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Summary

This dissertation investigates several aspects of tempo–spatial stochastic integral
processes and is outlined as follows.

In Chapter 1 we derive explicit integrability conditions for stochastic integrals
taken over time and space driven by a random measure. Our main tool is a canon-
ical decomposition of a random measure which extends the results from the purely
temporal case. We show that the characteristics of this decomposition can be chosen
as predictable strict random measures, and we compute the characteristics of the
stochastic integral process. We apply our conditions to a variety of examples, in
particular to ambit processes, which represent a rich model class.

In Chapter 2 we examine nonlinear stochastic Volterra equations in space and
time driven by Lévy bases, whose solutions, if they exist, form a subclass of ambit
processes as discussed in Chapter 1. Under a Lipschitz condition on the nonlinear
term, we give existence and uniqueness criteria in weighted function spaces that
depend on integrability properties of the kernel and the characteristics of the Lévy
basis. Particular attention is devoted to equations with stationary solutions, or more
generally, to equations with infinite memory, that is, where the time domain of
integration starts at minus infinity. Here, in contrast to the usual case where time is
positive, existence and uniqueness depend critically on the size of the kernel and the
Lévy characteristics. Furthermore, once the existence of a solution is guaranteed,
we analyze its asymptotic stability, that is, whether its moments remain bounded
when time goes to infinity. Stability is proved whenever kernel and characteristics
are small enough, or the nonlinearity of the equation exhibits a fractional growth
of order strictly smaller than one. The results are applied to the stochastic heat
equation for illustration.

In Chapter 3 we present two numerical schemes for the simulation of stochastic
Volterra equations as in Chapter 2 when the Lévy noise is of pure-jump type. The
first one is based on truncating the small jumps of the noise, while the second one
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relies on series representation techniques for infinitely divisible random variables.
Under reasonable assumptions, we prove for both methods Lp- and almost sure
convergence of the approximations to the true solution of the Volterra equation. We
give explicit convergence rates in terms of the Volterra kernel and the characteristics
of the noise. A simulation study visualizes the most important path properties of
the investigated processes.

In Chapter 4 we suggest three superpositions of COGARCH (supCOGARCH)
volatility processes driven by Lévy processes or Lévy bases. We investigate second-
order properties, jump behaviour, and prove that they exhibit Pareto-like tails.
Corresponding price processes are defined and studied as well. We find that the
supCOGARCH models allow for more flexible autocovariance structures than the
COGARCH. Moreover, in contrast to most financial volatility models, the supCO-
GARCH processes do not exhibit a deterministic relationship between price and
volatility jumps. Furthermore, one of the supCOGARCH volatility processes has a
representation as an ambit process.

In Chapter 5 we investigate interacting particle systems with two kinds of hetero-
geneity: one originating from different weights of the linkages, and one concerning
their asymptotic relevance when the system becomes large. Hereby, we define a par-
tial mean field system where only the asymptotically vanishing pairs are averaged
out, and prove a law of large number result with explicit bounds on the mean squared
error. Furthermore, a large deviation result will be established in certain cases. The
theory will be illustrated by several examples: on the one hand, we recover the
classical results of chaos propagation for homogeneous systems, and, on the other
hand, we demonstrate the validity of our assumptions for quite general heteroge-
neous networks including those arising from preferential attachment random graph
models.
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Zusammenfassung

Die vorliegende Dissertation untersucht verschiedene Aspekte stochastischer Inte-
gralprozesse in Raum und Zeit und hat folgenden Aufbau.

In Kapitel 1 leiten wir explizite Integrabilitätsbedingungen für stochastische In-
tegrale über Raum und Zeit bezüglich eines Zufallsmaßes her. Das wichtigste Hilfs-
mittel ist dabei eine kanonische Zerlegung des Zufallsmaßes, die entsprechende Re-
sultate aus dem rein zeitlichen Fall erweitert. Wir zeigen, dass die Charakteristiken
dieser Zerlegung als vorhersagbare strikte Zufallsmaße gewählt werden können, und
berechnen die Charakteristiken von stochastischen Integralprozessen. Wir wenden
die gefundenen Bedingungen auf eine Auswahl an Beispielen an, insbesondere auf
Ambitprozesse, welche eine umfangreiche Modellklasse darstellen.

In Kapitel 2 untersuchen wir nichtlineare stochastische Volterragleichungen, die
von räumlich-zeitlichen Lévybasen getrieben werden. Deren Lösungen bilden, falls
sie existieren, eine Unterklasse der in Kapitel 1 diskutierten Ambitprozesse. Unter
einer Lipschitzbedingung an den nichtlinearen Term formulieren wir Existenz- und
Eindeutigkeitskriterien in gewichteten Funktionenräumen, welche nur von den Inte-
grabilitätseigenschaften des Kerns und der Charakteristiken der Lévybasis abhän-
gen. Besondere Aufmerksamkeit wird Gleichungen mit stationären Lösungen oder
noch allgemeiner Gleichungen mit unendlichem Gedächtnis gewidmet, das heißt, wo
der zeitliche Bereich der Integration bei minus Unendlich beginnt. Im Gegensatz
zum gewöhnlichen Fall positiver Zeit, hängen nun Existenz und Eindeutigkeit von
Lösungen nicht nur von der Endlichkeit, sondern in ausschlaggebender Weise auch
von der Größe des Kerns und der Charakteristiken ab. Darüber hinaus analysieren
wir, sobald die Existenz einer Lösung sichergestellt ist, deren asymptotische Sta-
bilität, was also die Frage bedeutet, ob deren Momente beschränkt bleiben, wenn
die Zeit gegen Unendlich strebt. Stabilität wird gezeigt, sobald Kern und Charakte-
ristiken genügend klein sind oder wenn die Nichtlinearität der Gleichung mit einer
fraktionalen Ordnung strikt kleiner als 1 wächst. Die Ergebnisse werden anhand der
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stochastischen Wärmeleitungsgleichung veranschaulicht.
In Kapitel 3 präsentieren wir zwei numerische Verfahren zur Simulation von

stochastischen Volterragleichungen wie aus Kapitel 2, wenn das Lévyrauschen nur
Sprünge aufweist. Das erste basiert auf dem Abschneiden kleiner Sprünge aus dem
Rauschen, während sich das zweite auf Reihendarstellungen für unendlich teilbare
Zufallsvariablen stützt. Unter geeigneten Bedingungen beweisen wir für beide Me-
thoden Lp- sowie fast sichere Konvergenz der Approximationen gegen die wahre Lö-
sung der Volterragleichung. Wir geben explizite Konvergenzraten an, welche von dem
Volterrakern und den Charakteristiken der Lévybasis abhängen. Eine Simulations-
studie veranschaulicht die wichtigsten Pfadeigenschaften der untersuchten Prozesse.

In Kapitel 4 konstruieren wir drei Superpositionen von COGARCH-Volatilitäts-
prozessen (supCOGARCH), die von Lévyprozessen oder -basen getrieben werden.
Wir untersuchen die Eigenschaften zweiter Ordnung, das Sprungverhalten und
zeigen deren paretoähnliche Tails. Im Gegensatz zu den meisten Volatilitätsmo-
dellen der Finanzmathematik, zeigen supCOGARCH-Prozesse keinen deterministi-
schen Zusammenhang zwischen Preis- und Volatilitätssprüngen. Darüber hinaus hat
einer der supCOGARCH-Volatilitätsprozesse eine Darstellung als Ambitprozess.

In Kapitel 5 untersuchen wir interagierende Teilchensysteme mit zwei Arten von
Heterogenität: eine, die durch verschiedene Gewichte der Verbindungen entsteht,
und eine, die deren asymptotische Relevanz beim Wachsen des Systems betrifft.
Dabei definieren wir ein partielles Molekularfeldsystem, bei dem nur über asympto-
tisch verschwindende Paare gemittelt wird, und zeigen ein Resultat im Sinne eines
Gesetzes der großen Zahl mit expliziten Schranken für den mittleren quadratischen
Fehler. Außerdem wird ein Prinzip großer Abweichungen in bestimmten Fällen be-
wiesen. Die Theorie wird anhand einiger Beipiele verdeutlicht: zum einen gewinnen
wir klassische Resultate zur Chaosausbreitung bei homogenenen Systemen wieder,
und zum anderen zeigen wir die Gültigkeit unserer Annahmen bei recht allgemeinen
heterogenen Netzwerken einschließlich solcher, die durch den Mechanismus eines
Preferential-Attachment-Zufallsgraphen entstehen.
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Introduction

Itô’s pioneering work on stochastic integration [79] is certainly one of the most im-
portant cornerstones in modern probability theory. On the one hand, from a mathe-
matical point of view, it culminates in the theory of semimartingales and stochastic
differential equations; on the other hand, it lays the foundation for manifold appli-
cations in mathematical finance, econometrics, physics, chemistry, engineering and
other disciplines. Traditionally, and even today this is the most investigated situa-
tion, the stochastic processes under consideration are indexed by a scalar parameter
t often referred to as time. However, over the last few decades, there has been a
growing interest in models of stochastic processes that additionally feature a space
coordinate in an infinite set E. Depending on the model at hand, this set can be
physical space, so E = R

d, a parameter space, or a countable index set, e.g. E = N.
In some situations, this spatial structure gives rise to interesting phenomena that
are usually not encountered with purely temporal stochastic processes.

The present thesis aims to address several topics on such tempo–spatial stochas-
tic processes and is organized as follows. Chapter 1, which is based on a joint paper
with my supervisor Claudia Klüppelberg [44] and has been accepted as my Mas-
ter’s Thesis within the TopMath graduate programme at the Technische Universität
München, answers the basic question of when a stochastic integral of the form

∫

R

∫

E
H(t, x)M(dt, dx) (1)

is well defined for some stochastic integrand H and random measure M . The focus
here lies on global integrability (not just on a compact time interval) and on easily
verifiable conditions. The main results are Theorems 1.4.1 and 1.4.8, where the
existence of (1) is characterized in terms of H and the characteristic triplet of M
(see Theorem 1.3.2). The main motivation behind this study is to clarify existence
conditions for processes of the form

Y (t, x) =
∫

R

∫

Rd
G(t, x; s, y)σ(s, y)M(ds, dy), (t, x) ∈ R

d, (2)
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where G is a deterministic kernel and σ a stochastic field. Such processes are called
ambit processes in the context of turbulence modelling, see [18], and are related
to stochastic partial differential equations as well, see the same reference and in
particular Chapter 2.

In Chapter 2, which is taken from the paper [43], we analyze existence and
uniqueness conditions for stochastic Volterra equations given by

Y (t, x) = Y0(t, x) +
∫

I

∫

Rd
G(t, x; s, y)σ(Y (s, y)) Λ(ds, dy) (3)

for (t, x) ∈ I × R
d, where I is [0,∞) or R, Y0 some given process, σ a Lipschitz

function and Λ a Lévy basis. When G is the Green’s function of a partial differen-
tial operator, (3) is the mild formulation of a stochastic partial differential equation
with multiplicative noise, see the initial paper [136]. This Chapter has three main
contributions: for I = [0,∞) it extends, under reasonable assumptions, the work of
different authors to general kernels G and noises Λ, see Theorems 2.3.1 and 2.3.5;
for I = R, which is intimately related to stationary solutions to (3), we find that
existence and uniqueness of solutions no longer only depend on integrability prop-
erties of kernel and noise, but also on the size of these integrals, see Theorem 2.4.4.
Finally, once a solution exists, Theorem 2.5.2 gives conditions for the boundedness
of moments when time tends to infinity.

The subsequent Chapter 3 is based on joint work [41] with Bohan Chen, who has
created the figures in Section 3.5 in his Master’s Thesis [40], and Claudia Klüppel-
berg. Here we establish two numerical schemes for the simulation of (3) when Λ is
of pure-jump type. One method relies on the truncation of the small jumps of Λ (see
Algorithm 3.3.1), while the other one relies on series representation techniques (see
Algorithm 3.4.2). For both methods we prove Lp- and a.s. convergence of the nu-
merical approximation to the true solution in Theorems 3.3.2 and 3.4.3. As already
mentioned, a simulation study is carried out in Section 3.5.

While in Chapters 1–3 the spatial component of the stochastic processes mainly
refers to physical space, this changes in Chapter 4, which is from a paper [26]
with Anita Behme and Claudia Klüppelberg. Here, we investigate multi-factor
continuous-time stochastic volatility models so that space actually means a param-
eter space and all processes only evolve in time. More precisely, we construct three
different superpositions of COGARCH processes, which are the continuous-time ana-
logue [88] to the celebrated GARCH models (see e.g. [30]). Like superpositions of
Ornstein-Uhlenbeck processes in [11], the supCOGARCH models are designed to
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inherit the desired features of the COGARCH model (volatility clustering, heavy
tails, absence of correlation for returns but positive correlation for the squared re-
turns) and, at the same time, to overcome some of its shortcomings (exponential
autocovariance function, functional relationship between volatility and price jumps
[82]). For all three supCOGARCH models, we compute the moments of the volatil-
ity processes in Propositions 4.3.4, 4.3.12 and 4.3.18, prove their Pareto-like tails in
Propositions 4.3.5, 4.3.13 and 4.3.19, and show dependence without correlation of
the returns in Theorems 4.4.1, 4.4.2 and 4.4.3.

In the last Chapter 5, which is based on [45], we generalize McKean’s mean field
theory for interacting diffusions (see e.g. [131]) to heterogeneous networks. First,
the interaction rates are allowed to vary for different pairs of particles, and second,
some of these rates need not to vanish when the systems gets large. Furthermore, the
driving noises in the system may have jumps and dependencies. Under reasonable
assumptions we determine in Theorem 5.3.1 explicit bounds on the mean squared
distance between the original system and the partial mean field system (i.e. only the
rates that are asymptotically small are taken into the mean field limit). In several
examples, which include homogeneous systems, sparse heterogeneous systems or
networks arising from a preferential attachment algorithm, and to be discussed in
Sections 5.3.1–5.3.3, we show that these bounds converge to 0 as the system grows: a
law of large number holds for the partial mean field system. Under certain conditions,
also a large deviation principle holds, see Theorem 5.4.1. We remark that in this
Chapter the role of space is played by the underlying network structure.

We conclude this introduction with some further remarks. For reasons of brevity,
references to existing literature in the overview above are kept to small number and
by far not representative. For a more detailed review of the literature, we refer to the
introductions within each chapter below. In addition, we made no attempt to unify
notations, definitions and abbreviations among the different chapters of this thesis
since a large number of symbols and variables are used, and since different abbrevia-
tions seem reasonable in different settings. Instead, the reader will find all notational
conventions needed to understand the chapters in their respective introductory sec-
tions. Therefore, it is also inevitable that certain definitions or explanations are
repeated in the different chapters, but this contributes to easier reading and also
makes the individual chapters more self-contained.
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Chapter 1:

Integrability conditions for space–time

stochastic integrals: theory and applica-

tions

1.1 Introduction

Following Itô’s seminal paper [79], stochastic integration theory with respect to
semimartingales was brought to maturity during the 1970s and 1980s. One of the
fundamental results in this area is the Bichteler-Dellacherie theorem, which shows
the equivalence between the class of semimartingales and the class of finite L0-
random measures. As a consequence, semimartingales constitute the largest class of
integrators that allow for stochastic integrals of predictable integrands satisfying the
dominated convergence theorem. The natural analogue to semimartingale integrals
in a space–time setting are integrals of the form

∫

R×E
H(t, x)M(dt, dx), (1.1.1)

where E is some space and M is an L0-random measure on R×E. The construction
of such integrals is discussed in [28] in its full generality, so the theory is complete
from this point of view.

However, whether H is integrable with respect to M or not, depends on whether

lim
r→0

sup
{
E

[∣∣∣∣
∫
S dM

∣∣∣∣ ∧ 1
]

: |S| ≤ |rH|, S is a simple integrand
}

= 0 (1.1.2)

or not, a property which is hard to check. Thus, the aim of this Chapter is to char-
acterize (1.1.2) in terms of equivalent conditions, which can be verified in concrete



2 1. Integrability conditions for space–time stochastic integrals

situations. In the purely temporal case, this subject is addressed in [22]. The result
there is obtained by using the local semimartingale characteristics corresponding to
a random measure. Our approach parallels this method, but it turns out that the
notion of characteristics in the space–time setting is much more complex. We will
show that, if M has different times of discontinuity (cf. Definition 1.3.1 below), we
can associate a characteristic triplet to it consisting of strict random measures (cf.
Definition 1.2.1(3)) that are jointly σ-additive in space and time. Moreover, we will
determine the characteristics of stochastic integral processes, which is more involved
than in the temporal case, since a concept is needed to merge space and time appro-
priately. Having achieved this step, integrability conditions in the same fashion as
in [22, 119] can be given for space–time integrals. We will also compare our results
to those of [80], [119], [136].

Applications of our theoretical results will be chosen from the class of ambit
processes

Y (t, x) :=
∫

R×Rd
h(t, s;x, y)σ(s, y)M(ds, dy), t ∈ R, x ∈ R

d, (1.1.3)

which have been suggested for modelling physical space–time phenomena like tur-
bulence, see e.g. [18]. In the case, where σ = 1 and M is a Lévy basis (see Re-
mark 1.4.4), such multiparameter integrals have already been investigated by many
authors: for instance, [37, 98, 122] discuss path properties of the resulting process Y ,
while [60, 106] address the extremal behaviour of Y ; mixing conditions are examined
in [69].

As a broad model class, the applications of ambit processes go far beyond turbu-
lence modelling. For example, [111] describes the movement of relativistic quantum
particles by equations of the form (1.1.3). Moreover, solutions to stochastic par-
tial differential equations driven by random noise are often of the form (1.1.3), cf.
[18, 136] and Section 1.5.2. Furthermore, stochastic processes like forward contracts
in bond and electricity markets based on a Heath-Jarrow-Morten approach also rely
on a spatial structure, cf. [4, 19]. Other applications include brain imaging [84] and
tumour growth [13, 83].

The concept of an ambit process has also been successfully invoked to define
superpositions of stochastic processes like Ornstein-Uhlenbeck processes or, more
generally, continuous-time ARMA (CARMA) processes. In these models, only in-
tegrals of deterministic integrands with respect to Lévy bases are involved, so the
integration theory of [119] is sufficient. Our integrability conditions, however, allow



1.2. Preliminaries 3

for a volatility modulation of the noise, which generates a greater model flexibil-
ity. Moreover, in Section 4.3.3 ambit processes are used to define superpositions of
continuous-time GARCH (COGARCH) processes. In its simplest case superposition
leads to multi-factor models, economically and statistically necessary extensions of
the one-factor models; cf. [82]. As we shall see, the supCOGARCH model again
needs the integrability criteria we have developed since for this model the volatility
σ and the random measure M are not independent.

This Chapter is organized as follows. Section 1.2 introduces the notation and
gives a summary on the concept of a random measure and its stochastic integration
theory. Section 1.3 derives a canonical decomposition for random measures as known
for semimartingales and calculates the characteristic triplet of stochastic integral
processes. Section 1.4 presents integrability conditions in terms of the characteristics
from Section 1.3. Section 1.5 is dedicated to examples to highlight our results.

1.2 Preliminaries

Let (Ω,F , (Ft)t∈R, P ) be a stochastic basis satisfying the usual assumptions of com-
pleteness and right-continuity. Denote the base space by Ω̄ := Ω×R and the optional
(resp. predictable) σ-field on Ω̄ by O (resp. P). Furthermore, fix some Lusin space
E, equipped with its Borel σ-field E . Using the abbreviations Ω̃ := Ω × R × E and
Õ := O ⊗ E (resp. P̃ := P ⊗ E), we call a function H : Ω̃ → R optional (resp.
predictable) if it is Õ-measurable (resp. P̃-measurable). We will often use the sym-
bols O and P (resp. Õ and P̃) also for the collection of optional and predictable
functions from Ω̄ (resp. Ω̃) to R. We refer to Chapters I and II of [80] for all notions
not explicitly explained.

Some further notational conventions: we write At := A∩(Ω×(−∞, t]) for A ∈ P,
and Ãt := Ã∩(Ω×(−∞, t]×E) for Ã ∈ P̃ . Bb(Rd) denotes the collection of bounded
Borel sets in R

d. Next, if µ is a signed measure and X a finite variation process, we
write |µ| and |X| for the variation of µ and the variation process of X, respectively.
Finally, we equip Lp = Lp(Ω,F , P ), p ∈ [0,∞), with the topology induced by

‖X‖p := E[|X|p]1/p, p ≥ 1, ‖X‖p := E[|X|p], 0 < p < 1, ‖X‖0 := E[|X| ∧ 1]

for X ∈ Lp. Among several definitions of a random measure in the literature, the
following two are the most frequent ones: in essence, a random measure is either
a random variable whose realizations are measures on some measurable space (e.g.
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[80, 85]) or it is a σ-additive set function with values in the space Lp (e.g. [28, 91,
104, 119, 136]). Our terminology is as follows:

Definition 1.2.1 Let (Õk)k∈N be a sequence of sets in P̃ with Õk ↑ Ω̃. Set
P̃M :=

⋃∞
k=1 P̃|Õk

, which is the collection of all sets A ∈ P̃ such that A ⊆ Õk

for some k ∈ N.

(1) An Lp-random measure on R × E is a mapping M : P̃M → Lp satisfying:

(a) M(∅) = 0 a.s.,

(b) For pairwise disjoint sets (Ai)i∈N in P̃M with
⋃∞

i=1 Ai ∈ P̃M we have

M

(
∞⋃

i=1

Ai

)
=
∞∑

i=1

M(Ai) in Lp.

(c) For all A ∈ P̃M with A ⊆ Ω̃t for some t ∈ R, the random variable M(A) is
Ft-measurable.

(d) For all A ∈ P̃M , t ∈ R and F ∈ Ft, we have

M
(
A ∩ (F × (t,∞) × E)

)
= 1FM

(
A ∩ (Ω × (t,∞) × E)

)
a.s.

(2) If p = 0, we only say random measure; if Õk can be chosen as Ω̃ for all k ∈ N,
M is called a finite random measure; and finally, if E consists of only one point,
M is called a null-spatial random measure.

(3) A strict random measure is a signed transition kernel µ(ω, dt, dx) from (Ω,F)
to (R × E,B(R) ⊗ E) with the following properties:

(a) There is a strictly positive function V ∈ P̃ such that
∫

R×E
V (t, x) |µ|(dt, dx) ∈ L1.

(b) For Õ-measurable functions W such that W/V is bounded, the process

W ∗ µt :=
∫

(−∞,t]×E
W (s, x)µ(ds, dx), t ∈ R,

is optional.
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Remark 1.2.2 (1) If we can choose Ok = Ω × O′k with O′k ↑ R × E, one popular
choice for (Ft)t∈R is the natural filtration (FM

t )t∈R of M which is the small-
est filtration satisfying the usual assumptions such that for all t ∈ R we have
M(Ω ×B) ∈ FM

t if B ⊆ ((−∞, t] × E) ∩O′k with some k ∈ N.

(2) If µ is a positive transition kernel in Definition 1.2.1(3), µ is an optional P̃-σ-
finite random measure in the sense of [80, Chap. II], where also the predictable
compensator of a strict random measure is defined. Obviously, a strict random
measure is a random measure, see [28, Ex. 5 and 6]. ✷

Stochastic integration theory in space–time with respect to Lp-random measures
is discussed in [28], see also [27]. The special case of L2-integration theory is also
discussed in [56, 136]. Let us recall the details involved: a simple integrand is a
function Ω̃ → R of the form

S :=
r∑

i=1

ai1Ai
, r ∈ N, ai ∈ R, Ai ∈ P̃M , (1.2.1)

for which the stochastic integral with respect to M is canonically defined as
∫
S dM :=

r∑

i=1

aiM(Ai). (1.2.2)

Now consider the collection S↑M of positive functions Ω̃ → R which are the pointwise
supremum of simple integrands and define the Daniell mean ‖ · ‖D

M,p : RΩ̃ → [0,∞]
by

• ‖K‖D
M,p := sup

S∈SM ,|S|≤K

∥∥∥∥
∫
S dM

∥∥∥∥
p
, if K ∈ S↑M , and

• ‖H‖D
M,p := inf

K∈S↑

M ,|H|≤K
‖K‖D

M,p for arbitrary functions H : Ω̃ → R.

An arbitrary function H : Ω̃ → R is called integrable with respect to M if there is a
sequence of simple integrands (Sn)n∈N such that ‖H −Sn‖D

M,p → 0 as n → ∞. Then
the stochastic integral of H with respect to M defined by

∫
H dM :=

∫

R×E
H(t, x)M(dt, dx) := lim

n→∞

∫
Sn dM (1.2.3)

exists in Lp and does not depend on the choice of (Sn)n∈N. The collection of integrable
functions is denoted by L1,p(M) and can be characterized as follows [27, Thms. 3.4.10
and 3.2.24]:
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Theorem 1.2.3. Let F 1,p(M) be the collection of functions H with ‖rH‖D
M,p → 0 as

r → 0. If we identify two functions coinciding up to a set whose indicator function
has Daniell mean 0, then

L1,p(M) = P̃ ∩ F 1,p(M). (1.2.4)

Moreover, the following dominated convergence theorem holds: Let (Hn)n∈N be a
sequence in L1,p(M) converging pointwise to some limit H. If there exists some
function F ∈ F 1,p(M) with |Hn| ≤ F for each n ∈ N, both H and Hn are integrable
with ‖H −Hn‖D

M,p → 0 as n → ∞ and
∫
H dM = lim

n→∞

∫
Hn dM in Lp. (DCT)

Given a predictable function H ∈ P̃ , we can obviously define a new random
measure H.M in the following way:

K ∈ L1,0(H.M) :⇔ KH ∈ L1,0(M),
∫
K d(H.M) :=

∫
KH dM. (1.2.5)

This indeed defines a random measure provided there exists a sequence (Õk)k∈N ⊆ P̃
with Õk ↑ Ω̃ and 1Õk

∈ L1,0(H.M) for all k ∈ N. But this construction does not
extend the class L1,0(M) of integrable functions with respect to M . However, as
shown in [28, §3], L1,p(M) can indeed be extended further in the following way.
Given an Lp-random measure M , fix some P̃-measurable function H such that:

There exists a predictable process K : Ω̄ → (0,∞) with KH ∈ L1,p(M). (1.2.6)

Now set Ōk := {K ≥ k−1} for k ∈ N, which obviously defines predictable sets
increasing to Ω̄, and then PH·M := {A ∈ P : A ⊆ Ōk for some k ∈ N}. Then we
define a new null-spatial Lp-random measure by

H ·M : PH·M → Lp, (H ·M)(A) :=
∫
1AH dM.

The following is known from [28], see also [22, Thm. A.2]:

(1) If H ∈ L1,p(M), H ·M is a finite Lp-random measure and
∫

1 d(H ·M) =
∫
H dM .

(2) If G : Ω̄ → R is a predictable process, we have G ∈ L1,p(H · M) if and only if
‖rGH‖M,p → 0 as r → 0, where for every P̃-measurable function H we set

‖H‖M,p := sup
F : Ω̄→R predictable,
|F |≤1,F H∈L1,p(M)

∥∥∥∥
∫
FH dM

∥∥∥∥
p
. (1.2.7)

In this case we have
∫
G d(H ·M) =

∫
GH dM .
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Therefore, it is reasonable to extend the set of integrable functions with respect to
M from L1,p(M) to

Lp(M) = {H ∈ P̃ : H satisfies (1.2.6) and ‖rH‖M,p
r→0−→ 0} (1.2.8)

by setting ∫
H dM := (H ·M)(Ω̄), H ∈ Lp(M).

We remark that in the null-spatial case L1,0(M) = L0(M). But in general, the
inclusion L1,p(M) ⊆ Lp(M) is strict, see [28, §3b] and Example 1.4.7 below.

Let us also remark that [48] introduces a stochastic integral for a Gaussian ran-
dom measure where the integrands are allowed to be distribution-valued. It is still
an open question whether it is possible to extend this to the general setting of Lp-
random measures, in particular if p < 2; we do not pursue this direction in the
present thesis.

In the sequel we will frequently use the following fact from [22, Ex. 3.1]: If M is
a finite random measure, the process (M(Ω̃t))t∈R has a càdlàg modification, which
is then a semimartingale up to infinity with respect to to the underlying filtration
(see [22, Sect. 2] for a definition). This semimartingale will be also be denoted by
M = (Mt)t∈R.

1.3 Predictable characteristics of random measures

Let us introduce three important subclasses of random measures:

Definition 1.3.1 Let M be a random measure where Õk = Ok ×Ek with Ok ↑ Ω̄
and Ek ↑ E. Set EM :=

⋃∞
k=1 E|Ek

.

(1) M has different times of discontinuity if for all k ∈ N and disjoint sets U1, U2 in
EM the semimartingales 1Ok×Ui

·M , i = 1, 2, a.s. never jump at the same time.

(2) M is called orthogonal if for all pairs of disjoint sets U1, U2 ∈ EM and k ∈ N we
have [(1Ok×U1 ·M)c, (1Ok×U2 ·M)c] = 0.

(3) M has no fixed time of discontinuity if for all U ∈ EM , k ∈ N and t ∈ R we have
∆(1Ok×U ·M)t = 0 a.s.



8 1. Integrability conditions for space–time stochastic integrals

In the next theorem we prove a canonical decomposition for random measures
with different times of discontinuity generalizing the results of [80] and [22]. Without
this extra assumption on the random measure, only non-explicit results such as [28,
Thm. 4.21] or results for p ≥ 2 as in [94, Thm. 1] are known. We also remark
that the integrability conditions in Theorem 1.4.1 will be stated in terms of this
decomposition. Some notation beforehand: we write B0(R) for the collection of Borel
sets on R which are bounded away from 0. Furthermore, if X is a semimartingale up
to infinity, we write B(X) for its first characteristic, [X] for its quadratic variation,
Xc for its continuous part (all of them starting at −∞ with 0), µX for its jump
measure and νX for its predictable compensator. Finally, if U ∈ E , M |U denotes the
random measure given by M |U(A) = M(A ∩ (Ω̄ × U)) for A ∈ P̃M .

Theorem 1.3.2. Let M have different times of discontinuity.

(1) The mappings

B(A) := B(1A ·M)∞, M c(A) := (1A ·M)c
∞, A ∈ P̃M ,

are random measures, the mapping

C(A;B) := [(1A ·M)c, (1B ·M)c]∞, A ∈ P̃M ,

is a random bimeasure (i.e. a random measure in both arguments when the other
one is fixed) and the set functions

µ(A, V ) := µ1A·M(R × V ), ν(A, V ) := ν1A·M(R × V ), (1.3.1)

defined for A ∈ P̃M and V ∈ B0(R), can be extended to random measures on
P̃M ⊗ B0(R). Moreover, (B,C, ν) can be chosen as predictable strict random
(bi-)measures and form the characteristic triplet of M .

(2) Let A ∈ P̃M and τ be a truncation function (i.e. a bounded function with
τ(y) = y in a neighbourhood of 0). Then 1A(t, x)(y − τ(y)) (resp. 1A(t, x)τ(y))
is integrable with respect to µ (resp. µ− ν), and we have

M(A) = B(A) +M c(A) +
∫

R×E×R
1A(t, x)(y − τ(y))µ(dt, dx, dy)

+
∫

R×E×R
1A(t, x)τ(y) (µ− ν)(dt, dx, dy). (1.3.2)
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(3) There are a positive predictable strict random measure A(ω, dt, dx), a P̃-
measurable function b(ω, t, x) and a transition kernel K(ω, t, x, dy) from (Ω̃, P̃)
to (R,B(R)) such that for a.e. ω ∈ Ω

B(ω, dt, dx) = b(ω, t, x)A(ω, dt, dx),

ν(ω, dt, dx, dy) = K(ω, t, x, dy)A(ω, dt, dx).

For the proof of Theorem 1.3.2 let us recall the semimartingale topology of [59]
on the space SM of semimartingales up to infinity, which is induced by

‖X‖SM := sup
|H|≤1,H∈P

∥∥∥∥
∫ ∞

−∞
Ht dXt

∥∥∥∥
0
, X ∈ SM.

The following results are known.

Lemma 1.3.3. (1) Let (Xn)n∈N ⊆ SM and (Bn, Cn, νn) denote the semimartin-
gale characteristics of Xn. If Xn → 0 in SM, then each of the following
semimartingale sequences converges to 0 in SM as well: Bn, Xc,n, Cn, [Xn],
(y − τ(y)) ∗ µn and τ(y) ∗ (µn − νn).

(2) If W (ω, t, y) is a positive bounded predictable function, then W ∗ µn → 0 in
probability if and only if W ∗ νn → 0 in probability. Moreover, W ∗ νn < ∞ a.s.
implies W ∗ µn < ∞ a.s.

(3) The collection of predictable finite variation processes is closed under the semi-
martingale topology.

For the first part of this lemma, see [22, Thm. 3.5] and [59, p. 276]. The second
part is taken from [22, Lemmata 3.1 and 3.3]. The third assertion is proved in [103,
Thm. IV.7].

Proof of Theorem 1.3.2. Let k ∈ N and consider the set function given by
(S, U) 7→ B(S × U) from the semiring H := P|Ok

× E|Ek
to L0. Obviously, it is

finitely additive in each component: for fixed U , additivity in time holds by the
definition of B, while for fixed S, additivity in space is due to the assumption of
different times of discontinuity. By a straightforward induction argument this implies
that B is also finitely additive jointly in space and time. Next, let

R(H) =

{
N⋃

n=1

Cn : N ∈ N, Cn ∈ H pairwise disjoint

}
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denote the ring generated by H. Setting B(
⋃N

n=1 Cn) :=
∑N

n=1 B(Cn) one obtains a
well-defined extension of B to R(H), which is consistent with the original definition
of B and still finitely additive. Furthermore, since R(H) contains Ok × Ek, we can
further extend B to a measure on σ(H) = P̃|Õk

using [92, Thm. B.1.1]. We only
have to show the implication

(An)n∈N ⊆ R(H) with lim sup
n→∞

An = ∅ =⇒ lim
n→∞

B(An) = 0 in L0. (1.3.3)

In fact, under the assumption on the left-hand side of (1.3.3), 1An ·M → 0 in SM:

‖1An ·M‖SM = sup
|H|≤1,H∈P

∥∥∥∥
∫
H d(1An ·M)

∥∥∥∥
0

= sup
|H|≤1,H∈P

∥∥∥∥
∫
H1An dM

∥∥∥∥
0

≤ sup
S∈SM ,|S|≤1An

∥∥∥∥
∫
S dM

∥∥∥∥
0

= ‖1An‖D
M,0

n→∞−→ 0

by (DCT) with 1Ok×Ek
as dominating function. Using Lemma 1.3.3(1), Equa-

tion (1.3.3) follows.
This extension still coincides with the definition of B in Theorem 1.3.2: From the

construction given in the proof of [92, Thm. B.1.1], we know that given A ∈ P̃|Õk
,

there is a sequence of sets (An)n∈N in R(H) with lim sup((A \ An) ∪ (An \ A)) = ∅
and B(An) → B(A) in L0 as n → ∞. As above we obtain 1An ·M → 1A ·M in SM,
which implies the assertion. And of course, B is unique and B(A) does not depend
on the choice of k ∈ N with A ⊆ Ok.

Finally, we prove that B corresponds to a predictable strict random measure. By
[28, Thm. 4.10] it suffices to show that for H ∈ L1,0(B) the semimartingale H · B
is predictable and has finite variation on bounded intervals. If H ∈ SM , this follows
from linearity and the fact that the first characteristic of a semimartingale up to
infinity is a predictable finite variation process. In the general case choose a sequence
(Sn)n∈N ⊆ SM with Sn → H pointwise and |Sn| ≤ H for all n ∈ N. As n → ∞, we
have Sn · B → H · B in SM by (DCT). By Lemma 1.3.3(3) we conclude that also
H ·B is a predictable finite variation process.

For C we fix one argument and apply the same procedure to the other argument;
for M c we refer to [28, Thm. 4.13]. Let us proceed to µ and ν, where in both cases
we first fix some V ∈ B0(R) with inf{|x| : x ∈ V } ≥ ǫ > 0 and ǫ < 1. In order to
apply the same construction scheme as for B, only the proof of (1.3.3) is different
for µ and ν. To this end, let (An)n∈N be as on the left-hand side of (1.3.3), that is,
1An ·M → 0 in SM. Now define τ̃(y) = (y ∧ ǫ) ∨ (−ǫ) and choose K > 1 such that



1.3. Predictable characteristics of random measures 11

|τ̃(y)| ≤ K(y2 ∧ 1) for |y| ≥ ǫ. Then

‖µ(An, V )‖0 =

∥∥∥∥∥
1V (y)
|τ̃(y)| |τ̃(y)| ∗ µ1An ·M

∞

∥∥∥∥∥
0

≤ ǫ−1
∥∥∥1V (y)|τ̃(y)| ∗ µ1An ·M

∞

∥∥∥
0

≤ Kǫ−1
∥∥∥(y2 ∧ 1) ∗ µ1An ·M

∞

∥∥∥
0

≤ Kǫ−1 ‖[1An ·M ]∞‖0 → 0,

where the last step follows from Lemma 1.3.3(1). Part (2) of the same lemma yields
that also ν(An, V ) → 0 in L0 as n → ∞. Consequently, [28, Thm. 4.12] shows that
µ(·, V ) and ν(·, V ) can be chosen as positive strict random measures. Observing that
µ(A, ·) (resp. ν(A, ·)) is clearly also a positive (and predictable) strict random mea-
sure for given A ∈ P̃M , µ (resp. ν) can be extended to a positive (and predictable)
strict random measure on the product P̃M ⊗ B0(R) (see [119, Prop. 2.4]). Of course,
ν is the predictable compensator of µ.

The integrability of 1A(t, x)(y − τ(y)) (resp. 1A(t, x)τ(y)) with respect to µ

(resp. µ− ν) is an obvious consequence of (1.3.1) and the corresponding statements
in the null-spatial case. The canonical decomposition of M follows since both sides
of (1.3.2) are random measures coinciding on H.

Finally, part (3) of Theorem 1.3.2 can be proved analogously to Proposition II.2.9
of [80]. ✷

Remark 1.3.4 IfM is additionally orthogonal, we have C(A;B) = C(A∩B;A∩B)
for all A,B ∈ P̃M . Consequently, we may identify C with C(A) := [(1A · M)c]∞
for A ∈ P̃M . Of course, C can then be chosen as a predictable strict random
measure. ✷

Next we calculate the characteristics introduced in Theorem 1.3.2 in two con-
crete situations: first, for the random measure of a stochastic integral process, and
second, for a random measure under an absolutely continuous change of measure.
Although the results in both cases are comparable with the purely temporal setting,
the first task turns out to be the more difficult one. Moreover, the characteristics
for stochastic integral processes are of particular importance for our integrability
conditions in Section 1.4.

Beforehand, we need some bimeasure theory: it is well known that bimeasures
cannot be extended to measures on the product σ-field in general and that integra-
tion theory with respect to bimeasures differs from integration theory with respect to
measures. Following [39], let two measurable spaces (Ωi,Fi), i = 1, 2, and a bimea-
sure β : F1 × F2 → R be given. We call a pair (f1, f2) of Fi-measurable functions fi,
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i = 1, 2, strictly β-integrable if

(1) f1 (resp. f2) is integrable with respect to β(·;B) for all B ∈ F2 (resp. β(A; ·)
for all A ∈ F1),

(2) f2 is integrable with respect to the measure B 7→ ∫
Ω1
f1(ω1) β(dω1;B) and f1 is

integrable with respect to the measure A 7→ ∫
Ω2
f2(ω2) β(A; dω2),

(3) for all A ∈ F1 and B ∈ F2, the following integrals are equal:
∫

A
f1(ω1)

(∫

B
f2(ω2) β(dω1; dω2)

)
=
∫

B
f2(ω2)

(∫

A
f1(ω1) β(dω1; dω2)

)
. (1.3.4)

The strict β-integral of (f1; f2) on (A;B), denoted by
∫

(A;B)(f1; f2) dβ, is then defined
as the common value (1.3.4).

The next theorem determines the characteristics of stochastic integral processes,
which is [80, Prop. IX.5.3] in the null-spatial case.

Theorem 1.3.5. Let M be a random measure with different times of discontinuity
and H ∈ P̃ satisfy (1.2.6) with some K > 0. Then the null-spatial random measure
H ·M has characteristics (BH·M , CH·M , νH·M) given by

BH·M(A) = (H ·B)(A)

+
∫

R×E×R
1A(t)[τ(H(t, x)y) −H(t, x)τ(y)] ν(dt, dx, dy), (1.3.5)

CH·M(A) =
∫

R

K−2
t d

(∫

(At×E;At×E)
(HK;HK) dC

)
, (1.3.6)

W (t, y) ∗ νH·M = W (t,H(t, x)y) ∗ ν (1.3.7)

for all A ∈ PH·M and P ⊗ B(R)-measurable functions W such that W (t, y) ∗ νH·M

exists.
Moreover, if in addition M is orthogonal, then

CH·M(dt) =
∫

E
H2(t, x)C(dt, dx). (1.3.8)

Proof. The second part of this theorem is clear as soon as we have proved the first
part. Since characteristics are defined locally, we may assume that H ∈ L1,0(M).
We first consider the continuous part CH·M : to this end, let (Hn)n∈N be a sequence
of simple integrands with |Hn| ≤ |H| for all n ∈ N and Hn → H pointwise. Since
for simple integrands the claim follows directly from the definition of C and the
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bimeasure integral, we would like to use the (DCT) and Lemma 1.3.3(1) on the
one hand and the dominated convergence theorem for bimeasure integrals (see [39,
Cor. 2.9]) on the other hand to obtain the result. In order to do so, we only have to
show that (H;H) is strictly C-integrable, which means by the symmetry of C the
following two points: first, that for all B ∈ P̃M , H is integrable with respect to the
measure A 7→ C(A;B) = [(1A · M)c, (1B · M)c]∞, and second, that H is integrable
with respect to the measure A 7→ ∫

H(t, x) dC(A; dt, dx) = [(1A ·M)c, (H ·M)c]∞.
Let G be 1B or H. From [94], Theorem 2 and its Corollary, we know that there

exists a probability measure Q equivalent to P such that M is an L2(Q)-random
measure with G,H ∈ L1,2(M ;Q). Since the bounded sets in L0(P ) are exactly
the bounded sets in L0(Q), convergence in ‖ · ‖D

M,0;P is equivalent to convergence in
‖·‖D

M,0;Q. Similarly, stochastic integrals and predictable quadratic covariation remain
unchanged under Q (cf. [27, Prop. 3.6.20] and [80, Thm. III.3.13]). Consequently, if
we write γ(A) := [1A ·M c, G ·M c]∞ for A ∈ P̃M , it suffices to show that

sup
S∈SM ,|S|≤|rH|

∥∥∥∥
∫
S dγ

∥∥∥∥
L0(Q)

= sup
S∈SM ,|S|≤|rH|

∥∥∥[(S·M)c, (G·M)c]∞
∥∥∥

L0(Q)
→ 0 as r → 0.

Indeed, using Fefferman’s inequality (cf. [27, Thm. 4.2.7]), we can find a constant
R > 0, which only depends on G, such that

sup
S∈SM ,|S|≤|rH|

∥∥∥[(S ·M)c, (G ·M)c]∞
∥∥∥

L0(Q)
≤ R sup

S∈SM ,|S|≤|rH|
EQ

[
[(S ·M)c]∞

]1/2

= R sup
S∈SM ,|S|≤|rH|

‖(S ·M)c
∞‖L2(Q) = R‖rH‖D

Mc,2;Q → 0

as r → 0, which finishes the proof for CH·M .
For BH·M and νH·M , we first take some D ∈ P ⊗ B0(R) and claim that

1D(s, y) ∗ µH·M = 1D(s,H(s, x)y) ∗ µ. (1.3.9)

This identity immediately extends to finite linear combinations of such indicators
and thus, by (DCT), also to all functions W (ω, t, y) for which W ∗ µH·M exists. By
the definition of the predictable compensator, this statement also passes to the case
where µ is replaced by ν.

In order to prove (1.3.9), first observe that the jump process of the semimartin-
gale H ·M up to infinity is given by ∆(H ·M)t = (H ·M)(Ω×{t}×E). Furthermore,
we can assume that D does not contain any points in Ω̄ × {0}. Hence, in the case
where H = 1A with A ∈ P̃M , we have for all t ∈ R

1D(s, y) ∗ µH·M
t = 1D(s, y) ∗ µ1A·M

t = 1D(s, y)1A(s, x) ∗ µt = 1D(s,1A(s, x)y) ∗ µt.



14 1. Integrability conditions for space–time stochastic integrals

Now a similar calculation yields that (1.3.9) remains true for all H ∈ SM . Finally,
let H ∈ L1,0(M). By decomposing H = H+ − H− into its positive and negative
part, we may assume that H ≥ 0 and choose a sequence (Hn)n∈N of simple functions
with Hn ↑ H as n → ∞. As we have already seen in the proof of Theorem 1.3.2,
we have 1D(s, y) ∗ µHn·M → 1D(s, y) ∗ µH·M in SM. On the other hand, if D is of
the form R × (a, b] with R ∈ P and (a, b] ⊆ (0,∞) or of the form R × [a, b) with
[a, b) ⊆ (−∞, 0), then 1D(ω, s,Hn(ω, s, x)y) → 1D(ω, s,H(ω, s, x)y) as n → ∞ for
every (ω, s, x, y) ∈ Ω̃ × R, which shows that (1.3.9) holds up to indistinguishability.
For general D, use Dynkin’s π-λ-lemma [29, Thm. 3.2].

Finally, we compute BH·M . The results up to now yield that for all t ∈ R,

(H ·M)t − (y − τ(y)) ∗ µH·M
t = (H ·B)t + (H ·M c)t +H(s, x)(y − τ(y)) ∗ µt

+H(s, x)τ(y) ∗ (µ− ν)t

− [H(s, x)y − τ(H(s, x)y)] ∗ µt.

By definition, BH·M is the finite variation part of this special semimartingale, which
exactly equals H ·B + [τ(H(t, x)y) −H(t, x)τ(y)] ∗ ν. ✷

Finally, we show a Girsanov-type theorem comparable to [80, Thm. III.3.24] for
semimartingales. First, let us introduce some notation. We consider another proba-
bility measure P ′ on (Ω,F , (Ft)t∈R) such that P ′t := P ′|Ft is absolutely continuous
with respect to Pt := P |Ft for all t ∈ R. Then denote by Z the unique P -martingale
such that Z ≥ 0 identically and Zt is a version of the Radon-Nikodym derivative
dP ′t/dPt for all t ∈ R, cf. [80, Thm. III.3.4].

Now let M be a random measure with different times of discontinuity under
the probability measure P with characteristics (B,C, ν) with respect to the trun-
cation function τ . We modify the sequence (Õk)k∈N of Definition 1.2.1(1) by setting
Õ′k := Õk ∩ (Ω × (−k, k] × E) for k ∈ N and P̃ ′M :=

⋃∞
k=1 P̃|Õ′

k
. Next, we denote

the jump measure of M by µ and set MP
µ (W ) := EP [W ∗ µ∞] for all non-negative

F ⊗ B(R) ⊗ E ⊗ B(R)-measurable functions W . Furthermore, for every such W ,
there exists an MP

µ -a.e. unique P̃ ⊗ B(R)-measurable function MP
µ (W |P̃ ⊗ B(R))

such that

MP
µ (WU) = MP

µ (MP
µ (W |P̃ ⊗ B(R))U) for all P̃ ⊗ B(R)-measurable U ≥ 0.
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Finally, we set

Y (t, x, y) := MP
µ (Z/Z−1{Z−>0}|P̃ ⊗ B(R))(t, x, y), t ∈ R, x ∈ E, y ∈ R,

CZ(A) := [(Z−1
− · Z)c, (1A ·M)c]∞, A ∈ P̃ ′M .

In the last line, the stochastic integral process Z−1
− ·Z is meant to start at t0, where

t0 ∈ R is chosen such that (1A · M)c = 0 on (−∞, t0]. Then CZ(A) is well defined
by [80, Prop. III.3.5a] and does not depend on the choice of t0. Moreover, as in
Theorem 1.3.2, one shows that CZ can be chosen as a positive predictable strict
random measure.

The following theorem extends [80, Thm. III.3.24] to the space–time framework.

Theorem 1.3.6. Under P ′, M is also a random measure with different times of
discontinuity (with respect to (Õ′k)k∈N). Its P ′-characteristics (B′, C ′, ν ′) with respect
to τ are versions of

B′(dt, dx) := B(dt, dx) + CZ(dt, dx) + τ(y)(Y (t, x, y) − 1) ν(dt, dx, dy),

C ′ := C,

ν ′(dt, dx, dy) := Y (t, x, y) ν(dt, dx, dy).

Proof. Since each set in P̃ ′M is Ft-measurable for some t ∈ R, properties (a),
(b) and (d) of Definition 1.2.1(1) still hold under P ′. Since (c) does not depend
on the underlying probability measure, M is also a random measure under P̃ . To
show that M still has different times of discontinuity under P ′, it suffices to notice
the following: using the notation of Definition 1.3.1, the event that 1Ok×U1 ·M and
1Ok×U2 ·M have a common jump in R is the union over n ∈ N of the events that they
have a common jump in (−∞, n]. Since these latter events are Fn-measurable, their
P ′-probability is 0, as desired. Finally, the characteristics under P ′ can be derived,
up to obvious changes, exactly as in [80, Thm. III.3.24].

