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Abstract

Continuously variable transmissions (CVTs) enable optimal control of the drivetrain and
thereby reduce fuel consumption. In addition they increase comfort in stop-and-go drive
states. CVTs are therefore an ideal solution for modern car concepts.
Previous work developed detailed nonlinear multibody models of its system’s dynamic. This
thesis discusses the enhancement and validation of these pushbelt CVT models.
For the efficient simulation of the whole model the dynamics of its parts, their interactions
and the numerical treatment are discussed. New models for the ring dynamics and for the
contact between curved sheaves and curved element flanks, an identification method for the
element’s longitudinal contact stiffness, a physical based tracking law as well as methods for
computing time reduction improve and enhance the system.
The discussion of numerical aspects covers the number of simulated elements, the usage
of non-smooth dynamics and a comparison of different ring models. The chapter physical
aspects covers parameter uncertainties, especially the contact parameters for geometry, stiff-
ness and friction. A sensitivity analysis of the system is performed. It yields the identification
of these parameters. Furthermore, optimization possibilities are gained.
Local forces between elements, rings and pulleys correlate on a qualitative and quantitative
level with measurements. The kinematics in the arcs in terms of spiral running and element
pitch angle fit to available data as well. Furthermore, simulation results yield global values, i.e.
thrust ratio, efficiency, slip-curves and an endplay tolerance, that match to measurements.
Overall the validation demonstrates the applicability of the model for well identified pa-
rameters for stationary and instationary phenomena and its fit – qualitatively as well as
quantitatively.
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Zusammenfassung

Stufenlose Getriebe (CVTs) ermöglichen die optimale Regelung des Antriebsstranges und tra-
gen damit zur Reduktion des Treibstoffverbrauchs bei. Weiterhin erhöhen sie den Komfort im
Stop-and-go-Verkehr. CVTs sind daher eine ideale Lösung für moderne Automobilkonzepte.
Frühere Arbeiten entwickelten ein detailliertes nichtlineares Mehrkörpermodell der Systemdy-
namik eines Schubgliederbandgetriebes. Diese Dissertation diskutiert die Weiterentwicklung
sowie die Validierung dieses Modells.
Zur effizienten Simulation des gesamten Systems wird die Dynamik der einzelnen Kompo-
nenten, deren Interaktionen sowie die numerische Behandlung diskutiert. Neue Modelle der
Ringdynamik und für den Kontakt zwischen balligen Scheiben und balligen Elementflan-
ken, eine Methode zur Identifizierung der Längssteifigkeit der Elemente, ein physikalisch
begründetes „Tracking“-Gesetz sowie verschiedene Methoden zur Reduzierung der Berech-
nungszeiten verbessern und erweitern das Gesamtsystem.
Die Diskussion numerischer Aspekte des Modells beinhaltet die Anzahl der simulierten
Elemente, die Anwendung nicht-glatter Kontaktgesetze und den Vergleich verschiedener
Ringmodelle. Das Kapitel „Physikalische Aspekte“ behandelt Parameterungenauigkeiten – ins-
besondere die der Kontaktparameter für Geometrie, Steifigkeit und Reibung. Die Sensitivität
des Modells gegenüber diesen wird untersucht. Diese Untersuchung trägt zur Identifikation
der Parameter bei und zeigt Optimierungsmöglichkeiten auf.
Lokale Kräfte aus der Simulation zwischen Elementen, Ringen und Scheiben stimmen quali-
tativ und quantitativ mit Messungen überein. Die Kinematik in den Bögen bezüglich dem
Spirallauf und der Elementneigung passen zu vorhandenen Messdaten. Weiterhin werden
aus den Simulationen globale Daten gewonnen. Das Kraftverhältnis, die Effizienz, „Schlupf-
kurven“ und die Toleranz gegenüber Spiel im Band gleichen einander in Simulation und
Messung. Insgesamt zeigt die Validierung die Anwendbarkeit des Modells für stationäre wie
instationäre Lastfälle. Es können qualitative sowie quantitative Aussagen über das System
getroffen werden, die sich in Experimenten bestätigen lassen.
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1 Introduction

In 1958 the first Doorne Automobiel Fabriek (DAF)-car with a Variomatic was released. Its
rubber belt was replaced with a steel pushbelt in the 1970s and the system was then called
Transmatic which later became the continuously variable transmission (CVT). In 1985 mass
production started and the pushbelt has been enhanced over the years.
The share of CVTs on the transmission market will increase from 6 % in 2012 to up to 14 %
in 2020 [31]. The continuously ratio coverage enables to operate the engine in an optimal
point. In combination with a downsizing of the engine the reduction of fuel consumption
in the overall drivetrain can be reached. According to [64] passenger cars create about 10 %
of the world wide greenhouse gases. The CVT-system can therefore help to reduce the CO2

footprint. The increasing urbanization ([42]) will lead to more stop-and-go drive states in
modern cities. A CVT avoids discrete shifting, which improves the comfort of the driver.
This analysis shows that the pushbelt CVT is an ideal solution for modern car concepts. A
further improvement of the system can increase its efficiency and robustness. Recent research
optimizes the system control as well as the tribology. Reliable models, which enable deeper
insights into the system, are necessary. They form the basis for design-optimization.
Various models cover particular aspects of the pushbelt CVT dynamics. Restrictive assump-
tions limit their scope. No all-encompassing model has been derived and validated. The
correct representation of the full nonlinear dynamics for transient maneuvers covering spatial
motion was the goal of a joint research project between the Institute of Applied Mechanics
of the Technische Universität München and Bosch Transmission Technology B.V. (BTT)1.
Preceding PhD-theses [6, 25, 54, 9] form the basis for this contribution. The pushbelt CVT is
represented as a multibody system (MBS) modeling the dynamics and interactions of its parts
separately. Detailed output of the simulations allow for deep analysis of the inner kinematics
and kinetics.
Each model demands for validation to prove its significance. This work concerns itself with
the analysis of the chosen approach. The single submodels are discussed of which some
are enhanced. Furthermore, the overall models are analyzed in different aspects. Due to
the approximation of the models with computer technology, the numerical influences are
a crucial factor. Parameter uncertainties limit the range of informative value of the model.
A sensitivity study yields this range. It furthermore demonstrates the analysis possibilities
of the model. On the one hand the inner mechanics can be analyzed. On the other hand
global measures and transient dynamics can be used for future optimization. For this goal,
the validation of the model is necessary.

This chapter introduces the geometric setup and the working principle of a pushbelt CVT. A
current research overview follows together with literature remarks concerning MBSs. The
most important equations are given. Prior work, on which this thesis relies on, is finally
covered in more detail. The overview about the complete thesis concludes this chapter.

1formerly “Van Doorne Transmissie“
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2 Introduction

1.1 Geometric Setup and Working Principle

Figure 1.1: Pushbelt CVT ©BTT. It shows the two pulleys – each with a loose and a fixed
sheave – and the pushbelt consisting of two rings and about 400 steel elements.

This work analyzes the dynamics of a pushbelt CVT as it is depicted in Figure 1.1. In the
following the geometric setup is described. Thus, the main working principles are explained
using basic modeling ideas of MBSs. The notions valid for this thesis are introduced to serve
as a basis for a general and clear description.
Besides other works, e.g. [13, 26, 6], the understanding of the working principle can be
supported by three dimensional visualizations, e.g. videos or animations. These type of media
cannot be included here. Two examples – besides many more which can be found in the
world wide web – are:

• Animation of BTT, the manufacturer of the pushbelt [17]

• Animation of DrivelineNEWS.com [15]

Figure 1.2 shows an overview about the general kinematics of the system with the most
important external and internal forces. A torque M is transmitted from a primary pulley
(Index P ), i.e. the driving side, to a secondary pulley (Index S), i.e. the driven side. The pulleys
have the axle distance dA. The respective wrapped angles are called primary arc (PRI) and
secondary arc (SEC). A pushbelt is clamped in both pulleys. It consists of about 400 elements
that are guided by two ring-packages or rings, each consisting of about 6 - 12 layers.
The ratio between the angular speeds ωP of the primary and ωS of the secondary pulley

iS = ωP

ωS
(1.1)

is called speed ratio (SR). The underdrive (UD) configuration is defined by iS > 1 and the
overdrive (OD) configuration by iS < 1. Ratios for iS ≈ 1 are referred as medium (MED)
configuration.
The SR is controlled by the ratio of the two clamping forces, i.e. the thrust ratio (TR),

iF = FP

FS
(1.2)

and due to the V-shape of the pulley-sheaves and the element flanks respectively.
A geometric ratio

ig∗=
rS∗
rP∗

(1.3)
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Figure 1.2: Overview of the pushbelt CVT with the most important external and internal
forces

is defined as the ratio between the SEC-radius rS∗ and the PRI-radius rP∗. Different measures
for the radii are possible using either ring or element kinematics. On each pulley the forces
are applied due to hydraulic pressure on the respective loose sheave, which can move along
the shaft. The other sheave of the pulley is fixed on the shaft.

Along the belt four main parts are separated. Within the upper strand (US) (Index u) and
lower strand (LS) (Index l ) the forces are transmitted with two dominating effects. On the one
hand push-forces (FPu and FPl ) are active between the elements. On the other hand tension
forces within the rings (FTu and FT l ) contribute to the overall equilibrium. The push-forces
between the elements do contribute in the torque transmission in case of FPu > FPl , which is
the intended behavior. In case of FPu < FPl , the push-forces work against the torque as the
difference in ring-tensions contribute more than the applied torque. In case of FPu = FPl the
transition torque is applied to the system. The strand with the higher push-force is called
push-strand. Otherwise it is referred to as the loose-strand.
If no push-forces are acting in one of the strands an operational endplay (OEP) exists. It is
defined as the sum of all (positive) gaps between the elements. It affects the dynamic behavior
of the system and depends on the assembly of the belt as well as the applied loads.
In the two arcs the torques are transmitted via frictional forces. These act between elements
and sheaves as well as between elements and rings. For the default configuration the elements
run in from a loose-strand, i.e. the LS in this case. Thus, the elements transmit low (or no)
push-forces at the first part of the PRI– the so called idle arc. Push-forces rise in the active arc
of the PRI after the turnaround point (TAP),. These push-forces are reduced to the level of the
loose-strand in the SEC. However – depending on the configuration2 – the forces can increase
in the first part of the arc yielding another TAP.

For the force transmission the elements are the key part. All contact forces are transmitted via
the elements. Figure 1.3 shows a sketch with the contact positions. The torque is transferred
into the belt at both flanks on the left and on the right side. It is distributed on the one hand

2i.e. boundary conditions, contact positions, stiffness as well as friction values
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Figure 1.3: The element with local directions

via contact forces among the elements themselves either at the rocking-edge (RE), the head
or the pin. On the other hand the contacts on the saddle or the ear introduce tension forces3

in the rings.

Three local directions are defined for the element. The longitudinal (sometimes also tan-
gential) direction points from the back to the front of the element. The radial direction
points from the bottom of the element to the head. The third direction is defined as the axial
direction from the left flank of the element to the right flank. It is therefore also (disregarding
small rotations of the element) the axial direction of the axes in the PRI and the SEC.
With the three local directions three rotation directions are defined which follow the stan-
dard definition in automotive or aeronautics. Pitching is the rotation around the local axial
direction, rolling around the longitudinal direction and the element yaws around the radial
direction.

1.2 State of the Art

In the last decades different research groups and authors have contributed to the development
and enhancements of CVTs. This development is driven by both, measurements of the system
and its modeling. This section gives the state of the art with literature focusing on models
of pushbelt CVTs. Models concerned with the stationary behavior and the ones focusing on
the shifting dynamics are separated. It emphasizes that two different approaches exist in the
literature to model these two different modes of the CVT. Finally, current research topics are
presented.
The model of this thesis combines both modes into one detailed model. Non-smooth multi-
body dynamics is utilized for it. Thus, the well-established theory in this field is introduced.
The section concludes with a detailed summary of prior work, on which this thesis is based
on.

3which can carry up to 40% of the transmitted torque [65]
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1.2.1 Pushbelt CVT

A detailed overview about the dynamic modeling of CVTs and thus a good starting point
for further literature research show SRIVASTAVA ET. AL. (2009) [65]. In the following, a short
chronological overview is given pointing out the most important works concerning pushbelt
CVTs. Thereby stationary models and those who analyze the shifting dynamics are separated.
The most recent research is given at the end.

Stationary Models

DITTRICH (1953) compares in [13] experimental results of conical belt drives to theoretical
calculations based on the theory of EYTELWEIN (1808) [18]. He identifies the effect of spiral
running and discusses the necessity of over-clamping that leads to a loss of efficiency [61]. He
recognizes the complexity of the system and thus draws mainly qualitative conclusions.

GERBERT (1985) discusses the pushbelt mechanics in a planar steady-state model focusing on
the velocity distribution of the elements and rings. The model uses Coloumb friction, omits
inertia of the elements and regards an uncoupled plate deformation. Low and high torque
states are distinguished and their influence on the push-forces as well as on the arc mechanics,
i.e. idle and active arc, are discussed. The results show the basic effects in a pushbelt CVT that
can be found in measurements – especially concerning the separation of rings and elements.

VAN ROIJ and SCHAERLAECKENS (1993) discuss the force equilibria within the pushbelt [73, 74,
75]. Three separated models are derived to compute the clamping forces. The UD configura-
tion before transition torque is treated as well. Based on the resulting force distribution the
effects on internal losses are given.

FUIJ, KUROKAWA, KANEHARA and KITAGAWA (1993 - 1995) did a remarkable effort in mea-
surements for the CVT variator which are published in four parts [22, 23, 35, 36]. Besides
global analysis of thrust- , torque- and speed-ratio, local measurements have been carried out.
They yield the forces acting between the elements, rings and sheaves and give a qualitative
reference. Stationary and shifting cases are measured and evaluated.

SATTLER (1999) develops in his thesis a planar CVT model with a continuous belt for stationary
situations. The focus is set on the dynamic situation in the two arcs omitting the dynamics in
the strands. Besides a parameter variation the work validates the model with measurements
concerning global output values like thrust ratio and efficiency [51].
All in all the model is well suited for chains. However, certain effects in the pushbelt, e.g.
separation of the elements or the interaction of the elements with the rings, are missing.
SUE (2003) enhances the model of SATTLER to enable faster calculations. He analyzes the
effect of different sheaves on the efficiency of the system [69].

SRNIK (1999) develops the first fully dynamic model of a chain-type CVT [68]. He uses the
theory of non-smooth MBS. It considers transient dynamics as well as oscillatory effects.
The separated modeling of the single pins in the chain identifies the polygonal effect to be a
important driver for oscillations in the system. A detailed deformation representation of the
sheaves with the pins yields a good correlation with measurements.
SEDLMAYER (2003) enhances the model of SRNIK using a spatial representation. He shows,
that the misalignment of the pulleys leads to higher internal forces in the chain and analyzes
optimization strategies to reduce these.
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SHIMIZU ET. AL. (2000) model the pushbelt CVT as a spatial finite element (FE) system,
however quantitative or qualitative results are missing [60].
SAITO ET. AL. (2002-2011) choose a similar approach as in [60]. They use FEs for the single
layers of the rings, rigid or flexible elements and rigid sheaves comprising a deflection motion
[48, 49, 50]. Simulation times comparable to “the [. . . ] time as [. . . ] for durability testing” [49, p.
228] yield promising results. Yet, it stays unclear which contact forces and geometries are used
and which model assumptions are made to gain the results. An analysis of the stresses within
the rings shows the influence of misalignment and suggests improvement possibilities in
design. Different stiffness as well as geometry changes are analyzed concerning local stresses
within the parts and the efficiency of the full variator.

BULLINGER (2005) models a pushbelt CVT as a planar but fully dynamic MBS. He remarks that
elements should be modeled separated [6, p. 82]. Due to a lack of appropriate algorithms,
he chooses a quasi-continuous model of the pushbelt covering the single ring layers as well
as the single elements. Using an Eulerian description for the kinematics he is able to model
stationary cases efficiently and to validate his results with measurements from the literature.

LEBRECHT (2007) derives a simplified model to enable the coupling to drivetrain models
and fast analysis of transient dynamics. He correlates the results to the models of SRNIK,
SEDLMAYER and BULLINGER to measurements. Furthermore, he compares chain and pushbelt
CVTs in terms of efficiency and force distribution. Finally, he analyzes the noise, vibration and
harshness (NVH) properties of both types and points out the influence of Stribeck friction on
the NVH behavior.

GEIER (2007) develops a planar dynamic CVT model. He separates the dynamics of the
elements and the rings [25] and enables transient dynamics. Based on this SCHINDLER (2010)
derives a spatial pushbelt CVT model using MBS [54, 57]. CEBULLA (2014) enhances the model
of SCHINDLER in [9]. This work is based on these models. Detailed summaries are covered in
Subsection 1.2.3.

Shifting analysis

SUN (1988) develops on basis of results of GERBERT a planar but transient model of the push-
belt CVT assuming one dimensional continuous elements and ring-layers [70]. Neglecting
the pulley and ring deformation he is able to derive a set of implicit equations and considers
ratio- as well as torque changes. He discusses his results qualitatively.

IDE (1995) analyzes the shift behavior and builds a heuristic model based on measurements
[30]. CARBONE ET. AL. (2005 - 2007) develop a theoretical model for the transient dynamics of
chain or pushbelt CVTs, which represents the creep mode as well as the slip mode [7, 8]. The
one-dimensional model using an in-elastic band with kinematical prescribed spiral running
shows good correlation with performed measurements. It is successfully used in further
applications [62].

SRIVASTAVA (2005 - 2007) develops a model for the transient dynamics of a continuous one-
dimensional metal V-pushbelt CVT [66, 67]. Focusing on high-speed applications the in-
fluence of inertia effects is treated neglecting belt deformation but incorporating sheave
deformations kinematically.
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Recent Research

Whereas the improvement of models for pushbelt CVTs has slowed down in the recent years,
research treats more the overall behavior of the system. The focus is set on reducing the safety
factor for control and increasing the efficiency.
VAN DER SLUIS ET. AL. (2013) gives an overview about the state of the art for pushbelt
CVT development together with current research focus [63]. Based on “Key Performance
Indicators”, i.e. efficiency and comfort, he points out the latest improvement strategies. Higher
friction coefficients between elements and sheaves as well as enhanced control to reduce
safety reduce losses. The identification of noise sources helps to improve the comfort.

IDLER (2014) employs in his thesis the scuffing for CVT variators using pushbelts and chains
in combination with different variator systems [31]. He enhances the models of SATTLER and
SUE as well as of TENBERGE concerning shifting with experimental data for the spiral running
and the bearing forces. Furthermore, he develops a formula for the traction coefficient to
respect the normal force influence on the friction. Based on a model for the local surface
temperature, he enables the prediction of scuffing in CVTs.

JI ET. AL. (2014) are interested in the differences of the dynamic behavior of the system for
micro- and macro slip states [34]. With a simple model, which neglects deformation effects,
they suggest a mechanism to identify the state the variator online by using external vibrations.
The comparison to measurements yield qualitative correlation.

LEE ET. AL. (2014) suggest a logic to optimize the clamping forces and thus enhance efficiency
[40]. With a simple force based model tests on a hardware in the loop and a field vehicle show
improved results.

VAN DER NOLL ET. AL. (2015) investigate on the NVH behavior of the variator [44]. They
correlate the element impact noise (EIN) phenomenon with eigenmodes of the pulley-sheaves
and the running-in frequency of the elements in the belt. Optimization strategies suggest a
randomized element order. Experiments are performed successfully.

1.2.2 Multibody Dynamics

As discussed in the previous section, different models of CVTs exist. Most of them are limited
in one or more aspects. Some effects are neglected, e.g. misalignment, transient dynamics
or pulley deformation. For a deep understanding of the complete system, it is necessary to
model the full dynamics of a pushbelt CVT. This thesis uses the theory of MBS including
nonlinear and non-smooth dynamic effects. An introduction to the theory of MBS is given in
this section such that the models discussed in the following chapters can be explained. As the
implementation is done in the software MBSIM the theoretical discussion is based on its idea
of MBSs [21, 55].

Literature Remarks

Many authors discuss the treatment of systems as a MBS. Different textbooks are available that
show the derivation of the equations of motion (EOMs) for smooth or non-smooth modeling.
It is not possible to list all works. The following examples for different approaches may serve
the reader as a reference. 1997 SCHIEHLEN and SHABANA summarized in two articles the state



8 Introduction

Body 1
Body 2

Joint

Body 3

Contact

ForceMotion

Figure 1.4: Overview of a MBS with three bodies connected with joints or contacts and
excited with forces or prescribed motion.

of rigid and flexible MBSs referencing more than 200 other works [53, 59].

An overview about the whole field of smooth dynamics is given in [58]. SHABANA introduces
the basic concepts of dynamical systems to set up a MBS. The EOMs for rigid bodies with
bilateral constrained conditions are derived. A special focus is set on deformable bodies
using the floating frame of reference (FFR)-formulation or the absolute nodal coordinate
formulation (ANCF)-method to represent nonlinear deformation fields of deformable bodies.
GLOCKER discusses in his thesis rigid body systems with friction and impacts theoretically
[27]. He introduces the fundamental formulations for unilateral and bilateral non-smooth
contacts with tangential laws, e.g. friction, and derives the EOMs, which are then measure
differential equations. He treats coupled and partly elastic impacts. An even broader basis for
the theory and numerical treatment of non-smooth system can be found in [1]. ACARY and
BROGLIATO treat non-smooth phenomena also in electrical circuits.
FÖRG develops a numerical framework for general, i.e. spatial and non-smooth MBSs [20]. He
derives the EOMs with the constrained conditions and shows numerically efficient solution
algorithms using proximal functions which yield a nonlinear equation system. ZANDER treats
flexible MBSs with non-smooth effects on the basis of FÖRG [78]. He points out the necessity
of locality for the discretization of a flexible body when treating impacts.

Theory

Dynamics A MBS consists of n rigid or deformable bodies as sketched in Figure 1.4. The
kinematics of every body i is defined by a mathematical model with a set of degrees of freedom
(DOFs) which are the generalized positions q i and the generalized velocities ui . Both can be
summarized in vectors for the whole system as

qT = [
q1 . . . qn

]
uT = [

u1 . . . un
]

zT = [
qT uT

]
(1.4)

where z denotes the state vector of the MBS.
Forces λ or impulsesΛ couple the motion and define the change of acceleration or velocity
of the bodies respectively. Generally two different kinds of coupling laws can be chosen for
joints, contacts, external forces and prescribed movements.
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Single-valued laws define the reaction force explicitly4 from the state vector and the time t .

λ=λ(z, t ) (1.5)

No impulses are covered.
Set-valued laws constrain the motion by a condition.5 This induces, that the system may
change in a non-smooth way, i.e. there are jumps in the velocity. Impacts, i.e. impulses, have
to be taken into account as well with

(λ,Λ, z, t ) ∈N (1.6)

where N summarizes all set-valued conditions of the system which have to be fulfilled by the
state, the forces and impacts at every time.
The EOMs for the whole non-smooth system are then a measure differential equation with

q̇ = Tu (1.7a)

Mu̇ = h +Wλ (1.7b)

Mk (u+
k −u−

k ) =WkΛk (1.7c)

(λ,Λk , z, t ) ∈N (1.7d)

where T = T (q) is the transformation between generalized velocities and positions, M = M(q)
the mass matrix of the system and h(z, t) the smooth right-hand side vector. The wrench
matrix W = W (q) defines the direction on how forces or impacts, which result from a set-
valued reaction, project into the directions of the generalized velocities.
Equation (1.7b) shows the smooth velocity change for the system whereas (1.7c) contains the
non-smooth velocity changes for times tk , the times of an impact within the system.

