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Non-normality & its role in 

subcritical transition to instability

How to analyse
non-normal systems?

Rijke tube

We clarify the role of non-normality & nonlinearity 
in thermoacoustics 

Other thermoacoustic Systems



Combustion instability is a plaguing problem in 
aero engines & power plants leading to failure



Positive Feedback 

Acoustics
+

Heat Release

Combustion instability is caused by the feedback 
between acoustics & combustion





Reasoning:
At low amplitudes, linearised eqns are sufficient to model the evolution

Network model using normal modes
Polifke (2004)

Combustion instability is investigated by testing 
for unstable eigenvalues of the linearized system



Imaginary part of the eigenvalue is growth rate

2 f iω π α= +

Complex 
eigenvalue

frequency

Growth
rate

Periodic

Exponential 
growth/decay
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A system is nonlinearly unstable if some finite 
amplitude disturbance grows with time

For trigerring instability, the initial amplitude should be greater
than a “threshold amplitude”

From Prof. Zinn’s notes



Increase in power destabilizes the system through 
a sub-critical Hopf bifurcation

Subramanian et al. (2010, n3l
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Initial excitation at small identical amplitudes.

Can a small, but finite amplitude disturbance 
cause triggering?
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Let us linearize the acoustics and the heat release.

Momentum

Energy

Linearized
Heat release
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A system is non-normal when its evolution operator 
does not commute with its adjoint

Thermoacoustic interaction is non-normal

Balasubramanian & Sujith: JFM (2008), POF (2008); Nicoud et al. (AIAA J 2007)



“Non-normality”



A non-normal system can have transient growth 
even if the individual modes decay
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Individual Eigenvalues: Wrong tool to analyse a non-normal system



Superposition of decaying eigenvectors can 
produce growth in short term

Schmid (2007)

Non-normality: not considered before in thermoacoustic instability



Transient growth can trigger nonlinearities when 
the amplitude reaches high enough values

Triggerring: Balasubramanian & Sujith: JFM (2008), POF (2008)

Linear

Nonlinear



Heat release makes the acoustic modes non-normal



Rijke tube

POF (2008)
AIAA Paper 2007-3428



fx

L

Heating Element

Horizontal Rijke tube is modeled

We sidestep the effects of natural convection on the mean flow

Air flow



The acoustic field is solved in the time domain 
using the Galerkin technique
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Momentum:

Energy: Compact Heat 
Source

Modal expansion:
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Heckl’s modified form of the King’s law is used to 
model the heat release

King’s law predicts nonlinearity only for velocity 
perturbations greater than the mean velocity

( )( )τ−′′=′ tuQQ f



BNN is non-normal

BNL is nonlinear 

0)( =++ χχχ
NLNN BB

dt
dA

Evolution equations obtained from the Galerkin
projection are non-normal & nonlinear



No damping



Subcritical transition to instability is observed

.

.

Limit cycle in the 
absence of damping

Phase 
evolves to 
90°



Include damping
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“Triggering” occurs with damping as well 

c1 = 0.05, c2 = 0.005



Linear

Nonlinear

Identical linear & nonlinear simulations at low 
amplitudes.

Nonlinearity “picks up” after sufficient transient growth
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Bootstrapping in an initially decaying system that 
grows later 

1(0) 0.1,η = 1(0) 0,iη ≠ = (0) 0iη = Lw = 2m and Tw = 900K, xf = 0.3



How can we quantify energy growth?

Nagaraja, Kedia & Sujith (Montreal Symposium, 2008)



2-norm of a vector is its length in Eucledian space

1 2( , ,..., )px x x x=Vector

2 2 2
1 2 ... px x x x= + + +Its norm



1 2
1 2

1 2

[        .........   ]TN
N

Nk k k
ηη ηχ η η η=

2
2 2

2
1

( )
N

i
i

i i

t
k
η

χ η
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

For our vector space with Galerkin modes
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2-norm of our state vector represents the 
acoustic energy



Greatest possible energy growth at time t, maximized 
over all possible initial perturbations is given by
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We maximise it over all time to get Gmax



. . 

exp( )Lt−We need the 2-norm of

The 2-norm of any matrix is its principal singularvalue

( ) exp( ) (0)t Ltχ χ= −

0d L
dt
χ χ+ =



TA U V= Σ

Σ is a  matrix with non-negative numbers on its diagonal 
and zeros off the diagonal

We define the SVD of a matrix A as

VT is the transpose of V, which is a unitary matrix.

U is a  unitary matrix,  
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Let us do SVD of our evolution operator



Let us do SVD of our evolution operator

Lt Te U V− = Σ

( ) (0)Tt U Vχ χ= Σ

( ) exp( ) (0)t Ltχ χ= −



Represents the output vector  as a linear 
superposition of components along the 
orthonormal basis formed by the output 
vectors

Resolves the initial 
condition vector  into 
an orthonormal basis 
of input vectors

( ) (0)Tt U Vχ χ= Σ

( ) exp( ) (0)t Ltχ χ= −



Evolution 
operator

Lt Te U V− = Σ

Lt Te V U V V U− = Σ = Σ

v1 is the most sensitive input direction

u1 is the most 
sensitive output 
direction

σ1 max possible
gain

  
1 1 1

L te v uσ− ==



Principal singularvalue - max energy amplification. 