1.4 An integrability criterion

The canonical decomposition of M in Theorem 1.3.2 together with Theorem 1.3.5
enables us to reformulate (1.2.8) in terms of conditions only depending on the charac-
teristics ofM . This result extends the null-spatial case as found in [80, Thm. III.6.30],
[42, Thm. 4.5], [22, Thm. 3.2] or [92, Thm. 9.4.1]. It also generalizes the results of
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[119, Thm. 2.7] to predictable integrands and also to random measures which are
not necessarily Lévy bases. Our proof mimics the approach in [22, Thm. 3.2] and
takes care of the additional spatial structure.

Theorem 1.4.1. Let M be a random measure with different times of discontinuity
whose characteristics with respect to some truncation function τ are given by Theo-
rem 1.3.2. Furthermore, let H ∈ P̃ satisfy (1.2.6). Then H ∈ L0(M) if and only if
each of the following conditions is satisfied a.s.:

∫

R×E

∣∣∣∣∣∣
H(t, x)b(t, x)

+
∫

R

[τ(H(t, x)y) −H(t, x)τ(y)] K(t, x, dy)

∣∣∣∣∣∣
A(dt, dx) < ∞, (1.4.1)

∫

R

K−2
t d

(∫

((−∞,t]×E;(−∞,t]×E)
(HK;HK) dC

)
< ∞, (1.4.2)

∫

R×E

∫

R

(
1 ∧ (H(t, x)y)2

)
K(t, x, dy)A(dt, dx) < ∞. (1.4.3)

If M is additionally orthogonal, the spaces L0(M) and L1,0(M) are equal and con-
dition (1.4.2) is equivalent to

∫

R×E
H2(t, x)C(dt, dx) < ∞. (1.4.4)

The following lemma is a straightforward extension of [119, Lemma 2.8]. We omit
its proof.

Lemma 1.4.2. For t ∈ R, x ∈ E and a ∈ R define

U(t, x, a) :=
∣∣∣∣ab(t, x) +

∫

R

(
τ(ay) − aτ(y)

)
K(t, x, dy)

∣∣∣∣ ,

Ũ(t, x, a) := sup
−1≤c≤1

U(t, x, ca).

Then there exists a constant κ > 0 such that

Ũ(t, x, a) ≤ U(t, x, a) + κ
∫

R

(
1 ∧ (ay)2

)
K(t, x, dy).
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Proof of Theorem 1.4.1. We first prove that H ∈ L0(M) implies (1.4.1)–(1.4.3).
Since H ·M is a semimartingale up to infinity, BH·M(R) and CH·M(R) exist. Thus,
Theorem 1.3.5 gives the first two conditions. For the last condition observe that
(1 ∧ y2) ∗ νH·M

∞ < ∞ a.s. is equivalent to (1 ∧ y2) ∗ µH·M
∞ < ∞ a.s., which obviously

holds since H ·M is a semimartingale up to infinity. This completes the first direction
of the proof.

For the converse statement, we define D := {G ∈ P : |G| ≤ 1, GH ∈ L1,0(M)}.
By (1.2.8) we have to show that the set {∫ GH dM : G ∈ D} is bounded in L0 (i.e.
bounded in probability) whenever H satisfies (1.4.1)–(1.4.3). By Theorem 1.3.5,

∫
GH dM =

∫
GH dM c +τ(GHy)∗ (µ−ν)∞+(GHy−τ(GHy))∗µ∞+BGH·M(R).

We consider each part of this formula separately and show that each of the sets

{BGH·M(R) : G ∈ D}, (1.4.5)

{∫ GH dM c : G ∈ D}, (1.4.6)

{τ(GHy) ∗ (µ− ν)∞ : G ∈ D}, (1.4.7)

{(GHy − τ(GHy)) ∗ µ∞ : G ∈ D} (1.4.8)

is bounded in probability.

If G ∈ D and κ > 0 denotes the constant in Lemma 1.4.2, (1.4.1) and (1.4.3)
imply

∫

R×E
U(t, x,GtH(t, x))A(dt, dx) ≤

∫

R×E
Ũ(t, x,GtH(t, x))A(dt, dx)

≤
∫

R×E
Ũ(t, x,H(t, x))A(dt, dx)

≤
∫

R×E
U(t, x,H(t, x))A(dt, dx) + κ

∫

R×E

∫

R

(
1 ∧ (H(t, x)y)

)
K(t, x, dy)A(dt, dx)

< ∞

a.s., which shows that (1.4.5) is bounded in probability.

Next consider (1.4.6) and fix some G ∈ D for a moment. Using Lenglart’s in-
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equality [80, Lemma I.3.30a], we have for all ǫ, η > 0

P
[∣∣∣∣
∫
GH dM c

∣∣∣∣ ≥ ǫ
]

≤ P

[
sup
t∈R

|(GH ·M c)(Ω̄t)| ≥ ǫ

]

= P

[
sup
t∈R

|(GH ·M c)(Ω̄t)|2 ≥ ǫ2

]
≤ η

ǫ2
+ P

[
[GH ·M c]∞ ≥ η

]

=
η

ǫ2
+ P

[
G2K−2 · [KH ·M c]∞ ≥ η

]
≤ η

ǫ2
+ P

[
K−2 · [KH ·M c]∞ ≥ η

]
.

Now (1.4.2) allows us to make the quantity on the left-hand side arbitrarily small,
independently of G ∈ D, by first choosing η > 0 and then ǫ > 0 large enough.

For (1.4.7), we use the abbreviation W (t, x, y) = τ(GtH(t, x)y). Lenglart’s in-
equality again yields

P [|W ∗ (µ− ν)∞| ≥ ǫ] ≤ P

[
sup
t∈R

|W ∗ (µ− ν)t|2 ≥ ǫ2

]

≤ η

ǫ2
+ P

[
〈W ∗ (µ− ν)〉∞ ≥ η

]
(1.4.9)

for every ǫ, η > 0. Furthermore, by Theorem 1.3.5 and [80, Prop. II.2.17] we have

〈W ∗ (µ− ν)〉∞ = 〈τ(y) ∗ (µGH·M − νGH·M)〉∞ ≤ τ(y)2 ∗ ν∞,

which is finite by (1.4.3) yielding the boundedness of (1.4.7).
Next choose r, ǫ > 0 such that f(y) := r|y|1{|y|>ǫ} satisfies |y − τ(y)| ≤ f(y) for

all y ∈ R. Obviously, f is symmetric and increasing on R+ so that

∣∣∣
(
GHy − τ(GHy)

)
∗ µ∞

∣∣∣ ≤ f(GHy) ∗ µ∞ ≤ f(Hy) ∗ µ∞.

Now the third condition and Lemma 1.3.3(2) imply that

∑

t∈R

(1 ∧ ǫ2)1{|∆(H·M)t|>ǫ} ≤ (1 ∧ y2) ∗ µH·M
∞ =

(
1 ∧ (H(t, x)y)2

)
∗ µ∞ < ∞

a.s. such that {|∆(H ·M)t| > ǫ} only happens for finitely many time points. Hence

f(Hy) ∗ µ∞ = f(y) ∗ µH·M
∞ = r

∑

t∈R

|∆(H ·M)t|1{|∆(H·M)t|>ǫ} < ∞

a.s., which implies that the set in (1.4.8) is also bounded in probability.
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Finally, in the case where M is also orthogonal, we show that (1.4.1),(1.4.4) and
(1.4.3) imply H ∈ L1,0(M). By Theorem 1.2.3 and the fact that for predictable
functions H

‖H‖D
M,0 = sup

S∈SM ,|S|≤|H|

∥∥∥∥
∫
S dM

∥∥∥∥
0

= sup
G∈P̃,|G|≤1,GH∈L1,0(M)

∥∥∥∥
∫
GH dM

∥∥∥∥
0
,

we have to show that the set {∫ GH dM : G ∈ D′} is bounded in L0, where D′
consists of all functions G ∈ P̃ with |G| ≤ 1 and GH ∈ L1,0(M). Obviously, the
previously considered set D is a subset of D′. Intending to verify (1.4.5)–(1.4.8)
with G taken from D′, we observe that all calculations remain valid except those
for (1.4.6). For (1.4.6) we argument as follows: for all ǫ, η > 0, Lenglart’s inequality
implies

P
[∣∣∣∣
∫
GH dM c

∣∣∣∣ ≥ ǫ
]

≤ P

[
sup
t∈R

|(GH ·M)c(Ω̄t)|2 ≥ ǫ2

]

≤ η

ǫ2
+ P

[
[(GH ·M)c]∞ ≥ η

]
=

η

ǫ2
+ P

[∫

R×E
G2(t, x)H2(t, x)C(dt, dx) ≥ η

]

≤ η

ǫ2
+ P

[∫

R×E
H2(t, x)C(dt, dx) ≥ η

]
.

This finishes the proof of Theorem 1.4.1. ✷

The remaining part of this section illustrates Theorem 1.4.1 by a series of re-
marks, examples and useful extensions.

Remark 1.4.3 If M has summable jumps, which means that each of the semi-
martingales (M(Ω̃t ∩ Õk))t∈R, k ∈ N, has summable jumps over finite intervals, it
is often convenient to construct the characteristics with respect to τ = 0, which is
not a proper truncation function. Then one would like to use τ = 0 in (1.4.1) and
replace (1.4.3) by

∫

R×E

∫

R

(
1 ∧ |H(t, x)y|

)
K(t, x, dy)A(dt, dx) < ∞. (1.4.10)

We show that (1.4.1) with τ = 0, (1.4.2) and (1.4.10) are together sufficient condi-
tions for H ∈ L0(M). First note that we can choose κ = 0 in Lemma 1.4.2(2) since τ
is identical 0 and therefore Ũ = U . So the calculations done for (1.4.5) remain valid.
Moreover, (1.4.6) does not depend on τ and the boundedness of (1.4.7) becomes
trivial. For (1.4.8) observe that

|GHy|∗µ∞ ≤ |Hy|∗µ∞ = |y|∗µH·M
∞ = |y|1{|y|≤1}∗µH·M

∞ +|y|1{|y|>1}∗µH·M
∞ . (1.4.11)
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Now (1.4.10) implies by Lemma 1.3.3(2) that a.s.,

|y|1{|y|≤1} ∗ µH·M
∞ + 1{|y|>1} ∗ µH·M

∞ < ∞.

As a result, on the right-hand side of (1.4.11), the first summand converges a.s. and
the second one is in fact just a finite sum a.s.

The converse statement is not true, already in the null-spatial case: let (Nt)t≥0

be a standard Poisson process and Ñt = Nt − t, t ≥ 0, its compensation. Set
Ht := (1 + t)−1 for t ≥ 0. Then H ∈ L0(Ñ) as one can see from (1.4.1)–(1.4.3) with
the proper truncation function τ(y) = y1{|y|<1}; but

∫∞
0 Ht dt = ∞ violating both

(1.4.1) with τ = 0 and (1.4.10).
However, if M is a positive (or negative) random measure, that is, M(A) is a

positive (or negative) random variable for all A ∈ P̃M , then C = 0 necessarily and
(1.4.1) with τ = 0 and (1.4.10) also become necessary conditions for H belonging
to L0(M) = L1,0(M); cf. [28, Ex. 5, p. 7, and Thm. 4.12]. ✷

Next we compare our results and techniques to the standard literature.

Remark 1.4.4 (Lévy bases [119]) Lévy bases are originally called infinitely
divisible independently scattered random measures in [119]. They are the space–
time analogues of processes with independent increments and have attracted interest
in several applications in the last few years, see Section 1.5 for some examples.
The precise definition is as follows: Assume that we have Õk = Ω × O′k in the
notation of Definition 1.2.1, where (O′k)k∈N is a sequence increasing to R × E. Set
S :=

⋃∞
k=1 B(R1+d)|O′

k
. Then a Lévy basis Λ is a random measure on R×E with the

following additional properties:

(1) If (An)n∈N is a sequence of pairwise disjoint sets in S, then (Λ(Ω ×An))n∈N are
independent random variables.

(2) For all A ∈ S, Λ(Ω × A) has an infinitely divisible distribution.

Note that we have altered the original definition of [119]: in order to perform
stochastic integration, we need to single out one coordinate to be time and introduce
a filtration based definition of the integrator Λ. For notational convenience, we
will write Λ(A) instead of Λ(Ω × A) in the following. As shown in [119, Prop. 2.1
and Lemma 2.3], Λ induces a characteristic triplet (B,C, ν) with respect to some



1.4. An integrability criterion 21

truncation function τ via the Lévy-Khintchine formula: for all A ∈ S and u ∈ R

E[eiuΛ(A)] = exp

(
iuB(A) − u2

2
C(A) +

∫

R

(eiuy − 1 − iuτ(y)) ν(A, dy)

)
.

It is natural to ask how this notion of characteristics compares with Theorem 1.3.2.
Obviously, Λ is an orthogonal random measure. In order that Λ has different times
of discontinuity, it suffices by independence to assume that Λ has no fixed times of
discontinuity. In this case, recalling the construction in the proof of Theorem 1.3.2
and using [127, Thm. 3.2] together with [80, Thm. II.4.15], one readily sees that
the two different definitions of characteristics agree in the natural filtration of Λ. In
particular, the canonical decomposition of Λ determines its Lévy-Itô decomposition
as derived in [113].

Consequently, the integrability criteria obtained in Theorem 1.4.1 extend the
corresponding result of [119, Thm. 2.7] for deterministic functions (or, as used
in [18], for integrands which are independent of Λ) to allow for predictable inte-
grands. ✷

Remark 1.4.5 (Martingale measures [136]) In [136] a stochastic integration
theory for predictable integrands is developed with so-called worthy martingale mea-
sures as integrators. The concept of worthiness is needed since a martingale measure
in Walsh’s sense does not guarantee that it is a random measure in the sense of Def-
inition 1.2.1. What is missing is, loosely speaking, a joint σ-additivity condition in
space and time; see also the example in [136, pp. 305ff.]. The worthiness of a martin-
gale measure, i.e. the existence of a dominating (σ-additive) measure, turns it into
a random measure.

In essence, the integration theory presented in [136] for worthy martingale mea-
sures is an L2-theory similar to [56, 79], where the extension from simple to general
integrands is governed by a dominating measure. The latter also determines whether
a predictable function is integrable or not in terms of a square-integrability condition;
see [136, p. 292]. We see the main advantages of the L2-theory as follows: it does not
require the martingale measure to have different times of discontinuity, works with
fairly easy integrability conditions and produces stochastic integrals again belonging
to L2. However, many interesting integrators (e.g. stable noises) are not L2-random
measures. Moreover, even if the integrator M is an L2-random measure, the class
L0(M) is usually considerably larger than the class L2(M). Thus, in comparison to
[136], it is the compensation of these two shortages of the L2-theory that constitutes
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the main advantage of our integrability conditions in Theorem 1.4.1. We will come
back to this point in Section 1.5.2, where it is shown that in the study of stochastic
PDEs, solutions often do not exist in the L2-sense but in the L0-sense. ✷

Remark 1.4.6 ((Compensated) strict random measures [80]) Chapters I
and II of [80] are an established reference for integration theory with respect to
semimartingales. Moreover, they also cover the integration theory with respect to
strict random measures or compensated strict random measures as follows: if M is a
strict random measure, they define stochastic integrals with respect to M path-by-
path. More precisely, a measurable function H : Ω̃ → R is pathwise integrable with
respect to M if for a.e. ω ∈ Ω

∫

R×E
|H|(ω, t, x) |M |(ω, dt, dx) < ∞. (1.4.12)

If M̃ := M − Mp is the compensation of an integer-valued strict random measure
M , we have the following situation: let H ∈ P̃ and introduce an auxiliary process
by

H̃t(ω) :=
∫

E
H(ω, t, x) M̃(ω, {t} × dx), (ω, t) ∈ Ω̄, (1.4.13)

hereby setting H̃t(ω) := +∞ whenever (1.4.13) diverges. Then H is integrable in the
sense of [80, Def. II.1.27] if there for every a ∈ R there exists a sequence of stopping
times (Tn)n∈N with Tn ↑ +∞ a.s. and

E




 ∑

a≤t≤Tn

H̃2
t




1/2
 < ∞. (1.4.14)

How do these integrability conditions compare to those of Theorem 1.4.1? Obvi-
ously, pathwise integrability with respect to M does not require the integrand to be
predictable. Furthermore, if H is predictable and (1.4.12) holds, then the pathwise
integral coincides with the stochastic integral H ·M . Still, Theorem 1.4.1 provides a
useful extension in some situations: first, there are examples H ∈ L0(M) which fail
the condition (1.4.12) (see the example at the end of Remark 1.4.3). And second,
given some specific H, it may be difficult in general to determine whether (1.4.12)
holds or not (e.g., if M has no finite first moment). The characteristic triplet that
is used in Theorem 1.4.1 is often easier to handle than |M |.

As for M̃ we have following situation: first, one should notice that (1.4.14) en-
sures integrability on finite intervals, whereas Theorem 1.4.1 is concerned with global
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integrability on R. Second, even on finite intervals, the conditions of Theorem 1.4.1
are more general than (1.4.14), see [28, Prop. 3.10]. Finally, whereas (1.4.14) involves
a localizing sequence of stopping times and moment considerations, Theorem 1.4.1
relates integrability only to the integrand itself and the characteristics of M̃ , which
is often more convenient. ✷

In order to illustrate condition (1.4.2) in Theorem 1.4.1, we now discuss the
example of a Gaussian random measure, which is white in time but coloured in
space. Such random measures are often encountered as the driving noise of stochastic
PDEs, see [48] and references therein.

Example 1.4.7 Let (M(Ω×B))B∈Bb(R1+d) be a mean-zero Gaussian process whose
covariance functional for B,B′ ∈ Bb(R1+d) is given by

C(B;B′) := E[M(Ω ×B)M(Ω ×B′)] =
∫

R

∫

B(t)×B′(t)
f(x− x′) d(x, x′) dt, (1.4.15)

where B(t) := {x ∈ R
d : (t, x) ∈ B}. For the existence of such a process, it is well

known [56, Thm. II.3.1] that f : Rd → [0,∞) must be a symmetric and nonnegative
definite function for which the integral on the right-hand side of (1.4.15) exists.
Under these conditions, C defines a deterministic bimeasure which is symmetric in
B,B′ ∈ Bb(R1+d).

For the further procedure let (Ft)t∈R be the natural filtration of M and set

M(F × (s, t] × U) := 1FM(Ω × (s, t] × U), F ∈ Fs.

By [28, Thm. 2.25], M can be extended to a random measure on R × R
d provided

that
Sn → 0 pointwise, |Sn| ≤ |S| =⇒

∫
Sn dM → 0 in L0

for all step functions Sn and S over sets of the form F × (s, t] × U with F ∈ Fs,
s < t and U ∈ Bb(Rd). Indeed, using obvious notation and observing that 1F is
independent of M(Ω × (s, t] × U) for F ∈ Fs since M is white in time, we have

E

[(∫
Sn dM

)2
]

=
rn∑

i,j=1

an
i a

n
j E[M(An

i )M(An
j )]

=
rn∑

i,j=1

an
i a

n
jP [F n

i ]P [F n
j ]Leb((sn

i , t
n
i ] ∩ (sn

j , t
n
j ])
∫

Un
i ×Un

j

f(x− x′) d(x, x′)

=
∫

(R1+d;R1+d)
(S̃n, S̃n) dC → 0
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by dominated convergence [39, Cor. 2.9]. Here S̃n arises from Sn by replacing an
i

with an
i P [F n

i ].
Having established that M is a random measure, let us derive its characteristics.

Obviously, B and ν are identically 0. It is also easy to see that C is the second
characteristic of M : it is clear for sets of the form (s, t] ×U , and extends to general
sets in Bb(R1+d) by dominated convergence. Therefore, as shown in the proof of
Theorem 1.3.5, L1,0(M) consists of those H ∈ P̃ such that (H;H) is strictly C-
integrable, or, equivalently,

∫

R

∫

Rd×Rd
|H|(t, x)|H|(t, x′)f(x− x′) d(x, x′) dt < ∞ a.s. (1.4.16)

The class L0(M), however, is the set of all H ∈ P̃ such that a.s. the inner integral
in (1.4.16) is finite for a.e. t ∈ R, and

∫

R

∫

Rd×Rd
H(t, x)H(t, x′)f(x− x′) d(x, x′) dt < ∞ a.s. (1.4.17)

A (deterministic) function H ∈ L0(M) which is not in L1,0(M) is, for instance, given
by H(t, x) := th(x) where h is chosen such that

∫

Rd×Rd
h(x)h(x′)f(x− x′) d(x, x′) = 0.

One important example is a fractional correlation structure in space. In this
case, we have f(x1, . . . , xd) =

∏d
i=1 |xi|2Hi−2, where Hi ∈ (1/2, 1) is the Hurst index

of the i-th coordinate. Then L0(M) can be interpreted as the extension of the class
|ΛH | studied in [115] to several parameters and stochastic integrands. However, in
[115] as well as in [21], stochastic integrals are constructed for even larger classes of
integrands. These classes, denoted ΛH or ΛX , respectively, are obtained as limits of
simple functions under L2-norms (‖·‖ΛH

and ‖·‖ΛX
, respectively), which are defined

via fractional derivatives or Fourier transforms. In particular, the stochastic integrals
defined via these norms are no longer of Itô type, i.e. no dominated convergence
theorem holds for these stochastic integrands. Indeed, L1,0(M) is the largest class
of predictable integrands for which a dominated convergence theorem holds (see
Theorem 1.2.3), and L0(M) is its improper extension to functions for which H ·M
is a finite measure. ✷

The investigation of multi-dimensional stochastic processes often involves sto-
chastic integrals where the integrand H is a matrix-valued predictable function
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and the integrator M = (M1, . . . ,Md) is a d-dimensional random measure, that
is, M1, . . . ,Md are all random measures in the sense of Definition 1.2.1 with respect
to the same underlying filtration and the same sequence (Õk)k∈N. By considering
each row of H separately, we can assume for the following that H is an R

d-valued
predictable function. It is obvious that the construction of stochastic integrals re-
quires no more techniques than those presented in Section 1.2. In fact, replacing E
by Ed reduces the multivariate case to the univariate one. However, there is a dif-
ference when we want to apply the canonical decomposition as in Theorem 1.3.2 or
the integrability conditions in Theorem 1.4.1: in the multi-dimensional case, it is not
reasonable to assume that M i and M j for i 6= j have different times of discontinuity.
Instead, one would define d-dimensional characteristics (B,C, ν) for M , similar to
[80, Chap. II] or [22, Thm. 3.1], and use these to characterize integrability.

In the next theorem we rephrase 1.4.1 for the multivariate setting. Since no
novel arguments are needed, we omit its proof. We will use the product notation in
a self-explanatory way: for instance, if x, y ∈ R

d, xy denotes their inner product; for
A ∈ P̃M , 1A ·M denotes the d-dimensional semimartingale (1A ·M1, . . . ,1A ·Md);
H · M denotes

∑d
i=1 H

i · M i for H ∈ L1,0(M) and is suitably extended to
H ∈ L0(M), cf. Section 1.2. Similarly, given a matrix β = (βij)d

i,j=1 of bimeasures
from F1 × F2 → R and Fi-measurable functions fi = (f 1

i , . . . , f
d
i ) for i = 1, 2, we

define
∫

(A;B)
(f1; f2) dβ :=

d∑

i,j=1

∫

(A;B)
(f i

1; f
j
2 ) dβij, A ∈ F1, B ∈ F2,

whenever the right-hand side exists.
Assume that M has different times of discontinuity, which means that 1Ok×Ui

·M ,
i = 1, 2, a.s. never jump at the same time for all disjoint sets U1, U2 ∈ EM and k ∈ N.
Given a truncation function τ : Rd → R

d, define for A,B ∈ P̃M and V ∈ B0(Rd)

B(A) := B(1A ·M)∞, µ(A, V ) := µ1A·M(R, V ), ν(A, V ) := ν1A·M(R, V )

M c(A) := (1A ·M)c, Cij(A;B) := [(1A ·M i)c, (1B ·M j)c]∞. (1.4.18)

As in Theorem 1.3.2 (B,C, ν) can be extended to predictable strict random (bi-)
measures and give rise to the following canonical decomposition of M :

M(A) = B(A) +M c(A) +
∫

R×E×Rd
1A(t, x)(y − τ(y))µ(dt, dx, dy)

+
∫

R×E×Rd
1A(t, x)τ(y) (µ− ν)(dt, dx, dy), A ∈ P̃M . (1.4.19)
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Moreover, there exist a positive predictable strict random measure A(ω, dt, dx), a P̃-
measurable R

d-valued function b(ω, t, x) and a transition kernel K(ω, t, x, dy) from
(Ω̃, P̃) to (Rd,B(Rd)) such that for all ω ∈ Ω,

B(ω, dt, dx) = b(ω, t, x)A(ω, dt, dx), ν(ω, dt, dx, dy) = K(ω, t, x, dy)A(ω, dt, dx).

The multi-dimensional version of Theorem 1.4.1 reads as follows.

Theorem 1.4.8. Let M be a d-dimensional random measure with different times
of discontinuity and H : Ω̃ → R

d be a predictable function such that there ex-
ists a strictly positive predictable process K : Ω̄ → R with HK ∈ L1,0(M). Then
H ∈ L0(M) if and only if each of the following conditions is satisfied a.s.:
∫

R×E

∣∣∣∣H(t, x)b(t, x) +
∫

Rd
[τ(H(t, x)y) −H(t, x)τ(y)] K(t, x, dy)

∣∣∣∣ A(dt, dx) < ∞,

∫

R

K−2
t d

(∫

((−∞,t]×E;(−∞,t]×E)
(HK;HK) dC

)
< ∞,

∫

R×E

∫

Rd

(
1 ∧ |H(t, x)y|2

)
K(t, x, dy)A(dt, dx) < ∞.

1.5 Ambit processes

In this section we present various applications where the integrability conditions of
Theorem 1.4.1 are needed. Given a filtered probability space satisfying the usual
assumptions, our examples are processes of the following form:

Y (t, x) :=
∫

R×Rd
h(t, s;x, y)M(ds, dy), t ∈ R, x ∈ R

d, (1.5.1)

where h : R × R × R
d × R

d → R is a deterministic measurable function and M a
random measure with different times of discontinuity such that the integral in (1.5.1)
exists in the sense of (1.2.3). If the characteristics of M in the sense of Theorem 1.3.2
are known, (1.5.1) exists if and only if the conditions of Theorem 1.4.1 are satisfied
for each pair (t, x) ∈ R × R

d. We call processes of the form (1.5.1) ambit processes
although the original definition in [18] requires the random measure to be a volatility
modulated Lévy basis, i.e. M = σ.Λ where Λ is a Lévy basis and σ ∈ P̃ . As already
explained in the Introduction, this class of models is relevant in many different
areas of applications. In the following subsections, we discuss two applications where
interesting choices for h and M will be presented.
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1.5.1 Stochastic PDEs

The connection between stochastic PDEs and ambit processes is exemplified in [18]
relying on the integration theory of [119] or [136]. Let U be an open subset of R×R

d

with boundary ∂U , P a polynomial in 1 + d variables with constant coefficients and
M a random measure with different times of discontinuity. The goal is to find a
solution Z to the stochastic PDE

P (∂t, ∂1, . . . , ∂d)Z(t, x) = ∂t∂1 . . . ∂dM(t, x), (t, x) ∈ U, (1.5.2)

subjected to some boundary conditions on ∂U , where ∂t∂1 . . . ∂dM(t, x) is the formal
derivative of M , its noise. We want to apply the method of Green’s function to
our random setting: first, we find a solution Y to (1.5.2) with vanishing boundary
conditions, then we find a solution Y ′ to the homogeneous version of (1.5.2) which
satisfies the prescribed boundary conditions, and finally we obtain a solution Z by
the sum of Y and Y ′. Since the problem of finding Y ′ is the same as in ordinary PDE
theory, we concentrate on finding Y . However, since the noise of M does not exist
formally, there exists no solution Y ′ in the strong sense. One standard approach
based on [136, Sect. 3] is to interprete (1.5.2) in weak form and to define

Y (t, x) :=
∫

U
G(t, s;x, y)M(ds, dy), (t, x) ∈ U, (1.5.3)

as a solution, where G is the Green’s function for P in the domain U . Obviously, Y is
then an ambit process, where the integrand is determined by the partial differential
operator and the domain, and the integrator is the driving noise of the stochastic
PDE. Therefore, Theorem 1.4.1 provides necessary and sufficient conditions for the
existence of Y . Let us stress again that, in contrast to [119] and [136], we need no
distributional assumptions on M .

Finally, we want to come back to Remark 1.4.5 and explain why the L2-approach
is too stringent for stochastic PDEs. To this end, we consider the stochastic heat
equation in R

d:

Example 1.5.1 We consider P (t, x) = t − ∑d
i=1 xi, U = (0,∞) × R

d and
M = σ.Λ where σ is a predictable function and Λ a Lévy basis with character-
istics (0,Σ dt dx, ν(dξ) dt dx), where Σ ≥ 0 and ν is a symmetric Lévy measure.
[136, Sect. 3] considers a similar equation with ν = 0. The Green’s function for P
and U is the heat kernel

G(t, s;x, y) =
exp(−|x− y|2/(4(t− s)))

(4π(t− s))d/2
1{0<s<t}, s, t > 0, x, y ∈ R

d.
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Since for all (t, x) ∈ U the kernel G(t, ·;x, ·) ∈ Lp(U) if and only if p < 1 + 2/d, it
is square-integrable only for d = 1. Therefore, in the L2-approach function-valued
solutions only exist for d = 1. However, if Σ = 0, a sufficient condition for (1.4.3)
and thus the existence of (1.5.3) is

∫ t

0

∫

Rd
|G(t, s;x, y)σ(s, y)|p ds dy < ∞ a.s.,

∫

[−1,1]
|ξ|p ν(dξ) < ∞ (1.5.4)

for all (t, x) ∈ U and some p ∈ [0, 2). For instance, if σ is stationary in U with finite
p-th moment, (1.5.4) becomes

∫

[−1,1]
|ξ|p ν(dξ) < ∞ for some p < 1 + 2/d.

In particular, we see that function-valued solutions exist in arbitrary dimensions,
which cannot be “detected” in the L2-framework, even for integrators which are
L2-random measures. ✷

The stochastic heat equation or similar equations driven by non-Gaussian noise
have already been studied in a series of papers, e.g. [3, 5, 107, 108, 125], partly also
extending Walsh’s approach beyond the L2-framework. Although they do not only
consider the linear case (1.5.2), there are always limitations in dimension (e.g. only
d = 1) or noise type (e.g. only stable noise without volatility modulation). Thus, in
the linear case, Theorem 1.4.1 provides a unifying extension of the corresponding
results in the given references.

1.5.2 Superposition of stochastic volatility models

In this subsection we give examples of ambit processes, where the spatial component
in the stochastic integral has the meaning of a parameter space. First we discuss
one possibility of constructing a superposition of COGARCH processes, following
Section 4.3.3. The COGARCH model of [88] itself is designed as a continuous-time
version of the celebrated GARCH model and is defined as follows: Let (Lt)t∈R be
a two-sided Lévy process with Lévy measure νL. Given β, η > 0 the COGARCH
model (V ϕ, Gϕ) with parameter ϕ ≥ 0 is given by the equations

dGϕ
t =

√
V ϕ

t− dLt, Gϕ
0 = 0, (1.5.5)

dV ϕ
t = (β − ηV ϕ

t ) dt+ ϕV ϕ
t− dSt, t ∈ R, (1.5.6)
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where S := [L]d denotes the pure-jump part of the quadratic variation of L. By [88,
Thm. 3.1], (1.5.6) has a stationary solution if and only if

∫

R+

log(1 + ϕy2) νL(dy) < η. (1.5.7)

Let us denote the collection of all ϕ ≥ 0 satisfying (1.5.7) by Φ, which by (1.5.7)
must be of the form [0, ϕmax) with some 0 < ϕmax < ∞. Although the COGARCH
model essentially reproduces the same stylized features as the GARCH model, there
are two unsatisfactory aspects:

(1) Right from the definition, the COGARCH shows a deterministic relationship
between volatility and price jumps, an effect shared by many continuous-time
stochastic volatility models [82]. More precisely, we have

∆V ϕ
t = ϕV ϕ

t−(∆Lt)2 = ϕ(∆Gϕ
t )2, t ∈ R. (1.5.8)

A realistic stochastic volatility model should allow for different scale parameters
ϕ.

(2) The autocovariance function of the COGARCH volatility is, when existent and
ϕ > 0, always of exponential type: Cov[V ϕ

t , V
ϕ

t+h] = Ce−ah for h ≥ 0, t ∈ R and
some constants C, a > 0. A more flexible autocovariance structure is desirable.

In Section 4, three approaches to construct superpositions of COGARCH pro-
cesses (supCOGARCH) with different values of ϕ are suggested in order to obtain
a stochastic volatility model keeping the desirable features of the COGARCH but
avoiding the two disadvantages mentioned above. One of them is the following:
With β and η remaining constant, take a Lévy basis Λ on R × Φ with characteris-
tics (b dt π(dϕ),Σ dt π(dϕ), νL(dy) dt π(dϕ)), where b ∈ R, Σ ≥ 0, π is a probability
measure on Φ and νL the Lévy measure of the Lévy process given by

Lt := ΛL((0, t] × Φ), t ≥ 0, Lt := −ΛL((−t, 0] × Φ), t < 0,

Furthermore, define another Lévy basis by ΛS(dt, dϕ) :=
∫
R
y2 µΛ(dt, dϕ, dy), where

µΛ is the jump measure of Λ as in Theorem 1.3.2. Next define V ϕ for each ϕ ∈ Φ
as the COGARCH volatility process driven by L with parameter ϕ. Motivated by
(1.5.6), the supCOGARCH V̄ is now defined by the stochastic differential equation

dV̄t = (β − ηV̄t) dt+
∫

Φ
ϕV ϕ

t− Λ(dt, dϕ), t ∈ R. (1.5.9)
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As shown in Proposition 4.3.15, (1.5.9) has a unique solution given by

V̄t =
β

η
+
∫ t

−∞

∫

Φ
e−η(t−s)ϕV ϕ

s− Λ(ds, dϕ), t ∈ R, (1.5.10)

such that V̄ is an ambit process as in (1.5.1).
Here the integrability conditions of Section 1.4 come into play. Immediately from

Theorem 1.4.1 and Remark 1.4.3 we obtain the following corollary.

Corollary 1.5.2. The supCOGARCH V̄ as in (1.5.10) exists if and only if
∫

R+

∫

Φ

∫

R+

1 ∧
(
y2ϕe−ηsV ϕ

s

)
νL(dy)π(dϕ) ds < ∞ a.s. (1.5.11)

In particular, the supCOGARCH (1.5.10) provides an example where the sto-
chastic volatility process σ(s, ϕ) := ϕV ϕ

s− is not independent of the underlying Lévy
basis Λ. So the conditions of [119, Thm. 2.7] are not applicable. For further properties
of the supCOGARCH, in particular regarding its jump behaviour, autocovariance
structure etc., we refer to Section 4.3.3.

Finally, let us comment on superpositions of other stochastic volatility models.

Remark 1.5.3 The usage of Ornstein-Uhlenbeck processes in stochastic volatility
modelling has become popular through the Barndorff-Nielsen-Shephard model [14].
A natural extension is given by the CARMA stochastic volatility model [134], which
generates a more flexible autocovariance structure. Another generalization of the
BNS model is obtained via a superposition of OU processes with different memory
parameters leading to the class of supOU processes [11]. This method does not only
yield a more general second-order structure but can also generate long-memory pro-
cesses; cf. [11, 62]. A similar technique was used in [16, 99] to construct supCARMA
processes, again leading to a possible long-range dependent process.

Note that in all these models the driving noise is assumed to have stationary in-
dependent increments, which is certainly a model restriction. Therefore, [17] suggests
a volatility modulation of this noise to obtain a greater model flexibility. In this way,
it is possible to generate a volatility clustering effect, similar to the behaviour of the
(sup)COGARCH. Without volatility modulation, supOU or supCARMA processes
are defined as stochastic integrals of deterministic kernel functions with respect to
a Lévy basis, so the approach of [119] is sufficient. Theorem 1.4.1 now enables us
to replace Λ by a volatility modulated Lévy basis σ.Λ with a possible dependence
structure between σ and Λ. ✷



Chapter 2:

Lévy-driven Volterra equations in space

and time

2.1 Introduction

In this Chapter we investigate stochastic tempo–spatial Volterra equations of the
following form:

Y (t, x) = Y0(t, x) +
∫

I

∫

Rd
G(t, x; s, y)σ(Y (s, y)) Λ(ds, dy), (t, x) ∈ I×R

d. (2.1.1)

Here, Y0 is a given stochastic process, I is a real time interval, G a deterministic
kernel function and σ a deterministic function. Apart from Y0, the stochasticity of
(2.1.1) comes from its integrator Λ, which is an infinitely divisible independently
scattered random measure, or a Lévy basis for short.

While the theory of deterministic Volterra equations is very well studied by now
(see, for example, the monograph [74]), the literature on Volterra equations with
stochastic integrators is considerably smaller. If no space is involved, [117] proves
existence and uniqueness for general semimartingale integrators under differentiabil-
ity assumptions on the kernel G. In the special case of Lévy-driven stochastic delay
equations, the asymptotic behaviour of solutions and the existence of stationary
solutions are discussed in [120]. As soon as the kernel becomes explosive, existence
and uniqueness results have been found for Brownian integrators, see [46, 47, 138].
In the tempo–spatial case, singular kernels are typically encountered in the the-
ory of stochastic PDEs, with two main approaches having become established in
this context: on the one hand, there is the functional analytic approach that treats
infinite-dimensional stochastic evolution equations as ordinary SDEs with irregular
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coefficients driven by Hilbert or Banach space-valued Lévy processes; see, for in-
stance, [114] for an excellent account on this subject. On the other hand, there is
the random field approach that directly considers (2.1.1) as a scalar-valued equation
driven by a multi-parameter Lévy noise.

Since our treatment of (2.1.1) will be within the latter framework, we review
the existing literature in this field in more detail: based on the seminal work [136],
which uses equations of type (2.1.1) in order to solve certain stochastic PDEs driven
by Gaussian white noise, several attempts have been made to generalize Walsh’s
method to other noise types. One possibility is, for instance, to consider Gaussian
noise that is white in time but coloured in space, which is proposed in [48]. Leaving
the Gaussian world, [3, 5] study the stochastic heat equation driven by Lévy white
noise. However, since both references still employ the L2-theory of Walsh, they are
confronted with the uncomfortable fact that the stochastic heat equation will have
no solutions in dimensions greater than 1, cf. [136, pp. 328ff.]. This is due to the
bad integrability properties of the heat kernel that plays the role of G in (2.1.1): it
is square-integrable only for d = 1.

Therefore, the passage from the L2- to an Lp-framework, p ∈ (0, 2], is inevitable.
The first paper that discusses Lévy-driven stochastic PDEs in an Lp-framework with
p ∈ [1, 2] is, to our best knowledge, [125]. Under the usual Lipschitz condition on
σ, existence and uniqueness for (2.1.1) are proved when G is the heat kernel and
Λ a homogeneous Lévy basis that is either a martingale measure or of locally finite
variation. In [107, 108] a specific equation that goes beyond the results of [125] is
studied: they take the non-Lipschitz coefficient σ(x) = xβ with β 6= 1 and an α-stable
spectrally positive Lévy basis for Λ, where α ∈ (0, 1) and α ∈ (1, 2), respectively.
Finally, [9] treats the Lipschitz case with α-stable Λ where α 6= 1. In all articles
mentioned so far, the time horizon is I = R+.

Let us also point out that processes of the form (2.1.1) are closely related to a
class of random fields that are called ambit processes and have found applications
in physics, finance, biology among other disciplines; see [116] for a recent survey
article. While for an ambit process σ(Y (s, y)) in (2.1.1) is replaced by some given
random field σ(s, y), which means that (2.1.1) actually becomes a definition, the
Volterra equation (2.1.1) has to be solved first of all. Once a solution is found, it is
a special type of ambit processes. For the connection between ambit processes and
stochastic PDEs, we also refer to [18].

This Chapter is organized as follows: after we have provided all necessary back-
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ground information in Section 2.2, we start to discuss (2.1.1) in Section 2.3 for
I = R+. In Theorem 2.3.1 we establish existence and uniqueness conditions for
(2.1.1) in Lp-spaces for p ∈ (0, 2] under Lipschitz conditions on σ. They general-
ize the results mentioned in the literature review to kernels G that need not be
of convolution type or related to stochastic PDEs, as well as to Lévy bases that
are combinations of martingale and finite variation parts, and whose characteristics
are potentially inhomogeneous in space and time. The most stringent condition in
Theorem 2.3.1 is that, loosely speaking, Λ must have a moment structure that is
at least as nice as its variation structure. This, for instance, a priori excludes any
stable Lévy basis. An extension to such cases is provided in Theorem 2.3.5 if Λ only
has finitely many large jumps on finite time intervals. Using localization methods
as in [9], we are able to reduce the situation to the framework of Theorem 2.3.1 and
prove existence and uniqueness of solutions this way. Beyond that, if σ has sublinear
growth, we prove that they have finite Lp-moments for some p ∈ (0, 2].

In Section 2.4, we extend the results from Section 2.3 to the case of infinite mem-
ory, which, to our knowledge, has not been considered before in the literature. More
precisely, we investigate existence and uniqueness for (2.1.1) when I = R (The-
orem 2.4.4), which turns out to be much more involved than the case I = [0,∞).
First, the method of Theorem 2.3.5 will no longer work, that is, Λ is required to have
a good moment structure. Second, and more importantly, an explicit size condition
on G, σ and Λ comes into play, which is already a characteristic feature of deter-
ministic Volterra equations, see Example 2.4.1. Therefore, detailed Lp-estimates for
the stochastic integral in (2.1.1) are required. Furthermore, under certain conditions
on Y0, one can improve the results by using weighted Lp-spaces. If G is a kernel of
convolution form and Λ is homogeneous in space and time, the stationarity of the
solution is discussed in Theorem 2.4.8. Section 2.4 is round off with some results
concerning the Lp-continuity of the solution Y and its continuous dependence on
Y0; see Theorem 2.4.7.

In Section 2.5 we assume that we have already found a solution to (2.1.1) that
is Lp-bounded up to time T for every T ∈ R+. We want to address the question
when the solution remains Lp-bounded as T → ∞. An affirmative answer is given
under two types of conditions (Theorem 2.5.2): first, if G, σ and Λ are small enough,
a feature that we have already encountered in Theorem 2.4.4 and that is also sim-
ilar to the conditions in [120] in the context of stationary solutions to stochastic
delay equations; and second, if the function σ is of sublinear growth. Both condi-
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tions are intrinsic for Volterra-type equations as a deterministic example shows, see
Example 2.5.1.

In Sections 2.3 to 2.5, we illustrate all our results by means of the stochastic heat
equation, see Examples 2.3.4, 2.3.8, 2.4.9 and 2.5.3.

Finally, Section 2.6 contains several lemmata needed for the proof of the main
theorems, which is carried out in Section 2.7.

2.2 Preliminaries

We begin with a table of frequently used notations and abbreviations:

R+ the set [0,∞) of positive real numbers (strict positivity excludes 0);
R̄ the extended real line R ∪ {±∞};
N the set {1, 2, . . .} of natural numbers;
I either I = R+ or I = R;
IT I ∩ (−∞, T ] for some T ∈ R ∪ {∞};
p∗ p ∨ 1 for p ∈ [0,∞);
|z|rs |z|r1{|z|>1} + |z|s1{|z|≤1} for r, s, z ∈ R;
B a stochastic basis (Ω,F ,F = (Ft)t∈I ,P) satisfying the usual hypotheses

of right-continuity and completeness that is large enough to support all
random elements of this chapter;

Ω̃ Ω̃ := Ω × I × R
d for some d ∈ N ∪ {0} with the convention R

0 := {1};
P̃ depending on the context, either the tempo–spatial predictable σ-field

P ⊗ B(Rd) where P is the usual predictable σ-field and B(Rd) is the
Borel σ-field on R

d, or the class of predictable (i.e. P̃-measurable) map-
pings Ω̃ → R̄;

P̃b the collection of all sets A ∈ P̃ such that there exists k ∈ N with
A ⊆ Ω × (I ∩ [−k, k]) × [−k, k]d;

Bb the collection of all bounded Borel sets in I × R
d;

JR,SK {(ω, t) ∈ Ω × I : R(ω) ≤ t ≤ S(ω)} for two F-stopping times R,S,
analogously for the other stochastic intervals;

|µ| the total variation measure of a signed Borel measure µ;
x+ A {x+ a : a ∈ A} for x ∈ R

d and A ⊆ R
d;

AC
R

d \ A for A ⊆ R
d;

diam(A) sup{|x− y| : x, y ∈ A} for A ⊆ R
d;

(x, y] {z ∈ R
d : xi < zi ≤ yi for all i = 1, . . . , d} for x, y ∈ R

d;
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Lp the usual spaces Lp(Ω,F ,P) for p ∈ [0,∞) endowed with the topologies
induced by ‖X‖Lp := E[|X|p]1/p∗

for p ∈ (0,∞) and ‖X‖L0 := E[|X|∧1]
for p = 0

In model (2.1.1), Λ will always be a Lévy basis on I × R
d, that is, a mapping

Λ: P̃b → L0 with the following properties:

(1) Λ(∅) = 0 a.s.

(2) For every sequence (Ai)i∈N of pairwise disjoint sets in P̃b with
⋃∞

i=1 Ai ∈ P̃b we
have

Λ

(
∞⋃

i=1

Ai

)
=
∞∑

i=1

Λ(Ai) in L0.

(3) For all A ∈ P̃b with A ⊆ Ω × It × R
d for some t ∈ I, the random variable Λ(A)

is Ft-measurable.

(4) For all A ∈ P̃b, t ∈ I and Ω0 ∈ Ft, we have

Λ
(
A ∩ (Ω0 × (t,∞) × R

d)
)

= 1Ω0Λ
(
A ∩ (Ω × (t,∞) × R

d)
)

a.s.

(5) If (Bi)i∈N is a sequence of pairwise disjoint sets in Bb, then (Λ(Ω × Bi))i∈N is
a sequence of independent random variables. Furthermore, if B ∈ Bb satisfies
B ⊆ (t,∞) × R

d for some t ∈ I, then Λ(Ω ×B) is independent of Ft.

(6) For all B ∈ Bb, Λ(Ω ×B) has an infinitely divisible distribution.

(7) For all t ∈ I and k ∈ N we have Λ(Ω × {t} × [−k, k]d) = 0 a.s.

Just as Lévy processes are semimartingales in the purely temporal case, Lévy
bases are random measures, that is, stochastic integrators in space–time. In other
words, it is possible to develop an Itô stochastic integration theory for Lévy bases.
Let us briefly recall this; all details can be found in [27, Chap. 3] and [28]. Starting
with simple integrands H ∈ S, that is, H =

∑r
i=1 ai1Ai

with r ∈ N, real numbers ai

and sets Ai ∈ P̃b, we define the stochastic integral in the canonical way:

∫

I

∫

Rd
H(t, x) Λ(dt, dx) :=

r∑

i=1

aiΛ(Ai).
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Given a general predictable function H ∈ P̃ , we introduce the Daniell mean

‖H‖Λ := sup
S∈S,|S|≤|H|

∥∥∥∥
∫

I

∫

Rd
S(t, x) Λ(dt, dx)

∥∥∥∥
L0
,

and define the class of integrable functions L0(Λ) as the closure of S under the
Daniell mean ‖ · ‖Λ. This is to say that H ∈ P̃ is integrable with respect to Λ if and
only if there exists a sequence (Sn)n∈N of elements in S such that ‖H − Sn‖Λ → 0
as n → ∞. Then the stochastic integral

∫

I

∫

Rd
H(t, x) Λ(dt, dx) := lim

n→∞

∫

I

∫

Rd
Sn(t, x) Λ(dt, dx)

as a limit in probability exists and does not depend on the chosen sequence (Sn)n∈N.
Moreover, defining

H · Λt :=
∫

It

∫

Rd
H(s, y) Λ(ds, dy), t ∈ I,

the process H · Λ = (H · Λt)t∈I has a modification that is a semimartingale on
I. In the case I = R, we mean by this that X−∞ := limt↓−∞Xt exists as a limit
in probability, and for all bijective increasing functions φ : R+ → [−∞,∞) the
process Xφ := (Xφ(t))t∈R+ is a usual semimartingale with respect to (Fφ(t))t∈R+ . For
later reference, we shall mention that its quadratic variation process is defined by
[X]t := [Xφ]φ−1(t) for t ∈ R̄. Finally, given a function H ∈ P̃ , one can define a new
random measure H.Λ by setting

K ∈ L0(H.Λ) :⇔ KH ∈ L0(Λ),
∫

I

∫

Rd
K(t, x) (H.Λ)(dt, dx) :=

∫

I

∫

Rd
K(t, x)H(t, x) Λ(dt, dx). (2.2.1)

This indeed defines a random measure H.Λ if there exists a sequence (Ak)k∈N ⊆ P̃
with Ak ↑ Ω̃ such that 1Ak

∈ L0(H.Λ) for all k ∈ N.
Every Lévy basis Λ has a canonical decomposition of the following form, see

Theorem 1.3.2.

Λ(dt, dx) = B(dt, dx) + Λc(dt, dx) +
∫

R

z1{|z|≤1} (µ− ν)(dt, dx, dz)

+
∫

R

z1{|z|>1} µ(dt, dx, dz), (2.2.2)

where the ingredients are as follows:
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(1) B is a deterministic σ-finite signed Borel measure on I × R
d.