Integration For a numerical integration of (1.7) it is necessary to discretize the EOMs in
time. The half explicit time-stepping scheme on velocity level of [20, section 4.4.1] has proven
most sufficient for the present model. It is summarized shortly in the following.
Starting from time ti with the state zi one approximates with the time step size ∆t i the
generalized positions of the next time step with

q i+1 ≈ q i +T (q i )ui∆t i ⇒ z̃i =
[

q i+1

ui

]
(1.8)

yielding an intermediate state z̃i which is used for the evaluation of the following equations.
The constraints for the continuous motion (1.7b) and non-continuous motion (1.7c) can be
treated simultaneously as continuous forces can be interpreted as an impact for a finite time
step. The velocities of the next time step are approximated with z̃i .

ui+1 ≈ ui +M−1(q i+1)
(
h(z̃i , t i+1)∆t i +W (q i+1)Λi+1

)
(1.9)

The relative velocities γ that are associated with the impulsesΛ depend on the generalized
velocities and can be written as

γi+1 = (W i+1)T ui+1 +w i+1 (1.10)

4For practical examples [20, p. 18]
5e.g. in normal contact direction a non-negative distance between the contact partners is enforced
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where w i+1 is a time dependent vector.6 Inserting (1.9) in (1.10) leads to a linear equation
between the impulses Λ and the relative velocities γ that are in general complementary to
each other. The mass-action-matrix7 is defined to be

G =W T M−1W (1.11)

which plays a central role for the non-smooth solution.8 For this time-stepping algorithm G is
symmetric.
Projection functions reformulate the complementarity problem of equations (1.9) and (1.10)
to a nonlinear system.

F (Λi+1,γi+1) = 0 (1.12)

1.2.3 Prior Works

Three works, based subsequently on each other, are the direct background for this thesis.
All are summarized here in detail emphasizing the most important parts. GEIER modeled a
planar pushbelt CVT using independent kinematics of the elements. SCHINDLER enhanced
the model using spatial dynamics for all parts of the system. CEBULLA finally focused on
implementing new force laws and optimizing the kinematical description.

Dynamics of Push Belt CVTs

The works introduced in Subsection 1.2.1 model specific effects of the CVT system. Depending
on the application some major effects are omitted that are important for a detailed analysis of
a pushbelt CVT. GEIER is the first to incorporate all main phenomena within a planar system
in Dynamics of Push Belt CVTs [25].

The elements can move independently from the rings and are only coupled by physically
based contact laws. The contact kinematics defined on one element can be evaluated fast as
they are mostly based on analytical kinematics. For the contact between element and ring a
minimal distance has to be found with a nonlinear function. The rings are modeled with the
redundant coordinate method (RCM) using co-rotated-FEs. Each FE has an internal set of
DOFs, which describes a nonlinear rigid body movement in a floating reference frame and
in addition local deformations. Besides deflection, also elongation of the rings is possible
with this approach. The FEs are coupled due to a global coordinate set. For the planar case
the transformation function is explicit to get the local coordinate set out of the global one.
The reader is advised to [78] for further details. Besides the detailed modeling of the rings,
also a quasi-statical deformation of the pulley set is included. Spiral running is therefore
represented well. All submodels are formulated in a time independent manner such that
transient behavior could be studied.

In the model the number of elements could be chosen freely. Based on 160 elements that are
used in the simulation a number of about 650 DOFs and about 1440 contact points result.9

The results are compared qualitatively to literature values. Local forces and kinematics could

6Normal impacts with an elastic part are not of interest here but discussed in [27, 20].
7also called “Delassus-Matrix”
8The time step is not given as it is a general definition for time-stepping algorithms
9Up to 1500 DOFs and 3500 contacts are possible in case of 400 simulated elements [25, p.81].
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be validated as well as global trends for stationary conditions. Further simulation results show
qualitatively good results. The model therefore has proven successful for the simulation of a
pushbelt CVT disregarding spatial effects.

Spatial Dynamics of Pushbelt CVTs

SCHINDLER covered also spatial effects in Spatial Dynamics of Pushbelt CVTs [55]. The el-
ements are modeled dynamically as rigid bodies with six DOFs. Elastic deformations are
covered in the contact laws. The element-element interaction is modeled as a nonlinear
function. The element-sheave interaction uses a linear penalty function. Tilting deformation
of the sheaves is constrained by linear force laws to cover the coupled deformation of the
flat pulley-sheaves and the shafts. Flexible sheaves based on a Reissner-Mindlin plate theory
using FE are developed but no results are given. Two rings are simulated using an extended
RCM including out of plane movements. In the spatial case of the RCM model the internal FE
and the global coordinate sets are coupled in a nonlinear system. It is solved during each time
step in the simulation [54, p. 23]. The elements are bound bilaterally to the rings in normal
direction with a set-valued contact law. Compared to the planar case the contact kinematics
gets more complex. Spatial conditions have to be covered leading to more search directions
along the surfaces. Due to the increased number of DOFs of about 1200 combined with
around 2100 contact points10, the simulation costs increased.11 To reduce computational
time, a stationary belt model based on [51] is derived. The transition time at the beginning of
each simulation could be shortened compared to a full run up. Parallelization techniques are
tested for single simulations. A parallel computation of different load cases has been found to
be more efficient.

Results are compared to values of literature and to measurements conducted by BTT. All in
all correct trends are presented for global as well as for local values. However, improvements
are suggested concerning the ring model, the element-pulley interaction and possible model
order reduction techniques. The work offers a basis for a deeper analysis of spatial effects
within a pushbelt CVT.

Spatial Dynamics of Pushbelt CVTs: Model Enhancements to a Non-smooth Flexible Multi-
body System

CEBULLA focused on central processing unit (CPU) time reduction to further improve the
models described in Subsection 1.2.3. Due to the complex contact kinematics and the high
number of DOFs, the key part of the model concerning CPU time are the rings. A spatial rod
model, which is presented in [38], follows the theory of COSSERAT and uses finite differences
for the discretization. It shows promising results and therefore is adapted for the usage within
the CVT model. The planar version is described in Spatial Dynamics of Pushbelt CVTs: Model
Enhancements to a Non-smooth Flexible Multibody System [9]. A planar version of the pushbelt
CVT is therefore set up to test and validate additions to the model.
A coupled contact law for the quasi-static representation of the pulley-sheave deformation in
the spatial case has been derived and added to the model. For the solution of the resulting
linear complementarity problem (LCP) a LEMKE algorithm or a reformulated system using
proximal functions is suggested. While the same coupling technique of the sheaves is used as

10based on 160 simulated elements
11Up to 2650 DOFs and 5200 contacts are possible in case of 400 simulated elements.
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in [25] different coupling options for the elements are presented. Yet, these have not been
validated.
The element-ring contact has been enhanced in two steps. At first the bilateral contact in
normal direction at the element saddle has been replaced by two unilateral contacts at saddle
and ear. This yields a remarkable CPU time reduction [9, p.129]. In a second step, the penalty
function for the axial movement of the rings on the saddle has been changed from a stiff
bilateral function to a heuristic model for the so called ring-tracking. The effect of this model
has not been tested. To cover production uncertainties, tapered elements have been added
to the model. An adapted initialization process is given to reduce the transition phase to a
stationary point in the simulation. Different settings of the boundary conditions are enabled
and the necessary equations are derived theoretically. Simulation results are compared to
values from literature and measurements from BTT.

Altogether CEBULLA extended the model of SCHINDLER in many points and shows improve-
ments of different submodels. Yet, a detailed analysis of the model is missing. The present
work discusses the described models with different submodels in detail with respect to (wrt.)
their numerical and physical behavior. New submodels have also been added where the
analysis showed necessity for improvement.

Summary of the model

The three works above lead consecutively to a complex and detailed model of a metal V-
pushbelt CVT. The most important properties and assumptions are summarized here in a
compact manner.

• Spatial effects, e.g. misalignment, are modeled besides a planar version.

• Transient dynamics, e.g. torque or speed run up situations as well as shifting movement,
are covered.

• The elements are treated as single, i.e. non-continuous, rigid bodies covering nonlinear
deformation due to contact-laws quasi-statically.

• The sheaves are treated as single rigid bodies with a coupled deformation, leading to
e.g. spiral running.

• The rings are modeled as one (planar model) or two (spatial model) flexible bodies
regarding elongation, in- and out-of-plane bending along the belt.

• Contacts, i.e. normal forces and friction forces, are modeled either non-smooth or
regularized possibly using nonlinear functions, e.g. element deformation or Stribeck
friction.

• No overall kinematical assumptions are made concerning contact situations in the arcs,
e.g. separation of active or idle ar or separation of the elements in the loose-strand. Yet,
the effects result out of dynamic simulation.
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Figure 1.5: Overview of the thesis
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1.3 Structure of the Work

An overview about this work is visualized in Figure 1.5. After motivating the thesis the system
pushbelt CVT is described in Section 1.1 to introduce the most important concepts to the
reader. The current research state is given in Section 1.2. A literature overview for pushbelt
CVTs shows the state of modeling at the time of writing. Models exist to investigate on specific
settings of the CVT. Yet, a detailed model covering all major effects is still missing. To enable
such a model the method of MBS is chosen. The well-established theory is summarized. A
detailed model of this system has been set up and enhanced in the past which is described at
last. It forms the starting point for this work.

The validation of models is an iterative process. Comparing to measurements combined
with qualitative discussion of the physical interpretable behavior of a first simple model yield
improvement ideas for the next one. Eventually a model should consider all relevant effects
being as simple as possible to be interpretable after all [71].
The iterative process is in fact a loop in which every part affects the others leading to new
ideas for either modeling, simulating or validating. The sequence for this thesis starts with the
modeling in Chapter 2, then discusses the sensitivity on numerical and physical parameters
in Chapters 3 and 4 respectively to finally validate the state of the model in Chapter 5. It is
emphasized that the results of this work can only be seen in context of all these chapters.

Following this introduction the dynamical models are discussed in Chapter 2. Three aspects
are discussed separately, i.e. the dynamics of the single parts, their interaction and the result-
ing numerical challenges.
Efficient models demand rigid dynamics of the elements and sheaves respecting their defor-
mation in interactions. The rings however deform nonlinear dynamically. A specific model
covering the overall motion with a minimal number of DOFs is derived, which enables fast
integration. Selective adaption of the dynamical representation, e.g. spatial motion or spiral
running, allows for efficient integration within specific applications.
Interaction models are crucial for the correct representation of the force equilibrium. The
adaption of the element’s thickness leads to a varied stiffness which is respected in the con-
tacts. The contact kinematics for curved surfaces of sheaves and elements are derived to
enable geometrical adaptions. The coupled deformation of the two pulley-sheaves due to the
contact to all elements in one arc is suggested furthermore. The nonlinear deformation of the
elements in longitudinal direction is respected with a special force law. An updating process
using a special measuring device, i.e. the Push-Force-Tester, is performed to gain precise
parameters. The spatial interaction between element-saddle and ring is analyzed in means of
ring-tracking. Former models are discussed and a new one is suggested, which respects the
normal force influence.
The computation of the models on a CPU leads to numerical issues, which are treated at last.
A kinetics based initialization scheme shortens the transition phase and thus the simulation
time. The application of modern solution schemes for the complementarity problem between
elements and sheaves reduces the simulation time further in every time step. Finally, the
usage of sparse matrix algebra in combination with the specific properties of the integration
scheme yields faster integration when non-smooth force laws are used in the model.
The post-processing steps conclude the chapter which serve as basis for the further analysis
of different aspects of the system.

Models are tested on their qualitative output as well as on their sensitivity on parameters.
Numerical aspects are treated in Chapter 3. To save simulation time less elements are used in
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simulation than in reality. The influence of this is studied at first to find a minimal number of
elements and to show the difference to a reference simulation, i.e. the overall quality. Then the
influence of different contact laws is studied using either single- or set-valued functions which
affects both the simulation time as well as the physical output behavior. Finally different
dynamical models for the rings are compared in means of CPU costs and physical output. A
further analysis tests the applicability of the approach for spatial simulation.

Besides numerical based parameters, also physical based parameters are not known exactly.
Their impact on the system’s behavior is discussed in Chapter 4. This forms the basis for two
improvements. On the one hand the parameters can be updated for precise outputs of the
model. On the other hand it offers optimization strategies for future belt designs.
The number of elements that are used within the belt assembly is not known precisely. The
parameter is set by experience. However, small changes lead to different system outputs
which are treated in Section 4.1.
In Section 4.2 the most important parameters for the contact between element-flank and
pulley-sheave are discussed. The contact position along the flank is unknown as well as the
stiffness in axial direction. Both influence the system’s behavior strongly.
The same holds for the contact in-between the elements. The geometry for the head depends
on the element specification. Thus the contact point is uncertain in terms of radial as well as
longitudinal position. Both aspects are discussed in Section 4.3.
Finally, the friction parameters for the contacts element-pulley and element-ring are analyzed
in Section 4.4.

The model is validated in Chapter 5 based on the discussion of the previous chapters. Force
distributions along the belt and kinematics in the arcs are compared qualitatively for a broad
spectrum. Furthermore, quantitative measurements are compared for the most important
local forces.
Global measures, i.e. descriptive values for certain stationary cases, are compared for varying
boundary conditions. The trends for the thrust ratio and efficiency yield quantitative matches
for a variator with well identified parameters. Other variator setups show the necessity for an
updating process. Furthermore, the influence on external loads and the robustness against
e.g. wear are validated with measurements.
At last, instationary effects are treated. On the one hand the gear-rattle noise can be related
virtually to the frictional curves. On the other hand shifting situations are compared to values
from the literature qualitatively.

Finally, the work is summarized in Chapter 6. Based on the conclusion an outlook on further
research possibilities is given.





2 Modeling

Many iteration steps have been done leading to the current detailed model during the valida-
tion process of the model. The single refinement steps for different aspects of the model are
given in the following chapter. Thereby, three types of modeling aspects are separated.
At first the dynamics is addressed in Section 2.1. Preliminary considerations discuss the three
parts within the CVT, i.e. elements, sheaves and rings.
The rings are a crucial concerning computational time [54, p. 68]. Many DOFs are necessary
and complex contact kinematics have to be used solving nonlinear equations each time step.
A further dynamical submodel for the rings is introduced. The kinematics is specifically
derived for the CVT application. The DOFs could be reduced and a faster contact search is
enabled. The global and local kinematics are separated which makes it easy to interpret the
results. These different levels of detail in the model enable also new strategies for specific
applications.

The contacts between the single bodies are discussed in Section 2.2. Existing models are
presented shortly to motivate enhancements. New models concerning contact kinematics
and contact laws are given for element-element-, element-ring- and element-sheave-contact.
Parametric options are analyzed and discussed qualitatively wrt. the results in the CVT model.

Finally, the reduction of the computational costs is treated in Section 2.3. The solution process
of the coupled contact law between elements and sheaves is optimized. Different models
lead to either one or two contact points. The impact on the solver is discussed. Conclusions
suggest which model should be used.
The initialization process is enhanced as well. Kinetic models are used to enhance the estimate
of the stationary condition at the beginning of the simulation. Thereby, the transition phase,
i.e. oscillations due to initialization errors, is shortened.
The solution of the set-valued conditions is treated at last. Improved algorithms reduce CPU
costs when the presented time-stepping integration scheme (Subsection 1.2.2) is applied.

For discussion and validation, the post-processing steps are finally given in Section 2.4.
Averaging techniques are used to separate trends along the arc from local effects. Based on
these, global values are gained which are used as general comparison numbers.

2.1 Dynamics

2.1.1 Preliminary Considerations

The modeling of the dynamics of the single bodies in a MBS is the first step to gain a com-
plete model. Each body may be represented with six rigid DOFs. Possible deformations are

17
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accounted for with quasi-statical non-impulsive contact force laws. The numerical treatment
is typically more robust as for flexible-body dynamics. Faster simulation times result as less
DOFs are used.
Yet, the dynamical response of sub-parts of the system may be an important effect that has
to be modeled. Flexible models are utilized. The number of DOFs increases and thus the
simulation time.

Elements

The elements are the key part within the model. The longitudinal as well as the axial de-
formation do influence the dynamics significantly (Chapter 4). These deformations can be
represented very well with single-valued contact laws [25]. A deformable representation also
would increase the simulation time substantially affecting about 200 to 400 bodies. Therefore,
rigid body dynamics is chosen incorporating the deformations within the contact laws to gain
short integration times.

Sheaves

The pulley-sheave deformation is known to be the main driver for the spiral running. Their
deformation is well approximated by quasi-statical contact models [9]. However, the EIN is
assumed to be coupled to the eigenmodes of the pulley-sheaves. This gives reasons to model
also these bodies deformable [44].
The sheave model described in [54] has found to be not efficient. Therefore, also an FFR based
model for the sheaves has been derived and tested in [77]. A full finite element method (FEM)
model of the pulley has been used to gain modal modes. NURBS1 interpolation is used to
enable contact kinematics. Both approaches show the typical problems of deformable bodies.
In particular the simulation time increases. Due to modal reduction the locality of the contact
cannot be provided exactly influencing the dynamics.
Altogether, elastodynamic sheaves are not used to ensure efficient and robust integration.
The dynamic feedback to the overall behavior of the system could not be tested. A one-way
coupling, i.e. using the forces from the simulation to excite e.g. a full dynamic FE model of
the pulleys, is possible to study particular effects e.g. the EIN.

Rings

For the rings a deformable model is necessary. Spiral running within the arcs and dynamic
oscillations within the strands should be respected. A change of the ratio has to be covered to
enable shifting dynamics. As the ring models derived in [54] and [9] lead to numerically stiff
or ineffective models, a new ring model is specifically derived for CVTs in Subsection 2.1.2.
Using a mixed parameter description for global and local deformations and avoiding internal
constraints leads to a minimized number of DOFs and a robust model.

1see [47]
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2.1.2 ALE Ring Model

Ring models are crucial within the complete CVT. Spatial and nonlinear deformation has to
be represented efficiently to enable fast integration. Due to many contacts between elements
and rings locality of the deformation should be preserved.
Different techniques exist in the literature to represent nonlinear behavior of one dimensional
bodies. Four different models have been tested within the CVT. This section summarizes
the ideas of the RCM, the large rotation vector method (LRVM) or the ANCF. For the LRVM
and the ANCF planar models are presented as difficulties are apparent in this case already.
Additionally, the main results are given that motivate the development of a new model.
Eventually, the EOMs of a model based on the arbitrary Lagrangian-Eulerian (ALE) technique
are derived, which takes into account the disadvantages of the other models. All models are
implemented in multibody simulator (MBSim) [21].

Literature Models

RCM Model In [25] a planar model for the beam dynamics uses a co-rotational approach.
A local set of DOFs ql describes the deformation of a FE of a beam with linear material
properties. The assembly is done via a global set of DOFs qg . An explicit relation between
the local and the global DOFs exists. Thus, nonlinear kinematics can be represented globally.
Qualitatively a good correlation between measurements and simulation could be achieved.

For the model in [54] a spatial enhancement is derived using the same ideas. Yet, the relation
between ql and qg cannot be resolved explicitly. A root-finding algorithm has to be applied
for each FE at every time step. This leads to an increased simulation time.
Furthermore, the time step is limited as otherwise the root finding algorithm might not
succeed. Using more FEs leads to smaller time step sizes for a robust simulation. A stiffness-
like phenomenon is observed. It is not classical stiffness as an internal transformation is
affected. Stabilization techniques could not be applied successfully for the root finding
algorithm and therefore other modeling ideas have been tested.
In [54] 12 FEs are used as a compromise between robustness and calculation time. However,
practical tests with the planar model of [25] show that this might be too few FEs to represent
the curvature change between arcs and strands. Numerical induced oscillations result in the
strands. Based on these observations another ring model is needed for spatial integration.

LRVM Model LANG ET. AL. showed in [38] a promising formulation based on LRVM. Cosserat
theory is used to represent nonlinear deformations of rods in the field of MBS. The LRVM
separates a position field and a rotation field with two sets of DOFs. Finite differences are
used to discretize the EOM and a staggered grid between positional nodes and rotational
nodes promises enhanced performance.
These are used to express the different terms for the energy formulation that can be used with
the Lagrange II formalism to derive the discretized EOM. In [9] the EOMs for a planar model
are given. A contour description is introduced to represent non-smooth contact situations.
A difficulty of the LRVM becomes apparent. Either the positional field or the rotational
field could be used to define the local kinematics for the points, i.e. normal and tangential
directions of the contact frame, that are used to project external forces into the generalized
directions.

The model does not comprise two full coordinate sets and the difficulty of the RCM beam is
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not apparent. However, the material properties, i.e. steel, in combination with the unfavorable
geometry, i.e. thin layers of the rings, lead in practice to a very stiff behavior. A first approach
with nonlinear reduction techniques to filter high frequency ranges was not successful. It
is a field of ongoing research [10]. Different choices for the contour description could not
improve the behavior.

ANCF Model The ANCF technique uses the nodal deformation and the slopes, i.e. their
spatial derivatives, at these positions as DOFs. The DOFs are interpolated in a global frame
with global ansatz functions. Thereby, necessary rotations for e.g. beam elements can be
represented in an isoparametric way. Rigid body modes are incorporated exactly. For the
planar model the mass matrix is constant which is a major benefit. The inverse or a decompo-
sition must not be calculated every time step which is a main driver for simulation time. The
implementation for the model of this work follows [58, chap. 7].

Neither two coordinate sets nor a separation of positional and rotational fields are used
which lead to difficulties in the discussed models using RCM or LRVM. The simulation time
is reduced due to the constant mass matrix. Using this model within the full CVT model
yields overall good yet oscillatory results. Besides, the mass matrix is – depending on the
formulation – not constant for the spatial case.

Basic Ideas of the ALE Model

As one can see from the previous discussion general beam formulations have difficulties when
applied in the present CVT model. In the following a specific model for belt drives is derived
which addresses the discussed problems.
A pushbelt CVT consists of two major kinematical degrees. On the one hand the ratio defines
– together with the belt length and the pulley distance – the two arc radii and the strands. On
the other hand the rotation speed defines the belt speed and thus the travelling along the
curve. Yet, the kinematics are not fully described with these DOFs. Deformations within the
arcs, e.g. spiral running, or between the pulleys, e.g. misalignment, are small deviations from
this reference description.

To represent the belt speed as a DOF, an Eulerian description is used. With it the tangential
movement of a mass particle can be projected to a fixed position in space. This technique is
called ALE. It is a coordinate transformation. For a closed one dimensional continuum the
transformation is performed generally in Appendix A. Also the equations for the Lagrange II
formalism are derived.
The ALE formulation is also used by PECHSTEIN and GERSTMAYR (2013) in combination with
ANCF elements for a planar model [45]. Similar ideas have been used in [24] and [6]. However
the reference kinematics were fixed and only planar DOFs are used. In the following, a spatial
model using a planar reference curve is described which is referred to as the ALE model within
the thesis.

The following description is general. It is not restricted to CVT belt applications but could be
used for all one dimensional systems with a nonlinear reference kinematics and only local
deformations.
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Figure 2.1: CVT kinematics described by a reference curve

Kinematics

Consider a planar belt drive with a fixed belt length L (Figure 2.1) and a constant cross-section
A. A reference curve rRe f (Θ,ξ) is described along ξ ∈ [0,L[ in a fixed frame with axes x, y and
z. The current reference may be described with the scalarΘ. For the CVT, it is a measure for
the ratio between the two arcs. For each reference position a frame holding the tangential
tRe f , normal nRe f and binormal bRe f is attached.
A tangential drift s and the corresponding time derivative ṡ define the position of a particle
along the curve x̄ with

x̄(ξ, t ) = ξ+
∫ t

0
ṡ(τ)dτ= ξ+ s(t ) (2.1)

where ξ describes the original position of the particle. Therefore x̄ depends on time.

dx̄

dt
= ṡ

The variableΘ and s describe only the reference motion (Figure 2.1a). Additional coordinates
are introduced which enable a small displacement r f around the reference position rRe f

(Figure 2.1b). The vector q i
f holds the coordinates of node i which describe this deviation in

the three possible spatial directions. These DOFs are interpolated by local ansatz functions
Si (ξ).

