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Bifurcation analysis of the dynamical behavior of a horizontal Rijke tube model is
performed in this paper. Numerical continuation method is used to obtain the bifurca-
tion plots, including the amplitude of the unstable limit cycles. Linear and nonlinear
stability boundaries are obtained for the simultaneous variation of two parameters of
the system. Bifurcation plots for the variation of nondimensional heater power, damp-
ing coefficient and the heater location are obtained which display subcritical Hopf
bifurcation. Regions of global stability, global instability and bistability are charac-
terized. The validity of the small time lag assumption in the calculation of the linear
stability boundary has been shown to fail at typical values of time lags of the system.
Accurate calculation of the linear stability boundary in systems with explicit time
delay models, must therefore, not assume a small time lag assumption.

1 Introduction

Combustion instability is a plaguing problem in the development of combustors for rockets and
gas turbines used in jet engines and power generation [17]. Fluctuations in heat release rate can
both arise due to and act as a source of acoustic fluctuations, causing the coupled system to reach
self-sustained large amplitude oscillations. Combustion instability is caused when the fluctuating
heat release rate and the acoustic field form a positive feedback loop.

In linear stability analysis, when all the eigenvalues of the system are in the left half of the
complex plane, the eigenmodes of the system have negative growth rates and therefore the system
is linearly stable. If one or more of the eigenvalues lie on the right half of the complex plane,
correspondingly the eigenmodes have positive growth rates and the system is linearly unstable. In
a linearly unstable system, any infinitesimal initial perturbation grows exponentially and asymp-
totically reaches a limit cycle. A linearly stable system can also exhibit subcritical transition
to instability and asymptotically reach a limit cycle for suitable initial conditions. This type of
subcritical transition to instability from a finite amplitude initial condition is called triggering.

Triggering has been exhibited in solid rocket motors [23] and also in a Rijke tube [16]. Triggering
can cause a system which is linearly stable to become unstable in the presence of a finite amplitude
disturbance. Therefore in systems exhibiting subcritical transition to instability, it is important to
determine the nonlinear stability boundaries and the limit cycle characteristics through nonlinear
stability analysis.

We will perform nonlinear stability analysis of a thermoacoustic system by using a simple model
for thermoacoustic oscillations in a horizontal Rijke tube [3] that displays the essential features.
Rijke tube is an acoustic resonator tube, which consists of a heat source (in the present case, an
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electrical heater), positioned at some axial location. A mean flow is maintained at a desired flow
rate using a blower. A correlation between the heat release rate fluctuations at the heater location
and the acoustic velocity fluctuations at the heater [10] is used to model the fluctuating heat
release rate from the heater in the Rijke tube [3]. In the present paper, we use this model problem
to understand the nonlinear dynamics in a Rijke tube. Approaches used to study instability in a
Rijke tube are briefly reviewed below.

1.1 Thermoacoustic instability in a Rijke tube

Self sustained thermoacoustic oscillations are observed in the Rijke tube when the heater is po-
sitioned at certain axial locations of the tube and beyond some threshold power level. Linear
models for the unsteady heat release rate due to the acoustic velocity fluctuations were used to
calculate linearly unstable locations along the Rijke tube [4]. The stability thus predicted is the
linear stability of the system; i.e. the stability of oscillations in the asymptotic time limit for
small amplitude oscillations. Therefore this method cannot predict finite amplitude effects such as
triggering instabilities and the limit cycle characteristics. Estimation of the amplitude of acoustic
oscillations during limit cycle is important from the design point of view for gas turbines. For
this, the nonlinearity in the heat release rate response of the heater has to be included [14] in the
analysis. CFD based analysis was also used to study Rijke tube oscillations with the heat source
being considered as a heated flat plate [9] or as flow over a cylinder [15].

In most of the cases, solving the governing equations to obtain the unsteady heat transfer from
the heater is computationally expensive. For those cases, a lower order model is used to simulate
the nonlinear response of the heater. A low order time lag model based on a correlation for the
heat release rate given by Heckl [10] has been used to model the dynamics of the heater [3]. The
Rijke tube model thus obtained still retains the diverse dynamical behavior of the thermoacoustic
instability in a Rijke tube and exhibits nonlinear phenomena such as subcritical transition to
instability and limit cycles. Bifurcation analysis of low dimensional models of systems has been
studied using many techniques for aeroelastic problems [5] and for combustion instabilities in
combustion chambers [2, 12]. This analysis can be used to identify the nature of the transition
to instability and to characterize the finite amplitude oscillations produced. A brief review of the
techniques used in bifurcation analysis is given below.