(2) Λc, the continuous part of Λ in the usual sense ([28, Thm. 4.13]), is a Gaussian
random measure with variance measure C, which means that it is itself a Lévy
basis and Λc(Ω ×B) has a normal distribution with mean 0 and variance C(B)
for every B ∈ Bb.

(3) µ is a Poisson measure on I×R
d ×R relative to F with intensity measure ν, see

[80, Def. II.1.20].

Moreover, we have a representation

B(dt, dx) = b(t, x)λ(dt, dx), C(dt, dx) = c(t, x)λ(dt, dx),

ν(dt, dx, dz) = π(t, x, dz)λ(dt, dx), (2.2.3)

with measurable functions b : I × R
d → R, c : I × R

d → R+, a transition kernel π
from I×R

d to R such that π(t, x, ·) is a Lévy measure for each (t, x), and a positive
σ-finite measure λ on I × R

d satisfying λ({t} × R
d) = 0 for all t ∈ I.

If π satisfies
∫

|z|>1
|z|π(t, x, dz) < ∞, (2.2.4)

or
∫

|z|≤1
|z|π(t, x, dz) < ∞, respectively, (2.2.5)

for all (t, x) ∈ I × R
d, then it makes sense to introduce the mean measure (resp.

drift measure)

B1(dt, dx) := b1(t, x)λ(dt, dx), b1(t, x) := b(t, x) +
∫

R

z1{|z|>1} π(t, x, dz), (2.2.6)

B0(dt, dx) := b0(t, x)λ(dt, dx), b0(t, x) := b(t, x) −
∫

R

z1{|z|≤1} π(t, x, dz). (2.2.7)

If in the first case we have b1(t, x) = 0 for all (t, x) ∈ I × R
d, then Λ is called a

martingale Lévy basis, which will be denoted by Λ ∈ M; if in the second case we
have b0(t, x) = 0 for all (t, x) ∈ I × R

d, then Λ is called a Lévy basis without drift.
Next, Λ is called symmetric if for all (t, x) ∈ I × R

d we have b(t, x) = 0 and the
Lévy measure π(t, x, ·) is symmetric. Furthermore, Λ is called a homogeneous Lévy
basis if λ is the Lebesgue measure on I × R

d and b, c and π do not depend on
(t, x) ∈ I × R

d. In this case, a function φ ∈ P̃ is jointly stationary with Λ if for
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arbitrary n ∈ N, (h, η) ∈ R × R
d, points (t1, x1), . . . , (tn, xn) ∈ I × R

d and pairwise
disjoint sets B1, . . . , Bn ∈ Bb, we have

(φ(ti, xi),Λ(Bi) : i = 1, . . . , n, ti + h ∈ I)
d= (φ(ti + h, xi + η),Λ(Bi + (h, η)) : i = 1, . . . , n, ti + h ∈ I).

Let us come back to Equation (2.1.1). We first clarify what we mean by a solution
Y to (2.1.1):

Definition 2.2.1 Equation (2.1.1) is said to have a solution if there exists a pre-
dictable process Y ∈ P̃ such that for all (t, x) ∈ I×R

d the stochastic integral on the
right-hand side of (2.1.1) is well defined and equation (2.1.1) holds a.s. We identify
two solutions Y1 and Y2 if for all (t, x) ∈ I × R

d we have Y1(t, x) = Y2(t, x) a.s. ✷

In order to construct solutions to (2.1.1), we introduce some spaces of stochastic
processes. Let w : I × R

d → R be a weight function, that is, a strictly positive mea-
surable function. We denote by L∞,w

I the Banach space of all measurable functions
f : I × R

d → R satisfying

‖f‖L∞,w
I

:= sup
(t,x)∈I×Rd

|f(t, x)|
w(t, x)

< ∞. (2.2.8)

Similarly, for p ∈ (0,∞), Bp,w
I is the space of all φ ∈ P̃ with

‖φ‖Bp,w
I

:= sup
(t,x)∈I×Rd

(
E[|φ(t, x)|p]
w(t, x)

)1/p∗

< ∞. (2.2.9)

If f ∈ L∞,w
IT

or φ ∈ Bp,w
IT

for all T ∈ I, then we write f ∈ L∞,w
I,loc or φ ∈ Bp,w

I,loc,
respectively. In the special case w ≡ 1, we use the notations L∞I , L∞I,loc, B

p
I and

Bp
I,loc.

Before we proceed to the main results of this Chapter, we recall how stochastic
PDEs can be treated in the framework of (2.1.1). Let I ⊂ R be an interval, U
an open subset of R

d with boundary ∂U and P a polynomial in 1 + d variables.
Given some deterministic coefficient σ and some Lévy basis Λ, they give rise to the
following formal equation:

P (∂t, ∂1, . . . , ∂d)Y (t, x) = σ(Y (t, x))Λ̇(t, x), (t, x) ∈ I × U, (2.2.10)

where Λ̇ = ∂t∂1 . . . ∂dΛ is the formal derivative of Λ, its noise. Usually, (2.2.10) is
subjected to some boundary conditions on ∂U . Of course, the derivative of Λ is not
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defined except in trivial cases, so a strong solution to (2.2.10) will not exist. Going
back to [136] is the idea of constructing a so-called mild solution to (2.2.10). For this
method to work, one has to assume that the operator P possesses a function-valued
Green’s function on I×U . Then a mild solution to (2.2.10) is nothing but a solution
in the sense of Definition 2.2.1 to (2.1.1), where G is the Green’s function and Y0 a
term that only depends on the boundary conditions posed on ∂U .

Remark 2.2.2 While the notion of a solution as in Definition 2.2.1 is very com-
mon in the theory of stochastic PDEs, it is different to the standard notion of
solutions to (ordinary) SDEs: let I = R+ and d = 0, that is, space contains only
one point, and consider G(t, 1; s, 1) = g(s)1{s≤t} with some smooth function g. Then
Equation (2.1.1) is equivalent to the SDE

dY (t) = g(t)σ(Y (t−)) Λ(dt), t ≥ 0, Y (0) = Y0, (2.2.11)

where Λ is a semimartingale with independent increments. Ordinary SDE theory
tells us that Equation (2.2.11) has a càdlàg solution Y that is unique up to indis-
tinguishability. In contrast, a solution in the sense of Definition 2.2.1 would be the
predictable version Y (·−), and uniqueness is only understood up to modifications.
The reason why we have chosen this slightly different notion of a solution is that we
are particularly interested in the case where G in Equation (2.1.1) has singularities.
In such cases, Equation (2.1.1) permits no càdlàg solutions. ✷

2.3 Existence and uniqueness results on I = R+

The goal of this section is to provide sufficient conditions under which there exists
a (unique) solution to (2.1.1) on the interval I = R+. It is clear that everything
in this section holds analogously if we replace I = [0,∞) by I = [a,∞) with some
a ∈ R. As mentioned in the Introduction, the forthcoming theorem generalizes the
results of [125] to potentially inhomogeneous Lévy bases and kernels different from
the heat kernel. It holds under the following list of assumptions:

Assumption A Let p ∈ (0, 2] and the predictable characteristics of Λ be given by
(2.2.3). We impose the following conditions:

(1) Y0 ∈ Bp
[0,∞),loc.
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(2) There exists Cσ,1 ∈ R+ such that |σ(x) − σ(y)| ≤ Cσ,1|x− y| for all x, y ∈ R.

(3) G : (R+ ×R
d)2 → R is a measurable function such that G(t, ·; s, ·) ≡ 0 whenever

s > t.

(4) If p < 2, then Λ has no Gaussian part: c(t, x) = 0 for (t, x) ∈ R+ ×R
d. If p = 2,

then we assume for all T ∈ R+

sup
(t,x)∈[0,T ]×Rd

∫ t

0

∫

Rd
|G(t, x; s, y)|2c(s, y)λ(ds, dy) < ∞. (2.3.1)

(5) For all T ∈ R+

sup
(t,x)∈[0,T ]×Rd

∫ t

0

∫

Rd

∫

R

|G(t, x; s, y)z|p ν(ds, dy, dz) < ∞. (2.3.2)

(6) Recall the definition of b1 and b0 from (2.2.6) and (2.2.7). If p ≥ 1, assume that
ν satisfies (2.2.4) and that for all T ∈ R

sup
(t,x)∈[0,T ]×Rd

∫ t

0

∫

Rd
|G(t, x; s, y)b1(s, y)|λ(ds, dy) < ∞; (2.3.3)

if p < 1, assume that ν satisfies (2.2.5) and that b0(t, x) = 0 for all
(t, x) ∈ R+ × R

d.

(7) Define for (t, x), (s, y) ∈ R+ × R
d

GA(t, x; s, y) := |G(t, x; s, y)|p
(∫

R

|z|p π(s, y, dz) + c(s, y)
)

+ |G(t, x; s, y)b1(s, y)|1{p≥1},

and assume that for every T ∈ R+ and ǫ > 0 there exists k ∈ N together with
a subdivision T : 0 = t0 < t1 < . . . < tk+1 = T such that

sup
(t,x)∈[0,T ]×Rd

sup
i=0,...,k

∫ ti+1

ti

∫

Rd
GA(t, x; s, y)λ(ds, dy) < ǫ. (2.3.4)

✷

Theorem 2.3.1. Let Assumption A be valid. Then Equation (2.1.1) has a unique
solution in Bp

[0,∞),loc.
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The conditions of Assumption A simplify a lot if G and Λ are quasi-stationary,
that is,

|G(t, x; s, y)| ≤ g(t− s, x− y), λ(dt, dx) = d(t, x), b, c ∈ L∞[0,∞),loc,

π(t, x, dz) ≤ π0(dz), (2.3.5)

where g : R+ × R
d → R is a positive measurable function.

Corollary 2.3.2. Suppose that (2.3.5) holds and that Assumption A(1), (2) and (3)
are given. Furthermore, assume that we have for some p ∈ (0, 2]

b0 ≡ 0 if p < 1, c ≡ 0 if p < 2,
∫

R

|z|p π0(dz) < ∞, (2.3.6)

and for all T ∈ R+

∫ T

0

∫

Rd
gp(t, x) + g(t, x)1{p≥1,Λ/∈M} d(t, x) < ∞. (2.3.7)

Then all conditions of Assumption A are satisfied and Theorem 2.3.1 holds.

Remark 2.3.3 (1) Assumption A and Theorem 2.3.1 are special cases of Assump-
tion C and Theorem 2.4.4, respectively, which we will discuss in Section 2.4. In
fact, Theorem 2.3.1 follows if we take I = [0,∞) and w ≡ 1 in Theorem 2.4.4.

(2) Conditions (4), (5) and (6) in Assumption A are conditions on the joint size
of G and the three characteristics of Λ, respectively. Although they are valid
for many interesting examples, especially condition (5) might be too restrictive:
it is violated as soon as the moment structure of Λ is worse than its varia-
tion structure, which, for instance, occurs if Λ is an α-stable Lévy basis with
α ∈ (0, 2); see also the last condition in (2.3.6). Theorem 2.3.5 below provides,
under some additional hypotheses, an extension of Theorem 2.3.1 that includes
such cases.

(3) The following observation follows from Corollary 2.3.2: in the quasi-stationary
case (2.3.5), condition (7) in Assumption A is already implied by conditions
(4), (5) and (6). In other words, condition (7) is a smallness assumption on the
non-stationary part of G and the characteristics of Λ.

(4) As we shall see in the more general Theorem 2.4.4 in Section 2.4, it actually
suffices that the left-hand side of (2.3.4) can be made smaller than some fixed
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constant that does not depend on T . Due to the previous remark, however, this
fact is not that important in the case I = [0,∞) (in the case I = R, it is!). ✷

Next, we apply Theorem 2.3.1 and its corollary to the stochastic heat equation.
In fact, this equation will serve as our toy example and will be revisited after each
main theorem: see the Examples 2.3.8, 2.4.9 and 2.5.3.

Example 2.3.4 We consider the stochastic heat equation on R+ × R
d, that is,

(2.2.10) with P given by P (t, x) = t − ∑d
i=1 xi + a, a ∈ R, and some Lipschitz

coefficient σ. The Green’s function is the heat kernel

Ga(t, x; s, y) = ga(t− s, x− y) =
exp

(
− |x−y|2

4(t−s)
− a(t− s)

)

(4π(t− s))d/2
1{s<t}. (2.3.8)

We pose an initial condition at time t = 0, that is, we require Y (0, x) = y0(x), where
y0 : Rd → R is some bounded continuous and, for simplicity, deterministic function.
Then the correct term for Y0 in (2.1.1) is

Y0(t, x) :=
∫

Rd
ga(t, x− y)y0(y) dy, (t, x) ∈ R+ × R

d. (2.3.9)

The stochastic heat equation on I = R+ is then given by

Y (t, x) = Y0(t, x) +
∫ t

0

∫

Rd
ga(t− s, x− y)σ(Y (s, y)) Λ(ds, dy). (2.3.10)

for (t, x) ∈ R+ ×R
d. Let us determine sufficient conditions for existence and unique-

ness of solutions to (2.3.10): assuming that the characteristics of Λ satisfy (2.3.5),
we have to check the conditions of Corollary 2.3.2: (1) and (2) of Assumption A are
clear. Since

∫ T

0

∫

Rd
gp

a(s, y) d(s, y) < ∞ for all T ∈ R+ ⇐⇒ p < 1 + 2/d, (2.3.11)

we obtain existence and uniqueness for the stochastic heat equation (2.3.10) on
I = R+ if (2.3.6) holds with some 0 < p < 1 + 2/d. In particular, this excludes
the choice p = 2 and therefore the possibility of taking a non-zero Gaussian part
whenever d ≥ 2. ✷

As pointed out in Remark 2.3.3(2), Theorem 2.3.1 excludes any Lévy basis that
has the property that for every p ∈ (0, 2]

λ
({

(t, x) ∈ R+ × R
d :
∫

R

|z|p π(t, x, dz) = ∞
})

> 0. (2.3.12)
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We now discuss a possibility to circumvent this.

Assumption B Consider the following hypotheses:

(1) Assumption A(2) and (3) are valid.

(2) There exists some q ∈ (0, 2] such that for all n ∈ N conditions (4)–(7) of As-
sumption A are valid when p is replaced by q and ν is replaced by

νn(dt, dx, dz) := 1{|z|≤n} ν(dt, dx, dz).

Of course, b1 is changed accordingly.

(3) For all T ∈ R+ we have ν
(
[0, T ] × R

d × [−1, 1]C
)
< ∞.

(4) Y0 ∈ P̃ and there are stopping times (Tn)n∈N with Tn ↑ ∞ a.s. and Y01J0,TnK

belongs to Bq
[0,∞),loc for all n ∈ N.

(5) There exist γ ∈ (0, 1) and Cσ,2 ∈ R+ such that |σ(x)| ≤ |σ(0)| + Cσ,2|x|γ for all
x ∈ R.

(6) There exists p ∈ (0, 2) satisfying p < q and qγ ≤ p such that Y0 ∈ Bp
[0,∞),loc.

(7) For all T ∈ R+

sup
(t,x)∈[0,T ]×Rd

∫ t

0

∫

Rd

∫

R

|G(t, x; s, y)z|pq ν(ds, dy, dz) < ∞.

(8) If p ≥ 1, (2.3.3) holds.

(9) If p < 1, there exist exponents α ∈ (−∞, 2], β ∈ [0,∞) with the following
properties:

(9a) For all (t, x) ∈ R+ × R
d, A ∈ [1,∞) and a ∈ (0, 1] we have

∣∣∣∣b(t, x) −
∫

R

z1{|z|∈(a,1]} π(t, x, dz)
∣∣∣∣ ≤ F0(t, x)a1−α, (2.3.13)

∣∣∣∣b(t, x) +
∫

R

z1{|z|∈(1,A]} π(t, x, dz)
∣∣∣∣ ≤ F1(t, x)A1−β (2.3.14)

for some positive measurable functions F0, F1 : R+ × R
d → R.
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(9b) For all T ∈ R+ we have

sup
(t,x)∈[0,T ]×Rd

∫ t

0

∫

Rd
(F0(s, y) ∨ F1(s, y))|G(t, x; s, y)|αβ λ(ds, dy) < ∞. (2.3.15)

(9c) (α ∨ β)γ ≤ p.

(10) The partition property (2.3.4) holds with GB instead of GA, where for
(t, x), (s, y) ∈ R+ × R

d

GB(t, x; s, y) := |G(t, x; s, y)|2c(s, y) +
∫

R

|G(t, x; s, y)z|pq π(s, y, dz)

+





|G(t, x; s, y)b1(s, y)|, p ≥ 1,

(F0(s, y) ∨ F1(s, y))|G(t, x; s, y)|αβ , p < 1
, (2.3.16)

✷

Theorem 2.3.5. (1) Suppose that conditions (1)–(4) of Assumption B are true.
Then there exists a unique solution to Equation (2.1.1) among those Y ∈ P̃ for
which there exist stopping times (Tn)n∈N with Tn ↑ ∞ a.s. such that Y 1J0,TnK

belongs to Bq
[0,∞),loc for all n ∈ N.

(2) If in addition also conditions (5)–(10) of Assumption B are valid, then the so-
lution Y from part (1) belongs to Bp

[0,∞),loc.

Remark 2.3.6 (1) Part (1) of this theorem relies on some stopping time tech-
niques that have already been used in [9] to construct solutions to (2.1.1) driven
by α-stable noise with α 6= 1. Theorem 2.3.5 extends this result to more general
Lévy bases and, more importantly, provides in part (2) conditions under which
this solution belongs to the space Bp

[0,∞),loc.

(2) The smaller the growth index γ of σ is, the smaller can p be chosen and therefore,
the weaker the conditions (6)–(9) of Assumption B are. For α-stable Lévy bases
with α ∈ (0, 2), any γ ∈ (0, 1) and p < q will suffice.

(3) If p < 1, condition (9) of Assumption B looks quite technical but is actually
only a very mild assumption. In the next Corollary 2.3.7 where we treat the
quasi-stationary case, it is already implied by condition (6) below.

(4) Remark 2.3.3(3) holds analogously: see the next corollary.
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(5) For the second condition of Assumption B, if p ≥ 1, one has to check Assump-
tion A(6) for different replacements of b1 as n varies, which are usually non-zero
even when Λ ∈ M.

(6) The most stringent condition in Assumption B is (3): it requires the intensity of
large jumps of Λ to decay quickly enough in space. For example, it is typically
not enough to have π(t, x, dz) = π0(dz). See Corollary 2.3.7 and Example 2.3.8
for more details. ✷

Again we reformulate Assumption B in the quasi-stationary case:

Corollary 2.3.7. Assume that G and Λ satisfy (2.3.5), but with the stronger con-
ditions

π(t, x, dz) ≤ π1(t, x)π0(dz), (t, x) ∈ [0, T ] × R
d, π1 ∈ L∞[0,∞),loc,

∫ T

0

∫

Rd
π1(t, x) d(t, x) < ∞, t ∈ [0, T ], (2.3.17)

for all T ∈ R+. Then part (1) of Theorem 2.3.5 holds if:

(1) Assumption B(1) and (4) are valid.

(2) For some q ∈ (0, 2] conditions (2.3.6) and (2.3.7) hold with p replaced by q and
π0 replaced by 1{|z|≤1} π0(dz).

(3) If q ≥ 1, either
∫ T

0

∫

Rd
g(t, x) d(t, x) < ∞ for all T ∈ R+, or Λ is symmetric.

Part (2) of the same theorem holds if additionally:

(4) σ satisfies the growth condition of Assumption B(5) with γ ∈ (0, 1).

(5) There exists p ∈ (0, 2) with p < q and qγ ≤ p such that Y0 ∈ Bp
[0,∞),loc.

(6)
∫

R

|z|pq π0(dz) < ∞ and
∫ T

0

∫

Rd
|g(t, x)|qp d(t, x) < ∞ for all T ∈ R+.

For illustration purposes we go through the conditions of Theorem 2.3.5 and
Corollary 2.3.7 for the stochastic heat equation.
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Example 2.3.8 (Continuation of Example 2.3.4) Our aim is to extend the
findings of Example 2.3.4 when Λ has bad moment properties in the sense of (2.3.12).
For simplicity we assume that the characteristics of Λ are within the setting of
Corollary 2.3.7, that is, they satisfy (2.3.5) and (2.3.17). As before, σ is a Lipschitz
continuous function and the equation of interest is (2.3.10) with Y0 given by (2.3.9).
In view of (2.3.11), it is immediate to see that Corollary 2.3.7 yields the following
conditions for part (1) of Theorem 2.3.5 to hold: there exists q ∈ (0, 1 + 2/d) such
that ∫

[−1,1]
|z|q π0(dz) < ∞, c ≡ 0 if d ≥ 2, b0 ≡ 0 if q < 1. (2.3.18)

Furthermore, if σ has growth of order γ ∈ (0, 1) and
∫

|z|>1
|z|p π0(dz) < ∞ for some p < 1 + 2/d with p < q and qγ ≤ p, (2.3.19)

then the solution Y belongs to Bp
[0,∞),loc. Indeed, this claim follows from Corol-

lary 2.3.7 and the fact that for all p, q ∈ (0,∞) we have

∫ T

0

∫

Rd
|ga(t, x)|qp d(t, x) < ∞ (2.3.20)

for all T ∈ R+ if and only if q ∈ (0, 1 + 2/d) (p does not matter). From (2.3.19) we
also see the following: the smaller the growth order γ of σ is, the fewer moments π0

is required to have.
At last, we give some further explanation for the integrability condition on π1

given in (2.3.17). We assume that π(t, x, dz) = π1(t, x)π0(dz) with a Lévy measure
π0 of unbounded support. Then it is obvious to see that we cannot take π1 ≡ 1,
that is, a homogeneous noise Λ, but have to choose π1 with sufficient decay in space.
For instance, if there exists some exponent r ∈ R such that for all T ∈ R+ we have
π1(t, x) ≤ CT |x|−r for all (t, x) ∈ [0, T ] × R

d and some constant CT ∈ R+, then
we need for (2.3.17) that r > d, a condition that is stronger in higher dimensions.
Finally, (2.3.17) is always met if π1 is bounded and vanishes outside a compact in R

d,
which corresponds to a noise that only acts locally. In particular, this assumption
is very natural if we consider the stochastic heat equation on bounded domains as,
for instance, in [5, 9, 136]. ✷

Remark 2.3.9 Theorem 2.3.1 and 2.3.5 can actually be extended to even more
general random measures than Lévy bases. Let us consider a random measure M
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on R+ × R
d that is defined by

M(dt, dx) = b(t, x) d(t, x) + ρ(t, x)W (dt, dx) +
∫

E
δ(t, x, z) (p − q)(dt, dx, dz)

+
∫

E
δ(t, x, z) p(dt, dx, dz), (2.3.21)

where (E, E) is an arbitrary Polish space equipped with its Borel σ-field, b, ρ ∈ P̃ ,
δ = δ + δ = δ1{|δ|≤1} + δ1{|δ|>1} is an P̃ ⊗ E-measurable function, W is a Gaussian
random measure with the Lebesgue measure on I × R

d as variance measure, p is a
homogeneous Poisson random measure on I×R

d ×E relative to the filtration F with
intensity measure q(dt, dx, dz) = dt dxλ(dz) where λ is a σ-finite infinite atomless
measure on (E, E). Moreover, all ingredients are such that for all k ∈ N M(Ω × (I ∩
(−k, k]) × (−k, k]d) is well defined. Such a measure M can be viewed as the space–
time analogue of Itô semimartingales. We impose the following conditions on the
coefficients (these are classical in the semimartingale setting, cf. [2, Chap. 6]): there
exist positive constants (βN)N∈N, a sequence of stopping times (τN)N∈N increasing
to infinity a.s., and deterministic positive measurable functions jN(z) such that for
all (ω, t, x) ∈ P̃ with t ≤ τN(ω) we have

(1) |b(ω, t, x)|, |c(ω, t, x)| ≤ βN ,

(2) |δ(ω, t, x, z)|p ≤ jN(z) and
∫

E jN(z)λ(dz) < ∞.

Then with obvious changes to Assumptions A and B, respectively, Theorems 2.3.1
and 2.3.5 also apply to Equation (2.1.1) when driven by the random measure M as
given in (2.3.21). ✷

2.4 Existence and uniqueness results on I = R

While Section 2.3 deals with Equation (2.1.1) on I = [0,∞), this section investigates
the case I = R. In particular, we obtain conditions for Equation (2.1.1) to possess
a stationary solution. In order to demonstrate the difference between the two cases
I = [0,∞) and I = R, we analyze the following deterministic example.

Example 2.4.1 Let λ ∈ R and consider the following equation:

v(t) = 1 +
∫ t

−∞
e−λ(t−s)v(s) ds, t ∈ R. (2.4.1)
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By standard computation one can show the following: if λ ≤ 0, Equation (2.4.1) has
no solution; if λ > 0 and λ 6= 1, then the solutions to (2.4.1) are

v(t) = ce(1−λ)t +
λ

λ− 1
, c ∈ R;

if λ = 1, the solutions are
v(t) = t+ c, c ∈ R.

We draw some important conclusions, also regarding possibilities and limitations for
Equation (2.1.1) with I = R:

(1) The reason why (2.4.1) possesses no solution for λ ≤ 0 is simply the non-
integrability of the kernel:

∫ t

−∞
e−λ(t−s) ds =

∫ ∞

0
e−λs ds = ∞. (2.4.2)

(2) If Equation (2.4.1) has a solution, it has uncountably many. If λ ∈ (1,∞), only
one solution is in L∞

R,loc, namely if c = 0. The reason for this is that the integral
of the kernel given in (2.4.2) is smaller than 1. In this case the uniqueness of
solutions in L∞

R,loc follows from Lemma 2.6.4(2). Thus, in the stochastic case
of (2.1.1), we can expect existence and uniqueness of solutions in Bp

R,loc only if
the quantities (2.3.1), (2.3.2) and (2.3.3) are small enough (not only finite) in a
sense to be made precise.

(3) In contrast to the case λ ∈ (1,∞), we have for λ ∈ (0, 1) that all solutions belong
to L∞

R,loc and for λ = 1 that no solution belongs to L∞
R,loc. Furthermore, in these

cases, all solutions start with strictly negative values at −∞. This is somewhat
surprising given the fact that all ingredients of (2.4.1) (the exponential kernel,
the constant driving force and the Lebesgue measure as integrator) are positive.
This phenomenon is typical when the integral of the kernel in (2.4.2) becomes
greater or equal to one: the kernel is too large to allow for a positive solution.
Finally, none of the solutions can be found via a Picard iteration scheme (since
the Picard iterates are always positive when the input factors are). Thus, if the
kernel in (2.1.1) is too large in a certain sense, we will not be able to construct
a solution in general.

(4) Under certain circumstances, however, one can make the kernel size smaller
(which then implies the existence and uniqueness of solutions) by considering
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Volterra equations in weighted spaces. For instance, consider the following mod-
ification of Equation (2.4.1):

v(t) = eαt +
∫ t

−∞
e−λ(t−s)v(s) ds, t ∈ R, (2.4.3)

with α, λ ∈ R satisfying λ > 0 and α + λ > 1. The family of solutions in this
case is

v(t) =
α+ λ

α+ λ− 1
eαt + ce(1−λ)t, t ∈ R, c ∈ R. (2.4.4)

First note that positive solutions do exist, namely, when c ≥ 0. Furthermore,
with w(t) := eαt, we have

∫ t

−∞
w−1(t)e−λ(t−s)w(s) ds =

∫ t

−∞
e−(α+λ)(t−s) ds = (α+ λ)−1 < 1.

That is, by Lemma 2.6.4(2), there exists a unique solution to (2.4.3) in L∞,w
R,loc,

which corresponds to the case c = 0 in (2.4.4). Roughly speaking, this device
was possible because the force function eαt is small enough at −∞ (the constant
function in (2.4.1) was obviously not small enough). This motivates us to work
in the weighted spaces Bp,w

R,loc for Equation (2.1.1) on I = R. ✷

We are about to formulate a set of conditions that generalizes those of Assump-
tion A and leads to the existence and uniqueness of solutions for Equation (2.1.1) on
arbitrary intervals, in particular on I = R. In order to do so, we need the following
definition.

Definition 2.4.2 Let p ∈ (0,∞).

(1) For p ∈ (0, 1) we set CBDG
p := 1.

(2) For p ∈ [1,∞) we denote by CBDG
p the smallest positive number such that for

all local martingales (Mt)t∈R+ with respect to F we have

sup
t≥0

‖Mt‖Lp ≤ CBDG
p ‖[M ]1/2

∞ ‖Lp . (2.4.5)

✷

Remark 2.4.3 We make some comments on Definition 2.4.2:
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(1) The Burkholder-Davis-Gundy inequality ensures the finiteness of CBDG
p for

p ∈ [1,∞). Of course, inequality (2.4.5) becomes false in general for p < 1;
the definition above for p ∈ (0, 1) is merely for notational convenience. More-
over, the inequality for p ∈ [1,∞) is usually stated with the supremum inside the
Lp-norm on the left-hand side of (2.4.5). However, this may enlarge the optimal
constant CBDG

p .

(2) The choice I = R+ is unimportant: a straightforward time change argument
shows that CBDG

p remains optimal for any other non-trivial interval I ⊆ R.

(3) For p ∈ [1,∞), the actual value of CBDG
p is not known in general. We are only

interested in the case p ∈ [1, 2], for which the following results are available:
CBDG

p ≤ √
8p for p ∈ (1, 2), CBDG

2 = 1 (cf. [27, Eq. (4.2.3)]) and CBDG
1 = 2 (cf.

[112, Thm. 8.7]). ✷

Assumption C Let 0 < p ≤ 2, I ⊆ R be an interval and w : I × R
d → R be a

weight function. We impose the following conditions:

(1) Y0 ∈ Bp,w
I,loc.

(2) There exists Cσ,1 ∈ R+ such that |σ(x) − σ(y)| ≤ Cσ,1|x− y| for all x, y ∈ R.

(3) G : (I × R
d)2 → R is a measurable function such that G(t, ·; s, ·) ≡ 0 whenever

s > t.

(4) If p < 2, then Λ has no Gaussian part: c(t, x) = 0 for all (t, x) ∈ I×R
d. If p = 2,

then we assume for all T ∈ I the finiteness of

sup
(t,x)∈IT×Rd

∫

I

∫

Rd
w−1(t, x)|G(t, x; s, y)|2c(s, y)(w(s, y) ∨ σ(0))λ(ds, dy). (2.4.6)

(5) For all T ∈ I the following is finite:

sup
(t,x)∈IT×Rd

∫

I

∫

Rd

∫

R

w−1(t, x)|G(t, x; s, y)z|p(w(s, y)∨σ(0)) ν(ds, dy, dz). (2.4.7)

(6) Recall the definition of b1 and b0 from (2.2.6) and (2.2.7). If p ≥ 1, assume that
ν satisfies (2.2.4) and that for all T ∈ I

sup
(t,x)∈IT×Rd

∫

I

∫

Rd
w−1(t, x)|G(t, x; s, y)b1(s, y)|(w(s, y) ∨ σ(0))λ(ds, dy) (2.4.8)
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is finite; if p < 1, assume that ν satisfies (2.2.5) and that b0(t, x) = 0 for all
(t, x) ∈ I × R

d.

(7) If p ≥ 1 and Λ /∈ M, assume that (6) also holds with w replaced by the constant
function 1.

(8) Define for (t, x), (s, y) ∈ I × R
d

ḠC,1(t, x; s, y) := (Cσ,1C
BDG
p )p|G(t, x; s, y)|p

(∫

R

|z|p π(s, y, dz) + c(s, y)
)
,

ḠC,2(t, x; s, y) := Cp
σ,1

(∫

I

∫

Rd
|G(t, x; s, y)b1(s, y)|λ(ds, dy)

)p−1

× |G(t, x; s, y)b1(s, y)|1{p≥1},

GC,1(t, x; s, y) := w−1(t, x)ḠC,1(t, x; s, y)w(s, y),

GC,2(t, x; s, y) := w−1(t, x)ḠC,2(t, x; s, y)w(s, y), (2.4.9)

and assume that for every T ∈ I there exists k ∈ N together with a subdivision
T : inf I = t0 < t1 < . . . < tk+1 = T such that

sup
(t,x)∈IT×Rd

sup
i=0,...,k

2∑

l=1

(∫ ti+1

ti

∫

Rd
GC,l(t, x; s, y)λ(ds, dy)

)1/p∗

< 1. (2.4.10)

✷

Theorem 2.4.4. Under Assumption C there exists a unique solution to Equa-
tion (2.1.1) in Bp,w

I,loc.

In the quasi-stationary case, Assumption C simplifies a lot:

Corollary 2.4.5. Let I = R, w ≡ 1 and Assumption C(1), (2) and (3) be valid.
We assume that G and Λ satisfy

|G(t, x; s, y)| ≤ g(t− s, x− y), λ(dt, dx) = d(t, x), b, c ∈ L∞
R
,

π(t, x, dz) ≤ π0(dz) (2.4.11)

for all (t, x) ∈ R×R
d and some positive measurable g : R+ ×R

d → R. Furthermore,
we suppose that for some p ∈ (0, 2] we have

b0 ≡ 0 if p < 1, c ≡ 0 if p < 2, ζp :=
∫

R

|z|p π0(dz) < ∞, (2.4.12)
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and that the following size condition is fulfilled: if p ∈ (0, 1), then

Cp
σ,1ζp

∫ ∞

0

∫

Rd
gp(t, x) d(t, x) < 1, (2.4.13)

and if p ∈ [1, 2], then

Cσ,1


CBDG

p

(
(ζp + ‖c‖L∞

R
)
∫ ∞

0

∫

Rd
gp(t, x) d(t, x)

)1/p

+ ‖b1‖L∞
R

∫ ∞

0

∫

Rd
g(t, x) d(t, x)




< 1. (2.4.14)

Then all conditions of Assumption C are satisfied and Theorem 2.4.4 holds.

We write down some important observations:

Remark 2.4.6 (1) There is a fundamental difference between condition (7) of
Assumption A and condition (8) of Assumption C. For instance, consider the
quasi-stationary case in Corollary 2.3.2 and Corollary 2.4.5, where they reduce
to (2.3.7) and either (2.4.13) or (2.4.14). While in the former case we only
need certain integrability properties of the kernel, we explicitly have to care
about the size of the integrals involved in the latter case, which is also the size
condition we have mentioned in Example 2.4.1(2). Also notice that this is related
to the fact that in the case I = R, we typically cannot make the left-hand side
of (2.4.10) as small as we want by refining the subdivision T since the first
interval (t0, t1] = (−∞, t1] always has infinite length. So whereas condition (7)
of Assumption A is quite natural for I = [0,∞), the analogous condition for
I = R would be very restrictive.

(2) By the nature of Equation (2.1.1), the size condition (8) of Assumption C is
“symmetric” in G, σ and Λ.

(3) In Theorem 2.4.4 uniqueness does not hold in P̃ : see Equation (2.4.1) with
λ ∈ (1,∞). ✷

The next theorem reports some basic properties of the solution found in Theo-
rem 2.4.4:

Theorem 2.4.7. Let Assumption C be valid and Y be the unique solution to Equa-
tion (2.1.1) in Bp,w

I,loc.
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(1) For (t, x), (τ, ξ), (s, y) ∈ I × R
d define G̃(t, x; τ, ξ; s, y) as

(
|G(t, x; s, y) −G(τ, ξ; s, y)|p

(∫

R

|z|p π(s, y, dz) + c(s, y)
)

+
∣∣∣[G(t, x; s, y) −G(τ, ξ; s, y)]b1(s, y)

∣∣∣1{p≥1}

)
w(s, y). (2.4.15)

If for all (t, x) ∈ I × R
d

∫

I

∫

Rd
G̃(t, x; τ, ξ; s, y)λ(ds, dy) → 0 (2.4.16)

whenever (τ, ξ) → (t, x), then Y is an Lp-continuous process, that is,

E[|Y (t, x) − Y (τ, ξ)|p] → 0, whenever (τ, ξ) → (t, x). (2.4.17)

(2) Assume the case of Corollary 2.4.5 with G(t, x; s, y) = g(t − s, x − y). Then
(2.4.16) and therefore the conclusion of (1) hold automatically.

(3) Y depends continuously on Y0. In other words, if Y and Y ′ are the solutions to
(2.1.1) with Y0, Y

′
0 ∈ Bp,w

I,loc as force functions, respectively, then there exists a
constant CI,T,w ∈ R+ that may depend on I, T and w, but is independent of Y0,
Y ′0 such that

‖Y − Y ′‖Bp,w
IT

≤ CI,T,w‖Y0 − Y ′0‖Bp,w
IT
. (2.4.18)

One of our basic motivations for studying Equation (2.1.1) on I = R is to con-
struct stationary solutions. We show that if G is of convolution form and Λ is homo-
geneous over space and time, then the stationarity of the solution in Theorem 2.4.4
follows naturally.

Theorem 2.4.8. Assume that G(t, x; s, y) = g(t − s, x − y) and that Λ is a ho-
mogeneous Lévy basis, satisfying the assumptions of Corollary 2.4.5. Furthermore,
suppose that for all (t, x) ∈ R+ × R

d we have

s ↓ t, y ↓ x (i.e. yi ↓ xi for all i = 1, . . . , d) =⇒ g(s, y) → g(t, x), (2.4.19)

or that for all (t, x) ∈ R+ × R
d implication (2.4.19) holds with ↓ replaced by ↑. If

Y0 is Lp-continuous and jointly stationary with Λ, then also Y and Λ are jointly
stationary.
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Example 2.4.9 (Continuation of Examples 2.3.4 and 2.3.8) While the num-
ber a in (2.3.8) did not play any role in Examples 2.3.4 and 2.3.8, this changes when
we consider the stochastic heat equation on I = R. Let p ∈ (0, 1 + 2/d) and set
p(d) := (1 − p)d/2. Then we have the following trichotomy: for a > 0 we have

∫ ∞

0

∫

Rd
gp

a(t, x) d(t, x) = (4π)p(d)p−
d
2 (ap)−1−p(d)Γ(1 + p(d)); (2.4.20)

for a = 0 we have for T ∈ R+

∫ T

0

∫

Rd
gp

0(t, x) d(t, x) =
(4π)p(d)p−

d
2

1 + p(d)
T 1+p(d), (2.4.21)

which is of polynomial growth when T → ∞; finally, if a < 0, we have
∫ T

0

∫

Rd
gp

a(t, x) d(t, x) = (4π)p(d)p−
d
2

∫ T

0
e−apttp(d) dt, (2.4.22)

which grows faster than e−apT as T → ∞. Thus, in the latter two cases, for Theo-
rem 2.4.4 to be applicable, the characteristics of Λ must decay fast enough at −∞
to ensure the integrability conditions (4), (5) and (6) of Assumption C.

We will only focus on the case a > 0. Given sufficiently strong decay properties
of Λ at −∞, the subsequent arguments can easily be transferred to the other two
cases. First, we assume that w ≡ 1 and that (1) and (2) of Assumption C hold.
We further suppose the quasi-stationary case of (2.4.11), and that the following
conditions hold:

p < 1 +
2
d
, b0 ≡ 0 if p < 1, c ≡ 0 if p < 2, ζp :=

∫

R

|z|p π0(dz) < ∞. (2.4.23)

The only condition left is the size condition (2.4.13) for p ∈ (0, 1) and (2.4.14) for
p ∈ [1, 2], respectively, before we can apply Corollary 2.4.5. By (2.4.20), they are
equivalent to

ζpC
p
σ,1(4π)p(d)p−

d
2 (ap)−1−p(d)Γ(1 + p(d)) < 1 (2.4.24)

in the case p ∈ (0, 1), and to

Cσ,1

[
CBDG

p

(
(ζp + ‖c‖L∞

R
)(4π)p(d)p−

d
2 (ap)−1−p(d)Γ(1 + p(d))

)1/p
+ ‖b1‖L∞

R
a−1

]

< 1 (2.4.25)

in the case p ∈ [1, 2].
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Finally, we would like to demonstrate how weighted spaces can be useful in
Theorem 2.4.4. Let a > 0 and p ∈ (0, 1 + 2/d) as before and define w(t, x) := eηt

with η ∈ R satisfying ap + η > 0. Assume that Y0 ∈ Bp,w
R,loc and, if η < 0, that

σ(0) = 0. Since

sup
(t,x)∈R×Rd

∫ t

−∞

∫

Rd
w−1(t, x)gp

a(t− s, x− y)w(s, y) d(s, y)

=
∫ ∞

0

∫

Rd
gp

a(s, y)e−ηs d(s, y) = (4π)p(d)p−
d
2 (ap+ η)−1−p(d)Γ(1 + p(d)),

we have that in the conditions (2.4.24) and (2.4.25), the term ap is now replaced
by ap + η. We draw two conclusions: if Y0 is sufficiently small at −∞, meaning
Y0 ∈ Bp,w

R,loc for some η > 0, then the conditions (2.4.24) and (2.4.25) can be relaxed
by using ap+η instead of ap. Contrarily, if σ(0) = 0, η < 0, and the left-hand side of
(2.4.24) or (2.4.25), respectively, remains smaller than 1 with ap + η instead of ap,
then one can even construct solutions with Y0 ∈ Bp,w

R,loc that diverges at −∞. ✷

2.5 Asymptotic stability

In Theorems 2.3.1, 2.3.5 and 2.4.4 we have established solutions to (2.1.1) that
belong to the space Bp,w

I,loc. In this section we will give criteria under which they even
belong to the space Bp,w

I . Our primary focus is on the case where sup I = +∞,
that is, we want to investigate whether solutions to (2.1.1) are asymptotically Lp-
stable. Moreover, we shall replace the Lipschitz condition on σ, which was essential
in Sections 2.3 and 2.4, by another growth condition, which, as we shall see, will
determine the asymptotic behaviour of the solution. Of course, due to the possible
non-Lipschitzianity of σ, we now have to assume the existence of a solution in Bp,w

I,loc.
In fact, this approach allows us to include solutions to (2.1.1) with non-Lipschitz σ
which go beyond the results of the Sections 2.3 and 2.4 but are, for instance, studied
in [107, 108].

Let us again start with a deterministic example that highlights the main features
of the behaviour at infinity.

Example 2.5.1 Let g ∈ L1
[0,∞), f ∈ L∞[0,∞) and v ∈ L∞[0,∞),loc be positive functions

satisfying

v(t) = f(t) +
∫ t

0
g(t− s)vγ(s) ds, t ∈ R+, (2.5.1)
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with γ ∈ (0, 1]. The question is under what conditions we have v ∈ L∞[0,∞). It turns
out that there is a fundamental difference between the cases γ ∈ (0, 1) and γ = 1.
In the former case, we always have v ∈ L∞[0,∞). In fact, if we denote the convolution
on the right-hand side of (2.5.1) by (g ∗ vγ)(t), iteration of (2.5.1) yields

v = f + g ∗ vγ = f + g ∗ (f + g ∗ vγ)γ = f + g ∗ (f + g ∗ (f + g ∗ vγ)γ)γ = . . .

Using Young’s inequality, we obtain

‖v‖L∞
[0,T ]

≤ ‖f‖L∞
[0,∞)

+ ‖g‖L1
[0,∞)

‖v‖γ
L∞

[0,T ]

≤ ‖f‖L∞
[0,∞)

+ ‖g‖L1
[0,∞)

(‖f‖L∞
[0,∞)

+ ‖g‖L1
[0,∞)

‖v‖γ
L∞

[0,T ]
)γ

≤ ‖f‖L∞
[0,∞)

+ ‖g‖L1
[0,∞)

(‖f‖L∞
[0,∞)

+ ‖g‖L1
[0,∞)

(‖f‖L∞
[0,∞)

+ ‖g‖L1
[0,∞)

‖v‖γ
L∞

[0,T ]
)γ)γ

≤ . . . ,

or, equivalently, ‖v‖L∞
[0,T ]

≤ an(T ) for every T ∈ [0,∞) and n ∈ N where

a1(T ) := ‖v‖L∞
[0,T ]

, an+1(T ) := ‖f‖L∞
[0,∞)

+ ‖g‖L1
[0,∞)

(an(T ))γ.

By induction it can be shown that 0 ≤ an(T ) ≤ a ∨ a1(T ), where a is the unique
solution in (0,∞) of the equation

a− ‖f‖L∞
[0,∞)

− ‖g‖L1
[0,∞)

aγ = 0.

Note that a does not depend on T , so we conclude that lim supn→∞ an(T ) ≤ a and
‖v‖L∞

[0,T ]
≤ a for all T ∈ [0,∞). Hence we have v ∈ L∞[0,∞) with ‖v‖L∞

[0,∞)
≤ a.

The situation is totally different for γ = 1. Then (2.5.1) becomes

v(t) = f(t) +
∫ t

0
g(t− s)v(s) ds, t ∈ R+, (2.5.2)

which is the well known renewal equation. If f ∈ L∞[0,∞), one can show under some
technical assumptions that the unique solution v to (2.5.2) exhibits the following
behaviour: if ‖g‖L1

[0,∞)
< 1, we have v ∈ L∞[0,∞); if ‖g‖L1

[0,∞)
= 1, the boundedness of v

depends on whether f ∈ L1
[0,∞) or not; if ‖g‖L1

[0,∞)
> 1, then v(t) → ∞ exponentially

fast as t → ∞. For precise statements with the required assumptions, we refer to [6,
Chap. V], especially to the Theorems V.4.3 and V.7.1 and Proposition V.7.4.
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In summary, whereas locally bounded solutions to (2.5.1) with γ ∈ (0, 1) are
automatically globally bounded as soon as f ∈ L∞[0,∞) and g ∈ L1

[0,∞), the behaviour
of the solution to (2.5.2) at infinity strongly depends on the size of ‖g‖L1

[0,∞)
. For a

formalization of this example see also Lemma 2.6.5 for γ ∈ (0, 1) and Lemma 2.6.4
for γ = 1. ✷

For Equation (2.1.1) the precise requirements are the following:

Assumption D Let p ∈ (0, 2], I be an interval and w : I × R
d → R be a weight

function satisfying sup(t,x)∈I×Rd w−1(t, x) < ∞. We assume the following hypotheses:

(1) Y0 ∈ Bp,w
I .

(2) σ : R → R satisfies |σ(x)| ≤ |σ(0)| + Cσ,2|x|γ for all x ∈ R with some γ ∈ (0, 1].

