Nonlinear effects saturating wave amplitude growth in thermoacoustic prime movers : a review.

Guillaume Penelet

Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613 avenue Olivier Messiaen, 72085 Le Mans cedex 9, France guillaume.penelet@univ-lemans.fr

The dynamics of a TAO

Conclusion

Nonlinear effects saturating wave amplitude growth in thermoacoustic prime movers : a review an overview.

Guillaume Penelet

Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613 avenue Olivier Messiaen, 72085 Le Mans cedex 9, France guillaume.penelet@univ-lemans.fr

Plan

- Introduction, linear theory
- Nonlinear saturating processes

Example : the dynamics of a ThermoAcoustic Oscillator above onset

Conclusion

The dynamics of a TAO

Plan

Introduction, linear theory

Basic principles Basic equations Sound amplification, SW vs TW engines Examples, advantages, limitations, applications Design of thermoacoustic engines

Nonlinear saturating processes

Example : the dynamics of a ThermoAcoustic Oscillator above onset

Conclusion

) (○) oscillating sphere

sphere with oscillating temperature

Elementary sources of sound emission, unsteady heat release

- The linearized equations of motion for an inviscid and non-heat-conducting ideal gas
 pulsation solutions
 - $\partial_t
 ho' +
 ho_0 {
 m div} {f v} = Q({f r},t), \qquad Q : {
 m mass addition}$
 - $\rho_0 \partial_t \mathbf{v} + \mathbf{grad} \mathbf{p} = \mathbf{f}(\mathbf{r}, t), \qquad \mathbf{f} : \text{force}$

 $\rho_0 C_p \partial_t \tau - \partial_t p = \dot{q}(\mathbf{r}, t), \qquad \dot{q} : \text{Heat release}$

▶ The resulting inhomogeneous wave equation (using $p = RT_0\rho' + R\rho_0\tau$) is

$$\Delta p - \frac{1}{c_0^2} \partial_{tt}^2 p = -\frac{\partial_t \dot{q}}{T_0 C_p} - \rho_0 \partial_t Q + \operatorname{div} \mathbf{f}$$

Contrarily to Q and f, q is difficult to derive in realistic cases because
 The heat conductivity of the gas should be considered
 Generally, q = q (p, v), which may lead to self-sustained oscillations (e.g. Rijke tube etc ...)

Autonomous thermoacoustic oscillators : two examples

* Autonomous oscillators driven by heat (which both fulfill the "Rayleigh criterion" $\int p\dot{q}.dt > 0$) * Simple in terms of geometry, but complicated operation above threshold ...

The ThermoAcoustic Laser : a prototypical example

- Heat input => sound output (self-sustained acoustic oscillations at the frequency of the most unstable mode(s))
- Keywords : heat engine (prime-movers and heat pumps), autonomous oscillator
- Paradigmatic of the challenges that need to be taken up to understand more deeply the processes controlling the operation of TA engines

The TA Laser : a conceptual, very simplified approach ...

* Simplistic description => Lagrangian approach, follow a gas parcel submitted to a standing wave through a channel with an axial temperature gradient $d_x T_0$

= vork production in $|u_x| = \sqrt{max}$ and $u_x < 0$

* But actual processes are actually more complex (heat exchange occurs continuously)
 * A key point : need of an imperfect thermal contact

=>"efficient" gas parcels should be at about δ_{κ} from the wall, where $\delta_{\kappa} = \sqrt{2\kappa/\omega}$ is the (frequency-dependent) thermal boundary layer thickness

* Threshold of thermoacoustic instability (for a given mode)?

=> Sound amplification must be larger than losses

Basic equations

The dynamics of a TAO

Basic equations (1)

 \star Plane wave propagation through a viscous and heat-conducting gas along a duct submitted to a temperature gradient.

* Both the production of acoustic work and the "bucket brigade" heat transport by sound along the duct are then described by second-order quantities.

the "bucket brigade"

Main	assumption	ıs
------	------------	----

	•	
★ Low amplitudes	* Typical wavelength » R	★ No mean flow
$P(x, r, t) = P_0(x) + p(x, r, t)$	=> planes waves	∗ ideal gas
$\rho(\mathbf{x}, \mathbf{r}, \mathbf{t}) = \rho_{0}(\mathbf{x}) + \rho'(\mathbf{x}, \mathbf{r}, \mathbf{t})$	p(x, r, t) = p(x, t)	$\star \rho_s C_s \gg \rho_0 C_p$
$T(x, r, t) = T_0(x) + \tau(x, r, t)$	=>"boundary layer approximation"	$\star \lambda_s \gg \lambda$
$\mathbf{v}(x,r,t)\ll c_{0}$	$ \partial_{\mathbf{r}}\zeta \gg \partial_{\mathbf{x}}\zeta $	
$S(x, r, t) = S_0(x) + s(x, r, t)$	$(\zeta = p, ho', au, \mathbf{v}, s)$	

Basic equations

Nonlinear saturating processes

The dynamics of a TAO

Basic equations (2)

* From the governing equations (with $\partial_r \gg \partial_x$) and the boundary conditions $\tau|_{r=R} = 0$ and $v_x|_{r=R} = 0$, all variables are expressed in terms of \tilde{p} and $\partial_x \tilde{p}$, and averaged over the duct's cross-section, which leads to :

$$\begin{split} \langle \tilde{v}_{\mathbf{x}} \rangle &= \frac{i}{\rho_0 \omega} \partial_{\mathbf{x}} \tilde{p} \left(1 - f_{\nu} \right) \\ \langle \tilde{\tau} \rangle &= \frac{\tilde{p}}{\rho_0 C_p} \left(1 - f_{\kappa} \right) - \frac{d_{\mathbf{x}} T_0}{\rho_0 \omega^2} \partial_{\mathbf{x}} \tilde{p} \left(1 - \frac{\Pr f_{\nu} - f_{\kappa}}{\Pr - 1} \right) \\ \langle \tilde{\rho'} \rangle &= \frac{1 + (\gamma - 1) f_{\kappa})}{c_0^2} \tilde{p} - \frac{d_{\mathbf{x}} T_0}{T_0 \omega^2} \partial_{\mathbf{x}} \tilde{p} \left(1 - \frac{\Pr f_{\nu} - f_{\kappa}}{\Pr - 1} \right) \end{split}$$

where $\zeta(\mathbf{x}, \mathbf{r}, \mathbf{t}) = \Re\left(\tilde{\zeta}(\mathbf{x}, \mathbf{r})e^{i\omega \mathbf{t}}, \right), \nu = \mu/\rho_0, \kappa = \lambda/(\rho_0 C_p), \Pr = \nu/\kappa, \gamma = C_p/C_v$ and $f_{\kappa,\nu}$ depends on both $\delta_{\kappa,\nu}/R$ and the waveguide geometry^{1,2} * Eliminating $\tilde{\rho}', \tilde{v}_x$ and $\tilde{\tau}$ leads to the thermoacoustic wave equation in the Fourier domain* :

$$\rho_{\mathbf{0}}\partial_{\mathbf{x}}\left(\frac{1-f_{\nu}}{\rho_{\mathbf{0}}}\partial_{\mathbf{x}}\tilde{p}\right) - \frac{f_{\kappa}-f_{\nu}}{1-\Pr}\frac{d_{\mathbf{x}}T_{\mathbf{0}}}{T_{\mathbf{0}}}\partial_{\mathbf{x}}\tilde{p} + \left(\frac{\omega}{c_{\mathbf{0}}}\right)^{2}\left(1+(\gamma-1)f_{\kappa}\right)\tilde{p} = 0$$