1.2 Bifurcation analysis techniques

The approach of obtaining bifurcation diagrams by systematic variation of parameter and track-
ing direct time integration was used by Moeck [18], Mariappan & Sujith [15]. This method is
computationally expensive. Moreover, the basins of attraction obtained for the limit cycle and
the steady state remain specific to the type of initial condition applied, making it not suited for
systems which exhibit pulsed instability [2]. Many alternate approaches for bifurcation analysis
are available such as cell mapping [11], higher order harmonic balancing [21] and numerical con-
tinuation [1, 2]. Of these methods, numerical continuation has lesser errors of approximation and
is versatile in capturing all types of bifurcations.

Numerical continuation aims to solve a set of parameterized nonlinear equations iteratively given
an initial guess for the state of the system. Solutions which satisfy the set of equations and which are
additionally connected to the initial state, for a given smooth variation of one or more parameters
are obtained by tracking the solution curve in the state space. Bifurcations are identified by
including multiple test functions which change sign at the critical value of the parameter. This
method has the advantage that once a stationary or periodic solution has been computed, the
dependence of the solution on the variation of a parameter is obtained very efficiently as compared
with the other methods described earlier. It can also be used to compute unstable limit cycles.

Numerical continuation has been used to obtain the amplitudes of longitudinal acoustic modes
in a combustion chamber [12] and for the control of a thermoacoustic system [8]. Reduced order
models for the combustion chambers have been solved by the framework of expanding the pressure
and velocity fields in terms of modal or basis functions. Ananthakrishnan et al. [2], examined the
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Figure 1: Configuration of a horizontal Rijke tube with an electric heater as source.

issue of modal truncation and established the number of modes required to accurately capture the
dynamics of the system.

However, in numerical continuation, the different types of equations encountered in models of
physical systems require special attention during the analysis stage. As an example, numerical
continuation methods used for models containing delay differential equations must be capable of
handling time delay systems. The low order model used for the Rijke tube contains an explicit
delay term. The numerical continuation package used in the present study is DDE-BIFTOOL [6,7]
which is capable of handling delay differential equations. Determination of the bifurcation behavior
of the Rijke tube including the unstable limit cycle is the objective of this paper.

The stability bounds of the state space with different parameters will also be obtained and the
results validated with time marching solutions of the system. Significant system parameters to be
varied are the non-dimensional heater power (K), location of heater (xf ), damping coefficient (c1)
and the time lag (τ). The rest of the paper is organized as follows. Section 2 describes the low
order model for the Rijke tube and the formulation used in numerical continuation. Analysis of the
results obtained from numerical continuation are presented in Section 3. The results of bifurcation
analysis using numerical continuation for various parameters are summarized in Section 4. Section
5 lists the conclusions of the present work.

2 Model for Rijke tube

The Rijke tube model used in the present paper closely follows Balasubramanian & Sujith [3]
and is for the geometry shown in Fig. 1. It is governed by the non-dimensional linearized acoustic
momentum equation and acoustic energy equations as given below in Eqns. (1) and (2):

γM
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The response of the heat transfer from the wire filament to acoustic velocity fluctuations is quan-
tified using the correlation given by Heckl [10]. The heat release rate fluctuations can then be
rewritten in terms of the acoustic velocity fluctuations as given in Eqn. (3) and the damping ζj is
obtained from a mode dependent damping given by Matveev [16] as shown in Eqn. (4).
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Here c1 and c2 are the damping coefficients which can be varied and which control the amount
of mode dependent damping in the system. Further, lc, Lw and Tw are the radius, length and
temperature of the wire respectively, S is the cross sectional area, T̄ is the mean temperature, λ
is the thermal conductivity and Cv is the specific heat at constant volume of the medium within
the duct.

The acoustic energy equation can be modified as given below by including the correlation for
heat release rate fluctuations:
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The non-dimensional partial differential equations Eqn. (1) and Eqn. (5) can be reduced to a set
of ordinary differential equations by expanding the acoustic variables in terms of basis functions
using the Galerkin technique [24].
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The resulting set of equations can be written as given in Eqns.(7) and (8) and are evolved in time.
Here, K =

(
4Lw(Tw − T̄ )

√
πλCV ρ̄lc/S

√
3γM

)
is the expression for the non-dimensional heater

power (K). The equations can be simplified by expanding the term under the square root in Eqn.
(8) under the assumptions of small acoustic velocity at the flame (u′f ) and small time lag (τ). The
resulting equation, valid in the limit of small time lag, is written as given below in Eqn. (9).