(3) Either c(t, x) = 0 for all (t, x) ∈ I × R
d, or we have 2γ ≤ p and

sup
(t,x)∈I×Rd

∫

I

∫

Rd
w−1(t, x)|G(t, x; s, y)|2w(s, y)c(s, y)λ(ds, dy) < ∞. (2.5.3)

(4) There exists q ∈ (0, 2] with p ≤ q and qγ ≤ p such that

sup
(t,x)∈I×Rd

∫

I

∫

Rd

∫

R

w−1(t, x)|G(t, x; s, y)z|pqw(s, y) ν(ds, dy, dz) < ∞. (2.5.4)

(5) If p ≥ 1, then ν satisfies (2.2.4) and

sup
(t,x)∈I×Rd

∫

I

∫

Rd
w−1(t, x)|G(t, x; s, y)b1(s, y)|w(s, y)λ(ds, dy) < ∞, (2.5.5)

and (2.5.5) also holds with w ≡ 1; if p < 1, then there exist α ∈ (−∞, 2] and
β ∈ [0,∞) satisfying (2.3.13), (2.3.14) (with R+ replaced by I) and (α∨β)γ ≤ p

such that

sup
(t,x)∈I×Rd

∫

I

∫

Rd
(F0(s, y) ∨ F1(s, y))|G(t, x; s, y)|αβ λ(ds, dy) < ∞. (2.5.6)

(6) At least one of the following three cases occurs:

(6a) We have γ < 1, qγ < p, 2γ < p if c 6≡ 0 and (α ∨ β)γ < p if p < 1.
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(6b) We have p ∈ [1, 2], and if we define for (t, x), (s, y) ∈ I × R
d

ḠD,1(t, x; s, y) := 2p−1
(∫

I

∫

Rd
|G(t, x; s, y)b1(s, y)|λ(ds, dy)

)p−1

× |G(t, x; s, y)b1(s, y)|,
ḠD,2(t, x; s, y) := 2(CBDG

p )2|G(t, x; s, y)|2c(s, y),

ḠD,3(t, x; s, y) := 2p−1(CBDG
p )p

∫

R

|G(t, x; s, y)z|p1{|G(t,x;s,y)z|>1} π(s, y, dz),

ḠD,4(t, x; s, y) := 2q−1(CBDG
p )q

∫

R

|G(t, x; s, y)z|q1{|G(t,x;s,y)z|≤1} π(s, y, dz),

GD,l(t, x; s, y) := w−1(t, x)GD,l(t, x; s, y)w(s, y), l = 1, 2, 3, 4, (2.5.7)

then there exists a partition of I into pairwise disjoint intervals I1, . . . , Ik such
that

sup
(t,x)∈I×Rd

sup
j=1,...,k

4∑

l=1

Cσ,2

(∫

Ij

∫

Rd
GD,l(t, x; s, y)λ(ds, dy)

)1/p

< 1. (2.5.8)

(6c) We have p ∈ (0, 1), and if we define for (t, x), (s, y) ∈ I × R
d

GD,1(t, x; s, y) := 2(α∨β∨1)−1(F0(s, y) ∨ F1(s, y))|G(t, x; s, y)|αβ ,
GD,2(t, x; s, y) := 2p+1|G(t, x; s, y)|2c(s, y),

GD,3(t, x; s, y) := 2p2(q∨1)−1
∫

R

|G(t, x; s, y)z|pq π(s, y, dz), (2.5.9)

and

r1 := α ∨ β, r2 := 2, r3 := 1, (2.5.10)

then there exists a partition of I into pairwise disjoint intervals I1, . . . , Ik such
that

sup
(t,x)∈I×Rd

sup
j=1,...,k

3∑

l=1

Crl
σ,2

∫

Ij

∫

Rd
GD,l(t, x; s, y)λ(ds, dy) < 1. (2.5.11)

✷

Theorem 2.5.2. Let Assumption D be valid. If Equation (2.1.1) has a solution
Y ∈ Bp,w

I,loc, it automatically also belongs to Bp,w
I .
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Example 2.5.3 (Continuation of Examples 2.3.4, 2.3.8 and 2.4.9) Let
I = [0,∞), a = 0 and w ≡ 1. We assume that Y ∈ Bp

[0,∞),loc solves

Y (t, x) = Y0(t, x) +
∫ t

0

∫

Rd
g0(t− s, x− y)σ(Y (s, y)) Λ(ds, dy), (t, x) ∈ R+ × R

d,

where Y0 is given by (2.3.9) and σ satisfies condition (2) of Assumption D with
γ ∈ (0, 1]. We want to find conditions that guarantee Y ∈ Bp

[0,∞). Let us check the
requirements of Assumption D. (1) and (2) are clear. For (3), (4) and (5), the key
observation is the following: for p, q ∈ (0, 2]

∫ ∞

0

∫

Rd
|g0(s, y)|pq d(s, y) < ∞ ⇐⇒ p ∈ (0, 1 + 2/d) and q ∈ (1 + 2/d, 2]. (2.5.12)

As a consequence of the last condition, unless in trivial cases, the classical stochastic
heat equation with a = 0 will be asymptotically unstable in dimensions 1 and 2.
Only in dimensions d ≥ 3 there is a chance for asymptotic stability. We pose the
following conditions:

λ(dt, dx) = d(t, x), π(t, x, dz) ≤ π0(dz), p ∈ (0, 1 + 2/d),

q ∈ (1 + 2/d, 2], qγ ≤ p, c ≡ 0, b1 ≡ 0 if p ≥ 1,

Λ is symmetric if p < 1,
∫

R

|z|qp π0(dz) < ∞. (2.5.13)

We notice that γ = 1 is not possible, and that
∫
R

|z|p π0(dz) < ∞ is no longer
sufficient, but π0 must have a moment structure that is strictly better than its
variation structure. Moreover, c must be 0; if p ≥ 1, only Λ ∈ M is possible; and
if p < 1, Λ is required to have no drift and a symmetric Lévy measure. All this is
because g0 is not Lp-integrable on R+ × R

d for any p ∈ (0, 2]. One readily sees that
(2.5.13) implies conditions (3), (4) and (5). So if (6a) holds, we obtain Y ∈ Bp

[0,∞). In
the case of (6b) or (6c), again a size condition has to be verified, which is analogous
to the calculations in Example 2.4.9. We leave the details to the reader. Note that
in this example we have γ < 1, and therefore (6b) or (6c) is only needed in rare
situations. Finally, for a > 0 we refer the reader to the calculations in Example 2.4.9
again which can be re-used. In particular, one can find conditions for asymptotic
stability in dimensions 1 and 2 this time. ✷
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2.6 A series of lemmata

This section contains several lemmata that will play a crucial role in proving the
main theorems in Section 2.7. First, we investigate the stochastic integral mapping
in Equation (2.1.1): fix some φ0 ∈ P̃ and define for a predictable process φ ∈ P̃ the
process J(φ) by

J(φ)(t, x) := φ0(t, x) +
∫

I

∫

Rd
G(t, x; s, y)σ(φ(s, y)) Λ(ds, dy) (2.6.1)

for all (t, x) ∈ I ∈ R
d for which the stochastic integral exists, and set J(φ)(t, x) := ∞

otherwise. The next lemma, which is of crucial importance for all main results in
this Chapter, relates the moment structure of J(φ) to that of φ.

Lemma 2.6.1. Let w : I × R
d → R be a weight function.

(1) Suppose that Assumption C holds with p ∈ (0, 2] and recall the definition of GC,1

and GC,2 in (2.4.9). Then for all φ ∈ P̃ and (t, x) ∈ I × R
d, we have

‖J(φ)(t, x)‖Lp

(w(t, x))1/p∗ ≤ ‖φ0(t, x)‖Lp

(w(t, x))1/p∗ +
2∑

l=1



∫

I

∫

Rd

GC,l(t, x; s, y)
Cp

σ,1

×
( |σ(0)|p∧1 + Cp∧1

σ,1 ‖φ(s, y)‖Lp

(w(s, y))1/p∗

)p∗

λ(ds, dy)




1/p∗

, (2.6.2)

where in the case Cσ,1 = 0 we use the convention 0/0 := 1.

(2) Furthermore, still under Assumption C, we have for any φ1, φ2 ∈ P̃ for which
the right-hand side of (2.6.2) is finite that

‖J(φ1)(t, x) − J(φ2)(t, x)‖Lp

(w(t, x))1/p∗ ≤
2∑

l=1



∫

I

∫

Rd
GC,l(t, x; s, y)

×
(

‖φ1(s, y) − φ2(s, y)‖Lp

(w(s, y))1/p∗

)p∗

λ(ds, dy)




1/p∗

. (2.6.3)

(3) Let Assumption B or Assumption D be valid with p ∈ [1, 2]. In the first case let



2.6. A series of lemmata 61

I = [0,∞) and w ≡ 1. Then the following holds for all φ ∈ P̃ and (t, x) ∈ I×R
d:

‖J(φ)(t, x)‖Lp

(w(t, x))1/p
≤ ‖φ0(t, x)‖Lp

(w(t, x))1/p
+

2[1 + |σ(0)| + Cσ,2]
(w(t, x))1/p

+ (|σ(0)| + Cσ,2)
4∑

l=1

(∫

I

∫

Rd
GD,l(t, x; s, y)(w(s, y))−1 λ(ds, dy

)1/p

+
4∑

l=1

Cσ,2

(∫

I

∫

Rd

GD,l(t, x; s, y)
(w(s, y))1−ρ

(
‖φ(s, y)‖Lp

(w(s, y))1/p

)pρ

λ(ds, dy)

)1/p

, (2.6.4)

where GD,l is defined by (2.5.7), and ρ can be chosen as ρ = (q∨ 21{c 6≡0})γ/p or
ρ = 1.

(4) Let Assumption B or Assumption D be valid with p ∈ (0, 1). In the first case let
I = [0,∞) and w ≡ 1. Then for all φ ∈ P̃ and (t, x) ∈ I × R

d

‖J(φ)(t, x)‖Lp

w(t, x)
≤ ‖φ0(t, x)‖Lp

w(t, x)
+

2p+1 + 1
w(t, x)

+
3∑

l=1

(|σ(0)|rl
0 + Crl

σ,2)
∫

I

∫

Rd
GD,l(t, x; s, y)(w(s, y))−1 λ(ds, dy)

+
3∑

l=1

Crl
σ,2

∫

I

∫

Rd

GD,l(t, x; s, y)
(w(s, y))1−ρ

(
‖φ(s, y)‖Lp

w(s, y)

)ρ

λ(ds, dy). (2.6.5)

where GD,l and rl are given by (2.5.9) and (2.5.10), and ρ can be chosen as
ρ = 1 or ρ = (q ∨ 21{c 6≡0} ∨ α ∨ β)γ/p.

Proof. It suffices to prove the lemma for w ≡ 1: the general case follows if we
divide the equations (2.6.2), (2.6.3) and (2.6.4) by w1/p∗

. Throughout the proof,
(t, x) ∈ I × R

d is fixed, and the abbreviations Ψ(s, y) := G(t, x; s, y)σ(φ(s, y)) and
Φ(s, y) := G(t, x; s, y)[σ(φ1(s, y)) −σ(φ2(s, y))] are used. Moreover, in the numerous
integrals below, we will often drop the integration variables and use the shorthand
notations

∫∫
t :=

∫
It

∫
Rd and

∫∫∫
t :=

∫
It

∫
Rd

∫
R
.

a) We first prove (2) when p ≥ 1. To this end, we decompose

Λ(dt, dx) =
[
Λc(dt, dx) +

∫

R

z (µ− ν)(dt, dx, dz)
]

+
[
B(dt, dx) +

∫

R

z1{|z|>1} ν(dt, dx, dz)
]

=: M(dt, dx) +B1(dt, dx), (2.6.6)
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and obtain that ‖J(φ1)(t, x) − J(φ2)(t, x)‖Lp is bounded by

‖J (1)(φ1)(t, x) − J (1)(φ2)(t, x)‖Lp + ‖J (2)(φ1)(t, x) − J (2)(φ2)(t, x)‖Lp ,

where J (1) and J (2) are defined as in (2.6.1) with Λ replaced by M and B1, respec-
tively. For the J (2)-part, Hölder’s inequality yields

‖J (2)(φ1)(t, x) − J (2)(φ2)(t, x)‖Lp

≤ Cσ,1

[(∫∫

t
|G| d|B1|

)p−1 ∫∫

t
|G|E[|φ1 − φ2|p] d|B1|

]1/p

=
(∫∫

t
GC,2(t, x; s, y)‖φ1(s, y) − φ2(s, y)‖p

Lp λ(ds, dy)
)1/p

. (2.6.7)

For the J (1)-part, we assume for the moment that the process

Nτ :=
∫∫

τ
G(t, x; s, y)[σ(φ1(s, y))−σ(φ2(s, y))]M(ds, dy) = Φ·Mτ , τ ∈ I, (2.6.8)

which is well defined by assumption, is a local martingale. Then we have by Defini-
tion 2.4.2 and the assumption that c ≡ 0 for p < 2

‖J (1)(φ1)(t, x) − J (1)(φ2)(t, x)‖Lp

≤ CBDG
p

∥∥∥[N ]1/2
t

∥∥∥
Lp

= CBDG
p

∥∥∥∥∥

(∫∫∫

t
|Φz|2 dµ+

∫∫

t
|Φ|2 dC

)1/2
∥∥∥∥∥

Lp

≤ CBDG
p E

[∫∫∫

t
|Φz|p dµ+

∫∫

t
|Φ|2 dC

]1/p

= CBDG
p E

[∫∫∫

t
|Φz|p dν +

∫∫

t
|Φ|2 dC

]1/p

≤
(∫∫

t
GC,1(t, x; s, y)‖φ1(s, y) − φ2(s, y)‖p

Lp λ(ds, dy)
)1/p

. (2.6.9)

Equations (2.6.7) and (2.6.9) together imply (2.6.3) for p ∈ [1, 2]. It remains to
discuss whether N in (2.6.8) is a local martingale. Without loss of generality, we may
assume that the right-hand side of (2.6.9) is finite; otherwise (2.6.3) becomes trivial.
Let ǫ > 0 and H ∈ P̃ be a bounded function satisfying |H(ω, s, y)| ≤ ǫ|Φ(ω, s, y)|
pointwise for all (ω, s, y) ∈ Ω × I × R

d. Then H · M is a martingale such that we
have by the Burkholder-Davis-Gundy inequality

sup
τ∈I

‖H ·Mτ ‖Lp ≤ CBDG
p

∥∥∥∥∥

(∫∫∫

t
|Hz|2 dµ+

∫∫

t
|H|2 dC

)1/2
∥∥∥∥∥

Lp

≤ ǫCBDG
p

∥∥∥∥∥

(∫∫∫

t
|Φz|2 dµ+

∫∫

t
|Φ|2 dC

)1/2
∥∥∥∥∥

Lp

. (2.6.10)
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The right-hand side of (2.6.10) is finite by (2.6.9). Moreover, as ǫ ↓ 0, it goes to
0 independently of H. Thus, [28, Prop. 4.9b] is applicable (the extension of this
proposition to intervals I different from I = R+ is straightforward) and shows that
N is indeed a local martingale.

b) We prove (2) when p < 1. By hypothesis, Λ is Lévy basis without drift. Thus,

‖J(φ1)(t, x) − J(φ2)(t, x)‖Lp =
∥∥∥∥
∫∫∫

t
Φz dµ

∥∥∥∥
Lp

≤ E

[∫∫∫

t
|Φz|p dµ

]

≤ Cp
σ,1

∫∫∫

t
|Gz|pE[|φ1 − φ2|p] dν

=
∫∫

t
GC,1(t, x; s, y)‖φ1(s, y) − φ2(s, y)‖Lp λ(ds, dy),

which is (2.6.3).
c) Because the Lipschitz condition on σ implies |σ(x)| ≤ |σ(0)| + Cσ,1|x| for all

x ∈ R, (1) can be deduced in complete analogy to a) and b).
d) We prove (3). To this end, we again consider the decomposition Λ = M +B1

as in (2.6.6). Using Definition 2.4.2, Jensen’s inequality and the hypothesis that
qγ ≤ p and 2γ1{c 6≡0} ≤ p, we obtain

‖Ψ ·Mt‖Lp ≤ CBDG
p

∥∥∥∥∥

(∫∫∫

t
|Ψz|2 dµ+

∫∫

t
|Ψ|2 dC

)1/2
∥∥∥∥∥

Lp

≤ CBDG
p

(
E

[∫∫∫

t
|Ψz|q1{|Gz|≤1} dν

]p/q

+E

[∫∫∫

t
|Ψz|p1{|Gz|>1} dν +

(∫∫

t
|Ψ|2 dC

)p/2
])1/p

≤ CBDG
p



(

2q−1
∫∫∫

t
|Gz|q1{|Gz|≤1}(|σ(0)|q + Cq

σ,2‖φ‖qγ
Lp) dν

)1/q

+
(

2p−1
∫∫∫

t
|Gz|p1{|Gz|>1}(|σ(0)|p + Cp

σ,2‖φ‖pγ
Lp) dν

)1/p

+
(

2
∫∫

t
|G|2(|σ(0)|2 + C2

σ,2‖φ‖2γ
Lp) dC

)1/2



≤ CBDG
p



(

2q−1
∫∫∫

t
|Gz|q1{|Gz|≤1}(|σ(0)|q + Cq

σ,2 + Cq
σ,2‖φ‖pρ

Lp) dν
)1/q

+
(

2p−1
∫∫∫

t
|Gz|p1{|Gz|>1}(|σ(0)|p + Cp

σ,2 + Cp
σ,2‖φ‖pρ

Lp) dν
)1/p
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+
(

2
∫∫

t
|G|2(|σ(0)|2 + C2

σ,2 + C2
σ,2‖φ‖pρ

Lp) dC
)1/2




≤(|σ(0)| + Cσ,2)

[
2 +

4∑

l=2

(∫

I

∫

Rd
GD,l(t, x; s, y)λ(ds, dy)

)1/p
]

+ 2 +
4∑

l=2

Cσ,2

(∫

I

∫

Rd
GD,l(t, x; s, y)‖φ(s, y)‖pρ

Lp λ(ds, dy)
)1/p

. (2.6.11)

Again, one can justify that Ψ · Λ is indeed a well-defined local martingale whenever
the right-hand side of (2.6.4) is finite.

For the B1-integral, another application of Hölder’s inequality demonstrates

‖(Ψ ·B1)t‖Lp ≤
[
2p−1

(∫∫

t
|G| d|B1|

)p−1 ∫∫

t
|G|(|σ(0)|p + Cp

σ,2‖φ‖pγ
Lp) d|B1|

]1/p

≤
[
2p−1

(∫∫

t
|G| d|B1|

)p−1 ∫∫

t
|G|(|σ(0)|p + Cp

σ,2 + Cp
σ,2‖φ‖pρ

Lp) d|B1|
]1/p

. (2.6.12)

Equation (2.6.4) now follows from (2.6.11) and (2.6.12).
e) We consider the last part (4). In this case we directly use the canonical de-

composition of Ψ · Λ:

Ψ · Λt = Ψ · Λc
t +

∫∫∫

t
Ψz1{|Ψz|≤1} d(µ− ν) +

∫∫∫

t
Ψz1{|Ψz|>1} dµ+BΨ·Λ

t

=: J1 + J2 + J3 + J4,

where

BΨ·Λ(dt, dx) = Ψ(t, x)
[
b(t, x) +

∫

R

z(1{|Ψ(t,x)z|≤1} − 1{|z|≤1})π(t, x, dz)
]
λ(dt, dx).

We begin with J1:

‖J1‖Lp ≤ (CBDG
1 )p

E

[(∫∫

t
|Ψ|2 dC

)1/2
]p

≤ 2p
(∫∫

t
E[|Ψ|2] dC

)p/2

≤ 2p
(

1 + 2
∫∫

t
G2(|σ(0)|2 + C2

σ,2‖φ‖2γ/p
Lp ) dC

)

≤ 2p
(

1 + 2
∫∫

t
G2(|σ(0)|2 + C2

σ,2 + C2
σ,2‖φ‖ρ

Lp) dC
)
.
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For the jumps part, we obtain

‖J2 + J3‖Lp

≤ (CBDG
1 )p

E

[(∫∫∫

t
|Ψz|21{|Ψz|≤1} dµ

)1/2
]p

+ E

[∫∫∫

t
|Ψz|p1{|Ψz|>1} dµ

]

≤ 2p
(∫∫∫

t
E[|Ψz|q1{|Ψz|≤1}] dν

)p/2

+
∫∫∫

t
E[|Ψz|p1{|Ψz|>1}] dν

≤ 2p
(

1 +
∫∫∫

t
E[|Ψz|pq] dν

)
≤ 2p

(
1 + 2(q∨1)−1

∫∫∫

t
|Gz|pq(|σ(0)|q0 + Cq

σ,2‖φ‖qγ/p
Lp ) dν

)

≤ 2p
(

1 + 2(q∨1)−1
∫∫∫

t
|Gz|pq(|σ(0)|q0 + Cq

σ,2 + Cq
σ,2‖φ‖ρ

Lp) dν
)
.

Finally, since

|J4| ≤
∫∫

t
|Ψ(s, y)|

∣∣∣∣∣∣
b(s, y)

+
∫

R

[
z1{|z|∈(1,|Ψ(s,y)|−1]} − z1{|z|∈(|Ψ(s,y)|−1,1]}

]
π(s, y, dz)

∣∣∣∣∣∣
λ(ds, dy),

we deduce the following bound for J4 from Assumption B(9) or Assumption D(4),
respectively:

‖J4‖Lp ≤ E

[∫∫

t
|Ψ|(|Ψ|β−1F11{|Ψ|≤1} + |Ψ|α−1F01{|Ψ|>1}) dλ

]p

≤
(∫∫

t
(F0 ∨ F1)E[|Ψ|αβ ] dλ

)p

≤ 1 + 2(α∨β∨1)−1
∫∫

t
(F0 ∨ F1)|G|αβ

(
|σ(0)|α∨β

0 + Cα∨β
σ,2 ‖φ‖(α∨β)γ/p

Lp

)
dλ

≤ 1 + 2(α∨β∨1)−1
∫∫

t
(F0 ∨ F1)|G|αβ

(
|σ(0)|α∨β

0 + Cα∨β
σ,2 + Cα∨β

σ,2 ‖φ‖ρ
Lp

)
dλ.

Together with the estimates for J1, J2 and J3, this finishes the proof of (2.6.5). ✷

The next lemma allows us to take good versions of the stochastic integral process
(2.6.1):

Lemma 2.6.2. For every φ ∈ P̃ there exists a predictable modification of J(φ), that
is, a (−∞,∞]-valued process J̄(φ) ∈ P̃ such that for each (t, x) ∈ I × R

d we have
J(φ)(t, x) = J̄(φ)(t, x) a.s.
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Proof. The set A of all (t, x) ∈ I × R
d for which G(t, x; ·, ·)σ(φ) is integrable

with respect to Λ is deterministic by definition, and by Theorem 1.4.1 and Fubini’s
theorem also measurable. It follows that there exists a measurable modification
Jm(φ) of J(φ): set Jm(φ) = ∞ on AC and use [93, Thm. 1] on A. Next, define pJ(φ)
as the extended predictable projection of Jm(φ) in the sense of [80, Thm. I.2.28]. By
[130, Prop. 3] we may choose pJ(φ)(t, x) measurably in x. And indeed, pJ(φ) is still
a modification of J(φ) since for each (t, x) ∈ I × R

d we have a.s.

pJ(φ)(t, x) = E[Jm(φ)(t, x) | Ft−] =
∫

It

∫

Rd
G(t, x; s, y)σ(φ(s, y)) Λ(ds, dy)

= J(φ)(t, x).

✷

We proceed with a discretization result for stochastic integrals:

Lemma 2.6.3. Let I ⊆ R be an interval and w ≡ 1, and assume that G, σ and Λ
satisfy (2)–(6) of Assumption C. Fix some (t, x) ∈ I×R

d and assume that G(t, x; ·, ·)
has the following properties: for all (s, y) ∈ It,×R

d we have

r ↑ s, zi ↑ yi for all i = 1, . . . , d =⇒ G(t, x; r, z) → G(t, x; s, y), (2.6.13)

and for some ǫ > 0 the function G∗ǫ(t, x; s, y) := supr∈I,s−ǫ<r≤s,|y−z|<ǫ |G(t, x; r, z)|
satisfies

∫

It

∫

Rd


|G∗ǫ(t, x; s, y)|p

(∫

R

|z|p π(s, y, dz) + c(s, y)
)

+ |G∗ǫ(t, x; s, y)b1(s, y)|1{p≥1}


λ(ds, dy) < ∞. (2.6.14)

Moreover, we specify discretization schemes for both time and space: first, we choose
for each N ∈ N a number k(N) ∈ N ∪ {∞} of time points (sN

i )k(N)
i=1 ⊆ It such that

sN
i < sN

i+1, and sN
1 ↓ inf I, sN

k(N) ↑ t, sup
i=1,...,k(N)−1

|sN
i+1 − sN

i | ↓ 0 as N ↑ ∞;

and second, we fix for each N ∈ N a number l(N) ∈ N∪{∞} of non-empty pairwise
disjoint hyperrectangles (QN

j = (aN
j , b

N
j ])l(N)

j=1 ⊆ R
d satisfying

l(N)⋃

j=1

QN
j ↑ R

d and sup
j=1,...,l(N)

diam(QN
j ) ↓ 0 as N ↑ ∞.
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(1) If φ ∈ Bp
I,loc is an Lp-continuous process (cf. (2.4.17)), then the stochastic inte-

gral J(φ)(t, x) is well defined and

φ0(t, x) +
k(N)−1∑

i=1

l(N)∑

j=1

G(t;x; sN
i , a

N
j )σ(φ(sN

i , a
N
j ))Λ

(
(sN

i , s
N
i+1] ×QN

j

)

→ J(φ)(t, x) (2.6.15)

in Lp as N → ∞.

(2) The statement of (1) remains true if we replace ↑ in (2.6.13) by ↓, and at the
same time replace G(t, x; sN

i , a
N
j ) by G(t, x; sN

i+1, b
N
j ) in (2.6.15).

Proof. Part (2) is proved in the same fashion as part (1). That the stochastic
integral J(φ)(t, x) exists, is a consequence of Lemma 2.6.1(1), the assumptions posed
on G and Λ, and the fact that φ ∈ Bp

I,loc. To prove (2.6.15), let us call its left-hand
side JN(φ)(t, x). It follows that

JN(φ)(t, x) = φ0(t, x) +
∫

It

∫

Rd
HN(t, x; s, y) Λ(ds, dy), where

HN(t, x; s, y) =
k(N)−1∑

i=1

l(N)∑

j=1

G(t;x; sN
i , a

N
j )σ(φ(sN

i , a
N
j ))1(sN

i ,sN
i+1]×QN

j
(s, y).

We notice that HN(t, x; s, y) = 0 if the point (s, y) does not belong to the set
AN := (sN

1 , s
N
k(N)] × ⋃l(N)

j=1 Q
N
j , and that for each (s, y) ∈ (inf I, t) × R

d we have
1(AN )C(s, y) → 0 as N → ∞. Now, we distinguish between two cases: first, if p < 1,
or p ≥ 1 and Λ ∈ M, then similar calculations as done for Lemma 2.6.1(2) lead to
(set H(t, x; s, y) := G(t, x; s, y)σ(φ(s, y)))

E[|J(φ)(t, x) − JN(φ)(t, x)|p]

≤ (CBDG
p )p

∫

It

∫

Rd
E[|H(t, x; s, y) −HN(t, x; s, y)|p]

×
(∫

R

|z|p π(s, y, dz) + c(s, y)
)
λ(ds, dy)

≤
∫

(AN )C

GC,1(t, x; s, y)
Cp

σ,1

E[|σ(φ(s, y))|p]λ(ds, dy)

+
∫∫

AN

GC,1(t, x; s, y)
Cp

σ,1

∑

i,j

E[|σ(φ(s, y)) − σ(φ(sN
i , a

N
j ))|p]

× 1(sN
i ,sN

i+1]×QN
j

(s, y)λ(ds, dy)
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+ (CBDG
p )p

∫∫

AN

∑

i,j

|G(t, x; s, y) −G(t, x; sN
i , a

N
j )|pE[|σ(φ(sN

i , a
N
j ))|p]

× 1(sN
i ,sN

i+1]×QN
j

(s, y)
(∫

R

|z|p π(s, y, dz) + c(s, y)
)
λ(ds, dy)

=: IN
1 + IN

2 + IN
3 . (2.6.16)

Since φ ∈ Bp
I,loc and GC,1 is integrable with respect to λ by hypothesis, IN

1 → 0 as
N → ∞ by dominated convergence. Next, as a consequence of the Lp-continuity of
φ and the refining properties of our discretization scheme, the sum within IN

2 goes to
0 pointwise for each (s, y) ∈ It ×R

d. Moreover, this sum is majorized by 2‖σ(φ)‖Bp
It

such that also IN
2 → 0 as N → ∞. Regarding IN

3 , we obtain as an upper bound

IN
3 ≤ (CBDG

p )p‖σ(φ)‖Bp
It

∫∫

AN

∣∣∣∣∣∣
G(t, x; s, y) −

∑

i,j

G(t, x; sN
i , a

N
j )1(sN

i ,sN
i+1]×QN

j
(s, y)

∣∣∣∣∣∣

p

×
(∫

R

|z|p π(s, y, dz) + c(s, y)1{p=2}

)
λ(ds, dy).

Because of (2.6.13), the integrand in the last line goes to 0 as N → ∞, point-
wise for (s, y) ∈ It × R

d. Moreover, it is dominated by 2G∗ǫ , when ǫ is chosen ac-
cording to (2.6.14) and N is large enough such that supi=1,...,k(N)−1 |sN

i+1 − sN
i | and

supj=1,...,l(N) diam(QN
j ) are smaller than ǫ. By dominated convergence, we conclude

IN
3 → 0 as N → ∞.

It remains to discuss the case p ≥ 1 and Λ /∈ M. As in Lemma 2.6.1(2), we
decompose Λ = M + B1, where M is a martingale measure and B1 the drift mea-
sure. For M we can apply the calculations above. For B1 we obtain an analogous
decomposition as in (2.6.16): GC,1 is replaced by GC,2, and instead of the Burkholder-
Davis-Gundy constants, the factor



∫

It

∫

Rd

∑

i,j

|G(t, x; s, y) −G(t, x; sN
i , a

N
j )|1(sN

i ,sN
i+1]×QN

j
(s, y) |B1|(ds, dy)




p−1

appears. But this also goes to 0 as N → ∞, as desired. ✷

The next lemma concerns the solvability of deterministic integral equations and
provides a comparison result. Certainly, there is a huge literature on deterministic
Volterra equations, but we did not find a reference completely satisfying our pur-
poses. Thus, we decided to include the proof, which is also very instructive for the
proofs of the main theorems below.
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Lemma 2.6.4. Let I ⊆ R be an interval, p ∈ [1,∞) and λ a positive measure
on (I × R

d,B(I × R
d)). Further suppose that for every l ∈ N we have a positive

measurable function G(l) : (I ×R
d)2 → R with G(l)(t, ·; s, ·) ≡ 0 for s > t. Moreover,

assume that there exists k ∈ N and a partition of I into pairwise disjoint intervals
I1, . . . , Ik such that

ρ := sup
(t,x)∈I×Rd

sup
j=1,...,k

∞∑

l=1

(∫

Ij

∫

Rd
G(l)(t, x; s, y)λ(ds, dy)

)1/p

< 1. (2.6.17)

Then the following statements hold:

(1) Let (vn)n∈N be a sequence of positive functions in L∞I satisfying

vn+1(t, x) ≤
∞∑

l=1

(∫

I

∫

Rd
G(l)(t, x; s, y)(vn(s, y))p λ(ds, dy)

)1/p

(2.6.18)

for all n ∈ N. Then
∑∞

n=1 ‖vn‖L∞
I

is finite. In particular, vn → 0 in L∞I .

(2) For every positive f ∈ L∞I the equation

v(t, x) = f(t, x) +
∞∑

l=1

(∫

I

∫

Rd
G(l)(t, x; s, y)(v(s, y))p λ(ds, dy)

)1/p

(2.6.19)

for (t, x) ∈ I × R
d has a unique solution v ∈ L∞I . Furthermore, this solution v

is positive.

(3) If v̄ ∈ L∞I is a positive function satisfying

v̄(t, x) ≤ f(t, x) +
∞∑

l=1

(∫

I

∫

Rd
G(t, x; s, y)(v̄(s, y))p λ(ds, dy)

)1/p

(2.6.20)

for (t, x) ∈ I × R
d, then we have v̄(t, x) ≤ v(t, x) for all (t, x) ∈ I × R

d. In
particular, if f ≡ 0, then v ≡ v̄ ≡ 0.

Proof. a) We start with (1). Let I = I1 ∪ . . . ∪ Ik be as in the hypothesis and
suppose that the intervals Ij are arranged in increasing order (i.e. sup Ij = inf Ij+1).
Furthermore, define for φ ∈ L∞I , (t, x) ∈ I × R

d, l ∈ N and j = 1, . . . , k

‖φ‖G(l),p(t, x) :=
(∫

I

∫

Rd
G(l)(t, x; s, y)|φ(s, y)|p λ(ds, dy)

)1/p

‖φ‖G(l),p,j(t, x) :=

(∫

Ij

∫

Rd
G(l)(t, x; s, y)|φ(s, y)|p λ(ds, dy)

)1/p

. (2.6.21)
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Obviously, we have ‖φ‖G(l),p(t, x) ≤ ∑k
j=1 ‖φ‖G(l),p,j(t, x) for each (t, x) ∈ I ×R

d and
l ∈ N. Hence, it follows from (2.6.18) that

vn+1 ≤
∞∑

l=1

‖vn‖G(l),p ≤
k∑

j=1

∞∑

l=1

‖vn‖G(l),p,j, (2.6.22)

an equation that holds pointwise for all (t, x) ∈ I × R
d and for all n ∈ N. Iterating

(2.6.22) n times, together with the subadditivity of the functional ‖ · ‖G(l),p,j, yields

vn+1 ≤
k∑

j1=1

∞∑

l1=1

‖vn‖G(l1),p,j1
≤

k∑

j1,j2=1

∞∑

l1=1

∥∥∥∥∥∥

∞∑

l2=1

‖vn−1‖G(l2),p,j2

∥∥∥∥∥∥
G(l1),p,j1

≤ . . .

≤
k∑

j1,...,jn=1

∞∑

l1=1

∥∥∥∥∥∥∥

∞∑

l2=1

∥∥∥∥∥∥
. . .

∞∑

ln=1

‖v1‖G(ln),p,jn
. . .

∥∥∥∥∥∥
G(l2),p,j2

∥∥∥∥∥∥∥
G(l1),p,j1

. (2.6.23)

Observe that the Volterra property of G implies that on the right-hand side of
(2.6.23), only those summands are non-zero for which j1 ≥ . . . ≥ jn. Since there are
exactly

(
n+k−1

n

)
such sequences, and supj=1,...,k

∥∥∥
∑∞

l=1 ‖1‖G(l),p,j

∥∥∥
L∞

I

= ρ, we deduce

that
∞∑

n=1

‖vn‖L∞
I

≤ ‖v1‖L∞
I

∞∑

n=0

(
n+ k − 1

n

)
ρn < ∞ (2.6.24)

by the ratio test and the fact that ρ < 1.
b) Next we prove (2) and construct a solution to (2.6.19) by Picard iteration.

Define v0(t, x) = f(t, x) and for n ∈ N and (t, x) ∈ I × R
d

vn(t, x) := f(t, x) +
∞∑

l=1

(∫

I

∫

Rd
G(l)(t, x; s, y)(vn−1(s, y))p λ(ds, dy)

)1/p

. (2.6.25)

Since G satisfies (2.6.17), f belongs to L∞I , and both functions are positive, vn is
by induction again a positive function in L∞I . Now form the difference sequence
un := |vn+1 − vn| for n ∈ N, which satisfies property (2.6.18) by the reverse triangle
inequality. By (1),

∑∞
n=1 ‖un‖L∞

I
< ∞, in other words, v as the limit in L∞I of vn

exists. Of course, v is positive. Moreover, taking the limit on both sides of (2.6.25),
we conclude that v indeed satisfies (2.6.19). The uniqueness part follows by applying
part (1) to the difference of two solutions in L∞I .

c) For φ ∈ L∞I set If (φ) := f +
∑∞

l=1 ‖φ‖G(l),p, which again belongs to L∞I . By

(2.6.25), we have vn = I
(n)
f (f), which is the n-fold iteration If (If (. . . If (f) . . .)).
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Moreover, by (2.6.20),

v̄ ≤ If (v̄) ≤ If

(
If (v̄)

)
≤ . . . ≤ I

(n)
f (v̄) ≤ I

(n−1)
f (f) + I

(n)
0 (v̄) = vn−1 + I

(n)
0 (v̄).

As shown in a), vn−1 converges to v uniformly on I × R
d. In addition, I(n)

0 (v̄) is
less or equal to the right-hand side of (2.6.23) when v1 is replaced by v̄. Thus, the
considerations in a) show that I(n)

0 (v̄) ≤ ‖v̄‖L∞
I

(
n+k−1

n

)
ρn → 0 as n → ∞, which

implies (3). ✷

The next lemma concerns the asymptotic behaviour of deterministic Volterra
equations with a fractional nonlinearity:

Lemma 2.6.5. Let I, p and G(l) be as in Lemma 2.6.4. Further suppose that f ∈ L∞I
is a positive function and

θ := sup
(t,x)∈I×Rd

∞∑

l=1

(∫

I

∫

Rd
G(l)(t, x; s, y)λ(ds, dy)

)1/p

< ∞.

Moreover, we assume that v ∈ L∞I,loc is positive and satisfies

v(t, x) ≤ f(t, x) +

(
∞∑

l=1

∫

I

∫

Rd
G(l)(t, x; s, y)(v(s, y))pγ λ(ds, dy)

)1/p

(2.6.26)

for (t, x) ∈ I × R
d and some γ ∈ (0, 1). Then v ∈ L∞I with ‖v‖L∞

I
≤ a, where a is

the unique strictly positive solution to the equation a− ‖f‖L∞
I

− θaγ = 0.

Proof. The proof is a straightforward generalization of the arguments given in
Example 2.5.1. We include it for the sake of completeness. Fix T ∈ I and recall the
definition of ‖·‖G(l),p and If (·) from the proof of Lemma 2.6.4. By (2.6.26), it follows
that

‖v‖L∞
IT

≤ ‖If (vγ)‖L∞
IT

≤ I‖f‖L∞
I

(‖v‖γ
L∞

IT

).

By iteration of the last inequality, we deduce that ‖v‖L∞
IT

≤ an(T ) for all n ∈ N where
a1(T ) := ‖v‖L∞

IT
and an+1(T ) = I‖f‖L∞

I
((an(T ))γ) = ‖f‖L∞

I
+ θ(an(T ))γ for n ∈ N.

Straightforward analysis reveals that lim supn→∞ an(T ) ≤ a, a number independent
of T . Hence, ‖v‖L∞

I
≤ a. ✷
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2.7 Proof of the main theorems

Proof of Theorem 2.3.1. We show that Theorem 2.3.1 is a special case of The-
orem 2.4.4, or more precisely, that Assumption A is contained in Assumption C:
setting I = R+ and w ≡ 1 in Assumption C, it is not hard to see that the first six
conditions break down to conditions (1)–(6) of Assumption A, and that condition
(7) of Assumption C becomes superfluous. The only thing to show is that (2.3.4)
implies (2.4.10). To this end, fix T ∈ R+, define ǫ as

2−p∗


(Cσ,1C

BDG
p )p + Cp

σ,1

(
sup

(t,x)∈[0,T ]×Rd

∫ t

0

∫

Rd
|G(t, x; s, y)b1(s, y)|λ(ds, dy)

)p−1


−1

,

and let T be a subdivision of [0, T ] such that (2.3.4) holds. Then we have for all
(t, x) ∈ [0, T ] × R

d and i = 0, . . . , k that

2∑

l=1

(∫ ti+1

ti

∫

Rd
GC,l(t, x; s, y)λ(ds, dy)

)1/p∗

≤ 2
(∫ ti+1

ti

∫

Rd
GC,1(t, x; s, y) +GC,2(t, x; s, y)λ(ds, dy)

)1/p∗

≤ ǫ−1/p∗

(∫ ti+1

ti

∫

Rd
GA(t, x; s, y)λ(ds, dy)

)1/p∗

< 1,

which is (2.4.10). ✷

Proof of Corollary 2.3.2. We check the conditions of Assumption A. (1), (2)
and (3) are also assumed in the corollary. Regarding (4), (5) and (6), it is easy to
see that because of (2.3.5), conditions (2.3.1), (2.3.2) and (2.3.3) split into separated
conditions for both G and Λ, which are fulfilled thanks to (2.3.6) and (2.3.7), respec-
tively. Only (7) if left to be verified. Let T ∈ R+ be arbitrary and define tin := i/n2

for n ∈ N and i = 0, . . . , Tn2. Then, using the notation

gA :=
(∫

R

|z|p π0(dz) + ‖c‖L∞
[0,T ]

)
gp + ‖b1‖L∞

[0,T ]
g1{p≥1}, (2.7.1)

we have for all (t, x) ∈ [0, T ] × R
d

∫ ti+1
n

ti
n

∫

Rd
GA(t, x; s, y) d(s, y) ≤

∫ ti+1
n

ti
n

∫

Rd
gA(t− s, x− y) d(s, y)

≤
∫ (t−ti

n)∨0

(t−ti+1
n )∨0

∫

Rd
gA(s, y) d(s, y).
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The right-hand side becomes arbitrarily small as n → ∞, uniformly for (t, x) in
[0, T ] × R

d and i = 0, . . . , Tn2 − 1. If not, there would exist some ǫ > 0 as well as
for each n ∈ N some τn ∈ [0, T ] and i(n) ∈ {0, . . . , Tn2 − 1} such that

∫ (τn−t
i(n)
n )∨0

(τn−t
i(n)+1
n )∨0

∫

Rd
gA(s, y) d(s, y) ≥ ǫ.

This, however, would contradict the dominated convergence theorem and the Borel-
Cantelli lemma since |((τn − ti(n)

n ) ∨ 0) − ((τn − ti(n)+1
n ) ∨ 0)| ≤ |ti(n)+1

n − ti(n)
n | = 1/n2.

Thus, Corollary 2.3.2 is proved. ✷

Proof of Theorem 2.3.5. a) We first prove the existence of a solution to (2.1.1).
To this end, define

Tn := inf{t > 0: |Λ({t} × R
d)| > n}, n ∈ N.

Assumption B(3) implies that (Tn)n∈N is a sequence of stopping times such that we
have Tn > 0 a.s. for each n ∈ N and Tn ↑ +∞ a.s. as n → ∞. Next, we introduce
for each n ∈ N a truncation of Λ in the following sense:

Λn(dt, dx) := B(dt, dx) + Λc(dt, dx) +
∫

R

z1{|z|≤1} (µ− ν)(dt, dx, dz)

+
∫

R

z1{1<|z|≤n} µ(dt, dx, dz).

By Assumption B(4) we may assume without loss of generality that Y0 ∈ Bq
[0,∞),loc.

Consequently, thanks to Assumption B(1) and (2) and Theorem 2.3.1, Equa-
tion (2.1.1) with Λn as driving noise has a unique solution Y n ∈ Bq

[0,∞),loc. We
claim that Y := Y 1

1J0,T1K +
∑∞

n=2 Y
n
1KTn−1,TnK is a solution to the original equation

(2.1.1) with Λ. The predictability of Y is clear. Now fix a (non-random) time T ∈ R+

and define

Ωn
T :=

{
ω ∈ Ω: sup

(t,x)∈[0,T ]×Rd

|Λ({(t, x)})(ω)| ∈ [0, n]

}
, n ∈ N.

By Assumption B(3) the sequence (Ωn
T )n∈N increases to Ω up to a P-null set. More-

over, we have 1J0,TkK(t)Y k(t, x) = 1J0,TkK(t)Y n(t, x) a.s. for all n ∈ N and k = 1, . . . , n
as a consequence of the uniqueness statement of Theorem 2.3.1 and the fact that
P[Tk = t] = 0. Now part (1) of Theorem 2.3.5 follows from the observation that for
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all (t, x) ∈ [0, T ] × R
d and n ∈ N we have a.s.

1Ωn
T

∫ t

0

∫

Rd
G(t, x; s, y)σ(Y (s, y)) Λ(ds, dy)

= 1Ωn
T

∫ t

0

∫

Rd
G(t, x; s, y)


σ(Y 1(s, y))1J0,T1K(s)

+
n∑

k=2

σ(Y k(s, y))1KTk−1,TkK(s)


Λn(ds, dy)

= 1Ωn
T

∫ t

0

∫

Rd
G(t, x; s, y)σ(Y n(s, y)) Λn(ds, dy) = 1Ωn

T
Y n(t, x) = 1Ωn

T
Y (t, x).

To be utterly precise, for the transition from the second to the third line to be true,
we must show that J(φ) and J(φ′) as defined in (2.6.1) are modifications of each
other as soon as φ and φ′ are. But this follows from (2.6.3). Finally, the uniqueness
statement follows from that of Theorem 2.3.1 by localization.

b) Next, we verify that the solution Y found in a) belongs to Bp
[0,∞),loc if also

(5)–(10) of Assumption B are valid. We only carry out the proof for p ≥ 1. The case
p < 1 can be proved in the same fashion. Let T ∈ R+ and observe from a) that Y
equals Y n on Ωn

T . Define vn(t, x) := ‖Y n(t, x)‖Lp for (t, x) ∈ [0, T ] × R
d, which is

always finite because Y n ∈ Bq
[0,∞),loc. Moreover, if we define GD,l as in (2.5.7) with

w ≡ 1, then we have for all (t, x) ∈ [0, T ] × R
d according to Lemma 2.6.1(3) with

ρ = 1

‖Y (t, x)1Ωn
T
‖Lp ≤ vn(t, x)

≤ f(t, x) +
4∑

l=1

Cσ,2

(∫ t

0

∫

Rd
GD,l(t, x; s, y)(vn(s, y))p λ(ds, dy)

)1/p

, (2.7.2)

where f is the sum of the first three summands on the right-hand side of (2.6.4).
A priori, GD,l may depend on n since it involves the underlying underlying Lévy
measure νn. However, it is obvious that inequality (2.6.4) remains true if we use
the original Lévy measure ν to form GD,l: the right-hand side of (2.7.2) will only
be enlarged. In this case, (2.7.2) falls into the category of Lemma 2.6.4(3). Indeed,
Assumption B(10) guarantees that f ∈ L∞[0,T ], and that the key assumption (2.6.17)
is met (note that the different constants appearing in GD,l compared to GB are
irrelevant because GB satisfies the partition property (2.3.4) for all ǫ > 0). Thus, we
have vn(t, x) ≤ v(t, x) where v ∈ L∞[0,T ] is again independent of n and is the solution
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of the corresponding Volterra equation if we replace the second inequality sign in
(2.7.2) by equality. Taking the limit n → ∞, we conclude

‖Y (t, x)‖Lp = lim
n→∞

‖Y (t, x)1Ωn
T
‖Lp ≤ v(t, x),

that is, Y ∈ Bp
[0,∞),loc. ✷

Proof of Corollary 2.3.7. a) We begin with the first statement, for which we
need to verify (2) and (3) of Assumption B. That (2) holds, follows from the proof
of Corollary 2.3.2, where we have shown that (2.3.5), (2.3.6) and (2.3.7) imply the
validity of Assumption A(4)–(7). Notice that in the quasi-stationary case, it suffices
to check Assumption B(2) only for n = 1 because

∫
1<|z|≤n |z|q π0(dz) is always finite

and condition (3) of Corollary 2.3.7 is in force. That (3) of Assumption B holds, is
due to (2.3.17):

ν
(
[0, T ] × R

d × [−1, 1]C
)

≤
∫ T

0

∫

Rd
π1(t, x) d(t, x)π0(|z| > 1) < ∞.

b) For the second part we must prove (5)–(10) of Assumption B. (5) and (6)
hold by hypothesis. Furthermore, since p < q implies |ab|pq ≤ |a|pq|b|qp for all a, b ∈ R,
we have by (2.3.5)

sup
(t,x)∈[0,T ]×Rd

∫ t

0

∫

Rd

∫

R

|G(t, x; s, y)z|pq ν(ds, dy, dz)

≤ ‖π1‖L∞
[0,T ]

∫

R

|z|pq π0(dz)
∫ T

0

∫

Rd
|g(t, x)|qp d(t, x) < ∞,

which implies (7) of Assumption B. Next, (8) is a direct consequence of condition
(3) of the corollary. For (9) we choose α = q and β = p, which clearly satisfy (9c).
For (9a) and (9b) first observe that
∣∣∣∣b(t, x) +

∫

R

z1{|z|∈(1,A]} π(t, x, dz)
∣∣∣∣ ≤ ‖b‖L∞

[0,T ]
+ ‖π1‖L∞

[0,T ]

∫

|z|>1
|z|p π0(dz)A1−p

≤ F1A
1−p

holds for all A ∈ [1,∞) if F1 ∈ R+ is chosen large enough. Second, if q < 1, we have
b0 ≡ 0 by (2.3.6), which means that

∣∣∣∣b(t, x) −
∫

R

z1{|z|∈(a,1]} π(t, x, dz)
∣∣∣∣ =

∣∣∣∣
∫

R

z1{|z|∈(0,a]} π(t, x, dz)
∣∣∣∣

≤ ‖π1‖L∞
[0,T ]

∫

|z|≤1
|z|q π0(dz)a1−q.
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Finally, if q ≥ 1 we have
∣∣∣∣b(t, x) −

∫

R

z1{|z|∈(a,1]} π(t, x, dz)
∣∣∣∣ ≤ ‖b‖L∞

[0,T ]
+ ‖π1‖L∞

[0,T ]

∫

|z|≤1
|z|q π0(dz)a1−q

≤ F0a
1−q

for all a ∈ (0, 1] and some constant F0 ∈ R+. Finally, condition (10) holds by the
same arguments used in the proof of Corollary 2.3.2. ✷

Proof of Theorem 2.4.4. We base the proof on a Picard iteration scheme, which
parallels the construction of a solution to (2.6.19) in Lemma 2.6.4. We define pro-
cesses Y n ∈ P̃ inductively as follows: starting with Y 0(t, x) := Y0(t, x), we assume
that Y n−1 ∈ Bp,w

I,loc has already been constructed for some n ∈ N. Define for each
(t, x) ∈ I × R

d

Y n(t, x) := Y0(t, x) +
∫

I

∫

Rd
G(t, x; s, y)σ(Y n−1(s, y)) Λ(ds, dy), (2.7.3)

hereby choosing a predictable version of Y n, cf. Lemma 2.6.2. Let T ∈ I. Then we
have by Lemma 2.6.1(1) for all (t, x) ∈ IT × R

d

‖Y n(t, x)‖Lp

(w(t, x))1/p∗ ≤ ‖Y0(t, x)‖Lp

(w(t, x))1/p∗ +
2∑

l=1



∫

I

∫

Rd

GC,l(t, x; s, y)
Cp

σ,1

×
( |σ(0)|p∧1 + Cp∧1

σ,1 ‖Y n−1(s, y)‖Lp

(w(s, y))1/p∗

)p∗

λ(ds, dy)




1/p∗

,

which is finite by Assumption C. Thus, Y n ∈ Bp,w
I,loc for all n ∈ N. Next,

Lemma 2.6.1(2) implies that un := Y n − Y n−1 satisfies

‖un+1(t, x)‖Lp

(w(t, x))1/p∗ ≤
2∑

l=1



∫

I

∫

Rd
GC,l(t, x; s, y)

(
‖un(s, y)‖Lp

(w(s, y))1/p∗

)p∗

λ(ds, dy)




1/p∗

(2.7.4)

for all (t, x) ∈ I × R
d, which is a recursive relation as in Lemma 2.6.4(1). Note that

the key hypothesis (2.6.17) is fulfilled because of Assumption C(8). We conclude
that

∑∞
n=1 ‖un‖Bp,w

IT
< ∞, in other words, Y n converges in Bp,w

IT
to some limit Y .

Applying Lemma 2.6.1(2) to φ1 := Y and φ2 := Y n−1, the convergence Y n−1 → Y

also implies that J(Y n−1) = Y n → J(Y ) in Bp,w
IT

, that is, Y indeed satisfies (2.1.1).
The uniqueness of the solution to (2.1.1) follows if we substitute un in (2.7.4) by the
difference of two solutions. Since T ∈ I is arbitrary, Theorem 2.4.4 follows. ✷
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Proof of Corollary 2.4.5. We verify Assumption C for I = R and w ≡ 1. (1), (2)
and (3) hold by hypothesis; (4), (5) and (6) are consequences of (2.4.11), (2.4.12),
(2.4.13) and (2.4.14). Moreover, condition (7) of Assumption C is redundant such
that it remains to verify (8). To this end, define

gC,1 := (Cσ,1C
BDG
p )p(ζp + ‖c‖L∞

R
)gp,

gC,2 := (Cσ,1‖b1‖L∞
R

)p
(∫ ∞

0

∫

Rd
g(t, x) d(t, x)

)p−1

g1{p≥1}.