Position The position of a particle is given by

r = rRe f + r f = rRe f +A
∑

i
Si q i

f = rRe f +ASq f = rRe f +Bq f (2.2)

whereA(ξ,Θ) is introduced as a general transformation matrix for the directions of the local
DOFs. Three general different possibilities exist to chooseA:

1. The most simple option would be to choose a constant A, e.g. as the unity matrix. It
does then neither depend on ξ norΘ.
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2. A second option would be to chooseA only depending onΘ, e.g. as the direction matrix
of the node where the local deformations are measured via q f . This would mean that
the local DOFs are the node deformations in local tangential, normal and binormal
direction.

3. A third option is to choose A to depend on Θ and ξ, e.g. A = [
tRe f ,nRe f ,bRe f

]
as the

orientation matrix that changes over the arc with ξ. This would change the interpreta-
tion of the local DOFs always in the local tangential, normal and binormal direction
respectively.

In this work the equations are derived for the most general third case to serve as basis for
general applications.

Velocity To get the absolute velocity the material derivative2 has to be applied.

v = dr

dt
= drRe f

dt
+ dA

dt
Sq f +A

dS

dt
q f +ASq̇ f

= drRe f

dξ
ṡ + drRe f

dΘ
Θ̇+ dA

dξ
ṡSq f +

dA

dΘ
Θ̇Sq f +A

dS

dξ
ṡq f +ASq̇ f

Using the vector of generalized coordinates and generalized velocities

qT = [
s Θ q f

]
, q̇T = [

ṡ Θ̇ q̇ f
]

(2.3)

the velocity can be written as

v =
[

r ′
Re f +B ′q f

drRe f

dΘ + dA
dΘSq f AS

]
q̇ =Pq̇ (2.4)

where

P(q) = [
r ′ dr

dΘ B
]

(2.5)

is the interpolation matrix between the generalized velocities q̇ and the velocity of the mass
particles depending only on the generalized positions q . In the following the most important
steps are listed where additional equations are given in Appendix B.

Kinetic Energy

The equations for the kinetic energy T are derived in Appendix A. In the following, the single
terms are specified. The gradient of the kinetic energy wrt. generalized coordinates is given by

∂T

∂qk
= ρA

∫ L

0
vT ∂v

∂qk
dξ= ρAq̇T IPT dPd qi q̇ (2.6)

where the integral

IPT dPd qi =
∫ L

0
PT ∂P

∂qk
dξ

2The change in position of a mass-particle has to be derived which is described by r (x̄). The equation is
written in Eulerian view and thus the material derivative has to be used.
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has to be evaluated in each time step.
The time derivative of the gradient of the kinetic energy wrt. to generalized velocities becomes

d

dt

∂T

∂q̇k
= ρA

2

∫ L

0

∂

∂t

∂

∂q̇

(
vT v

)
dξ= ρA

2

∫ L

0
2
∂

∂t

(
vT ∂v

∂q̇

)
dξ= ρA

2

∫ L

0
2
∂

∂t

(
q̇TPTP

)
dξ

(2.7)

= 2ρAq̇T IPT dPd t + q̈TρAIPT P (2.8)

where the first integral is defined as

IPT dPd t =
∫ L

0
PT ∂P

∂t
dξ (2.9)

and the second term yields the symmetric mass-matrixM.

M= ρAIPT P = ρA
∫ L

0
PTPdξ (2.10)

Elastic Energy

The elastic energy V is defined following [33] with

V = 1

2

∫ L

0
γTCγγdξ+ 1

2

∫ L

0
κTCκκdξ= Vγ+Vκ (2.11)

where γ and κ are the deformation quantities and the matricesCγ andCκ hold the constitutive
laws. The Eulerian description is used directly as other terms vanish (Appendix A). The partial
derivatives are given by

∂Vγ

∂qk
=

∫ L

0
γTCγ

∂γ

∂qk
dξ,

∂Vκ

∂qk
=

∫ L

0
κTCκ

∂κ

∂qk
dξ (2.12)

with the strain energy Vγ and the curvature energy Vκ. The constitutive correlations for an
isotropic material are used with

Cγ =
E A 0 0

0 G An 0
0 0 G Ab

 and Cκ =
G It 0 0

0 E In 0
0 0 E Ib

 (2.13)

where E is the Youngs modulus, G the shear modulus and An and Ab the shear areas in normal
and binormal direction respectively. The quantities In and Ib are the area moments of inertia
for bending around the normal and binormal direction respectively and It is the torsional
area moment of inertia. Off-diagonal coupling terms are neglected.

Strain energy For the strain energy the material strain measure is used with

γ= AT
I K r ′− (

1 0 0
)T

(2.14)

where the rotation matrix

AI K = [
t n b

]
(2.15)
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holds the local tangential t , normal n and binormal b directions of the neutral phase3 follow-
ing the Frenet-Formulas.

t = r ′

‖r ′‖ = n ×b n = t ′

‖t ′‖ = b × t b = r ′× t ′

‖r ′‖‖t ′‖ = t ×n (2.16)

With this definition of the tangential direction t the Kirchhoff assumption is fulfilled. The cross
section is not able to rotate relatively to the neutral phase which avoids possible numerical
stiff behavior [38, Remark 3.4]. The complete strain energy can be derived.

∂

∂qk
Vγ = E A

∫ L

0
(1− 1p

r ′T r ′
)r ′T

0
0
0

 dr ′
dΘ B ′

1 . . . B ′
n

dξ= E AIW γ

Curvature energy The measure for the curvature is defined as

κ=
 τ

κn

κb

 (2.17)

where τ measures the torsion and κn and κb measure the curvatures in the two planes that
are spanned between the tangential vector t and the normal n or the binormal b respectively.
The bending and torsional energy derivatives follow.

∂

∂qk
Vκ =

∂

∂qk
Vt +

∂

∂qk
Vn + ∂

∂qk
Vb

=G It

∫ L

0
τ
∂

∂qk
τdξ+E In

∫ L

0
κn

∂

∂qk
κndξ+E Ib

∫ L

0
κb

∂

∂qk
κbdξ

=G It IV t +E InIV n +E IbIV b

The single measures have to be found, which is discussed in the following.

For the curvature in the tRe f /nRe f -plane it is crucial to couple the reference deformation and
the overlaid effects. Only due to this, the full physics of the ring can be represented. Otherwise,
the elastic forces of the reference DOFs would only affect the movement of the reference
motion, i.e. the forces would not be projected into the generalized direction of the overlaid
DOFs. This would not lead to a circular shape of the curve in case of no external forces. The
ratio would shift independently.
To approximate the curvature in the tRe f /nRe f -plane, the second derivative of the position is
projected along the reference normal direction.

κn = nT
Re f r ′′ with r ′′ = r ′′

Re f +A ′′Sq +2A ′S ′q +AS ′′q

This approximation yields correct measures for the reference part and linearized overlaid
measures for the additional deformations. The derivatives wrt. the generalized coordinates
follow.

∂

∂s
κn = 0 (2.18a)

3These directions do not coincide with the directions from the reference curve as they regard for the local
deformations
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∂

∂Θ
κn =

∂nT
Re f

∂Θ
r ′′+nT

Re f

∂r ′′

∂Θ
(2.18b)

∂

∂q f i
κn = nT

Re f

∂r ′′
f

∂q f i
= nT

Re f

(
A ′′Si +2A ′S ′

i +AS ′′
i

)
(2.18c)

With the derivatives ofA (Appendix B) one can show that (2.18c) simplifies to

∂

∂q f i
κn = [

0 −1 0
]
Si +2

[−1 0 0
]
S ′

i +
[
0 1 0

]
S ′′

i (2.19)

for any planar reference curve. Consequently, only the tangential and normal deformation
have an influence on the curvature energy.
Analogously, the binormal curvature measure in the tRe f /bRe f -plane is approximated.

κb = bT
Re f r ′′

The derivatives wrt. the generalized coordinates follow

∂

∂s
κb = 0 (2.20a)

∂

∂Θ
κb =

∂bT
Re f

∂Θ︸ ︷︷ ︸
=0

r ′′+bT
Re f

∂r ′′

∂Θ
(2.20b)

∂

∂q f i
κb = bT

Re f

∂r ′′
f

∂q f i
= bT

Re f

(
A ′′Si +2A ′S ′

i +AS ′′
i

)= 0+0+ [
0 0 1

]
S ′′

i (2.20c)

in the case of a planar reference curve. Thus, only the binormal deformation has an influence
on this curvature energy.

The torsion

τ= bT n ′ = nT b ′

is generally defined for spatial curves. Here the reference curve is planar. No torsion is
incorporated. Therefore, the following approximation is used for the torsion measure which
just takes into account the binormal change due to the overlaid deformations.

τ≈ nT
Re f b ′

External Forces

External forces from joints or contacts have to be projected into the generalized directions.
The Jacobian of translation JT has to be found which relates the global free directions with
the generalized directions. According to (2.4) it is the transformation matrix P.

JT = ∂v

∂q̇
=P

Possible link torques are not covered.
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Figure 2.2: Kinematics of a simple reference curve

Equations of Motion

Summarizing the previous findings, one gains the EOMs

Mq̈ = h (2.21)

where the mass matrix is defined by (2.10) and the right hand side vector h follows with two
parts of the kinetic energy and four parts of the potential energy.

h = hT 1 +hT 2 +hV 1 +hV 2 +hV 3 +hV 4 (2.22a)

hT 1 =−2ρAq̇T IPT dPd t (2.22b)

hT 2 = ρAq̇T IPT dPd qi q̇ (2.22c)

hV 1,k =−E AIV γ (2.22d)

hV 2,k =−E InIV n (2.22e)

hV 3,k =−E IbIV b (2.22f)

hV 4,k =−G It IV t (2.22g)

Kinematics of the Reference Curve

The derived EOMs are valid for any belt system with a planar reference curve. For the appli-
cation within the CVT system the following reference curve is chosen. To be consistent with
the general kinematic description – especially concerning (1.3) – the following values should
carry the index r e f . It is omitted in this subsection for the sake of clearness. All kinematical
values refer to the center line of the beam model.
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It consists of four parts which are depicted in Figure 2.2:

• primary arc with radius rP and with length bP = 2rP (π−ϕ)

• upper strand with length b = dA cosα

• secondary arc with radius rS and with length bS = 2rSϕ

• lower strand with length b

with the relations

α= arcsin

(
rS − rP

dA

)
and ϕ= arccos

(
rP − rS

dA

)
.

The ratio parameterΘ is chosen such that symmetric properties can be used for numerical
evaluation. It holds the following relationship to the geometric ratio of the reference curve
ig ,r e f = rS

rP
.

Θ= 1− ig ,r e f

1+ ig ,r e f
⇔ ig ,r e f =

1−Θ
1+Θ (2.23)

The nonlinear function to calculate the primary radius for a specific geometric ratio, i.e. a
specific value ofΘ, is

0 = L−2b −bP −bS (2.24)

where the constraining parameters to the system are dA – the distance between the pulley
axles – and L – the total length of the ring.
In a preprocessing step the arc-radii for differentΘ are computed solving the nonlinear system
(2.24). The primary radius rP over the ratio parameterΘwith at least4 C 2-continuous splines
is interpolated. An explicit dependency rp (Θ) results. The further kinematic description over
the arc follows also explicitly and is C 1-continuous in ξ.

For a given interpolated function of the primary radius rP (Θ), the positional description over
the arc length ξ for the upper part is given by

r u =
r u

x
r u

y

0

=




−rS cos(ϕS)

rS sin(ϕS)

0

 if 0 ≤ ξ≤ϕrS

rS,end +ξT tT if ϕrS < ξ≤ rSϕ+b
dA − rP cos(ϕP )

rP sin(ϕP )

0

 if ϕrS +b ≤ ξ≤ L
2

(2.25)

with the following definitions

ϕS =
ξ

rS
, ξT = ξ− rSϕ, ξP = ξ− rSϕ+b, ϕP =ϕ+ ξ

rP
,

4See (B.1)
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Figure 2.3: Sketch of the Hermite ansatz functions for the C 1-continuous case (left) and
C 2-continuous case (right) case.

rS,end =
−rS cosϕ

rS sinϕ
0

 , rP ,st ar t =
dA − rP cos(ϕ)

rP sin(ϕ)
0

 , tT = rP ,st ar t − rS,end∣∣rP ,st ar t − rS,end
∣∣ .

The lower part follows due to symmetry.

r l (ξ) =
 r u

x (ξ−L)
−r u

y (ξ−L)
0

 (2.26)

Ansatz functions

The ansatz functions for the FE are integrated over the whole length L. Hermite interpolation
ansatz functions are chosen to respects the necessity of C 1-continuity for the planar case
without torsion and C 2-continuity for the spatial case. The Hermite polynomials are used as
they are depicted in Figure 2.3. The formulas follow for

... the C 1-continuous case

N1 =
1

2
− 3

4
x + 1

4
x3, N3 =

1

2
+ 3

4
x − 1

4
x3

N2 =
le

8
− le

8
x − le

8
x2 + le

8
x3, N4 =

le

8
+ le

8
x − le

8
x2 − le

8
x3

... the C 2-continuous case

N1 =
1

2
− 15

16
x + 5

8
x3 − 3

16
x5, N4 =

1

2
+ 15

16
x − 5

8
x3 + 3

16
x5,

N2 =
le

32

(
5−7x −6x2 +10x3 +x4 −3x5) , N5 =

le

32

(−5−7x +6x2 +10x3 −x4 −3x5) ,

N3 =
l 2

e

64

(
1−x −2x2 +2x3 +x4 −x5) , N6 =

l 2
e

64

(
1+x −2x2 −2x3 +x4 +x5)

where le is the element length.
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Figure 2.4: Time development of reference oscillation

Remarks

The equations are implemented and tested qualitatively in the following. The first virtual
experiment tests the dynamics of the reference kinematics only, i.e. q f = 0. The parameters
follow a real ring such that the stiffness is incorporated. The starting condition isΘ= 0.4, s = 0
and Θ̇= ṡ = 0, i.e. an OD-ratio of ig ≈ 0.4286 is set. Results are depicted in Figure 2.4a for the
deformation of the ring. Four different time points are given where t0 is the start position. At
t1 an intermediate state is given. One can see that the ratio changes over time and oscillates
around the neutral state Θ = 0. This oscillation is given in Figure 2.4b. The parameter s
stays zero – it is only numerically affected. Keeping in mind, that the local deformations are
blocked, this is the expected result.

For a general model with all DOFs, one would expect a circular shape as neutral state. There-
fore, another experiment is performed adding the local deformations. Thereby, another
problem rises. As the local deformations build a full space, the position is redundantly de-
scribed taking into account also the reference DOFs. Practically, the mass matrix becomes
singular. Therefore, two local DOFs directions are locked, i.e. one node is fixed at its reference
position. It moves due to the reference coordinates within the x y-plane. For this experiment
and for the whole work the first node is chosen, which is at ξ= 0.
The same parameters are chosen as before. Cubic ansatz functions within eight FEs are se-
lected. All generalized positions and velocities q = q̇ = 0 at t0 = 0. The positional development
is depicted in Figure 2.5 for four different times in chronological order. One can see that at
t1 the ring shows a reasonable behavior. Similar to a rubber band, it starts to form a circular
shape. The strands deform outwards. At t2 however, no reasonable development is observed.
The first node5 can only move with the reference DOFs, i.e. Θ in this case. To form a circular
shape, the left node has to move to the center, i.e. Θ increases. The typical shape of the
CVT ring forΘ> 0 can be seen asΘ influences the deformation over the whole arc. Yet, the
deformation develops further yielding an oval-like shape again at t3, which is the expected

5here on the left side of the ring
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t0 t1 t2 t3

Figure 2.5: Time development of a deformable ALE ring with 8 FEs and cubic hermite
ansatz functions.

behavior.
With this example two points should be emphasized. On the one hand the presented model
relies on the description of the reference curve. One could say that the model assumes an
external force distribution that yields a shape similar to the one of the reference configuration.
Only small deviations from the reference are assumed. Then the motion is reasonable (t0 → t1).
On the other hand the model has all DOFs of a general model and develops (qualitatively)
correct, as one can deduce from the above discussion for t1 → t3.

Further Consideration

The presented model has been developed for the application within a spatial pushbelt CVT.
The idea – known from e.g. the FFR-method – was to describe the nonlinear reference motion
and additional small deviations separately. This idea leads to successful tests as shown above
and which is confirmed later in this work. The possibilities that result for further applications
are therefore given here in addition.

Application to other belt systems The presented approach is not restricted to the pushbelt
CVT system. It could be used for any belt system with a closed one-dimensional curve
and a reference kinematics.

Separated integration The separation of the reference and the overlaid deformation also
enables the possibility to separate these DOFs in the integration. It can be assumed that
the two reference DOFs change only slowly compared to overlaid deformation and must
not be updated in every time step. It reduces the simulation costs and might increase
robustness of the overall system as the dynamical coupling of the DOFs is reduced.

Reduction A nonlinear reduction technique, i.e. the proper orthogonal decomposition, could
not be performed successfully for the LRVM model in the CVT application. The coupling
of the overall movement within the framework of Lagrange description with local small
deformation is assumed to be the reason for this as the technique needs to identify
both movements separately. Following this consideration, the Eulerian framework in
combination with the reference curve description offers the possibility to only reduce
the overlaid deformations with techniques known from linear systems.

Overlaid deformation fields The evaluation of the presented integrals is time consuming
and yields the most computational costs. For an overall good approximation the two
reference DOFs give good results (Section 3.3). However, the spiral running in the arcs
is not represented which results in small deviations.
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From the overall state of the variator it is possible to approximate the kinematics of the
ring. The small deviations could be set as a quasi-static overlay omitting their dynamic
integration. Besides the spiral running, this idea can be adapted for the misalignment.
The deviations of the rings can be deduced from the sheave positions as it is done for
the initialization in [54]. The stiff behavior in binormal direction must not be treated
dynamically. Therefore, the spatial dynamics of the elements would still be included
and thus the influence of it on the system can still be studied.

2.2 Interactions

The torque transmission is driven by friction in the CVT. The interaction models, i.e. the
contacts, are thus a major task within the corresponding MBS. Assumptions concerning the
kinematics, e.g. surfaces of the contacting bodies, as well as on the kinetics, e.g. the local
contact stiffness, determine the trajectories of the simulation. The models of the prior works
are analyzed in this section, which yields enhancement ideas that are derived.

The thickness of the element is discussed at first in Subsection 2.2.1. A variable number of
simulated elements leads to variable stiffness and has a remarkable influence on the global
output of the simulation. Adjustment formulas solve the problem of varying stiffness.
For the element-pulley contact a new contact kinematics enables further variator geometries
as discussed in Subsection 2.2.2. Simplifications are introduced wrt. to the solution of the
coupled contact force law for the planar case.
The longitudinal stiffness of the belt influences the OEP within the variator and thus the
efficiency of the whole system. To represent the stiffness in the element-element contact
correctly, measurements of a specified test-setup are compared to simulations in Subsec-
tion 2.2.3. Numerical optimization techniques are used to enhance the parameters of the
local stiffness curves.
Finally, the contact between elements and rings is discussed in Subsection 2.2.4. Nonphysical
effects arise within the prior spatial model that are solved with a new contact kinematics. The
ring-tracking law of [9] is addressed at the end. A new model respecting the normal force
influence on the tracking behavior is presented.

2.2.1 Element Thickness

In the simulation NE number of elements are used whereas the belt comprises NE0 elements
in reality, which yields the ratio ι.

ι= Ne0

Ne
(2.27)

The thickness and inertia are adjusted accordingly [54, p. 19]. The stiffness for the contacts is
affected as well which is addressed in the following.

In the simulation an element carries the force Fs(g ) where g is the contact penetration, i.e. the
gap. Kinematic compatibility between different simulations is required, e.g. the simulations
use the same sheave stiffness for all cases. This requires the same deformation and thus the
same g . For contacts where the force function is proportional to the element thickness t with
Fsi m(g ) ∝ t the adjustment of (2.27) has to be taken into account.
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Consider the force function Fm(g ) of a measured element for its complete virtual6 length l̂ .
The change of the length is identified with ∆l̂ = g . Due to Hooke’s law, this stiffness can be
related to the geometrical and material properties of the element with

Fm ∝σm Âm = ÂmEmεm = ÂmEm
∆l̂

l̂m

= ÂmEm
g

l̂m

⇒ Fm ∝ Âm

l̂m

where σ is a tension measure, ε a strain measure, Em the Youngs modulus and Âm the virtual
cross section of the measured element. One realizes, that the thickness t of the element
either affects l̂ or Â – depending on the specific contact situation. The contact force on the
simulated element differs from a contact force on the real element.
In the simulation three contacts are affected where the local force function is influenced in
different ways.

Contact to sheaves It is required that the sheaves deform in the same way for different
simulations to guarantee the same force distribution along the arc and thus e.g. the
same spiral running. Here the element flank is in contact and therefore the virtual cross
sections ÂEl Sh change with ι. Thus, the element in the simulation has to carry a higher7

load.

Fs,El Sh ∝ ιFm,El Sh (2.28)

In case of two contact points on one flank, e.g. a front and a rear contact, ÂEl Sh is
halved.

Contact to rings The kinematic influence of this contact situation is of minor significance.
To achieve same running radii, the virtual cross section, i.e. saddle and ear, ÂEl LS

changes with ι. The following adaption is suggested.

Fs,El LS ∝ ιFm,ElLS (2.29)

Contact to elements To represent the OEP correctly one has to adapt the element-element
force function. For the contact to other elements the thickness of the elements affects
the virtual length l̂ , i.e. l̂s = ιl̂m . It carries less load for the same penetration.7 As the
transmitted force is prescribed by the boundary conditions, the practical implication is,
that a simulated element gets compressed more the thicker it gets, i.e. for decreasing
NE .

Fs,El El ∝
1

ι
Fm,El El (2.30)

It is clear that with NE more than the discussed points are varied. One major influence is
that the dimension of the system for the solution of the coupled contact law increases. The
solution gets more precise with increasing NE and a varied force distribution is found. This is
not included theoretically.
Here simulations test the system using only simple regularized contact laws with decoupled
deformations. Two simulations are performed. One uses NE = 160 and the other NE = 220.
For both cases either the adaption is used or not. The results are shown in Figure 2.6.

6Virtual indicates here, that the length is the deformation direction within the element
7Assuming NE < NE0
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Figure 2.6: Contact gaps of simulations with or without the stiffness adaption

Both plots prove the ideas of the discussion to be valid. For simulations where the adaption is
used, the contact gaps are the same disregarding small deviations. Simulations without the
adaptions and using a different number of elements, i.e. elements with different thicknesses
but same stiffness values, have different penetrations changing the overall kinematical output.
The gap is overall smaller for simulations with the adaption. The adaption should lead to
kinematics resulting from the “real” situation, i.e. the measured force function Fm,∗. As more
elements exist7 less penetration results confirming the above considerations.

2.2.2 Element-Pulley

It is clear, that the correct representation of the element-pulley interaction plays an important
role within the CVT. Sheave deformation is a major effect, which causes spiral running.
Friction limits the transmittable torque for a certain clamping force. The kinematics influence
the misalignment and the local force directions.
Curved sheaves are used in chain CVTs [31, p. 56]. They can eliminate misalignment in case
of optimal geometry [19]. Specific contact kinematics between arbitrary convex sheaves and
a spherical flank contour are derived in the following. Different coupling models of the force
laws are introduced in Subsection 2.3.2.

