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This paper considers a fundamental thermo-acoustic test rig developed by Noiray ("Linear and 
nonlinear analysis of combustion instabilities, application to multipoint injection systems and 
control strategies", PhD thesis, École Centrale Paris, 2007). The main components of this test 
rig are a resonant duct of variable length, terminated by a moveable piston at the upstream 
end and a perforated plate at the downstream end; a two-dimensional array of small premixed 
flames is anchored just outside the duct by the perforated plate. We model this with an 
entirely analytical approach. The flame describing function measured by Noiray is 
represented by a heat release law with two time-lags, and this law is then used to derive the 
governing equation for a single acoustic mode in the test rig. This equation turns out to be 
that of a harmonic oscillator with a damping/amplification coefficient that depends on the 
velocity amplitude. On this basis we find analytically the pattern of the oscillation regimes in 
parameter space, in particular the frequency and amplitude of limit cycles at various tube 
lengths. There is good qualitative agreement with Noiray's observations. The paper concludes 
by exploring generic heat release laws with multiple and/or distributed time-lags; the 
corresponding features in the flame transfer function are discussed. 
 
 
1 Introduction   
Nonlinear effects in a thermo-acoustic system lead to interesting behaviours, such as limit 
cycles or hysteresis effects. These have been observed by a number of researchers, in 
particular by Noiray [1], who studied a fundamental test rig from an experimental 
perspective. The aim of our paper is to present a more analytical approach so as to shed 
light on the role of certain nonlinear mechanisms.  
 
The main components of Noiray's test rig are shown in Figure 1. 
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Figure 1: Noiray's matrix burner. 
 
A resonant tube of variable length is terminated by a moveable piston at the upstream end 
and by a perforated plate at the downstream end. A two-dimensional array (matrix) of small 
premixed flames is anchored just outside the tube at the perforated plate. Essentially, the 
tube is a quarter-wave resonator (one rigid and one nearly open end). 
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2 Flame describing function   

2.1 Measured results 

Noiray determined an experimental "flame describing function" (FDF) by measuring the 
flame transfer function (FTF) for a range of velocity amplitudes. His results for the gain and 
phase have been reproduced in Figures 2 (a, b).   
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Figure 2: Measured FDF for different velocity amplitudes (normalised with the mean 
velocity)  (a) gain. (b) phase. 
 
The following features are notable. 
(1) In the gain curves, there are two effects as the amplitude increases: 
 (a) The frequency interval, which spans the first minimum (at zero frequency) to the 

next minimum becomes smaller. 
 (b) The gain maximum becomes smaller. 
(2) The slope of the phase curves increases as the amplitude increases. 
 
2.2 Analytical description 

Our starting point is the hypothetical heat release law in the time domain, 

 
− τ

= −1 0
( ) ( ) ( )Q t u t u t

n n
u uQ

,                     (1) 

where 
 Q : rate of heat release, mean part 

 : rate of heat release, fluctuating part Q

 u : velocity, mean part 
 : velocity, fluctuating part u
 1 2,n n : real positive parameters 

This heat release law has a time-lagged component and an instant component. Its 
frequency-domain equivalent is  
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 ωτω ω
= −i

1 0

ˆ ˆ( ) ( )
( e )

Q u
n n

uQ
,                     (2) 

which gives the FTF, , as  ωT ( )

 ωτω = −T i
1 0( ) en n .                      (3)  

The gain of this FTF, 

 2 2
0 1 0 1| ( )| 2 cosn n n nω = + − ωτT ,                    (4) 

is a periodic function of ωτ  with a minimum at ωτ = 0 , followed by a maximum at 
 and a subsequent minimum at ω τ =max π ω τ = πmin 2 .  