Then, for any subdivision T : − ∞ = t0 < . . . < tk+1 = T , all (t, x) ∈ (−∞, T ] ×R
d

and i = 0, . . . , k, we have by (2.4.13) and (2.4.14)

2∑

l=1

(∫ ti+1

ti

∫

Rd
GC,l(t, x; s, y) d(s, y)

)1/p∗

≤
2∑

l=1

(∫ t

−∞

∫

Rd
gC,l(t− s, x− y) d(s, y)

)1/p∗

=
2∑

l=1

(∫ ∞

0

∫

Rd
gC,l(t, x) d(t, x)

)1/p∗

< 1.

✷

Proof of Theorem 2.4.7. a) Fix T ∈ I and choose (t, x), (τ, ξ) ∈ IT × R
d. Then

similar calculations as in Lemma 2.6.1(2) lead to

‖Y (t, x) − Y (τ, ξ)‖Lp

≤
2∑

l=1



∫

I

∫

Rd
G̃(l)(t, x; τ, ξ; s, y)

(
‖σ(Y (s, y))‖Lp

(w(s, y))1/p∗

)p∗

λ(ds, dy)




1/p∗

≤ ‖σ(Y )‖Bp,w
IT

2∑

l=1

(∫

I

∫

Rd
G̃(l)(t, x; τ, ξ; s, y)λ(ds, dy)

)1/p∗

,

where

G̃(1)(t, x; τ, ξ; s, y) := (CBDG
p )p|G(t, x; s, y) −G(τ, ξ; s, y)|p

×
(∫

R

|z|p π(s, y, dz) + c(s, y)
)
w(s, y),

G̃(2)(t, x; τ, ξ; s, y) :=
(∫

I

∫

Rd
|[G(t, x; s, y) −G(τ, ξ; s, y)]b1(s, y)|λ(ds, dy)

)p−1

× |[G(t, x; s, y) −G(τ, ξ; s, y)]b1(s, y)|w(s, y)1{p≥1}.



78 2. Lévy-driven Volterra equations in space and time

The claim now follows from (2.4.16) because Assumption C(7) implies

sup
(t,x),(τ,ξ)∈IT×Rd

(∫

I

∫

Rd
|[G(t, x; s, y) −G(τ, ξ; s, y)]b1(s, y)|λ(ds, dy)

)p−1

≤ 2 sup
(t,x)∈IT×Rd

(∫

I

∫

Rd
|G(t, x; s, y)b1(s, y)|λ(ds, dy)

)p−1

< ∞.

b) In the situation of Corollary 2.4.5 with G in convolution form, we have
∫

R

∫

Rd
G̃(t, x; τ, ξ; s, y) d(s, y)

≤ (ζp + ‖c‖L∞
R

)
∫

R

∫

Rd

∣∣∣g(t− s, x− y) − g(τ − s, ξ − y)
∣∣∣
p

d(s, y)

+ ‖b1‖L∞
R
1{p≥1}

∫

R

∫

Rd
|g(t− s, x− y) − g(τ − s, ξ − y)| d(s, y)

= (ζp + ‖c‖L∞
R

)
∫

R

∫

Rd

∣∣∣g(s+ h, y + η) − g(s, y)
∣∣∣
p

d(s, y)

+ ‖b1‖L∞
R
1{p≥1}

∫

R

∫

Rd
|g(s+ h, y + η) − g(s, y)

∣∣∣ d(s, y) → 0

because (h, η) = (|t− τ |, |x− ξ|) → 0, cf. [65, Lemma 0.12].
c) Let T ∈ I and define v(t, x) := w−1/p∗

(t, x)‖Y (t, x) − Y ′(t, x)‖Lp as well as
v0(t, x) := w−1/p∗

(t, x)‖Y0(t, x) − Y ′0(t, x)‖Lp . Furthermore, choose k ∈ N and a
partition IT = I1 ∪ . . . ∪ Ik such that (2.4.10) is satisfied. Next, recall from (2.6.21)
the definition of ‖φ‖G(l),p∗(t, x) and ‖φ‖G(l),p∗,j(t, x) for (t, x) ∈ IT ×R

d, l = 1, 2 and
j = 1, . . . , k. From Lemma 2.6.1(2) we deduce

v ≤ v0 +
2∑

l=1

‖v‖G(l),p∗ ≤ v0 +
k∑

j=1

2∑

l=1

‖v‖G(l),p∗,j. (2.7.5)

By the same arguments as in the proof of Lemma 2.6.4(1), iterating (2.7.5) N times
produces

‖v‖L∞
IT

≤ ‖v0‖L∞
IT

N−1∑

n=0

(
n+ k − 1

n

)
ρn + ‖v‖L∞

IT

(
N + k − 1

N

)
ρN ,

with ρ < 1 being the left-hand side of (2.4.10). Letting N → ∞ leads to the
assertion. ✷

Proof of Theorem 2.4.8. It suffices to prove the case where (2.4.19) holds.
Since Y ∈ Bp

R,loc is constructed as the limit of the Picard iterates Y n in (2.7.3),
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it suffices to prove that Y n, Y0 and Λ are jointly stationary for all n ∈ N. By
induction, we assume that Y n−1 is jointly stationary with Λ and Y0 (that Y0 is,
holds by assumption). First, we assume that g is bounded and has compact sup-
port in R+ × R

d, which obviously implies that (2.6.14) holds for arbitrary ǫ > 0.
Moreover, Y n−1 is Lp-continuous because Y 0 is by hypothesis and thus also Y n−1

for general n by the same arguments as in the proof of Theorem 2.4.7(2). Next,
we fix (t, x), (h, η) ∈ R × R

d and define for N ∈ N and i = 0, . . . , N2 the time
points sN

i := t − N + i/N . Moreover, we set QN :=
(
0, (1/N, . . . , 1/N)

]
and

ΓN :=
{
(i1/N, . . . , id/N) : i1, . . . , id ∈ {−N2, . . . , N2}

}
. Lemma 2.6.3 now gives

Y n(t+ h, x+ η)

= Y0(t+ h, x+ η) +
∫ t+h

−∞

∫

Rd
g(t+ h− s, x+ η − y)σ(Y n−1(s, y) Λ(ds, dy)

= Y0(t+ h, x+ η) +
∫ t

−∞

∫

Rd
g(t− s, x− y)σ(Y n−1(s+ h, y + η) Λ(h+ ds, η + dy)

= Y0(t+ h, x+ η) + Lp− lim
N→∞

N2−1∑

i=0

∑

yN
j ∈ΓN

g(t− sN
i , x− yN

j )σ(Y n−1(sN
i + h, yN

j + η))

× Λ
(
(sN

i + h, sN
i+1 + h) × (yN

j + η +QN)
)

d= Y0(t, x) + Lp− lim
N→∞

N2−1∑

i=0

∑

yN
j ∈ΓN

g(t− sN
i , x− yN

j )σ(Y n−1(sN
i , y

N
j ))

× Λ
(
(sN

i , s
N
i+1) × (yN

j +QN)
)

= Y n(t, x).

The calculation remains valid when we consider joint distributions with Y0 and
Λ, and when we extend it to n space–time points. So the theorem is proved for
bounded functions g with compact support. For general functions g we notice that
property (2.4.19) implies that we can write g =

∑∞
i=1 gi where each gi is bounded

with compact support. The theorem follows since the calculation above is invariant
under summation and taking limits. ✷

Proof of Theorem 2.5.2. Let Y ∈ Bp,w
I,loc be a solution to (2.1.1). Then we have

v ∈ L∞I,loc where v is defined by v(t, x) := w−1/p∗

(t, x)‖Y (t, x)‖Lp . The claim is that
v also belongs to L∞I . We only consider the case p ∈ [1, 2], the case p ∈ (0, 1) can be
treated analogously. First, we suppose that Assumption D(6a) holds. In this case, it
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follows from Lemma 2.6.1(3) that there exists some ρ ∈ (0, 1) with

v(t, x) ≤ f(t, x) +
4∑

l=1

Cσ,2

(∫

I

∫

Rd
GD,l(t, x; s, y)

× (w(s, y))ρ−1(v(s, y))pρ λ(ds, dy)

)1/p

, (2.7.6)

where f denotes the sum of the first three terms on the right-hand side of (2.6.4).
By hypothesis, the functions w−1, w−1/p and wρ−1 are uniformly bounded on I×R

d,
which means that f belongs to L∞I . Consequently, Lemma 2.6.5 together with (3), (4)
and (5) of Assumption D shows that v ∈ L∞I . Now suppose that Assumption D(6b)
holds. Then, by replacing r in (2.7.6) by 1, the claim follows from Lemma 2.6.4(3)
and assumption (2.5.8). ✷



Chapter 3:

Simulation of stochastic Volterra equa-

tions driven by space–time Lévy noise

3.1 Introduction

The aim of this Chapter is to investigate different simulation techniques for stochas-
tic Volterra equations (SVEs) of the form

Y (t, x) = Y0(t, x) +
∫ t

0

∫

Rd
G(t, x; s, y)σ(Y (s, y)) Λ(ds, dy), (3.1.1)

where (t, x) ∈ R+ ×R
d, G is a deterministic kernel function, σ a Lipschitz coefficient

and Λ a Lévy basis on R+ × R
d of pure-jump type with no Gaussian part. In the

purely temporal case where no space is involved and the kernel G is sufficiently
regular on the diagonal {(t; s) ∈ R+ × R+ : t = s}, the existence and uniqueness
of the solution Y to (3.1.1) are established for general semimartingale integrators
in [117]. The space–time case (3.1.1) is treated in Section 2 for quite general Lévy
bases. In particular, G is allowed to be singular on the diagonal, which typically
happens in the context of stochastic partial differential equations (SPDEs) where G
is the Green’s function of the underlying differential operator. More details on the
connection between SPDEs and the SVE (3.1.1) are presented in Section 3.2, or can
be found in [18, 136] and Section 2.

Since in most cases there exists no explicit solution formula for the SVE (3.1.1),
it is a natural task to develop appropriate simulation algorithms. For SPDEs driven
by Gaussian noise, research on this topic is rather far advanced, see e.g. [49, 75, 137].
However, for SPDEs driven by jump noises such as non-Gaussian Lévy bases, the
related literature is considerably smaller, see [20] and the work of Hausenblas and
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coauthors [57, 76, 77]. The case σ ≡ 1 has been treated in [40]. The contribution of
this Chapter can be summarized as follows:

• We propose and analyze two approximation schemes for (3.1.1), each of which
replaces the original noise by a truncated noise that only has finitely many
atoms on compact subsets of R+ × R

d. For the first scheme, we simply cut off
all jumps whose size is smaller than a constant. For the second scheme, we use
series representation techniques for the noise as in [123] such that the jumps to
be dropped off are chosen randomly. Both methods have already been applied
successfully to the simulation of Lévy processes, cf. [7, 124].

• In the case where G originates from an SPDE, the crucial difference of our
numerical schemes to the Euler or finite element methods in the references
mentioned before is that we do not simulate small space–time increments of
the noise but successively the true jumps of the Lévy basis, which is an easier
task given that one usually only knows the underlying Lévy measure. It is
important to recognize that this is only possible because the noise Λ is of
pure-jump type, and contains neither a Gaussian part nor a drift. We shall
point out in Section 3.6 how to relax this assumption.

The remaining article is organized as follows: Section 3.2 gives the necessary
background for the SVE (3.1.1). In particular, we present sufficient conditions for
the existence and uniqueness of solutions, and address the connection between (3.1.1)
and SPDEs. In Section 3.3 we construct approximations to the solution Y of (3.1.1)
by truncating the small jumps of the Lévy basis. We prove in Theorem 3.3.2 their Lp-
convergence, and in some cases also their almost sure (a.s.) convergence to the target
process Y . In Section 3.4 we approximate the driving Lévy basis using series repre-
sentation methods. This leads to an algorithm that produces approximations again
converging in the Lp-sense, sometimes also almost surely, to Y , see Theorem 3.4.3.
In both theorems, we find explicit Lp-convergence rates that only depend on the
kernel G and the characteristics of Λ. Section 3.5 presents a simulation study for the
stochastic heat equation which highlights the typical path behaviour of stochastic
Volterra equations. The final Section 3.6 compares the two simulation algorithms
developed in this Chapter and discusses some further directions of the topic.
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3.2 Preliminaries

We start with a summary of notations that will be employed in this Chapter.

R+ the set [0,∞) of positive real numbers;
N the natural numbers {1, 2, . . .};
B a stochastic basis (Ω,F ,F = (Ft)t∈R+ ,P) satisfying the usual hypotheses

of completeness and right-continuity;
Ω̄,Ω̃ Ω̄ := Ω × R+ and Ω̃ := Ω × R+ × R

d where d ∈ N;
B(Rd) the Borel σ-field on R

d;
B̃b the collection of all bounded Borel sets of R+ × R

d;
P the predictable σ-field on B or the collection of all predictable processes

Ω̄ → R;
P̃ the product P ⊗ B(Rd) or the collection all P ⊗ B(Rd)-measurable pro-

cesses Ω̃ → R;
P̃b the collection of sets in P̃ which are a subset of Ω × [0, k] × [−k, k]d for

some k ∈ N;
δa the Dirac measure at a;
p∗ p ∨ 1;
Lp the space Lp(Ω,F ,P), p ∈ (0,∞) with ‖X‖Lp := E[|X|p]1/p∗

;
L0 the space L0(Ω,F ,P) of all random variables on B endowed with the

topology of convergence in probability;
Bp

loc the set of all Y ∈ P̃ for which ‖Y (t, x)‖Lp is uniformly bounded on
[0, T ] × R

d for all T ∈ R+ (p ∈ (0,∞));
AC the complement of A within the superset it belongs to (which will be

clear from the context);
A−B {x− y : x ∈ A, y ∈ B};
−A {−x : x ∈ A};
Leb the Lebesgue measure on R

d (d should be clear from the context);
‖ · ‖ the Euclidean norm on R

d;
C,C(T ) two generic constants in R+, one dependent and one independent of T ,

whose values are irrelevant in this Chapter and may therefore change
from one place to the other

We suppose that the stochastic basis B supports a Lévy basis, that is, a mapping
Λ: P̃b → L0 with the following properties:
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• Λ(∅) = 0 a.s.

• For all pairwise disjoint sets (Ai)i∈N ⊂ P̃b with
⋃∞

i=1 Ai ∈ P̃b we have

Λ

(
∞⋃

i=1

Ai

)
=
∞∑

i=1

Λ(Ai) in L0. (3.2.1)

• (Λ(Ω × Bi))i∈N is a sequence of independent random variables if (Bi)i∈N are
pairwise disjoint sets in B̃b.

• For every B ∈ Bb, Λ(Ω ×B) has an infinitely divisible distribution.

• Λ(A) is Ft-measurable when A ∈ P̃b and A ⊆ Ω × [0, t] × R
d for t ∈ R+.

• For every t ∈ R+, A ∈ P̃b and Ω0 ∈ Ft we have a.s.

Λ(A ∩ (Ω0 × (t,∞) × R
d)) = 1Ω0Λ(A ∩ (Ω × (t,∞) × R

d)).

Just as Lévy processes are semimartingales and thus allow for an Itô integra-
tion theory, Lévy bases belong to the class of L0-valued σ-finite random measures.
Therefore, it is possible to define the stochastic integral

∫

R+×Rd
H(s, y) Λ(ds, dy)

for H ∈ P̃ that are integrable with respect to Λ, see Section 1 for the details.
Similarly to Lévy processes, there exist two notions of characteristics for Lévy

bases: one going back to [119, Prop. 2.1] that is based on the Lévy-Khintchine for-
mula and is independent of F, and a filtration-based one that is useful for stochastic
analysis, see Theorem 1.3.2. For the whole Chapter, we will assume that both no-
tions coincide such that Λ has a canonical decomposition under the filtration F of
the form

Λ(dt, dx) = B(dt, dx) + Λc(dt, dx) +
∫

R

z1{|z|≤1} (µ− ν)(dt, dx, dz)

+
∫

R

z1{|z|>1} µ(dt, dx, dz),

where B is a σ-finite signed Borel measure on R+ × R
d, Λc a Lévy basis such that

Λ(Ω × B) is normally distributed with mean 0 and variance C(B) for all B ∈ B̃b,
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and µ a Poisson measure on R+ ×R
d relative to F with intensity measure ν (cf. [80,

Def. II.1.20]). There exists also a σ-finite Borel measure λ on R+ × R
d such that

B(dt, dx) = b(t, x)λ(dt, dx), C(dt, dx) = c(t, x)λ(dt, dx) and

ν(dt, dx, dz) = π(t, x, dz)λ(dt, dx) (3.2.2)

with two functions b : R+ × R
d → R and c : R+ × R

d → R+ as well as a transition
kernel π from (R+ × R

d,B(R+ × R
d)) to (R,B(R)) such that π(t, x, ·) is a Lévy

measure for each (t, x) ∈ R+ × R
d.

We have already mentioned in the introduction that we will assume

C = 0 (3.2.3)

throughout the Chapter. For simplicity we will also make two further assumptions:
first, that there exist b ∈ R and a Lévy measure π such that for all (t, x) ∈ R+ ×R

d

we have
b(t, x) = b, π(t, x, ·) = π and λ(dt, dx) = d(t, x); (3.2.4)

second, that
Λ ∈ S ∪ V0, (3.2.5)

where S is the collection of all symmetric Lévy bases and V0 is the class of Lévy
bases with locally finite variation and no drift, defined by the property that

∫

R

|z|1{|z|≤1} π(dz) < ∞, and b0 := b−
∫

R

z1{|z|≤1} π(dz) = 0.

Furthermore, if Λ has a finite first moment, that is,
∫

R

|z|1{|z|>1} π(dz) < ∞, (3.2.6)

we define

B1(dt, dx) := b1 d(t, x), b1 := b+
∫

R

z1{|z|>1} π(dz),

M(dt, dx) := Λ(dt, dx) −B1(dt, dx) =
∫

R

z (µ− ν)(dt, dx, dz).

Next, let us summarize the most important facts regarding the SVE (3.1.1). All
details that are not explained can be found in Section 2. First, many SPDEs of
evolution type driven by Lévy noise can be written in terms of (3.1.1), where G is
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the Green’s function of the corresponding differential operator. Most prominently,
taking G being the heat kernel in R

d, (3.1.1) is the so-called mild formulation of
the stochastic heat equation (with constant coefficients and multiplicative noise).
Typically for parabolic equations, the heat kernel is very smooth in general but
explodes on the diagonal t = s and x = y. In fact, it is only p-fold integrable on
[0, T ]×R

d for p < 1+2/d. In particular, as soon as d ≥ 2, it is not square-integrable,
and as a consequence, no solution to the stochastic heat equation in the form (3.1.1)
will exist for Lévy noises with non-zero Gaussian component. This is another reason
for including assumption (3.2.3) in this Chapter.

Second, let us address the existence and uniqueness problem for (3.1.1). By a
solution to this equation we mean a predictable process Y ∈ P̃ such that for all
(t, x) ∈ R+ × R

d, the stochastic integral on the right-hand side of (3.1.1) is well
defined and the equation itself for each (t, x) ∈ [0, T ]×R

d holds a.s. We identify two
solutions as soon as they are modifications of each other. Given a number p ∈ (0, 2],
the following conditions A1–A6 guarantee a unique solution to (3.1.1) in Bp

loc by
Theorem 2.3.1:

A1. Y0 ∈ Bp
loc is independent of Λ.

A2. σ : R → R is Lipschitz continuous, that is, there exists C ∈ R+ such that

|σ(x) − σ(y)| ≤ C|x− y|, x, y ∈ R. (3.2.7)

A3. G : (R+ × R
d)2 → R is a measurable function with G(t, ·; s, ·) ≡ 0 for s > t.

A4. Λ satisfies (3.2.2)–(3.2.5) and
∫

R

|z|p π(dz) < ∞. (3.2.8)

A5. If we define for (t, x), (s, y) ∈ R+ × R
d

G̃(t, x; s, y) := |G(t, x; s, y)|1{p>1,Λ/∈S} + |G(t, x; s, y)|p, (3.2.9)

then we have for all T ∈ R+

sup
(t,x)∈[0,T ]×Rd

∫ T

0

∫

Rd
G̃(t, x; s, y) d(s, y) < ∞. (3.2.10)
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A6. For all ε > 0 and T ∈ R+ there exist k ∈ N and a partition 0 = t0 < . . . < tk = T

such that

sup
(t,x)∈[0,T ]×Rd

sup
i=1,...,k

∫ ti

ti−1

∫

Rd
G̃(t, x; s, y) d(s, y) < ε. (3.2.11)

Apart from A1–A6, we will add another assumption in this Chapter:

A7. There exists a sequence (UN)N∈N of compact sets increasing to R
d such that for

all T ∈ R+ and compact sets K ⊆ R
d we have, as N → ∞,

rN
1 (T,K) := sup

(t,x)∈[0,T ]×K



∫ t

0

∫

(UN )C
|G(t, x; s, y)|1{p>1,Λ/∈S} d(s, y)

+

(∫ t

0

∫

(UN )C
|G(t, x; s, y)|p d(s, y)

)1/p∗

 → 0. (3.2.12)

Conditions A6 and A7 are automatically satisfied if |G(t, x; s, y)| ≤ g(t−s, x−y)
for some measurable function g and A5 holds with G replaced by g. For A6 see
Remark 2.3.3(3); for A7 choose UN := {x ∈ R

d : ‖x‖ ≤ N} such that for p > 1

sup
(t,x)∈[0,T ]×K

∫ t

0

∫

(UN )C
|G(t, x; s, y)|p d(s, y)

≤ sup
(t,x)∈[0,T ]×K

∫ t

0

∫

(UN )C
gp(t− s, x− y) d(s, y)

= sup
x∈K

∫ T

0

∫

x−(UN )C
gp(s, y) d(s, y) ≤

∫ T

0

∫

K−(UN )C
gp(s, y) d(s, y)

→ 0 as N → ∞

by the fact that K − (UN)C ↓ 0. A similar calculation applies to the case p ∈ (0, 1]
and the first term in rN

1 (T,K).

Example 3.2.1 We conclude this section with the stochastic heat equation in R
d,

whose mild formulation is given by the SVE (3.1.1) with

G(t, x; s, y) = g(t− s, x− y), g(t, x) =
exp(−‖x‖2/(4t))

(4πt)d/2
1[0,t)(s) (3.2.13)

for (t, x), (s, y) ∈ R+ × R
d. We assume that Y0 and σ satisfy conditions A1 and

A2, respectively. Furthermore, we suppose that (3.2.2)–(3.2.5) are valid, and that
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(3.2.8) holds with some p ∈ (0, 1 + 2/d). It is straightforward to show that then
A3–A6 are satisfied with the same p. Let us estimate the rate rN

1 (T,K) for T ∈ R+,
K := {‖x‖ ≤ R} with R ∈ N, and UN := {‖x‖ ≤ N}. We first consider the case
p ≤ 1 or Λ ∈ S. Since K − (UN)C = (UN−R)C for N ≥ R, the calculations after
A7 yield (p(d) := 1 + (1 − p)d/2 and Γ(·, ·) denotes the upper incomplete gamma
function)

(rN
1 (T,K))p∗ ≤

∫ T

0

∫

(UN−R)C
gp(t, x) d(t, x) =

∫ T

0

∫ ∞

N−R

exp(−pr2/(4t))
(4πt)pd/2

rd−1 dr dt

= C
∫ T

0
tp(d)−1Γ

(
d

2
,
p(N −R)2

4t

)
dt

= C(T )


(p(d))−1Γ

(
d

2
,
p(N −R)2

4T

)
−
(
p(N −R)2

4T

)p(d)

× Γ

(
d

2
− p(d),

p(N −R)2

4T

)


≤ C(T ) exp

(
−p(N −R)2

4T

)
(N −R)d−2, (3.2.14)

which tends to 0 exponentially fast as N → ∞. If p > 1 and Λ /∈ S, it follows from
formula (3.2.12) that we need an extra summand for rN

1 (T,K), namely (3.2.14) with
p = 1. ✷

3.3 Truncation of small jumps

In this section we approximate equation (3.1.1) by cutting off the small jumps of Λ.
To this end, we first define for each N ∈ N

GN(t, x; s, y) := G(t, x; s, y)1UN (y), (t, x), (s, y) ∈ R+ × R
d, (3.3.1)

where the meaning of the sets UN is explained in A7. Furthermore, we introduce

rN
2 :=

(∫

[−εN ,εN ]
|z|p π(dz)

)1/p∗

, rN
3 :=

∣∣∣∣∣

∫

[−εN ,εN ]
z1{p>1,Λ/∈S} π(dz)

∣∣∣∣∣ , (3.3.2)

where (εN)N∈N ⊆ (0, 1) satisfies εN → 0 as N → ∞. Condition A4 implies that
rN

2 , r
N
3 → 0 as N → ∞. Next, defining truncations of the Lévy basis Λ by

ΛN(dt, dx) :=
∫

[−εN ,εN ]C
z µ(dt, dx, dz), (3.3.3)



3.3. Truncation of small jumps 89

our approximation scheme for the solution Y to (3.1.1) is given as:

Y N(t, x) := Y0(t, x) +
∫ t

0

∫

Rd
GN(t, x; s, y)σ(Y N(s, y)) ΛN(ds, dy) (3.3.4)

for (t, x) ∈ R+ ×R
d. Indeed, Y N can be simulated exactly because for all T ∈ R+ the

truncation ΛN only has a finite (random) number RN(T ) of jumps on [0, T ] × UN ,
say at the space–time locations (τN

i , ξ
N
i ) with sizes JN

i . This implies that we have
the following alternative representation of Y N(t, x) for (t, x) ∈ [0, T ] × R

d:

Y N(t, x) = Y0(t, x) +
RN (T )∑

i=1

G(t, x; τN
i , ξ

N
i )σ(Y N(τN

i , ξ
N
i ))JN

i 1{τN
i <t}. (3.3.5)

What remains to do is to simulate Y N(τN
i , ξ

N
i ), i = 1, . . . , RN(T ), iteratively, from

which the values Y (t, x) for all other (t, x) ∈ [0, T ] × R
d can be computed.

The following algorithm summarizes up the simulation procedure:

Algorithm 3.3.1 Consider a finite grid G ⊆ [0, T ] × R
d. For each N proceed as

follows:

(1) Draw a Poisson random variable RN(T ) with parameter

RN(T ) :=
∫ T

0

∫

UN

∫

R

1{z∈[−εN ,εN ]C} ν(dt, dx, dz) = TLeb(UN)π
(
[−εN , εN ]C

)
.

(2) For i = 1, . . . , RN(T ):

(a) Draw a pair (τN
i , ξ

N
i ) with uniform distribution from [0, T ] × UN .

(b) Draw JN
i from [−εN , εN ]C with distribution π/π

(
[−εN , εN ]C

)
.

(c) Rename (τN
i , ξ

N
i , J

N
i : i = 1, . . . , RN(T )) by sorting (τN

i : i = 1, . . . , RN(T ))
in increasing order.

(3) For each i = 1, . . . , RN(T ) and (t, x) ∈ G simulate Y0(τN
i , ξ

N
i ) and Y0(t, x).

(4) For each i = 1, . . . , RN(T ) set

Y N(τN
i , ξ

N
i ) := Y0(τN

i , ξ
N
i ) +

i−1∑

j=1

G(τN
i , ξ

N
i ; τN

j , ξ
N
j )σ(Y N(τN

j , ξ
N
j ))JN

j .

(5) For each (t, x) ∈ G define Y N(t, x) via (3.3.5). ✷
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The next theorem determines the convergence behaviour of (3.3.4) to (3.1.1).

Theorem 3.3.2. Grant assumptions A1–A7 under which the SVE (3.1.1) has a
unique solution in Bp

loc. Then Y N as defined in (3.3.4) belongs to Bp
loc for all N ∈ N,

and for all T ∈ R+ and compact sets K ⊆ R
d there exists a constant C(T ) ∈ R+

independent of N and K such that

sup
(t,x)∈[0,T ]×K

‖Y (t, x) − Y N(t, x)‖Lp ≤ C(T )(rN
1 (T,K) + rN

2 + rN
3 ). (3.3.6)

Furthermore, if
∑∞

N=1(r
N
1 (T,K) + rN

2 + rN
3 )p∗

< ∞ is fulfilled, then we also have for
all (t, x) ∈ [0, T ] ×K that Y N(t, x) → Y (t, x) a.s. as N → ∞.

Proof. It is obvious that |GN | ≤ |G| pointwise and that we have νN ≤ ν for the
third characteristic νN of ΛN . Thus, A1–A6 are still satisfied when G and ν are
replaced by GN and νN (if Λ ∈ S, also ΛN ∈ S). So Y N as a solution to (3.1.1) with
GN and ΛN instead of G and Λ belongs to Bp

loc as well. Moreover, for all T ∈ R+

there exists C(T ) ∈ R+ independent of N ∈ N such that

sup
(t,x)∈[0,T ]×Rd

‖Y N(t, x)‖Lp ≤ C(T ), N ∈ N. (3.3.7)

We only sketch the proof for this statement. In fact, using Lemma 2.6.1(1) it can
be shown that the left-hand side of (3.3.7) satisfies an inequality of the same type
as in Lemma 6.4(3) of the same paper. In particular, it is bounded by a constant
CN(T ) that depends on N only through |GN | and νN , and that this constant is only
increased if we replace |GN | and νN by the larger |G| and ν. In this way, we obtain
an upper bound C(T ) that does not depend on N .

Next, we prove the convergence of Y N to Y as stated in (3.3.6). We have

Y (t, x) − Y N(t, x) =
∫ t

0

∫

Rd
[G(t, x; s, y) −GN(t, x; s, y)]σ(Y (s, y)) Λ(ds, dy)

+
∫ t

0

∫

Rd
GN(t, x; s, y)[σ(Y (s, y)) − σ(Y N(s, y))] Λ(ds, dy)

+
∫ t

0

∫

Rd
GN(t, x; s, y)σ(Y N(s, y)) (Λ − ΛN)(ds, dy)

=: IN
1 (t, x) + IN

2 (t, x) + IN
3 (t, x), (t, x) ∈ R+ × R

d. (3.3.8)
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If p > 1, we have

‖IN
2 (t, x)‖Lp ≤

∥∥∥∥
∫ t

0

∫

Rd
GN(t, x; s, y)[σ(Y (s, y)) − σ(Y N(s, y))]B1(ds, dy)

∥∥∥∥
Lp

+
∥∥∥∥
∫ t

0

∫

Rd
GN(t, x; s, y)[σ(Y (s, y)) − σ(Y N(s, y))]M(ds, dy)

∥∥∥∥
Lp

≤ C



(∫ t

0

∫

Rd
|G(t, x; s, y)| |B1|(ds, dy)

)p−1

×
∫ t

0

∫

Rd
|G(t, x; s, y)|‖Y (s, y) − Y N(s, y)‖p

Lp |B1|(ds, dy)




1/p

+ C
(∫ t

0

∫

Rd
|G(t, x; s, y)|p‖Y (s, y) − Y N(s, y)‖p

Lp d(s, y)
)1/p

(3.3.9)

by (3.2.7), Hölder’s inequality and the Burkholder-Davis-Gundy-inequality. If
p ∈ (0, 1], we have Λ ∈ V0 by (3.2.5) and (3.2.8), and thus Jensen’s inequality
gives

‖IN
2 (t, x)‖Lp = E

[(∫ t

0

∫

Rd
GN(t, x; s, y)[σ(Y (s, y)) − σ(Y N(s, y))]z µ(ds, dy, dz)

)p]

≤ E

[∫ t

0

∫

Rd
|GN(t, x; s, y)[σ(Y (s, y)) − σ(Y N(s, y))]z|p ν(ds, dy, dz)

]

≤ C
∫ t

0

∫

Rd
|G(t, x; s, y)|p‖Y (s, y) − Y N(s, y)‖Lp d(s, y). (3.3.10)

Inserting the estimates (3.3.9) and (3.3.10) back into (3.3.8), we obtain for the
function wN(t, x) := ‖Y (t, x) − Y N(t, x)‖Lp that

wN(t, x) ≤ C(T )



(∫ t

0

∫

Rd
|G(t, x; s, y)|1{p>1,Λ/∈S}(wN(s, y))p d(s, y)

)1/p

+
(∫ t

0

∫

Rd
|G(t, x; s, y)|p(wN(s, y))p∗

d(s, y)
)1/p∗




+ ‖IN
1 (t, x) + IN

3 (t, x)‖Lp , (t, x) ∈ [0, T ] × R
d.

By a Gronwall-type estimate, which is possible because of A5 (see the proof of
Theorem 2.4.7(3) for an elaboration of an argument of this type), we conclude

sup
(t,x)∈[0,T ]×K

wN(t, x) ≤ C(T ) sup
(t,x)∈[0,T ]×K

‖IN
1 (t, x) + IN

3 (t, x)‖Lp .
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where C(T ) does not depend on K because of (3.2.10). For IN
1 (t, x) we have for

p > 1

‖IN
1 (t, x)‖Lp ≤

∥∥∥∥
∫ t

0

∫

Rd
[G(t, x; s, y) −GN(t, x; s, y)]σ(Y (s, y))B1(ds, dy)

∥∥∥∥
Lp

+
∥∥∥∥
∫ t

0

∫

Rd
[G(t, x; s, y) −GN(t, x; s, y)]σ(Y (s, y))M(ds, dy)

∥∥∥∥
Lp

≤ C


1 + sup

(t,x)∈[0,T ]×Rd

‖Y (t, x)‖Lp





∫ t

0

∫

(UN )C
|G(t, x; s, y)| |B1|(ds, dy)

+

(∫ t

0

∫

(UN )C
|G(t, x; s, y)z|p ν(ds, dy, dz)

)1/p



≤ C(T )rN
1 (T,K), (3.3.11)

uniformly in (t, x) ∈ [0, T ] × K. In similar fashion one proves the estimate (3.3.11)
for p ∈ (0, 1], perhaps with a different C(T ). Next, when p > 1, (3.3.7) implies

‖IN
3 (t, x)‖Lp =

∥∥∥∥∥

∫ t

0

∫

Rd

∫

[−εN ,εN ]
GN(t, x; s, y)σ(Y N(s, y))z (µ− ν)(ds, dy, dz)

∥∥∥∥∥
Lp

+

∥∥∥∥∥

∫ t

0

∫

Rd

∫

[−εN ,εN ]
GN(t, x; s, y)σ(Y N(s, y))z1{Λ/∈S} ν(ds, dy, dz)

∥∥∥∥∥
Lp

≤ C(T )



(∫ t

0

∫

Rd

∫

[−εN ,εN ]
|G(t, x; s, y)z|p π(dz) d(s, y)

)1/p

+

∣∣∣∣∣

∫

[−εN ,εN ]
z1{Λ/∈S} π(dz)

∣∣∣∣∣

∫ t

0

∫

Rd
|G(t, x; s, y)|1{Λ/∈S} d(s, y)




≤ C(T )(rN
2 + rN

3 ).

The case p ∈ (0, 1] can be treated similarly, cf. the estimation of IN
2 (t, x) above.

It remains to prove that for each (t, x) ∈ [0, T ] ×K the convergence of Y N(t, x)
to Y (t, x) is almost sure when rN

1 (T,K), rN
2 and rN

3 are p∗-summable. To this end,
choose an arbitrary sequence (aN)N∈N ⊆ (0, 1) converging to 0 such that

∞∑

N=1

AN < ∞ with AN :=
(rN

1 (T,K) + rN
2 + rN

3 )p∗

ap
N

.

Such a sequence always exists, see [90, Thm. 175.4], for example. So by (3.3.6) and
Chebyshev’s inequality we derive

P

[
|Y (t, x) − Y N(t, x)| ≥ aN

]
≤ ‖Y (t, x) − Y N(t, x)‖p∗

Lp

ap
N

≤ C(T )AN .



3.4. Truncation via series representations 93

Our assertion now follows from the Borel-Cantelli lemma. ✷

Example 3.3.3 The rates rN
2 and rN

3 from (3.3.2) only depend on the underlying
Lévy measure π. Let p, q ∈ (0, 2] with q < p, and assume that

∫
[−1,1] |z|q π(dz) < ∞.

If Λ ∈ V0, assume that q < 1. Then

rN
2 =

(∫

[−εN ,εN ]
|z|p π(dz)

)1/p∗

≤
(∫

[−1,1]
|z|q ν(dz)(εN)p−q

)1/p∗

= O
(
(εN)(p−q)/p∗

)
,

rN
3 =

∣∣∣∣∣

∫

[−εN ,εN ]
z1{p>1,Λ/∈S} π(dz)

∣∣∣∣∣ ≤ O
(
(εN)1−q

1{p>1,Λ/∈S}

)
.

For instance, if εN = 1/Nk, then the sequence (rN
2 )p∗

= O(N−k(p−q)) is summable
for all k > (p − q)−1. So in order to obtain a.s. convergence of Y N(t, x) → Y (t, x),
a sufficient condition is to choose the truncation rates εN small enough. Similar
conclusions are valid for the other two rates rN

1 (T,K) and rN
3 . ✷

3.4 Truncation via series representations

Another approach to the simulation of (3.1.1) uses series representations for the
Lévy basis. The idea, going back to [122, 123] and already applied to the simulation
of Lévy processes [124], is to choose the jumps to be simulated in a random order.
Instead of selecting the big jumps first and the smaller jumps later as in Section 3.3,
we only choose the big jumps first more likely. The details are as follows: we fix
a finite time horizon T ∈ R+ and, recalling A7, a partition (Qi)i∈N of R

d into
pairwise disjoint compact sets such that UN =

⋃N
i=1 Q

i. We now assume that the
jump measure µ of Λ on the strip [0, T ] × R

d × R can be represented in the form

µ(dt, dx, dz) =
∞∑

i=1

µi(dt, dx, dz),

µi(dt, dx, dz) =
∞∑

j=1

δ(τ i
j ,ξi

j ,H(Γi
j ,V i

j ))(dt, dx, dz) a.s., (3.4.1)

where H : (0,∞) × R → R is a measurable function, satisfying H(·, v) = −H(·,−v)
for all v ∈ R when Λ ∈ S, and the random variables involved have the following
properties for each i ∈ N:
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• (τ i
j : j ∈ N) and (ξi

j : j ∈ N) are i.i.d. sequences with uniform distribution on
[0, T ] and Qi, respectively.

• (Γi
j : j ∈ N) is a random walk whose increments are exponentially distributed

with mean 1/T .

• (V i
j : j ∈ N) is an i.i.d. sequence with distribution F on R, which we should

be able to simulate from. We assume that F is symmetric when Λ ∈ S.

• The sequences τ i, ξi, Γi and V i are independent from each other.

• (τ i, ξi,Γi, V i) is independent from (τ k, ξk,Γk, V k : k 6= i).

Because of (3.2.5), µ can always be written in the form (3.4.1) whenever the under-
lying stochastic basis is rich enough. We give three examples of such series repre-
sentations.

Example 3.4.1 The proofs that the following choices are valid can be found in
[124, Sect. 3], where also more examples are discussed.

(1) LePage’s method: we set F := (δ−1 + δ1)/2 and H(r,±1) := ±̺←(r,±1), where
̺←(r,±1) = inf{x ∈ (0,∞) : π(±[x,∞)) < r} for r ∈ (0,∞).

(2) Bondesson’s method: we assume that π(A) =
∫∞

0 F (A/g(t)) dt for A ∈ B(Rd)
with some non-increasing g : R+ → R+. Then we define H(r, v) := g(r)v.

(3) Thinning method: we choose F in such a way that Q is absolutely continuous
with respect to F with density q, and define H(r, v) := v1{q(v)≥r}. ✷

Our approximation scheme is basically the same as in Section 3.3: we define GN

by (3.3.1) and Y N by (3.3.4), with the difference that ΛN on [0, T ] × R
d is now

defined as

ΛN(dt, dx) :=
∫

R

z µN(dt, dx, dz),

µN(dt, dx, dz) :=
∞∑

i=1

∑

j : Γi
j≤N

δ(τ i
j ,ξi

j ,H(Γi
j ,V i

j ))(dt, dx, dz). (3.4.2)

We can therefore rewrite Y N(t, x) for (t, x) ∈ [0, T ] × R
d as

Y N(t, x) = Y0(t, x) +
N∑

i=1

∑

j : Γi
j≤N

G(t, x; τ i
j , ξ

i
j)σ(Y N(τ i

j , ξ
i
j))H(Γi

j, V
i

j )1{τ i
j <t}. (3.4.3)
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This yields the following simulation algorithm:

Algorithm 3.4.2 Let G be a finite grid in [0, T ] × R
d and N ∈ N.

(1) For each i = 1, . . . , N set j := 1 and repeat the following:

(a) Draw Ei
j from an exponential distribution with mean 1/T .

(b) Define Γi
j := Γi

j−1 + Ei
j (Γi

0 := 0).

(c) If Γi
j > N , set Ji := j − 1 and leave the loop; otherwise set j := j + 1.

(2) For each i = 1, . . . , N and j = 1, . . . , Ji simulate independently

(a) a pair (τ i
j , ξ

i
j) with uniform distribution on [0, T ] ×Qi;

(b) a random variable V i
j with distribution F ;

(c) the random variable Y0(τ i
j , ξ

i
j).

(3) Sort the sequence (τ i
j : i = 1, . . . , N, j = 1, . . . , Ji) in increasing order, yielding

sequences (τi, ξi,Γi, Vi : i = 1, . . . ,
∑N

j=1 Jj). Now define

Y N(τi, ξi) := Y0(τi, ξi) +
i−1∑

j=1

G(τi, ξi; τj, ξj)σ(Y N(τj, ξj))H(Γj, Vj).

(4) For each (t, x) ∈ G simulate Y0(t, x) and define Y (t, x) by (3.4.3). ✷

We can now prove a convergence theorem for Y N to Y , similar to Theorem 3.3.2.
Define

rN
2 :=

(∫ ∞

N

∫

R

|H(r, v)|p F (dv) dr
)1/p∗

,

rN
3 :=

∣∣∣∣
∫ ∞

N

∫

R

H(r, v)1{p>1,Λ/∈S} F (dv) dr
∣∣∣∣ . (3.4.4)

Theorem 3.4.3. Grant assumptions A1–A7 under which the SVE (3.1.1) has a
unique solution in Bp

loc. Further suppose that the jump measure µ of Λ has a rep-
resentation in form of (3.4.1). Then Y N as defined in (3.4.3) belongs to Bp

loc for
all N ∈ N, and for all T ∈ R+ and compact sets K ⊆ R

d there exists a constant
C(T ) ∈ R+ independent of N and K such that

sup
(t,x)∈[0,T ]×K

‖Y (t, x) − Y N(t, x)‖Lp ≤ C(T )(rN
1 (T,K) + rN

2 + rN
3 ). (3.4.5)
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If
∑∞

N=1(r
N
1 (T,K) + rN

2 + rN
3 )p∗

< ∞, then we also have for all (t, x) ∈ [0, T ] × K

that Y N(t, x) → Y (t, x) a.s. as N → ∞.

Proof. We start with some preliminaries. It follows from (3.4.1) and [124,
Prop. 2.1] that we have ν = ν̄ ◦ h−1 where ν̄(dt, dx, dr, dv) = dt dx dr F (dv) and
h(t, x, r, v) = (t, x,H(r, v)) on [0, T ] × R

d × R. Therefore, conditions (3.2.5) and
(3.2.8) imply that

∫ ∞

0

∫

R

|H(r, v)|p F (dv) dr =
∫

R

|z|p π(dz) < ∞,

and
∫ ∞

0

∫

R

|H(r, v)|1{p>1,Λ/∈S} F (dv) dr =
∫

R

|z|1{p>1,Λ/∈S} π(dz) < ∞.

Consequently, rN
2 and rN

3 are well defined and converge to 0 when N → ∞. Similarly,
the compensator νN of the measure µ−µN is given by νN(dt, dx, dz) = dt dxπN(dz),
where πN = (Leb ⊗ F ) ◦H−1

N and HN(r, v) = H(r, v)1(N,∞)(r).
For the actual proof of Theorem 3.4.3 one can basically follow the proof of

Theorem 3.3.2. Only the estimation of IN
3 (t, x) as defined in (3.3.8) is different,

which we shall carry out now. In the case of p > 1, we again use the Burkholder-
Davis-Gundy inequality and obtain for (t, x) ∈ [0, T ] × R

d

‖IN
3 (t, x)‖Lp =

∥∥∥∥
∫ t

0

∫

Rd

∫

R

GN(t, x; s, y)σ(Y N(s, y))z (µN − νN)(ds, dy, dz)
∥∥∥∥

Lp

+
∥∥∥∥
∫ t

0

∫

Rd

∫

R

GN(t, x; s, y)σ(Y N(s, y))z1{Λ/∈S} νN(ds, dy, dz)
∥∥∥∥

Lp

≤ C(T )



(∫ t

0

∫

Rd

∫ ∞

N

∫

R

|G(t, x; s, y)H(r, v)|p F (dv) dr d(s, y)
)1/p

+
∫ t

0

∫

Rd
|G(t, x; s, y)|

∣∣∣∣
∫ ∞

N

∫

R

H(r, v)1{Λ/∈S} F (dv) dr
∣∣∣∣ d(s, y)




≤ C(T )(rN
2 + rN

3 ).

The case p ∈ (0, 1] is treated analogously. One only needs to replace µN − νN by µN

and estimate via Jensen’s inequality. ✷

Example 3.4.4 (Continuation of Example 3.4.1) We calculate the rates rN
2

and rN
3 from (3.4.4) for the series representations given in Example 3.4.1. We assume

that p, q ∈ (0, 2] with q < p are chosen such that
∫

[−1,1] |z|q π(dz) < ∞, and q < 1 if
Λ ∈ V0. For all three examples we use the fact that π = (Leb ⊗ F ) ◦ H−1 and that
r > N implies |H(r, v)| ≤ |H(N, v)| for all v ∈ R.
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(1) LePage’s method: We have

(rN
2 )p∗

=
∫ ∞

N

|H(r, 1)|p + |H(r,−1)|p
2

dr ≤ 1
2

∫

[H(N,−1),H(N,1)]
|z|p π(dz)

≤ 1
2

∫

[H(1,−1),H(1,1)]
|z|q π(dz)(|H(N,−1)| ∨ |H(N, 1)|)p−q,

and therefore

rN
2 = O

(
(̺←(N, 1) ∨ ̺←(N,−1))(p−q)/p∗

)
,

rN
3 = O

(
(̺←(N, 1) ∨ ̺←(N,−1))1−q

1{p>1,Λ/∈S}

)
.

(2) Bondesson’s method: Since H(r, v) = g(r)v and g is non-increasing, we obtain

(rN
2 )p∗

=
∫ ∞

N

∫

R

|g(r)v|p F (dv) dr ≤ (g(N))p−q
∫ ∞

0
gq(r) dr

∫

R

|v|p F (dv),

and consequently

rN
2 = O

(
g(N)(p−q)/p∗

)
, rN

3 = O
(
g(N)1−q

1{p>1,Λ/∈S}

)
.

(3) Thinning method: Here we have

rN
2 =

(∫

R

∫ q(v)∨N

N
|v|p dr F (dv)

)1/p∗

=

(∫

R

|v|p (q(v) −N) ∨ 0
q(v)

π(dv)

)1/p∗

≤
(∫

R

|z|p1{q(v)≥N} π(dz)
)1/p∗

,

rN
3 ≤

∫

R

|z|1{q(v)≥N}1{p>1,Λ/∈S} π(dz).

In most situations, there exist (εN)N∈N ⊆ R+ with εN → 0 as N → ∞ such
that {q(v) ≥ N} ⊆ [−εN , εN ]. In this case, one can apply the estimates in
Example 3.3.3. ✷

3.5 Simulation study

In this section we visualize the sample path behaviour of the stochastic heat equation
from Example 3.3.3 via a simulation study, using MATLAB programs from [40]. We
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Figure 3.1: Successive approximations of Y as given in (3.5.1) via Bondesson’s
method in dimension 1 for (t, x) ∈ [0, 1] × [0, 1] with N ∈ {50, 100, 250, 500} jumps
in the region [0, 1] × [−1, 2]

take Λ to be a Lévy basis without drift, whose Lévy measure π is that of a gamma
process, i.e.

π(dz) = γz−1 exp (−λz)1{z>0} dz

with two parameters γ, λ > 0. In the figures below their values are always γ = 10
and λ = 0.1. Furthermore, we set Y0 ≡ 0 and σ ≡ 1. Especially the latter choice
simplifies the subsequent discussion a lot, but none of the issues we address below
relies on this assumption. Thus, the process we would like to simulate is

Y (t, x) =
∫ t

0

∫

Rd
g(t− s, x− y) Λ(ds, dy), (t, x) ∈ R+ × R

d, (3.5.1)

with g being the heat kernel given in (3.2.13). In order to understand the path
properties of Y , it is important to notice that g is smooth on the whole R+ × R

d

except at the origin where it explodes. More precisely, for every t ∈ (0,∞) the
function x 7→ g(t, x) is the Gaussian density with mean 0 and variance 2t, which
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Figure 3.2: Several t-sections of the realization of Y shown in Figure 3.1 with
N = 500

is smooth and assumes its maximum at 0. Also, for every x 6= 0, the function
t 7→ g(t, x) is smooth (also at t = 0), with maximum at t = ‖x‖2/(2d). However, if
x = 0, then g(t, 0) = (4πt)−d/2 has a singularity at t = 0.