[1] N. Rott, Adv. Appl. Mech., 1980; [2] G.W. Swift, J. Acoust. Soc. Am., 1988.

*For the wave equation in the time domain, see for instance [N. Sugimoto, J. Fluid. Mech., 2010]

Sound amplification, SW vs TW engines

Sound amplification

 \star From the knowledge of the acoustic variables, it is possible to calculate the time-average second order acoustic power produced (or absorbed) per unit volume \mathfrak{w}_2 $([\mathfrak{w}_2] = \mathrm{W.m^{-3}})$:

$$\mathfrak{w}_2 = \partial_x (\overline{p < v_x >}).$$

* After some calculations³,

[3] A. Tominaga, Cryogenics, 1995.

Sound amplification, SW vs TW engines

Heat transport by sound

 \star From the knowledge of the acoustic variables, it is also possible to calculate the thermoacoustic heat flux \mathfrak{q}_2 $([\mathfrak{q}_2]=W.m^{-2})$:

$$q_2 = \rho_0 T_0(\overline{s < v_x >}), \quad s = \frac{C_p}{T_0} \tau - \frac{1}{\rho_0 T_0} p$$

The dynamics of a TAO

Conclusion

Sound amplification, SW vs TW engines

Amplification of a standing wave

* In case of a standing wave, one need $\delta_{\kappa} \leq R_{h}$ (stack) and always have $|\Im(h)| < 1$ => intrinsic irreversibility⁴due to the need of an imperfect thermal contact * But in case of a travelling wave phasing , we have $|\Im(h)| \approx 1$ if $\delta_{\kappa} \geq R_{h}$ => a travelling wave phasing combined with a regenerator ($\delta_{\kappa} \geq R_{h}$) should be better !

[4] J. C. Wheatley et al, J. Acoust. Soc. Am., 1983

G. Penelet

Sound amplification, SW vs TW engines

How to build an intrinsically reversible Thermoacoustic engine?

=> use a regenerator($\delta_{\kappa} \geq R_h$) and a travelling wave phasing between p and v_x

Examples, advantages, limitations, applications

Typical examples (from G.W. Swift and co-workers, LANL, USA)

[†] Need a large γ , low Pr, and high P_0 (in 1-bar air at 120 dB_{SPL}, $W_{ac} \approx 10^{-2}$ W.m⁻²...)

Examples, advantages, limitations, applications

Advantages of TA engines (and heat pumps)

- * Simple, no or not much moving parts => potential reliability
- \star Working gas = pressurized inert gas => harmless, environmental friendly

 \star Good efficiencies (currently up to 32% in thermo-acoustic conversion for engines^5), with potential improvements.

Limitations

- \star Moderate output powers => up to a few kW
- \star Good efficiencies => to be improved.

* Development limited to a few research labs and start-up companies

Potential applications

- \star Waste heat recovery, micro-cogeneration
- * Thermoacoustically driven pulse-tube refrigeration (cryogeny ...)
- * Domestic refrigeration? electronics cooling?

Sketch of a thermo-acousto-electric generator. Such kind of engine has been demonstrated to achieve a global efficiency of 18 % ⁶

Design of thermoacoustic engines

Basic principles of design simulation tools

- \star The basic principles of design tools may be summarized as
 - A two-port modeling of acoustic wave propagation under an assigned $T_0(x)$ through the device, leading to a characteristic equation
 - ▶ An energy balance under an assigned heat input *Q_H*, which accounts for the thermoacoustic heat transport by sound *Q*₂.
- \star A simplistic illustration would be, for instance, as follows

- 1. Assign Q_H and set $P_A = 0$ (and thus $Q_2 = 0$)
- 2. Solve heat transfer => get $T_0(x)$
- 4. Fix arbitrary amplitude P_A
- 5. Calculate thermoacoustic heat transport Q_2
- Solve heat transfer => get T₀(x) (accounting for Q₂)
- 7. Repeat steps 3-6 until equilibrium, i.e. $Q_H = Q_C + W_2$, with $Q_C = Q_{C_0} + Q_2$.

m . 1m

m

Design of thermoacoustic engines

Introduction, linear theory

Two-ports modeling of wave propagation

* Back to the governing equations, expressed in terms of pressure \tilde{p} and volume velocity $\tilde{u} = S\langle \tilde{v}_x \rangle$ (S :cross-sectional area of the duct)

* Then make use of electroacoustic analogy⁷

$$\begin{split} d\tilde{p} &= -(i\omega M + R_{\nu})\tilde{u} \\ d\tilde{u} &= -(i\omega C + 1/R_{\kappa})\tilde{p} + G\tilde{u} \\ M &= \frac{\rho_0 dx}{S} \frac{1 - \Re(f_{\nu})}{|1 - f_{\nu}|^2} C = \frac{Sdx}{\gamma P_0} \left(1 + (\gamma - 1)\Re(f_{\kappa})\right) \\ R_{\nu} &= \frac{\omega \rho_0 dx}{S} \frac{\Im(-f_{\nu})}{|1 - f_{\nu}|^2} \frac{1}{R_{\kappa}} = \frac{\gamma - 1}{\gamma} \frac{\omega Sdx\Im(-f_{\kappa})}{P_0} \\ G &= \frac{f_{\kappa} - f_{\nu}}{(1 - f_{\nu})(1 - \sigma)} \frac{dT_0}{T_0} \end{split}$$

[7] G.W. Swift, « Thermoacoustics : a unifying perspective for some engines and refrigerators », 2002.

