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To define the nonlinear behaviour of a thermoacoustic system, it is important to find the
regions of parameter space where limit cycles exist, and furthermore, to find the regions
where the period-1 limit cycles bifurcate to period-2", quasiperiodic or chaotic behaviour.
In an earlier study we have shown that matrix-free continuation methods can efficiently
calculate the limit cycles of large thermoacoustic systems. This paper demonstrates that
these continuation methods can also calculate the bifurcations to the limit cycles and show
which coupled flame-acoustic motion causes the qualitative change in behaviour.

The matrix-free methods are demonstrated on a model of a ducted axisymmetric pre-
mixed flame, using a kinematic G-equation solver. The methods find limit cycles and period-
2 limit cycles, and fold, period-doubling and Neimark-Sacker bifurcations as a function of
the location of the flame in the duct, and the aspect ratio of the steady flame.

Premixed flames have been shown to exhibit periodic, period-2, quasiperiodic and chaotic behaviour
in both experiments [1, 2, 3, 4] and numerical simulations [5, 6, 7]. The existence of these nonlinear
behaviours is often a strong function of the system’s parameters and the acoustic amplitude. As pa-
rameters vary there may be a sharp change in system behaviour. This could be because the dominant
nonlinear behaviour ceases to exist (such as after a fold bifurcation), or this could be because there
is a region of multistability, and the system has switched mode [7]. In the thermoacoustic literature
there is little explanation, however, of why the qualitative behaviour of the system changes at a given
parameter-amplitude combination.

Limit cycles can be found numerically using frequency domain or time domain techniques. Ther-
moacoustic limit cycles are commonly estimated using frequency domain techniques, such as the Flame
Describing Function (FDF) [8]. Frequency domain techniques can estimate the location of fold bifurca-
tions, where a limit cycle becomes unstable [9]. They cannot estimate the location of period-doubling
or Neimark-Sacker bifurcations, however, because these bifurcations occur when a second frequency
becomes unstable.

Frequency domain techniques can only consider one frequency at once. Time domain techniques do
not have this limitation and can calculate both limit cycles and their bifurcations. In the time domain,
brute force timemarching has been used to find parameter regions where a ducted premixed flame
model exhibits period-1, period-2", frequency locked, quasiperiodic and chaotic behaviour [7], and to
examine these attractors in phase space. In particular, this study highlighted the importance of unstable
attractors in mode switching. Brute force timemarching has several limitations. First, it is computation-
ally expensive because it may take a long time for the system to settle to an attractor. Second, the system
will converge only to stable attractors (although it may remain long enough near an unstable attractor
for its amplitude to be estimated using the time series). Third, the time series alone cannot explain why
there is a qualitative behavioural change between parameter regions.
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Continuation analysis is a time domain technique that tracks solutions as a function of system pa-
rameters. These solutions can be fixed points, limit cycles or bifurcations. For limit cycles, continuation
analysis can improve on brute force timemarching: it converges to limit cycles much faster, it can con-
verge to both stable and unstable cycles, and it can find the bifurcations to the limit cycles and therefore
explain why the behaviour changes. Bifurcations occur when one coupled motion (‘'mode’) changes in
stability, which is defined by the eigenvalues of a suitable linearisation. The eigenvector then defines
the coupled flame-acoustic motion ('mode’) that causes the change in system behaviour. If this motion
is known, then suitable control or damping could be designed such that the bifurcation either does
not occur, or occurs in a more convenient parameter region. In an earlier paper, we have shown that
matrix-free continuation methods are efficient for finding limit cycles of large thermoacoustic systems
[10]. These methods were demonstrated on a model of a ducted diffusion flame. The model was found
to be only weakly nonlinear, however, and therefore it did not display period-2" or quasiperiodic be-
haviour. In this paper, the methods are demonstrated on a model of a ducted axisymmetric premixed
flame, using a kinematic G-equation solver. The methods find period-1 and period-2 limit cycles, and
fold, period-doubling and Neimark-Sacker bifurcations as a function of two system parameters: the lo-
cation of the flame in the duct, and the aspect ratio of the steady flame. The matrix-free methods and
their numerics are covered in depth in Ref. [10], and will therefore not be repeated here. Further de-
tails about the numerical implementation of the premixed flame model, and the incorporation of the
matrix-free methods are included in Ref. [11].