These analytical properties have direct consequences on the sample paths of
Y . When Λ is of compound Poisson type, that is, has only finitely many atoms on
compact sets, it can be readily seen from (3.5.1) that the evolution of Y after a jump
J at (τ, ξ) follows the shape of the heat kernel until a next jump arrives. In particular,
for x = ξ, Y (t, x) jumps to infinity at τ , and decays in t like J(4π(t − τ))−d/2

afterwards. But for every x 6= ξ, the evolution t 7→ Y (t, x) is smooth at t = τ . In
fact, it first starts to increase until t = τ + ‖x − ξ‖2/(2d) and then decays again.
As a consequence, in space dimension 1, the space–time plot of Y shows a basically
smoothly evolving path, only interrupted with slim poles at the jump locations of
Λ; see the case N = 50 in Figure 3.1. However, when Λ has infinite activity, that is,
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Figure 3.3: Several t-sections in the region [−1, 1]2 of a realization of Y in dimension
2 by Bondesson’s method with N = 500 jumps within [0, 1] × [−2, 2]2

has infinitely many jumps on any non-empty open set, then it is known from [122,
Thm. 4] that on any such set Y is unbounded, at least with positive probability.
Therefore, the space–time plots of the approximations of Y with finitely many jumps
must be treated with caution: in the limiting situation, no smooth area exists any
more, but there will be a dense subset of singularities on the plane, which is in line
with Figure 3.1.

Another interesting observation, however, is the following: if we consider a count-
able number of x- or t-sections of Y (for x ∈ R

d, the x-section of Y is given by the
function t 7→ Y (t, x); for t ∈ R+, the t-section of Y is the function x 7→ Y (t, x)),
then it is shown in [125, Sect. 2] that these are continuous with probability one.
Intuitively, this is possible because a.s. the sections never hit a jump (although they
are arbitrarily close). For instance, Figures 3.2 and 3.3 show t-sections of a realiza-
tion of (3.5.1) in one, respectively two space dimensions. So as long as we only take
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countably many “measurements”, we do not observe the space–time singularities of
Y but only its relatively regular sections. In theory, this also includes the x-sections
of the process Y . But if we plot them for one space dimension as in Figure 3.4, one
would conjecture from the simulation that they exhibit jumps in time. However,
this is not true: the jump-like appearance of the x-sections are due to the fact that
g(·, x) resembles a discontinuous function at t = 0 for small x. Of course, it follows
right from the definition (3.2.13) that all x-sections of g are smooth everywhere.
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Figure 3.4: The x-section of the realization of Y as in Figure 3.1 with N = 500 at
x = 0.6 and the heat kernel g(·, x) at x = 0.002

Remark 3.5.1 Throughout this Chapter we have taken the stochastic heat equa-
tion as our key example for illustration purposes. Obviously, all theory developed
in Sections 3.3 and 3.4 holds under much more general assumptions, namely under
A1–A7. However, the path behaviour of SVEs as examined through a simulation in
this section heavily depends on the chosen kernel. While the path properties above
are typical of kernels that originate from parabolic type SPDEs, or more generally,
that are smooth everywhere except for an explosive singularity at the origin, a com-
pletely different picture arises when we consider bounded kernels. We refer to [18]
and the references therein for examples of such kernels in different fields of applica-
tion. In the case of a simple Ornstein-Uhlenbeck type kernel, a simulation study is
carried out in [40, Chap. 5]. ✷
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3.6 Conclusion and outlook

In Sections 3.3 and 3.4 we have presented two simulation algorithms for the SVE
(3.1.1): Algorithms 3.3.1 and 3.4.2. In Theorems 3.3.2 and 3.4.3 we have determined
the rate of convergence of the approximations Y N to Y in the Lp-sense. If these rates
are small enough, we have also proved a.s. convergence. Although the theoretical
analysis of both schemes lead to quite similar results regarding their convergence
behaviour, there are important differences which will decide on whether the one
or the other method is preferable in concrete situations. For the first method of
truncating the small jumps to work, one must be able to efficiently simulate from
the truncated Lévy measure π/π([−ε, ε]C) for small ε. For the second method, which
relies on series representations, the main challenge is to choose H and F in a way
such that H is explicitly known and F can be easily simulated from. For instance,
if one uses LePage’s method (see Example 3.4.1), then F = (δ−1 + δ1)/2 is easily
simulated, but for H, which is given by the generalized inverse tails of the underlying
Lévy measure, maybe no tractable expression exists.

Finally, let us comment on further generalizations of our results. Throughout
this Chapter, we have assumed that the driving noise Λ is a homogeneous Lévy
basis, i.e. satisfies (3.2.4). In fact, we have introduced this condition only for the
sake of simplicity: with a straightforward adjustment, all results obtained in this
Chapter also hold for time- and space-varying (but deterministic) characteristics.
Another issue is the finite time perspective which we have taken up for our analysis.
An interesting question would be under which conditions (3.1.1) has a stationary
solution, and in this case, whether one can simulate from it. Sufficient conditions
for the existence and uniqueness of stationary solutions to (3.1.1) are determined in
Theorem 2.4.8. Under these conditions, the methods used to derive Theorems 3.3.2
and 3.4.3 can indeed be extended to the case of infinite time horizon. We leave the
details to the reader at this point.

At last, also the hypothesis that Λ is of pure-jump type can be weakened. If Λ
has an additional drift (including the case where Λ has locally infinite variation and
is not symmetric) but still no Gaussian part, the approximations Y N in (3.3.4) or
(3.4.3) will contain a further term that is a Volterra integral with respect to the
Lebesgue measure. So each time in between two simulated jumps, a deterministic
Volterra equation has to be solved numerically, which boils down to a deterministic
PDE in the case where G comes from an SPDE. For this subject, there exists a huge
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literature, which is, of course, also very different to the stochastic case as considered
above. If Λ also contains a Gaussian part, then one has to apply techniques from
the papers cited in Section 3.1 and ours simultaneously. We content ourselves with
referring to [139], who numerically analyzes a Volterra equation driven by a drift
plus a Brownian motion. Finally, let us remark that if p = 2 (in particular, G must
be square-integrable), it is possible for some Lévy bases to improve the results of
Section 3.3 if we do not neglect the small jumps completely but approximate them
via a Gaussian noise with the same variance, cf. [7] in the case of Lévy processes.
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Chapter 4:

Superposition of COGARCH processes

4.1 Introduction

GARCH models have been used throughout the last decades to model returns sam-
pled at regular intervals on stocks, currencies and other assets. They capture many
of the stylized features of such data; e.g. heavy tails, volatility clustering and depen-
dence without correlation. Also because of their interesting probabilistic properties
as solutions to stochastic recurrence equations, they have attracted research by prob-
abilists and statisticians; e.g. [68]. Various attempts have been made to capture the
stylized features of financial time series using continuous-time models. The interest
in continuous-time models originates in the current wide-spread availability of ir-
regularly spaced and high-frequency data. There was a long debate, whether price
and volatility fluctuations are caused by jumps or not. This question was answered
convincingly in previous years by Jacod and collaborators, who developed sophisti-
cated statistical tools to extract jumps of price and volatility out of high-frequency
data (cf. [2, 81, 82] and references therein).

A prominent continuous-time stochastic volatility model was proposed by
Barndorff-Nielsen and Shephard in [14], where the volatility process V and the
martingale part of the logarithmic asset price G satisfy the equations

dVt = −λVt dt+ dLλt,

dGt =
√
Vt dWt + ρ dL̃λt, (4.1.1)

where λ > 0, ρ ≤ 0, L = (Lt)t≥0 is a non-decreasing Lévy process with compensated
version L̃ and W = (Wt)t≥0 is a standard Brownian motion independent of L. The
volatility process V is taken to be the stationary solution of (4.1.1), in other words,
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a stationary Lévy-driven Ornstein-Uhlenbeck (OU) process. In this model, price
jumps are modelled by (scaled) upwards jumps in the volatility.

It was noticed early on that the exponential autocovariance function of the OU
process may be too restrictive. Two suggestions have been made to allow for more
flexibility in the autocovariance function: Barndorff-Nielsen [11] suggested to replace
V by a superposition of such processes (called supOU process), which yields more
flexible monotone autocovariance functions. It is defined as

Vt =
∫

(−∞,t]

∫

(0,∞)
e−λ(t−s) Λ(ds, dλ), t ∈ R, (4.1.2)

where Λ is an independently scattered infinitely divisible random measure, also
called Lévy basis. Superpositions of CARMA processes can be defined analogously;
cf. [14] and Remark 1.5.3. As shown in e.g. [62, Prop. 2.6], supOU models can also
model long-range dependence for specific superposition measures.

On the other hand, [34, 134] suggested higher-order Lévy-driven CARMA mod-
els, which also allow for non-monotone autocovariance functions. The drawback of
both model classes is their linearity and its consequences towards the stylized fea-
tures of financial data. For instance, linear models inherit their distributions from
that of the Lévy increments in a linear way. As a consequence, only when the driv-
ing Lévy process has heavy-tailed (regularly varying) increments, they model high-
level volatility clusters; cf. [61, Prop. 5]. Moreover, in contrast to empirical findings
(cf. [82]), these models allow only for negative price jumps coupled to the jumps in
the volatility.

A continuous-time GARCH (COGARCH) model has been introduced in [88]
with volatility process V and martingale part of the logarithmic asset price given by

dVt = (β − ηVt) dt+ Vt−ϕ d[L,L]dt ,

dGt =
√
Vt− dLt, (4.1.3)

where β, η, ϕ > 0 and L is an arbitrary mean-zero Lévy process. The volatility
process V is taken to be the stationary solution of (4.1.3). This model satisfies all
stylized features of financial prices, exactly as the GARCH model for low frequency
data. The drawback of an exponentially decreasing covariance function has been
taken care of by higher-order models; cf. [35], like generalizing from OU to CARMA.

All models mentioned above have price jumps exactly at the times when the
volatility jumps, since their prices are driven by the same Lévy process. Moreover,
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with the exception of the supOU/supCARMA process, all jump sizes in volatility
and price exhibit a fixed deterministic relationship; cf. [82]. As this is not very
realistic, multi-factor models are needed. In this Chapter we want to construct such
a multi-factor model, based on the COGARCH.

In contrast to the OU or CARMA models, the COGARCH model is defined as
a stochastic integral with stochastic integrand. But also in this framework there is
a canonical way to construct a superposition.

Starting by the fact that the ratio of volatility jumps and squared price jumps
is always equal to ϕ in the COGARCH model, we randomize this scale parameter
ϕ. There are various ways how to do this in a meaningful way, and we present
three different possibilities, all leading to multi-factor COGARCH models. Our three
models have different qualitative behaviour. For instance, the first supCOGARCH
allows for jumps in the volatility, which do not necessarily lead to jumps in the price
process. On the other hand, for certain choices of the distribution of the random
parameter ϕ, the third supCOGARCH model allows for jumps in the price without
having a jump in the volatility. More properties will be reported.

An interesting feature is that some of the presented new supCOGARCH volatil-
ity processes can be written in terms of a so-called ambit process, which has been
introduced in [12] in the context of turbulence modelling. In our context the ambit
process has a stochastic integrand, which is not independent of the integrator. This
implies that we are no longer in the framework of [119]. Moreover, since COGARCH
models are heavy-tailed, having possibly not even a second finite moment, the the-
ory presented in [136] is also not applicable. Instead we need the concept presented
in Section 1, which allows to integrate stochastic processes with respect to a Lévy
basis in the generality needed for our supCOGARCH models.

This Chapter is organized as follows. In Section 4.2, we recall the COGARCH
model and give a short summary of Lévy bases. In Section 4.3, we present three dif-
ferent superpositions of COGARCH volatility processes. For each of the three mod-
els we give necessary and sufficient conditions for strict stationarity and derive the
second-order structure of the stationary process. The superpositions allow for more
flexible autocorrelation structures than the COGARCH model (Propositions 4.3.4,
4.3.12 and 4.3.18). However, the stationary distributions of the supCOGARCH pro-
cesses preserve the Pareto-like tails of the COGARCH process (Propositions 4.3.5,
4.3.13 and 4.3.19). Section 4.4 is devoted to the corresponding price processes and
the second-order properties of their stationary increments. Again, main characteris-
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tics of the COGARCH are preserved like the uncorrelated increments but positively
correlated squared increments (Theorems 4.4.1, 4.4.2 and 4.4.3). Nevertheless, each
of the supCOGARCH models has its specific characteristics as highlighted in Sec-
tion 4.5. Furthermore, for all three models there is no longer a deterministic relation-
ship between the jump sizes in volatility and price. Although we concentrate on the
probabilistic properties of our new models, statistical issues are shortly addressed
here. Finally, Section 4.6 contains the proofs of our results.

4.2 Notation and preliminaries

By the Lévy-Khintchine formula (e.g. [126, Thm. 8.1]) the characteristic exponent
of a real-valued Lévy process X = (Xt)t≥0 is given by

ψX(u) := logE
[
eiuX1

]
= iγXu− 1

2
σ2

Xu
2 +

∫

R

(eiuy − 1 − iuy1{|y|≤1}) νX(dy), u ∈ R,

where (γX , σ
2
X , νX) is the characteristic triplet of X with Lévy measure νX satisfying

νX({0}) = 0 and
∫
R

1 ∧ |y|2 νX(dy) < ∞. If additionally
∫
|y|≤1 |y| νX(dy) < ∞, we

may also write the characteristic exponent in the form

ψX(u) = iγ0
Xu− 1

2
σ2

Xu
2 +

∫

R

(eiuy − 1) νX(dy), u ∈ R,

and call γ0
X the drift of X. This is in particular the case for subordinators, i.e. Lévy

processes with increasing sample paths. We also recall that the quadratic variation
process of the Lévy process X is given by

[X,X]t := σ2
Xt+ [X,X]dt := σ2

Xt+
∑

0<s≤t

(∆Xs)2, t ≥ 0,

where [X,X]d is called the pure-jump part of [X,X].
Every Lévy process (Xt)t≥0 can be extended to a two-sided Lévy process (Xt)t∈R

by setting Xt = −X ′−t−, t < 0, for some i.i.d. copy X ′ of X. We say that (Xt)t∈R has
characteristic triplet (γX , σ

2
X , νX) if (Xt)t≥0 has characteristic triplet (γX , σ

2
X , νX).

Throughout we use the notation R+ = (0,∞), R− = (−∞, 0) and N0 = N∪ {0}.

4.2.1 The COGARCH model

Let (Lt)t≥0 be a Lévy process with characteristic triplet (γL, σ
2
L, νL) and define

St := [L,L]dt =
∑

0<s≤t

(∆Ls)2, t ≥ 0. (4.2.1)
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Then (St)t≥0 is a subordinator without drift and its Lévy measure νS is the image
measure of νL under the transformation y 7→ y2. For η > 0 and ϕ ≥ 0 define another
Lévy process by

Xϕ
t = ηt−

∑

0<s≤t

log(1 + ϕ∆Ss), t ≥ 0, (4.2.2)

which is completely determined by S (and hence by L). Then Xϕ has characteristic
triplet (η, 0, νXϕ), where νXϕ is the image measure of νS under the mapping y 7→
− log(1 + ϕy), and is therefore a spectrally negative Lévy process, i.e. it only has
negative jumps. For t ≥ 0 we have

E[e−uXϕ
t ] = etΨ(u,ϕ) with Ψ(u, ϕ) = −ηu+

∫

R+

((1 + ϕy)u − 1) νS(dy), (4.2.3)

where, whenever ϕ > 0, we have E[e−uXϕ
t ] < ∞ for u > 0 for some t > 0 or,

equivalently, for all t > 0 if and only if E[Su
1 ] < ∞ [88, Lemma 4.1]. In particular, if

E[S1] < ∞ or E[S2
1 ] < ∞, respectively, we have from [126, Ex. 25.12]

Ψ(1, ϕ) = ϕE[S1] − η and Ψ(2, ϕ) = 2ϕE[S1] + ϕ2Var[S1] − 2η. (4.2.4)

Recall from [88] that the COGARCH (volatility) process driven by the Lévy
process L (or the subordinator S) with parameter ϕ is given by

V ϕ
t = e−Xϕ

t

(
V ϕ

0 + β
∫

(0,t]
eXϕ

s ds

)
, t ≥ 0, (4.2.5)

where β > 0 is a constant and V ϕ
0 is a nonnegative random variable, independent of

(St)t≥0.
Moreover, the COGARCH volatility process V ϕ is a special case of a generalized

Ornstein-Uhlenbeck process (cf. [24, 97]) and is the solution of the SDE

dV ϕ
t = (β − ηV ϕ

t ) dt+ V ϕ
t−ϕ dSt = V ϕ

t−(ϕdSt − η dt) + β dt, t ≥ 0. (4.2.6)

It admits the integral representation

V ϕ
t = V ϕ

0 + βt− η
∫

(0,t]
V ϕ

s ds+
∑

0<s≤t

V ϕ
s−ϕ∆Ss, t ≥ 0. (4.2.7)

The corresponding price process or integrated COGARCH process is then defined as

Gt =
∫

(0,t]

√
V ϕ

s− dLs, t ≥ 0. (4.2.8)
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4.2.2 Stationary COGARCH processes

By [88, Thm. 3.1], the process defined in (4.2.5) or equivalently in (4.2.7) has a
strictly stationary distribution if and only if

∫

R+

log(1 + ϕy) νS(dy) =
∫

R

log(1 + ϕy2) νL(dy) < η. (4.2.9)

In this case, the stationary distribution of the COGARCH process is given by the
distribution of V ϕ

∞ := β
∫
R+

e−Xϕ
s ds. Note that for ϕ = 0, the stationary COGARCH

reduces to V 0
t = β/η for all t ≥ 0.

In the sequel we denote by the set ΦL all ϕ ≥ 0 where (4.2.9) is satisfied. By
monotone convergence, the left-hand side of (4.2.9) is continuous in ϕ and con-
verges to +∞ as ϕ → ∞, which means that ϕmax := sup ΦL is finite and hence
ΦL = [0, ϕmax).

Let us recall the moment structure of V ϕ in the stationary case. It follows by
direct computation from [25, Thm. 3.1] that, if κ > 0 is a constant, then

E[Smax{κ,1}
1 ] < ∞ and logE

[
e−κXϕ

1

]
= Ψ(κ, ϕ) < 0 (4.2.10)

imply E[(V ϕ
0 )κ] < ∞. If (4.2.10) holds for κ = 1 or κ = 2, respectively, for every

t ≥ 0, h ≥ 0 the first two moments of the stationary process V ϕ are given by ([88,
Cor. 4.1])

E[V ϕ
t ] = − β

Ψ(1, ϕ)
=

β

η − ϕE[S1]
, (4.2.11)

E[(V ϕ
t )2] = β2 2

Ψ(1, ϕ)Ψ(2, ϕ)
and (4.2.12)

Cov[V ϕ
t , V

ϕ
t+h] = eh Ψ(1,ϕ)Var[V ϕ

0 ]

= eh Ψ(1,ϕ)β2

(
2

Ψ(1, ϕ)Ψ(2, ϕ)
− 1

Ψ(1, ϕ)2

)

= eh (ϕE[S1]−η) β2ϕ2Var[S1]
(ϕE[S1] − η)2(2η − 2ϕE[S1] − ϕ2Var[S1])

. (4.2.13)

From (4.2.10) we have the clear picture that, although a stationary V ϕ exists
for all ϕ ∈ ΦL = [0, ϕmax), moments only exist on some subinterval, which shrinks
with the increasing order of the moment. Moreover, it is known that no COGARCH
process has moments of all orders [88, Prop. 4.3]. For later reference we set

Φ(κ)
L := [0, ϕ(κ)

max) with ϕ(κ)
max = sup{ϕ : E[(V ϕ

0 )κ] < ∞}. (4.2.14)
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We have 0 < ϕ(κ2)
max ≤ ϕ(κ1)

max < ϕmax < ∞ whenever 0 < κ1 ≤ κ2 < ∞, that is,
Φ(κ2)

L ⊂ Φ(κ1)
L ⊂ ΦL.

In [89] the tail behaviour of the COGARCH process is studied. In particular, it
is shown that under rather weak assumptions the distribution of V ϕ

0 has Pareto-like
tails [89, Thm. 6].

Regarding the price process Gϕ in the stationary case, it is known from [88,
Prop. 5.1] that Gϕ has stationary increments that are uncorrelated on disjoint inter-
vals while the squared increments are, under some technical assumptions, positively
correlated, an effect which is typical for financial time series.

For later reference we extend the stationary COGARCH volatility process (4.2.5)
to a two-sided process in the following way. For a two-sided Lévy process (Lt)t∈R we
obtain a two-sided subordinator (St)t∈R by setting

St :=
∑

0<s≤t

(∆Ls)2, t ≥ 0 and St := −
∑

t<s≤0

(∆Ls)2, t ≤ 0. (4.2.15)

Now we automatically obtain for every ϕ another two-sided Lévy process (Xϕ
t )t∈R

given by

Xϕ
t = ηt−

∑

0<s≤t

log(1 + ϕ∆Ss), t ≥ 0,

Xϕ
t = ηt+

∑

t<s≤0

log(1 + ϕ∆Ss), t < 0. (4.2.16)

The two-sided COGARCH process (V ϕ
t )t∈R is then given by

V ϕ
t := β

∫

(−∞,t]
e−(Xϕ

t −Xϕ
s ) ds, t ∈ R, (4.2.17)

and it is well defined for every ϕ ∈ ΦL. Obviously, the restriction of this process
to t ≥ 0 equals the process given in (4.2.5) with V ϕ

0 := β
∫

(−∞,0] eXϕ
s ds as starting

random variable. Hence the two-sided COGARCH is always stationary with the
same finite-dimensional distributions as the one-sided stationary COGARCH.

4.2.3 Lévy bases

Let (Ω,F ,F = (Ft)t∈R,P) be a filtered probability space satisfying the usual as-
sumptions of completeness and right-continuity. Denote the space of all P-a.s. finite
random variables by L0, the optional (resp. predictable) σ-field by O (resp. P)
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and set P̃ := P ⊗ B(Rd), where B(Rd) is the Borel-σ-field on R
d. Now let (Ek)k∈N

be a sequence of measurable subsets increasing to R
d and define P̃b as the col-

lection of all P̃-measurable subsets of Ω × (−k, k] × Ek for k ∈ N. Similarly, set
Bb :=

⋃∞
k=1 B((−k, k] × Ek).

In this set-up, we use the term Lévy basis as follows:

Definition 4.2.1 A Lévy basis on R × R
d is a mapping Λ: P̃b → L0 satisfying:

(1) Λ(∅) = 0 a.s.

(2) If (An)n∈N are pairwise disjoint sets in P̃b whose union again lies in P̃b, then

Λ
( ∞⋃

n=1

An

)
=
∞∑

n=1

Λ(An) a.s.

(3) If (Bn)n∈N are pairwise disjoint sets in Bb, then (Λ(Ω ×Bn))n∈N is a sequence of
independent random variables with each of them having an infinitely divisible
distribution.

(4) If A ∈ P̃b is a subset of Ω × (−∞, t] × R
d for some t ∈ R, then Λ(A) is Ft-

measurable.

(5) If A ∈ P̃b, t ∈ R and F ∈ Ft, then

Λ
(
A ∩ (F × (t,∞) × R

d)
)

= 1F Λ
(
A ∩ (Ω × (t,∞) × R

d)
)
.

(6) For all t ∈ R and measurable U ⊂ Ek for some k ∈ N, we have Λ(Ω×{t}×U) = 0
a.s.

In the following, we often write Λ(B) = Λ(Ω ×B) for a set B ∈ Bb. ✷

A natural choice for F is certainly the augmented natural filtration G = (Gt)t∈R

of the Lévy basis Λ, which means that for t ∈ R, Gt is the completion of the σ-field
generated by the collection of all Λ(B) with B ∈ Bb, B ⊆ (−∞, t] × R

d.
The first three points of Definition 4.2.1 are similar to the notion of infinitely

divisible independently scattered random measures in [119]. Further we have added
condition (6) because this ensures that Λ induces a jump measure µΛ by

µΛ(ω, dt, dx, dy) :=
∑

s∈R

∑

ξ∈Rd

1{Λ({s}×{ξ})(ω) 6=0}δ(s,ξ,Λ({s}×{ξ})(ω))(dt, dx, dy), (4.2.18)
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where ω ∈ Ω and δ stands for the Dirac measure. We will follow the usual convention
of suppressing ω in the sequel. Thanks to (4) and (5), µΛ is an optional P̃-σ-finite
random measure in the sense of [80, Thm. II.1.8]. Therefore, the predictable com-
pensator Π of µΛ is well defined.

In this Chapter, we will only consider Lévy bases Λ which are of the form

Λ(ds, dx) =
∫

R

y µΛ(ds, dx, dy). (4.2.19)

In addition, the predictable compensator of µΛ in the augmented natural filtration G

will always be given by Π(ds, dx, dy) = ds π(dx) ν(ds), where π is some probability
measure on R

d and ν the Lévy measure of a subordinator. In this particular case, if
we write

W (s, x, y) ∗ µΛ
t := W ∗ µΛ

t :=





∫

(0,t]×Rd×R
W (s, x, y)µΛ(ds, dx, dy), if t ≥ 0,

∫

(t,0]×Rd×R
W (s, x, y)µΛ(ds, dx, dy), if t < 0,

for some O ⊗ B(Rd) ⊗ B(R)-measurable function W which is integrable with respect
to µΛ (ω-wise as a Lebesgue integral), then we have

E[W ∗ µΛ
t ] = E[W ∗ Πt] =

∫

(0,t]×Rd×R
E[W (s, x, y)] Π(ds, dx, dy), t ≥ 0, (4.2.20)

for all integrable functions W (and similarly for t < 0), see [80, Thm. II.1.8]. More-
over, when taking stochastic integrals with respect to Λ, these can be expressed in
terms of µΛ:

∫

(0,t]×Rd
H(s, x) Λ(ds, dx) =

∫

(0,t]×Rd×R
H(s, x)y µΛ(ds, dx, dy), t ≥ 0,

for all H which are integrable with respect to Λ on (0, t] (similarly for t < 0); see
Section 1 for integrability conditions and further details on Lévy bases.

For later reference, we also introduce the pure-jump part of the quadratic vari-
ation measure of Λ defined as

[Λ,Λ]d(A) :=
∫

R×Rd×R
1A(t, x)y2 µΛ(dt, dx, dy), A ∈ P̃b. (4.2.21)
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4.3 Superposition of COGARCH (supCOGARCH)

processes

In the following three subsections we propose different approaches to construct a
superposition of COGARCH processes. As seen in Equation (4.2.6), the parameters
β and η only influence the continuous part of the COGARCH process, whereas ϕ
scales its jump sizes. Since our goal is to find a model which shares the basic features
of the COGARCH model but has a more flexible jump structure, we let β and η be
fixed in the following three approaches and only allow the parameter ϕ to vary.

4.3.1 The supCOGARCH 1 volatility process

The obvious idea of defining a supCOGARCH process as a weighted integral of
independent COGARCH processes with different parameters ϕ yields to consider

V̄
(1)

t :=
∫

[0,∞)
V ϕ

t π(dϕ), t ≥ 0, (4.3.1)

for some probability measure π on [0,∞), where each COGARCH process V ϕ is
driven by Sϕ = [Lϕ, Lϕ]d and (Lϕ)ϕ∈[0,∞) are i.i.d. copies of a canonical Lévy process
L, which, together with S = [L,L]d, we only use for notational convenience. As a
consequence, (V ϕ)ϕ∈[0,∞) is a family of independent COGARCH processes such that
the integral in (4.3.1) is only well defined if π has countable support. This leads to
the supCOGARCH 1 volatility process

V̄
(1)

t =
∫

[0,∞)
V ϕ

t π(dϕ) =
∞∑

i=1

piV
ϕi

t , t ≥ 0, (4.3.2)

where π =
∑∞

i=1 piδϕi
for nonnegative weights (pi)i∈N with

∑∞
i=1 pi = 1.

To avoid degenerate cases we will assume throughout that

V̄
(1)

0 =
∞∑

i=1

piV
ϕi

0 < ∞ a.s. (4.3.3)

Note that this does not automatically imply finiteness of the supCOGARCH process
at all times unless we are in the stationary case (see below).

Remark 4.3.1 The supCOGARCH 1 process can also be written in terms of a
Lévy basis. First, define a Lévy basis on R+ × [0,∞) by

ΛL((0, t] × {ϕi}) :=
√
piL

ϕi
t , t ≥ 0, i ∈ N,
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and ΛL(R × ([0,∞) \ ⋃∞i=1{ϕi})) := 0. Now with ΛS = [ΛL,ΛL]d being the pure-
jump quadratic variation measure of ΛL (in particular, ΛS((0, t] × {ϕi}) = piS

ϕi
t )

and inserting (4.2.7) in (4.3.2), we see that

V̄
(1)

t =
∞∑

i=1

piV
ϕi

0 + βt− η
∞∑

i=1

pi

∫

(0,t]
V ϕi

s ds+
∞∑

i=1

∫

(0,t]
piϕiV

ϕi
s− dSϕi

s

= V̄
(1)

0 + βt− η
∫

(0,t]
V̄ (1)

s ds+
∫

(0,t]

∫

[0,∞)
ϕV ϕ

s− ΛS(ds, dϕ), t ≥ 0. (4.3.4)

Note that for each i ∈ N, V ϕi is driven by Sϕi . ✷

It follows directly from (4.3.4) that the jumps of the supCOGARCH 1 process
are given by

∆V̄ (1)
t =

∞∑

i=1

pi∆V
ϕi

t =
∞∑

i=1

piV
ϕi

t−ϕi∆S
ϕi
t =

∫

[0,∞)
ϕV ϕ

t− ΛS({t}×dϕ), t ≥ 0. (4.3.5)

Since the independent subordinators a.s. jump at different times, a.s. only one sum-
mand in (4.3.5) is nonzero at each jump time.

The following example for a probability measure π with two-point support will
be carried through the three different supCOGARCH processes in this section to
clarify their definitions.

Example 4.3.2 Let π = p1δϕ1 + p2δϕ2 with p1 + p2 = 1 and ϕ1, ϕ2 ∈ R+. Then
the supCOGARCH 1 process is the weighted sum of two independent COGARCH
processes. More precisely, we have V̄

(1)
t = p1V

ϕ1
t + p2V

ϕ2
t for t ≥ 0, where V ϕ1

and V ϕ2 are driven by independent copies of the canonical Lévy process L. From
Figure 4.1, we clearly see that the supCOGARCH 1 process inherits both the jumps
of V ϕ1 and V ϕ2 , scaled with p1 or p2, respectively. ✷

Stationarity and second-order properties of the supCOGARCH 1 process are
given in the following three results. Proofs are postponed to Section 4.6.1.

Theorem 4.3.3. Suppose that π =
∑∞

i=1 piδϕi
is a probability measure on [0,∞),

{Lϕi : i ∈ N} a family of i.i.d. Lévy processes, {Sϕi : i ∈ N} the corresponding family
of subordinators and {V ϕi : i ∈ N} the corresponding family of COGARCH processes.

Assuming that (4.3.3) holds, a finite random variable V̄0
(1)

can be chosen such that
V̄ (1) is strictly stationary if and only if

π(ΦL) = 1. (4.3.6)
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Figure 4.1: Sample paths of two independent COGARCH processes with different
values for ϕ, scaled with the corresponding pi, and the resulting supCOGARCH 1
process. The driving Lévy processes are independent compound Poisson processes
with rate 1 and standard normal jumps. The parameters are: β = 1, η = 1, ϕ1 = 0.5,
ϕ2 = 0.95 and π = 0.75δϕ1 + 0.25δϕ2, starting value is the respective mean.

In case a stationary distribution exists, it is uniquely determined by the law of

V̄ (1)
∞ :=

∫

ΦL

V ϕ
∞ π(dϕ) = β

∫

ΦL

∫

R+

e−Xϕ
t dt π(dϕ) = β

∞∑

i=1

pi

∫

R+

e−X
ϕi
t dt. (4.3.7)

Proposition 4.3.4. Assume we are in the setting of Theorem 4.3.3 and let V̄ (1)

be a strictly stationary solution of (4.3.4). Recall the notation Φ(κ)
L from Equa-

tion (4.2.14).

(1) Suppose that π(Φ(1)
L ) = 1. Then for every t ≥ 0,

E[V̄ (1)
t ] =

∫

ΦL

E[V ϕ
0 ]π(dϕ) = β

∞∑

i=1

pi

η − ϕiE[S1]
. (4.3.8)

(2) Suppose that π(Φ(2)
L ) = 1. Then for every t ≥ 0, h ≥ 0 we have

Var[V̄ (1)
t ] =

∞∑

i=1

p2
i Var[V ϕi

0 ] and (4.3.9)

Cov[V̄ (1)
t , V̄

(1)
t+h] =

∞∑

i=1

p2
i Cov[V ϕi

0 , V ϕi
h ], (4.3.10)

with Var[V ϕi
0 ] and Cov[V ϕi

0 , V ϕi
h ] as given in (4.2.12) and (4.2.13).
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Note that the quantities in (4.3.8), (4.3.9) and (4.3.10) may be infinite.

Proposition 4.3.5. Assume we are in the setting of Theorem 4.3.3 and let V̄ (1) be
a strictly stationary solution of (4.3.4). Set

ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} ≤ ϕmax < ∞
and assume that there exists κ̄ > 0 with

E[Sκ̄
1 log+(S1)] < ∞ and Ψ(κ̄, ϕ̄) = 0. (4.3.11)

Then we have for κ > 0

lim
x→∞

xκP[V̄ (1)
0 > x] =





0 if κ < κ̄,

∞ if κ > κ̄,

while for κ = κ̄ there exists a constant C > 0 such that

lim
x→∞

xκ̄P[V̄ (1)
0 > x] =




C if π({ϕ̄}) = p̄ > 0,

0 if π({ϕ̄}) = 0.

Remark 4.3.6 Recall from [89, Thm. 5] that the stationary distribution of the
COGARCH V ϕ is self-decomposable, i.e. for all b ∈ (0, 1) there exists a random
variable Yb such that V ϕ

∞
d= b(V ϕ

∞)′ + Yb where (V ϕ
∞)′ is an independent copy of V ϕ

∞.
Due to the fact that self-decomposability is preserved under scaling, convolution
and taking limits, see e.g. [129, Prop. V.2.2], it follows directly from (4.3.7) that the
stationary distribution of the supCOGARCH 1 process V̄ (1) is self-decomposable,
too. ✷

Remark 4.3.7 Unless we are in the degenerate case π = δϕ and the supCO-
GARCH is in fact just the COGARCH with parameter ϕ, the supCOGARCH pro-
cess V̄ (1) is no longer a Markov process with respect to its augmented natural filtra-
tion, i.e. the smallest filtration such that V̄ (1) is adapted and which satisfies the usual
hypotheses of right-continuity and completeness. But it follows directly from (4.3.4)
that, letting F

(1) = (F (1)
t )t≥0 be the augmented natural filtration of ((V ϕi

t )i∈N)t≥0,
we have for every measurable function f : R+ → R and every t ≥ 0

E

[
f
(
V̄

(1)
t

)∣∣∣F (1)
t

]
= E

[
f
(
V̄

(1)
t

)∣∣∣(V ϕi
t )i∈N

]
.

Remark 4.3.8 In the representation V̄ (1) =
∑∞

i=1 piV
ϕi a priori the ϕi do not have

to be pairwise different and still the results of this section remain valid (apart from
some obvious notational changes). ✷
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4.3.2 The supCOGARCH 2 volatility process

In order to deal with uncountable superpositions, one possibility is to drop the
assumption of independence, which led to the supCOGARCH 1. Hence we fix a Lévy
process L, define the subordinator (St)t≥0 by (4.2.1) and define the superposition
as a weighted integral of COGARCH processes V ϕ as given in (4.2.7) with different
parameters ϕ, but all driven by the single Lévy process L, i.e. we set

V̄
(2)

t :=
∫

ΦL

V ϕ
t π(dϕ), t ≥ 0,

for some probability measure π on the parameter space ΦL. To ensure that ϕ 7→ V ϕ
t

is measurable at all times and in particular at time t = 0, we will use two-sided
COGARCH processes as in (4.2.17) and define the supCOGARCH 2 volatility process

V̄
(2)

t :=
∫

ΦL

V ϕ
t π(dϕ) = β

∫

ΦL

∫

(−∞,t]
e−(Xϕ

t −Xϕ
s ) ds π(dϕ), t ∈ R, (4.3.12)

for (Xϕ
t )t∈R as given in (4.2.16). As a consequence, we have for t ≥ 0

V̄
(2)

t =
∫

ΦL

V ϕ
0 π(dϕ) + βt− η

∫

ΦL

∫

(0,t]
V ϕ

s ds π(dϕ) +
∫

ΦL

∫

(0,t]
ϕV ϕ

s− dSs π(dϕ)

= V̄
(2)

0 + βt− η
∫

(0,t]
V̄ (2)

s ds+
∫

(0,t]

∫

ΦL

ϕV ϕ
s− π(dϕ) dSs. (4.3.13)

In order to ensure that (4.3.12) is finite, we always assume
∫

ΦL

V ϕ
0 π(dϕ) < ∞. (4.3.14)

If π =
∑∞

i=1 piδϕi
, we obviously have V̄ (2) =

∑∞
i=1 piV

ϕi with dependent summands.
Observe that in this setting all single COGARCH processes jump at the same

times and thus we have

∆V̄ (2)
t =

∫

ΦL

ϕV ϕ
t− π(dϕ)∆St, t ≥ 0. (4.3.15)

Example 4.3.9 (Example 4.3.2 continued) Let π = p1δϕ1 +p2δϕ2 be given with
p1 +p2 = 1 and ϕ1, ϕ2 ∈ ΦL. Then the supCOGARCH 2 process is the weighted sum
of two COGARCH processes with parameters ϕ1 and ϕ2, i.e. V̄ (2)

t = p1V
ϕ1

t + p2V
ϕ2

t .
In contrast to the supCOGARCH 1 process in Example 4.3.2, V ϕ1 and V ϕ2 are driven
by the same subordinator, say S, of the form (4.2.1). In Figure 4.2 we illustrate the
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typical relationship between the original COGARCH processes and the resulting
supCOGARCH 2 process. We observe that V ϕ1 , V ϕ2 and V̄ (2) all jump at the same
times, with the jump sizes of the supCOGARCH being the weighted average jump
sizes of the two COGARCH processes. ✷
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Figure 4.2: Sample paths of two COGARCH processes V ϕ1 and V ϕ2 with different
parameters, driven by the same Lévy process L, scaled with the corresponding pi,
and the resulting supCOGARCH V̄ (2). The driving Lévy process L is a compound
Poisson process with rate 1 and standard normal jumps. The parameters are the
same as in Figure 4.1.

In the following we present stationarity and second-order properties of the sup-
COGARCH process V̄ (2). Proofs are given in Section 4.6.2.

Theorem 4.3.10. Assume that (4.3.14) holds. Then (V̄ (2)
t )t∈R as defined in (4.3.12)

is strictly stationary.

Before we can calculate the moments of the stationary supCOGARCH process
V̄ (2) in Proposition 4.3.12 we need to establish covariances between single CO-
GARCH processes with different parameters in the following proposition.

Proposition 4.3.11. Let (St)t∈R be a subordinator without drift, let ϕ, ϕ̃ ∈ ΦL

be fixed and define the stationary two-sided COGARCH processes (V ϕ
t )t∈R, (V ϕ̃

t )t∈R

according to (4.2.17). If

E[S2
1 ] < ∞, Ψ(2, ϕ) < 0 and Ψ(2, ϕ̃) < 0,
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then E[V ϕ
t V

ϕ̃
t+h] < ∞ for all t ∈ R and h ≥ 0. In this case, we have for all t ∈ R

that

E[V ϕ
t V

ϕ̃
t ] =

β2((ϕ+ ϕ̃)E[S1] − 2η)
(ϕE[S1] − η)(ϕ̃E[S1] − η)((ϕ+ ϕ̃)E[S1] + ϕϕ̃Var[S1] − 2η)

, (4.3.16)

Cov[V ϕ
t , V

ϕ̃
t ] =

β2ϕϕ̃Var[S1]
(ϕE[S1] − η)(ϕ̃E[S1] − η)(2η − (ϕ+ ϕ̃)E[S1] − ϕϕ̃Var[S1])

, (4.3.17)

while for all t ∈ R and h ≥ 0

Cov[V ϕ
t , V

ϕ̃
t+h] = ehΨ(1,ϕ̃)Cov[V ϕ

0 , V
ϕ̃

0 ]. (4.3.18)

Both covariances in (4.3.17) and (4.3.18) are nonnegative.

Now we can describe the covariance structure of the supCOGARCH process V̄ (2).

Proposition 4.3.12. Let V̄ (2) be the strictly stationary supCOGARCH 2 process as
defined in (4.3.12). Recall the notation Φ(κ)

L from Equation (4.2.14).

(1) Suppose that π(Φ(1)
L ) = 1. Then we have for all t ≥ 0

E[V̄ (2)
t ] =

∫

ΦL

E[V ϕ
0 ]π(dϕ) = β

∫

ΦL

1
η − ϕE[S1]

π(dϕ). (4.3.19)

(2) Suppose that π(Φ(2)
L ) = 1. Then for t ∈ R and h ≥ 0 we have

E[(V̄ (2)
t )2] =

∫

ΦL

∫

ΦL

E[V ϕ
0 V

ϕ̃
0 ]π(dϕ)π(dϕ̃), (4.3.20)

Var[V̄ (2)
t ] =

∫

ΦL

∫

ΦL

Cov[V ϕ
0 , V

ϕ̃
0 ]π(dϕ)π(dϕ̃), (4.3.21)

Cov[V̄ (2)
t , V̄

(2)
t+h] =

∫

ΦL

∫

ΦL

Cov[V ϕ
0 , V

ϕ̃
h ]π(dϕ)π(dϕ̃), (4.3.22)

with E[V ϕ
0 V

ϕ̃
0 ] and Cov[V ϕ

0 , V
ϕ̃

h ] as given in Proposition 4.3.11.

Note that the quantities in (4.3.19), (4.3.20), (4.3.21) and (4.3.22) may be infinite.

The tail behaviour of V̄ (2) is similar to the tail behaviour of the supCOGARCH 1
process.
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Proposition 4.3.13. Let V̄ (2) be the strictly stationary supCOGARCH 2 process as
defined in (4.3.12). Set ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume
that there exists κ̄ > 0 such that (4.3.11) holds. Then we have for κ > 0

lim
x→∞

xκP[V̄ (2)
0 > x] =





0 if κ < κ̄,

∞ if κ > κ̄,

while for κ = κ̄ there exists a constant C > 0 such that

lim
x→∞

xκ̄P[V̄ (2)
0 > x] =




C if π({ϕ̄}) = p̄ > 0,

0 if π({ϕ̄}) = 0.

Remark 4.3.14 Similarly to V̄ (1), the process V̄ (2) is no Markov process with
respect to its augmented natural filtration (unless in the degenerate case π = δϕ), but
again we have a Markov property in a wide sense. More precisely, for the augmented
natural filtration F

(2) = (F (2)
t )t≥0 of ((V ϕ

t )ϕ∈ΦL
)t≥0, we obtain for every measurable

function f : R+ → R and every t ≥ 0

E

[
f
(
V̄

(2)
t

)∣∣∣F (2)
t

]
= E

[
f
(
V̄

(2)
t

)∣∣∣(V ϕ
t )ϕ∈ΦL

]
.

4.3.3 The supCOGARCH 3 volatility process

Our third superposition model invokes a Lévy basis ΛL on R × ΦL such that

Lt := ΛL((0, t] × ΦL), t ≥ 0, Lt := −ΛL((−t, 0] × ΦL), t < 0,

exists for every t ∈ R. With ΛS := [ΛL,ΛL]d in the sense of (4.2.21), ΛS is of the
form (4.2.19) and we assume that the predictable compensator of µΛS

is given by
ΠS(dt, dy, dϕ) = dt νS(dy)π(dϕ), where π is a probability measure on ΦL and νS

the Lévy measure of the following two-sided subordinator:

St := ΛS((0, t] × ΦL), t ≥ 0, St := −ΛS((−t, 0] × ΦL), t < 0. (4.3.23)

For every ϕ ∈ ΦL we denote by V ϕ the two-sided COGARCH process driven by S
as in (4.2.17). The supCOGARCH 3 volatility process V̄ (3) is then defined by the
integral equation

V̄
(3)

t = V̄
(3)

0 + βt− η
∫

(0,t]
V̄ (3)

s ds+
∫

(0,t]

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0, (4.3.24)
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where V̄ (3)
0 is some starting random variable independent of the restriction of ΛL to

R+ × ΦL From (4.3.24) it follows directly that

∆V̄ (3)
t =

∫

R+×ΦL

ϕV ϕ
t−y µ

ΛS

({t}, dϕ, dy), t ≥ 0. (4.3.25)

We present now conditions for stationarity and calculate the second-order prop-
erties. The proofs can be found in Section 4.6.3.

Proposition 4.3.15. The stochastic integral equation (4.3.24) has a unique solution
given by

V̄
(3)

t = e−ηt

(
V̄

(3)
0 + β

∫

(0,t]
eηs ds+

∫

(0,t]
eηs dAs

)
, t ≥ 0, (4.3.26)

where
At :=

∫

(0,t]

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0, (4.3.27)

is a semimartingale with increasing sample paths, finite at every fixed t ≥ 0.

Example 4.3.16 (Example 4.3.2 and 4.3.9 continued) Let π = p1δϕ1 + p2δϕ2

with p1 +p2 = 1 and ϕ1, ϕ2 ∈ ΦL. As opposed to the supCOGARCH 1 process in Ex-
ample 4.3.2 or the supCOGARCH 2 process in Example 4.3.9, the supCOGARCH 3
process is not the sum of two (independent or dependent) COGARCH processes. In
fact, there is a subordinator S driving two COGARCH processes V ϕ1 and V ϕ2 and
each time when S jumps, a value of ϕ is randomly chosen from {ϕ1, ϕ2}: ϕ takes the
value ϕ1 with probability p1 and the value ϕ2 with probability p2. Now the jump
size of the supCOGARCH 3 at a particular jump time of S is exactly the jump size
of the COGARCH with the chosen parameter ϕ. If (Ti)i∈N denote the jump times
of S, we have

∆V̄ (3)
Ti

= ∆V ϕi
Ti

= ϕiV
ϕi

Ti−
∆STi

, i ∈ N,

and (ϕi)i∈N is an i.i.d. sequence with distribution π. Moreover, (ϕi)i∈N is independent
of S. This effect is illustrated in Figure 4.3. ✷

The next theorem establishes necessary and sufficient conditions for the existence
of a stationary distribution of the supCOGARCH 3 process.

Theorem 4.3.17. Define the supCOGARCH 3 process (V̄ (3)
t )t≥0 by (4.3.26). Then

a finite random variable V̄0
(3)

can be chosen such that V̄ (3) is strictly stationary if
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Figure 4.3: Two COGARCH processes V ϕ1 and V ϕ2 driven by the same Lévy process
L and the resulting supCOGARCH V̄ (3). L is a compound Poisson process with rate
1 and standard normal jumps. The parameters are the same as in Figure 4.1.

and only if
∫

R+

∫

ΦL

∫

R+

1 ∧ (yϕV ϕ
s e−ηs) ds π(dϕ) νS(dy) < ∞ a.s. (4.3.28)

In the case that a stationary distribution exists, it is uniquely determined by the law
of β

η
+
∫
R+

e−ηs dAs. In particular, setting V̄ (3)
0 := β

η
+
∫

(−∞,0]

∫
ΦL

eηsϕV ϕ
s− ΛS(ds, dϕ),

we obtain the two-sided stationary supCOGARCH 3 process

V̄
(3)

t = e−ηt

(
β
∫

(−∞,t]
eηs ds+

∫

(−∞,t]
eηs dAs

)

=
β

η
+
∫

(−∞,t]

∫

ΦL

e−η(t−s)ϕV ϕ
s− ΛS(ds, dϕ) (4.3.29)

for t ∈ R. Moreover, (4.3.28) holds in each of the following cases:

(1) π([0, ϕ0]) = 1 with some ϕ0 < ϕmax.

(2) π(Φ(κ)
L ) = 1 for some κ > 0.

The second-order properties of the strictly stationary supCOGARCH 3 process
are as follows.

Proposition 4.3.18. Let V̄ (3) be the stationary supCOGARCH 3 process given by
(4.3.29). Recall the notation Φ(κ)

L from Equation (4.2.14).
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(1) Assume that π(Φ(1)
L ) = 1. Then for t ∈ R

E[V̄ (3)
t ] =

∫

ΦL

E[V ϕ
0 ]π(dϕ) =

∫

ΦL

β

η − E[S1]ϕ
π(dϕ). (4.3.30)

(2) Assume that π(Φ(2)
L ) = 1. Then with E[V ϕ

0 V
ϕ̃

0 ] and Cov[V ϕ
0 , V

ϕ̃
0 ] as given in

Proposition 4.3.11, for t ∈ R and h ≥ 0 we have

E[(V̄ (3)
t )2] =

∫

ΦL

∫

ΦL

(
E[V ϕ

0 V
ϕ̃

0 ]

+
β

η

Var[V ϕ
0 ] − Cov[V ϕ

0 , V
ϕ̃

0 ]
E[V ϕ

0 ]

)
π(dϕ̃)π(dϕ). (4.3.31)

function of V̄ (3) is for every t ∈ R, h ≥ 0 given by

Cov[V̄ (3)
t , V̄

(3)
t+h] =

∫

ΦL

∫

ΦL

(
ehΨ(1,ϕ)Cov[V ϕ

0 , V
ϕ̃

0 ]

+ e−ηhβ

η

Var[V ϕ
0 ] − Cov[V ϕ

0 , V
ϕ̃

0 ]
E[V ϕ

0 ]

)
π(dϕ̃)π(dϕ). (4.3.32)

Note that the quantities in (4.3.30), (4.3.31) and (4.3.32) may be infinite.