Curved Sheaves

In prior models only flat sheaves are considered [25, 54, 9]. To enable generally curved pulley-
sheaves a polynomial description for the radius r (x) is used along the local height direction x
as given in Figure 2.7a with

r (x) =
n∑

i=0
ai xi (2.31)

where n is the order of the polynomial and ai the polynomial coefficients. The frame x y z
with the origin OF is attached to the frustum and is used for the following considerations. Its
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Figure 2.7: Generally curved sheave represented as polynomial frustum in contact with
spherical element flanks.

index is omitted. The flanks of the elements are described with a sphere to respect possible
slight curvatures of the flank as well [54].
Figure 2.7b shows the kinematics between polynomial frustum and sphere. The point M T

S =[
msx msy msz

]
is the center of the sphere with the radius rS . At the contact positions p∗ the

respective normal n∗ points outwards. The tangent to the frustum is tF . As the normal to the
sphere nS runs through MS , the contact problem can be reduced to a planar circle-polynomial
contact. The plane is defined by x and MS . The azimuthal coordinate can be determined by

ϕF = tan−1(
msy

msz
). It follows for the planar point on the frustum

pF =
(

xF

r (xF )

)
and tF = ∂

∂x
pF =

(
1

r ′
F

)
with the tangent tF to the point in the plane where r ′

F = r ′(xF ) being the derivative of the
radial coordinate wrt. x. The midpoint of the sphere in the plane (index 2D) follows.

MS2D =
(

msx√
m2

sy
+m2

sz

)
=

(
msx

rs

)
(2.32)

The vector pF −MS is collinear to the normal nS and thus has to be orthogonal to tF .(
pF −MS2D

) · tF = 0 ⇔
(

xF −msx

rF − rS

)
·
(

1
r ′

F

)
= 0 ⇔ xF −msx + r ′

F rF − r ′
F rS = 0 (2.33)

Equation (2.33) is sufficient to find the x-coordinate on the frustum. Thus all kinematics are
defined. Remark that for rS = 0 the description is valid for a point contour, e.g. chosen as fixed
point on the element flank, as well.

Coupling the flanks

CEBULLA uses a coupled force law to represent the sheave deformation along the arc using
Maxwell influence numbers [71, 29, 11]. Besides the stiffness of the pulley-sheaves – repre-
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sented by Csh,l for the loose sheave and Csh, f for the fixed sheave – the axial stiffness cax of
the elements is incorporated as well in the matrix Cax in [9, eq. (5.57)]8 yielding

(
gl

g f

)
=

([
Csh,l 0

0 Csh, f

]
+

[
Cax 0

0 Cax

])(
λl

λ f

)
+

(
g̃l

g̃ f

)
(2.34)

where g∗ are the contact gaps after applying the contact forces λ∗ and g̃∗ are the contact gaps
before the contact. The influence matrix C =∑

∗C∗ couples the forces and local deformations.
For a diagonal matrix C the single contact positions are decoupled and the solution of λ is
gained explicitly. This is referred to as regularized contact law. The representation of (2.34)
decouples the left and the right flank of one element, i.e. C is block-diagonal. Both flanks may
deform differently. Different flank forces result, i.e. λl 6=λ f , and lead to a movement of the
element. In the planar case the kinematics of the element is constrained in the axial direction
thus the local force equilibrium might not be fulfilled everywhere.
GEIER uses a coupling of both flanks yielding an overall element deformation.

gl/ f =
(
Csh,l +Csh, f +Cax

)
λl/ f + g̃l/ f (2.35)

The influence matrices of the loose sheave Csh,l and fixed sheave Csh, f are added together.
This yields the same contact forces at the left and the right flank, i.e. λl =λ f . This halves the
system dimension or practically leads to one instead of two LCPs for each pulley.

2.2.3 Element-Element

A special feature of the present model is the separation of single elements. This implies, that
the belt is not continuous and the elements may separate, e.g. in the loose-strand. Thus, for
this strand there is no contribution to the global torque equilibrium due to push-forces, e.g.
FPl = 0 in Figure 1.2. The length of the elongated rings, the number of elements in reality NE0,
the variator shape and the compression of these due to the applied loads determine the OEP.
While the material parameters of the rings can be measured well, the correct representation
of the element’s compression is a more delicate task. Production uncertainties yield nonlinear
stiffness behavior.
Experiments were conducted to measure an overall stiffness. The setup is explained at
first which is referred to as Push-Force-Tester. Then, the model is derived using the same
submodels as for the full simulation. It is used to update of the crucial parameters in a second
step.

Push-Force-Tester – Setup

In Figure 2.8a the setup of the experiment is sketched. The belt with n elements is clamped
between a left and a right hinge point. The rings are clamped with a construction where ccl

measures its stiffness. It is chosen to be much stiffer as the combined belt stiffness such that
its effects on the system is neglected. The clamped ends do rotate with the hinges, such that
the tangents at the end of the rings point towards the respective hinge point. The elements

8Here the index el is changed to ax to emphasize that it is indeed the axial stiffness acting of the element
and that the deformation is depending on the respective direction.
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Figure 2.8: Setup of the Push-Force-Tester before and after the compression forming a
“cats back”.

are guided by the rings. Element 1 at the right end is fixed, such that it only rotates around the
right hinge point and has the constant distance d to it. Element n at the left end rotates with
the left hinge point. Its distance from it is prescribed with s(t ). At the beginning, the assembly
is arranged such that there are no forces acting between the aligned elements. The stack up
has the length l0. The rings are prestressed with a force FPS . The compression leads to contact
forces at the RE and the head. To minimize the compression energy, the belt deforms and
builds up a curvature. Either a “cats back”, i.e. a deformation upwards (Figure 2.8b), or a
“dogs back”, i.e. a deformation downwards, could be formed. It depends on the relation of the
stiffness at the head and the RE as well as on the geometric design, i.e. the distances of these
two contact points to the saddle or the ear.

In the experiment the clamping force FC L at element 1 is measured. The nondimensional
deformation measure ξPF T = s(t )

l0
is used. A force function FC L(ξPF T ) results. Measurements

were conducted by BTT. The elements show a nonlinear deformation behavior as exemplary
shown in Figure 2.9. This curve can be approximated by

F (ξ)=


0 ∀ξ< 0

a
(
ekξ−1

) ∀0 ≤ ξ< ξ0

cξ+d ∀ξ≥ ξ0

(2.36)

with the Eulerian number e and the parameters c,ξ0 and k. The values of a and d ensure
C 1-continuity between the exponential and the linear part. The parameters can be interpreted
as follows:

c Is the linear stiffness parameter and holds when the belt shows no (measurable) nonlin-
ear behavior.

ξ0 Is a non-dimensional parameter holding the transition point from linear to nonlinear
part.
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Figure 2.9: Example curve gained from Push-Force-Tester measurements

k Is a measure for the nonlinearity in the exponential part. The lower this value the steeper
the increase in the nonlinear part.

Push-Force-Tester – Model

The discussion above addresses the global deformation of the belt. It is assumed, that the
measured nonlinearity of the overall system is driven by the deformation of the elements.
Thus, for the local deformation at RE and head the same function is used. The function is
evaluated at

ξ= g

tloc

where g is the contact penetration, which is gained during simulation. The medium local
thickness tloc takes into account the thicknesses of the two neighboring elements which
may differ for head or RE. Thereby, the considerations of Subsection 2.2.1 are respected. The
contact law does not assume elements with equal thicknesses as done in [25, 54, 9]. It can be
used with a belt consisting of different elements as in [44].
The Push-Force-Tester system described above has been modeled with the same objects as
used in the full CVT system. The new contact law is used, as the parameters are physically
better interpretable as e.g. in [54, eq. (2.174)].

Updating

The model is used to determine the six9 stiffness parameters. Besides the combined deforma-
tion of the head and the RE, the measurement includes also deformation energies from the
rings. The local contact laws are therefore not directly gained from the global measurement
curve but optimization of the single parameters has to be preformed. Standard integration
schemes, which take into account the full dynamics of the system, appeared to be inefficient.
The system shows numerically very stiff behavior. Only very slow movements of element n
are possible to guarantee a quasi-static output.
A quasi-static integrator10 has been applied to the system which is described in the following.

9three at the RE and three at the head
10The author wants to acknowledge the support of his student worker Zhan Wang for the implementation.
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Figure 2.10: Results of the simulations using the Push-Force-Tester system. Measurements
were made available by BTT.

The generalized velocities u and their time derivatives u̇ are set to zero for a static result.
Equation (1.7) is solved as a nonlinear system such that the solution to the following system
has to be found.

0 = h(q)+W (q)λ (2.37a)

0 = f (q) (2.37b)

In (2.37b) the constrained conditions are represented with nonlinear functions f using proxi-
mal point projections as in (1.12). Remark that only the generalized positions q have to be
found.
A Newton algorithm as in [72, Algorithm 2.11] is used and the stop criteria compares the
infinity norms of (2.37a) and (2.37b) separately concerning respective tolerances, i.e. tolh

and tol f . In practice, the algorithm converges robustly only when all set-valued force laws
are regularized. Is the whole system in the linear part, i.e. s(t ) > ξPF T l0, a linear extrapolation
for the generalized positions with

q i ≈ 2q i−1 −q i−2

is used as starting point for the Newton algorithm for time step i . It reduces the iteration steps
up to 80%.

To enable a fast updating process, the influence of NE is analyzed to minimize it. The results
are shown in Figure 2.10 on the left side. It can be seen that the less elements are used in the
simulation the stiffer the behavior of the system gets. The elements get thicker as less are
used. The contact kinematics at the RE limit the movement stronger, i.e. the cat’s-back is
formed only with higher loads. Therefore, the rings bend less for the same load but elements
compress stronger yielding a stiffer behavior in the linear part.
Two conclusion can be drawn. On the one hand it is evident that the nonlinearity of the
Push-Force-Tester is not solely driven by the elements. On the other hand it makes clear
that also the geometric changes due to NE affect the system. This is discussed in Section 3.1
concerning the CVT system. For the updating process a compromise of NE = 30 is chosen. The
final force deviates less than 4% to the reference value of the simulation with NE = NE0 = 100.

An optimization process is performed to identify the parameters. The MATLAB function
fmincon from the Optimization Toolbox [43] is used. The results are shown in Figure 2.10 on
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Figure 2.11: Contact situation between element and ring

the right side. It can be seen that the prior models of [25, 54, 9] used stiffer elements whereas
the updated parameters show a very good match with the measurement curve that is within
measurement uncertainty.
The updating process yields parameters for the RE- and head-contact law. For both contact
positions the parameters are nearly the same, i.e. Fhead(ξ)

FRE(ξ) ≈ 1∀ξ. To quantify the differences
between both contact positions more measurement data should be made available. Besides
the stiffness curve itself, the partition of head and RE forces could be used. Furthermore,
kinematic data, e.g. the ring lift, could be used to identify not only the stiffness-parameters
but the geometric data of the elements as well.

2.2.4 Element-Ring

The interconnection between elements and rings is locally a delicate problem and should
be analyzed in detail. In this work however suitable models for the application within MBSs
are needed which cannot represent all details. In [54, 9] predefined contact points on saddle
and ear of the element were used yielding good results within a planar simulation. For the
spatial representation however this model is not suitable anymore. This section treats two
improvements concerning the element-ring contact situation. The contact kinematics is
analyzed. It is found that a fixed point should be replaced by a line search to avoid unphysical
torques around the neutral phase of the ring. The detailed analysis of the stress distribution
between element and ring discusses tracking effects and leads to an improved tangential
tracking law.

Contact Kinematics

In contrast to the planar model, rings and elements move relatively in axial direction in the
spatial case. Figure 2.11 visualizes the situation where the ring moves towards the pillar of
the element. For a fixed contact point the contact normal force leads to a torque around the
neutral phase. Yet it is clear, that the ring is in contact with the complete saddle in reality. This
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Figure 2.12: Tracking situation between element and ring

should be represented by a pressure distribution along the axial direction.
A discretization of the line with a certain number of contact points is impractical. The
kinematical update of the contact kinematics are dominated by the search between element
and ring. It is already a main driver of the computational cost [54, p. 68]. These costs are
avoided by an enhanced contact kinematics resulting in one contact point. Instead of a one
dimensional search along the center line of the ring, a two dimensional search including the
axial direction is used. This ensures that the contact point is always at the center line of the
ring. No unphysical torques lead to torsion in the ring. Virtual experiments with a simpler
pulley set show a numerical stabilized behavior.

Ring Tracking

Misalignment between the two pulley sets deform the rings in axial direction. The inner
tension in the ring, that tends to bend it straight, is in equilibrium to external forces applied
on the element saddle. In [54, 9] linear and nonlinear tracking laws depending solely on the
axial position of the ring are used. Both disregard the actual underlying mechanics. The
external force is a result of the contact between ring and saddle and with it depends on the
normal pressure between both. In the following, a tracking law based on the local force
distribution is derived which is applicable within MBSs.11

Background Assume the general contact between a belt and a ground as given in Figure 2.11.
The surface of the ground is described in a local coordinate system with r (z) and changes in
direction of the width z. A belt runs over this surface. On an infinitesimal part of the belt d z
at position z a pressure acts in normal direction pn(z) and in tangential direction pt (z).

Point of Departure BENSON and D’ERRICO couple the deflection of a web u(z) = R +w(z)
with the radial forces p(z) [5, eq. (24)]. The height h of the web is neglected in the kinematics
and w is the local change from R which symbolizes a reference radius. At this reference radius
hoop stresses within the web vanish. They are functions of h, the width of the web L, the

11The author wants to thank Maximilian Noll for his contributions to this topic.
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Young’s Modulus E , the tension force in hoop direction T within the web and the average web
deflection ua = 1

L

∫ L
0 u(z)d z.

The local gap g (z) = u(z)− r (z) is defined as the distance between web and surface. For
boundary conditions using two free ends ([5, eq. (12)]) and at the same time demanding a rigid
surface with a complementarity condition between g and p, a finite difference discretization
yields a nonlinear complementarity problem

Ag −bc = p, 0 ≤ p ⊥ g ≥ 0 (2.38)

where the matrix A(g ), the vector bc (g ) are functions of the gap.
Remark that the theory assumes symmetry of the underlying surface which is not satisfied for
arbitrary element saddle geometries.

Tracking Law The solution of (2.38) is a distribution of radial stress p(z) with

p = p(z,T ,E ,ν,h) (2.39)

where ν is the Poisson ratio of the material.
To calculate the tracking force, an infinitesimally thin slice of the belt with height h, depth b
and thickness dz is considered. The radial stress can be split up in a component pn(z) normal
to the element surface and a component pt (z) tangential to the element surface with

pn = cos(α)p pt = sin(α)p (2.40)

where α(z) = arctan( dr
d z ) is the local angle to the z direction. Integration yields

Fn = b
∫ zu

zl

pn dz Ft = b
∫ zu

zl

pt dz, (2.41)

where Fn is the normal force and Ft the tracking force. The borders zu and zl depend on the
web position z0 and the ring width L = zu − zl .
The dynamic simulation yields a normal force Fn between element and ring that is used as
input for the tangential tracking law. The tension T is linked bijectively to Fn in practice for
the derived equations and thus can be found iteratively.
Altogether, the tracking force Ft (Fn , z0) can be found as a nonlinear function of the normal
force Fn and the axial position z0. This function is evaluated offline before integration. It
is used as a characteristic field. With this technique more advanced fields due to further
developments can be taken into account.

Results and Discussion One tracking field is discussed here to examine the results. The
parameters E = 1.8e11 N

m2 ,ν = 0.3h = 0.185mm, w = 9.75mm and b = 1m are used for the

ring.12 A circular surface with

r (z) =
√

R2
S − z2

for the element’s saddle with a radius of RS = 250mm is considered. The ring position is
changed between z0 ∈ [−w , w] where z0 = 0 denotes the highest position of the element
saddle. The resulting tracking field is shown in Figure 2.13. The tracking force Ft is always
directed against the axial position of the ring. Thus, it pushes the ring always to the center, i.e.
the highest position of the saddle. The tracking effect increases with higher absolute values
z0 as well as with increasing Fn . It is pointed out, that no tracking effect is active with this
law when no normal force is acting which was not the case in prior models [54, 9]. This is
physically appropriate and experimentally observed [16].

12As b is linear in the law a unit length is used here and is multiplicated with in the simulation
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Figure 2.13: Tracking field depending on normal force and axial ring position. Higher normal
forces and axial deviation increase the tracking effect.

2.3 Computing Time Reduction

The integration of a fully featured CVT model for one revolution in a stationary point can
exceed a week of simulation time on a modern CPU. This simulation time is influenced
by many parameters which has been discussed in [54, Section 2.5]. In Subsection 2.1.2 a
dedicated ring model is presented. It contributes to the CPU time reduction (Section 3.3).
In this section, further drivers of computational costs are identified. Improvements address
three points. A kinetic based initialization shortens the transition phase. The coupled force
law for the element-pulley contact is enhanced. The influence of contact kinematics on it are
discussed, which addresses the physical output as well as the numerics. Finally, the solution
for the non-smooth system is optimized. Based on the time-stepping algorithm the special
matrix structure could be used to reduce the computational costs.

2.3.1 Initialization

The initialization process approximates a stationary point for given boundary conditions. Er-
rors induce a transition phase in which the system runs into the stationary point. SCHINDLER

utilizes basic kinematical correlations and a simplified model of SATTLER to approximate the
belt velocities. In [11, p. 5 ff.] the transition phase could be reduced up to 17% for an optimized
initialization of the strands in specific cases. This idea is enhanced. Kinetic assumptions,
which take into account the forces, help to further shorten the transition phase.

Ring Tension The ring-tension is addressed at first. In [54, p. 47 ff.] the belt velocity along
its course is computed using the equations of [51]. The belt force Zp (= LOi n ) in the strand that
runs into the SEC is given in [54, eq. (2.206)]. Assuming that push-forces are transmitted in
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the US13, the belt force gets

Zu = FTu −FPu ⇔ FPu = FTu −Zu = FT l fe −Zu

with FT∗ being the tension forces within the rings and FP∗ the push-forces between the
elements (Figure 1.2). The constant fe = exp(±µRϕa) results from the active arcs ϕa and the
friction coefficientµR between elements and rings. The third equation for the three unknowns
FPu ,FTu ,FT l is the balance of moments equation on one of the pulleys (Figure 1.2) with

−MS

rS
=∆Z ≈ Zu −FT l ⇔ FT l ≈ Zu + MS

rS
(2.42)

where MS is the applied torque at the secondary pulley and rS as the running radius. The
course of the strain ε= FT

E A has to be integrated along the rings of length l to gain the mean
strain.

ε̄= 1

l

∫ l

0
ε= 1

E Al

∫ l

0
FT (2.43)

The integral of (2.43) can be divided into the four parts of the belt:

US ε̄u = 1
E Alu

∫
lu

FTu = 1
E Alu

FTulu = FTu
E A

LS ε̄l = 1
E All

∫
ll

FT l = FT l
E A

PRI ε̄P = 1
E AlP

∫
lP

FT P ≈ 1
E A

FT l+FTu
2

SEC ε̄S = 1
E AlS

∫
lS

FT S ≈ 1
E A

FT l+FTu
2

Here
∫

l ∗ symbolizes the integral over the respective part of the belt. Thus, the mean strain
can be calculated with

ε̄= ε̄u + ε̄l + ε̄P + ε̄S ≈ 2
FTu +FT l

E A
(2.44)

and the initial elongation of the ring is approximated with ε0 ≈ l ε̄.

Flank-Sheave Gap An additional gap gP between sheaves and elements has been initialized
in prior models [54, p.56]. The belt is not constrained by forces between elements and sheaves.
This yields contraction of the belt during the first time steps until the contact is closed. The old
initialization cannot be used for polynomial sheaves like in Subsection 2.2.2. Therefore gP∗ is
adapted for PRI and SEC individually. The contact kinematics implemented in the system is
used directly to initialize the element positions. An initialization, which is independent from
the individual contours, is enabled.

Following [6, p. 41], the TR iF = FP
FS

≈ ϕP
ϕS

can be approximated for the torque free situation
with the arc ratio. The mean gap ḡ∗ for one sheave is assumed using a force equilibrium
between the respective clamping force F∗ and the sum of all deformation forces acting within
the elements N∗ in the respective arc. The formula of a linear spring with the stiffness cax is
used to relate both.

ḡ∗ ≈
F∗

N∗cax
(2.45)

The ratio between the arc length l∗ ≈ r∗ϕ∗ and the complete belt length l yields N∗ ≈ l∗
l NE

and thus the mean gaps can be calculated for the two arcs.

13which is the default case
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Figure 2.14: Comparison of initialization for overdrive

Primary ḡPP = FSϕP l
cax rPϕ

2
S NE

Secondary ḡPS = FS l
cax rSϕS NE

Figure 2.14 shows exemplary results of three models in the same OD configuration. The
“Prior Model” of [9] is used as a reference. An intermediate model, i.e. “Ring Prestress”, only
initializes prestressed rings but the distances to the sheaves are still positive. The “New Model”
uses all presented ideas.
The TR stays zero at the beginning of the simulation for the first two models. No contact is
active at the SEC. The new model has contact at the beginning and thus the transition phase
is reduced about 50%.
It can be seen that due to the combined initialization also the speed ratio converges earlier.
This mainly results from the fact that forces are applied on the element-flanks at the beginning.
The torque equilibrium is reached earlier and with it a stationary point. Long transition times
can be avoided to gain global values. The presented ideas are therefore mainly of interested
when gaining only global values.

2.3.2 Coupled Contact

Many contributions prove the representation of the pulley deformation as essential for the
precise modeling of the CVT dynamics [13, 51, 69, 6, 25]. Equation (2.34) is used to represent
this deformation successfully [9]. Yet, the solution of the system gets more delicate compared
to a decoupled contact law. Generally a pivoting scheme, i.e. the Lemke algorithm [52,
Chapter 2], or an iterative scheme, i.e. a Newton algorithm, are applied.
This section addresses improvement strategies by analysis of the formulation of the interaction
model. Therefore, the solution strategies are compared at first.

Solution Schemes

A representative use case has been chosen to compare the solution schemes. In a planar OD
configuration (is ≈ 0.4) with NE = 160 about 8000 LCPs have been solved. One fixed contact
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Figure 2.15: CPU costs compared for the Lemke algorithm to the Newton iteration if applied
to a practical example with a fixed contact point on one flank.

point on each flank is chosen. Solution times for the two schemes are given in Figure 2.15a. For
small dimensions n both schemes are comparable. The number of pivoting steps increases
with O (n3) in the practical examples of the CVT. Thus, the Lemke algorithm needs more
simulation time.
The iterative scheme keeps low simulation times even for high dimensions. The iteration can
be started with the previous solution of the last time step. In this case it is close to the new
solution and the number of iterations stays low. For the application in the presented case, the
number of iterations steps is between 0 and 5.

Interaction Model

Different contact kinematics exist to find the contact point on the element-flanks and the
pulley-sheaves. Two circular rings interact with the sheave in the model of [54] yielding
two contact points at the front and the rear of the flank. In combination with the coupled
contact law introduced in [9] this modeling yields numerical problems as well as questionable
behavior which is addressed in the following. Two extreme situations are discussed. Either
the full flank deformation is coupled, i.e. front and rear deform the same amount. Or the
deformation is decoupled completely.

Coupled Flank Deformation Based on the assumption that the element deforms along the
whole axial direction and keeping in mind that the element is very thin, a coupling of the
whole flank deformation was tested as a natural approach.
Practically, the contact force switches in an oscillating manner between the front and the rear
of the flank (Figure 2.16a). No smooth change is apparent. On the one hand this is unphysical.
It leads to induced oscillations such that the simulation cannot be finished. On the other
hand numerical problems arise. The force changes rapidly at a certain position14 such that
the old solution is not close the new one. An iterative solution scheme needs many iterations
as the start value from the old solution is generally useless. It results in higher computational
costs – for a robust integration only the Lemke algorithm can be used which results in much

14See for example at t ≈ 5.3s in Figure 2.16a
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Figure 2.16: Normal forces on the front and rear contact points on the right flank of one
exemplary element along the belt in an OD configuration.

higher simulation times. It takes approximately 6.4 times longer15 to simulate a full CVT
model compared to a model with a fixed contact point on the flank.