1 Model description

The ducted premixed flame model consists of an axisymmetric flame domain coupled to a 1D acoustic
duct. The flame domain uses the kinematic G-equation and a level set method to advect the flame
shape. The model of the acoustic duct is the same as that used in Refs. [12, 13], and i§ discretised
using Galerkin modes. Using the non-dimensionalisations u = I%, p= Wﬁﬁo’ X = i—fg,t = tz—é;’, the non-
dimensional momentum and energy equations for the acoustic velocity and pressure are:

ou Odp
4+ 2 = 0
ot ox
0p Ou .
E"l‘ﬁ‘FCP—ﬁTQa(X—Xf) = 0
where:
-1)0 .0
pr o= Qe 62
Y Polo Qo

Premixed flames propagate in a direction that is normal to the local flame surface. This paper uses the
G-equation method in the flame domain, where the flame surface is defined as the zero contour of a
scalar field and the flame normals are defined by the local gradient of the scalar field. Using a rotating
boundary condition at the base of the flame, the G-equation model in this paper can simulate flame
flashback, flame base motion, pinch-off and the formation of cusps. The evolution of the G-field in
time is given by:

0G
SL+UVG-s|vG| = 0 <1>

where sy is the flame speed, and U is the velocity vector in the flame field. The flame speed in this paper
is dependent on curvature, because otherwise the G-equation forms unphysically sharp cusps. For a
conical flame of aspect ratio §, the flame speed is given by:

Up
SL = > (1 + MK gxi)

vV1+p
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where M is a non-dimensionalised Markstein length and x,; is the signed axisymmetric curvature.
Strain effects are not included in the flame speed because it is not appropriate with the current veloc-
ity model. Because curvature is a second order quantity, however, adding curvature effects requires a
significant drop in timestep to ensure that the CFL condition is met, and therefore timemarching is
significantly slower.

When the equivalence ratio is fixed across the domain, and the domain is axisymmetric, the heat
release rate is given by:

ani =PSLo ((,b) hr (Qb) LZ]TT‘ (1 + MxK axi) |V_G| 0(G)drdz (2)

The G-equation is simulated using a modified version of the LSGEN2D code developed by Hemchan-
dra (IISc Bangalore)[14], who used it to analyse the response of premixed flames to acoustic forcing [15]
and to equivalence ratio fluctuations [16]. The code uses a local level-set method, a fifth order Weighted
Essentially Non Oscillatory (WENO) procedure to take derivatives [17], and in this study, the HCR-2
method of Hartmann is used to reinitialise the G-field [18].

A simple velocity model is applied to the flame domain. Experiments on premixed flames have shown
that acoustic perturbations cause travelling waves to advect down the flame [19]. The travelling waves
typically advect more slowly than the mean flow. In this paper, the 1D advection equation propagates
the acoustic disturbance at the burner downstream [15, 5, 20]. The velocity field is therefore simply the
time history of the acoustic perturbation at the burner lip; the further from the burner lip, the further
back in time that the acoustic disturbance was generated. The transverse velocity is determined by sat-
isfying continuity. The acoustic disturbance travels a speed of uy/ K, where K is a parameter set typically
between 1.0 and 1.5 [21]. The value of K has been demonstrated in numerical studies to have a strong
effect on the nonlinear behaviour of premixed flames [5]. In particular, subcritical Hopf bifurcations are
more prevalent at high values of K, and there are more parameter regions that have multiple limit cycles
at different amplitudes and frequencies.

The velocity model produces flame shapes that look similar to those seen in experiments using a
relatively simple formulation. This velocity model gives rise to some non-physical behaviour, however,
such as that the mean heat release rate decreases as the forcing amplitude increases.