The supCOGARCH 3 process also exhibits Pareto-like tails.

Proposition 4.3.19. Let V̄ (3) be the stationary supCOGARCH 3 process given by
(4.3.29). Set ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume that there
exists κ̄ > 0 such that (4.3.11) is fulfilled. Then for κ > 0

lim
x→∞

xκP[V̄ (3)
0 > x] =





0 if κ < κ̄,

∞ if κ > κ̄,

and for κ = κ̄ and π({ϕ̄}) = 0 we have

lim
x→∞

xκ̄P[V̄ (3)
0 > x] = 0,

while for κ = κ̄ and π({ϕ̄}) = p̄ > 0

0 < C∗ := lim inf
x→∞

xκ̄P[V̄ (3)
0 > x] ≤ lim sup

x→∞
xκ̄P[V̄ (3)

0 > x] =: C∗ < ∞.
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Remark 4.3.20 Just like V̄ (1) and V̄ (2), the process V̄ (3) is not a Markov process
with respect to its augmented natural filtration (unless in the case π = δϕ), but,
denoting the augmented natural filtration of ((V ϕ

t )ϕ∈ΦL
)t≥0 by F

(3) = (F (3)
t )t≥0, we

obtain for every measurable function f : R+ → R and every t ≥ 0

E

[
f
(
V̄

(3)
t

)∣∣∣(F (3)
s )s≤t

]
= E

[
f
(
V̄

(3)
t

)∣∣∣(V ϕ
t )ϕ∈ΦL

]
.

4.4 The price processes

Recall that in the COGARCH model, or its discrete-time analogue, the GARCH
model (cf. [30]), the driving noises for volatility and price processes are the same
(4.2.8). In this section, we suggest and investigate price processes corresponding to
the supCOGARCH volatility processes. All proofs can be found in Section 4.6.4.

4.4.1 The integrated supCOGARCH 1 price process

For the supCOGARCH 1 volatility process V̄ (1) as defined in Section 4.3.1, there
is no canonical choice for a price process, since a whole sequence (Lϕi)i∈N of Lévy
processes is used in its definition. Hence a priori any function of this sequence is
a reasonable candidate for the driver in the price process. As a simple example we
take the Lévy process Lϕ1 as integrator; i.e. we define

G
(1)
t :=

∫

(0,t]

√
V̄

(1)
s− dLϕ1

s , t ≥ 0. (4.4.1)

It is an interesting observation that this process not only allows for common jumps
of volatility and price (as it is usual in the standard COGARCH model), but also
for jumps only in the volatility and not in the price process. There is evidence that
this happens in real data (cf. [81]).

It is obvious from the definition that, if (V̄ (1)
t )t≥0 is strictly stationary, then

(G(1)
t )t≥0 has stationary increments. Furthermore, its second-order structure is com-

parable to that of the integrated COGARCH process [88, Prop. 5.1].

Theorem 4.4.1. Let V̄ (1) =
∑∞

i=1 piV
ϕi, ϕi ∈ ΦL, be a stationary supCOGARCH 1

process as defined in Section 4.3.1, where each V ϕi is driven by Sϕi = [Lϕi , Lϕi ]d
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and (Lϕi)i∈N are i.i.d. copies of a Lévy processes L with zero mean. Define the price
process G(1) by (4.4.1) and set

∆rG
(1)
t := G

(1)
t+r −G

(1)
t =

∫

(t,t+r]

√
V̄

(1)
s− dLϕ1

s , t ≥ 0, r > 0.

Recall the notation Φ(κ)
L from Equation (4.2.14) and that the support of π is countable

in this case.

(1) If π has support in Φ(1/2)
L , then E[∆rG

(1)
t ] = 0 for all t ≥ 0 and r > 0.

(2) If further E[L2
1] < ∞ and π has support in Φ(1)

L , then for t ∈ R, h ≥ r > 0

E[(∆rG
(1)
t )2] = rE[L2

1]E[V̄ (1)
0 ] = rE[L2

1]
∫

Φ
(1)
L

β

η − ϕ(E[L2
1] − σ2

L)
π(dϕ),

Cov[∆rG
(1)
t ,∆rG

(1)
t+h] = 0.

(3) Assume further that E[L4
1] < ∞,

∫
R
y3 νL(dy) = 0 and that π 6= δ0 has support

in Φ(2)
L . Then for t ∈ R, h ≥ r > 0

Cov[(∆rG
(1)
t )2, (∆rG

(1)
t+h)2]

= E[L2
1]
∫

Φ
(2)
L

ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

Ψ(1, ϕ)
Cov[(∆rG

(1)
0 )2, V ϕ

r ]π(dϕ)

> 0.

4.4.2 The integrated supCOGARCH 2 price process

Let (Lt)t∈R be a two-sided Lévy process, define the subordinator S by (4.2.15) and
let (V̄ (2)

t )t∈R be the supCOGARCH 2 process driven by S as defined in Section 4.3.2.
In view of the standard definition of the integrated COGARCH price process (4.2.8)
it makes sense to define the integrated supCOGARCH 2 price process by

dG(2)
t :=

√
V̄

(2)
t− dLt, G

(2)
0 = 0, t ∈ R. (4.4.2)

Hence, as in the standard COGARCH model, the process G(2) jumps exactly when
the volatility V̄ (2) jumps. Also (G(2)

t )t∈R has stationary increments if (V̄ (2)
t )t∈R is

strictly stationary. The integrated supCOGARCH 2 process has the same second-
order structure as the integrated supCOGARCH 1 process and, hence, as the inte-
grated COGARCH process as shown in the following.
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Theorem 4.4.2. Suppose that the two-sided Lévy process L has expectation 0, define
S by (4.2.15), the supCOGARCH volatility V̄ (2) as in Section 4.3.2 with π(ΦL) = 1
and the process G(2) by (4.4.2). Set

∆rG
(2)
t := G

(2)
t+r −G

(2)
t =

∫

(t,t+r]

√
V̄

(2)
s− dLs, t ∈ R, r > 0.

(1) If π has support in Φ(1/2)
L , then E[∆rG

(2)
t ] = 0 for all t ∈ R and r > 0.

(2) If further E[L2
1] < ∞ and π has support in Φ(1)

L , then for t ∈ R, h ≥ r > 0

E[(∆rG
(2)
t )2] = rE[L2

1]E[V̄ (2)
0 ] = rE[L2

1]
∫

Φ
(1)
L

β

η − ϕ(E[L2
1] − σ2

L)
π(dϕ),

Cov[∆rG
(2)
t ,∆rG

(2)
t+h] = 0.

(3) Assume further that E[L4
1] < ∞,

∫
R
y3 νL(dy) = 0 and π 6= δ0 has support in

Φ(2)
L . Then for t ∈ R, h ≥ r > 0

Cov[(∆rG
(2)
t )2, (∆rG

(2)
t+h)2]

= E[L2
1]
∫

Φ
(2)
L

ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

Ψ(1, ϕ)
Cov[(∆rG

(2)
0 )2, V ϕ

r ]π(dϕ)

> 0.

4.4.3 The integrated supCOGARCH 3 price process

As in the case of the supCOGARCH 2 there is a canonical choice for the driving
noise in the price process of the supCOGARCH 3. With L being a Lévy process and
V (3) the stationary supCOGARCH 3 as defined in (4.3.29), we define the integrated
supCOGARCH 3 price process by

G
(3)
t :=

∫

(0,t]

√
V̄

(3)
t− dLt, t ≥ 0. (4.4.3)

Evidently, G(3) has stationary increments and, if π({0}) = 0, it jumps at exactly
the times when V̄ (3) jumps. However, whenever π({0}) > 0, the supCOGARCH 3
model features price jumps without volatility jumps, a behaviour attested by the
empirical findings of [81]. The second-order structure of G(3) is calculated in the
following theorem.
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Theorem 4.4.3. Suppose that L is a Lévy process with expectation 0 and that
π(ΦL) = 1. Define V (3) by (4.3.29) and set

∆rG
(3)
t := G

(3)
t+r −G

(3)
t =

∫

(t,t+r]

√
V̄

(3)
s− dLs, t ≥ 0, r > 0.

(1) If π has support in Φ(1/2)
L , then E[∆rG

(3)
t ] = 0 for all t ≥ 0 and r > 0.

(2) If further E[L2
1] < ∞ and π has support in Φ(1)

L , then for t ≥ 0 and h ≥ r > 0

E[(∆rG
(3)
t )2] = rE[L2

1]E[V̄ (3)
0 ] = rE[L2

1]
∫

Φ
(1)
L

β

η − ϕ(E[L2
1] − σ2

L)
π(dϕ),

Cov[∆rG
(3)
t ,∆rG

(3)
t+h] = 0.

(3) Assume further that E[L4
1] < ∞,

∫
R
y3 νL(dy) = 0 and π 6= δ0 has support in

Φ(2)
L . Then for t ≥ 0 and h ≥ r > 0

Cov[(∆rG
(3)
t )2, (∆rG

(3)
t+h)2]

= E[L2
1]

[
e−η(h−r) − e−ηh

η
Cov[(∆rG

(3)
0 )2, V̄ (3)

r ]

+
∫

Φ
(2)
L

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

Ψ(1, ϕ)
+

e−ηh − e−η(h−r)

η

)
Cov[(∆rG

(3)
0 )2, V ϕ

r ]π(dϕ)

]

> 0.

4.5 Comparison and conclusions

This section is devoted to highlight the analogies and differences between the three
supCOGARCH processes, and to compare them to the standard COGARCH pro-
cess. First note that in all three models, setting π = δϕ for ϕ ∈ ΦL yields the
standard COGARCH process (V ϕ

t )t≥0 as defined in (4.2.5). Hence it seems natural
that some features of the COGARCH process are preserved under superpositioning.
The next remark summarizes the most important properties.

Remark 4.5.1 (1) Comparing the autocovariance functions of the supCO-
GARCH volatility processes (cf. (4.3.10), (4.3.22) and (4.3.32)) to those of the
COGARCH (cf. (4.2.13)), we find for large lags h exponential decay in all three
supCOGARCH models, but allowing for more flexibility than in the COGARCH
model for small and medium lags.
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(2) The important property of Pareto-like tails of the stationary distribution of a
COGARCH process [89, Thm. 6] persists as shown in Propositions 4.3.5, 4.3.13
and 4.3.19.

(3) Another similarity is given in the behaviour between jumps, where the CO-
GARCH process exhibits exponential decay [89, Prop. 2]. More precisely, assum-
ing that V̄ (1), V̄ (2) and V̄ (3) only have finitely many jumps on compact intervals,
and fixing two consecutive jump times Tj < Tj+1, we obtain for i ∈ {1, 2, 3} and
t ∈ (Tj, Tj+1)

d
dt
V̄

(i)
t = β − ηV̄

(i)
t , V̄

(i)
t =

β

η
+

(
V̄

(i)
Tj

− β

η

)
e−η(t−Tj).

(4) An important difference between the supCOGARCH processes and the CO-
GARCH process is the jump behaviour. This is highlighted in Corollary 4.5.2
and Example 4.5.3.

(5) In general, all supCOGARCH models have common jumps in volatility and
price as it is characteristic for the COGARCH model. Additionally, the sup-
COGARCH 1 model also features volatility jumps without price jumps and the
supCOGARCH 3, if π({0}) > 0, also price jumps without volatility jumps.
Moreover, if we replace Lϕ1 in (4.4.1) by a (finite or infinite) linear combination
of (Lϕi)i∈N, we can control the proportion of common volatility and price jumps
to sole volatility jumps in the supCOGARCH 1 model.

(6) Our three models have different degrees of randomness in the following sense.
The supCOGARCH 1 is defined via a sequence of independent Lévy processes.
So by the adjustment of π there is an arbitrary degree of randomness in the
model. The supCOGARCH 2 model has only one single source of randomness,
namely the driving Lévy process. Finally, the supCOGARCH 3 incorporates two
sources of randomness: one originating from the Lévy process L = ΛL((0, ·]×ΦL)
and one from the sequence (ϕi)i∈N chosen at the jump times of L. ✷

One of the motivations for this study was the observation made in [82] that for
a COGARCH process (V ϕ, Gϕ) there is always a deterministic relationship between
volatility jumps and price jumps given by

qϕ
T :=

φ(V ϕ
T−, V

ϕ
T )

ψ(Gϕ
T−, G

ϕ
T )

≡ ϕ
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for every jump time T of the driving Lévy process and deterministic functions

ψ(x, y) = (y − x)2, φ(x, y) = y − x. (4.5.1)

From the following corollary, which is a direct consequence of the respective
definitions, we see that for all three supCOGARCH models such a deterministic
functional relationship between volatility and price jumps is no longer present.

Corollary 4.5.2. Let T be a jump time of Lϕ1 for the supCOGARCH 1, and a
jump time of L for the supCOGARCH 2 and 3. Furthermore, define the numbers
ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} and ϕ := sup{ϕ > 0: π((0, ϕ)) = 0} (using the
convention sup ∅ := 0, inf ∅ := ∞).

(1) We have

∆V̄ (1)
T = p1ϕ1V

ϕ1

T−(∆Lϕ1

T )2, ∆G(1)
T =

√√√√
∞∑

i=1

piV
ϕi

T−∆Lϕ1

T , (4.5.2)

∆V̄ (2)
T =

∫

ΦL

ϕV ϕ
T− π(dϕ)(∆LT )2, ∆G(2)

T =

√∫

ΦL

V ϕ
T− π(dϕ)∆LT , (4.5.3)

∆V̄ (3)
T = ϕTV

ϕT
T− (∆LT )2, ∆G(3)

T =
√
V̄

(3)
T−∆LT , (4.5.4)

where in the last line ϕT is a random variable which has distribution π and is
independent of L.

(2) Define

q
(i)
T :=

φ(V̄ (i)
T−, V̄

(i)
T )

ψ(G(i)
T−, G

(i)
T )

(4.5.5)

for i = 1, 2, 3 with φ and ψ given in (4.5.1). Then we have

q
(1)
T ≤ ϕ̄ and ϕ ≤ q

(2)
T ≤ ϕ̄;

moreover, if ϕT = ϕ̄ (resp. ϕT = ϕ), we have

q
(3)
j ≥ ϕ̄ (resp. q(3)

j ≤ ϕ).

Example 4.5.3 (Example 4.3.2, 4.3.9 and 4.3.16 continued) Let us com-
pare the jumps in the supCOGARCH volatility processes for π = p1δϕ1 + p2δϕ2 with
p1 + p2 = 1 and ϕ1, ϕ2 ∈ ΦL: We see from (4.5.2) that in the supCOGARCH 1
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model a squared jump of Lϕi is always scaled with piϕiV
ϕi

t− and, hence, the pa-
rameter ϕi as well as the weight pi take part in the scaling. In contrast, defining
Sϕi = ΛS((0, ·] × {ϕi}) for i = 1, 2 in the case of the supCOGARCH 3 process,
each jump of S = Sϕ1 + Sϕ2 = [L,L]d is scaled with ϕ1V

ϕ1
t− or ϕ2V

ϕ2
t− , depending

on whether S1 or S2 actually jumps. Here the probabilities pi do not influence the
scaling of the jump, but the intensity of the driving processes Sϕi . In other words,
the pi determine the probability for the value ϕi to be chosen at a specific jump
time. Finally, for the supCOGARCH 2 process, the jump size of the subordinator
S = [L,L]d is always scaled with p1ϕ1V

ϕ1
t− + p2ϕ2V

ϕ2
t− , so all weights and parameters

are involved. ✷

Simulation results

To illustrate the theoretical findings above, we present simulations of the differ-
ent supCOGARCH volatility processes as well as the different price processes in
Figures 4.4 and 4.5 below. As Lévy process L we choose a variance gamma pro-
cess arising through time changing a standard Brownian motion by an independent
gamma process with mean and variance 1.

Note that we have chosen different parameters for the simulations presented in
Figures 4.4 and 4.5, respectively, in order to better visualize the differences between
the three volatility and the three price processes.

To illustrate the profound difference between the COGARCH and the three
supCOGARCH models with reference to (4.5.1), we also compute q(1), q(2) and q(3) as
defined in (4.5.5) for the jump times of the simulation in Figure 4.5. The histograms
of log q(i) are given in Figure 4.6. We see that both the supCOGARCH 1 and 2
exhibit a certain interval of values for log q(1) and log q(2). As we would expect from
Corollary 4.5.2, both log q(1) and log q(2) are bounded from above by logϕ2, but only
log q(2) is bounded from below by logϕ1 whereas the log q(1) has a relatively long tail
on the negative side. Also, in general, the values of q(1) tend to be smaller than those
of q(2). This is due to the fact that at a common jump time of volatility and price, the
volatility jump size is the sum of two terms for the supCOGARCH 2 but only a single
term for the supCOGARCH 1 (see (4.5.3) and (4.5.2)). As a result, the nominator
in (4.5.5) is usually smaller for the supCOGARCH 1 than for the supCOGARCH 2.
Finally, again in coincidence with Corollary 4.5.2, the supCOGARCH 3 shows two
disjoint intervals for the values of q(3), corresponding to the two different values of
ϕ chosen for the superposition.
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c) V̄ (1)

d) V̄ (2)

e) V̄ (3)
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Figure 4.4: The parameters are: β = 1, η = 0.05, π = 0.9δϕ1 + 0.1δϕ2 , ϕ1 = 0.02,
ϕ2 = 0.045, starting value is the mean; a) L is a variance gamma process with mean
0 and variance 1; b) COGARCH process driven by L with parameter ϕ2; c) supCO-
GARCH process V̄ (1) where V ϕ2 is driven by L and V ϕ1 is driven by an independent
copy of L; d) supCOGARCH process V̄ (2) driven by L; e) supCOGARCH process
V̄ (3) driven by L.
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a) L

b) Gϕ2

c) G(1)

d) G(2)

e) G(3)
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Figure 4.5: The parameters are: β = 1, η = 1, π = 0.9δϕ1 + 0.1δϕ2 , ϕ1 = 0.5,
ϕ2 = 0.995; a) L is the same Lévy process as in Figure 4.4; b) COGARCH price
process driven by L with parameter ϕ2; c), d) and f) supCOGARCH price processes
G(1), G(2) and G(3) driven by L.
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Figure 4.6: The pictures (from left to right) show the histograms for log(q(1)),
log(q(2)) and log(q(3)).

Estimation

A thorough investigation of the statistical analysis of the supCOGARCH processes
via parameter estimation goes far beyond the scope of this Chapter. Nevertheless let
us shortly comment on the main task, namely the estimation of the superposition
measure π, for which no standard estimation procedure is available as it is typical
for multifactor models.

In the case of the supOU stochastic volatility model, several attempts have been
made to infer the underlying superposition measure. For example, assuming the
form π =

∑K
i=1 piδϕi

for some known K ∈ N, in [14, 15] a least-square fit of the
autocovariance function is employed. In [128] a generalized method of moments is
used to estimate the supOU model under the hypothesis of a gamma distribution for
π. Further, in [72, 73] a Bayesian nonparametric approach is proposed in the case
that π is a discrete or continuous measure, respectively. Whether and how these
approaches, or the estimation procedures for the COGARCH model mentioned in
the Introduction can be adapted to the supCOGARCH case, is open.

4.6 Proofs and auxiliary results

4.6.1 Proofs for Section 4.3.1

Proof of Theorem 4.3.3. First assume that (4.3.6) holds. Then we know that
each COGARCH process V ϕi in the representation V̄ (1) =

∑∞
i=1 piV

ϕi admits a
unique stationary distribution given by the law of V ϕi

∞ = β
∫
R+

e−X
ϕi
t dt and that by

choosing V ϕi
0

d= V ϕi
∞ independently of Sϕi , the corresponding COGARCH process
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V ϕi is strictly stationary. Thus setting V̄
(1)

0 :=
∑

i∈N piV
ϕi

0 , V̄ (1) becomes strictly
stationary as shown in the following.

Assume for a moment that π has finite support. Then for every n ∈ N, h > 0
and 0 ≤ t1 < t2 < . . . < tn we can use the independence of (V ϕi)i∈N to obtain

(V̄ (1)
t1
, . . . , V̄

(1)
tn

) =

(
m∑

i=1

piV
ϕi

t1
, . . . ,

m∑

i=1

piV
ϕi

tn

)
=

m∑

i=1

pi(V
ϕi

t1
, . . . , V ϕi

tn
)

d=
m∑

i=1

pi(V
ϕi

t1+h, . . . , V
ϕi

tn+h) = (V̄ (1)
t1+h, . . . , V̄

(1)
tn+h).

Due to the fact that
∑m

i=1 piV
ϕi

t is strictly increasing in m, the case for π having
countable support follows now by a standard monotonicity argument.

Conversely, assume that (4.3.6) is violated, i.e. there exists a ϕj with π({ϕj}) > 0
such that V ϕj has no stationary distribution. Then by [88, Thm. 3.1] V ϕj

t converges
in probability to ∞ as t → ∞. This yields that also V̄ (1)

t = pjV
ϕj

t +
∑∞

i=1,i6=j piV
ϕi

t

converges in probability to ∞ as t → ∞ since
∑∞

i=1,i6=j piV
ϕi

t is nonnegative. Hence

V̄
(1)

t cannot be strictly stationary. ✷

Proof of Proposition 4.3.4. The moment conditions as well as the formulas
for expectation and covariance follow directly from (4.3.7) together with the corre-
sponding results for the COGARCH process (4.2.10), (4.2.11) and (4.2.13) observing
that all appearing processes are strictly positive. ✷

Proof of Proposition 4.3.5. Throughout this proof we slightly change our nota-
tion as follows. Given i.i.d. subordinators (Si)i∈N, we denote the COGARCH process
driven by Si with parameter ϕ > 0 by V i,ϕ such that we have V̄ (1) =

∑∞
i=1 piV

i,ϕi . If
κ < κ̄, then we know by the definition of Ψ in (4.2.3) and [88, Lemma 4.1(d)] that
for every ϕ ∈ (0, ϕ̄] there exists a unique constant κ(ϕ) > 0 which satisfies (4.3.11)
with κ̄ replaced by κ(ϕ) and such that κ(ϕ) is strictly decreasing in ϕ. Moreover, as
shown in [89, Thm. 6], for each i ∈ N the tail of V i,ϕ is asymptotically equivalent
to C(ϕ)x−κ(ϕ) with some specific constant C(ϕ) > 0. So by [58, Lemma A3.26] we
have

xκP[V̄ (1)
0 > x] ≤ xκ−κ̄xκ̄P

[
∞∑

i=1

piV
i,ϕ̄

0 > x

]
→ 0

as x → ∞ for all κ < κ̄. Conversely, if κ > κ(ϕi) for some i ∈ N, then

xκP[V̄ (1)
0 > x] ≥ xκP[piV

i,ϕi
0 > x] = xκ−κ(ϕi)p

κ(ϕi)
i (x/pi)κ(ϕi)P[V i,ϕi

0 > x/pi] → ∞.
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Recalling that κ(ϕ) is defined via the equation Ψ(κ(ϕ), ϕ) = 0, this result is still
valid for κ > κ̄ since we have infi∈N κ(ϕi) = κ̄ by the implicit function theorem.

Finally, it remains to consider the case κ = κ̄. If π({ϕ̄}) = 0, then using [89,
Lemma 2] and again [58, Lemma A3.26], we obtain

xκ̄P[V̄ (1)
0 > x] ≤ xκ̄P


 ∑

ϕi≤ϕ

piV
i,ϕ

0 +
∑

ϕi>ϕ

piV
i,ϕ̄

0 > x


 ∼ xκ̄P


 ∑

ϕi>ϕ

piV
i,ϕ̄

0 > x




→
∑

ϕi>ϕ

pκ̄
i C(ϕ̄)

as x → ∞ for every ϕ ∈ (0, ϕ̄). Letting ϕ → ϕ̄, the assertion follows. The case
π({ϕ̄}) =: p̄ > 0 now follows from the results above and

xκ̄P[V̄ (1)
0 > x] = xκ̄P


 ∑

ϕi<ϕ̄

piV
i,ϕi

0 + p̄V ī,ϕ̄
0 > x




≤ xκ̄P[p̄V ī,ϕ̄
0 > x(1 − ǫ)] + xκ̄P


 ∑

ϕi<ϕ

piV
i,ϕi

0 > ǫx


 →

(
p̄

1 − ǫ

)κ̄

C(ϕ̄)

with ī being the index corresponding to ϕ̄. Letting ǫ → 0, the proof is completed by
setting C := p̄κ̄C(ϕ̄). ✷

4.6.2 Proofs for Section 4.3.2

For the proof of Theorem 4.3.10 we need the following lemma.

Lemma 4.6.1. Let (St)t∈R be a subordinator without drift and define the double-
indexed processes (Xϕ

t )t∈R,ϕ∈ΦL
and (V ϕ

t )t∈R,ϕ∈ΦL
according to (4.2.16) and (4.2.17).

Then for all n ∈ N, −∞ < t1 < t2 < . . . < tn < ∞, h > 0

((V ϕ
t1

)ϕ∈ΦL
, (V ϕ

t2
)ϕ∈ΦL

, . . . , (V ϕ
tn

)ϕ∈ΦL
) d= ((V ϕ

t1+h)ϕ∈ΦL
, (V ϕ

t2+h)ϕ∈ΦL
, . . . , (V ϕ

tn+h)ϕ∈ΦL
),

i.e. the R
ΦL-valued stochastic process ((V ϕ

t )ϕ∈ΦL
)t∈R is strictly stationary. In partic-

ular, every finite-dimensional process (V ϕ1
t , . . . , V ϕm

t )t∈R, m ∈ N, is strictly station-
ary.

Proof. Imitating the proof of [88, Thm. 3.2] for the finite-dimensional process
(V ϕ1

t , . . . , V ϕm
t )t∈R, m ∈ N, one readily sees that

((V ϕ1
t1
, . . . , V ϕm

t1
), . . . , (V ϕ1

tn
, . . . , V ϕm

tn
)) d=

(
(V ϕ1

t1+h, . . . , V
ϕm

t1+h), . . . , (V ϕ1

tn+h, . . . , V
ϕm

tn+h)
)
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holds. As stochastic processes with the same index space are equal in distribution,
whenever their finite-dimensional distributions are equal (e.g. [86, Prop. 2.2]), this
already yields the assertion. ✷

Proof of Theorem 4.3.10. The result follows from the definition of V̄ (2) and
Lemma 4.6.1. ✷

To prove Proposition 4.3.11, another auxiliary lemma will be established.

Lemma 4.6.2. Let (St)t∈R be a subordinator without drift, let ϕ, ϕ̃ ≥ 0 be fixed and
define the processes (Xϕ

t )t∈R and (X ϕ̃
t )t∈R according to (4.2.16). Set Xt := Xϕ

t +X ϕ̃
t ,

t ∈ R.

(1) The process (Xt)t∈R is a Lévy process with characteristic triplet (2η, 0, νX) where
νX = νS ◦ T−1 for T : R+ → R−, y 7→ − log(1 + (ϕ+ ϕ̃)y + ϕϕ̃y2).

(2) Let ϕ, ϕ̃ > 0. Then E[e−κXt ] is finite at κ > 0 for some t > 0, or, equivalently,
for all t > 0, if and only if E[S2κ

1 ] < ∞. In this case we have E[e−κXt ] = ethκ(ϕ,ϕ̃),
where

hκ(ϕ, ϕ̃) = −2ηκ+
∫

R+

(
((1 + ϕy)(1 + ϕ̃y))κ − 1

)
νS(dy).

For κ = 1 we have

h(ϕ, ϕ̃) := h1(ϕ, ϕ̃) = −2η + (ϕ+ ϕ̃)E[S1] + ϕϕ̃Var[S1]. (4.6.1)

Proof. a) Observe that by definition

Xt = 2ηt−
∑

0<s≤t

log
[
(1 + ϕ∆Ss)(1 + ϕ̃∆Ss)

]

= 2ηt−
∑

0<s≤t

log(1 + (ϕ+ ϕ̃)∆Ss + ϕϕ̃(∆Ss)2)

for t ≥ 0, which directly yields the assertion in (1).
b) By [126, Thm. 25.17] E[e−κXt ] is finite for some, or, equivalently, for every

t > 0 if and only if
∫

|y|>1
e−κy νX(dy) =

∫

|y|>1
e−κy νS(T−1(dy)) =

∫

y∈Dc
(1 + (ϕ+ ϕ̃)y + ϕϕ̃y2)κ νS(dy)

< ∞

where D =
[
−(ϕ+ϕ̃)−

√
(ϕ−ϕ̃)2+4ϕϕ̃e

2ϕϕ̃
,
−(ϕ+ϕ̃)+

√
(ϕ−ϕ̃)2+4ϕϕ̃e

2ϕϕ̃

]
. This yields (2). ✷
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Proof of Proposition 4.3.11. Due to Lemma 4.6.1 (V ϕ
t , V

ϕ̃
t )t∈R is strictly sta-

tionary such that it suffices to consider t > 0. Assume without loss of generality
that 0 < ϕ ≤ ϕ̃. Then it follows from the definition of the COGARCH process that
V ϕ ≤ V ϕ̃. Hence E[V ϕ

t V
ϕ̃

t ] ≤ E[V ϕ̃
t V

ϕ̃
t ] and similarly E[V ϕ

t V
ϕ̃

t+h] ≤ E[V ϕ̃
t V

ϕ̃
t+h], which

are both finite as (4.2.10) is given for κ = 2. We start with the computation of
E[V ϕ

t V
ϕ̃

t ] and use (4.2.5) to obtain

E[V ϕ
t V

ϕ̃
t ] = β2

E

[∫

(0,t]
eXϕ

s −Xϕ
t ds

∫

(0,t]
eXϕ̃

r −Xϕ̃
t dr

]
+ βE[V ϕ̃

0 ]E

[∫

(0,t]
eXϕ

s −Xϕ
t −Xϕ̃

t ds

]

+ βE[V ϕ
0 ]E

[∫

(0,t]
eXϕ̃

r −Xϕ̃
t −Xϕ

t dr

]
+ E[V ϕ

0 V
ϕ̃

0 ]E[e−Xϕ
t −Xϕ̃

t ]

=: β2I1 + βE[V ϕ̃
0 ]I2 + βE[V ϕ

0 ]I3 + E[V ϕ
0 V

ϕ̃
0 ]I4. (4.6.2)

Recall the Lévy process X defined in Lemma 4.6.2 and observe that the increments
of X and Xϕ on disjoint intervals are mutually independent. Thus we have by (4.2.3)
and Lemma 4.6.2(2)

I1 = E

[∫

(0,t]

∫

(0,r]
eXϕ

s −Xϕ
r +Xϕ

r −Xϕ
t +Xϕ̃

r −Xϕ̃
t ds dr

]

+ E

[∫

(0,t]

∫

(r,t]
eXϕ̃

r −Xϕ̃
s +Xϕ̃

s −Xϕ̃
t +Xϕ

s −Xϕ
t ds dr

]

=
∫

(0,t]

∫

(0,r]
e(r−s)Ψ(1,ϕ)+(t−r)h(ϕ,ϕ̃) ds dr +

∫

(0,t]

∫

(r,t]
e(s−r)Ψ(1,ϕ̃)+(t−s)h(ϕ,ϕ̃) ds dr

=
−aect + ceat + a− c

a2c− ac2
+

−bect + cebt + b− c

b2c− bc2
,

where a := Ψ(1, ϕ), b := Ψ(1, ϕ̃) and c := h(ϕ, ϕ̃). Very similar calculations lead to

I2 =
ebt − ect

b− c
, I3 =

eat − ect

a− c

while we know from Lemma 4.6.2(2) that I4 = ect.
According to (4.2.11) we have E[V ϕ

0 ] = −β/a and E[V ϕ̃
0 ] = −β/b. Furthermore,

we have E[V ϕ
0 V

ϕ̃
0 ] = E[V ϕ

t V
ϕ̃

t ] due to stationarity. Putting all this into (4.6.2), we
obtain

(1 − ect)E[V ϕ
t V

ϕ̃
t ] = β2(1 − ect)

( 1
ac

+
1
bc

)
.

Since t > 0 we have 1 − ect 6= 0, so dividing the last equation by this term yields

E[V ϕ
t V

ϕ̃
t ] =

β2

Ψ(1, ϕ̃)h(ϕ, ϕ̃)
+

β2

Ψ(1, ϕ)h(ϕ, ϕ̃)
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from which (4.3.16) and (4.3.17) follow immediately.
To obtain the formula for Cov[V ϕ

t , V
ϕ̃

t+h] observe first that

V ϕ̃
t+h = Aϕ̃

t,t+hV
ϕ̃

t +Bϕ̃
t,t+h, (4.6.3)

where
Aϕ̃

t,t+h = e−(Xϕ̃
t+h
−Xϕ̃

t ) and Bϕ̃
t,t+h = β

∫

(t,t+h]
e−(Xϕ̃

t+h
−Xϕ̃

s ) ds.

In particular, we see that Aϕ̃
t,t+h and Bϕ̃

t,t+h are independent of (V ϕ
t , V

ϕ̃
t ) such that

E[V ϕ
t V

ϕ̃
t+h] = E[V ϕ

t (Aϕ̃
t,t+hV

ϕ̃
t +Bϕ̃

t,t+h)]

= E[Aϕ̃
t,t+h]E[V ϕ

t V
ϕ̃

t ] + E[V ϕ
t ]E[Bϕ̃

t,t+h]. (4.6.4)

Now since
E[Aϕ̃

t,t+h] = E[e−(Xϕ̃
t+h
−Xϕ̃

t )] = E[e−Xϕ̃
h ] = ehΨ(1,ϕ̃)

and

E[Bϕ̃
t,t+h] = β

∫

(t,t+h]
e(t+h−s)Ψ(1,ϕ̃) ds =

β

Ψ(1, ϕ̃)

(
ehΨ(1,ϕ̃) − 1

)

= E[V ϕ̃
0 ]
(
1 − ehΨ(1,ϕ̃)

)
,

Equation (4.6.4) directly yields

E[V ϕ
t V

ϕ̃
t+h] = ehΨ(1,ϕ̃)

E[V ϕ
0 V

ϕ̃
0 ] +

(
1 − ehΨ(1,ϕ̃)

)
E[V ϕ

0 ]E[V ϕ̃
0 ],

which gives (4.3.18). ✷

Proof of Proposition 4.3.12. Due to the fact that all appearing processes are
nonnegative we can use Tonelli’s theorem to determine the given formulas directly
from the definition of V̄ (2). ✷

Proof of Proposition 4.3.13.. The proof is mainly the same as the proof of
Proposition 4.3.5, so we only indicate the differences. For κ < κ̄ use the estimation
P[V̄ (2)

0 > x] ≤ P[V ϕ̄
0 > x]. For κ > κ̄ and π({ϕ̄}) = 0, it suffices to consider κ > κ(ϕi)

after having chosen sequences (ϕi)i∈N and (ǫi)i∈N with π((ϕi − ǫi, ϕi]) > 0 for each
i ∈ N. Using P[V̄ (2)

0 > x] ≥ P [π((ϕi − ǫi, ϕi])V
ϕi

0 > x] gives the result. Similarly,
use P[V̄ (2)

0 > x] ≤ P
[
π((0, ϕ])V ϕ

0 + π((ϕ, ϕ̄])V ϕ̄
0 > x

]
for κ = κ̄ and π({ϕ̄}) = 0. For

κ = κ̄ and π({ϕ̄}) =: p̄ > 0, we may use V̄ 2
0 =

∫
(0,ϕ̄) V

ϕ
0 π(dϕ) + p̄V ϕ̄

0 . Finally, the
case κ > κ̄ and π({ϕ̄}) > 0 follows from the preceding arguments. ✷
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4.6.3 Proofs for Section 4.3.3

Proof of Proposition 4.3.15. By (4.2.16) and (4.2.17), the function ϕ 7→ V ϕ
s is

increasing in ϕ for every s ∈ R. As a consequence, we have for all t ≥ 0

At ≤
∫

(0,t]

∫

ΦL

ϕmaxV
ϕmax

s ΛS(ds, dϕ) = ϕmax

∫

(0,t]
V ϕmax

s dSs < ∞.

Since A is by definition càdlàg, G(3)-adapted and increasing, A is a semimartingale
[80, e.g. Def. I.4.21] such that uniqueness of the solution of (4.3.24) follows from
[118, Thm. V.7]. It remains to show that (4.3.26) solves (4.3.24). Using integration
by parts [80, Def. I.4.45] and [80, Prop. I.4.49d], we obtain

dV̄ (3)
t =

(
V̄

(3)
0 +

∫

(0,t]
eηs dAs + β

∫

(0,t]
eηs ds

)
d
(
e−ηt

)
+ e−ηt(eηt dAt + βeηt dt)

= −ηV̄ (3)
t dt+ dAt + β dt = (β − ηV̄

(3)
t ) dt+ dAt.

✷

In order to show that the supCOGARCH 3 process V̄ (3) from (4.3.24) has a
stationary solution we need a series of lemmata.

Lemma 4.6.3. Let n,m ∈ N. For h > 0, −∞ < t1 < . . . < tm+1 < ∞ and
0 < ϕ1 < . . . < ϕn+1 < ϕmax we have

(V ϕi
tj
,ΛS((tj, tj+1] × (ϕi, ϕi+1]) : i ≤ n, j ≤ m)

d= (V ϕi
tj+h,Λ

S((tj + h, tj+1 + h] × (ϕi, ϕi+1]) : i ≤ n, j ≤ m). (4.6.5)

Proof. For 1 ≤ i ≤ n and 1 ≤ j ≤ m write Λi
j := ΛS((tj, tj+1] × (ϕi, ϕi+1])

and Λi
j,h := ΛS((tj + h, tj+1 + h] × (ϕi, ϕi+1]) and let Zm and Zm

h denote the left-
and right-hand side of (4.6.5), respectively. We first consider m = 1. On the one
hand, we obtain from Lemma 4.6.1 that (V ϕ1

t1
, . . . , V ϕn

t1
) d= (V ϕ1

t1+h, . . . , V
ϕn

t1+h). On
the other hand, due to the independence of their single components, the vectors
(Λ1

1, . . . ,Λ
n
1 ) and (Λ1

1,h, . . . ,Λ
n
1,h) have the same distribution. Since additionally the

V -vector is independent of the ΛS-vector, the assertion in the case m = 1 follows.
For m ≥ 2, using induction and the independence of Λi

m and Zm−1, it suffices to
show that the conditional distribution of (V ϕi

tm
: i = 1, . . . , n) given Zm−1 does not

change if shifted by h. By Markovianity (see [88, Thm. 3.2]) this distribution only
depends on (V ϕi

tm−1
,Λi

m−1 : i = 1, . . . , n) such that by (4.6.3) and using the notation



4.6. Proofs and auxiliary results 141

there, we only need to consider the distribution of (Aϕi
tm−1,tm

, Bϕi
tm−1,tm

: i = 1, . . . , n)
given (Λi

m−1 : i = 1, . . . , n). Since the former vector is a measurable transformation
of (∆Ss : tm−1 ≤ s ≤ tm), it is evident that this distribution is invariant under a
shift by h, which finishes the proof. ✷

In connection to (4.3.27), we show a further auxiliary result. To this end define

At :=
∫

(0,t]

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0,

At := −
∫

(t,0]

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t < 0. (4.6.6)

Lemma 4.6.4. The process (At)t∈R defined in (4.6.6) has stationary increments,
i.e. for every n ∈ N, −∞ < t1 < . . . < tn+1 < ∞ and h > 0 we have

(At2 − At1 , . . . , Atn+1 − Atn) d= (At2+h − At1+h, . . . , Atn+1+h − Atn+h). (4.6.7)

Proof. By an approximation via Riemann sums (note that ϕ 7→ V ϕ
s is continuous

in ϕ for all s), cf. [80, Prop. I.4.44], we may use Lemma 4.6.3 to obtain

(At2 − At1 , . . . , Atn+1 − Atn)

=
(∫ t2

t1

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ), . . . ,

∫ tn+1

tn

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ)

)

d=

(∫ t2+h

t1+h

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ), . . . ,

∫ tn+1+h

tn+h

∫

ΦL

ϕV ϕ
s− ΛS(ds, dϕ)

)

= (At2+h − At1+h, . . . , Atn+1+h − Atn+h).

✷

Proof of Theorem 4.3.17. Since e−ηt
∫

(0,t] eηs ds → η−1 as t → ∞ the process

(V (3)
t )t≥0 converges in distribution to a finite random variable as t → ∞ if and only

if

e−ηt
∫

(0,t]
eηs dAs =

∫

(0,t]
eη(s−t) dAs =

∫

(−t,0]
eηs dAs+t

d=
∫

(−t,0]
eηs dAs

d=
∫

(0,t]
e−ηs dAs

converges to a finite random variable in distribution as t → ∞, where we used
Lemma 4.6.4 for the distributional equalities. By monotonicity this is equivalent to
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the existence of
∫

R+

e−ηs dAs =
∫

R+

∫

ΦL

e−ηsϕV ϕ
s− ΛS(ds, dϕ)

in probability. As shown in Theorem 1.4.1 and the following remark, this holds if
and only if (4.3.28) is valid.

Hence in case that (4.3.28) is violated, no stationary distribution can exist.
On the other hand, given (4.3.28), following the above computations, the process
(V (3)

t )t≥0 converges in distribution to V̄ (3)
∞ := β

η
+
∫∞

0 e−ηs dAs, which is thus the
unique possible stationary distribution.

To show that (V (3)
t )t≥0 is actually strictly stationary when started in a random

variable V (3)
0

d= V̄ (3)
∞ which is independent of ΛL on R+ × ΦL, we set

V̄
(3)

0 :=
β

η
+
∫

(−∞,0]
eηs dAs.

Then using Lemma 4.6.4 we obtain for all 0 ≤ t1 < . . . < tn and h > 0

(V̄ (3)
t1
, . . . , V̄

(3)
tn

)

d=

(∫

(−∞,t1]
e−η(t1−s) dAs + β

∫

(−∞,t1]
e−η(t1−s) ds, . . . ,

∫

(−∞,tn]
e−η(tn−s) dAs + β

∫

(−∞,tn]
e−η(tn−s) ds

)

=

(∫

(−∞,0]
eηs dAs+t1 + β

∫

R+

e−ηs ds, . . . ,
∫

(−∞,0]
eηs dAs+tn + β

∫

R+

e−ηs ds

)

d=

(∫

(−∞,0]
eηs dAs+t1+h + β

∫

R+

e−ηs ds, . . . ,
∫

(−∞,0]
eηs dAs+tn+h + β

∫

R+

e−ηs ds

)

d= (V̄ (3)
t1+h, . . . , V̄

(3)
tn+h)

and hence the process (V (3)
t )t≥0 is strictly stationary.

It remains to show that (1) and (2) imply (4.3.28). First observe from (4.2.16)
and (4.2.17) that for fix s the function ϕ 7→ V ϕ

s is increasing in ϕ. So if (1) holds,
we have
∫

R+

∫

ΦL

∫

R+

1 ∧ (yϕV ϕ
s e−ηs) ds π(dϕ) νS(dy) ≤

∫

R+

∫

R+

1 ∧ (yϕ0V
ϕ0

s e−ηs) ds νS(dy)

< ∞
because (4.3.28) holds for π = δϕ0 (in this case V̄ (3) is just the COGARCH process
V ϕ0). Finally, (2) follows from (1) together with the fact that ϕ(κ)

max < ϕmax. ✷



4.6. Proofs and auxiliary results 143

For the proof of Proposition 4.3.18 we need the following Lemma.

Lemma 4.6.5. Let (At)t∈R, V ϕ and V̄ (3) be defined as in (4.6.6), (4.2.17) and
(4.3.29), respectively. Then, under the assumptions of Proposition 4.3.18, we have
for t ≥ 0

[A,A]t =
∫

(0,t]

∫

ΦL

∫

R+

ϕ2(V ϕ
s−)2y2 µΛS

(ds, dϕ, dy) and

[V̄ (3), V ϕ]t = [A, V ϕ]t = ϕ
∫

(0,t]

∫

ΦL

∫

R+

ϕ̃V ϕ
s−V

ϕ̃
s−y

2 µΛS

(ds, dϕ̃, dy),

with µΛS
as defined in (4.2.18). For t < 0, let the expressions on the left-hand side

denote the respective quadratic (co-)variation on (t, 0]. Then the integrals have to be
computed on (−t, 0] instead of (0, t].

Proof. Obviously it suffices to consider t ≥ 0. Since A is an increasing pure-jump
process,

[A,A]t =
∑

0<s≤t

(∆As)2 =
∑

0<s≤t

(
∆(ϕV ϕ

·−y ∗ µΛS

)s

)2

=
∑

0<s≤t


 ∑

ϕ∈ΦL

ϕV ϕ
s−ΛS({s} × {ϕ})




2

Noting that for almost every ω there is at most one ϕ ∈ ΦL at time s such that
ΛS({s} × {ϕ})(ω) 6= 0, we obtain

[A,A]t =
∑

0<s≤t

∑

ϕ∈ΦL

ϕ2(V ϕ
s−)2ΛS({s} × {ϕ})2,

as desired. Similarly,

[A, V ϕ]t =
∑

0<s≤t

∆As∆V ϕ
s =

∑

0<s≤t


 ∑

ϕ̃∈ΦL

ϕ̃V ϕ̃
s−ΛS({s} × {ϕ̃})


ϕV ϕ

s−∆Ss

according to (4.2.6). Now observe that ∆Ss = ΛS({s}×R+) =
∑

ϕ∈ΦL
ΛS({s}×{ϕ})

for all s ∈ R, where again for almost every ω there is at most one ϕ ∈ ΦL at time s
with ΛS({s} × {ϕ})(ω) 6= 0. As a result,

[A, V ϕ]t =
∑

0<s≤t

ϕV ϕ
s−

∑

ϕ̃∈ΦL

ϕ̃V ϕ̃
s−ΛS({s} × {ϕ̃})2 = ϕ(ϕ̃V ϕ

·−V
ϕ̃
·−y

2 ∗ µΛS

t ).

Finally, we have [V̄ (3), V ϕ] = [A, V ϕ] by (4.3.24). ✷
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Proof of Proposition 4.3.18. First observe that Theorem 4.3.17(2) ensures the
existence of the given stationary version of V̄ (3) under the assumptions of the present
theorem.

We set m1 :=
∫
R+
y νS(dy) = E[S1], m2 :=

∫
R+
y2 νS(dy) = Var[S1] and assume

without loss of generality π({0}) = 0. For the mean we use (4.2.11) and obtain

E[V̄ (3)
t ] = E[V̄ (3)

0 ] =
β

η
+ E

[∫

(−∞,0]
eηs dAs

]

=
β

η
+m1

∫

(−∞,0]
eηs ds

∫

ΦL

ϕE[V ϕ
0 ]π(dϕ)

=
β

η
− β

η

∫

ΦL

(
1 +

η

m1ϕ− η

)
π(dϕ)

= −
∫

ΦL

β

m1ϕ− η
π(dϕ) =

∫

ΦL

E[V ϕ
0 ]π(dϕ).

To compute the autocovariance function of V̄ (3) observe that for t ≥ 0, h ≥ 0 we
have from (4.3.29)

Cov[V̄ (3)
t , V̄

(3)
t+h] = e−2ηte−ηh

E

[∫

(−∞,t]
eηs dAs

∫

(−∞,t+h]
eηs dAs

]

− E

[∫

(−∞,t]
e−η(t−s) dAs

]
E

[∫

(−∞,t+h]
e−η(t+h−s) dAs

]

= e−2ηte−ηh


E



(∫

(−∞,t]
eηs dAs

)2



+ E

[∫

(−∞,t]
eηs dAs

∫ t+h

t
eηs dAs

]
− m2

1

η2

(∫

ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2

=: e−2ηte−ηh(E1 + E2) − m2
1

η2

(∫

ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2

. (4.6.8)

For E1 we can use integration by parts (see [80, Eq. I.4.45]) together with [118,
Thms. II.19 and VI.29] and Lemma 4.6.5 to obtain

E1 = 2E

[∫

(−∞,t]

(∫

(−∞,s)
eηr dAr

)
eηs dAs

]
+ E

[∫

(−∞,t]
e2ηs d[A,A]s

]

= 2m1

∫

ΦL

∫

(−∞,t]
E

[(∫

(−∞,s]
eηr dAr

)
V ϕ

s

]
eηsϕ ds π(dϕ)



4.6. Proofs and auxiliary results 145

+m2

∫

ΦL

∫

(−∞,t]
e2ηsϕ2

E[(V ϕ
s )2] ds π(dϕ)

= 2m1

∫

ΦL

∫

(−∞,t]
g(s, ϕ)eηsϕ ds π(dϕ) +

m2

2η
e2ηt

∫

ΦL

ϕ2
E[(V ϕ

0 )2]π(dϕ), (4.6.9)

where g(s, ϕ) := E

[
V ϕ

s

∫
(−∞,s] eηr dAr

]
. Then again using integration by parts, Lem-

mata 4.6.3 and 4.6.5 and Equations (4.2.4), (4.2.6), (4.2.20) and (4.2.11), we obtain

g(s, ϕ) = E

[∫

(−∞,s]

∫

(−∞,r)
eηu dAu dV ϕ

r

]
+ E

[∫

(−∞,s]
V ϕ

r−eηr dAr

]

+ E

[∫

(−∞,s]
eηr d[A, V ϕ]r

]

= E

[∫

(−∞,s]

(∫

(−∞,r]
eηu dAu

)
(β − ηV ϕ

r ) dr

]
+ E

[∫

(−∞,s]
V ϕ

r−eηr dAr

]

+ E

[∫

(−∞,s]

(∫

(−∞,r)
eηu dAu

)
ϕV ϕ

r− dSr

]
+ E

[∫

(−∞,s]
eηr d[A, V ϕ]r

]

= βm1

∫

(−∞,s]

∫

(−∞,r]
eηu du dr

∫

ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃)

+ (m1ϕ− η)
∫

(−∞,s]
g(r, ϕ) dr

+m1

∫

(−∞,s]
eηr dr

∫

ΦL

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃)

+m2ϕ
∫

(−∞,s]
eηr dr

∫

ΦL

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃)

=
eηs

η

(
m1β

η

∫

ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃) + (m1 +m2ϕ)

∫

ΦL

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃)

)

+ Ψ(1, ϕ)
∫

(−∞,s]
g(r, ϕ) dr

=
eηs

η
C(ϕ) + Ψ(1, ϕ)

∫

(−∞,s]
g(r, ϕ) dr,

with

C(ϕ) :=
∫

ΦL

C(ϕ, ϕ̃)π(dϕ̃),

C(ϕ, ϕ̃) := −m1

η
Ψ(1, ϕ)ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ] + (m1 +m2ϕ)ϕ̃E[V ϕ

0 V
ϕ̃

0 ].

