Rd are
defined as (log(s))i = log(si) and (log(r))j = log(rj). Note that P is a unistochastic
matrix, i.e. a doubly stochastic matrix whose entries are squares of absolute values of
the entries of a unitary matrix. We will show that the minimum of F over unistochastic
matrices P is attained at a permutation matrix. By definition of P this shows that
there exists a state ρ′ ∈ Kσ with spectrum r and commuting with σ, which fulfills
Qσ(ρ′) ≤ Qσ(ρ).

As the set of unistochastic matrices is in general not convex [4], we want to consider
the set of doubly stochastic matrices instead. By Birkhoff’s theorem [5, Theorem

II.2.3] we can write any doubly stochastic D ∈Md as D =
∑k
i=1 λiPi for some k ∈ N,

numbers λi ∈ [0, 1] with
∑k
i=1 λi = 1 and permutation matrices Pi. Now we can write

the denominator of F (D) as

−S(ρ)− 〈log(s), Dr〉 =

k∑

i=1

λi (−S(ρ)− 〈log(s), Pir〉) =

k∑

i=1

λiD(ρi‖σ) > 0,

where ρi is the state obtained by permuting the eigenvectors of ρ with Pi. In the last
step we used Klein’s inequality [6, p. 511] together with the fact that ρi 6= σ for any
1 ≤ i ≤ k as their spectra are different. The previous estimate shows that F is also
well-defined on doubly stochastic matrices.

Any unistochastic matrix is also doubly stochastic and we have

inf
{
F (P ) : P ∈Md doubly stochastic

}
≤ inf

{
F (P ) : P ∈Md unistochastic

}
.

Note that S(σ) and S(ρ) in (12) only depend on s ∈ Rd+ and r ∈ Rd+ and thus the
numerator and the denominator of F are positive affine functions in P . This shows
that F is a quasi-linear function [7, p. 91] on the set of doubly stochastic matrices.
It can be shown (see [7]) that the minimum of such a function over a compact and
convex set is always attained in an extremal point of the set. By Birkhoff’s theorem [5,
Theorem II.2.3] the extremal points of the compact and convex set of doubly stochastic
matrices are the permutation matrices. As these are also unistochastic matrices we
have

inf
{
F (P ) : P ∈Md unistochastic

}
= inf

{
F (P ) : P ∈Md permutation matrix

}
.

This finishes the first part.
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To prove the lemma note that we have

inf
ρ∈Kσ

Qσ(ρ) = Qσ(ρ̃)

for some minimizing full rank state ρ̃ ∈ D+
d . Now consider some sequence (ρn)n∈N ∈

KNσ with ρn → ρ̃ as n→∞ and such that the spectra of the ρn are no permutations
of the spectrum of σ. By the first part of the proof we find a sequence (ρ′n)n∈N ∈ KNσ
commuting with σ, such that

Qσ(ρ̃) ≤ Qσ(ρ′n) ≤ Qσ(ρn)→ Qσ(ρ̃)

as n → ∞.Thus Qσ(ρ′n) → Qσ(ρ̃) as n → ∞. On the compact set Kσ the sequence
(ρ′n)n has a converging subsequence

(
ρ′nk
)
k∈N with ρ′nk → ρ′ ∈ Kσ as k → ∞. By

continuity of Qσ we have Qσ(ρ′) = Qσ(ρ̃) = infρ∈Kσ Qσ(ρ) and by continuity of the
commutator ρ 7→ [ρ, σ] we have [ρ′, σ] = 0.

With this lemma we can prove our main result:

Proof of Theorem 3.1. By Lemma 3.1 we may restrict the optimization in (11) to
states which commute with σ. Thus, we can repeat the construction of the compact
set Kσ (see 10) for a minimizer ρ̃ ∈ D+

d with [ρ̃, σ] = 0. By construction ρ̃ lies
in the interior of Kσ, which will be important for the following argument involving
Lagrange-multipliers.

To find necessary conditions on the minimizers of (11) we abbreviate C := infρ∈Kσ Qσ(ρ)
and note that C > 0. To see this, note that we may extend Qσ(ρ) continuously to
1 at σ, so there exists δ > 0 s.t. for ‖ρ − σ‖1 ≤ δ we have Qσ(ρ) ≥ 1

2 and for ρ

s.t. ‖ρ − σ‖1 > δ we have Qσ(ρ) ≥ δ2

2 log(smin(σ−1)) Using Pinsker’s inequality and

D(ρ‖σ) ≤ log (smin (σ)). For any ρ ∈ Kσ with [ρ, σ] = 0 and ρ 6= σ have

D(σ‖ρ)

D(ρ‖σ)
≥ C

which is equivalent to

S(σ) ≤ CS(ρ) + C
d∑

i=1

ri log(si)−
d∑

i=1

si log(ri). (13)

Here {ri}di=1 denote the eigenvalues of ρ ∈ Kσ (see 10) fulfilling [ρ, σ] = 0 and {si}di=1

the eigenvalues of σ. As ρ̃ is a minimizer of (11) and commutes with σ its spectrum
is a minimizer of the right-hand-side of (13) minimized over the set S := {r ∈ Rd :
mini(ri) ≥ smin(ρ̃)− ε} ⊂ Rd with ε chosen in the construction of Kσ (see (10)). We
will now compute necessary conditions on the spectrum of ρ̃ using the formalism of
Lagrange-multipliers (note that by construction the spectrum of ρ̃ lies in the interior
of S).
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Consider the Lagrange function F : S ×R→ R given by

F (r1, . . . , rd, λ) = CS(ρ) + C
d∑

i=1

ri log(si)−
d∑

i=1

si log(ri) + λ

(
d∑

i=1

ri − 1

)
.