Introduction, linear theory

Two-ports modeling of wave propagation (2)

* A simple example using lumped elements : the fluydine engine⁸

$$M_{liq} = \frac{r_{liq} - r_{liq}}{S}, \quad R_{liq} = \frac{r_{liq} - r_{liq}}{S} \frac{1}{|1 - f_{\nu_{liq}}|^2}, \quad C_{liq} = \frac{r_{liq} - r_{liq}}{2\rho_{liq}}$$

[8] C.D. West, Liquid Piston Stirling Engines, V. N. Reinhold, New-York, 1983

Design of thermoacoustic engines

Introduction, linear theory

Two-ports modeling of wave propagation (3)

 \star When the lumped elements assumption cannot be retained, use of the T-matrices formalism (see example below)

[†] T_{TBT} and T_{stack} calculated numerically from the thermoacoustic wave equation ...

[‡] The two-port model, which leads to a characteristic equation, need to be coupled with the energy balance to determine steady-state conditions.

Limitations of the existing design tools

 \star Up to now, the design of TA engines is always realized from the linear TA theory.

* A famous, free-downloadable software developed at Los Alamos : DELTA-EC⁹

 \star Efficient tool for design purposes, which works quite-well for the prediction of steady-state operation of Low-Amplitude TA engines

But ...

- * These tools are restricted to the linear (or weakly nonlinear) regime
- \star These tools are restricted to a 1-D description of the phenomena
- * They predict performance in steady-state
- \star The user need to be experienced in the field †

^[9] W.C. Ward et al., J. Acoust. Soc. Am., 1994

 $^{^{\}rm T}$ « Intuition is required from the start and successful solutions yield intuition », W.C. Ward, Acoustics'08, Paris, 2008

The dynamics of a TAO

Plan

Introduction, linear theory

Nonlinear saturating processes

Thermoacoustic heat transport by sound Cascade process of higher harmonics generation Acoustic streaming Aerodynamical and thermal edge effects Turbulence

Example : the dynamics of a ThermoAcoustic Oscillator above onset

Conclusion

Autonomous oscillators => nonlinear saturation processes ...

- * Thermoacoustic engines = self-sustained oscillators
- * Most of the nonlinear processes controlling wave saturation are well identified ...

* Some of them are well-predicted by theory (at least for moderate pressure levels) ... * ...but most of them are poorly described

Heat transport by sound ...

Heat transport by sound ...

 \star As in any heat engine, work production is accompanied with heat flow from hot to cold . . .

 \star A second-order (and therefore nonlinear) effect which is taken into account in the linear thermoacoustic theory . . .

* Its definition is unambiguous (for low amplitudes) :

$$q_2 = \frac{1}{2} \Re \left[\frac{f_{\nu}^* - f_{\kappa}}{(1 + \operatorname{Pr})(1 - f_{\nu}^*)} \tilde{\rho} \langle \tilde{v}_x^* \rangle \right] + \frac{\rho_0 C_p}{2\omega (1 - \operatorname{Pr}^2)} \frac{\Im \left(\operatorname{Pr} f_{\nu}^* - f_{\kappa} \right)}{|1 - f_{\nu}|^2} |\langle \tilde{v}_x \rangle|^2 d_x T_0$$

 \star The thermal and viscous functions are only known for simple geometries like parallel plates, circular tubes^{10} , pin-array^11 ...

* Actual stack/regenerators employ more complex materials

mesh grids NiCr foam [10] Rott, Adv. Appl. Mech., 1980; [11] Swift et al., JASA, 1993.

Determination of $f_{\nu,\kappa}$ for tortuous media . . .

* Measure the complex compressibility (related to f_{κ}) of different materials^{13–15}

$$\mathcal{C}(\omega) = -rac{1}{V_{0}}rac{ ilde{V}_{1}(\omega)}{ ilde{\mathcal{P}}_{1}(\omega)}$$

* Other approaches => use results established for steady flow

Use experimental data of viscous drag and heat exchange coefficient for steady flow within heat exchangers (e.g. in ref. [16]), and proceed to conversion for oscillating flows¹⁷
 Shortcoming => validity of this "quasi-steady" flow assumption ?

[12] Roh et al., JASA, 2007; [13] Hayden et al., JASA, 1997; [14] Wilen, JASA, 2001; [15] Petculescu et al., JASA, 2001; [16] Kays and London, *Compact Heat exchangers*, Mc Graw Hill, NY, 1964; [17] Swift et al., J. Thermophys. Heat Transf., 1996

G. Penelet

Digression : description of stack/regenerators...

- * The knowledge of $f_{\nu,\kappa}(\omega)$ is
 - \flat required for the evaluation of both \mathfrak{q}_2 and \mathfrak{w}_2 ,
 - \flat not sufficient , since we need to know the thermophysical properties of the stack

* How to know T₀(x) from Q_{in}?
=> not trivial (anisotropy ...)
* What about the 1-D assumption?
18 T₀ uniform through a section? => no ...

 \star A solution explored at LAUM : get information from the measured T-matrix of the ThermoAcoustic Core (TAC) under various heating conditions

b Measure $T_{TAC}(\omega, Q_{in})$ using a two-load method¹⁸,

b Use the experimental T-matrix to design a TA engine that uses the TAC characterized beforehand¹⁹, or to calculate the thermophysical properties if the stack²⁰.

$$\begin{pmatrix} \tilde{\boldsymbol{p}}(\mathbf{x}_{r}) \\ \tilde{\boldsymbol{u}}(\mathbf{x}_{r}) \end{pmatrix} = \begin{bmatrix} \mathcal{T}_{\boldsymbol{p}\boldsymbol{p}}\left(\boldsymbol{\omega}, \mathcal{Q}_{\boldsymbol{i}\boldsymbol{n}}\right) & \mathcal{T}_{\boldsymbol{p}\boldsymbol{u}}\left(\boldsymbol{\omega}, \mathcal{Q}_{\boldsymbol{i}\boldsymbol{n}}\right) \\ \mathcal{T}_{\boldsymbol{u}\boldsymbol{p}}\left(\boldsymbol{\omega}, \mathcal{Q}_{\boldsymbol{i}\boldsymbol{n}}\right) & \mathcal{T}_{\boldsymbol{u}\boldsymbol{u}}\left(\boldsymbol{\omega}, \mathcal{Q}_{\boldsymbol{i}\boldsymbol{n}}\right) \end{bmatrix} \times \begin{pmatrix} \tilde{\boldsymbol{p}}(\mathbf{x}_{l}) \\ \tilde{\boldsymbol{u}}(\mathbf{x}_{l}) \end{pmatrix} = \boldsymbol{\tau}_{\mathsf{TAC}}(\boldsymbol{\omega}, \boldsymbol{Q}_{\boldsymbol{i}\boldsymbol{n}}) \times \begin{pmatrix} \tilde{\boldsymbol{p}}(\mathbf{x}_{l}) \\ \tilde{\boldsymbol{u}}(\mathbf{x}_{l}) \end{pmatrix}$$