 
The phase of this FTF is 

 
ωτ

ω = ≈ ωτ
ωτ − −

T 1 1

1 0 1

sin
arg ( )

cos
n n

n n n n0
;                    (5) 

the last step in (5) is an approximation for small frequencies, and this indicates that, at 
small frequencies, the slope of the phase curve is proportional to the time-lag .  τ
 

In order to fit our analytical  to the measured curves in Figure 2, we chose ωT ( )

− =1 0 1n n  (this gives a gain of 1 at ω = 0 )                 (6a) 

+ =1 0 maxn n g  (this gives a gain of  at the 1st maximum)                 (6b) maxg

The gain measured at the smallest amplitude is shown by the black curve in Figure 2(a). For 

this curve, we have  and ≈ 1.34maxg −ω ≈ π ⋅ 1
min 2 1050 s . The latter result gives 

. This agrees with the value obtained from the corresponding phase curve in 

Figure 2(b). At higher amplitudes, both the time-lag 

τ = 0.00095 s

τ  and the gain-maximum  

change. The  values can be read off Figure 2.1(a) directly, and the  values can be 
estimated by extrapolating the gain curves to their second minimum. Table 1 shows the 
values for Noiray's five amplitudes. 

maxg

maxg τ

 
/A u  maxg  min [Hz]f  −τ 3[10 s]  

0.13 1.34 1050 0.95 
0.23 1.36 1010 0.99 
0.40 1.32 850 1.18 
0.48 1.29 650 1.54 
0.54 1.28 550 1.82 

Table 1: FDF properties for increasing velocity amplitudes A . 
 
The data in Table 1 has been used to generate Figures 3(a) and 3(b), which show the 
amplitude-dependence of the time-lag and of the gain-maximum, respectively. 
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Figure 3: Dependence on velocity amplitude of  (a) time-lag. (b) gain-maximum. 
 
The data points for the time-lag lie on a curve with growing slope. We approximate them 
analytically by a parabola, whose vertex is at the point τ0, )(0 , i.e. by 

 τ = τ + τ 2
0 2( )

A
u

.                       (7) 

For the constants  and  we chose τ0 τ2

 −τ = ⋅ 3
0 0.94 10 s , −τ = ⋅ 3

2 2.5 10 s ,               (8a,b) 

because this gives reasonable agreement with the measured data, as shown in Figure 3(a).  
 
The data points for the gain maximum are somewhat irregular, but show an overall 
decreasing trend. We approximate them analytically by a line with a negative slope, i.e. by  

 = −max 0 1
A

g g g
u

.                      (9) 

For the constants  and  we chose 0g 1g

 , ,               (10a,b) =0 1.42g =1 0.3g

because this gives reasonable agreement with the measured data, as shown in Figure 3(b).  
 
Figure 4 shows the gain and phase of our analytical FDF, which is based on (3) and 
represented by 

 ωτω = −T i ( )
1 0( , ) (A)e ( )AA n n A                    (11) 

with 
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     = +1
1

( ) [ ( ) 1]
2 maxn A g A , = −0

1
( ) [ ( ) 1]

2 maxn A g A .            (12a,b) 

 
 

0
1

2
3
4

5
6

7
8

0 200 400 600 800 1000 1200

frequency [Hz}

ph
as

e

amplitude=0.13
amplitude=0.23
amplitude=0.40
amplitude=0.48
amplitude=0.54

0.0
0.2

0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 200 400 600 800 1000 1200

frequency [Hz]

ga
in

amplitude=0.13
amplitude=0.23
amplitude=0.40
amplitude=0.48
amplitude=0.54

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 

 

 

Figure 4: Analytical FDF given by (11) with (7)-(10) and (12).  (a) gain. (b) phase. 

Comparison with Figure 2 shows that our analytical representation captures the following 
key features of the measured FDF. 

(1) The position of the maximum and subsequent minimum in the gain curves moves to 
smaller frequency values as the amplitude increases. 

(2) The slope of the phase curve (which for small frequencies is proportional to τ ), 
increases as the amplitude increases. 