In this paper, there are several simplifications in thermoacoustic model: there is no temperature jump
in the duct, the flame is considered compact, the acoustic damping model is based on simple coeffi-
cients at particular frequencies, the velocity model changes the mean heat release rate and does not
allow for flame stretch, and the (1 + Mx) term was not included in the heat release integral (equation 2).
With these simplifications, the model shows the same qualitative behaviour as comparable experiments
[1], but would not be suitable for quantitative comparisons.

The aim of this paper is to demonstrate that the continuation algorithms can efficiently map the non-
linear dynamics of a thermoacoustic system with a premixed flame model, by finding limit cycles and
bifurcations to the limit cycles. The results in the next section demonstrate this well using the simplified
thermoacoustic model.

2 Results

The matrix-free continuation methods were used to generate a bifurcation surface of limit cycles as
two parameters are varied: the flame location in the duct, xr, and the aspect ratio of the flame, § =

[ 2
(?—f) — 1. The parameters that are held fixed are: ¢ = 1.0, « = 0.7, K = 1.5, M, =0.04, Ly =1, pg =

1.16kg/m?, pg = 10°Pa, y = 1.4, and acoustic damping factors ¢; = 0.012 and ¢, = 0.024! . The G-field is
discretised on a 401 x401 grid with spacing 0.005 and local level set regions 12 grid cells wide. A timestep

L1t should be noted that there is a slight inconsistency with these damping values - which are dependent on the duct dimensions,
Ry, Ly - and the flame parameters, which set a physical flame size through the flame speed, and the ratio R¢/Ry through a.
For a consistent set of parameters, ¢; should be set slightly lower, and ¢y set slightly higher. Because the damping model in
the acoustics is already basic, and the results of this paper are not used for quantitative comparisons this discrepancy was
considered acceptable.
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of 1.5 x 107 is used with 14 reinitialisation steps per timestep, with reinitialisation Courant number of
0.5. Twenty Galerkin modes are used for the acoustics.

2.1 Bifurcation surfaces

Figure 1 shows the bifurcation surface of period-1 limit cycles, whose frequency is close to that of the
fundamental acoustic mode. The surface has regions with unstable limit cycles (dashed gray lines) and
regions with stable limit cycles (solid black lines), whose boundaries are defined by the location of the
period-doubling bifurcation (red line) and the Neimark-Sacker bifurcation (magenta line). The surface
is shown only for realistic flame aspect ratios in the region 2 < § < 6, and when the flame is in the first
half of the acoustic duct, Xf<0.5.
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Figure 1: Bifurcation surface of period-1 limit cycles, as two parameters are varied: the flame location
in the duct, x¢, and the flame aspect ratio, . The surface is composed of over 600 limit cycles
each converged to ||x(0) — x(T)|| <5 x 107%. The z-axis is the maximum acoustic velocity at
the flame. The surface has regions with unstable limit cycles (dashed gray lines) and regions
with stable limit cycles (solid black lines), whose boundaries are defined by the location of
the period-doubling bifurcation (red line) and the Neimark-Sacker bifurcation (magenta line).
Subfigure (a) shows the surface from above, and subfigures (b) and (c) show the same 3D sur-
face from two different views.

Figure 2 shows the bifurcation surface of period-2 limit cycles, whose frequency is close to half that
of the fundamental acoustic mode. The surface shows the maximum velocity value at the flame during
the limit cycle - this is one of several surfaces that show the period-2 cycle (see Figure 3). The surface
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has regions with unstable limit cycles (dashed blue lines and gray shading) and regions with stable
limit cycles (solid blue lines), whose boundaries are defined by the location of the period-doubling
bifurcation (red line) and the fold bifurcation (green line). The period-doubling bifurcation is the same
as that on the period-1 surface (Figure 1). The surface is shown for the same parameter range as Figure
1. The fold bifurcation exists at high 8 but its location is unresolved.
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Figure 2: Bifurcation surface of period-2 limit cycles, as two parameters are varied: the flame location
in the duct, xf, and the flame aspect ratio, B. The surface is composed of over 1200 limit cy-
cles each converged to ||x(0) — x(T)|| <5 x 107%. The surface has regions with unstable limit
cycles (dashed blue lines and gray shading) and regions with stable limit cycles (solid blue
lines), whose boundaries are defined by the location of the fold bifurcation (green line) and
the location of the period-doubling bifurcation (red line) - which is the same as that in Figure
1. Subfigure (a) shows does not show the unstable limit cycle surface; subfigures (b) and (c)
show both the stable and unstable limit cycle surfaces from two different views.