Advantages = "black box" approach, no need to know $f_{\nu,\kappa}$ or T_0 Shortcoming = linear approach, only valid for low amplitudes

[18] M. Guedra et al., JASA, 2011; [19] F.C. Bannwart et al., JASA, 2013; [20] M. Guedra et al., submitted to J. Appl. Therm. Eng., 2013. NL propagation

Cascade process of higher harmonics generation

NL propagation

Higher harmonics generation : basic concepts (1)

 \star Starting with the 1-D governing equations in the time domain, without dissipation :

$$\begin{aligned} \rho \left(\partial_{\mathbf{t}} \mathbf{v}_{\mathbf{x}} + \mathbf{v}_{\mathbf{x}} \partial_{\mathbf{x}} \mathbf{v}_{\mathbf{x}} \right) &= -\partial_{\mathbf{x}} \mathbf{I} \\ \partial_{\mathbf{t}} \rho + \partial_{\mathbf{x}} \left(\rho \mathbf{v}_{\mathbf{x}} \right) &= \mathbf{0} \\ P &= K \rho^{\gamma} \end{aligned}$$

* Assuming $v_x = v_x(p)$, a particular solution analogous to a plane wave travelling along $x \uparrow$ can be found²¹ :

$$\partial_t p + (c + v_x) \partial_x p = 0$$

wave distorsion \sim cascade process of higher harmonics generation

- * Impact on the operation of TA engines?
 - Increase of viscothermal losses, since $\langle \mathfrak{w}_{\nu,\kappa} \rangle \propto \sqrt{\omega}$
 - Decrease of thermoacoustic amplification, since δ_{κ} depends on ω
 - An effect which can be promoted if higher harmonics coincide with resonance frequencies of the TA engine ...

[21] A.D. Pierce, Acoustics, Acoustical Society of America, NY, 1991

NL propagation

The dynamics of a TAO

NL acoustics : a brief review

An extensively studied topic ...

- * Discussed in several reference textbooks^{22,23}
- \star Also studied both analytically (Multiple Scale Method²⁴ , Burgers equation²⁵) and numerically^{26,27} in the frame of thermoacoustics
- \star Proposal for optimum resonator's shape^{28} or for active control methods^{29}
- * but a lack of quantitative comparison with experiments

...which however seems not to be predominant in thermoacoustics

* High-power thermoacoustic engines employ inharmonic resonators, anyway.

 \star Waveform distorsion may be observed, but no efforts to include NL propagation in design tools (not trivial and too tedious ...)

engine under an assigned ΔT , from [26]

An optimum resonator's shape that maximize the Q of a resonator, from [28]

[22] Rudenko & Soluyan, consultant bureau, NY, 1977; [23] Hamilton & Blackstock, Ac. Soc. Am., 1998; [24] Karpov et al., JASA, 2000; [25] Gusev et al., Acust. Acta Acust., 2000; [26] Karpov et al., JASA, 2002; [27] hamilton et al., JASA, 2002; [28] Ilinskii et al., JASA, 2001; [29] Gusev et al., JASA, 1998.

The dynamics of a TAO

Conclusion

NL propagation

Higher harmonics generation : shock waves

* Still, the study of NL propagation in TA engines is an interesting topic ...

* Recently, shock waves reported in a closed-loop, stack based TA engine [Biwa et al., JASA,

2011], and acoustic intensity measurements were performed.

Acoustic streaming

The dynamics of a TAO

Acoustic streaming

The dynamics of a TAO

Conclusion

Acoustic streaming

Acoustic streaming : basic concepts

* Start with the Navier-Stokes equation, with $\partial_y >> \partial_x$, then make successive approximations $(\zeta = \zeta_0 + \zeta_1 + \zeta_2 \dots)$ up to second order, and after time averaging, one gets :

$$\nu_{\mathbf{0}}\partial_{\mathbf{y}\mathbf{y}}^{2}\overline{\mathbf{v}_{\mathbf{x_{2}}}} = 1/\rho_{\mathbf{0}}\partial_{\mathbf{x}}\overline{\mathbf{p}_{\mathbf{2}}} + \partial_{\mathbf{x}}\left(\overline{\mathbf{v}_{\mathbf{x_{1}}}^{2}}\right) + \partial_{\mathbf{y}}\left(\overline{\mathbf{v}_{\mathbf{x_{1}}}\mathbf{v}_{\mathbf{y_{1}}}}\right) - \partial_{\mathbf{y}}\left(\overline{\mathbf{v}_{\mathbf{1}}\partial_{\mathbf{y}}\mathbf{v}_{\mathbf{x_{1}}}}\right)$$

- \star A steady velocity $\overline{v_{x_2}}$ generated by acoustic oscillations :
- because of the convective derivative : $\partial_x \left(\overline{v_{x_1}^2} \right) + \partial_y \left(\overline{v_{x_1} v_{y_1}} \right)$

- because
$$\nu$$
 depends on temperature ($\nu = \nu_0(T_0) + \nu_1(\tau))$
$$\partial_y\left(\overline{\nu_1\partial_y v_{x_1}}\right)$$

- ... and actually many other sources of streaming

ntroduction, linear theory	Nonlinear saturating processes	The dynamics of a TAO 000000000000000000000000000000000000
Acoustic streaming		

Acoustic streaming, theoretical works : a brief review (not exhaustive)

- \star Faraday (1831) : first experimental observation
- \star Rayleigh (1883) : outer streaming, large ducts ($R >> \delta_{
 u}$)
- * Schlichting (1932) : inner streaming
- * Rott (Z.A.M.P., 1974) : outer streaming, large ducts, thermal effects ($d_x T_0$, $\mu = \mu(T)$)
- * Gedeon (Cryocoolers, 1997), Gusev (JASA, 2000) : closed-loop, travelling wave devices
- * Menguy et al. (JASA, 2000) : inertia effects at larger amplitudes (as $Re_{nl} = \sqrt{M/Sh} \approx 1$).
- * Waxler, Bailliet et al. (JASA, 2001) : arbitrary duct radius and thermal effects
- * Since around 2000, many numerical studies

Up to now, many experimental and numerical studies of $\overline{v_2}$ in empty resonators, but only a very few in TA engines (even simple ones).

The dynamics of a TAO

Acoustic streaming

Acoustic streaming in SW resonators

 \star Thompson et al. (JASA, 2004) : outer streaming at high Re_{nl} $(Re_{nl}=\sqrt{M/Sh},$ impact of temperature distribution and fluid inertia

N3L Summer School, Munich, 2013

The dynamics of a TAO

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et al., JASA, 2009)

Acoustic streaming in SW resonators with a stack (Moreau et al., JASA, 2009)

The dynamics of a TAO

Acoustic streaming

Acoustic streaming from the engineering standpoint

* Acoustic streaming well-described only in simple devices at low amplitudes .