De-Coupled Flank Deformation Figure 2.16b shows results of a simulation where the front
and rear deformation of the flank are decoupled. One can see that the strong oscillations
between front and rear vanish compared to a coupled flank deformation – an iterative scheme
can be applied. Yet, the contact force is not distributed along the flank, see e.g. t ≈ [7.5s,8.3s]
in Figure 2.16b. The force is only acting at the rear of the element. Also, still a full CVT
simulation takes ≈ 2.9 times longer15 compared to a case with a fixed contact point on the
flank. The system dimension is doubled and the contact kinematics gets more complex.

Altogether, two contact points on the flank result in much higher simulation times combined
with numerical problems as well as physical inaccuracies. Therefore, only one contact point
is used in this work.
For planar cases one fixed contact point on the flank may be used as no yawing motion is
enabled. Subsection 2.2.2 introduces a spherical model for the element-flank resulting also in
only one contact point which suits the needs for spatial simulations. Consider the situation
where the element runs into the pulley arc and is yawed wrt. the pulley radial direction as well
as rolled wrt. to the azimuthal pulley direction, e.g. driven by misalignment of the pulleys.
In this case the contact kinematics is able to find a contact point along the whole flank in
contrast to a fixed point on the flank. Thus, the spherical contact point is preferred for spatial
simulations taking into account these considerations.

2.3.3 Mass-Action Matrix

This section addresses the numerical optimization for a non-smooth model integrated by a
time-stepping algorithm. The mass-action matrix (1.11) has to be computed.16

15The average of three simulations in OD, MED and US are used as basis
16The author wants to thank the student worker Zhan Wang for his valuable contribution in this topic.
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Figure 2.17: Sparsity patterns of the matrices, that are necessary to solve for the impacts in
one time step. The value nz is the number of non-zero values which are depicted blue. The
zero values in the matrix are white.

As the mass matrix M is a real-valued, symmetric and positive-definite matrix, the Cholesky
decomposition yields

M = LLT (2.46)

where L is a lower triangular matrix with real and positive diagonal entries. Inserting (2.46) in
(1.11) yields

G =W T M−1W =W T (
LLT )−1

W = (
L−1W

)T (
L−1W

)= yT y (2.47)

where

y = L−1W . (2.48)

The calculation of G can be performed in two steps:

1. Solve the triangular system Ly =W represented by (2.48)

2. Multiply y with its transpose to get G as given in (2.47)

In the following these matrices are analyzed for the present model. The used integrator, i.e. a
time-stepping scheme, together with the sparse structure of the matrices yield a CPU time
reduction in practice.

The pushbelt consists of about 200-400 kinematically decoupled rigid bodies, i.e. the ele-
ments, with three17 or six18 DOFs. One17 or two18 rings, each of about 200 DOFs19, guide
these elements. The two pulleys have one or two DOFs each. They are of minor significance
for the following considerations.
The sparsity patterns of a planar simulation with a non-smooth element-ring contact are
given in Figure 2.17. Figure 2.17a shows the pattern of the decomposed mass matrix. The
upper left corner is dense. It belongs to the ring. For it the decomposition has to be done

17for the planar simulation
18for the spatial simulation
19in case their deformation is considered dynamically
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every time step. It is of order O (n2
r ), where nr ≈ 200. The lower right part is the one from

the elements. It is constant in time. Thus, the decomposition is of minor importance to the
overall CPU time.
Figure 2.17b shows the pattern of the projection matrix W . It is clear that this matrix is sparse
as only elements are connected to some DOFs of the rings. No non-smooth interconnection
between the elements exists.
Algorithms for sparse matrices20 are therefore applied to solve (2.48) as it reduces the complex-
ity from O (n2

DE N ) to O (nz,L +nDE N ) where nDE N is the dimension of L and nz,L the number
of non-zero values in L [12].
As G is symmetric, the full multiplication in (2.47) does not consider the sparsity of y . This
avoids long memory access times internally and yields faster computation in practice. It is
remarked that for the described non-smooth case about 17% of the whole computational
cost result from unnecessary memory access in the G-matrix. Nine simulations21 have been
performed to measure the overall gain for simulation time either with or without the described
algorithm. Taking the quotient of the simulation times without the algorithm (t i

wo) or with it

(t i
w ) yields an average factor f i = t i

wo

t i
w

of f = 1
9

∑9
i=1 f i ≈ 1.7.

2.4 Post-Processing

In the post-processing interpretable values from the simulation results are calculated. This
section describes the single steps. Two levels are separated. The model basically yields
local results like contact forces or positions of the elements. Differences between the single
outputs of the elements exist. To identify real trends from numerical oscillations the curves
are averaged. The common structure of the plots along the arc is explained as well.
Global results classify the state of the system. They are a direct result from the local values.
The steps to gain these significant numbers of a simulation are given finally.

For all simulations in this work the boundary conditions are used as described in [54]. They
are set by the following values (Figure 1.2).

Primary SpeedωP The speed of the primary pulley is kinematically prescribed.

Primary Sheave Distance z The distance between the primary sheaves is initially defined
by the geometric ratio ig ,N P , i.e. the ratio of the ring’s center lines radii. In case of
stationary simulation the axial position is constant. It approximates the speed ratio
with iS ≈ ig ,N P .

Secondary Torque MS In practice the primary torque MP is applied. The speed ratio is con-
trolled by a primary clamping force FP . As this control approach leads to higher compu-
tational times, at the secondary pulley a torque is applied. Mostly direct measurement
values can be used.

Secondary Clamping Force FS The values are typically part of the boundary condition defi-
nition and can be used directly.

In practice a certain safety S is set for the measurements relating the maximum torque that
can be transmitted at a pulley to the applied torque. For both pulleys a safety value is defined

20using the csparse-library [14]
21three different ratios and three different applied torques
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Figure 2.18: Typical structure of the plots

and the final safety S is found by using the smaller of the two values. It is approximated
following [46] by

SP = 2
µrP∗FP

MP cosβ
SS =−2

µrS∗FS

MS cosβ
⇒ S = min(SP ,SS) (2.49)

where µ is the friction coefficient, rP∗/S∗ are the running radii at the PRI or the SEC and β the
half wedge angle of the pulley-sheaves.22 From this and together with iF ≈ 1 the clamping
forces and torques at the SEC can be approximated if no measurement values exist.

2.4.1 Local Results

Structure of the Plots

For the plots of local values, i.e. plots along the belt, typically two versions are given in the
thesis. Either it is plotted along the arc of one of the pulley using the local angle in degrees. Or
it is plotted along the complete belt using time data, i.e. “Times [s]”, as ordinate. It is then
scaled to start at 0s and ends after one revolution. The structure is sketched in Figure 2.18. It
follows the element along the belt starting in the PRI. The positions are marked with a vertical
line and the respective acronym if it contributes to the explanation in the text. A full example
is given in Figure 2.19.

Space Averaging Element

The model consists of a large number of DOFs. It shows both numerical and physical oscilla-
tions. A common approach in measurement is to use average outputs of a certain number of
measurements to identify trends more clearly.
In a quasi-stationary point23 oscillations of different kind24 influence the output of the local
measurements like contact forces. Figure 2.19 shows this effect for normal forces between the
elements in the simulation. Along the arc “Element 1”, “Element 23” and “Element 45” are
given where NE = 220. The curves show different oscillations. A lower frequency is seen in the
US, i.e. the push-strand. A high frequency oscillation is in the LS, i.e. the loose-strand. Besides

22Only positive values for SP and SS are taken into account.
23where e.g. thrust ratio and efficiency stay constant
24e.g. overall oscillations of the strands
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Figure 2.19: Comparison between element-element forces of different simulated elements
and an averaged output curve.

the output of the “Space Averaging Element” is plotted. Both oscillations vanish leading to a
constant force in the push-strand as expected from theory. Furthermore, the short impacts in
the loose-strand are avoided.

To average over the output of the plotted elements the following steps are executed.

1. At first the time tst of a stationary point is identified. Therefore, the oscillations of global
values, i.e. iF and is , are analyzed. Their oscillations have to be less then a certain
tolerance for a certain number of time steps. Both values, i.e. the tolerance and the
number of time steps, have been identified by experience. Only values after tst are taken
into account.

2. Due to the contact to the sheaves the transition time points of the elements are found.
In case an element passes one of the parts more than once after tst only the values of
the last part are taken into account. Then the last turnaround time of the whole belt is
identified with tl t .

3. For all elements that are used for the averaging process, a virtual time span for every
part is identified, which is the mean time of the respective part.

4. Then a linear interpolation yields the values for every local curve at the time points of
the virtual times. For the final value the mean value at this time point is used. This is
the value of the “Space Averaging Element”.

With the described averaging process it is possible to visualize trends more clearly, e.g. the
constant normal force between the elements. One has to keep in mind that also physical
effects that are active within the system might not be given in the output curve. In this
work it is referred to these situations in case the space averaging also removes other than
the numerical oscillations which contribute to the discussion. Convergence tests on global
output values, e.g. efficiency, showed that a number of 10 elements lead to sufficient results.
Thus, this number of elements is chosen to compute the final output curves shown in the
following chapters.
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Local Measures

Due to the very detailed modeling, it is possible to generate a variety of different quantities.
For the analysis, this work focuses on the most crucial quantities which are listed in the
following. In Subsection 2.2.1 it is remarked that the forces on the elements in the simulations
differ from the forces within the measurements due to the different thickness. This is regarded
in the post-processing such that the force curves show the forces of the real rather than a
simulated element.

ψ> 0

v1

v2

Cel

Csh

Figure 2.20: Sketch for positive element-sheave pitch angle

Axial force Forces projected in the local axial direction of the element.

Element-sheave pitchψ This quantity measures the relative pitch angle between the ele-
ment and its local position in the respective arc (Figure 2.20). The vector from the
respective arc center Csh and the center of gravity (COG) of the element Cel is called v1.
The local axial direction is v2. The element-sheave pitch is then defined as

ψ= arccos(v2 · yI )−arccos(v1 · yI ) (2.50)

Thus, it is positive for an element that “leans” forward, i.e. the head is more to the front
than the bottom of the element.

Longitudinal force Forces projected in the local longitudinal direction.

Normal force This is the normal force for different contacts. In case of the element-element
contact it is the sum of the forces at the head and the RE if not further specified.

Radial force All forces projected in the local radial direction.

Spiral running To gain spiral running the upper surface of the rings is measured in test rigs.
Within the simulation the COG of the elements are taken, which yields a different radius.
To compare both, the medium radius integrated over the arc is used as reference. The
measure for spiral running is the deviation from this radius along the arc.

The positive directions follow [35, Fig. 1] which is again depicted and listed in Figure 2.21.
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Figure 2.21: Forces with positive direction following [35, Fig. 1].

2.4.2 Global Results

Global values are based on local results and are used to specify different cases. The following
measures are used within the work:

Speed ratio is It is the average of the fraction of the two angular velocities after tl t
25 as

defined in (1.1).

Thrust ratio iF It is the average of the fraction of the sum of all forces acting on the respective
pulley-sheaves in global zI -direction after tl t

25 as defined in (1.2).

Torque ratio r The torque ratio r = MS
M∗

S
is defined to be the ratio between the actual applied

torque MS and the maximum transmittable torque M∗
S .

Efficiency Different loss mechanisms act during the simulation. To compute the losses the
local values of the space averaging element are used as basis. Frictional power-loss is
the product of friction force and tangential relative velocity. These are integrated along
the belt and divided by tl t to gain the average power loss P∗. Remark the integral is
calculated for every contact position (element-element, element-sheave, element-ring)
and for every section (PRI, US, SEC, LS) of the belt. Thus, the different sections can
be analyzed in detail concerning their influence on the losses. The sum of all losses is
divided by the input power PPR that is acting at the primary arc. The difference to 100%
yields the local efficiency ηloc .

ηloc = 1−
∑

∗ P∗
PPR

(2.51)

All other losses that are acting within the modeled system, e.g. numerical based losses
coming from the integration method, cannot be covered. Further losses are active
within the whole drivetrain that are affected by the mechanics of the pushbelt CVT, e.g.
the losses of the bearings or hydraulic losses that depend mainly on the clamping forces.
For these losses post-processing models exist which are provided by BTT. If these values

25In case no tl t exists the time after tst is used
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are taken into account the efficiency is denoted by ηg l ob .
This work is dedicated to the direct mechanical losses that can be observed from the
simulation model. These are analyzed in more detail. The main loss mechanisms within
the system are based on friction [2, 3, 4] and are given with their respective abbreviation:

ElPuLoPRI The longitudinal losses for the contact between element and pulley in the
PRI.

ElPuLoSEC The longitudinal losses for the contact between element and pulley in the
SEC.

ElPuRaPRI The radial losses for the contact between element and pulley in the PRI.

ElPuRaSEC The radial losses for the contact between element and pulley in the SEC.

ElRiLoPRI The longitudinal losses for the contact between element and rings in the
PRI.

ElRiLoSEC The longitudinal losses for the contact between element and rings in the
SEC.

Endplay The endplay is a general measure to quantify the distance between the elements
within the belt. For this work it is defined as the quantity which sums up penetrations
and positive distances of the contact gaps of the element-element-contacts. It is there-
fore a measure for the setup of the belt and does not depend (strongly) on the operation
condition. Within the model the endplay can be computed at the RE and the head. The
final scalar value results from an average after tl t

25.

Operational endplay υ The OEP depends, in contrast to the endplay, on the operating con-
ditions. It sums up only the positive contact gaps and thus measures – depending on a
certain belt structure – the changes due to boundary conditions, i.e. loads and speed
ratio. The OEP can be measured either at the RE or the head. Due to the arcs mechanics
the OEP at the RE is the crucial measure and is denoted as υ in the following. The final
scalar value results from an average after tl t

25.

The difference ∆vg = v i
g −v r e f

g between a global value v i
g and a reference value v r e f

g is used to

compare simulation results with different parametric settings26 in this work. The reference
value is either taken by one specific reference parameter setting which is then specified or it is
the average value of all parametric cases with the same boundary conditions.

26marked by the index i





3 Numerical Aspects

Following the process of Figure 1.5, the models are tested in parametric studies. The quality
of the model is analyzed and the sensitivity on the crucial parameters is identified. The
numerical aspects are addressed in this chapter.

The influence of the number of elements in the simulations is analyzed in Section 3.1. A
minimal number for the simulations is found. It sets the bounds on the accuracy of the model
on the global values.
The difference between a smooth and a non-smooth simulation model is compared next. The
stiffness between elements and rings is changed as well as their friction description. Besides,
the friction between element-flanks and sheaves is analyzed, which yields conclusions on the
non-smooth modeling for the system in Section 3.2.
In Section 3.3 different ring models are compared wrt. local and global effects. It is shown, that
a specific modeling for the CVT dynamics improves the results. A glance at the spatial outputs
shows possibilities for future projects. A compromise between accuracy and computational
cost has to be chosen for efficient simulation.

To draw general conclusions about the parametric influence, the boundary conditions are
varied as well. The settings are taken from measurements to ensure realistic settings. Three
different loads are applied at three different ratios. In experiments the transmitted primary
torque M 1

P = 30Nm, M 2
P = 50Nm and M 3

P = 100Nm is varied. The values for M∗
S and F∗

S result
from measurements of a reference belt. The measurements were conducted by BTT. All
simulations run with the same ωP , i.e. 2000 revolutions per minute(RPM), as the belt speed
has a minor influence on the behavior. Altogether, the nine basis cases (BCs) are given in
Table 3.1.
The analysis follows the idea to present the global influence on the system behavior at first.
Mainly the thrust ratio iF and the local efficiency ηloc are given as the most important global
measures. A local analysis follows explaining the main findings. Local and global output
curves and values are utilized as examples.

BC01 BC02 BC03 BC04 BC05 BC06 BC07 BC08 BC09

is[−] 0.47 1.00 2.42 0.47 1.00 2.42 0.47 1.00 1.30
MP [Nm] 30 30 30 50 50 50 100 100 100

Table 3.1: Boundary conditions used for the parameter variations. All cases use ωP = 2000
RPM and a safety value of S ≈ 1.3.
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Figure 3.1: Simulation results varying the simulated elements NE for the cases of Table 3.1.
The simulation with NE = 400 is used as reference.

3.1 Simulation Elements

To enable precise yet fast simulations, a feature of the model is to choose the number of
simulated elements. In Subsection 2.2.1 it is discussed which adaptions are made such that
the simulations get comparable. Even though it is possible to reduce the number of elements
within the simulation concerning the force laws as well as inertia effects, the geometry cannot
easily be adapted consequently. Similar effects can be seen in the Push-Force-Tester in
Subsection 2.2.3. The length of the pin as well as the radius in the RE are two examples. This
section analyzes the effects due to changes in NE .
For the comparison, NE has been increased starting with 120 elements and ending with 400
elements. The results are given in Figure 3.1. The values of iF , ηloc and υ are compared to the
reference simulation with 400 elements yielding ∆iF , ∆ηloc and ∆υ.

Large changes within the prediction of iF and ηloc can be seen for the cases with small NE , i.e.
120 and 160 elements (Figures 3.1a and 3.1b). It is also not a monotonous trend for iF but the
values vary around the reference. The error reduces with increasing NE .
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The efficiency ηloc however increases with NE monotonously disregarding minor numerical
based exceptions. As never NE = 400 is chosen in this thesis, it can be concluded, that the
values for ηloc , which are presented in this work, are too high.
Besides the global values, the output of the local values changes. Generally a smoother output
can be observed in the local curves by increasing NE (also [9, section 7.3]). This is a major
contribution to higher values of ηl oc . The oscillations around zero get less yielding reduced
numerical errors in the post-processing step.

To analyze the change of the model the OEP is given as well. With increasing NE it reduces
(Figure 3.1c). This results from the change in geometry of the elements. They align closer
within the arcs reducing the distance. This increases υ. The operational endplay at the head
however is not affected.
To cover for this effect a correction is suggested. It is reasonable to treat the simulations
with less than 200 elements as exceptions – the solution of the coupled contact law for the
sheaves is not precise as only a few contact points are taken into account. Also the geometry is
changed compared to the reference of 400 elements. A linear regression yields an operational
endplay gain of about vcor r = 2 ·10−6 m

element . A correction of the ratio ι of (2.27) is given.

ιcor r = (ι− vcor r (ι−1)) (3.1)

Simulations were carried with this correction. The corrected simulations have a standard
deviation σ of only 0.07 for iF compared to a standard deviation for all cases of 0.19 without
the correction. The standard deviations of ηloc (0.3% without vs. 0.28% with correction)
and υ (1.6 ·10−4m without vs. 2.8 ·10−4m with correction) yield similar values in both cases.
The correction shows the improvement potential in further adaptions in the model. The
number of simulations should be increased for this to identify also nonlinear effects due to
this adaption.

The correct representation is an important measure, yet the costs increase with NE , i.e. the
simulation time. These are given in Figure 3.1d. A linear increase of the simulation time can
be seen with NE .
As the elements get more in number they also become thinner. Following Subsection 2.2.1 it
is clear that the contact stiffness increases for the element-element contact. Therefore, the
overall model gets stiffer. Smaller time steps in the integration are needed as soon as this
contact dominates the stiffness within the whole MBS. It was necessary to simulate the model
of 400 elements with half the time step size for a robust integration explaining the big step for
the last simulation.

It is concluded, that a number of less than 200 elements for the simulation should not be
chosen for the discussed reasons. Adapting the thickness of the elements following (2.27)
improve the results for a low number of elements. A number of about NE = 250 is chosen as a
compromise between accuracy and CPU costs avoiding too high stiffness.
The discussion above shows also the maximum of accuracy of the model. The standard
deviations are about 0.05−0.1 for iF and 0.3% for the ηloc .

3.2 Non-Smooth Simulation

The elements and sheaves are modeled as rigid bodies to minimize the number of DOFs. Yet,
their deformation plays an important role for the overall mechanics of the system. The sheave
deformation is crucial for correct spiral running. The deformation of the elements change
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the operational endplay which is an important measure for the longitudinal losses within the
system. The element-element and the element-sheave contacts are therefore single valued in
normal direction.
It stays unclear how to treat the element-ring contact as the rings are deformable. Besides, the
friction may either be regularized or not. This section treats outcomes resulting from different
models for the discussed contact description.
Eight cases are separated which are given in Table 3.2. Either the contact-law is set-valued, i.e.
non-smooth (NS), or single-valued, i.e. regularized (Reg), at the element-saddle (Sa) or the
element-flank (Fl) in normal (n) or tangential (t) direction. For the normal direction at the
saddle different stiffness values cEl Ri are tested as well.

Names
1e6 1e7 1e8 NSSa NSRi NSFl NSFri NSALL

San 1e6 1e7 1e8 1e7 NS 1e7 1e7 NS
Sat Reg Reg Reg NS NS Reg NS NS
F lt Reg Reg Reg Reg Reg NS NS NS

Table 3.2: Different cases used for comparison of the non-smooth simulations

For the cases the variants of Table 3.1 are compared. The influence on the dynamics is
discussed at first when non-smooth force laws are used for the element-ring contact. Then
the influence due to non-smooth friction at the flanks is considered. The CPU costs are
analyzed for all simulations such that conclusions can be drawn.

3.2.1 Element-Ring Contact

The contact between elements and rings can be either modeled non-smooth or regularized.
The physics are of minor importance compared to the numerical influence. Concerning the
CPU costs, the regularization of the contact laws is favorable. Yet, a parameter is introduced
that should be chosen correctly. For the cases in Table 3.1 stiffness values cEl Ri between 1e4
and 1e10 have been varied. Values outside of cElRi ∈ [1e6,1e8] did not yield robust integration.
The results are compared to the simulation, which use non-smooth contact laws at the saddle.
As reference NSRi is used.

One can see from Figure 3.2 that too low stiffness, i.e. 1e6, changes the output behavior. The
normal penetration gets very large1 (Figure 3.2c). For higher stiffness this reduces one order
of magnitude, which yields a more reasonable results.
With a rigid contact in normal direction the penetration is not zero. The compatibility con-
dition is solved for the relative velocity in the contact. The contact law in (1.6) ensures that
the normal relative velocity gets only zero up to a certain tolerance, i.e. ġ ≈ 0. Small errors
in this computation can lead to a penetration on position level, i.e. g 6= 0. A so called drift
effect, i.e. the contact penetration increases during contact phase and leads also to high
penetration values. In OD the compression is very large due to the high FP . Then, even in
the push strands a penetration between saddle and ring is active. This is directly correlated
to the large differences in iF compared to the other cases when a penalizing algorithm is
used (Figure 3.2a). A projection of the generalized coordinates for the contact penetration to
set this penetration to zero could not be performed robustly for the system. Thus, a deeper

1up to 0.15mm



3.2 Non-Smooth Simulation 59

NSRi NSSa cEl Ri = 1e6 N
m cEl Ri = 1e7 N

m cEl Ri = 1e8 N
m

1 2 3 4 5 6 7 8 9

−5

0

5

10

·10−2

Basis Case

∆
i F

[-
]

1 2 3 4 5 6 7 8 9

−0.2

0

0.2

0.4

Basis Case
∆
η

lo
c

[%
]

0 1 2 3 4

·10−2

−2

−1

0

1
·10−4

Times [s]

G
ap

[m
]

0 2 4 6 8 10 12

·10−2

−10

0

10
SEC LS

Times [s]

Fo
rc

e
[N

]

4 ·10−2 6 ·10−2 8 ·10−2 0.1
−0.2

−0.1

0

0.1

0.2
SEC LS

Times [s]

R
el

at
iv

e
Ve

lo
ci

ty
[m

/s
]

0 5 ·10−2 0.1 0.15 0.2
0

20

40

60

Times [s]

M
P

[N
m

]
(a) Thrust ratio changes (b) Local efficiency changes

(c) Element-ring compression
(BC07)

(d) Element-ring longitudinal friction
force (BC06)

(e) Element-ring longitudinal relative
velocity (BC06)

(f ) Torque at the primary pulley
(BC03)

Figure 3.2: Varying element-ring contact laws. The contact laws and/or stiffness of the
element-ring contact is changed. As reference the output of NSRi is used for global values.
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analysis is not possible for this phenomenon. For the other cases iF varies due to minor
numerical differences.