Ṗj + 2ζjωjPj − ωjUj = K

√
3

2

[
N∑

i=1

cos (ωix)Ui(t) + τ

N∑

i=1

sin (ωix)Pi(t)

]
sin(ωjxf ) (9)

3 Analysis

3.1 Steady-state equilibrium and linear stability analysis

As the initial step in performing the stability analysis for given parameter values, the steady state
of the system for that set of parameters is calculated in DDE-biftool using the Newton’s method.
Next linear (local) stability of the obtained equilibrium is identified by examining the eigenvalues
of the system linearized around the equilibrium. If all the eigenvalues lie on the left half plane, the
equilibrium is linearly stable to small perturbations. When one or more eigenvalues of the linearized
system lie on the right half plane, the system is said to be linearly unstable. Stability properties of
the equilibrium is therefore changed when the real part of the most dominant eigenvalue crosses
zero as some relevant parameter of the system is varied. The value of the parameter at which the
real part of the most dominant eigenvalue is zero is called the bifurcation point.

The behavior of the system changes as this value of the parameter is crossed since the equilibrium
solution looses stability. New steady states emerge from the bifurcation point depending on the
type and nature of the bifurcation to be discussed in the next subsection. A bifurcation point
is located in DDE-biftool by continuing the equilibrium solution branch with a variation in the
relevant parameter and studying the spectrum of the first few dominant eigenvalues. Once a
bifurcation point is located with respect to one parameter, the bifurcation point itself is continued
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Figure 2: (a) Modal convergence of linear stability boundary between xf and τ with c1 = 0.1,
c2 = 0.06 and K = 0.8. (b) Comparison of limit cycle amplitude from time evolutions
with different number of acoustic Galerkin modes (N) at xf = 0.3. (c) Comparison
of bifurcation plots for variation of non-dimensional heater power (K) with different
number of acoustic Galerkin modes (N). In this figure, · · · · · · N=1, ·− ·−· N=2, −−−
N=9 and —— N=10. Grey areas are enlarged in inset figures to show convergence with
increase in number of modes .

with a variation in a second relevant parameter of the system. The resulting branch of bifurcation
points gives us the linear stability boundary which separates regions in the relevant parameter
space with linearly stable and unstable equilibrium. This stability boundary is a high-dimensional
hyper-surface in the space of all the free parameters of the system, but is most conveniently
represented by a curve in several appropriate two-dimensional projections. A typical stability
boundary for free variation of the heater location and the time lag of the system is shown in Fig.
2(a).

Figure 2(a) shows that for the chosen set of fixed parameter values for the damping and the
heater power, the system is linearly unstable for a chosen range of heater locations (xf ) depending
on the time lag τ of the system and vice versa. For very low and reasonably large values of τ such
as τ < 0.15 and τ > 0.85 in Fig. 2(a), the system is linearly stable for any heater location. Only in
the range 0.15 < τ < 0.85, the equilibrium solution can become unstable depending on the heater
location. The stability boundary for different number of acoustic Galerkin modes from 1 mode to
10 modes show little variation for the case shown in Fig. 2(a). In the next section, we discuss limit
cycles obtained using the nonlinear analysis and establish the convergence of the general solution
of the system with 10 Galerkin modes.

3.2 Numerical simulation, limit cycles and nonlinear analysis

The bifurcation points at the linear stability boundary obtained in the previous section are asso-
ciated with a pair of complex conjugate eigenvalues crossing the imaginary axis and accordingly,
we have a Hopf bifurcation. Isolated periodic solutions called limit cycles emerge from the Hopf
bifurcation point of the equilibrium solution. To check for the existence of such solutions and the
convergence of the number of acoustic Galerkin modes, the time evolutions of the system with
different number of acoustic modes for system parameters in the linearly unstable region are com-
pared in Fig. 2(b). It can be seen from Fig. 2(b) that there is a limit cycle and also that the
amplitude of the limit cycle shows very little variation with an increase in the number of acoustic
Galerkin modes. The variation in the phase of the various solutions can be attributed to initial
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Figure 3: Region of bistability obtained for the bifurcation between non-dimensional heater power
(K) and time lag (τ) with the other system parameters being c1 = 0.1, c2 = 0.06 and
xf = 0.3.

conditions. In fact, this difference is not visible in Fig. 2(c) wherein we have plotted the variation
of the amplitudes of the first Galerkin mode with a variation in the heater power K. The measure
used to quantify the asymptotic state (t →∞) of the system in Fig. 2(c) is the difference between
the maximum and minimum value (|U1|) of the non-dimensional first acoustic velocity mode which
is twice the amplitude of the first velocity mode.