The gradient of F is given by:

[∇F (r1, . . . , rd, λ)]j =

{
C(− log(rj)− 1 + log(sj))− sj

rj
+ λ 1 ≤ j ≤ d

∑d
i=1 ri − 1 j = d+ 1

(14)

By the formalism of Lagrange-multipliers any minimizer r = (r1, . . . , rd) of the right-
hand-side of (13) in the interior of S has to fulfill∇F (r1, . . . , rd, λ) = 0 for some λ ∈ R.
Summing up the first d of these equations (where the jth equation is multiplied with
rj) implies

λ = 1 + C(1 +D(ρ‖σ)).

Inserting this back into the equations [∇F (r1, . . . , rd, λ)]j = 0 and using uj =
rj
sj

we

obtain
uj(1 + CD(ρ‖σ))− 1 = Cuj log(uj) (15)

for 1 ≤ j ≤ d. For fixed D(ρ‖σ) there are only two values for uj solving the equations
(15), as an affine functions (the left-hand-side) can only intersect a strictly convex
function (the right-hand-side) in at most two points. Thus, for a minimizer {ri}di=1 of
the right-hand-side of (13) in the interior of S there are constants c1, c2 ∈ R+ such
that for each i ∈ {1, . . . , d} either ri = c1si or ri = c2si holds.

We have obtained the following conditions on the spectrum of the minimizer ρ̃ ∈ Kσ

(fulfilling [ρ̃, σ] = 0) of (11): There exist constants c1, c2 ∈ R+ a permutation ν ∈ Sd
(where Sd denotes the group of permutations on {1, . . . , d}) and some 0 ≤ n ≤ d such
that the spectrum r ∈ R+

d of ρ̃ fulfills ri = c1si for any 0 ≤ i ≤ n and ri = c2si for
any n + 1 ≤ i ≤ d. Note that the cases c1 = c2 = 1, n = 0 and n = d all correspond
to the case ρ = σ where we have Qσ(σ) = 1. Thus, we can exclude the cases n = 0
and n = d as long as we optimize over c1 = c2 = 1. Furthermore, note that we can
use the normalization of ρ̃, i.e. c1

∑n
i=1 si + c2

∑d
i=n+1 si = 1 to eliminate c2. Given a

permutation ν ∈ Sd and n ∈ {1, . . . , d}, we define p(ν, n) =
∑n
i=1 sν(i). Inserting the

above conditions into (11) and setting c1 = x and 0 < n < d yields

inf
ρ∈Kσ

Qσ(ρ) = inf
ν∈Sd

inf
1≤n<d

inf
x∈[0,p(ν,n)−1]

qp(ν,n) (xp(ν, n)) (16)

= inf
ν∈Sd

inf
1≤n<d

inf
x∈[0,1]

qp(ν,n)(x) (17)

where qy : [0, 1] → R denotes the continuous extension of x 7→ D2(y‖x)
D2(x‖y) (see (8)). By

Lemma A.1 in the appendix the function y 7→ qy(x) is continuous and quasi-concave
and hence the minimum over any convex and compact set is attained at the boundary.
Thus, we have

qsmin(σ)(x) ≥ inf
ν∈Sd

inf
1≤n≤d

qp(ν,n)(x) ≥ inf
y∈[smin(σ),1−smin(σ)]

qy(x) = qsmin(σ)(x)
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using q1−smin(σ)(x) = qsmin(σ)(x) for any x ∈ [0, 1]. Inserting this into (17) leads to

inf
ρ∈Kσ

Qσ(ρ) = inf
x∈[0,1]

qsmin(σ)(x).

Lemma 3.1 implies that the log-Sobolev-1 constant of the depolarizing channels
coincides with the classical one of the random walk on the complete graph with d
vertices and distribution given by the spectrum of σ. This constant has been shown to
imply other inequalities, such as in [8, Proposition 3.13]. Using this result, Theorem
3.1 implies a refined transportation inequality on graphs.

Using the correspondence with the classical log-Sobolev-1 constant of a random walk
on the complete graph, we may apply [9, Example 3.10], which proves:

Corollary 3.1. Let Lσ : Md → Md be the depolarizing Liouvillian with full rank
fixed point σ ∈ Dd as defined in (2). Then we have

α1(Lσ) ≥ 1

2
+
√
smin (σ) (1− smin (σ))

with equality iff smin (σ) = 1
2 . Again smin(σ) denotes the minimal eigenvalue of σ.

4. Application: Improved concavity of von-Neumann
entropy

It is a well-known fact that the von-Neumann entropy S(ρ) = −tr [ρ log(ρ)] is concave
in ρ. Using Theorem 3.1 we can improve the concavity inequality:

Theorem 4.1 (Improved concavity of the von-Neumann entropy). For ρ, σ ∈ Dd and
q ∈ [0, 1] we have

S((1− q)σ + qρ)− (1− q)S(σ)− qS(ρ) ≥

max

{
q(1− qc(σ))D(ρ‖σ)

(1− q)(1− (1− q)c(ρ))D(σ‖ρ)
,

with

c(σ) = min
x∈[0,1]

D2(smin(σ)‖x)

D2(x‖smin(σ))

and c(ρ) defined in the same way.