(3) The value of the gain maximum decreases as the amplitude increases. 

Not captured in our assumptions is the low-pass behaviour of the measured FDF, which 
leads to a reduction in gain at higher frequency values. 

 
 

3 The governing equations   

3.1 Model for the combustor 

We assume purely one-dimensional conditions. The acoustic field in the tube consists of 
backward and forward travelling waves, as shown in Figure 5. These are reflected at the 
upstream end by the piston (reflection coefficient ), and at the downstream end by the 
combined boundary represented by the perforated plate and open end, 

0R
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2 2

1
− +

=
−

pp pp oe pp oe
L

pp oe

R R R T R
R

R R
,                   (13) 

 
1

=
−

pp oe
L

pp oe

T T
T

R R
 ,                    (14) 

where ppR  and ppT  are the reflection and transmission coefficient, respectively, of the 

perforated plate, and  and  are those for an unflanged open tube end (for details, see 
[2]).  

oeR oeT

 
 

region A
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Figure 5: The modelled configuration. 
 
We ignore the fact that the sound wave transmitted beyond the downstream tube end 
becomes three-dimensional, and instead assume that the tube has a semi-infinite 
continuation, which keeps the transmitted wave one-dimensional. We also assume that the 
mean temperature is uniform everywhere in the tube. The speed of sound (denoted by ) is 
constant.  

c

 
The eigenfrequencies ω  of this configuration are given by  n

 .                   (15) − ω ωω = − =i / i /
0( ) e e 0L c L c

LF R R

We are going to use a Green's function approach, which requires the tailored Green's 
function. This is given by a superposition of modes n , 

∞ − ω −

=
= − ∑ i ( ')

1
( , ') H( ') Re[ e ]n t t

n
n

G t t t t G ,                  (16) 

where  and  are observer and source time, respectively,  t 't −H( ')t t  is the Heaviside 

function (this guarantees causality), the amplitudes  are given by nG

 
ω

= −
2i /2

0 e
2

n qx c
n L

c
G R T

L
,                   (17)  

and  is the axial position of the matrix flame.  qx

 
3.2 Governing equation for a single mode 

The mathematical steps in the derivation of this equation are lengthy and complex; details 
can be found in [2]. Here we just give a few highlights. 
 
The flame in the combustor is considered to be compact, and a Green's function approach is 
employed to derive an integral equation for the acoustic velocity. This is 

∞ − ω − ω −

==
= +∑∫

*i ( ') i ( ')*

1' 0
( ) [ e e ] ( ') '

2
n n

t
t t t t

n n
nt

B
u t G G q t dt     (18) 
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where  is an abbreviation, and = − γ − 2( 1) /B c γ  denotes the specific heat ratio.  is the 

local rate of heat release, and it is proportional to its global counterpart , 

( )q t

'( )Q t

 [ ]= α − τ −1 0( ) ( ) ( )q t n u t n u t ,          (19) 

with / ( )Q uα = ρA , where ρ  is the mean density. 

 
A single mode n  can be considered by dropping the summation sign in (18). The resulting 
equation can be converted to an ODE for , and the result is ( )u t

− ω + ω = − ω +2 *2Im( ) | | Im( ) ( ) Re( ) ( )n n n n nu u u B G q t B G q t .         (20) 

 
3.3 Interpretation 

Equation (20) is the ODE for a forced harmonic oscillator. It is the governing equation for 
the acoustic velocity , forced by the heat release rate  and its time derivative . 