Corresponding
right singularvector - most sensitive initial condition



Gmax = Infinity Classical linear instability

Gmax = 1 Classical linear stability

Gmax > 1, finite Transient growth



There are regions of stability, instability and 
“potential” instability

n - τ model of Crocco captures transient dynamics



Pseudospectra for studying non-normal systems

Set of all points on the complex plane whose minimum value 
of the singular value of (ZI-A) is less than ε

Z is an ε - pseudoeigenvalue of A if it satisfies ||(ZI-A)-1|| > ε -1



log10ε

Contours should protrude into the right half plane 
for the system to exhibit transient growth

“Necessary condition” for transient growth



Ambiguity of initial conditions due to noise makes the 
identification of transient growth using Rayleigh Criteria difficult.

Predicting transient growth using Rayleigh criteria 
requires precise knowledge of initial conditions

Lord Rayleigh



The conditions are now on the evolution operator; 
hence do not depend on initial conditions



Thermoacoustics involves 
multiphysics & multiscales



Ducted Burke-Schumann Flame

JFM (2008)
AIAA Paper 2007- 0567



We model 2D co-flow non-premixed combustion

Fuel

Oxidiser
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Infinite rate chemistry model is used to model 
the unsteady diffusion flame

Boundary 
Conditions

Compact heat 
source



Galerkin technique is used to solve the unsteady 
Burke Schumann problem
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Superposition of mode functions

Evolution equations
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The heat release is calculated using the 
thermodynamic relations
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BNN is non-normal

BNL is nonlinear 

0)( =++ χχχ
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dt
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Evolution equations for both acoustic and 
combustion modes are non-normal & nonlinear



Combustion makes the acoustic modes non-normal

Combustion modes are non-normal even in the absence of 
acoustic feedback



The oscillations decay, though there are 
several periods of short time growth

Elliptical phase portrait indicates near 
linear response

η1(0) = 0.1 ; xf=3/4; Pe= 5.0,  
Xi = 3.2, Yi = 3.2/7, La/(2H) = 25.

Excitation in first mode



Velocity

Heat release

Phase evolution

For a different initial condition, transient growth is 
large enough to trigger nonlinearities.

( ) ( ) 5.00;5.00 11 == ηη

Phase evolves to 90º

Mean value of heat release changes 
indicating nonlinear behavior



Linear & nonlinear simulations are identical at 
low amplitudes.

Nonlinearity “picks up” after sufficient transient growth



Combustion Instabilities occur at frequencies 
far from natural acoustic frequencies

First half of evolution

Second half of evolution

Matveev & Culick (2003); 
Schadow & Gutmark (1989)

xf=3/4; Pe= 5.0,  Xi = 3.2, Yi = 
3.2/7, La/(2H) = 25.

( ) ( ) 1.00;1.00 11 == ηη

Velocity

1.38

FFT of heat release



Bootstrapping in an initially decaying oscillations 
that grow later

Initially stable 1st mode projects 
energy to 3rd mode, which later 
projects energy back to 1st mode.



Is premixed flame-acoustic interaction non-normal?



Yes, indeed!



Premixed flame is modelled using the G-equation
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Heat release rate is correlated to surface area

Q A
Q A

′ ′
=

Schuller (2003)



Linearised system of equations for the self 
evolving system are non-normal
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Acoustic variables
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Growth factor maximized over all initial 
conditions and all time is called Gmax

Gmax increases with flame location till the half duct length
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Transient growth is more for sharper flames



Thermoacoustic system has more degrees of 
freedom than the number of acoustic modes
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Acoustic variables
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Internal degrees of freedom of the flame front 
also contribute to the dynamics
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coupling between acoustics and flame front
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Acoustic variables

Flame front variables

Internal degrees of freedom of the flame front 
also contribute to the dynamics



Let us redo the analysis of an SRM



A system is nonlinearly unstable if some finite 
amplitude disturbance grows with time

For trigerring instability, the initial amplitude should be greater
than a “threshold amplitude”

From Prof. Zinn’s notes



Include non-orthogonality of eigenmodes which 
plays an important role in the short term dynamics



Use a physics based model for the burn rate 
response 



Include all the nonlinear processes involved



Can we obtain pulsed instability from a small amplitude 
initial pulse (compared to limit cycle amplitude)?



We consider an SRM here with a prismatic 
circular combustion chamber 



Non-dimensionalised acoustic equations with 
2nd order nonlinearity are given by
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Unsteady burn rate drives the acoustic 
oscillations
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The acoustic equations are solved by Galerkin 
technique
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Linearized governing equations are used 
investigate the non-normality behavior
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Numerical simulations have been performed 
for the following value of the parameters.  

8 l m=

20.2 ,  1.59 c lS m S m= = 60 bar, 2900 ,  17 /P T K R mm s= = =



Non-normality can be studied by pseudospectra

Pseudospectra
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Triggering with 
transient growth 
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Triggering with large 
initial condition 

Non-normality plays an important role in pulsed 
instability



How can we get the bifurcation diagram?



Continuation methods can capture bifurcations



What are the asymptotic states of a thermoacoustic 
system?

Fixed point

Limit Cycle

What else?......





Industrial/aero combustors have turbulent flow



A lot more work & excitement awaits us!



In summary, thermoacoustic interaction is 
non-normal and nonlinear

Transient growth can lead to high enough 
amplitudes where nonlinearities become significant

Non-normality & nonlinearity leads to
subcritical transition to instability

Individual eigenvalues: wrong tools for 
analyzing a non-normal system.

Need to adopt tools such as SVD 
and ε pseudospectra