Note that this bound becomes trivial if both σ and ρ are not of full rank (as we
have c(ρ) = c(σ) = 0 in this case). However, as long as D(ρ‖σ) or D(σ‖ρ) < ∞, we
may still get a bound by restricting both density matrices to the support of σ or ρ,
respectively.
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Proof. Note that for the Liouvillian L := − log(q)Lσ we have:

eL(ρ) = qρ+ (1− q)σ.

By Theorem 3.1 and (3) we have

D
(
eL(ρ)‖σ

)
≤ e(1+c(σ)) log(q)D (ρ‖σ) (18)

Rearranging and expanding the terms in (18) we get

S(qρ+ (1− q)σ) ≥ (1− q)S(σ)− qtr [ρ log(σ)] + q1+c(σ)D(ρ‖σ)

= (1− q)S(σ) + qS(ρ) + q(1− qc(σ))D(ρ‖σ).

Interchanging the roles of ρ and σ in the above proof gives the second case under the
maximum.

In [10] another improvement on the concavity of the von-Neumann entropy is shown:

S((1− q)σ + qρ)− (1− q)S(σ)− qS(ρ) ≥ q(1− q)
(1− 2q)2

max

{
D(ρavg‖ρrev)

D(ρrev‖ρavg)
(19)

≥ 1

2
q(1− q)‖ρ− σ‖21 (20)

where ρavg = (1− q)σ+ qρ and ρrev = (1− q)ρ+ qσ. Note that this bound is valid for
all states ρ, σ ∈ Dd while our bound in Theorem 4.1 becomes trivial unless the support
ρ is contained in the support of σ or the other way around. We will therefore consider
only full rank states in the following analysis.

By simple numerical experiments our bound from Theorem 4.1 seems to be worse
than (19). However, one can argue that (19) is not much simpler than the left-hand-
side itself. In particular the dependence on ρ and σ is only implicit via the relative
entropy between ρavg and ρrev. Our bound from Theorem 4.1 depends on some spectral
data (in terms of the smallest eigenvalues of ρ or σ), but whenever this is given, we
have a bound for any q ∈ [0, 1] in terms of the relative entropies of ρ and σ.

Again we can do simple numerical experiments to compare the bounds (20) and
Theorem 4.1. Recall that our bound is given in terms of the relative entropy and
(20) in terms of the trace norm. In Figure 2 the bounds are compared for randomly
generated quantum states in dimension d = 10. These plots show that the bounds are
not comparable and depending of the choice of the states the bound from Theorem
4.1 will perform better than (20) or vice versa. Note that for q close to 0 or 1 our
bound seems to perform better in both Figures. This is to be expected as α1 (Lσ)
is defined as the optimal constant α bounding the entropy production (4) (in t = 0)
by −2αD(ρ‖σ). Therefore, Theorem 4.1 should be the optimal bound (in terms of
relative entropy) for q near 0 or 1.

Note that by applying Pinsker’s inequality:

D (ρ‖σ) ≥ 1

2
‖ρ− σ‖21 (21)
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Figure 2: Comparison of bound (20) (red) and the bound from Theorem 4.1 (blue,
where both choices of the ordering of ρ and σ are plotted) and the exact
value S((1− q)σ + qρ)− (1− q)S(σ)− qS(ρ) (black) two pairs of randomly
generated 10× 10 quantum states and q ∈ [0, 1].

for states ρ, σ ∈ Dd to our bound from Theorem 4.1 we can obtain an improvement on
the concavity inequality in terms of the trace-distance similar to (20). Unfortunately
a simple computation shows that the resulting trace-norm bound is always worse than
(20). In the next section we will show that Pinsker’s inequality can be improved in
the case where the second argument in the relative entropy is fixed (which is the case
in the bound from Theorem 4.1). This will lead to an additional improvement of the
trace-norm bound obtained from Theorem 4.1, such that in some (but only very few)
cases the bound becomes better than (20).

5. State-Dependent Optimal Pinsker’s Inequality

Pinsker’s inequality (21) can be applied to the bound in Theorem 4.1 to get an im-
provement of the concavity in terms of the trace distance of the two density matrices.
It can also be applied to (3) to get a mixing time bound [2] for the depolarizing chan-
nel. Note that in both of these cases the second argument of the relative entropy is
fixed. Other improvements have been considered in the literature [11], but here we will
improve Pinsker’s inequality in terms of the second argument of the relative entropy.
More specifically we compute the optimal constant C (σ) (depending on σ) such that
D (ρ‖σ) ≥ C (σ) ‖ρ− σ‖21 holds when σ has full rank.

We will follow a strategy similar to the one pursued in [12] in proving this, where
the analogous problem was considered for classical probability distributions. For a
state ρ ∈ Dd let s(ρ) = (s1(ρ), . . . , sd(ρ)) denote its vector of eigenvalues decreasingly
ordered.