=> Empirical solutions to remove acoustic streaming

=>"jet pumps"³⁰ (makes $\rho_0 \overline{u_2} + \overline{\rho_1 u_1} = 0$) or membranes³¹ (makes $\overline{u_2} = 0$) to suppress Gedeon streaming

=>"tapered" tube^{30,32}to diminish Rayleigh streaming in the TBT

* Open questions : Heat transport by $\rho_0 \overline{v_2} + \overline{\rho_1 v_1}$? Is acoustic streaming always undesirable for TA engines?

[30] Backhaus et al., JASA, 99; [31] Tijani et al, JASA, 2011; [32] Olson et al., Cryogenics, 1997

Aerodynamical and thermal edge effects

Basic concepts

Specificity of acoustic flow?

 \star Memory effects ? => are established results for steady flows applicable to oscillating flows (quasi-steady assumption)

Impact on thermoacoustics : only losses or more complex processes?

 \star Not only losses, e.g. effect of vortex shedding in oscillating flow?

 \star Temperature oscillations also affected by the singularity

 \star Geometrical singularities => Vorticity and minor losses[‡]

=> Impact on the aerodynamical heat exchange between stack and HX?

[‡]Minor losses does not mean negligible losses

Aerodynamical edge effects : academic studies

- \star Many computational and experimental studies since around 2000, among which :
 - Pressure drop³³ or nonlinear acoustic impedance measurements³⁴
 - b Flow vizualization³⁵⁻³⁷ compared with numerical modeling^{38,39}
- * Main outcomes

 \flat Estimated Δp from steady flow (quasi-steady assumption) are in the same order of magnitude than those measured (to be confirmed however ...)

 \flat At high amplitudes, observation of vortex shedding^{37}, possibly responsible for oscillatory heat transfer between stack and HX^{38}

Vorticity field at the edge of a stack, for $p_{ac} = 1000 Pa$ and $p_{ac} = 4000 Pa$ (from [37])

[33] Wakeland et al., JASA, 2004; [34] Petculescu et al., JASA, 2003; [35] Blanc-Benon et al., C.R. Meca. 2003; [36] Berson et al. Heat Mass Transf., 2008; [37] Berson et al., JASA, 2008; [38] Besnoin et al., Acust. Acta Acust. 2004; [39] Marx et al., JASA, 2003

Thermal edge effects, also

* Stack termination is also a strong singularity in terms of heat transfer => τ highly NL at the edges of the stack [Gusev et al., JSV, 2000; Gusev et al., JASA, 2001]

Abrupt transition in terms of heat transfer when the gas parcel passes through the stack's termination

Computation of temperature fluctuations τ at point P along two acoustic cycles, for various Mach numbers (from [D. Marx, PhD, 2003])

<u>NB</u>: Results also confirmed experimentally using Cold wire Anemometry ([Berson et al., Int. Journ. Heat Mass Transf., 2011])

Aerodynamical and thermal edge effects : open questions

 \star Impact of vortex shedding and highly NL temperature oscillations on heat transfer between stach and HX ?

* Optimum distance between stack and HX (specifically for TA heat pumps)?

Estimate of minor losses (from the engineering standpoint)

=> Evaluation of $\overline{\Delta p}$, and therefore of additional NL losses from the time-averaging of well-known results of fully developped steady flows (e.g. in [Idelchik, handbook of hydraulic resitances, 1986])

Turbulence

Turbulence?

Turbulence

Specificity of turbulent oscillating (acoustic) flows?

 \star Reference works : Merkli and Thomann⁴⁰ (1975) and a few others⁴¹⁻⁴⁷

* Specificity of turbulent oscillating (acoustic) flows? => Turbulence and subsequent losses[§] are controlled by 2 dimensionless numbers (vs 1 for steady flows), e.g.

$$St = \frac{\omega D}{U} \& Re = \frac{UD}{\nu}$$

[40] Merkli & Thomann, JFM, 1975; [41] Sergeev, Fluid Dyn., 1966; [42] Hino et al., JFM, 1976; [43] Ohmi et al., JSME, 1982; [44] Kurzweg et al., Phys. Fluid A, 1989; [45] Eckman et al., JFM, 1991; [46] Zhao et al. Int. J. Heat Fluid Flow, 1996; [47] S. Moreau, Phd, Potietres, 2006.

[§]Wall's roughness being left apart

The dynamics of a TAO

Turbulence

Experiments : transition laminar \rightarrow conditionally turbulent (1)

Turbulence

Experiments : transition laminar \rightarrow conditionally turbulent (2)

Authors	year	Fluid	Method	Freq. (Hz)	Ampl. param.	Freq. param.
Sergeev	1966	water	v	0.6-4	Re	Wo = $R\sqrt{\omega/\nu}$
Merkli et al.	1975	air	HW + V	50-150	Re_{δ}	$= U\delta/\nu$
Hino et al.	1976	air	HW	0.2-8	Re_{δ}	$Sto = \mathbf{R}/\delta$
Ohmi et al.	1982	air	HW	0.05-6	Re	$\sqrt{\omega'} = \mathbf{R} \sqrt{\omega/\delta}$
Kurzweg et al.	1989	water	v	0.6-6	Re_{δ}	Wo
Eckman et al.	1991	air	HW+LDV	0.1-1.5	$\text{Re}_{\delta}/\text{Wo}$	Wo
Zhao et al.	1996	air	HW	0.1-10	x _{max} / D	$D^2 \omega / \nu$
Moreau et al.	2006	air	LDV	80-120	Re	Wo

V=visualization, HW=Hot Wire, LDV=Laser Doppler Velocimetry

Turbulence

Nonlinear saturating processes

The dynamics of a TAO

Evaluation of losses due to turbulence (DELTA-EC)

=> modification of $\langle \mathfrak{w}_\nu\rangle$ from the time-averaging of well-known results of fully developped steady flows :

steady flows

$$\begin{aligned} \Delta p &= f_M \frac{L}{D} \frac{1}{2} \rho_0 \langle v_{\mathbf{x}} \rangle^2 \\ \langle \mathfrak{w}_{\nu, turb} \rangle &= \frac{\Delta p \langle v_{\mathbf{x}} \rangle}{L} = \frac{\rho_0 f_M \langle v_{\mathbf{x}} \rangle^3}{2D} \end{aligned}$$

• oscillating flows (Re(t) = $\frac{\langle \mathbf{v}_{\mathbf{x}}(\mathbf{t}) \rangle \mathbf{D}}{\nu}$)

$$\begin{split} \langle \mathfrak{w}_{\nu,\textit{turb}} \rangle &= \frac{\rho_0 \overline{f_M | \langle \mathbf{v}_X \rangle |^3}}{2D}, \\ f_M(\mathrm{Re}(\mathrm{t})) &\approx f_M + \frac{df_M}{d_{\mathrm{Re}}} \left(|\mathrm{Re}(\mathrm{t})| - \mathrm{Re}_{\mathrm{max}} \right) \end{split}$$

where both f_M and $d_{\rm Re}f_M$ are evaluated at ${\rm Re}_{\rm max}$ from Moody chart, knowing ϵ and Re (approach considered unsatisfactory by the authors themselves ...)