Substitution of (19) into (20) leads to 

( )u t ( )q t ( )q t

+ + = − τ + −1 0 0 1( ) ( ) ( ) ( ) ( )u t c u t c u t b u t b u t τ ,         (21) 

with  

= −α ω *
0 1 Im( )n nb n B G , ,             (22a,b) = α1 1 Re( )nb n B G

= ω − α ω2 *
0 0| | Im( )n nc n B nG = − ω + α1 02Im( ) Re( )n nc n B, .           (22c,d) G

The time-lag is not necessarily small, in fact it can become larger than the period of the 
oscillation. We assume that  is sinusoidal with frequency ( )u t Ω  and amplitude A , and 

express the time-lag terms in terms of  and . This gives ( )u t ( )u t

sin
( ) cos ( ) (cos ) ( ) ( )u t A t u t u t

Ωτ
− τ = Ω − τ = Ωτ −

Ω
,         (23) 

( ) ( sin ) ( ) (cos ) (u t u t u t− τ = Ω Ωτ + Ωτ ) ,           (24) 

and (21) can be written as 

1 0 1 0 0 1
sin

( ) [ cos ] ( ) [ cos sin ] ( ) 0u t c b b u t c b b u t
Ωτ

+ + − Ωτ + − Ωτ − Ω Ωτ =
Ω

.      (25) 

Clearly, this is the equation for a damped harmonic oscillator. The damping coefficient is  

 1 1 0 1
sin

cosa c b b
Ωτ

= + −
Ω

Ωτ ,           (26) 

and the other coefficient, 

 = − Ωτ − Ω0 0 0 1cos sina c b b

0

Ωτ            (27) 

is the square of the oscillation frequency. The amplitude-dependence comes in through the 
time-lag (see (7)), which appears explicitly in (7), and through the gain-maximum (see (9)), 
which determines the coefficients n  and 1n  in (19). 

 
It is instructive to examine the values of  for an array of parameter values for  and 1a L A . 

Contours of =1( , ) 0a L A  in the -plane indicate steady oscillations, i.e. limit cycles. LA
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4 Results for the stability behaviour 

4.1 Measured results 
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We reproduced the stability map measured by Noiray; this is shown in Figure 6. Blue (pale 
grey) regions indicate stability, and red (dark grey) regions indicate instability. In order to 
make it easy to compare this map with our predictions, which cover the amplitude range 

=/ 0 ... 2A u , we plotted Noiray's map for the same range. However, Noiray's data is 
available only for the range =/ 0 ... 0.8A u , so the "results" shown in Figure 6 for 

>/ 0.A u 8  are not reliable. 
 
 
 
 
 
 

 

stable  unstable 

 

Figure 6: Measured stability map for mode 1.  

 
The unstable region has the shape of a tongue. Linear stability behaviour can be discerned 
from the behaviour near the -axis. The point L = 0.17mL , =/A u 0  on the map separates 
the linearly unstable and linearly stable range. This point is a subcritical Hopf bifurcation. 
Branching off from this point are unstable limit cycles. The point = 0.24mL , =/ 0.A u 5 , 
i.e. the "tip of the tongue", is a fold point. It separates unstable limit cycles from stable ones. 
The region between L  and = 0.17m = 0.24mL  is a bi-stable region, where hysteresis can be 
observed.  
 
4.2 Predicted results 

We consider the fundamental mode of the tube and choose parameters in line with the 
actual values of Noiray's setup: 
 

= 0.035ma  (tube radius) 
= 0.1m ... 0.8mL (range of tube lengths) 

= 0.003mh  (thickness of perforated plate) 
−= ⋅N 51.09 10 m 2 (number of perforations per unit area)  

= 0.001mpr (radius of perforations)  

−= 1345msc  (speed of sound) 
γ = 1.4  (specific heat ratio) 

5 2 23 10 m s−α = ⋅  (factor relating q t  and Q t )  ( ) ( )

− = 0.01mqx L  (distance of flame from perforated plate) 

=0 1R  (pressure reflection coefficient at the piston)  

 
The amplitude-dependence of the time-lag and gain-maximum are described by (7) and (9) 
respectively, with the parameter values given in (8a,b) and (10a,b).  
 
Figure 7 shows the predicted stability map on the same scale as Figure 6. The unstable 
regions have the shape of a curved band. There is one main band, which spans the whole 

-range. Above that, there are 3 minor bands with decreasing width.  L
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Figure 7: Predicted stability map.  
 