10



Lemma 5.1. Let σ ∈ D+
d and for A ⊆ {1, . . . , d} define Pσ (A) =

∑
i∈A

si(σ). Then we

have for ε > 0:

min
ρ:‖ρ−σ‖1≥ε

D (ρ‖σ) = min
A⊆{1,...,d}

D2 (Pσ (A) + ε‖Pσ (A))

Proof. Let ρ ∈ Dd be such that ‖ρ − σ‖1 = δ, with δ ≥ ε. By Lidskii’s theorem [5,
Corollary III.4.2], we have:

s (ρ− σ) = s (σ)− Ls (ρ) ,

where L is a doubly stochastic matrix. Define ρ′ to be the state which has eigenvalues
Ls (ρ) and commutes with σ. Then we have:

‖ρ− σ‖1 = ‖ρ′ − σ‖1
By the operational interpretation for the 1−norm [6, Theorem 9.1] there exist hermi-
tian projections Q,Q′ ∈Mn such that

2tr[Q (ρ− σ)] = ‖ρ− σ‖1 = ‖ρ′ − σ‖1 = 2tr[Q′ (ρ′ − σ)]. (22)

Now define the quantum channel T :Md →M2 given by:

T (ρ) = tr[Qρ]|0〉〈0|+ tr[(1−Q) ρ]|1〉〈1|.

where |0〉, |1〉 is an orthonormal basis of C2. By the data processing inequality we
have:

D (ρ‖σ) ≥ D (T (ρ) ‖T (σ)) (23)

It is easy to see that the image of Q′ must be spanned by eigenvectors of σ. Thus, we
may associate a subset A ⊆ {1, . . . , d} to the projector Q′ indicating the eigenvectors
of σ spanning this subspace. Using (22) and the assumption that ‖ρ − σ‖1 = δ we
have:

tr[Q′ρ′] = Pσ (A) +
δ

2
.

Also observe that

D (T (ρ) ‖T (σ)) = D2

(
Pσ (A) +

δ

2

∥∥∥Pσ (A)

)
≥ D2

(
Pσ (A) +

ε

2

∥∥∥Pσ (A)
)

as the binary relative entropy is convex and δ ≥ ε was assumed. With (23) we have:

min
ρ:‖ρ−σ‖1≥ε

D (ρ‖σ) ≥ min
A⊆{1,...,d}

D2

(
Pσ (A) +

ε

2

∥∥∥Pσ (A)
)

(24)

Now given anyA ⊆ {1, . . . , d} such that Pσ (A)+ ε
2 < 1 (otherwiseD2 (Pσ (A) + ε‖Pσ (A)) =

+∞) , define a state τ ∈ Dd which commutes with σ and has spectrum:

si (τ) =

{
(Pσ(A)+ε/2)si(σ)

Pσ(A) for i ∈ A
(1−Pσ(A)−ε/2)si(σ)

1−Pσ(A) else.
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Note that ‖σ − τ‖1 = ε and D (τ‖σ) = D2

(
Pσ (A) + ε

2‖Pσ (A)
)
, i.e. the lower bound

in (24) is attained.

We define the function φ : [0, 12 ]→ R as

φ (p) =
1

1− 2p
log

(
1− p
p

)
(25)

extended continuously by φ
(
1
2

)
= 2. Furthermore for any σ ∈ Dd we define

π (σ) = max
A⊆{1,...,d}

min

{
1

2
,
∑

i∈A
si(σ)

}
. (26)

With essentially the same proof as given in [12] for the classical case we obtain the
following improvement on Pinsker’s inequality:

Theorem 5.1 (State-dependent Pinsker’s Inequality). For σ, ρ ∈ Dd we have:

D (ρ‖σ) ≥ φ (π (σ))

4
‖ρ− σ‖21 (27)

with φ as in (25) and π (σ) as in (26). Moreover, this inequality is tight.

Proof. For convenience set ‖ρ− σ‖1 = δ. Then we have

D (ρ‖σ) ≥ min
ρ′:‖ρ′−σ‖1≥δ

D (ρ′‖σ) = min
A⊆{1,...,d}

D2

(
Pσ (A) +

δ

2
‖Pσ (A)

)
(28)

using Theorem 5.1. By [12, Proposition 2.2] for p ∈ [0, 12 ] and ε ≥ 0 we have

D2 (p+ ε‖p) ≤ D2 (1− p+ ε‖1− p)

so we may assume Pσ (A) ≤ 1
2 in (28). In [13, Theorem 1] it is shown that for p ∈ [0, 12 ]

we have

inf
ε∈(0,1−p]

D2 (p+ ε‖p)
ε2

= φ (p) (29)

which implies:

min
A⊆{1,...,d}

D2

(
Pσ (A) +

δ

2

∥∥∥Pσ (A)

)
≥ min
A⊆{1,...,d}

φ (Pσ (A))

4
‖ρ− σ‖21.

By [12, Proposition 2.4] the function φ is strictly decreasing. Thus, we have

min
A⊆{1,...,d}

φ (Pσ (A))

4
=
φ (π (σ))

4
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which, after combining the previous inequalities, finishes the proof of (27). To show
that the inequality is tight, we may again follow the proof of [12, Proposition 2.1].
Let B ⊆ {1, . . . , d} be the subset such that π (σ) = Pσ (B) =: p. Define a minimizing
sequence {εi}i∈N with εi > 0 for the infimum (with respect to p) in (29), i.e. such that

lim
i→∞

D2 (p+ εi‖p)
ε2i

= φ (p) .

Next define a sequence of states ρi that commute with σ and have spectrum:

sj (ρi) =

{
(p+εi)si(σ)

p for j ∈ B
(1−p−εi)si(σ)

1−p else.