The simulations suffer less from oscillations when using non-smooth contact laws. Due to
the more precise estimation of the forces, also the direction may change (Figure 3.2d at the
end of the SEC). This peak is known from measurements (e.g. Figure C.3). The effect however
is clearly related to the non-smooth calculation of the frictional forces. Sticking is represented
correctly (SEC in Figure 3.2e). In comparison the regularized contacts oscillate around a
relative velocity of zero and yield higher losses.
Taking into account besides the tangential also the normal direction in the non-smooth force
law reduces the oscillations and improves the efficiency calculations. However, in UD no
stationary point is found which can be seen in Figure 3.2f. The torque at the primary switches
between two states, i.e. MP ≈ 10Nm and MP ≈ 45Nm where the other models suggest a
stationary torque of about 30Nm. A stationary situation is not reached which does not allow
for e.g. a correct power estimation (BC03 and BC06 in Figure 3.2b).

3.2.2 Flank Contact

The contact at the flank of the element is a crucial part in the system and should be as precise
as possible. Here the torque is introduced into the system and thus the frictional forces have
to be computed correctly. Non-smooth friction laws can represent sticking correctly which is
not the case for standard smooth contact laws. It has proven successful in the case for the
element-ring contact. Yet, for the flank contact no sticking is expected. Due to the effect of
spiral running the contact slides almost everywhere.2 However, in the following the results
are analyzed resulting from non-smooth friction at the flank.
Introducing non-smooth friction at the flank leads to non-robust solutions of (1.12). The
number of the average iterations in one time step for the fixed-point solver increases from
about 30 to 2030 for the example of BC01. For many time steps no solution is found that
fulfills the tolerance. The integration proceeds after a maximum of 10000 steps. Practically,
this leads to increased simulation times.
As a contact force acts at the left and the right flank and the element is modeled as rigid
body, two forces project into the same generalized direction. It is therefore not unique how to
choose these. Additional impact laws using more conditions to find a unique force could be
introduced. The iteration steps could be reduced and a solution might be found within the
tolerances. This is subject of current research [41].

1e8 NSSa NSRi NSFl NSFri NSALL
0

5

10

15

k C
P

U

Figure 3.3: CPU costs for different non-smooth simulations. As reference the smooth
simulations are used (Table 3.2).

For the results in Figure 3.3 the case “1e8” (Table 3.2) is used as reference.3 The average

2sticking could happen at the TAP
3The three smooth simulations are performed in the same simulation times.
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factor kC PU is the average fraction between of the simulation time of one case to the reference
simulation time. The additional error bars denote the maximum and minimum deviation
which results from the simulation of the cases defined by Table 3.1. For the reference case the
other smooth simulations are used to compute the deviations.
Constraining the system with a set-valued force law yields longer simulation times as dis-
cussed in Subsection 2.3.3. A practical analysis showed that for the present system it is
furthermore not possible to increase the time step size. The systems stiffness is dominated by
other effects, e.g. the ring dynamics as well as the discussed single valued contact laws.
However, different constraining directions have a high influence on the solution. If the tan-
gential direction at the saddle is treated with a set-valued force law the computation takes
about 20% longer. If the tangential direction at the flanks is treated with a set-valued force law
the computation takes about 350% longer. Combining the force directions lets the simulation
time increase much more than linear. With respect to the CPU costs it is therefore beneficial to
choose regularized contacts as long as the results of the simulation are considerably valuable.

Keeping the above discussion in mind and taking into account the current state of the model
in combination with the available solvers, smooth contact laws are preferred everywhere
except for the element-ring contact. There it leads to more precise results for the friction
contact law.

3.3 Ring Models

In Subsection 2.1.2 different ring models are presented. In this section two points are dis-
cussed. At first four ring models are compared in a planar simulation. Based on the conclu-
sions spatial simulations are compared to a planar reference.

3.3.1 Planar Comparison

This section presents the results from simulations with four different ring models which are
all implemented in [21]. The LRVM model of [9, section 6.2] showed a very stiff behavior in
the CVT application. In the current implementation it could not be tested. Improvements are
suggested in [38] and are part of current research [10].
The four other models for the comparison are given in the following. The number of FEs for
the three deformable models are chosen such that local effects are represented well. Thus,
they are comparable to the other models. Thereby, the numbers of DOFs are as close as
possible.

RCM It is the planar RCM implementation of the model of [25]. In the simulation 32 FEs are
used, which yields 160 DOFs.

ANCF It is the planar implementation of the ANCF-theory of [58]. Forty FEs yield 160 DOFs.

ALE0 It is the planar implementation of Subsection 2.1.2 without local deformation. It only
considers the two reference DOFs s andΘ.

ALE Compared to the ALE0 model it also considers local deformations with 157 DOFs and 40
FEs.
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Figure 3.4: Comparing different ring models. The results gained with the RCM model are
used as reference.

In Subsection 2.1.2 different options to choose the direction matrixA are introduced. For the
application within the CVT the first option, i.e. the matrix is chosen to be the unity matrix and
therefore constant, has proven to be most suitable. This results in less evaluated derivatives
reducing the CPU time. Furthermore,Θ is not constant but oscillatory. This would changeA
and therefore the interpretation of the DOFs in every time step. Thus, the local DOFs “see”
the oscillations inΘ resulting in numerical problems [28].

Figure 3.4 shows different aspects of general conclusions that could be drawn comparing the
results of the cases in Table 3.1. Thereby, the output with the RCM model is used as reference
as it was successfully tested in prior work [25, 9]. It can be seen that all models converge
globally to the same level, i.e. a similar thrust ratio and efficiency (Figures 3.4a and 3.4b). Yet,
the ALE0 model yields in OD very high values for the TR whereas the ANCF model yields low
values for it in MED and UD configurations. Furthermore, higher losses compared to the
other models result when using the ANCF model.
Figure 3.4c shows the reason for this. The ANCF model is very stiff and high oscillations result.
For the efficiency computation this results in many oscillations around a zero level (e.g. after
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Figure 3.5: Average CPU costs for beam models where RCM is the reference. The error
bars show the maximum deviations from the average value.

t = 0.08s) – even though these are smoothed due to the space averaging technique. This
leads to errors within the numerical integration of the efficiency values. The ALE0 model
deviates from the other three concerning spiral running (Figure 3.4d). As the model does not
support local deformations along the belt only the contact stiffness enables small deviations
from the circular arc. Therefore, the tendency is the same as for the other ring models. This
also influences the axial force distribution along the arcs, which offers an explanation for the
differences concerning iF .

For the nine cases of Table 3.1 the computational times are compared in Figure 3.5. Again the
simulation times of the RCM model are used as reference. The ANCF and the ALE0 model
take up only about the half of the simulation time. The full simulation of the ALE model about
80% of the reference simulation time.

Altogether, the ALE model is a good reference model. The simulation time is reduced by ensur-
ing a good correlation with an already validated RCM model. Depending on the application it
is easy to adjust the level of detail reducing the simulation times even more. Therefore, the
ALE model is chosen as standard model for the other simulations.

3.3.2 Spatial Analysis

For the RCM model a spatial variant is implemented [54, 21]. The time-step size is limited, i.e.
spatial simulation could not be performed in a reasonable time. The additional considered
DOFs lead in combination with the stiff material and the unfavorable geometry to very stiff
behavior. Numerical standard damping strategies could be used, but with it global DOFs are
damped as well. The rings stop to move which is an unfavorable behavior. More dedicated
damping strategies which damp only those DOFs that do not contribute to a rigid-body
movement, could not be applied successfully.
Due to the Eulerian description within the ALE model, a spatial reference deformation re-
specting the misalignment can be added on kinematic level. This is not possible for the
other models as Lagrange coordinates are used. This technique avoids high stiffness in axial
direction.
Using this technique in combination with the ALE0 beam, simulations can be performed
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Figure 3.6: Exemplary curves comparing results from spatial and planar models.

robustly which is not the case for any other of the mentioned models.
Comparing the nine cases of Table 3.1 a spatial simulation takes at average 8.1 times longer
than the planar reference. Local and global curves show strong numerical oscillations which
are not apparent in the planar case (Figure 3.6). The overall trends are presented well along
the belt. Locally however, deviations arise, e.g. at the idle arc in the PRI.
It is remarked that including ring deformation leads to distorted results. The differences
in stiffness between loose and fixed sheave in both arcs yields a rolling of the element (Fig-
ure 3.6c). The rings deform at the left and the right side differently which finally terminates
the simulations. All in all there is a demand for further research. No results from spatial
simulations are used in this work.



4 Physical Aspects

The models sensitivity on numerical parameters is treated in the previous chapter. Physical
parameters are treated separately in this thesis. Their value cannot be measured exactly, e.g.
contact stiffness or friction. Thus, they are varied to show the models sensitivity on them.
This serves two major goals. On the one hand it shows the uncertainty of the model and thus
the updating possibilities of it. On the other hand it offers the basis for further improvement
strategies for future design.
This chapter discusses the quality of the complete model on basis of the variations of the most
crucial parameters. It is intended to show possible variations of the model’s output when
the parameters are not known. Again the nine cases of Table 3.1 are used to draw general
conclusions. They are sorted wrt. the ratio in Table 4.1.

OD MED UD

1,4,7 2,5,8 3,6,(9)

Table 4.1: The basis cases (Table 3.1) sorted with respect to the speed ratio. The applied
torque increases in each column with the number.

Due to production uncertainties, the assembly conditions of the belt is not precisely known.
Thus, the influence of the endplay, i.e. the number of elements on the belt is studied at
first in Section 4.1. The connection between elements and pulleys is analyzed in Section 4.2.
Different contact positions as well as the element’s axial stiffness show an impact on the
overall system behavior. In contrast to the RE, where the contact geometry is defined due to
the circular shape, the contact geometry at the head is not defined precisely. The radial and
the longitudinal variation of the contact point yields high influences on the system behavior as
demonstrated in Section 4.3. Finally, the friction coefficients are analyzed. Due to production
and assembly the contact parameters vary, which changes the influence functions. This is
treated finally in Section 4.4.

4.1 Real Elements

In Section 3.1 the influence of the number of simulated elements NE is studied. The right
choice is important to get valuable results. Another important measure is the number of
elements NE0 that are really within the belt. Practically, the belts get assembled by experienced
workers. A test where the belt is lifted with sticks clamped in the assembled belt is used to
evaluate if the right number of elements are used. This test cannot be simulated. It depends on
the correct representation of the element-element force, which is discussed in Subsection 2.2.3
as well as the friction values. The push-forces between the elements are in the exponential
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Figure 4.1: Comparing global values varying the number of real elements in the belt for the
cases in Table 3.1. If a ∆-value is shown, the average of all simulations for each case is
used as reference.

part (Figure 2.9) for testing. For different belts using different element-geometries as well as
rings it probably differs. For the same belt setup using the same elements and rings differences
arise due to production as well. No recording is done for the measurements. Furthermore,
wear can effectively change the output. It is not known which value for NE0 should be used
exactly.
Practically, it can be assumed that υ= 0m while running at low loads. This value changes due
to the load. For the given cases of Table 3.1 in combination with the reference geometries
practical tests result in a number between 436 and 437. In the following, four different cases
with 435, 436, 437 and 438 elements have been used to investigate the influence on the output
of the belt.

In all simulations a stationary point is found, i.e. the belt system transfers the applied loads.
The resulting global output values are depicted in Figure 4.1. The OEP decreases with NE0

until it is 0m, which is always true for NE0 = 438 (Figure 4.1a). For υ= 0m the overall push-
force level increases within the belt (Figure 4.2b).
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The thrust ratio changes show the complexity of the system. For low loads it decreases in
OD but increases in MED with NE0. In UD it is not affected but fluctuates only slightly. This
results from different mechanisms. The most important ones are treated exemplary in the
following. It shows the benefits of the present model, i.e. a detailed analysis of the global
effects based on local outputs.
All local curves change with increasing NE0, e.g. the axial force distribution, the spiral running,
the push-forces, the relative velocities as well as the element-sheave pitch. The changes
influence each other in a complex manner such that not one singular effect can be named. It
is out of scope of this work to discuss all local influences in detail. For BC01, BC02 and BC03
local curves are given in Figure C.1 for the following general discussion as an example.

With increasing NE0 the ring tension gets higher. In OD the tension forces contribute nega-
tively to the torque equilibrium. Thus, more push-forces have to be build up in the active arc
(Figure 4.2b). The differences between tension forces and push-forces decrease effectively. A
lower FP is sufficient reducing iF consequently.
For MED and UD the ring tension contribution to the torque equilibrium turns around.1

Remark that the discussed MED configurations all fulfill is > 1. Thus, the increase of NE0

influences iF in an opposite manner. In MED iF increases with NE0 consequently. In UD
further mechanisms become more important as the PRI shortens. The OEP decreases with in-
creasing NE0. The idle arc shortens and thus the active arc becomes longer (Figure C.1 shows
negative element-pulley friction forces in longitudinal direction in the PRI for NE0 = 437 and
NE0 = 438). More push-forces can be build up due to this. The primary clamping force FP

must increase, i.e. iF increases. This mechanism works against the decrease of iF due to the
ring-tension turnaround. Besides, the slip reduces at the PRI leading to an increased overall
belt speed, i.e. a lower is (Figure 4.1c). The losses reduce as well (Figure 4.1d).
For increasing loads the rings elongate more and the push-force level increases as well. The
OEP increases consequently and thus the differences in the tension forces decrease. The
discussed mechanisms become less dominant.

The change in the element-sheave pitch ψ is pointed out here. It can be accessed by measure-
ments and therefore is of interest for the validation. It is affected greatly – especially in the
PRI – as given in Figure 4.2a. As the push-forces increase in the PRI the nonlinear behavior of
the longitudinal element deformation is a crucial parameter here, which directly follows from
Figure 4.2b. One can conclude thatψ is very sensitive to the force and with it to all parameters
changing this force.

4.2 Element-Pulley Contact

It has been emphasized before that the contact between element and pulley-sheaves is a
crucial part within the modeling. It is parametrized with values, that cannot be measured and
thus are updated, i.e. identified with simulations, in practice. The two crucial parameters are
the position of the contact point along the flank height and the stiffness of the element in
axial direction. The influences are discussed in the following starting with the position.
It is remarked, that both approaches for the flank coupling (Subsection 2.2.2) lead to very
similar results. A maximal deviation of 0.05 in iF and 0.23% in ηloc result. For the simplified
approach the simulation times reduce up to 7%.

1see e.g. element-ring longitudinal friction forces pointing in opposite direction
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Figure 4.2: Comparing local values varying the real elements. The first three cases of
Table 3.1 are presented.

4.2.1 Contact Position

In fact the contact force between flank and sheave is a pressure distribution that arises due
to deformation of the contacting partners. For the CVT model one contact point is used.
Besides the contact search, the solution of the contact force law is more efficient enabling
fast integration times. It gets unclear where the contact point in the simulation should be. A
sensitivity analysis is therefore presented. An optimized estimation for measurements results.
It may further serve as basis for improvement strategies.

To compare the influence of the contact height, it is varied along the flank (Figure 4.3). The
relative height h̄F is defined to be the ratio of the actual height hF of the contact point on the
flank to the height of the saddle hP [54, Figure 2.3]. It is varied linearly from h̄F = 1, i.e. contact
at the saddle, to h̄F = 0.6. For smaller values the simulations show increasing oscillations,
which results in partly unusable output.
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Figure 4.4: Comparing global outputs varying the flank contact point heights h̄F at the
element flank. The average of all simulations for each case is used as reference.
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Figure 4.5: Main losses for two different ratios varying the flank contact point heights h̄F .
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Figure 4.6: Local output curves of BC01 varying h̄F .

The TR decreases with h̄F (Figure 4.4a). This effect is stronger in MED and OD and for low
loads. Besides, the efficiency is affected. It has a maximum2 for h̄F ≈ 0.75 and decreases for
higher or lower contact points. The loss mechanisms impact the efficiency differently for the
cases as shown in Figure 4.5 proving the benefits of a nonlinear model. It offers the possibility
to investigate the system to enable further optimization.

Due to the variation of h̄F , two principle changes are done within the system. The influences
are exemplary discussed for BC01. The corresponding curves are presented in Figure 4.6.
On the one hand the contact radii along the sheaves are changed. A new distribution of the
element axial forces results directly impacting iF (Figure 4.6a). It also affects the spiral running
(Figure 4.6b). Together with the shifted contact point, the lever arms for the longitudinal
friction forces change. The contribution to the torque equilibrium is altered. The longitudinal
friction force contributes less to the torque equilibrium for decreasing h̄F . Due to the constant
boundary conditions in the SEC, i.e. FS = const. and MS = const., the distribution of the
frictional forces adapts correspondingly in longitudinal direction (Figure 4.6c).
On the other hand the local kinematics of the elements are changed due to the lever arm.
The element-sheave pitch changes analogously (Figure 4.6d) which influences the local
kinematics as well. Altogether, a new stationary point is found. The frictional forces in

2depending on the case
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Figure 4.7: Comparing global outputs for different axial stiffness cax of the element. The
average of all simulations for each case is used as reference.

longitudinal direction between flank and sheave in the PRI are reduced. Less clamping
force FP is sufficient lowering iF . The discussion serves as an example, that the nonlinear
effects, which are active within the system, depend on the boundary conditions as well as the
parameter setup.

4.2.2 Element Axial Stiffness

Besides varying the height position along the flank, the axial stiffness cax of the element is in-
vestigated. Estimating it with cax ≈ E A

l where E is the Young’s modulus, A the cross-section of
the flank in axial direction and l the local width of the element, it is bounded to approximately
cax ∈ [1e6 N

m ,1e8 N
m ]. Global outputs for a linear variation of cax in this range are presented in

Figure 4.7.
The efficiency increases with cax . This is consistent to the results of [39, section 5.2.2]. The
present model allows deeper analysis of the losses which is exemplary done in the following
for BC07.
The TAP shifts in negative longitudinal direction in the PRI when cax increases. This reduces
the longitudinal frictional forces (Figure 4.8a). This coincides with the results from the present
model (Figure 4.8b3) and with [39]. However, the relative velocities do not increase and thus
the losses in the PRI in longitudinal direction are barely affected (Figures 4.8c and 4.8e).4

These losses decrease for stiffer elements in the SEC as the relative velocity decreases. Fur-
thermore, the spiral running in the SEC decreases and consequently the radial losses. This is
identified as the main contribution for the overall reduced losses (Figures 4.8b and 4.8e). The
normal forces between element and rings reduce as the radial frictional forces are affected
(Figures 4.8b and 4.8d). This reduces the longitudinal friction force and with it the overall
losses.

As discussed, the force distributions are influenced by the spiral running. To explain the
differences in iF one has to analyze the axial forces. In the SEC this distribution is not affected.
In the PRI it is. The TAP shifts and with it the distribution. In case of a low level of FP the

3marked by the sign change from negative to positive
4In other cases these losses are even increased as the active arc is larger for higher stiffness!
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Figure 4.8: Comparing local results varying the axial stiffness cax for case BC07.

peak at the TAP stays low. It only shifts decreasing5 iF (Figure 4.9a). For high clamping forces
the peak increases as well, which is a result from the solution of system (2.34). In this case iF

increases (Figures 4.9b to 4.9d).
For small running radii at the PRI, i.e. in UD, the clamping force at the PRI FP is always at
a high level. Thus, the TR does increase with the stiffness. For large running radii, i.e. in
MED and OD it depends on the load case. For high loads FP is at a high level as well and iF is
increased. For low loads FP is at a low level and iF decreases.

5The small differences in BC01 for 5e6 and 1e7 result from numerical post-processing.
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Figure 4.9: Element axial forces along the belt for different cases in OD and UD.

4.3 Element-Element Contact

To measure the push-forces sensors are typically attached at the RE [23, 56]. In the arcs this
measures the full force as no contact is active at the head. In a strand however the contact at
the head closes. The push-force is divided into forces at the RE and the head. This section
treats the contact kinematics at the head varying on the one hand the radial and on the other
hand the longitudinal position, i.e. the thickness.

4.3.1 Radial Variation

Four different height positions are presented from a variation of nine linear steps between
the height of the ear (hT1) and the uppermost position (hT10) of the element (Figure 4.3). All
cases of Table 3.1 are compared. Figure 4.10 shows the partition of the normal forces for BC01
and BC06. At the upper row the sum of the push-force is depicted. The lower row shows the
forces at the RE and the head separately. One can observe, that indeed only in the strands
forces are acting at the head. The higher the contact point is the less force is acting at the
head. This conclusion is true for all nine cases. Global values are not affected by this. The
maximum standard deviation for the thrust ratio is 0.009 and for the local efficiency 0.13%.
Thus, the mechanism can be used to update the position for the head contact.
This mechanism explains the flaw in the measurements. However, in the measurements a
stronger partition is observed, that cannot exclusively by explained the height position of the
contact point. Besides the radial position of the contact point, the longitudinal position, i.e.
the thickness, plays an important role for the partition of the forces which is discussed in the
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Figure 4.10: Push-forces, i.e. element-element normal forces, varying the head contact
point height. Given is the force partition between the head and the RE (lower row) as well as
their sum (upper row).

following.

4.3.2 Longitudinal Variation

CEBULLA introduced tapering of the elements to respect manufacturing processes [9]. Effects
on the OEP at the head6 are evaluated. Yet, a deeper analysis is missing to evaluate further
influences from this. This section is intended to close this gap.
It is remarked that the initialization process described in [9, Section 4.2] does strongly depend
on the respective boundary conditions. The nonlinear system introduced in [54] utilizing the
model of [51] cannot be solved robustly. A simpler initialization strategy is therefore chosen
pre-stressing the elements. It leads to a longer transition phase, yet to a robust integration.
The reference tT1 = 1.5mm was chosen to be the thickness at the RE making it a flat element.
Nine linear steps between tT1 and tT10 = 1.518mm are used to analyze the differences be-

6CEBULLA uses the phrase “Top”
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Figure 4.11: Comparing global outputs varying the thickness tT of the head. As reference
the average value resulting from ten different thicknesses is used.

tween the simulations. The global results are given in Figure 4.11 where the average of all ten
cases is used as reference.

Figure 4.11a shows that the OEP at the head reduces in all cases which is clear as the thickness
is increased coinciding with the results of [9]. The OEP at the RE is one order of magnitude
smaller than the one at the head. No clear trend is visible – the differences arise mainly from
numerical calculations.

Figure 4.11d shows that the efficiency increases for MED and UD. For the OD configuration
the efficiency is not affected with a clear trend. Figure 4.12a presents the distribution of the
losses for BC03. It is clear that the losses get less in the longitudinal direction in the PRI
for both contacts, i.e. for element-pulley as well for the element-ring contact. This can be
explained by a reduced relative speed of both partners coming from an increased overall
element velocity.
In the loose-strand a (small) contact force at the head arises (Figure 4.12b). Therefore, the
oscillations are reduced and the elements are guided better along the belt without losing as
much energy as when the elements are flat. This increases the overall velocity of the elements
(Figure 4.12c). Consequently, the relative velocity between elements and rings in the idle
arc of the PRI is reduced and therefore the losses due to this contact (Figure 4.12d). In the
active arc this lets the elements decelerate less in the active part of the PRI, which reduces
also the relative speeds between flank and sheave (Figure 4.12e). Altogether, the power losses
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are reduced. Remark that in the OD configurations this phenomenon is not apparent for all
load cases and thus no efficiency gain can be observed.