The amplitudes of the limit cycles in Fig. 2(c) are obtained using continuation of the limit cycles
using DDE-biftool. In this figure, the equilibrium is stable for K < 0.625 and small-amplitude
limit cycles originating from the Hopf bifurcation point also exist in this region. These limit
cycles are unstable and the Hopf bifurcation is subcritical in nature. As the amplitude of these
limit cycles increases in magnitude, these limit cycles stabilize through a ‘turning point’ or ‘fold’
bifurcation. The unstable branch of limit cycles turns around at K = 0.523 and in the region
0.523 < K < 0.625, a stable equilibrium, an unstable small-amplitude limit cycle and a large-
amplitude stable limit cycle coexist. This is the range of ‘bistability’ where the equilibrium is only
locally stable and large amplitude disturbances grow to limit cycles. Below the fold bifurcation
point, i.e., for K < 0.523 the equilibrium is globally stable to any perturbations.

For a model with 10 acoustic modes, an addition of more Galerkin modes changes the limit cycle
amplitude of the acoustic velocity by less than 1.4%. Therefore, in all calculations considered
henceforth, a model with 10 Galerkin modes is used to ensure convergence in the number of
acoustic Galerkin modes for the linear and nonlinear stability analysis.

We noted in Fig. 2(c) that a subcritical Hopf bifurcation happens when the non-dimensional
heater power is varied as the free parameter. This will also happen with variation in any other free
parameter of the system as it is an inherent property of the nonlinearity present in the system.
A qualitative argument to justify this claim is provided below. The nature of the bifurcation
associated with a source term nonlinearity of the form (1 ± X)α, where X is the state variable
and α is a real number can be identified by expanding the nonlinearity in a series about small
X and dropping higher order terms. A binomial expansion of the above expression results in the
following equation.

1± αX ∓ α(α− 1)
2!

X2 ± α(α− 1)(α− 2)
3!

X3 ∓ .... . (10)

In the above expression, the signs of the first and the third order terms are seen to be same
when 0 < |α| < 1 and |α| > 2 . The signs will be different when the value of α lies between
1 < |α| < 2. The relative signs of the first and the third order term dictates the nature of the
bifurcation. Whenever these terms have the same sign, the bifurcation is subcritical while it is
supercritical when these terms have different signs. This result has been obtained in the context
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Figure 4: Comparison of stability boundary obtained with —— and without −−− the small time
lag assumption between (a) non-dimensional heater power (K) and time lag (τ) with the
other system parameters being c1 = 0.1, c2 = 0.06 and xf = 0.3. (b) damping coefficient
(c1) and time lag (τ) for c2 = 0.06, K = 1 and xf = 0.3 (c) location of heater (xf ) and
time lag (τ) with the other system parameters being c1 = 0.1, c2 = 0.06 and K = 0.8.

of machine tool vibrations by Kalmar-Nagy et al. [13] and Wahi & Chaterjee [22] for α = 3/4. In
the model for the heat release rate fluctuations in a Rijke tube, α = 1/2, which implies that this
model will exhibit subcritical Hopf bifurcation.

We had noted in our previous discussion in this section that the region where a stable steady
state and a pair of stable and unstable limit cycles are seen to co-exist, is called the region of
bistability. This is a general feature of systems exhibiting subcritical bifurcations and the region
of bistability for the variation of non-dimensional heater power and the time lag is shown in Fig.
3.

4 Results & Discussions

4.1 On the effect of small time lag assumption

Traditionally delay differential equations governing the system dynamics in the thermoacoustic
systems are linearized about τ = 0 to get ordinary differential equations which are valid only
for small time lags. The corresponding set of equations in the matrix form dχ/dt = Lχ is given
in Balasubramanian & Sujith [3]. This matrix L can be used to calculate the eigenvalues of the
system with small time lag assumption and the value of the parameters when the system becomes
unstable can be noted as the stability boundary. This approximate stability boundary is compared
with the exact stability boundary predicted by the system of delay differential equations given by
Eqns. (7) and (8) in Fig. 4.