One can check that ‖ρi − σ‖1 = 2εi and D (ρi‖σ) = D2 (p+ εi‖p), from which we get:

lim
i→∞

D (ρi‖σ)

‖ρi − σ‖2
=
φ (π (σ))

4

In some cases the bound can be made more explicit, as illustrated in the next
corollary:

Corollary 5.1. Let σ, ρ ∈ Dd be such that ‖σ‖∞ ≥ 1
2 . Then:

D (ρ‖σ) ≥ φ (1− ‖σ‖∞)

4
‖ρ− σ‖21 (30)

Proof. In this case it is clear that π (σ) = 1− ‖σ‖∞.

Note that we have φ (x)→ +∞ for x→ 0. Thus, there might be an arbitrary large
improvement of (27) compared to the usual Pinsker’s inequality (21). This happens
for instance in Corollary 5.1 when ‖σ‖∞ → 1, i.e. when σ converges to a pure state.

By applying the improved inequality (27) to Theorem 4.1 we obtain for quantum
states ρ, σ ∈ Dd and q ∈ [0, 1]

S((1− q)σ + qρ)− (1− q)S(σ)− qS(ρ) ≥ max

{
q(1− qc(σ))φ(π(σ))4 ||ρ− σ||2
(1− q)(1− (1− q)c(ρ))φ(π(ρ))4 ||ρ− σ||2

with φ as in (25) and π (σ) as in (26).
Even using this refinement of Pinsker’s inequality, some numerical experiments in-

dicate that (20) is stronger for randomly generated states. From Corollary 5.1 we can
expect our bound to perform well if σ has a large eigenvalue and the smallest eigen-

value is as large as possible. Such states have spectrum of the form
(
p, 1−pd−1 , . . . ,

1−p
d−1

)
.

Indeed for σ ∈ D5 with spectrum (0.99, 0.0025, 0.0025, 0.0025, 0.0025) and q < 0.2 our
bound performs better than (19) for randomly generated ρ. However, even in this case
the improvement is not significant.

Still we can expect that Theorem 5.1 will find more applications, for instance im-
proving the mixing time bounds. Such bounds have been derived from log-Sobolev
inequalities in [2]. The next theorem can be used to improve these results:
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Theorem 5.2. Let L : Md → Md be a primitive Liouvillian with fixed point σ that
satisfies

D
(
etLρ‖σ

)
≤ e−2αtD (ρ‖σ) (31)

for some α > 0 and for all ρ ∈ Dd and t ∈ R+. Then we have

‖etL(ρ)− σ‖1 ≤ 2e−αt

√
log (smin(σ))

φ (π (σ))
(32)

with φ as in (25), π (σ) as in (26) and where smin(σ) is the smallest eigenvalue of σ.

Proof. This is a direct consequence of (3) and (27).

6. Tensor products of depolarizing channels

For a Liouvillian L : Md → Md generating the channel Tt = etL and any n ∈ N we
denote by L(n) :Mdn →Mdn the generator of the tensor-product semigroup (Tt)

⊗n,

i.e. L(n) :=
∑n
i=1 id⊗i−1d ⊗ L⊗ id

⊗(n−i)
d .

Here we study α1 (Lnσ) in the special case where σ = 1d
d . For simplicity we denote

the depolarizing Liouvillian onto σ = 1d
d by Ld := L 1d

d
and by T dt = etL

d

the generated

semigroup. In the case d = 2 it is known [2] that α1

(
L(n)
2

)
= 1 for any n ∈ N . It

is, however, an open problem to determine this constant for any d > 2 and any n ≥ 2.

We will now show the inequality α1

(
L(n)
d

)
≥ 1

2 for any d ≥ 2 and n ≥ 1, which is

the best possible lower bound that is independent of the local dimension. Note that

for σ = 1d
d inequality (3) for the channel

(
T dt
)⊗n

can be rewritten as the entropy
production inequality:

S((T dt )⊗n(ρ)) ≥ (1− e−t)n log(d) + e−tS(ρ).

This inequality has been studied in [14] for the case where d = 2, for wich, however,
an incorrect proof was given. We will provide a proof of a more general statement,

from which the claim α1

(
L(n)
dep

)
≥ 1

2 readily follows by the previous discussion.

Theorem 6.1. For any σ, ρ ∈ Dd (not necessarily full rank) we have

S((Tσt )⊗n(ρ)) ≥ e−tS(ρ) + (1− e−t)S(σ⊗n).

For the proof we will need a special case of the quantum Shearer’s inequality. We will
denote by ρ ∈ D

(
Cd1 ⊗Cd2 ⊗ · · · ⊗Cdn

)
a multipartite density matrix (where the di

are the local dimensions of each tensor factor). Furthermore we write S(i1, i2, . . . , ik)ρ
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for the entropy of the reduced density matrix ρ on the tensor factors specified by the
indices i1, i2, . . . , ik. Similarly we write

S(i1, . . . , ik|j1, . . . , jl)ρ = S(i1, . . . , ik, j1, . . . , jl)ρ − S(j1, . . . , jl)ρ

for a conditional entropy. The proof of the quantum version of Shearer’s inequality
is essentially the same as the proof given by Radhakrishnan and Llewellyn for the
classical version (see [15]). For convenience we provide the full proof:

Lemma 6.1 (Quantum Shearer’s inequality). Consider t ∈ N and a family F ⊂
2{1,...,n} of subsets of {1, . . . , n} such that each i ∈ {1, . . . , n} is included in exactly t
elements of F . Then for any ρ ∈ D