Besides these discussed effects, which explain the change in the efficiency measures, locally
further phenomena arise. The partition between head and RE forces in the push-strand is
influenced as one can conclude from Figure 4.12b. The effect is even stronger than for only
varying the height positions.
Furthermore, the element-sheave pitch is affected (Figure 4.13). It is reduced in low load cases
for increasing thickness. The push-forces in the push-strand are not high and for flat elements
the strand is straight. For thicker elements however, the strand gets bended a little due to
the higher force at the head and there is contact between elements and rings. Consequently,
the pitch angle of the elements is affected which gets reduced in these load cases. Higher
loads lead to higher head forces also for flat elements and thus the differences between the
simulations vanish (Figures 4.13c and 4.13d).

Global oscillations arise typically in the UD configurations. The signals for the TR and the SR
show the same frequency. These overall oscillations, that are active in the system, get reduced,
if the thickness is increased. This correlates to the observation above and results from the
enhanced guidance in the loose-strand of the elements.
The value for iF is only affected for low loads in OD (Figure 4.11c). Otherwise the changes are
in the order of 10−2 and result from numerical influences. Analyzing the local curves yields
no clear explanation.

4.4 Friction

In the literature typically an overall friction value of the belt is identified using the Coulomb
theory, i.e. a constant value [44]. For the present model however, not only one contact pairing
is present, i.e. flank to sheave, but also the contact between elements and rings and element-
element contacts are considered.
It is expected that oil has an influence on the friction. A velocity dependent friction coefficient
based on Stribeck theory is used. A normal force influence is neglected assuming to be of
minor significance compared to the velocity dependency. The following function is used to
approximate the friction coefficient µ wrt. the relative tangential velocity vt in the contact

µ(vt ) =µ0 +
µ1

1+µ2vk
t

(4.1)

where µ0,µ1,µ2 and k are parameters to this function.
In the following the flank-sheave contact is investigated using different constant friction
coefficient functions. Then the same parameter variation is done for the element-ring contact.
Thereby, velocity dependent friction functions are treated.

4.4.1 Element-Pulley

The friction between the flank of the element and the pulley-sheaves is crucial within the CVT.
Higher torques can be transmitted for same clamping forces the higher the friction coefficient
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Figure 4.12: Losses of BC03 varying the thickness of the head taking into account relative
velocities.
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Figure 4.13: Comparing the element-sheave pitch varying the thickness of the head for low
and high loads

is. This can reduce the losses that arise from high clamping forces. The internal dynamics of
the belt and with it the losses are studied in this section.

For the nine cases of Table 3.1 a constant friction coefficient is varied in the technical range
of µ= 0.12 to µ= 0.09. Figure 4.14a shows an decreasing iF with decreasing friction which is
in accordance with the findings of [65, 37]. Keeping in mind, that the boundary conditions
are the same for all simulations, i.e. in particular the same torque and clamping force at
the SEC, the safety (2.49) is decreased. Figure 4.14c shows a decreased frictional force at
the PRI. The idle arc decreases consequently lowering the safety. For increasing loads and
increasing is the influence gets stronger. In both cases relatively high FP are necessary for the
torque transmission pronouncing this effect. It is remarked, that for a constant safety value
the necessary clamping forces will reduce when increasing the friction coefficient. This is a
typical enhancement strategy for the system [63]. It would make another boundary condition
variation necessary which ensures the same safety.
The overall efficiency is affected due to competing mechanisms. Due to the longer active arc,
the relative sliding duration between element and sheave within the arc is longer as well. The
force however is reduced decreasing the power loss again. Besides, the internal dynamics
is affected. Especially for BC06 this is evident. Belt oscillations are induced for increasing µ
leading, forµ= 0.12,7 to an overall changed dynamics of the system (Figure 4.14d for the speed
ratio). The model suggests, that a short active arc in a high load case leads to an excitation of
the push-strand. The mechanism yields similar results as the “scratch” phenomenon [46]. Yet,
it arises for high load conditions for which the NVH phenomenon “gear rattle” does not result.
However, it is an interesting parameter to study in future works.

7for higher friction coefficients the same behavior is observed
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Figure 4.14: Comparing local curves varying the Coulomb coefficients for the element-pulley
contact for the cases of Table 3.1. The average of all simulations for each case is used as
reference for the global comparison.

4.4.2 Element-Ring

While the rings guide the elements, the (relative) velocity between the partners is driven by
the friction. It thus defines the tension differences in the rings and with it the push-forces in
the strands. Furthermore, it is assumed to be an important parameter to the phenomenon of
“gear rattle” [46].

Coloumb

Constant values are varied between µ= 0.08 and µ= 0.12. The value of iF is not affected by
the change with a maximum standard deviation of 0.009. The local efficiency is however
affected differently for varying is and loads (Figure 4.15a). In the MED cases no changes are
expected. The rings have low relative velocities in the arcs and thus the losses are small. The
tension difference is of minor importance for the global torque equilibrium. This is confirmed
by the simulations.
In case of UD or OD this is not true. The losses between elements and rings increase with
higher friction in both cases. Also the tension difference in the rings increases more. This
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Figure 4.15: Comparison of global outputs comparing different constant Coulomb friction
coefficients for the element-ring contact for the cases of Table 3.1. The average of all
simulations for each case is used as reference.

results in differences in the push-forces in the push-strands which directly affects υ (Fig-
ure 4.15b). For UD configurations this is beneficial in terms of efficiency. The tension dif-
ference contributes positively to the torque equilibrium. Less push-forces are build up in
the active arc, which reduces the longitudinal losses in the PRI between element and sheave.
In high load cases, i.e. BC06, the internal losses may reduce as this effect dominates the
increased losses at the element-ring contact.
In OD a higher element-element normal force in the push-strand has to be build up in the
active arc. It results in higher losses for the flank-sheave contact and consequently an overall
decrease of efficiency.

Stribeck

Three different influence parameter settings have been chosen for a velocity dependent fric-
tion function, namely str0, str1 and str2. They cover the technical range [76]. The respective
parameter settings are depicted in Figure 4.16 and listed in Table 4.2. The TR stays constant
with a maximum standard deviation of 0.02. The changes in efficiency however follow the
discussion above where increasing the index i is analogue to decreasing the constant friction
coefficient.

0 0.2 0.4
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0.15
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s ]

µ
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Figure 4.16: Stribeck curves

µ0 µ1 µ2 k
str0 0 0.1 0 0
str1 0 0.1 2 3
str2 0 0.1 5 1.5

Table 4.2: Stribeck parameters
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Every model is an approximation of the reality. Observations are written in mathematical
formulas covering the main effects. Numerical calculations, i.e. the simulations, compute
these formulas only up to a certain accuracy. A post-processing step calculates interpretable
quantities out of the simulation results.
The range of uncertainty is discussed in the previous chapters as not all parameters are
known. It is therefore important to assess the following results together with the discussion in
Chapters 3 and 4. In this chapter results of the present model are compared to measurements.
It shows the range of validity of the model.

Following the ideas of post-processing, the two main aspects, i.e. local and global results of
the model, are compared. A qualitative overview about the local forces is discussed at first.
Two further force distributions for varying boundary conditions are compared quantitatively.
Besides, local kinematics, i.e. spiral running and element-sheave pitch, yield further quantita-
tive matches.
Four different variator geometries are used to compare global values while varying the bound-
ary conditions. Quantitative matches are gained for well identified parameters whereas
parameter uncertainties only allow for qualitative discussion. Further properties of the sys-
tem are discussed qualitatively. Slip-curves allow insights to the overall behavior of the system.
The endplay tolerance shows the system’s robustness.
Finally, dynamical, i.e. instationary, properties are investigated as well. On the one hand the
scratch phenomenon is approached as NVH issue. On the other hand shifting dynamics are
studied.

5.1 Local Results

Global values, i.e. descriptive numbers for specific setups, are used to optimize the CVT within
the global drivetrain. They are based on the internal dynamics and with it on the local outputs
of the system. KANEHARA ET. AL. did a variety of measurements for these local curves with a
slowly running variator system to study the qualitative behavior [35]. These are the basis for
the following qualitative validation for which the boundary conditions for the simulations are
taken from [25, p.83, Table 6.1]. As the scaling stays unclear, ωP was increased tenfold.
The plots show the same array structure as in [35, p.143-145] and are given in Figures C.2, C.4
and C.6 together with the original data in Figures C.3, C.5 and C.7 respectively. The structure
along the belt is not adapted. It follows the order of Subsection 2.4.1, i.e. PRI-US-SEC-LS,
whereas the reference follows LS-PRI-US-SEC.

81
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These remarks hold for the analysis:

Pulley normal force on V-surface These are the normal forces between element flank and
sheaves. One finds a good correlation between measurements and simulation. Higher
forces are acting in the smaller arc and the typical peaks at the entry and the exit of each
arc can be found. For high loads at is ≈ 2 the intermediate peak at the TAP in the PRI
is shifted a little too far to the left and for is ≈ 0.5 the TAP is pronounced stronger as
in the measurements. Altogether however, a good correlation is found which is also
quantitatively proven in Subsection 5.1.1.

Block compression force These are the element-element normal forces. For the comparison
only the forces at the RE are taken from the simulation to match it with the measure-
ments. The influence of the external loads, i.e. the torque, is presented well as the
push-strand switches with the load in UD. The partition of the forces between RE and
head in this strand, i.e. the dip, is present as well in all cases (Section 4.3).

Transmitting force These are the frictional forces in longitudinal direction for the flank-
sheave contact. As GEIER points out the integral over this curve has to be equal to
zero for stationary cases which is not the case for the measurements. Assumingly the
measurements are disturbed by the contact forces at the saddle between element and
ring [25, p. 88, cond. A) and p. 92]. A good correlation is found for the trends. Increasing
transmitting force for increasing loads in the SEC are correlated pointing against the
applied torque. In the PRI strong oscillations with high frequency is observed for simu-
lations in UD which is discussed below. Otherwise, the trends fit to the measurements
and the qualitative discussion, i.e. the integral-condition is fulfilled.

Radial friction force These are the frictional forces in radial direction for the flank-sheave
contact. The qualitative match between simulations and measurements is apparent.
Especially in the big arcs the curves fit well and show the same dependency on the
torques. In the small arcs the simulation shows more oscillatory behavior which is
directly connected to the “Transmitting force”. The direction directly depends on the
spiral running. In the small radii its extend is less. Other oscillatory effects, e.g. coming
from the ring dynamics, influence the output curves. Further discussion on spiral
running is found in Subsection 5.1.2.

Ring traction These are the frictional forces in longitudinal direction for the element-ring
contact. As stated for the “Transmitting force” the integral along the arc for these forces
should be zero in stationary cases which is not the case for all measurements [25, p. 88,
cond. B)]. Nevertheless, the trends are represented correctly and the integral condition
is fulfilled for the simulations. Furthermore, the simulations show the same dependency
on external torques, i.e. the turnaround peaks at the end of the SEC in OD and MED.
The sign change between OD and UD is given as well.

Saddle normal force These are the normal forces between element and ring. They are repre-
sented very well showing the correct inner trends, e.g. decreasing and increasing along
the arc in MED, as well as the peaks at the running in and out of the arcs. Furthermore,
the dependency on the torque is the same as for the measurements.
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OD UD
A B C F G H J

is / ωP 0.5 / 1000RPM 2.3 / 2000RPM
MS 0Nm 0Nm −110Nm −205Nm −345Nm
FS 6.2kN 12kN 18kN 40kN

Table 5.1: Boundary conditions used to validate the element axial forces

5.1.1 Forces

Element Axial Forces

As shown by CEBULLA in [9] the correct representation of the element axial forces, i.e. the
flank forces projected into the axial direction, are crucial for the whole system dynamics.
To not solely rely on qualitatively results, additional quantitative measurements were made
available by BTT. The measurements were conducted for boundary conditions that fit to
running conditions in practice. Besides clamping forces and torques also the speed ratios
and angular velocities are varied. No direct measurements of the boundary conditions are
available. For the simulation these values have been approximated and adapted from the
measurement load definitions. The seven different cases are listed in Table 5.1.

Figure 5.1a shows the results for OD and UD. One can see that the measurements follow
qualitatively the ones of [35]. The peaks for entering and exiting the small arcs are apparent
as well as the peaks at the end of the large arcs. Simulations agree with the measurements
qualitatively and quantitatively. However, the peaks are not as high as in the measurements
especially for higher loads in the small arcs and low loads in the greater arcs. The force
distributions directly result from the influence functions used in (2.34). Fourier series are
used to compute the influence numbers [9, eq. (5.54)]. The coefficients are provided by BTT
and result from FE analysis. Taking into account more functions would allow to represent
strong local deformation changes better, which is needed to represent the higher peaks.
For low loads in UD the force level does not fit as well. It indicates that the TR is not the
same for simulation and measurement. This global value depends on different unknown
parameters (Chapter 4). For an overall analysis it is referred to Section 5.2.
It is pointed out that the averaging technique (Subsection 2.4.1) improves the results as well.
Peaks arise in all cases which is not the case for (all) single elements [9]. Altogether, the current
approach including the force law and post-processing has been proven successfully. On basis
of this, further investigation are performed in the following.

Element-Element Forces

Besides the axial forces, the push-forces in between the elements have been measured in
realistic settings as well. An UD configuration with is ≈ 1.3 has been chosen to check also the
influence of transition torque. The boundary conditions follow measurements as well as the
torque ratio factor r . Results are shown in Figure 5.1b.
A qualitative and quantitative match is observed. The push-strand switches between r = 0.15
and r = 0.60 where r = 0.30 is close to a transition torque situation. The dip due to the force
partition between head and RE is present in all cases. The force increase and decrease within
the arcs is given. For r = 0.30 (nearly) no forces act within the strands but an increase within
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Figure 5.1: Forces along the belt. Measurements were made available by BTT.

the PRI and SEC is observed in simulations and measurements that results from the torque
equilibria in the respective arcs. Thus, it relies on correct presentation of the friction between
flanks and sheaves as well as saddle and rings. Further deviation in the absolute values result
from the parameter uncertainties, i.e. in particular the stiffness curves and the number of
elements in reality. Parameter identification using specific measurement setups as described
in Subsection 2.2.3 can help to identify the parameters.

5.1.2 Kinematics

The deformation of the sheaves and the elements define the running-in and -out of the belt
into the pulley-groove. The correct representation of the forces between element and pulley
directly impacts the extend of the spiral running. It leads to frictional losses in radial direction
and bounds the overall torque capacity of the variator system. Its correct representation is
therefore crucial within the simulation.
Quantitative measurements were conducted by BTT by measuring the upper surface of the
rings. Different clamping forces and torques for varying speeds of the variator were used in 25
different cases. The boundary conditions of the simulations are given in Table 5.2. All results
are depicted in Figure C.8.
For the cases of Table 5.2 also the element-sheave pitch is compared. Specific elements are
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UD1 UD2 UD3 UD4 UD5 UD6 UD7

ωP 1000RPM 2000RPM
MS 0Nm −54.3Nm −170Nm 0Nm −54.3Nm −99.1Nm −170Nm
FS 16.435kN 16.459kN

UD8 UD9 UD10 UD11

ωP 4000RPM
MS 0Nm −54.3Nm −99.1Nm −170Nm
FS 16.558kN

(a) UD (is ≈ 2.4)

OD1 OD2 OD3 OD4 . . . OD13 OD14

ωP 1000RPM . . . 4000RPM
MS 40.4Nm 26.4Nm 0Nm −80Nm . . . 0Nm −79.6Nm
FS 15.952kN . . . 19.042kN

OD5 OD6 OD7 OD8 OD9 OD10 OD11 OD12

ωP 2000RPM
MS 43.4Nm 34.4Nm 28.3Nm 20.8Nm 0Nm −28.3Nm −56.5Nm −79.6Nm
FS 16.57kN

(b) OD (is ≈ 0.5)

Table 5.2: Boundary conditions used to validate the arc kinematics

used in measurements with three marked points on the head. A device that is attached at a
certain radius measures the position of the three points along the arc. The radial direction v1

(Figure 2.20) is defined due to the device. Triangulation gains the orientation, i.e. the local
longitudinal, radial and axial direction, of the element. With (2.50) the value for ψ follows.
The comparison between measurement and simulation outputs is presented in Figure C.9.
Both local kinematical outputs are discussed in the following.

Spiral Running

The spiral running in the large arcs is at least one order of magnitude greater as in the small
arcs in measurement and simulation. A long running-in of the belt into the pulley-groove
follows a turnaround, i.e. the minimum point, and a short running-out. An overall scaling
can be seen with negative torques MS for simulation and measurements. The spiral running
increases with the torques, whereas positive torques MS do not increase the extend of the
spiral running.
In UD and for low loads the turnaround span is longer, i.e. the minimum is wide. In simula-
tions not the minimum is affected, but a short area before is more shallow, i.e. the running-in
is reduced (UD1,2,4,5,8,9). For higher torques the differences vanish.
In the small arcs the curves agree very well. The spiral running is reduced as the sheaves
are stiffer at the center. Furthermore, a stiffer numerical behavior results, i.e. oscillations in
the forces, as discussed above. In the simulations a short running-out at the beginning can
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be observed which is not apparent in the measurements. In the strands the contact forces
between element and rings are small. They increase in this short part suddenly which leads to
an running-out of the element as it penetrates the rings. In measurements this change is not
detected as the smooth surface of the rings is measured.
In OD this difference at the beginning of the small arc, i.e. the PRI, is observed as well. Overall,
in case of small or positive torques MS , the curves for simulations and measurements coincide
very well in both arcs. The spiral running deviates for high negative torques MS and higher
speeds, i.e. OD4, OD11-OD14. Parameter uncertainties especially in cax and the Fourier
coefficients (Subsection 2.2.2) lead to the deviations.

Element-Sheave Pitch

It is not clear where the contact between element and pulley-sheave closes, i.e. where the
transition between strand and arc is. Therefore, the pitch angle of the element is measured
in the inner parts of the arcs only. The simulation directly detects this position due to the
contact forces. These forces impact the dynamic equilibrium which also lead to kinematical
changes. The model suggests a sudden pitch change of the element which cannot be matched
with the measurements as the data is missing.
Within the arcs, measurement and simulation show only small deviations from a constant
value. This average value is denoted as to beψm/s

PRI /SEC depending on the arc for measurements
(m) and simulations (s).

A shift sψ between ψm and ψs is observed for both arcs respectively, i.e. ψm
PRI −ψs

PRI = sψ,PRI

and ψm
SEC −ψs

SEC = sψ,SEC . The measurements yield a ψm ≈ 0◦ in all UD configurations and
ψm > 0 for OD. The simulations yield only negative values, i.e. ψs < 0.
The radial reference vector v1 (Figure 2.20) is defined by the COG-position of the element in
the simulations. The device’s position is used in the measurements. As these positions are not
collinear with the sheave center a shift results.

The gap between the two arcs in the simulation is not observed in the measurements, i.e.
ψs

PRI −ψs
SEC 6=ψm

PRI −ψm
SEC . This cannot be explained with the theory above, i.e. that the

position of the element’s COG is not collinear with the device position and the sheave center.
A possible flaw in modeling and parameter uncertainties are assumed to be the reason.
The contact force actually results from a pressure distribution along the flank-area. Therefore,
a relative change of the element’s pitch induces torques for this contact which are transmitted
between flank and pulley. This is a flaw in the present model and should be considered in the
future. Smaller relative pitch angles are expected due to this frictional based torque as it is
opposed to the relative movement. Besides, ψ is sensitive to different uncertain parameters,
e.g. the element-element longitudinal stiffness, the number of elements in simulation and
reality, the head geometry and the element-flank contact position.

Yet, the qualitative behavior is correct. For UD the level of the constant part in the PRI is
below the one in the SEC. For OD it is vice versa. This can be explained by the different
direction of the saddle-ring frictional forces which point in inverse direction for OD and
UD. Exemplary, the UD configuration is discussed. The force in the PRI points in negative
longitudinal direction. It tends to pitch in negative direction around the RE contact position.
In the SEC the force points in positive longitudinal direction leading to a positive pitching.
Therefore, ψSEC >ψPRI in UD which is confirmed by the simulations and the measurements.
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VARREF VARA VARB VARC

Center distance [mm] 155 173 173 173
Element width [mm] 24 28 24 24
Element thickness [mm] 1.5 1.8 1.5 1.5
Ring layers 9 12 12 12
Sheaves flat flat flat curved

Number of Boundary Conditions 85 42 30 30

Table 5.3: Variator setups for global validation

5.2 Global Results

The previous section presents qualitative and quantitative matches between simulations and
measurements. Small deviations in the forces and higher deviations in the local kinematics,
i.e. especially for the pitch angle of the elements in the arcs, are presented comparing the
absolute numbers. In the following, global results from the simulations are compared to
measurements showing quantitative matches and qualitative trends.1

At first four different variator setups are studied wrt. thrust ratio and efficiency trends varying
speed ratio, applied torque and angular velocity. Besides these two scalar measures, slip-
curves are used to compare the dependency on the applied torque. The endplay tolerance
shows the system’s behavior when less elements are used in reality, i.e. a robustness against
for example wear.

5.2.1 Thrust Ratio and Efficiency

Two typical measures to assess the state of a variator are the thrust ratio iF and the efficiency,
i.e. the losses. BTT made available measurements of the four different variator setups of
Table 5.3. Thereby, the reference setup is VARREF. The parameters of VARREF have been
updated based on experience such that the simulations yield the best results. The other three
variator setups show the quality of the model for unknown parameters to emphasize the
necessity of further parameter investigations. The curved sheaves of VARC use the polynomial
description of Subsection 2.2.2. The corresponding flanks of the elements are represented by
a sphere.
Boundary conditions are varied wrt. to speed ratio, applied torque, the angular velocity and
the safety yielding different global values. Different numbers of cases result which are listed
in Table 5.3 as well. The resulting trends in the measurements are compared in the following
to the ones of the simulations.

Reference Setup

The discussion in Chapters 3 and 4 as well as in Section 5.1 are yielded with the reference
setup VARREF. The unknown parameters could be updated due to this knowledge. Therefore,
the following validation shows the quality of the model that is achievable with good identified
parameters.

1The support of the student workers Martin Schweizer and Christoph Drexler for the following analysis is
highly acknowledged.
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Figure 5.2: Thrust ratio validation. Comparing measurement data (solid lines) with simulation
data (dashed lines). The upper row shows the case with S ≈ 1.3 and the bottom row with
S ≈ 2.0. On the left column iF is given wrt. is for different MP at a fixed ωP . In the center
columns iF is plotted wrt. MP for different is with a fixed ωP . At the right column iF is
presented wrt. ωP where in the upper plot is is varied and in the lower plot MP . All plots are
scaled between iF = 0.9 and iF = 1.8. Measurements were made available by BTT.

Figure 5.2 compares values of iF for varying boundary conditions between measurements
(solid lines) against simulations (dashed lines). It is out of scope to depict all trends but a
broad spectrum is given. It can be seen that all trends are covered qualitatively. The influences
of is (left column), torque (center column) and angular velocity (right column) are included.
The TR overall decreases with is . It is slightly too high in the simulations for extreme ratios,
whereas for an approximate MED ratio it is not the case. For is ≈ 0.8 the TR is too low in the
simulations. Yet, for increasing primary torque the differences vanish. For the other ratios
an increase with MP is observed which coincides with the measurements. Simulations and
measurements show only minor dependency on the angular velocity. The TR increases with
ωP slightly in both cases.

Furthermore, the losses are investigated for VARREF. Exemplary graphs are given in Figure 5.3,
where measurements are presented with solid lines and simulations with dashed ones. For
the measurements only overall values exist, i.e. ηm . Thereby, losses are included that are not
represented in the simulations (Section 2.4). In the upper left corner a comparison between
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Figure 5.3: Efficiency validation. Comparing measurement data (solid lines – ηm) with
simulation data (dashed lines – ηloc /ηg l ob). The first row shows the comparison between
ηloc (left) and ηg l ob (right) compared to measurements. The second row validates the model
concerning the influence on primary torque for varying is (left) and primary speed for varying
MP (right). Measurements were made available by BTT.