Figures 1 and 2 only show the amplitude of the velocity fluctuation during the limit cycles. For the
period-2 cycles, more information can be gained by plotting both the peaks and the troughs of the time
series during the limit cycle. This is how the experimental results of Kabiraj [1] and the computational
results of Kashinath [7] are presented. Figure 3 shows a 2D slice of the combined period-1 and period-2
bifurcation surfaces, taken at § = 4, with the y-axis showing both the peaks and the troughs of the limit
cycles.
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Figure 3: 2D slice of the combined period-1 and period-2 bifurcation surfaces, taken at § = 4. The y-
axis plots the peaks and troughs of the velocity time series: period-1 peaks and troughs are
shown in black, period-2 peaks are shown in red and period-2 troughs in blue. A solid line
represents a stable limit cycle; a dashed line represents an unstable limit cycle. The period-
doubling bifurcation is shown as a red dot; the fold bifurcations are shown as green dots.

The period-1 cycles (black) have only one peak and one trough, and these are not symmetric about
zero - the velocity peak has a larger magnitude than the velocity trough. The period-2 peaks (red) and
period-2 troughs (blue) form a more complicated shape. At some locations the period-2 cycles have
two peaks and two troughs (0.15 < xy < 0.16, 0.17 < xy), and at other locations the period two cycles
have only one peak and one trough (xr < 0.15,0.16 < xf < 0.17). This difference occurs because the
period-2 cycles are composed of two frequencies, whose relative magnitudes change along the period-
2 branch (see next section). As the period-2 branch approaches the period-doubling bifurcation, the
two peaks and two troughs close together. The period-doubling bifurcation is subcritical: the period-2
cycles emerging from it are unstable, and overlap with the stable period-1 limit cycle. There is therefore
a region of bistability between 0.182 < xy < 0.240, where four attractors exist: a stable period-1 limit
cycle, a stable period-2 limit cycle, an unstable period-2 limit cycle, and an unstable fixed point.

Itis important to note that there are only two fold bifurcations on Figure 3 - the four green dots at xf =
0.240 are not four separate fold bifurcations, they are a single fold bifurcation acting simultaneously on
the four separate traces. The same is true of the two green dots at x¢ = 0.06.

The period-2 peaks and troughs on Figure 3 oscillate with a wavelength of Ax; = 0.1, which matches
the wavelength of the twentieth Galerkin mode (only twenty were considered). This is probably an
indication that a larger number of Galerkin modes are required in the discretisation. Including more
Galerkin modes would probably smooth the peaks and troughs, but would probably not qualitatively
change the behaviour [7].

2.2 Limit cycles

Once the limit cycles have been found by the continuation methods, their form can then be analysed.
At an operating condition of x = 0.195 and flame aspect ratio 4 (Figure 3), there are three limit cycles:
a stable period-1 limit cycle, an unstable period-2 limit cycle and a stable period-2 limit cycle. All three
of these cycles have comparable velocity amplitudes at the flame. In this section, the form and spectra
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of these three limit cycles are compared.

Figure 4a shows snapshots of the flame during the stable period-1 limit cycle. The flame shapes are
qualitatively similar to those seen in experimental axisymmetric flames [19]. In particular, it was found
that including curvature effects was important if flame shapes are to be compared with experimental
ones. Without curvature the cusps become too sharp, especially at the centreline.

Figure 4b shows the time traces and spectra of the acoustic velocity and pressure at the flame, and the
heat release of the flame. The heat release time trace is not sinusoidal; it contains a significant amount
of higher harmonics. This will always be true when there are cusps on the flame surface.
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Figure 4: Snapshots of the flame surface (a) and time traces and spectra (b) for the stable period-1 limit
cycle at x = 0.195, with steady state flame aspect ratio of 4.