(
Cd1 ⊗Cd2 ⊗ · · · ⊗Cdn

)
we have

S(1, 2 . . . , n)ρ ≤
1

t

∑

F∈F
S(F )ρ . (33)

Proof. For F ⊂ {1, . . . , n} denote its elements by (i1, . . . , ik), increasingly ordered.
For any ρ ∈ D

(
Cd1 ⊗Cd2 ⊗ · · · ⊗Cdn

)
we have

|F |∑

j=1

S(ij |i1, . . . , ij−1)ρ = S(i1)ρ + S(i2|i1)ρ + · · ·+ S(i|F ||i1, i2, . . . , i|F |−1)ρ

= S(i1, i2, . . . , i|F |)ρ = S(F )ρ

where we used a telescopic sum trick. By strong subadditivity [16] conditioning de-
creases the entropy. This implies

|F |∑

j=1

S(ij |1, 2, . . . , ij − 1)ρ ≤
|F |∑

j=1

S(ij |i1, . . . , ij−1)ρ = S(F )ρ. (34)

Now consider a family F ⊂ 2{1,...,n} with the properties stated in the assumptions.
Using (34) for the first inequality gives:

∑

F∈F
S(F )ρ ≥

∑

F∈F

|F |∑

j=1

S(ij |1, 2, . . . , ij − 1)ρ (35)

= t
n∑

i=1

S(i|1, 2, . . . , i− 1)ρ = tS(1, 2, . . . , n)ρ. (36)

Here we used the assumption that each i ∈ {1, . . . , n} is contained in exactly t elements
of F and (34) in the special case of F = {1, . . . , n} for the final equality.

Note that in the classical case Shearer’s inequality is true under the weaker assump-
tion that any i ∈ {1, . . . , d} is contained in at least t elements of F . However, as
the quantum conditional entropy might be negative [17] we have to use the stronger
assumption to get the equality between (35) and (36) where an ≥ would be enough.
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In the special case where F = Fk := {F ⊆ {1, . . . , n} : |F | = k} denotes the family
of k-element subsets of {1, . . . , n} (i.e. every i ∈ {1, . . . , d} is contained in exactly(
n−1
k−1
)

= k
n

(
n
k

)
elements of Fk) the quantum Shearer inequality gives

k

n
S(1, . . . , n) ≤ 1(

n
k

)
∑

F∈Fk
S(F ). (37)

This inequality was also proved in [18], but in a more complicated way and without
mentioning the more general quantum Shearer’s inequality. It is also used as a lemma
(with wrong proof) in [14], where the rest of the proof of their entropy production
estimate is correct. The proof of Theorem 6.1 follows the same lines. For completeness
we will include the full proof here:

Proof of Theorem 6.1. In the following we will abbreviate p := e−t. For a subset
F ⊂ {1, . . . , n} we denote by ρ|F the reduced density matrix on the tensor factors
specified by F . Using this notation we can write

(Tσt )⊗n(ρ) =

n∑

k=0

∑

F∈Fk
(1− p)kpn−k

(⊗

l∈F
σ ⊗ ρ|F c

)

where F c = {1, . . . , n} \ F . Concavity of the von-Neumann entropy implies

S
(
(Tσt )⊗n(ρ)

)
≥

n∑

k=0

∑

F∈Fk
(1− p)kpn−k (kS(σ) + S(F c)ρ)

≥ (1− p)nS(σ) +

n∑

k=0

(
n

n− k

)
n− k
n

(1− p)kpn−kS(ρ)

= (1− p)S(σ⊗n) + pS(ρ).

Here we used the elementary identity
∑n
k=0

(
n
k

)
(1− p)kpn−kk = (1− p)n and (37) for

the (n− k)-element subsets F c.
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A. Quasi-concavity of a quotient of relative entropies

In this appendix we will prove the quasi-concavity of the function y 7→ qy(x) for any
x ∈ (0, 1). As defined in (8) the function qy : (0, 1) → R denotes the continuous
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extension of x 7→ D2(y‖x)
D2(x‖y) . In the following we consider fx : [0, 1] → R defined as

fx(y) = qy(x) for any y ∈ (0, 1) and with fx(0) = fx(1) = 1. It can be checked easily
that fx is continuous for any x ∈ (0, 1). We have the following Lemma:

Lemma A.1. For any x ∈ (0, 1) the function fx : [0, 1]→ R given by fx(y) = D2(y‖x)
D2(x‖y)

for y /∈ {0, x, 1} and extended continuously by fx(x) = 1 and fx(0) = fx(1) = 0 is
quasi-concave.

Proof. Note that without loss of generality we can assume x ≥ 1
2 , as fx(y) = f1−x(1−

y). By continuity it is clear that there exists an mf ∈ (0, 1) (we can exclude the
boundary points since fx(x) > fx(0) = fx(1)) such that fx(mf ) is the global maximum.
By [7][p. 99] it is sufficient to show that fx is unimodal, i.e. that fx is monotonically
increasing on [0,mf ) and monotonically decreasing on (mf , 1]. We will use the method
of L’Hospital type rules for monotonicity developed in [19, 20].