The linear stability boundaries showing the variation of the critical nondimensional heater power
K, damping coefficient c1 and the heater location xf with the time lag in the system τ are shown
in Figs. 4(a) to 4(c). It can be seen clearly that for all the three cases, the stability boundary
predicted with the small time lag assumption does not match very well with the exact stability
boundary of the delayed system. The curves approximately match when the time lag (τ) is very
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Figure 5: (a) Bifurcation plot for variation of non-dimensional heater power K. The other param-
eter values of the system are c1 = 0.1, c2 = 0.06, xf = 0.3 and τ = 0.2 (b) 3D plot of
bifurcation plot of non-dimensional heater power K for varying values of time lag τ with
the other parameters of the system c1 = 0.1, c2 = 0.06 and xf = 0.3.

small. However, the match deteriorates very fast with an increase in the time lag (τ). Note from
Fig. 4(b) that the small time lag assumption breaks down even at values of time lag such as τ = 0.1
which are smaller than the typical values of time lag τ = 0.2 [10,19]. In order to accurately predict
the stability regions, linear stability boundary of thermoacoustic models with an explicit time-delay
must therefore be calculated without invoking the small time lag assumption.

4.2 Effect of heater power

The effect of varying the non-dimensional heater power (K) on the evolution of the system is
analyzed with the bifurcation diagram as shown in Fig. 5(a). Nondimensional heater power can
be increased by increasing the current given to the electrical heater. For small values of K, the
equilibrium is stable and all perturbations decay asymptotically resulting in steady flow within
the tube. Increasing K decreases the margin of stability of the system and at a critical value of K,
a pair of complex eigenvalues of the system cross over to the right half plane (Hopf bifurcation)
and the system becomes linearly unstable resulting in an oscillating flow pattern in the tube.

The variation of |U1| with K is shown in Fig. 5(a). The empty circles indicate unstable solutions
and filled circles indicate stable solutions. A limit cycle of very small amplitude is obtained first
using the state at the Hopf point as the initial state and iterating using a Newton’s scheme.
As discussed earlier, the bifurcation is subcritical and the resulting small-amplitude limit cycles
close to the Hopf point are unstable. These unstable limit cycles are obtained using numerical
continuation of the limit cycle and they coexist with the stable equilibrium. This unstable branch
of limit cycles further undergoes a fold or turning point bifurcation and gains stability.

The bifurcation diagram for the variation of the non-dimensional heater power is obtained for
various values of time lag τ in the interval [0.2, 0.8] and all the results are plotted along with
the stability boundary for the system as a 3-D plot in (τ, K, |U1|) in Fig. 5(b). From this 3-D
bifurcation diagram, we can also obtain the 2-D bifurcation diagram involving the limit cycle
amplitude variation with the time lag τ for a given value of K.

8



Priya Subrmanian, Sathesh Mariappan, R. I. Sujith & Pankaj Wahi

Figure 6: (a) Bifurcation plot for variation of damping coefficient c1. The other parameter values
of the system are c2 = 0.06, K = 1, xf = 0.3 and τ = 0.2 (b) 3D plot of bifurcation plot
of damping coefficient for varying values of time lag τ with the other parameters of the
system c2 = 0.06, K = 1 and xf = 0.3.

4.3 Effect of damping

To study the effect of the variation of the amount of damping present in the system on the
response of the system, one of the damping coefficients (c1) of the mode dependent damping
model is varied. Change in the damping of the system can be achieved in experiments by changing
the end conditions of the duct. Increased damping has a stabilizing effect on the dynamics of the
system and lowering of damping leads to instability. For lesser damping the equilibrium is either
stable or unstable depending on the value of the time lag τ while for larger damping equilibrium
is stable for any τ as shown in Fig. 4(b).

For a fixed time lag, there exists a critical value of c1 below which all perturbations grow to limit
cycles and above which there exists a region wherein large amplitude perturbations grow to limit
cycles and small perturbations decay to the equilibrium as shown in Fig. 6(a). The critical value
of the damping coefficient c1 and the bifurcation diagrams has been obtained for various values
of the time lag τ again and the results are plotted as a 3-D plot in Fig. 6(b). A 2-D projection
of this plot on the (τ, c1) plane gives us the linear stability boundary (Hopf points also shown in
Fig. 4(b)) as well as the nonlinear stability boundary (fold points). The region enclosed between
them gives us the bistable region to be discussed in more detail in subsequent subsections.