Near the period-doubling bifurcation, the period-2 cycles have a particular form where the cusps
alternate position during the first and second halves of the cycle. Figure 5 shows the equivalent of Figure
4, but for the unstable period-2 limit cycle. The black lines show the flame shape during the first half
of the cycle and the gray lines show the flame shape during the second half of the cycle. Because this
is a period-2 limit cycle, a peak has appeared on the spectra at 0.9, which is half the frequency of the
fundamental acoustic mode.
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Figure 5: Snapshots of the flame surface (a) and time traces and spectra (b) for the unstable period-2
cycle at xy = 0.195, with steady state flame aspect ratio of 4. The time scale is the same as Fig.
4.

When further from the period-doubling bifurcation, however, it is more difficult to identify that the
cycle is part of the period-2 branch, and not just a limit cycle with half the frequency of the fundamental
acoustic mode - the peaks of the time trace lose the characteristic one-up, one-down structure that is
commonly associated with period-2 cycles. In other words, the half-frequency starts to dominate, and
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the flame shape does not alternate between the two halves of the cycle. Figure 6b shows an example of
this, for the stable period-2 cycle.
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Figure 6: Snapshots of the flame surface (a) and time traces and spectra (b) for the stable period-2 cycle
at xy = 0.195, with steady state flame aspect ratio of 4. The time scale is the same as Fig. 4.

The qualitative change in the form of the cycle along the period-2 branch can be seen using phase
portraits. Figure 7 shows the phase portraits of the converged period-2 cycles at different locations
along the period-2 branch of Figure 3, starting from near the Hopf bifurcation (Figure 7(a)) and moving
along the branch towards towards the period-doubling bifurcation (Figure 7(t)). Because this branch of
period-2 cycles is a strong function of two frequencies, it will not be captured well by frequency domain
methods such as the FDE because they consider each frequency independently.
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Figure 7: Phase portraits of the period-2 limit cycles at different locations along the period-2 branch
of Figure 3. Near the Hopf bifurcation (a), the cycle is nearly sinusoidal with a frequency of
half the fundamental acoustic mode. The cycle becomes less sinusoidal as x increases (b-h),
because the response at the fundamental acoustic mode increases relative to the response at
the half frequency. As the cycle moves closer to the period-doubling bifurcation (i-r) the phase
portraits develop the familiar double loop form of a period-2 cycle, because the response of
the fundamental acoustic mode is much greater than that of the half frequency. The fold bi-
furcation occurs between (0) and (p); the period-2 cycles (a-o0) are stable, the period-2 cycles
(p-1) are unstable.
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2.3 Bifurcations

The Floquet multipliers describe the stability of a limit cycle to infinitesimal perturbations. Bifurcations
to the limit cycle occur when a Floquet multiplier, or complex pair of Floquet multipliers, cross the unit
circle. The location of the crossing point defines the type of bifurcation. The ducted premixed flame
model shows several bifurcations of limit cycles: fold bifurcations, period-doubling bifurcations and
Neimark-Sacker bifurcations. In all the Floquet multiplier plots of this section, the four largest magni-
tude Floquet multipliers are converged to 102 accuracy with the Arnoldi algorithm. The Floquet mul-
tiplier at (+1,0) is the trivial one which defines a limit cycle.

2.3.1 Fold bifurcation

A fold (LPC) bifurcation occurs when a Floquet multiplier crosses the unit circle at +1. The bifurcation
changes the stability of a branch of limit cycles from stable to unstable. A fold bifurcation is observed
on the period-2 branch of Figure 3 at x¢ = 0.239. Figure 8 shows the Floquet multipliers of the period-2
cycles either side of the fold bifurcation in Figure 3, which clearly show the Floquet multiplier crossing
+1. Together, the fold bifurcation at xy = 0.239 and the subcritical period-doubling bifurcation at xr =
0.182 create a bistable region, because between 0.182 < xy < 0.239 there are both stable period-1 limit
cycles and stable period-2 limit cycles. Mode switching is possible in this parameter region.
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Figure 8: Floquets multipliers either side of the fold bifurcation, at (x rymax(ug)) values of (0.239,0.224)
(left) and (0.239,0.244) (right). The fold bifurcation is caused by the Floquet multiplier crossing
(+1,0). Only the four largest magnitude Floquet multipliers are shown.