ηloc and ηm is given. It is evident that the trends are presented well by ηloc . In the upper right
plot ηg l ob is given instead of ηl oc . The values compare well in number with the measurements.
The trends along all curves are the same.
The lower row presents the efficiency plotted against MP (left) and ωP (right). In both cases
the trends are presented very well, i.e. the efficiency finds a maximum value for a certain
torque. For increasing ratio the torque for the maximum efficiency decreases.
Increasing the belt speed, i.e. ωP , leads to less efficiency for both – the simulation and mea-
surement results. As the absolute belt speed increases so do the relative velocities. Resulting
from increased inertia forces in the arcs, the normal contact forces and therefore the frictional
forces do increase as well. Higher losses result.

Altogether it is concluded that an updated model, i.e. with well identified parameters, yields
precise results. More importantly the trends for different boundary conditions are included
which make the presented approach suitable for design optimization. Nevertheless, it is
important to identify the parameters correctly which is emphasized in the following.
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Figure 5.4: Thrust ratio comparison for different variator setups and varying load cases. For
the left and center graphs, ωP is varied in RPM. For the right graph MP is varied in Nm. All
plots are scaled between iF = 0.9 and iF = 1.8. Measurements were made available by BTT.

Additional Setups

Figure 5.4 shows comparisons between measurement and simulation for the additional
setups. It is remarked, that these are examples. The following discussion holds not only for
the respective case but for all three setups.
The overall trends are correct in the simulations but the deviations to the measurements
get higher compared to the results gained with VARREF. Some trends deviate qualitatively.
For example, the influence on ωP for VARB inverts wrt. the measurements. The element-
element stiffness parameters, the flank contact point etc. could not be updated with local
measurements. This updating process is necessary to gain as precise results as for VARREF.

The mismatch between simulations and measurements reflect not only in iF . The applied
boundary conditions lead also to different values of is or MP . These differences trigger a
change of iF naturally as it depends on these values. To quantify these changes standard
deviations σ∗ of the ratio between simulation value (v s

∗) and measurement values (vm
∗ )

are used, e.g. σiF = i m
F

i s
F

. The results are given in Table 5.4. Again the previous discussion

is confirmed. For VARREF the standard deviations are small indicating a good match to
the measurements. The additional setups still yield small but higher values for σ. For an
automatic updating process this measure is suggested for future works.

5.2.2 Further Aspects

Slip-Curves

Other global measures to test the belt system are slip-curves [46]. For a certain geometric
ratio the torque is increased continuously such that more and more slip occurs. For the case
of no torque at the SEC the speed ratio is taken as reference i r

s . The measure for slip is then
defined as

s = is − i r
s

i r
s

(5.1)
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VARREF VARA VARB VARC

σis 0.022 0.034 0.021 0.024
σiF 0.068 0.091 0.085 0.096
σMP 0.033 0.039 0.037 0.070

Table 5.4: Standard deviations for the different variator setups

where is measures the speed ratio at the current torque level. A typical result from measure-
ments for an UD configuration is shown in Figure 5.5a. The primary torque is increased
continuously and the speed ratio is recorded. The slip-curve includes different data about the
special belt setup resulting from all parameters. At “A” the transition torque is apparent, i.e.
the push-strand switches from LS to US. The height of this step again depends on different
parameters, e.g. endplay or friction. Around “B” the breakaway happens, i.e. the switch from
micro- to macro slip. Besides these specific points the increase of the slip due to increase of
the torque is a further measure that depends on the parameters.
Internal belt oscillations yield a broad band of measurement points. The average values of
these points are identified as the final slip-curve. This approach, i.e. to continuously increase
MP , cannot be used efficiently in simulations. The CPU times are too high for a continuous
increase of the load combined with a quasi-stationary behavior. The internal oscillations
dominate the results. Only discrete points can be gained from simulations. These are de-
terministic, i.e. one value results for one load. The simulation results are also expected to
oscillate around an actual average value which cannot be generated efficiently.

The slip-curve of Figure 5.5a is compared to simulation results in Figure 5.5b. The slip-step,
i.e. a transition between LS and US as push-strand, is apparent. This coincides with the
results gained in Subsection 5.1.1. The transition torque at “A” matches furthermore between
simulation and measurement very well.2 The slip increases more in the simulations before
the slip-step but matches well after “A”.
In Section 4.1 the parameter of real elements in the belt NE0 was identified as an unknown
but sensitive parameter to the simulation. This is confirmed for the slip-curve validation. In
case of an pre-stressed belt no slip-step is apparent whereas in case of too few elements the
slip-step is very high. A manual adjustment of all parameters was not successful. Besides NE0,
the element-ring friction, the contact height, the element’s longitudinal stiffness could be
identified as crucial parameters.
In OD the ring-tension does negatively contribute to the torque and the push-strand is always
the US. Thus, the push-strand does not change the location. No slip-step is expected for
MP > 0. This is confirmed in Figure 5.5c. A linear increase of the slip is apparent. The slope is
different again, which results from the discussed parameter uncertainties.
For the simulations also the begin of macro-slip, i.e. position “B”, can be seen at the end of the
curves. This confirms that the model shows qualitative good results. For quantitative matches
well identified parameters are necessary.

Endplay Tolerance

Tests with the endplay difference are compared here to further quantify the simulation results.
Elements are removed from the belt, i.e. the endplay increases. Otherwise, the boundary
conditions are chosen to be constant. For these tests the OD configuration is used. As the

2Remark that i t
s does not match fully and such a small deviation is expected.
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Figure 5.5: Slip-curves. Comparing measurement and simulation for ωP = 2000RPM. Mea-
surement were made available by BTT.

PRI is long, the length of the active arc can change without influencing the overall system
behavior. The slip increase can be studied in more detail.
Measurements are compared to simulation results in Figure 5.6a. In simulation and measure-
ments for both speeds one can observe that the speed stays relatively constant if one (-1el)
or two (-2el) are taken out of the belt. The active arc in the PRI is sufficient to build up the
full push-force. The torque equilibrium, taking into account the tension forces of the rings, is
fulfilled. Increasing the endplay further, i.e. removing more elements, yields that not the full
push-forces can be build up anymore (Figure 5.6b). As OEP is apparent in the PRI, the slip
increases. This leads to higher relative speeds between rings and elements which results in a
decreasedωS . This result – a constant zone at the beginning and a reduction ofωS at a certain
endplay – are the same for simulations and measurements. Only the qualitative discussion
holds as the reference case, i.e. 0el, cannot be matched.

5.3 Instationary conditions

As stated at the beginning, the motivation for the current model is the representation of the
full dynamics of pushbelt CVT systems including instationary phenomena. Two conditions
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(a) Qualitative comparison of the Endplay tolerance where ∆ωS is plotted and 0el is the
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Figure 5.6: Endplay Tolerance Results. Measurements were made available by BTT.

are analyzed in this section. Both show the applicability of the model for instationary cases.
On the one hand the usage of Stribeck curves proves the possibility to represent “scratch”. On
the other hand shifting behavior is compared to literature values.

5.3.1 Scratch

PENNINGS ET. AL. study the phenomenon “scratch”, i.e. gear rattle that is induced by rotational
vibrations due to frictional behavior. The element-ring contact is represented with a simple
model. Stick-slip is included and the friction coefficient has a negative slope for an increasing
relative tangential velocity. In Subsection 4.4.2 it is mentioned that the Stribeck laws as given
in Figure 4.15 did not change the overall working principle. Qualitatively the same results are
gained with constant friction coefficients.
In the following, the presented model is investigated on this NVH phenomenon. Therefore,ωP

is varied between 1000RPM and 4000RPM and FP between 0kN and 40kN. The simulations
run in UD (is ≈ 2.5) with MS = 0Nm, i.e. the condition when scratch is experienced.
No rotational vibrations can be observed for cases of scr0 and scr1. The rotational speed
of the SEC stays constant without a visible overlaid oscillation in all test cases. Oscillations
are observed however in case of high clamping forces, i.e. FP = 40kN, and when scr2 is used.
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Figure 5.7: Scratch analysis for FS = 40kN and varying ωP . The upper row shows the
resulting secondary angular velocities and the lower row shows the respective FFT analysis
of the derivative of ωS .

It holds υ > 0m then, i.e. a loose-strand with FPu = 0 exists. Push-forces couple the two
arcs only on one side, which is not the case for FP ≤ 30kN. Figure 5.7 compares the results
using either scr0 or scr2. The first row shows the resulting ωS varying ωP . Besides, the fast
Fourier transformation (FFT) of the derivative of ωS , i.e. P , is presented in Figure 5.7. It is
evident that rotational vibrations can be observed when scr2 is used. The frequency is velocity
independent as it is the case for measurements [76]. This is not the case when scr0 is used
as friction function. The FFT analysis shows different peaks at different frequencies with an
amplitude which is one order lower than for scr2. It is concluded that the present model
enables further studies concerning the NVH phenomenon of the belt system.

5.3.2 Shifting

Finally the shifting dynamics is investigated. CARBONE ET AL. performed measurements
in 2007 and with them validated the CMM model [8]. This improved the findings of [7] by
respecting pulley deformation within shifting cases.
In [8] the “geometric speed ratio” τ= RDR

RDN
is defined as the ratio between the primary radius
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Figure 5.8: Validation of shift dynamics. Measurements are taken from [8].

RDR and RDN . Its time derivative is τ̇. The thrusts are SDR and SDN for the primary and
secondary pulley respectively. It is assumed, that in the plots of [8] do not show the thrust ratio
iF = SDR /SDN but its inverse.3 Therefore, this work uses i−1

F to enable a visual comparison.
As precise parameters are not available for the variator of [8], only a qualitative analysis is
possible. Therefore, the setup VARREF is used as it yields the best results.

Figure 5.8a shows the influence on ωP in the creep-mode, i.e. slow shifting velocities. On the
one hand the linear dependency of i̇s on the natural logarithm of i−1

F is confirmed. On the
other hand the slope of the line increases with the angular velocity. It is furthermore remarked
that this linear relationship only holds for creep-mode. In the slip-mode the model suggests a
deviation from the linear slope.

IDE ET. AL. suggests in [30] a linear relation, i.e. i̇s ∝ iF , whereas [8] proves that this is only
valid for is > 1. Figure 5.8b validates this dependency between i̇s and i−1

F . For negative shift
speeds iF is greater4 for decreasing is . This means a higher primary clamping force FP is
needed to shift from e.g. is = 0.5 to is = 0.4 than from is = 1.6 to is = 1.5. For the inverted case,
i.e. the (high) positive shift speeds, iF decreases with is . The single curves do not cross for

3Following [8, Fig.15] (Figure 5.8b) for τ̇= 0 the system is in the equilibrium, i.e. the thrust ratio SDR /SDN

has the value of the steady state. As shown in this work and validated with measurements, it holds that iF > 1
for is < 1. This is not the case for the results of [8, Fig.15]. Using the inverse, i.e. i−1

F , yields reasonable results
for the stationary case.

4i.e. i−1
F is smaller
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i̇s = 0 as for the steady state the respective iF values differ for different speed ratios. Thus, a
shift is observed to a slightly positive shift speed i̇s > 0 which is also represented very well for
the model. Furthermore, the nonlinear relationship between i̇s and i−1

F is represented well by
the present model which is one of the major findings in [8].



6 Conclusion

This thesis described the pushbelt CVT – its modeling and simulation. This chapter first
summarizes the results and the conclusions and then describes possible avenue for future
research.

6.1 Summary

Chapter 1 explains why detailed insights into the system pushbelt continuously variable
transmission (CVT) are required to further improve the system. The increased driving comfort
for stop-and-go traffic in modern cities and the decreased CO2-footprint motivate this im-
provement. A compact overview about the phenomena within the pushbelt is given and the
most important concepts to describe the system’s state are introduced. The state of literature
about dynamics of CVTs is presented distinguishing between stationary and shifting models.
This thesis understands a pushbelt CVT as a multibody system (MBS) which enables an overall
model approach including stationary and instationary states. Prior models using multibody
systems which are validated and enhanced here are summarized as well. An overview about
the structure and objectives of this thesis concludes the first chapter. It is emphasized, that
the validation of the model is indeed an iterative process which treats the different aspects in
a logical order. Yet, all chapters have to be seen in a whole to grasp the results of the work.

Modeling ideas are discussed in Chapter 2. The dynamics of the elements, sheaves and
rings are discussed first. Elements and sheaves should be treated as rigid bodies considering
their deformation in the interactions. The rings require a deformable model. An arbitrary
Lagrangian-Eulerian (ALE) model is derived using two reference degrees of freedom (DOFs),
i.e. the rings velocity and its ratio, to describe the nonlinear deformation. Overlaid deforma-
tions, which also could be incorporated only kinematical, lead to a highly adaptable and fast
model.
Next interactions are discussed beginning with the element’s thickness as it changes the
stiffness of the element which has to be respected in the normal contact laws. Then the three
contact positions are treated separately. For the element-pulley contact a new kinematical
description enables arbitrary convex shaped sheaves and the coupling of both pulley-sheaves
in one contact law reduces the dimension of the contact law. To respect the nonlinearity of
the element’s longitudinal deformation a contact law with physically interpretable parame-
ters is introduced. The Push-Force-Tester system uses parts of the complete CVT to enable
identification of these parameters which are unknown from the overall system. The contact
at the element’s saddle is discussed in more detail for spatial models. On the one hand the
prior contact kinematics are enhanced to avoid unphysical torques around the center line of
the rings. On the other hand a tracking law balances the rings and the elements in case of
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misalignment respecting the normal force influence.
To reduce simulation time three numerical techniques are presented. The initialization re-
spects the force equilibrium instead of solely the kinematics which reduces the transition
phase at the beginning of every simulation. A reformulation of the linear complementarity
problem that is used for the representation of the pulley-deformation with projection func-
tions yields faster simulations in case of a compatible contact kinematics. Using algorithms
for sparse matrices in combination with specific properties of the integrator reduce the time
to set up the mass-action matrix in case of a non-smooth representation of contact laws.
Finally, the steps for post processing are shown. This forms the basis to yield local and global
results which are compared in the subsequent chapters.

Parameter studies are performed to check the accuracy of the model. Numerical aspects are
treated in Chapter 3. The number of elements that are used to represent the real number of
elements in the belt is studied first. A minimal number of 200 elements is needed to achieve
results close to a reference of 400 elements. Set-valued contact laws resulting in non-smooth
equations of motions are studied next. It is shown that for the element-ring friction it is useful
to incorporate non-smooth effects. For all other cases the simulation time increases strongly
and the benefit is unclear. Finally, different models for the rings are investigated. It is shown
that the ALE model performs very well. The results match with a previously validated ring
model but the CPU time is reduced. Robust integration in spatial situations in reasonable
simulation time is only possible with the ALE model. The stiff DOFs in axial direction can be
incorporated on a kinematical level which is not possible for classical models.

Physical based parameters are varied and discussed in Chapter 4 and serve as the basis for
parameter identification as well as for design optimizations. The most important parameters
are treated showing their main influences on the system’s behavior. These are the number of
elements that exist in the belt assembly, the contact position at the element’s flank as well
as the axial stiffness, the geometry of the element’s head in terms of the contact position
and the friction parameters for the contact at the flank as well as at the saddle. The complex
interactions, which vary for different ratios and load conditions, are discussed qualitatively
using exemplary local phenomena.

In Chapter 5 validating results are presented. A qualitative overview about the most important
local measures along the belt validates the model’s approach. Quantitative matches are gained
comparing the element’s axial forces in the arc as well as the longitudinal forces along the
belt. Furthermore, kinematical behavior shows good correlation in terms of spiral running for
different ratio and load cases. The pitch angle of the elements within the arcs however, only
agrees qualitatively.
The thrust ratio and efficiency match quantitative for well identified parameters. Further
setups lack precise parameters. Qualitative accordance results. Slip-curve experiments fit
their virtual counterparts approximately, i.e. a slip-step is apparent as well as a maximum
torque. Large parameter sensitivity is found with respect to the parameters discussed in
Chapter 4. Similarly, the endplay tolerance shows qualitatively good correlation but the
precise parametrization remains unclear.
Finally, instationary phenomena are investigated. The “scratch” phenomenon, which causes
gear rattle is linked to Stribeck friction when operational endplay is apparent in the belt.
For shifting cases, the time derivative of the speed ratio is in line with measurements in the
literature.
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6.2 Outlook

This thesis demonstrates that modeling the pushbelt CVT as a MBS is a useful approach
to study the internal dynamics as a whole. Yet, it became clear that further research and
development is required for a fully detailed model.
The correct identification of the system’s parameters is an essential requirement to obtain
correct results. As shown for the nonlinear stiffness of the elements, special measuring devices
could be used to avoid a full integration of the system which involves all parametric influences.

For well identified variator models the simulations can be used for design optimization. The
model’s broad field of design parameters leaves room for more influence studies beyond those
performed for the validation within this thesis.
The element-sheave pitch is one example that shows a need for it. The nonlinear push-force
functions, the contact position at the element flank as well as the number of elements in
the belt require more dedicated identification. Similarly to the Push-Force-Tester system,
submodel testing seems to be a promising approach.
Therefore, a further reduction of simulation times is useful. Parallel as well as implicit integra-
tion schemes that focus on the efficient evaluation of the nonlinear contact kinematics could
reduce the simulation time.
This enables the efficient treatment of the pushbelt CVT as a spatial system incorporating for
example misalignment as well. The proposals for contact kinematics and ring tracking could
be tested in practice. The expected influence on the force distributions along the belt could
be used in post-processing to minimize for example the stresses in the elements.

Based on the ALE technique efficient models for shifting dynamics could be derived. The
two reference DOFs have proven to efficiently incorporate the major effects that are apparent
within the CVT. By projecting the masses of the elements onto this model, similarly to ideas
presented in [6], an efficient and easily adaptable model could be derived for the application
in control, i.e. drivetrain models.





A Eulerian Description for a One Dimen-
sional Closed Continuum

In the following the transformation between the Eulerian description and the Lagrange
description is shown for a one dimensional continuum. For the general case IRSCHIK and
HOLL derive the equations [32]. The following derivation holds for a one dimensional closed
continuum and thus is simpler to grasp.1

A.1 Preliminaries

The position of a particle along a curve x̄ is described with its original position ξ and its
motion along the curve s(t ) with

x̄ = ξ+ s(t ),
d x̄

dξ
= ∂x̄

∂s
= 1,

d x̄

d t
= d s

d t
(A.1)

where ξ is the Eulerian coordinate describing a fixed point in space and x̄ is the Lagrangian
coordinate following the particle over time.
A function f is defined as an integral over g (x̄) with time depending limits l = l (t ),u = u(t ).

f =
∫ u

l
g (x̄, t )d x̄

The absolute time derivative of f is given by the Leibniz integral rule.

d f

dt
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d x̄ +
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∂g

∂t
d x̄ (A.2)

A.2 Direct Approach

Starting with the Lagrangian L =T −V and the standard Lagrange equation

d

dt

∂L

∂q̇k
− ∂L

∂qk
= 0

a direct method to get the EOMs can be derived. With the kinetic energy

T = 1

2

∫
Ω

vT vρdΩ= 1

2
ρ

∫
Ω

vT vdΩ (A.3)

1The derivation was done together with my co-worker Thorsten Schindler and I want to acknowledge his
support and contributions [28].
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whereΩ is the original volume for the integration, ρ is the constant density of the material
and v the current velocity field, it follows the expression for the Lagrange equation.

d

dt

∂T

∂q̇k
− ∂T

∂qk
=Qk with Qk =− ∂V

∂qk
(A.4)

For the given situation of a beam, the integral is constant in the two cross-section directions
resulting in the area A. Only the integral over the length from limit l to limit u has to be
calculated along the beam in direction x̄. Inserting this into the Lagrange equation, it follows

d

dt
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)
(A.5)

Remark that the limits of the integral do not depend on the generalized velocities q̇k but just
on the transformation with s.

A.3 Closed Curve

For a closed curve it holds dl
dt = du

dt and gv (l ) = gv (u). Thus, the first two terms in (A.5) cancel
each other. Following the fundamental theorem of calculus, the first integral of it is zero as
well. ∫ u

l
ṡ
∂gv

∂x̄
d x̄ = ṡ(gv (u)− gv (l )) = 0

A transformation of variables to integrate along ξ with u = L+ s and l = 0+ s and the length L
of the beam yields finally

d

dt

∂T

∂q̇k
= 1

2
ρA

∫ L

0

∂gv

∂t
dξ (A.6)

where the relative2 time derivative is needed.
Using the same ideas, the derivative of the kinetic energy wrt.. the generalized positions
follows.
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2
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0

∂vT v

∂qk
dξ

The potential energy can be represented as an integral over the volume V = ∫ u
l gV d x̄ as well.

Thus, the last term of (A.4) is defined as well.
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Therefore, all expression are written in Eulerian description and for this special case of a
closed beam structure the transformation does not yield additional terms.

2The absolute time derivative is incorporated already. Only a direct time dependency is left and the relative
time derivative is needed.



B Equations for the ALE Ring Model

The derivation in Subsection 2.1.2 states the most important ideas as well as the integrals
that result from the derivation. For their evaluation more explicit expressions are given for
completeness as it may serve future works as reference.
The single gradients of P are

∂P
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and for the relative time derivative of P one yields
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The derivative of the strain energy follows with
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To derive the simplifications for the curvature energy the following derivations ofA are used.
The reference directions have unit length.

A= [
tRe f nRe f bRe f

]
(B.3)

For a planar reference curve this matrix can be written depending on one rotation angle φ.

A=
 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 (B.4)

Thus, it follows for the derivatives

A ′ =
−sinφ cosφ 0
−cosφ −sinφ 0

0 0 0

= [−nRe f tRe f 0
]

(B.5)

A ′′ =
−cosφ −sinφ 0

sinφ −cosφ 0
0 0 0

= [−tRe f −nRe f 0
]

(B.6)

which simplifies when multiplied with the reference directions.



C Additional Plots
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Figure C.1: Local curves for varying the number of real elements NE0. Shown are the cases
BC01, BC02, BC03.
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r = 0.0 r = 0.26 r = 0.51 r = 0.77

Pulley normal force on V-surface

Block compression force

Transmitting force

Radial frictional force

Ring traction

Saddle normal force

Figure C.2: Local simulation results in underdrive (iS ≈ 2.0) which correspond to Figure C.3
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Figure C.3: Local measurement results in underdrive from [35, p. 143]
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r = 0.0 r = 0.26 r = 0.51 r = 0.77

Pulley normal force on V-surface

Block compression force

Transmitting force

Radial frictional force

Ring traction

Saddle normal force

Figure C.4: Local simulation results in medium (iS ≈ 1.0) which correspond to Figure C.5
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Figure C.5: Local measurement results in medium from [35, p. 144]
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r = 0.0 r = 0.26 r = 0.51 r = 0.77
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Figure C.6: Local simulation results in overdrive (iS ≈ 0.5) which correspond to Figure C.7
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PRI-Measurement PRI-Simulation
SEC-Measurement SEC-Simulation

UD1 UD2 UD3 UD4 UD5

UD6 UD7 UD8 UD9 UD10

UD11 OD1 OD2 OD3 OD4

OD5 OD6 OD7 OD8 OD9

OD10 OD11 OD12 OD13 OD14

Figure C.8: Validation for arc kinematics of the cases in Table 5.2 for spiral running. Every
ordinate is scaled linearly between 0.5mm and −0.4mm. Measurements were made available
by BTT.



113

PRI-Measurement PRI-Simulation
SEC-Measurement SEC-Simulation

UD1 UD2 UD3 UD4 UD5

UD6 UD7 UD8 UD9 UD10

UD11 OD1 OD2 OD3 OD4

OD5 OD6 OD7 OD8 OD9

OD10 OD11 OD12 OD13 OD14

Figure C.9: Validation for arc kinematics of the cases in Table 5.2 for element-sheave pitch.
Every ordinate is scaled linearly between 3◦ and −4◦. Measurements were made available
by BTT.
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