Avoiding turbulence from the engineering standpoint

- polish internal surfaces of ducts
- use of "flow straighteners"

The dynamics of a TAO

Plan

Introduction, linear theory

Nonlinear saturating processes

Example : the dynamics of a ThermoAcoustic Oscillator above onset The dynamics of a closed-loop, stack based TAO The dynamics of a standing-wave TAO Nonlinear coupling between a TAO and an external sound source

Conclusion

Introduction

 \star How to fit experiments and theory ? => adjust any poorly known parameter ?

- * Is it satisfactory ? Not at all...
- \star How to dissociate the role of each NL process?

=> study the transient regime

Why studying the dynamics of thermoacoustic oscillators

- * Much more information in the transient regime than in steady-state
- * TA Oscillators can exhibit complicated dynamics⁴⁸⁻⁵³

A key point : each of the NL processes operates with its own time-scale.

=> Back to basics :

Are we able to predict, even qualitatively, the transient regime of wave amplitude growth/saturation in simple thermoacoustic devices?

A closed loop, stacked-based, travelling wave engine

A quarter wavelength, standing wave engine

[48] Penelet et al., Cryogenics, 2002; [49] Swift, JASA, 1992, [50] Zhou et al., Cryogenics, 1998; [51] Penelet et al., Phys. Let. A, 2006; [52] Penelet et al., Int. J. Heat Mass Trans., 2012; [53] Chen et al., Cryogenics, 1999; [54] Yu et al. JASA, 2010.

 Conclusion

Closed-loop TAO

The dynamics of a closed-loop TAO : experiments

*** Experimental protocol**

▷ Set $Q = Q_0$ slightly below $Q_{onset} ≈ 55W$ ▷ At $t = t_0$, set Q to $Q_0 + ΔQ =>$ onset.

* Experimental results⁵¹

b Low ΔQ, periodic switch on/off
 b Larger ΔQ, stabilization after overshoot

NB : $T_H|_{t\to\infty} < T_H|_{t=0}$ => the details of $T_0(x)$ impacts TA amplification !

=> NL effects involving heat transport by sound seem to be predominant !

metic heat transport

The dynamics of a TAO

 $T(\mathbf{x})$

Closed-loop TAO

The dynamics of a closed-loop TAO : modeling (1)

Description of wave amplitude growth/attenuation. For a given temperature distribution T(x) through the TAC, each element is described by its T-matrix, leading to a characteristic equation⁵⁵

$$=>f(\omega,T(x))=1+\mathcal{M}_{pp}\mathcal{M}_{uu}-\mathcal{M}_{pu}\mathcal{M}_{up}-(\mathcal{M}_{pp}+\mathcal{M}_{uu})=0$$

b Allow the angular frequency ω to be complex⁵⁶, and find $\omega = \Omega + i\epsilon$ so that $f(\omega, T(x)) = 0$.
b Quasi-steady state assumption (i.e. $\epsilon \ll \Omega$) :

$$\frac{dp_{rms}}{dt}(x_0, t) \approx \epsilon [T(x)] p_{rms}(x_0, t)$$

where $\epsilon = \Im(\omega)$ is the amplification rate ($\epsilon > 0$: amplification, $\epsilon < 0$: attenuation)

[55] Penelet et al., Acust. Acta Acust., 2005; [56] Guedra et al., Acust. Acta Acust. 2012.

The dynamics of a closed-loop TAO : modeling (1)

* Unsteady heat transfer⁵⁷ (simplified and summarized).

$$\begin{array}{rcl} \text{Stack } (\mathsf{x}{<}\mathsf{0}): & \frac{\partial T}{\partial t} + \frac{\Phi \rho_0 C_P}{\rho_s C_s} \frac{\dot{m}}{\rho_0} \frac{\partial T}{\partial x} = \frac{\lambda_s + \Gamma_\lambda P^2}{\rho_s C_s} \frac{\partial^2 T}{\partial x^2} - \gamma^{s \leftrightarrow w} \left(T - T_\infty\right), \\ \text{TBT } (\mathsf{x}{>}\mathsf{0}): & \frac{\partial T}{\partial t} + \frac{\dot{m}}{\rho_0} \frac{\partial T}{\partial x} = \kappa_f \frac{\partial^2 T}{\partial x^2} - \gamma^{f \leftrightarrow w} \left(T - T_\infty\right), \\ \text{HHX } (\mathsf{x}{=}\mathsf{0}): & \left(\lambda_s + \Gamma_\lambda P^2\right) \frac{\partial T}{\partial x}\Big|_{x=0^-} = \lambda_f \frac{\partial T}{\partial x}\Big|_{x=0^+} + \frac{Q(t)}{\pi R^2} \\ \text{Delay for streaming :} & \frac{d\dot{m}}{dt} + \frac{\dot{m}}{\tau_v} = \frac{\Gamma_{str} P^2}{\tau_v} \end{array}$$

where Γ_{λ} , Γ_{str} and $\tau_{v} \approx 0.9s$ are evaluated from refs. [58], [59], and [60], respectively.

$ \begin{array}{l} \dot{\boldsymbol{m}} = \rho_{0} \overline{\boldsymbol{v}_{\mathbf{x}_{2}}} + \overline{\rho_{1} \boldsymbol{v}_{\mathbf{x}_{1}}} \propto P^{2} \\ \rho_{0} C_{p} \left(\operatorname{resp.} \rho_{s} C_{s} \right) \\ \lambda_{f} \left(\operatorname{resp.} \lambda_{s} \right) \\ P \\ \Phi \end{array} $	steady mass flow rate due to acoustic streaming volumetric heat capacity of fluid (resp. of stack) thermal conductivity of fluid (resp. of stack) peak amplitude of acoustic pressure at some reference point porosity of stack			
[57] G. Penelet et al., Phys. Rev E, 2005; [58] T. Yazaki, J. Heat Transf., 1983; [59] V. Gusev et al., JASA, 2000: [60] m. Amari et al., Acust. Acta Acust., 2003.				