2.3.2 Neimark-Sacker bifurcation
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Figure 9: Floquets multipliers either side of the Neimark-Sacker bifurcation on Figure 1, at flame as-
pect ratio of 2.4 and xf values of 0.2 (left) and 0.175 (right). The Neimark-Sacker bifurcation is
caused by the complex conjugate pair of Floquet multipliers crossing the unit circle.

A Neimark-Sacker (torus) bifurcation occurs when a complex conjugate pair of Floquet multipliers
crosses the unit circle. The bifurcation creates a branch of quasiperiodic oscillations. A quasiperiodic
oscillation has two incommensurate frequencies, and therefore forms a torus in phase space. Figure
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9 shows the Floquet multipliers at a limit cycle either side of the Neimark-Sacker bifurcation, which
clearly show the complex pair of Floquet multipliers crossing the unit circle.

A Neimark-Sacker bifurcation can also be seen from a time series. Starting at the unstable limit cycle
just after the Neimark-Sacker bifurcation, the system grows exponentially away from the limit cycle,
with the peaks oscillating at a second frequency. The ratio between these two frequencies is given by the
argument of the complex eigenvalue pair, divided by 27. For the pair of Floquet multipliers in Figure 9,
the ratio between the two frequencies is 10.57 (to 2d.p.). This can be seen in the time series of Figure 10,
where the peaks oscillate with a period 10.57 times that of the limit cycle. It is important to note that if
this number were rational, then the oscillation would be frequency locked and not quasiperiodic.
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Figure 10: Time series of the system growing exponentially away from an unstable limit cycle just after a
Neimark-Sacker bifurcation. The peaks oscillate at a second frequency that is defined by the
argument of the pair of Floquet multipliers that cross the unit circle.

2.3.3 Period-doubling bifurcation
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Figure 11: Floquets multipliers either side of the period-doubling bifurcation, at xy values of 0.193 (left)
and 0.175 (right). The period-doubling bifurcation is caused by the Floquet multiplier cross-
ing (-1,0).

A period-doubling (flip) bifurcation occurs when a Floquet multiplier crosses the unit circle at -1. The
bifurcation creates a branch of period-2 limit cycles, and the period-1 limit cycle becomes unstable.
Figure 11 shows the Floquets multipliers at a limit cycle either side of the period-doubling bifurcation
in Figure 3, which clearly show the Floquet multiplier crossing (-1,0).

A period-doubling bifurcation can also be seen from a time series (Figure 12). Starting at a the unsta-
ble limit cycle just after the period-doubling bifurcation, the system grows exponentially away from the
limit cycle, with the peaks forming a characteristic one-up, one-down pattern. Because the limit cycle
was converged to a high tolerance, and because the unstable Floquet multiplier is only just outside the
unit circle, the system requires a long time to reach the period-2 limit cycle.

10
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AL

Figure 12: Time series of the system growing exponentially away from an unstable period-1 limit cycle
just after a period-doubling bifurcation. The peaks form a characteristic one-up, one-down
pattern. The first and the last boxes have the same scale, to show that the period-2 limit cycle
has roughly twice the period of the unstable period-1 limit cycle.

The mode switching section of the time series in Figure 12 also shows that the period-doubling bi-
furcation is subcritical. Because the unstable limit cycle is only just beyond the period-doubling bifur-
cation, then if the bifurcation were supercritical, the system would quickly reach a stable period-2 limit
cycle with a relatively low magnitude in the half frequency. In other words, the stable period-2 cycle
would be very similar to the unstable period-1 cycle, with only a small one-up, one-down variation in
the peaks and troughs.