4.4 Effect of heater location

The location of the heat source (xf ) also has a very significant effect on the dynamics of the
system and is achieved by placing the heater at different locations along the length of the duct.
The stability of the system depends on the location of the heater along the duct in a non-monotonic
manner. When the location of the heater along the duct is varied from the upstream open end, the
system is initially linearly stable. At a critical value of the heater location xf1, a pair of complex
eigenvalues cross over to the right half plane and the system becomes linearly unstable. With
further change in the location of the heater, the system remains linearly unstable till xf2, when
another Hopf bifurcation is observed in which a pair of complex eigenvalues cross from the right
half plane to the left half plane and the system regains linear stability as also shown in Fig. 4(c).

The bifurcation plot for the variation of heater location (xf ) shows subcritical Hopf bifurcation
at both the locations along the duct length corresponding to the Hopf bifurcation as shown in Fig.
7. The stable branch of limit cycles arising from the turning point bifurcations of the two branches
of unstable limit cycles emanating from the Hopf points merge smoothly such that the region of

9



Priya Subrmanian, Sathesh Mariappan, R. I. Sujith & Pankaj Wahi

Figure 7: Bifurcation plot for variation of location of heater (xf ). The other parameter values of
the system are c1 = 0.1, c2 = 0.06, K = 0.8 and τ = 0.2.

linear instability is completely bounded by a single branch of nonlinearly stable limit cycles. Any
initial condition within the linearly unstable region will asymptotically reach the corresponding
stable limit cycle. The asymptotic state of an initial condition within the subcritical region is based
on whether it is above or below the stable manifold of the unstable limit cycles. The amplitude
of limit cycle is seen to be a strong function of the location of the heater and is seen to increase
with an increase in the heater location from the open upstream condition.

4.5 Bistability regions

As discussed in section 3.2, there are regions of bistability for parameter ranges where the system
can reach an equilibrium solution or a limit cycle depending on the initial conditions. This bistable
region lies between the linear stability boundary given by the Hopf point and the nonlinear stability
boundary given by the fold points. For the unstable region bounded by the Hopf bifurcation points,
the system is unstable to any perturbation and hence, this region is termed as a globally unstable
region. The system is globally stable to any perturbations for parameters in the region outside
the nonlinear stability boundary (fold points) and this is called the region of global stability [20].
Thus the linear and nonlinear stability boundaries divide the parameter plane into three regions.
The globally unstable region is shaded with light grey, the region filled with dark grey correspond
to region of bistability and the white region represents globally stable region in Fig. 8.

Figure 8 shows the bistable regions along with the globally stable and unstable regions for
variations of the damping coefficient (c1) and the heater location (xf ) as functions of the time lag
τ . The extremum value of the bistable regime typically appears at the parameter value τ at which
the other parameter value corresponding to the linear stability boundary reaches an extremum
itself.

5 Conclusions

The dynamical behavior of a model for a horizontal Rijke tube has been studied using the method
of numerical continuation. Linear stability boundaries for the simultaneous variation of two pa-
rameters of the system are obtained. The stability predictions calculated by linearizing about the
mean state with vanishing time lag are shown to be inaccurate. Therefore the calculation of linear
stability boundary for systems modeled by time delay models, must be performed without the
assumption of vanishingly small time lag in the system.

The nonlinear stability boundary and the regions of bistability where the system can reach one
of the two possible asymptotic states are also obtained. Using the linear and nonlinear stability
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Figure 8: Region of bistability obtained for the bifurcation between (a) damping coefficient (c1)
and time lag (τ) with the other system parameters being c2 = 0.06, K = 1 and xf = 0.3
(b) heater location (xf ) and time lag (τ) with the other system parameters being c1 =
0.1, c2 = 0.06 and K = 0.8.

boundaries, regions of global stability, global instability and regions of potential instability are
identified for the Rijke tube model. It has also been shown that only subcritical Hopf bifurcations
are possible for the model considered to represent the behavior of the Rijke tube. Reduced order
models of physical systems with explicit time delays can therefore be studied in detail using the
method of numerical continuation to identify stability boundaries, to obtain bifurcation plots and
to examine their possible dynamical behavior.

The authors wish to acknowledge Prof. M. K. Verma (IIT Kanpur) for discussions and Mr.
Ashesh Saha (IIT Kanpur) for his guidance in using DDE-BIFTOOL.
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