For any x ∈ (0, 1) and y ∈ (0, 1) with x 6= y we compute

∂yD2 (y‖x) = log

(
y(1− x)

x(1− y)

)
∂yD2 (x‖y) =

y − x
y(1− y)

∂y log

(
y(1− x)

x(1− y)

)
=

1

y(1− y)
∂y

y − x
y(1− y)

=
y2 + x− 2yx

(1− y)2y2

and define

gx(y) =
∂yD2 (y‖x)

∂yD2 (x‖y)
=

log
(
x(1−y)
y(1−x)

)
y(1− y)

x− y (38)

hx(y) =
∂y log

(
x(1−y)
y(1−x)

)

∂y
x−y
y(1−y)

=
y(1− y)

y2 + x− 2yx
(39)

where again gx is extended continuously by gx(0) = gx(1) = 0 and gx(x) = 1. As
y 7→ y2+x−2yx has no real zeros for x ∈ (0, 1) the rational function hx is continuously
differentiable on (0, 1). A straightforward calculation reveals that for x ≥ 1

2 and on
(0, 1) the derivative h′x only vanishes in

mh =

{
x−
√
x(1−x)

2x−1 for x > 1
2

1
2 for x = 1

2

.

which has to be a maximum as hx(0) = hx(1) = 0. By the lack of further points with
vanishing derivative we have h′x(y) < 0 for any y < mh and also h′x(y) > 0 for any
y > mh. Note that mh ≤ x for any x ≥ 1

2 .

Consider first the interval (x, 1) ⊂ (0, 1). For y → x we have log
(
x(1−y)
y(1−x)

)
→ 0 and

x−y
y(1−y) → 0. Also it is clear that y 7→ x−y

y(1−y) does not change sign on the interval (x, 1).

Therefore and by (39) we see that the pair gx and hx satisfy the assumptions of [19,
Proposition 1.1.] and as hx is decreasing we have that g′x(y) < 0 for any y ∈ (x, 1).
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We can use the same argument for the (possibly empty) interval (mh, x) where hx is
decreasing as well and obtain g′x(y) < 0 for any y ∈ (mh, x). By continuity of gx in x
we see that gx is decreasing on (mh, 1).

Note that in the case where x = 1
2 we can directly apply [19, Proposition 1.1.] to

the remaining interval (0, 12 ) where h1/2 is increasing. This proves g′1/2(y) > 0 for

any y ∈ (0, 12 ). By continuity mg = 1
2 is the maximum point of g1/2. For x 6= 1

2 ,
where the remaining interval is (0,mh) we apply the more general Proposition 2.1.
in [20]. It can be checked easily that the assumptions of this proposition are fulfilled

for the pair gx and hx. As for y ∈ (0,mh) we have y−x
y(1−y)

y2+x−2yx
(1−y)2y2 < 0 and as hx is

increasing the proposition shows that g′x(y) > 0 for any y ∈ (0,mg) and g′x(y) < 0 for
any y ∈ (mg,mh). Here mg ∈ (0,mh) denotes the maximum point of gx (note that a
maximum mg has to exist due to continuity and gx(0) = gx(1) = 0).

The previous argument shows that for any x ≥ 1
2 there exists a point mg ∈ (0,mh] ⊂

(0, x] (we have mg = mh = 1
2 for x = 1

2 ) such that g′x(y) > 0 for y ∈ (0,mg) and
g′x(y) < 0 for y ∈ (mg, 1) \ {x}. We can now repeat the above argument for the pair
fx and gx. This gives the existence of a point mf ∈ (0,mg] such that f ′x(y) > 0 for
any y ∈ (0,mf ) and f ′x(y) < 0 for any y ∈ (mf , 1) \ {x}. By continuity in x this shows
that the function fx is unimodal and therefore quasi-concave.

B. Continuous extension of a quotient of relative
entropies

In this section we show that the function Qσ : D+
d → R as defined in (6) is indeed

continuous. As Qσ is clearly continuous in any point ρ 6= σ we have to prove the
following:

Lemma B.1. For σ ∈ D+
d and X ∈Md with X = X†, tr[X] = 0 and X 6= 0 we have

lim
ε→0

D (σ||σ + εX)

D (σ + εX||σ)
= 1.

Proof. To show the claim we will expand the relative entropy in terms of ε up to second
order. Observe that for ρ ∈ Dd we have

D (ρ‖σ) =

∞∫

0

tr
[
ρ
(

(ρ+ t)
−1 − (σ + t)

−1
)]
dt. (40)

In the following we assume ε > 0 to be small enough such that σ + εX ∈ D+
d . To

simplify the notation, we introduce A(t) := (σ + t)
−1

and B(t) := (σ + εX + t)
−1

.
Applying the recursive relation

B(t) = −εB(t)XA(t) +A(t),
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twice leads to

B(t)−A(t) = −εB(t)XA(t) = ε2B(t)XA(t)XA(t)− εA(t)XA(t)

= ε2A(t)XA(t)XA(t)− εA(t)XA(t) +O
(
ε3
)
.

Inserting this into (40) gives

D (σ‖σ + εX) =

∞∫

0

tr
[
εσA(t)XA(t)− ε2σA(t)XA(t)XA(t) +O(ε3)

]
dt (41)

and

D (σ + εX‖σ) =

∞∫

0

tr
[
−εσA(t)XA(t) + ε2σA(t)XA(t)XA(t)− ε2XA(t)XA(t) +O(ε3)

]
dt.