At the period-doubling bifurcation, the Floquet mode that corresponds to the Floquet multiplier at
-1 shows which coupled motion of the system is responsible for the bifurcation. This Floquet mode is
shown schematically in Figure 13. At the frequency of the fundamental acoustic mode, the flame has
two cusps on its surface. At half of this frequency, there should be only one cusp. The Floquet mode is
a coupled motion with: (1) a flapping motion of the flame surface, where the tip and base of the flame
move outwards and the middle of the flame moves inwards, coupled with (2) a variation in the velocity
field every other cycle, and (3) a reduction in acoustic pressure in the duct and an increase in acoustic
velocity in the duct before the flame.

3 Conclusions

Matrix-free continuation techniques were applied to a model of a ducted premixed flame. The flame
model uses the kinematic G-equation, with a local level set solver. The premixed flame model has many
attributes of equivalent experimental systems: the flame is axisymmetric, the flame speed is dependent
on the curvature, the flame has sharp cusps, and the flame is capable of pinch-off, flashback and bulging
at the burner lip. A similar ducted premixed flame model has been shown previously by Kashinath to
exhibit limit cycle, period-2", quasiperiodic and chaotic behaviour [7], and to have many parameter
regions that are multistable. These results show qualitatively the same phenomena observed in experi-
ments by Kabiraj [1].

The continuation techniques are used to efficiently find a surface of stable and unstable limit cy-
cles, as two system parameters vary. The continuation methods also explicitly find period-doubling
and Neimark-Sacker bifurcations, by examining the Floquet multipliers of the limit cycles. A separate
surface of period-2 limit cycles was found emerging from a subcritical period-doubling bifurcation.
This is the first computational thermoacoustic study where period-doubling and Neimark-Sacker bi-
furcations have been found. The Floquet modes are examined at the bifurcations to show the coupled
flame-acoustic motions that are responsible for the qualitative changes in behaviour. The continuation
methods can find unstable limit cycles easily, whereas many other techniques cannot. This is important
because the unstable limit cycles are crucial for mode switching [22, 7] and for separating the basins of
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Figure 13: Floquet mode for the Floquet multiplier that causes the period-doubling bifurcation. The left

hand image shows the flame shape and streamlines of the velocity field at a state on the limit
cycle at the period-doubling bifurcation (aspect ratio 4). With the y-axis limits chosen, the
velocity field in the lower half of the domain is repeated in the upper half of the domain -
the velocity field is the history of the acoustic perturbation over the last two cycles; the last
cycle corresponds to the lower half of the domain, the second to last cycle corresponds to
the upper half of the domain. The right hand image shows the same as the left image (gray),
superimposed with the state when perturbed a small amount in the direction of the Floquet
mode that causes the period-doubling bifurcation (red). The coupled motion responsible for
the period-doubling bifurcation is therefore: (1) a flapping motion of the flame surface, where
the tip and base of the flame move outwards and the middle of the flame moves inwards, cou-
pled with (2) a variation in the velocity field every other cycle, and (3) a reduction in acoustic
pressure in the duct and an increase in acoustic velocity in the duct before the flame. The
flame shape perturbation is scaled by a factor of two for clarity.

attraction of different attractors.

The continuation methods converge to a limit cycle by timemarching only a few cycles, but the real-
time to create a bifurcation surface is governed by the speed of timemarching one cycle. Despite the
LSGEN2D code being computationally expensive to timemarch, only around 14000 CPU hours were
required to generate the bifurcation surfaces in this paper and to analyse the stability of the limit cycles:
this is equivalent to 80 CPU cores running for one week. Because the surface is composed of several 2D
slices, the process of forming a surface is easily parallelisable. For relatively little computational cost,
therefore, the continuation methods can characterise the nonlinear behaviour of the coupled system
over a wide parameter range.
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The LSGEN2D code is able to capture the dynamics of a premixed flame under acoustic forcing, and
the continuation methods are able to calculate any limit cycles and bifurcations when the flame model
is coupled to an acoustic model. The results from the continuation methods could be compared with
experiments in one of two ways: first, by comparing flame shapes and heat release responses; second, by
comparing the self-excited behaviour and the bifurcation diagrams. With improvements to the velocity
model and the acoustic model, the method described in this chapter could be an effective means of
predicting and analysing the nonlinear behaviour seen in experimental premixed flame systems.
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