G. Penelet

N3L Summer School, Munich, 2013

The dynamics of a closed-loop TAO : modeling (2)

* Modeling of the transient regime : summary.

Equations describing unsteady heat transfer (including heat transport by sound) ...

$$\begin{aligned} \frac{\partial T}{\partial t} &+ \frac{\Phi \rho_0 C_p}{\rho_s C_s} \frac{\dot{m}}{\rho_0} \frac{\partial T}{\partial x} &= \frac{\lambda_s + \Gamma_\lambda P^2}{\rho_s C_s} \frac{\partial^2 T}{\partial x^2} - \gamma^{s \leftrightarrow w} \left(T - T_\infty \right), \\ \frac{\partial T}{\partial t} &+ \frac{\dot{m}}{\rho_0} \frac{\partial T}{\partial x} &= \kappa_f \frac{\partial^2 T}{\partial x^2} - \gamma^{f \leftrightarrow w} \left(T - T_\infty \right), \\ \left(\lambda_s + \Gamma_\lambda P^2 \right) \frac{\partial T}{\partial x} \bigg|_{x=0^-} &= \lambda_f \left. \frac{\partial T}{\partial x} \right|_{x=0^+} + \frac{Q(t)}{\pi R^2} \\ \frac{d\dot{m}}{dt} + \frac{\dot{m}}{\tau_v} &= \frac{\Gamma_{str} P^2}{\tau_v} \end{aligned}$$

 \ldots coupled to that describing wave amplification \P (possibly with additional dissipation due to minor losses) :

$$\frac{dP}{dt} = \epsilon \left[T(x,t) \right] P - \epsilon_{minor} P^2$$

=> Nonlinear set of differential and partial differential equations, solved using a finite difference scheme

 \P The variations of ${\cal T}(x)$ being assumed negligible at the time-scale of a few acoustic periods

The dynamics of a closed-loop TAO : Theoretical results (1)

=> The spontaneous and periodic onset damping is reproduced qualitatively

From the results of simulation this complicated behavior is due to acoustic streaming

The dynamics of a closed-loop TAO : Theoretical results (2)

Nonlinear saturating processes

The dynamics of a TAO

Conclusion

The transient regime of a TA Laser : experiments

=> observation of periodic switch on/off while $\rho_{0} \langle \overline{v_{x_{2}}} \rangle + \langle \overline{\rho_{1}v_{x_{1}}} \rangle = 0 !!!$ => "Rayleigh" streaming ?

The dynamics of a TAO

Standing wave TAO

The transient regime of a TA Laser : simplistic modeling (1)

Spatial distributions of \dot{m} within the waveguide (\dot{m}_{f} , left) and within one channel of the stack (\dot{m}_{s} , right), for x_{s} =22.5 cm, and Q_{0} = 20.17W. (Calculated from [Bailliet et al.,JASA,2001])

 $\star \dot{m}_{f}$, is 2D => Rough simplifications are needed

* Stack & waveguide treated as isolated systems to compute $\dot{m} =>$ How is \dot{m} at the interface?

The transient regime of a TA Laser : simplistic modeling (2)

* Simplistic account of heat convection by acoustic streaming, without equations

=> Separate the waveguide and stack cross-sections into an inner zone with temperature $T^{(i)}$, and an outer zone with temperature $T^{(o)}$

=> Account for the heat removed by acoustic streaming at the stack's interface

The transient regime of a TA Laser : simplistic modeling (3)

* Simplistic account of heat convection by acoustic streaming, with equations⁶¹

Waveguide

$$\begin{aligned} & x \leq x_{s}, \frac{\partial T^{(i)}}{\partial t} + \frac{\langle |\dot{m}_{f}| \rangle}{2\rho_{f}} \frac{\partial T^{(i)}}{\partial x} = \kappa_{f} \frac{\partial^{2} T^{(i)}}{\partial x^{2}} - \frac{T^{(i)} - T_{\infty}}{\tau_{f}}, \\ & x \leq x_{s}, \frac{\partial T^{(o)}}{\partial t} - \frac{\langle |\dot{m}_{f}| \rangle}{\rho_{s}C_{s}} \frac{\partial T^{(i)}}{\partial x} = \kappa_{f} \frac{\partial^{2} T^{(o)}}{\partial x^{2}} - \frac{T^{(o)} - T_{\infty}}{\tau_{f}}, \\ & x \geq x_{s}, \frac{\partial T^{(i)}}{\partial t} - \frac{\Phi_{f}C_{f}}{\rho_{s}C_{s}} \frac{\langle |\dot{m}_{s}| \rangle}{2\rho_{f}} \frac{\partial T^{(i)}}{\partial x} = (\kappa_{s} + \Gamma_{\kappa}P^{2}) \frac{\partial^{2} T^{(i)}}{\partial x^{2}} - \frac{T^{(i)} - T_{\infty}}{\tau_{s}}, \\ & x \geq x_{s}, \frac{\partial T^{(o)}}{\partial t} + \frac{\Phi_{f}C_{f}}{\rho_{s}C_{s}} \frac{\langle |\dot{m}_{s}| \rangle}{2\rho_{f}} \frac{\partial T^{(i)}}{\partial x} = (\kappa_{s} + \Gamma_{\kappa}P^{2}) \frac{\partial^{2} T^{(o)}}{\partial x^{2}} - \frac{T^{(o)} - T_{\infty}}{\tau_{s}}, \\ & \text{Interface} \quad \frac{Q}{\pi t_{i}^{2}} = \lambda_{f} \frac{\partial T}{\partial x}|_{x_{s}^{-}} - (\lambda_{s} + \Gamma_{\lambda}P^{2}) \frac{\partial T}{\partial x}|_{x_{s}^{+}} + \frac{C_{f}}{2} (\langle |\dot{m}_{f}| \rangle + \Phi \langle |\dot{m}_{s}| \rangle) \left(T|_{x_{s}} - T_{\infty} \right), \\ & \text{Amplification} \quad \frac{dp}{dt} = \epsilon \{T(x, t)\} P, \\ & \text{Streaming} \quad \frac{\partial \dot{m}_{f}}{\partial t} = \frac{\Gamma_{f}P^{2}}{\theta_{f}} - \frac{\dot{m}_{f}}{\theta_{s}}, \frac{\partial \dot{m}_{s}}{\partial t} = \frac{\Gamma_{s}P^{2}}{\theta_{f}} - \frac{\dot{m}_{s}}{\theta_{s}}, \\ & - \sim \text{ streaming, } - \sim \text{ TA heat pumping} \end{aligned}$$

with
$$T(x,t) = \frac{T^{(i)}(x,t)+T^{(o)}(x,t)}{2}$$
 and $T|_{x=0} = T|_{x=x_s+d_s} = T_{\infty}$.