(42)

As [A(t), σ] = 0 we can diagonalize these operators in the same orthonormal basis
{|i〉} ⊂ Cd, which leads to

∞∫

0

tr [σA(t)XA(t)] dt =
d∑

i=1

〈i|X|i〉
∞∫

0

si
(si + t)2

dt =
d∑

i=1

〈i|X|i〉 = 0 (43)

where {si}di=1 denotes the spectrum of σ. Note that again by diagonalizing σ and A(t)
in the same basis we have

∞∫

0

tr [(2σA(t)− 1) (XA(t)XA(t))] dt (44)

=
d∑

i,j=1

|〈i|X|j〉|2
∞∫

0

2si
(si + t)2(sj + t)

− 1

(si + t)(sj + t)
dt

=

d∑

i,j=1

|〈i|X|j〉|2
(si − sj)2

(
2(si − sj)− (si + sj) log

(
si
sj

))
(45)

= 0.

The last equality follows from the fact that the expression in (45) clearly changes its
sign when si and sj are exchanged. This is only possible if the value of the integral
(44) vanishes. Rearranging the integral (44) gives:

∞∫

0

tr [σA(t)XA(t)XA(t)] dt =

∞∫

0

tr [−σA(t)XA(t)XA(t) +XA(t)XA(t)] dt. (46)
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Finally applying (43),(46) to the formulas for the relative entropies (41) and (42) gives:

D (σ‖σ + εX)

D (σ + εX‖σ)
=
c+O(ε)

c+O(ε)
→ 1

as ε → 0. Here c :=
∞∫
0

tr [σA(t)XA(t)XA(t)] dt > 0 as σ,A(t) > 0 for any t ∈ [0,∞)

and X 6= 0 is Hermitian.
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Spectral Variation Bounds in Hyperbolic Geometry

A. Müller-Hermes and O. Szehr May 18, 2015

The (Euclidean) optimal matching distance of two sets {ai}ni=1 and {bi}ni=1 is defined
as

dE({ai}, {bi}) = min
σ∈Sn

max
1≤i≤n

∣∣ai − bσ(i)
∣∣

where Sn denotes the group of permutations of {1, . . . , n}. For two complex n × n-
matrices A,B ∈ Mn with spectra σ(A), σ(B) ⊂ C spectral variation bounds of the
form

dE(σ(A), σ(B)) ≤ Cn (‖A‖+ ‖B‖)1− 1
n ‖A−B‖ 1

n (1)

have been studied for Cn independent of A and B (see for instance [1] and the references
therein). Currently the best known constant in the above bound is Cn = 16

3
√
3

[2] and

it is conjectured that Cn = 2 [1] is the optimal constant. In our work we apply recent
bounds (proved in [3]) on resolvents to obtain spectral variation bounds with respect
to a hyperbolic pseudometric. These lead to an improvement of (1) in certain cases.

1 Main result

For two sets {ai}ni=1, {bi}ni=1 ⊂ D define the hyperbolic optimal matching distance as

dH({ai}, {bi}) = min
σ∈Sn

max
1≤i≤n

∣∣∣∣
ai − bσ(i)
1− aibσ(i)

∣∣∣∣ .

With this we can prove:

Theorem 1.1. For A,B ∈ Mn with ‖A‖, ‖B‖ < 1 let |m| denote the degree of the
minimal polynomial of A and let ρ(B) ≤ ‖B‖ denote the spectral radius of B. Then

dH(σ(A), σ(B)) ≤ 22−
1

|m|

(1− ρ(B)‖A‖) 1
|m|
‖A−B‖ 1

|m| .

Using a Chebyshev-type interpolation theorem for finite Blaschke products we even
prove a slightly stronger statement than the above theorem in terms of elliptic func-
tions. However, as it is difficult to work with this stronger bound, we have to rely on
the above statement to improve (1).



2 Improved Euclidean spectral variation bound

Note that a “hyperbolic disk” with radius r ∈ R+ and center a ∈ D coincides with a
Euclidean disc with possibly different center and radius. More specifically we have

{z ∈ D |
∣∣∣∣
a− z
1− az

∣∣∣∣ ≤ r} = {z ∈ D | |C − z| < R}

with center C ∈ D and radius R ∈ [0, 1] given by

C =
1− r2

1− r2|a|2 a and R =
1− |a|2

1− r2|a|2 r

As R → 0 for |a| → 1 the hyperbolic bound is stronger for eigenvalues close to the
boundary of D, because then the corresponding discs are smaller. This effect of the
hyperbolic geometry can be exploited by choosing a good scaling for the two matrices.

Corollary 2.1. For A,B ∈Mn with M2 := max{‖A‖, ‖B‖} and distance

‖A−B‖ ≤
(

1

2M2

)n−1(
n+ 1

n− 1

)n
αnn min

a∈σ(A)\{0}
|a|n (2)

we get

dE (σ(A), σ(B)) ≤ 1

αn
(2M2)

1− 1
n ‖A−B‖ 1

n

where

αn :=
1

2

(
2√

n2 − 1

) 1
n
√
n− 1

n+ 1
.

Note that the condition (2) is needed to get a uniform bound independent of the
concrete eigenvalue pair under consideration. As αn → 2 as n → ∞ this bound
converges to the conjectured optimal spectral variation bound (1).

3 Legal statement

The idea to use the techniques from [3] and the proof of Theorem 3 (in the paper) are
due to Oleg Szehr. In all other parts of this work I was significantly involved.
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