These predictions capture the behaviour at low amplitudes, in particular the linear stability 
range and the limit cycle amplitudes for low -values. However, there is a major 
discrepancy: our model predicts a band of instability, which spans the whole -range, 
whereas Noiray's instability region has the shape of a tongue, which does not extend 
beyond L -values of 0.25 m.  

L
L
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The four parameters τ τ , which characterise the amplitude-dependence of the 

FDF, have a strong influence on the shape of the instability region. In particular, reducing 
 and increasing  (which amounts to reducing the overall gain), turns the main band in 

Figure 7 into a tongue. This is shown in Figure 8. 

0 2 0 1, , ,g g

0g 1g

 
 
 
 
 
 
 

 
stable  unstable 

 
 
 
 
 
Figure 8: Predicted stability map for . = =0 11, 0.4g g

 
The predicted stability map in Figure 8 has all the features as its experimental counterpart 
in Figure 6. This indicates that our model works well, but that our original gain values were 
overestimates. Our simulations also showed that both time-lag and gain maximum must be 
amplitude-dependent; the time-lag on its own fails to predict the observed fold point. 

 

5 Summary and outlook  

5.1 Summary 

We approximated the FTF measured by Noiray by an FTF derived from the heat release law 

 
− τ

= −1 0
( ) ( ) ( )Q t u t u t

n n
u uQ

.        (28) 

The measured FDF was based on (28), too, with the amplitude dependence simulated by 
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- a time-lag  that increases with amplitude, and τ
- a gain maximum +1 0n n  that decreases with amplitude. 

 
Our predicted stability map gave good agreement at low amplitudes. However, in order to 
get good agreement at higher amplitudes as well, it was necessary to reduce the gain 
artificially. This indicates that the gain has been over-estimated, which is indeed the case, 
given that the low-pass behaviour of the measured FTF has not been included in our model.  
 
Some earlier authors have found the concept of multiple time-lags useful. For example, in 
various studies led by Polifke [3-8], the following  observations were made. 
- Multiple time-lags can lead to excess gain. 
- A fluctuation "smears out" during its passage through the burner, leading to a distribution 

of time-lags, which in turn leads to an FTF with low-pass characteristic. 
 
The aim of the next two subsections is to explore the consequences of multiple time-lags, 
and in particular to identify the features that are responsible for the low-pass characteristic 
of an FTF. Section 5.2 considers discrete time-lags, and section 5.3 considers continuous 
distributions of time-lags. 
 
5.2 Heat release law with discrete time-lags 

We extend (28) by adding more time-lag terms, 

 
− τ − τ

= + + +1 2
0 1 2

( ) ( )( ) ( )
. . .

u t u tQ t u t
n n n

u u uQ
     (29) 

where  are time-lags (all positive), and  are positive or negative 

real coefficients of order 1. The FTF corresponding to (29) is 

τ τ1 2, , . . . 0 1 2, , , . . .n n n

       (30) ωτ ωτω = + + +T i i1 20 1 2( ) e e . . .n n n

The gain ωT| ( )| is best estimated by representing (30) as a sum of individual vectors in the 

complex plane and constructing the sum graphically. It can then be seen that  lies 

within a finite region of the complex plane, that its modulus fluctuates between 0 and 
, and that there is no global decay for large 

ωT ( )

+ +0 1n n +2 . . .n ω . 