[61] Penelet et al., Int. Journ. Heat Mass Transf., 2012

The transient regime of a TA Laser : Theoretical results

The transient regime of a TA Oscillators : the big deal ...

What is the mechanism responsible for the switch on/off process? ...

 \ldots and how can we claim understanding TA engines if we cannot reproduce such an effect ?

Synchronisation, nonlinear coupling

The ThermoAcoustic Oscillator as an interesting dynamical system

- * An autonomous oscillator driven by heat
 - which is almost out of control above threshold
 - and which exhibits complicated dynamical behaviors (overshoot, "integrate and fire regime", ...)

 \star Investigate the nonlinear coupling between a TAO and an external sound source, with two objectives

- revisit universal aspects of synchronization⁶² phenomena in the frame of thermoacoustics (notably for teaching purpose).
- ▶ investigate the active control of TA engine to <a>> Their efficiency

[62] A. Pitkovsky, M. Rosenblum, J. Kurths, « Synchronization : A Universal Concept in Nonlinear Science », Cambridge University Press, NY, 2001.

The dynamics of a TAO

Synchronisation, nonlinear coupling

Synchronization phenomena

 \star Use or observation of synchronization phenomena are nowadays abundant

 \flat biology, medicine(singing crickets, circadian rythm, cardiac pacemaker . . .),

- b electronics engineering(triode generators for radio communications ...),
- b mechanics(clocks, organ pipes ...), physics/chemistry(B-Z reaction, ...),
- b social life(clapping audience).

\star An example in the field of acoustics : synchronization of organ pipes

- Former study by Lord Rayleigh : mutual synchronization of two organ pipes and the quenching effect (oscillation death)
- b ... but even recent studies^{63,64} :

Sketch of the exp. by Abel et al.⁶⁴

[63] Abel et al, J. Acoust. Soc. Am. 119 :2467, 2006; [64] Abel et al. Phys. Rev. Let., 103 :114301, 2009.

The dynamics of a TAO

Conclusion

Synchronisation, nonlinear coupling

Synchronization of a TAO by an external sound source⁶⁵

(a) Photograph of the complete experimental set-up.
 (c) Sketch of the experimental set-up.
 [65] Penelet & Biwa, Am. Journ. Phys., 2013

Synchronisation, nonlinear coupling

Synchronization by a sound source : experimental protocol

* Experimental protocol

- b Fix heat power Q=22.6 W ($Q > Q_{onset}$)
- \flat Fix both d and d_e
- \flat Proceed to measurements^{||} by varying the driving frequency
- f and the loudspeaker voltage U_{rms}

* Signal processing

- b Make both FFT and Hilbert transforms of p(t) and U(t)
- b Quantities of interest for data analysis :
- Frequency spectra p(f) and U(f)
- Amplitude modulation $A_{\mathbf{p}}(t)$
- Instantaneous phase difference $\Psi(t) = \Phi_{\mu}(t) \Phi_{U}(t)$

ifferent possible states			
(PS)	(IPL)	(QP)	(BD)
erfect Synchronization	Imperfect Phase Locking	QuasiPeriodicity	Beating Death
$AO = f (or f_{TAO} = \frac{f}{n})$	$f_{TAO} \neq f \text{ (or } f_{TAO} \neq \frac{f}{n} \text{)}$	$f_{TAO} \neq f \text{ (or } f_{TAO} \neq \frac{f}{n} \text{)}$	
$A_{p}(t) = c^{te}$	$A_{p}(t) \neq c^{te}$	$A_{p}(t) \neq c^{te}$	$A_p(t) = c^{te}$
$\Psi(t) = c^{te}$	$\Psi(t) \neq c^{te}$ but bounded	$\Psi(t) \neq c^{te}$ (unbounded)	

 \parallel Each set of measurements \sim 12-24 hours of total duration !!

fT

Synchronisation, nonlinear coupling

Synchronization by a sound source : the stability diagram

* Stability diagram as a function of $U_{loudspeaker}$ and f, for d=1 mm, d_s =8 cm and Q=22.6 W

- **b** Some universal aspects of synchronization are retrieved by this experiment
- **b** Some aspects are intrinsic to the TAO itself :
- => why are the Arnold tongues asymetric?
- => why does quenching occurs around $f \approx f_{TAO}/2?$

The dynamics of a TAO

Synchronisation, nonlinear coupling

Other phenomena related to the external forcing of a TAO

interpretation ? => Simply quenching or more complicated processes ? => does external forcing lead to the transformation of a bistable regime (with periodic switch between two stable states) into a stable one ?

The dynamics of a TAO

Conclusion

Synchronisation, nonlinear coupling

And to conclude ... what about Active Control of a TAO to increases its efficiency

Basic ideas

- Above threshold (and at fixed heat input $Q_{\rm 0}),$ TA engines are "out of control"

- Is there a possibility to \nearrow the efficiency of a TA engine with auxiliary acoustic sources?

A proof of concept study performed succesfully⁶⁶

- Closed-loop , stack based, TA engine

- Active control by 2 sources controlled in both amplitude and phase $% \left({{{\mathbf{x}}_{i}}} \right)$

A new proof of concept study which is being performed ...

- Thermo-Acousto-Electric engine
- Active control by 1 source and a feedback loop

...see the presentation by C. Olivier et al. to the next workshop!

C. Desjouy et al., J. Appl. Phys., 2010.

Plan

- Introduction, linear theory
- Nonlinear saturating processes

Example : the dynamics of a ThermoAcoustic Oscillator above onset

Conclusion

Conclusion

* Conclusion of part 1 (linear theory, design tools)

Design tools are available, but

- they are based on the linearization to 1st order of the governing equations,
- they are based on a 1-D description both acoustics and heat transport,
- they predict steady-state operation.

NL process	Academic understanding	Appropriate modeling	Impact on TA Engines
TA Heat pumping	©	Û	significant
NL acoustics	\odot		not much
Streaming	©	\odot	significant
Edge effects	\odot	\odot	significant
Turbulence	\odot	\odot	?

* Conclusion of part 2 (nonlinear processes)

* Conclusion of part 3 (dynamics of TA Oscillators)

 \flat Even simplest TA devices exhibits complicated behaviors which are not very well understood

 \flat The study of the transient regime may provide a deeper physical insight on the mechanisms responsible for sound saturation . . .

 \flat and may therefore provide new opportunities to increase the engine's efficiencies

The dynamics of a TAO

Thank you for your attention ...

Pierrick LOTTON (Senior Researcher)

The thermoacoustics team

Guillaume PENELET (Associate Professor)

Gaëlle POIGNAND (Research Engineer)

Côme OLIVIER (PhD Student)