 
The phase can be calculated directly if the real and imaginary parts in (30) are separated, 

 .  (31) ω = + ωτ + ωτ + + ωτ + ωτ +T 0 1 1 2 2 1 1 2 2( )  cos  cos . . . i(  sin  sin . . .)n n n n n

Then 

 
ωτ + ωτ +

ω =
+ ωτ + ωτ +

T 1 1 2 2

0 1 1 2 2

 sin  sin . . .
arg ( )

 cos  cos . . .
n n

n n n
.     (32) 

For small frequencies, this can be approximated by 

 
τ + τ +

ω = ω
+ + +

T 1 1 2 2

0 1 2

. . .
arg ( )

. . .
n n
n n n

 ,      (33) 

i.e. the phase curve is a straight line whose slope is given by the average time-lag (weighted 
with the coefficients ). 0 1 2, , , . . .n n n

 
5.3 Heat release law with time-lag distribution 

We start by considering  

 
/2

/2

( ) ( )
d

k

k

Q t u t
n

uQ

τ +Δτ

τ=τ −Δτ

− τ
= ∫ τ .       (34) 
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This is a superposition of infinitely many time-lag terms, with time-lags clustered around 
τk , each with the same weighting n .  

 
It is convenient to introduce the top-hat function Π τ( )k , defined by 

 
1 if

2( )

0 elsewhere

k
k

Δτ Δτ⎧ τ − < τ < τ +⎪Π τ = ⎨
⎪
⎩

2kτ − < τ < τ +⎪Π τ = ⎨
⎪
⎩

     (35)      (35) 

This is shown in Figure 9. This is shown in Figure 9. 
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Figure 9: Top-hat function and its Fourier transform (magnitude only). Figure 9: Top-hat function and its Fourier transform (magnitude only). 
  
It has a known Fourier transform (also shown in Figure 9), given by It has a known Fourier transform (also shown in Figure 9), given by 

  ωτ ωΔτ
Π τ = Π ω =

ω
F i 2ˆ[ ( )] ( ) e sin

2
kk k .      (36) 

The most interesting feature for our purposes is the low-pass behaviour of Π ωˆ| ( )|k . 
 
With the top-hat function, (34) can be written in terms of a convolution integral, 

 
( ) ( )

( ) dk
Q t u t

n
uQ

∞

τ=−∞

− τ
= Π τ∫ τ .       (37) 

The Fourier transform of this is  

  
ˆ ˆ( ) ( )ˆ ( )k
Q u

n
uQ

ω ω
= Π ω ,        (38) 

which, with (36), gives the FTF 

 i 2
( ) e sin

2
kn ωτ ωΔτ

ω =
ω

T .       (39) 

The gain and phase, respectively, of this FTF are  

 
2

| ( )| sin
2

n
ωΔτ

ω =
ω

T        and  ω = ωτ ≈ ωτTarg ( ) tan k k .          (40a,b) 

The gain is independent of τk  and has low-pass behaviour. The phase can be approximated 

by kωτ  for small f uencies.         
 

req

e now extend our considerations to the case where there are several distinct time-lags in W
the heat release law, each surrounded by a distribution of width Δτ ,  

1 2/2 /2τ +Δτ τ +Δτ
 

1 2

1 2
/2 /2

( ) ( ) ( )
d d . . .

Q t u t u t
n n

u uQ τ=τ −Δτ τ=τ −Δτ

− τ − τ
= τ + τ +∫ ∫    (41) 
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The FTF corresponding to that can be easily determined with the superposition principle, 
nd the result is  a

( )i i1 22
 1 2

ωτ ωτωΔτ

Its gain 

 

( ) sin e e . . .
2

n nω = + +
ω

T .     (42) 

i i1 21 2
2

| ( )| sin e e . . .
2

n nωτ ωτωΔτ
ω = + +

ω
T      (43) 

shows low-pass behaviour. Its phase is given by 

 1 1 2 2 1 1 2 2

0 1 1 2 2 cos  cosn n n 0 1 2

 sin  sin . . .
arg ( )

. . . . . .
n n

n n n
ωτ + ωτ +

ω = ≈ ω
+ ωτ + ωτ + + + +

T .  (44) 

Again, for small frequencies, the phase curve is a straight line whose slope is given by the 
verage time-lag (weighted with the coefficients ). 
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