Solving this integral equation yields g(s, ϕ) = C(ϕ)eηs

η−Ψ(1,ϕ)
. Inserting this result in (4.6.9)



146 4. Superposition of COGARCH processes

gives

E1 =
m1

η
e2ηt

∫

ΦL

ϕC(ϕ)
η − Ψ(1, ϕ)

π(dϕ) +
m2

2η
e2ηt

∫

ΦL

ϕ2
E[(V ϕ

0 )2]π(dϕ).

Let us turn to E2 and use the notation G
(3) = (G(3)

t )t∈R for the augmented nat-
ural filtration of ΛL. Now taking conditional expectation with respect to G(3)

t and
observing that V ϕ, V̄ (3) as well as A are all adapted to G

(3), we obtain

E2 = E

[(∫

(−∞,t]
eηs dAs

)
E

[∫ t+h

t

∫

ΦL

eηsϕV ϕ
s− ΛS(ds, dϕ)

∣∣∣∣∣G
(3)
t

]]
.

Observing that the restriction of ΛS on (t, t+ h] is independent of Ft, we have

E2 = E

[(∫

(−∞,t]
eηs dAs

)
m1

∫

ΦL

∫

(t,t+h]
eηsϕE[V ϕ

s−|G(3)
t ] ds π(dϕ)

]
.

According to [88, Eq. (4.5)] we have E[V ϕ
s−|G(3)

t ] = (V ϕ
t − E[V ϕ

0 ])e(s−t)Ψ(1,ϕ) + E[V ϕ
0 ]

for s > t. So we get

E2 = m1E



(∫

(−∞,t]
eηs dAs

)

×
∫

ΦL

∫

(t,t+h]
eηsϕ

(
(V ϕ

t − E[V ϕ
0 ])e(s−t)Ψ(1,ϕ) + E[V ϕ

0 ]
)

ds π(dϕ)




= m1

∫

ΦL

ϕE

[
V ϕ

t

∫

(−∞,t]
eηs dAs

] ∫

(t,t+h]
eηse(s−t)Ψ(1,ϕ) ds π(dϕ)

+m1E

[∫

(−∞,t]
eηs dAs

] ∫

ΦL

ϕE[V ϕ
0 ]
∫

(t,t+h]
eηs(1 − e(s−t)Ψ(1,ϕ)) ds π(dϕ)

=
∫

ΦL

g(t, ϕ)eηt(em1ϕh − 1)π(dϕ) +m2
1

∫

(−∞,t]
eηs ds

∫

ΦL

ϕE[V ϕ
0 ]π(dϕ)

×
∫

ΦL

ϕE[V ϕ
0 ]eηt

(
eηh − 1
η

− em1ϕh − 1
m1ϕ

)
π(dϕ)

= e2ηt

(∫

ΦL

C(ϕ)
η − Ψ(1, ϕ)

(em1ϕh − 1)π(dϕ) +
m2

1

η2
(eηh − 1)

(∫

ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2

−m1

η

∫

ΦL

ϕE[V ϕ
0 ]π(dϕ)

∫

ΦL

E[V ϕ
0 ](em1ϕh − 1)π(dϕ)

)
.
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Now inserting the results for E1 and E2 in (4.6.8), we obtain

Cov[V̄ (3)
t , V̄

(3)
t+h]

= e−ηh

(
m1

η

∫

ΦL

ϕC(ϕ)
η − Ψ(1, ϕ)

π(dϕ) +
m2

2η

∫

ΦL

ϕ2
E[(V ϕ

0 )2]π(dϕ)

)

+
∫

ΦL

C(ϕ)
η − Ψ(1, ϕ)

(eΨ(1,ϕ)h − e−ηh)π(dϕ) − m2
1

η2
e−ηh

(∫

ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2

− m1

η

∫

ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃)

∫

ΦL

E[V ϕ
0 ](eΨ(1,ϕ)h − e−ηh)π(dϕ)

=
∫

ΦL

∫

ΦL

(
C(ϕ, ϕ̃)

η − Ψ(1, ϕ)
− m1

η
ϕ̃E[V ϕ̃

0 ]E[V ϕ
0 ]

)
eΨ(1,ϕ)h π(dϕ)π(dϕ̃)

+ e−ηh
∫

ΦL

∫

ΦL

(
m1ϕC(ϕ, ϕ̃)
η(η − Ψ(1, ϕ))

+
m2ϕ

2
E[(V ϕ

0 )2]
2η

− C(ϕ, ϕ̃)
η − Ψ(1, ϕ)

−m2
1

η2
ϕϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ] +

m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

)
π(dϕ)π(dϕ̃), (4.6.10)

where using Proposition 4.3.11 together with Equations (4.2.4) and (4.6.1) gives

C(ϕ, ϕ̃)
η − Ψ(1, ϕ)

− m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

= − m1Ψ(1, ϕ)ϕ̃E[V ϕ
0 ]E[V ϕ̃

0 ]
η(η − Ψ(1, ϕ))

+
(m1 +m2ϕ)ϕ̃E[V ϕ

0 V
ϕ̃

0 ]
η − Ψ(1, ϕ)

− m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

=
(m1 +m2ϕ)ϕ̃
η − Ψ(1, ϕ)

E[V ϕ
0 V

ϕ̃
0 ] − m1ϕ̃

η(η − Ψ(1, ϕ))
E[V ϕ

0 ]E[V ϕ̃
0 ](Ψ(1, ϕ) + η − Ψ(1, ϕ))

=
η + Ψ(1, ϕ̃) + h(ϕ, ϕ̃) − Ψ(1, ϕ) − Ψ(1, ϕ̃)

η − Ψ(1, ϕ)
E[V ϕ

0 V
ϕ̃

0 ] − η + Ψ(1, ϕ̃)
η − Ψ(1, ϕ)

E[V ϕ
0 ]E[V ϕ̃

0 ]

=

(
1 +

h(ϕ, ϕ̃)
η − Ψ(1, ϕ)

)
E[V ϕ

0 V
ϕ̃

0 ] −
(

1 +
Ψ(1, ϕ) + Ψ(1, ϕ̃)

η − Ψ(1, ϕ)

)
E[V ϕ

0 ]E[V ϕ̃
0 ]

= Cov[V ϕ
0 , V

ϕ̃
0 ], (4.6.11)

while for the second part of (4.6.10) we have by Equations (4.2.4), (4.2.11) and
(4.2.13)
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m1ϕC(ϕ, ϕ̃)
η(η − Ψ(1, ϕ))

+
m2ϕ

2
E[(V ϕ

0 )2]
2η

− C(ϕ, ϕ̃)
η − Ψ(1, ϕ)

− m2
1

η2
ϕϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

+
m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

=
Ψ(1, ϕ)C(ϕ, ϕ̃)
η(η − Ψ(1, ϕ))

+

(
Ψ(2, ϕ) − 2Ψ(1, ϕ)

)

2η
E[(V ϕ

0 )2] − m1ϕ̃Ψ(1, ϕ)
η2

E[V ϕ
0 ]E[V ϕ̃

0 ]

=: F1 + F2 + F3. (4.6.12)

Now observe that by (4.2.12) and (4.2.11)

F2 =
Ψ(2, ϕ)

2η
E[(V ϕ

0 )2] − Ψ(1, ϕ)
η

E[(V ϕ
0 )2] = −β

η
E[V ϕ

0 ] +
β

η

E[(V ϕ
0 )2]

E[V ϕ
0 ]

,

while

F3 = −(Ψ(1, ϕ̃) + η)Ψ(1, ϕ)
η2

E[V ϕ
0 ]E[V ϕ̃

0 ]

= −β2

η2
+

Ψ(1, ϕ)
η

Cov[V ϕ
0 , V

ϕ̃
0 ] − Ψ(1, ϕ)

η
E[V ϕ

0 V
ϕ̃

0 ]

= −β2

η2
− β

η

Cov[V ϕ
0 , V

ϕ̃
0 ]

E[V ϕ
0 ]

+
β

η

E[V ϕ
0 V

ϕ̃
0 ]

E[V ϕ
0 ]

.

On the other hand we obtain by similar means

Ψ(1, ϕ)C(ϕ, ϕ̃) =
(m1 +m2ϕ)ϕ̃β2(Ψ(1, ϕ) + Ψ(1, ϕ̃))

h(ϕ, ϕ̃)Ψ(1, ϕ̃)
− m1β

2ϕ̃Ψ(1, ϕ)
ηΨ(1, ϕ̃)

=
β2

ηΨ(1, ϕ̃)h(ϕ, ϕ̃)

(
η(m1 +m2ϕ)ϕ̃(Ψ(1, ϕ) + Ψ(1, ϕ̃))

−m1ϕ̃Ψ(1, ϕ)h(ϕ, ϕ̃)
)

=
β2(η − Ψ(1, ϕ))
ηΨ(1, ϕ̃)h(ϕ, ϕ̃)

(
h(ϕ, ϕ̃)Ψ(1, ϕ̃) + η(Ψ(1, ϕ) + Ψ(1, ϕ̃))

)

such that by Proposition 4.3.11

F1 =
β2

η2
− β

η

E[V ϕ
0 V

ϕ̃
0 ]

E[V ϕ
0 ]

.

Finally inserting (4.6.11) and (4.6.12) with the obtained formulas for F1, F2 and F3
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in (4.6.10) gives

Cov[V̄ (3)
t , V̄

(3)
t+h] =

∫

ΦL

∫

ΦL


Cov[V ϕ

0 , V
ϕ̃

0 ]eΨ(1,ϕ)h + e−ηh


− β

η
E[V ϕ

0 ] +
β

η

E[(V ϕ
0 )2]

E[V ϕ
0 ]

− β

η

Cov[V ϕ
0 , V

ϕ̃
0 ]

E[V ϕ
0 ]




 π(dϕ)π(dϕ̃),

which yields the result. ✷

Proof of Proposition 4.3.19. To show the assertion for κ < κ̄ we use the fact
that P[V̄ (3)

0 > x] ≤ P[V ϕ̄
0 > x] and proceed as in the proof of Proposition 4.3.5. For

the other cases, observe that

V̄
(3)

0
d=
β

η
+
∫

R+

∫

ΦL

e−ηtϕV ϕ
t− ΛS(dt, dϕ) =

∞∑

i=1

e−ηTiϕiV
ϕi

Ti−
∆STi

,

where (Ti)i∈N are the jump times of S and (ϕi)i∈N is an i.i.d. sequence with common
distribution π which is also independent of S. We start by proving that, if I is a
measurable subset of ΦL with π(I) =: p > 0 and ϕ ∈ ΦL, then there are constants
0 < C∗(ϕ, p), C∗(ϕ, p) < ∞, only dependent on I via p, with

C∗(ϕ, p) = lim inf
x→∞

xκ(ϕ)P
[ ∑

ϕi∈I

e−ηTiϕV ϕ
Ti−

∆STi
> x

]

≤ lim sup
x→∞

xκ(ϕ)P
[ ∑

ϕi∈I

e−ηTiϕV ϕ
Ti−

∆STi
> x

]
= C∗(ϕ, p) (4.6.13)

and moreover, if p → 0, then C∗(ϕ, p), C∗(ϕ, p) → 0.
We abbreviate the sum in (4.6.13) by V (ϕ, I) or V (I). Since the sequence (ϕi)i∈N

is independent of everything else, the distribution of V (I) only depends on p, which
means that the constants C∗(ϕ, p) =: C∗(p) and C∗(ϕ, p) =: C∗(p) only depend on
p. Also, they are obviously decreasing in p. Hence, for the claimed convergence to 0,
it suffices to show C∗(2−n) ≤ ((1+2−κ(ϕ))/2)nC(ϕ) for all n ∈ N0, where C(ϕ) is the
tail constant of V ϕ

0 as in the proof of Proposition 4.3.5. The case n = 0 corresponds
to V (I) d= V ϕ

0 and the statement is clear. For n ≥ 1, find a set I ′ disjoint with I

such that π(I ′) = π(I) = 2−n and therefore π(J) = 2−(n−1) for J = I ∪ I ′. Since

P[V (J) > x] = P[V (I) + V (I ′) > x] ≥ 2P[V (I) > x] − P[V (I) > x, V (I ′) > x]

≥ 2P[V (I) > x] − P[V (J) > 2x],
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we have by induction

C∗(2−n) = lim sup
x→∞

xκ(ϕ)P[V (I) > x] ≤ 1 + 2−κ(ϕ)

2
C∗(2−(n−1)).

It remains to show that C∗(p) < ∞ and C∗(p) > 0 for all p > 0. Again by mono-
tonicity, the first inequality is obvious and in the second inequality we only need
to consider p = 1/n. To this end, partition ΦL into n disjoint sets (Ik)k=1,...,n, each
with π(Ik) = 1/n. Then observe that

P[V ϕ
0 > x] ≤ P[V (I1) > x/n or . . . or V (In) > x/n] ≤ nP[V (I1) > x/n],

which implies

C∗(1/n) = lim inf
x→∞

xκ(ϕ)P[V (I1) > x] ≥ Cn−(κ(ϕ)+1) > 0.

Let us come back to the main line of the proof of Proposition 4.3.19. If ϕ < ϕ̄,
then we have by the above

lim inf
x→∞

xκP[V̄ (3)
0 > x] ≥ lim inf

x→∞
xκP

[
V (ϕ, [ϕ, ϕ̄]) > x

]
→ ∞

for all κ > κ(ϕ) and therefore, by the same argument as in the proof of Proposi-
tion 4.3.5, for all κ > κ̄.

Next, consider the case κ = κ̄ and p̄ = 0. Then, again by the above and the proof
of [89, Lemma 2]

lim sup
x→∞

xκ̄P[V̄ (3)
0 > x] ≤ lim sup

x→∞
xκ̄P

[
V (ϕ, (0, ϕ]) + V (ϕ̄, (ϕ, ϕ̄]) > x

]

= lim sup
x→∞

xκ̄P
[
V (ϕ̄, (ϕ, ϕ̄]) > x

]
= C∗(ϕ̄, π((ϕ, ϕ̄])),

which converges to 0 as ϕ → ϕ̄. For the case p̄ > 0 first decompose

V̄
(3)

0 =
β

η
+
∑

ϕi 6=ϕ̄

e−TiϕiV
ϕi

Ti−
∆STi

+ V (ϕ̄, {ϕ̄}) =:
β

η
+ Z + V (ϕ̄, {ϕ̄})

and observe that lim supx→∞ x
κ̄P[Z > x] = 0 by the results so far. Reading along

the lines of the proof of [89, Lemma 2], we obtain

lim inf
x→∞

xκ̄P[V̄ (3)
0 > x] = lim inf

x→∞
xκ̄P[V (ϕ̄, {ϕ̄}) > x] = C∗(ϕ̄, p̄),

lim sup
x→∞

xκ̄P[V̄ (3)
0 > x] = lim sup

x→∞
xκ̄P[V (ϕ̄, {ϕ̄}) > x] = C∗(ϕ̄, p̄),

which finishes the proof. ✷
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4.6.4 Proofs for Section 4.4

Proof of Theorem 4.4.1. First observe that the assumption that π has support
in Φ(κ)

L implies E

[
(V̄ (1)

t )κ
]
< ∞. Therefore, E[Lϕ1

1 ] = 0 implies

E[∆rG
(1)
t ] = E

[∫

(t,t+r]

√
V̄

(1)
s dLϕ1

s

]
= 0.

Next assume E[L2
1] < ∞. Using integration by parts and the fact that G(1) has

stationary increments, we have

E[(∆rG
(1)
t )2] = E[(G(1)

r )2] = 2E

[∫

(0,r]
G

(1)
s−

√
V̄

(1)
s− dLϕ1

s

]
+ E

[∫

(0,r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s

]

= 0 + Var[L1]E[V̄ (1)
0 ]r,

which, together with Proposition 4.3.12 and the relation between S and L in (4.2.1),
gives the stated formula. Furthermore, for h ≥ r > 0 we have, in view of the above
computations and again using integration by parts,

Cov[∆rG
(1)
t ,∆rG

(1)
t+h] = E

[
∆rG

(1)
t ∆rG

(1)
t+h

]

= E

[∫

(0,t+h+r]
1(t,t+r](s)

√
V̄

(1)
s− dLϕ1

s

∫

(0,t+h+r]
1(t+h,t+h+r](u)

√
V̄

(1)
u− dLϕ1

u

]

= E

[∫

(0,t+h+r]
1(t,t+r](s)1(t+h,t+h+r](s)V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s

]

+ E

[∫

(0,t+h+r]

(∫

(0,u]
1(t,t+r](s)

√
V̄

(1)
s− dLϕ1

s

)
1(t+h,t+h+r](u)

√
V̄

(1)
u− dLϕ1

u

]

+ E

[∫

(0,t+h+r]

(∫

(0,u]
1(t+h,t+h+r](s)

√
V̄

(1)
s− dLϕ1

s

)
1(t,t+r](u)

√
V̄

(1)
u− dLϕ1

u

]

= 0.

To compute the covariance of the squared increments, let G
(1) = (G(1)

t )t≥0 denote
the augmented natural filtration of (Lϕi)i∈N and observe that

E

[
(∆rG

(1)
0 )2(∆rG

(1)
h )2

]
= E

[
E

[
(∆rG

(1)
0 )2(∆rG

(1)
h )2|G(1)

r

]]

= E

[
(∆rG

(1)
0 )2

E

[
(∆rG

(1)
h )2|G(1)

r

]]
,
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where again by integration by parts

E

[
(∆rG

(1)
h )2|G(1)

r

]
= E



(∫

(h,h+r]

√
V̄

(1)
s dLϕ1

s

)2
∣∣∣∣∣∣
G(1)

r




= 2E

[∫

(h,h+r]

(∫

(0,s]

√
V̄

(1)
u− dLϕ1

u

)√
V̄

(1)
s− dLϕ1

s

∣∣∣∣∣G
(1)
r

]

+ E

[∫

(h,h+r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s

∣∣∣∣∣G
(1)
r

]

= 0 + E[L2
1]
∫

(h,h+r]
E[V̄ (1)

s− |G(1)
r ] ds.

Next, for s > r we obtain, using the notation as in the proof of Proposition 4.3.11,

E

[
V̄ (1)

s |G(1)
r

]
=
∫

Φ
(1)
L

E

[
V ϕ

s |G(1)
r

]
π(dϕ) =

∫

Φ
(1)
L

E

[
(Aϕ

r,sV
ϕ

r +Bϕ
r,s)|G(1)

r

]
π(dϕ)

=
∫

Φ
(1)
L

(
E[Aϕ

r,s]V
ϕ

r + E[Bϕ
r,s]
)
π(dϕ)

=
∫

Φ
(1)
L

(
e(s−r)Ψ(1,ϕ)V ϕ

r + E[V ϕ
0 ]
(
1 − e(s−r)Ψ(1,ϕ)

))
π(dϕ).

Together with the preceding computations, this yields

Cov[(∆rG
(1)
0 )2, (∆rG

(1)
h )2]

= E

[
(∆rG

(1)
0 )2

E[L2
1]
∫

(h,h+r]
E[V̄ (1)

s− |G(1)
r ] ds

]
− E

[
(∆rG

(1)
0 )2

]
E

[
(∆rG

(1)
h )2

]

= E[L2
1]E

[
(∆rG

(1)
0 )2

∫

(h,h+r]

∫

Φ
(1)
L

(
e(s−r)Ψ(1,ϕ)V ϕ

r

+ E[V ϕ
0 ]
(
1 − e(s−r)Ψ(1,ϕ)

) )
π(dϕ) ds

]
−
(
E

[
(∆rG

(1)
0 )2

])2

= E[L2
1]E

[
(∆rG

(1)
0 )2

∫

Φ
(1)
L

(
1

Ψ(1, ϕ)

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

)
(V ϕ

r − E[V ϕ
0 ])

+ rE[V ϕ
0 ]

)
π(dϕ)

]
−
(
E

[
(∆rG

(1)
0 )2

])2

= E[L2
1]
∫

Φ
(1)
L

1
Ψ(1, ϕ)

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

)

×
(
E[(∆rG

(1)
0 )2V ϕ

r ] − E[(∆rG
(1)
0 )2]E[V ϕ

r ]
)
π(dϕ)

+ E[(∆rG
(1)
0 )2]rE[L2

1]
∫

Φ
(1)
L

E[V ϕ
0 ]π(dϕ) −

(
E

[
(∆rG

(1)
0 )2

])2
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= E[L2
1]
∫

Φ
(1)
L

1
Ψ(1, ϕ)

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

)
Cov[(∆rG

(1)
0 )2, V ϕ

r ]π(dϕ).

It remains to prove Cov[(∆rG
(1)
0 )2, V ϕ

r ] ≥ 0 with strict inequality if π({ϕ}) > 0 in
order to obtain the claimed positivity of the covariance of the squared increments.
Again using integration by parts, we get

(∆rG
(1)
0 )2 =

(∫

(0,r]

√
V̄

(1)
s− dLϕ1

s

)2

= 2Mr +
∫

(0,r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s,

where

Mr :=
∫

(0,r]

√
V̄

(1)
s−

(∫

(0,s)

√
V̄

(1)
u− dLϕ1

u

)
dLϕ1

s

satisfies E[Mr] = 0 due to E[L1] = 0 and

E[MrV
ϕ

r ] = E

[∫

(0,r]
Ms(β − ηV ϕ

s ) ds

]
+ E

[∫

(0,r]
Ms−ϕV

ϕ
s− dSϕ

s

]
+ E

[∫

(0,r]
V ϕ

s− dMs

]

+ E

[
[V ϕ,M ]r

]

= Ψ(1, ϕ)
∫

(0,r]
E[MsV

ϕ
s ] ds+ E

[
[V ϕ,M ]r

]
. (4.6.14)

Applying
∫
R
y3 νL(dy) = 0 and the independence of Lϕ and Lϕ1 , if ϕ 6= ϕ1, we have

E

[
[V ϕ,M ]r

]
= ϕE

[∫

(0,r]
V ϕ

s−

√
V̄

(1)
s−

(∫

(0,s)

√
V̄

(1)
u− dLϕ1

u

)
d[Lϕ1 , Sϕ]s

]

=





0 if ϕ 6= ϕ1

ϕ
∫

R

y3 νL(dy)
∫

(0,r]
E

[
V ϕ

s−

√
V̄

(1)
s−

(∫

(0,s)

√
V̄

(1)
u− dLϕ1

u

)]
ds if ϕ = ϕ1

= 0 (4.6.15)

Thus, (4.6.14) together with the fact that E[M0V
ϕ

0 ] = 0 implies that E[MrV
ϕ

r ] = 0
for all r ≥ 0. As a consequence, we have

Cov[(∆rG
(1)
0 )2, V ϕ

r ] = Cov

[
2Mr +

∫

(0,r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s, V ϕ

r

]

= E

[
V ϕ

r

∫

(0,r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s

]
− E[V ϕ

1 ]E

[∫

(0,r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s

]

= E

[
V ϕ

r

∫

(0,r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s

]
− rE[L2

1]E[V̄ (1)
0 ]E[V ϕ

0 ],
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where an application of the integration by parts formula yields

f(r) := E

[
V ϕ

r

∫

(0,r]
V̄

(1)
s− d[Lϕ1 , Lϕ1 ]s

]

= E[L2
1]
∫

(0,r]
E[V ϕ

s V̄
(1)

s ] ds+ β
∫

(0,r]
E

[∫

(0,s]
V̄

(1)
u− d[Lϕ1 , Lϕ1 ]u

]
ds

+ Ψ(1, ϕ)
∫

(0,r]
E

[
V ϕ

s

∫

(0,s]
V̄

(1)
u− d[Lϕ1 , Lϕ1 ]u

]
ds+ E

[∫

(0,r]
V̄

(1)
s− d

[
Sϕ1 , V ϕ

]
s

]

= E[L2
1]E[V ϕ

0 V̄
(1)

0 ]r + βE[L2
1]E[V̄ (1)

0 ]
r2

2
+ Ψ(1, ϕ)

∫

(0,r]
f(s) ds

+ 1{ϕ=ϕ1}ϕ
∫

R

y2 νS(dy)E[V ϕ
0 V̄

(1)
0 ]r,

f(0) = 0.

Solving this integral equation yields (m2 :=
∫
R
y2 νS(dy))

f(r) =
(E[L2

1] + 1{ϕ=ϕ1}ϕm2)E[V ϕ
0 V̄

(1)
0 ]Ψ(1, ϕ)(eΨ(1,ϕ)r − 1)

Ψ(1, ϕ)2

+
βE[L2

1]E[V̄ (1)
0 ](−Ψ(1, ϕ)r + eΨ(1,ϕ)r − 1)

Ψ(1, ϕ)2
,

which by (4.2.11) yields the claimed positive correlation, since

Cov[(∆rG
(1)
0 )2, V ϕ

r ] = f(r) − E[L2
1]E[V ϕ

0 ]E[V̄ (1)
0 ]r

=
(E[L2

1] + 1{ϕ=ϕ1}ϕm2)E[V ϕ
0 V̄

(1)
0 ](eΨ(1,ϕ)r − 1)

Ψ(1, ϕ)
+
βE[L2

1]E[V̄ (1)
0 ](eΨ(1,ϕ)r − 1)

Ψ(1, ϕ)2

=
eΨ(1,ϕ)r − 1

Ψ(1, ϕ)

(
E[L2

1]Cov[V ϕ
0 , V̄

(1)
0 ] + 1{ϕ=ϕ1}ϕ

∫

R

y2 νS(dy)E[V ϕ
0 V̄

(1)
0 ]

)

≥ 0 (4.6.16)

with Cov[V ϕ
0 , V̄

(1)
0 ] = π({ϕ})Var[V ϕ

1 ]. ✷

Proof of Theorem 4.4.2. The proof works similarly to the proof of Theorem 4.4.1
with the obvious changes, when independence of the single COGARCH processes was
used (e.g. (4.6.15)). Also replace G

(1) by G
(2) = (G(2)

t )t∈R, the augmented natural
filtration of L, and notice that Cov[V ϕ

0 , V̄
(2)

0 ] =
∫

Φ
(2)
L

Cov[V ϕ
0 , V

ϕ̃
0 ]π(dϕ̃) > 0 by

Proposition 4.3.11. ✷
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Proof of Theorem 4.4.3. Analogously to the proof of Theorem 4.4.1, one can
show that (1) and (2) hold and that for (3) we have

E

[
(∆rG

(3)
0 )2(∆rG

(3)
h )2

]
= E[L2

1]E

[
(∆rG

(3)
0 )2

∫

(h,h+r]
E[V̄ (3)

s− |G(3)
r ] ds

]
, (4.6.17)

where from (4.3.29) and [88, Eq. (4.5)] we have

E[V̄ (3)
s− |G(3)

r ]

= e−η(s−r)V̄ (3)
r + βe−ηs

∫

(r,s)
eηudu+ E

[∫

(r,s)

∫

Φ
(2)
L

e−η(s−u)ϕV ϕ
u− ΛS(du, dϕ)

∣∣∣∣∣G
(3)
r

]

= e−η(s−r)V̄ (3)
r +

β

η
(1 − e−η(s−r)) + E[S1]

∫

(r,s]

∫

Φ
(2)
L

e−η(s−u)ϕE[V ϕ
u−|G(3)

r ]π(dϕ) du

= e−η(s−r)V̄ (3)
r +

β

η
(1 − e−η(s−r))

+ E[S1]
∫

(r,s]

∫

Φ
(2)
L

e−η(s−u)ϕ
(
(V ϕ

r − E[V ϕ
0 ])e(u−r)Ψ(1,ϕ) + E[V ϕ

0 ]
)
π(dϕ) du.

Applying (4.2.11) we obtain

E[S1]
∫

(r,s]

∫

Φ
(2)
L

e−η(s−u)ϕ
(
(V ϕ

r − E[V ϕ
0 ])e(u−r)Ψ(1,ϕ) + E[V ϕ

0 ]
)
π(dϕ) du

= E[S1]
∫

Φ
(2)
L


ϕ(V ϕ

r − E[V ϕ
0 ])

ϕE[S1]

(
eΨ(1,ϕ)(s−r) − e−η(s−r)

)

+
ϕE[V ϕ

0 ]
η

(
1 − e−η(s−r)

)

 π(dϕ)

=
∫

Φ
(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ) − e−η(s−r)

(∫

Φ
(2)
L

V ϕ
r π(dϕ) − E[V̄ (3)

0 ]

)

+
(
1 − e−η(s−r)

) ∫

Φ
(2)
L

E[S1]ϕ
η

−β
Ψ(1, ϕ)

π(dϕ)

=
∫

Φ
(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ) − e−η(s−r)

(∫

Φ
(2)
L

V ϕ
r π(dϕ) − E[V̄ (3)

0 ]

)

− β

η

(
1 − e−η(s−r)

) ∫

Φ
(2)
L

(
1 +

η

Ψ(1, ϕ)

)
π(dϕ)

=
∫

Φ
(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ) − e−η(s−r)
∫

Φ
(2)
L

V ϕ
r π(dϕ)

− β

η

(
1 − e−η(s−r)

)
+ E[V̄ (3)

0 ]
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such that

E[V̄ (3)
s− |G(3)

r ] = e−η(s−r)

(
V̄ (3)

r −
∫

Φ
(2)
L

V ϕ
r π(dϕ)

)

+
∫

Φ
(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ) + E[V̄ (3)
0 ].

Inserting this into (4.6.17) yields

Cov[(∆rG
(3)
0 )2, (∆rG

(3)
h )2]

= E[L2
1]E

[
(∆rG

(3)
0 )2

∫

(h,h+r]
E[V̄ (3)

s− |G(3)
r ] ds

]
− E[(∆rG

(3)
0 )2]2

= E[L2
1]E

[
(∆rG

(3)
0 )2

(
e−ηh − e−η(h−r)

−η

(
V̄ (3)

r −
∫

Φ
(2)
L

V ϕ
r π(dϕ)

))

+
∫

Φ
(2)
L

eΨ(1,ϕ)h − eΨ(1,ϕ)(h−r)

Ψ(1, ϕ)
(V ϕ

r − E[V ϕ
0 ])π(dϕ)

]

= E[L2
1]

[
e−ηh − e−η(h−r)

−η Cov[(∆rG
(3)
0 )2, V̄ (3)

r ]

+
∫

Φ
(2)
L

(
eΨ(1,ϕ)h − eΨ(1,ϕ)(h−r)

Ψ(1, ϕ)
− e−ηh − e−η(h−r)

−η

)
Cov[(∆rG

(3)
0 )2, V ϕ

r ]π(dϕ)

]
.

Since Ψ(1, ϕ) > −η and the function x 7→ (ehx − e(h−r)x)/x is increasing in x for
x < 0, it remains to prove Cov[(∆rG

(3)
0 )2, V̄ (3)

r ] > 0 and Cov[(∆rG
(3)
0 )2, V ϕ

r ] > 0.
For the latter one, proceed as in the proof of Theorem 4.4.1 and note that
Cov[V ϕ

0 , V̄
(3)

0 ] > 0. Indeed, using integration by parts,

V ϕ
r V̄

(3)
r = V ϕ

0 V̄
(3)

0 +
∫

(0,r]
V̄

(3)
s− dV ϕ

s +
∫

(0,r]
V ϕ

s− dV̄ (3)
s + [V ϕ, V̄ (3)]r

= V ϕ
0 V̄

(3)
0 +

∫

(0,r]
V̄ (3)

s (β − ηV ϕ
s ) ds+

∫

(0,r]
V̄

(3)
s− ϕV

ϕ
s− dSs+

+
∫

(0,r]
V ϕ

s−(β − ηV̄ (3)
s ) ds+

∫

(0,r]

∫

Φ
(2)
L

V ϕ
s−ϕ̃V

ϕ̃
s− ΛS(ds, dϕ̃)

+ ϕ
∫

(0,r]

∫

Φ
(2)
L

∫

R+

V ϕ
s−ϕ̃V

ϕ̃
s−y

2 µΛS

(ds, dϕ̃, dy),

with [V ϕ, V̄ (3)]r as given in Lemma 4.6.5. Taking expectations, differentiating with
respect to r and using the stationarity of V ϕV̄ (3), which is a consequence of
Lemma 4.6.3, we find that (m1 :=

∫
R+
y νS(dy) and m2 :=

∫
R+
y2 νS(dy))

β(E[V̄ (3)
0 ] +E[V ϕ

0 ]) + (ϕm1 − 2η)E[V ϕ
0 V̄

(3)
0 ] + (m1 +ϕm2)

∫

Φ
(2)
L

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃) = 0,
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which implies that

Cov[V̄ (3)
0 , V ϕ

0 ]

=
β(E[V̄ (3)

0 ] + E[V ϕ
0 ]) + (m1 + ϕm2)

∫
Φ

(2)
L

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃)

η − Ψ(1, ϕ)
− E[V̄ (3)

0 ]E[V ϕ
0 ].

To show the positivity of this term, we can equally well consider its product with
η − Ψ(1, ϕ), which by (4.2.11), (4.3.30) and (4.6.1) can be simplified to
∫

Φ
(2)
L

(m1 + ϕm2)ϕ̃Cov[V ϕ
0 , V

ϕ̃
0 ]π(dϕ̃) + β(E[V̄ (3)

0 ] + E[V ϕ
0 ]) + h(ϕ, ϕ̃)E[V ϕ

0 ]E[V̄ (3)
0 ]

=
∫

Φ
(2)
L

(m1 + ϕm2)ϕ̃Cov[V ϕ
0 , V

ϕ̃
0 ]π(dϕ̃) + β2m2

∫

Φ
(2)
L

ϕϕ̃

Ψ(1, ϕ)Ψ(1, ϕ̃)
π(dϕ̃)

> 0.

Finally, using the same methods as in the proof of Theorem 4.4.1, one can derive
the following analogue of Equation (4.6.16):

Cov[(∆rG
(3)
0 )2, V̄

(3)
0 ] = g(r) − E[L2

1]E[V̄0]2r,

where

g(r) = e−ηr

(∫

(0,r]
eηs

(
a+ bs+

∫

Φ
(2)
L

m1ϕf(ϕ, s)π(dϕ)

)
ds

)
, r ≥ 0,

a = E[L2
1]E[(V̄ (3)

0 )2] +
∫

R+

y2 νS(dy)
∫

Φ
(2)
L

ϕE[V ϕ
0 V̄0]π(dϕ),

b = βE[L2
1]E[V̄ (3)

0 ] and f(ϕ, r) = E

[
V ϕ

r

∫

(0,r]
V̄

(3)
u− d[L,L]u

]
.

The positivity now follows from

Cov[(∆rG
(3)
0 )2, V̄

(3)
0 ] ≥ eηr

∫

(0,r]
e−ηs dsE[L2

1]E[(V̄ (3)
0 )2] − E[L2

1]E[V̄ (3)
0 ]2r

and the fact that eηr
∫

(0,r] e−ηs ds = (eηr − 1)/η > r for all r > 0. ✷
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Chapter 5:

Partial mean field limits in heterogeneous

networks

5.1 Introduction

The application of mean field theory to large systems of stochastic differential equa-
tions (SDEs) was initiated by McKean’s seminal work [100, 101, 102]. In the classical
case, an N -dimensional interacting particle system is governed by SDEs of the form

dXN
i (t) =

1
N − 1

∑

j 6=i

(
XN

j (t) −XN
i (t)

)
dt+ dBi(t), t ∈ R+,

XN
i (0) = Xi(0), i = 1, . . . , N, (5.1.1)

with independent starting random variables Xi(0) and independent Brownian mo-
tions Bi. As the number of particles increases, the pair dependencies in this coupled
system decrease with order 1/N such that a law of large numbers applies (see [131,
Thm. 1.4]). Defining

dX̄N
i (t) =

1
N − 1

∑

j 6=i

(
E[X̄N

j (t)] − X̄N
i (t)

)
dt+ dBi(t), t ∈ R+,

X̄N
i (0) = Xi(0), i = 1, . . . , N, (5.1.2)

there exists for every T ∈ R+ a constant C(T ) ∈ R+ independent of N such that

sup
i=1,...,N

E

[
sup

t∈[0,T ]
|XN

i (t) − X̄N
i (t)|2

]1/2

≤ C(T )√
N
. (5.1.3)

In other words, in a large system, the behaviour of a fixed number of particles evolv-
ing according to (5.1.1) is well described by the so-called mean field system (5.1.2),
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where all stochastic processes are stochastically independent, a phenomenon that is
called propagation of chaos. Thus, mean field theory provides a model simplification
by reducing a many-body problem as in (5.1.1) to a one-body problem as in (5.1.2)
with explicit L2-estimates on the occurring error. Moreover, it can be shown that the
empirical measure of the particles satisfies a large deviation principle as N → ∞,
see [50, 96]. There exists a huge literature dealing with this or related topics, and we
only mention the review papers [70, 131], where one can also find further references.

The systems (5.1.1) and (5.1.2) describe statistically equal or exchangeable par-
ticles: any permutation of the indices i ∈ {1, . . . , N} leads to a system with the same
distribution (cf. [135]). In particle physics such an assumption is certainly reasonable
and underlies many other similar models of mean field type, see for example the two
treatises [132, 133] for numerous examples.

However, when mean field models are considered in other disciplines than statisti-
cal mechanics, the homogeneity assumption may not be appropriate in all situations.
For instance, in [33, 78] the processes (5.1.1) are used to model the wealth of trad-
ing agents in an economy, who are typically far from being equal in their trading
behaviour (there are “market makers” and others). Similarly, the stochastic Cucker-
Smale model that is considered in [1, 31] describes the “flocking” phenomenon of
individuals. Also here it only seems natural that one or several “leaders” may have
a distinguished role, setting them apart from the remaining system. Moreover, in
systemic risk modelling the particles represent financial institutions that interact
with each other through mutual exposures, see [23, 66, 87] for some approaches in
this direction. The different players in the banking sector vary considerably in size
and importance, which is obvious by the fact that some banks have been considered
as too big to fail during the financial crisis since 2007. Further fields of applications
where mean field theory is used for interacting particle systems include genetic algo-
rithms [54], neuron modelling (see [67] and references therein), epidemics modelling
[95] and Monte Carlo integration [53].

Partly triggered by the examples in the previous paragraph, this research aims to
investigate deviations from homogeneous systems to heterogeneous systems. First,
we allow for different interaction rates between pairs (instead of 1/(N − 1) through-
out), and second, we permit the subsistence of a core–periphery structure in the
mean field limit, that is, some particles may have a non-vanishing influence even
when the system becomes large. Another restriction we will relax in our analysis
concerns the driving noises of the interacting SDEs: instead of independence we ex-
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plicitly allow for different degrees of dependence in the noise terms, even asymptot-
ically. Until now there exists only a very small amount of literature that generalizes
(5.1.1) in these directions: in [36, 87, 109, 110] the particles are divided into finitely
many groups within which they are homogeneous (and the number of members in
both groups must tend to infinity for the law of large numbers), and [38], where
one major agent exists and propagation of chaos for the minor agents is considered
conditioned on the major one. Other papers that consider general heterogeneous sys-
tems include [52], where the propagation of chaos result is assumed, and [63, 64, 71],
where a law of large numbers for the empirical measure is proved under various con-
ditions. Regarding the last-mentioned papers, two aspects are worthwhile to notice.
First, assuming that finitely many core particles do exist in the system, their con-
tribution to the empirical distribution becomes less and less for N → ∞ although
their impact may very well stay high. Thus, in this case the empirical distribution
may fail to describe the behaviour of the system as a whole. Second, whereas for
homogeneous systems the convergence of the empirical measure is equivalent to the
existence of a mean field limit in the sense of (5.1.3) (see e.g. [131, Prop. 2.2(i)]),
this is no longer true for heterogeneous systems. For core particles the left-hand side
of (5.1.3) need not converge to 0 even if the empirical distribution converges, say,
to a deterministic limit. For example, in the case of [38] with one core particle, an
unconditional propagation of chaos result does not hold for this particle without
further assumptions (even if it does for the periphery particles).

Due to the two aforementioned reasons, we will not work with the empirical dis-
tribution in this paper but state and prove mean field limit theorems for the particles
on the process level. In Section 5.2 we start by introducing the precise interacting
particle model we want to investigate. Then we define a corresponding partial mean
field model, for which we prove a law of large numbers type result (Theorem 5.3.1)
with explicit convergence rates in Section 5.3. It generalizes (5.1.3) by taking into
account the different kinds of heterogeneity due to varying pair interaction rates, a
distinction between important/core and less important/periphery pair relationships,
and interdependencies between the driving noise terms.

The main difficulty here is to identify the correct rates that govern the distance
between the original system and the mean field approximation. As we will see, a total
of twelve rates is required, each expressing a connectivity property of the underlying
interaction and correlation networks. In order to elucidate the meaning of each
rate, we discuss three exemplary situations in detail. In Section 5.3.1, in particular
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in Example 5.3.4, we show that in the quasi-homogeneous case all twelve rates
typically boil down to a single rate like in (5.1.3). In Section 5.3.2, we explain why
the prerequisites for Theorem 5.3.1 in the heterogeneous case are essentially sparsity
assumptions on the particle network, which are satisfied for instance if this network
is generated from a preferential attachment mechanism, see Section 5.3.3. In order
to show the last statement, we have to derive the asymptotics of the maximal in-
and out-degrees of directed preferential attachment graphs, see Lemma 5.3.8. This
result may be of independent interest and generalizes that of [105] for undirected
graphs.

The second main result of our paper is a large deviation principle for the differ-
ence XN − X̄N , which is presented in Section 5.4 as Theorem 5.4.1. In contrast to
homogeneous systems, where such a principle is proved for the empirical measure
(see [50, 96]), we work on the process level again and therefore need to require the
existence of all exponential moments. Furthermore, due to heterogeneity, we do not
obtain an explicit formula for the large deviation rate function, but a variational
representation as Fenchel-Legendre transform. The final Section 5.5 contains the
proofs.

5.2 The model

Before we introduce the model we analyze in this paper, we list a number of notations
that will be employed throughout the paper.

R+ the set [0,∞) of positive real numbers;
[z] the largest integer smaller or equal to z ∈ R;
N the natural numbers {1, 2, . . .};
A, x the typical notation for a matrix A = (Aij : i, j ∈ N) ∈ R

N×N and
a vector x = (xi : i ∈ N)′ ∈ R

N, with all binary relations such as
≤, or operations relying on them such as the absolute value | · | or
taking the supremum being understood componentwise when applied
to matrices and vectors;

(·)′ the transposition operator;
AB,Ax, eA matrix–matrix and matrix–vector multiplication and the matrix ex-

ponential, all defined in analogy to the finite-dimensional case, pro-
vided that the involved series converge;

x.y the entrywise product x.y = (xiyi : i ∈ N)′ for x, y ∈ R
N;
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|A|∞, |x|∞ |A|∞ := supi∈N

∑
j∈N |Aij| and |x|∞ := supi∈N |xi| for A ∈ R

N×N and
x ∈ R

N;
|A|d |A|d := supi∈N |Aii| for matrices A;
A× the matrix A with all diagonal entries set to 0;
I the identity matrix in R

N×N or R
d×d for some d ∈ N;

Lp the space Lp(Ω,F ,P), p ∈ [1,∞], endowed with the topology in-
duced by ‖X‖Lp := E[|X|p]1/p, and to be understood entrywise when
applied to matrix- or vector-valued random variables;

E[X],
Var[X]

componentwise expectation and variance for random variables in
R

N×N or R
N;

Cov[X,Y ],
Cov[X]

the matrices whose (ij)-th entry is Cov[Xi, Yj] and Cov[Xi, Xj], re-
spectively, when X and Y are random vectors;

x∗ x∗(t) := sups∈[0,t] |x(s)| for t ∈ R+ and functions x : R+ → R, again
considered entrywise when x takes values in R

N×N or R
N;

Dd
T , D∞T the space of R

d-valued (resp. RN-valued) functions on [0, T ] whose
coordinates are all càdlàg functions;

Cd
T , C∞T elements of Dd

T and D∞T where each coordinate is a continuous func-
tion;

ACd
T , AC∞T elements of Dd

T and D∞T where each coordinate is an absolutely con-
tinuous function;

Dd
T , D∞T the σ-field on Dd

T (resp. D∞T ) generated by the evaluation maps
πt(x) = x(t), x ∈ Dd

T (resp. D∞T ), for t ∈ [0, T ];
U ,J1 the uniform topology and the Skorokhod topology on Dd

T and D∞T (in
the latter case they are defined via the product of the d-dimensional
topologies);

Md
T the space of all (θ1, . . . , θd) where each θi is a signed Borel measure

on [0, T ] of finite total variation |θi|([0, T ])

Given a stochastic basis (Ω,F ,F = (F(t))t∈R+ ,P) satisfying the usual hypotheses
of completeness and right-continuity, we investigate a network described by the
following interacting particle system (IPS):

dXi(t) =
∞∑

j=1

aij(t)Xj(t) dt+
∞∑

j=1

σij(t)Xj(t−) dLi(t) +
∞∑

j=1

fij(t) dBj(t)

+
∞∑

j=1

ρij(t) dMj(t), t ∈ R+, i ∈ N, (5.2.1)
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subjected to some F(0)-measurable R
N-valued initial condition X(0). We will also

use the more compact form

dX(t) = a(t)X(t) dt+σ(t)X(t−).dL(t)+f(t) dB(t)+ρ(t) dM(t), t ∈ R+, (5.2.2)

for (5.2.1). The ingredients hereby satisfy the following conditions:

• The two measurable functions t 7→ a(t) and t 7→ σ(t) are decomposed into
a = aC +aP and σ = σC +σP such that for all T ∈ R+, i, j ∈ N and ⋄ ∈ {C,P}

A⋄ij(T ) := sup
t∈[0,T ]

|a⋄ij(t)| < ∞, Σ⋄ij(T ) := sup
t∈[0,T ]

|σ⋄ij(t)| < ∞. (5.2.3)

We define Aij(T ) := AC
ij(T ) + AP

ij(T ) and Σij(T ) := ΣC
ij(T ) + ΣP

ij(T ).

• L is an R
N-valued F-Lévy process (i.e. an F-adapted Lévy process whose in-

crements are independent of the past σ-fields in F) with finite second moment
and mean 0.

• M is an R
N-valued square-integrable martingale on any finite time interval,

and B is an R
N-valued predictable process such that each coordinate process

is of locally finite variation. We assume that B and the predictable quadratic
variation process 〈M,M〉 have progressively measurable Lebesgue densities
b : Ω × R+ → R

N and c : Ω × R+ → R
N×N.

• f is the sum of two deterministic measurable functions fC, fP : R+ → R
N×N,

and ρ the sum of two predictable processes ρC, ρP : Ω × R+ → R
N×N.

Of course, the stochastic integrals behind (5.2.2) must make sense: each single
integral must be well defined and the infinite sums must converge in an appropriate
sense. We do not go into details at this point, which can be found in the general
reference [28], but only point out that a sufficient condition for the existence of the
infinite-dimensional integral is the existence of the one-dimensional ones plus the
summability of their L2-norms.

Next, we shall explain the rationale behind the IPS model (5.2.2) and the specific
choices for the involved processes. By the definition given in (5.2.1), the processes
(Xi : i ∈ N)′ are coupled in two ways in general: first, they interact internally with
each other through a drift term (determined by a) and a volatility term (determined
by σ in conjunction with L); and second, they are exposed to the same external
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forces (given by B and M), where f and ρ determine the level of influence these
noises have on the particles. In particular, by tuning the parameters a, σ, f and ρ

appropriately, one obtains a large range of possible dependence structures for the
model (5.2.2).

The question this paper aims to attack is how and to which degree the complexity
of the high-dimensional IPS (5.2.2) can be reduced. Of course, if all entries of the
matrices a, σ, f and ρ are zero or large, there is no hope in simplifying the model.
Therefore, our focus lies on particle networks, where only a small number of pairs
have strong interaction, while the majority of links in the system are relatively
weak. This is implemented in the decomposition of a, σ, f and ρ into a core matrix
(superscript C) and a periphery matrix part (superscript P). It is important to
notice that our distinction between core and periphery is not made on the basis of
the particles, but on the linkages between them. This allows for greater modelling
flexibility since it includes multi-tier networks in our analysis.

In the presence of non-negligible pair interactions it is natural to apply the
mean field limit only to the links encoded by the periphery matrices. Therefore, we
propose the following partial mean field system (PMFS) as an approximation to the
IPS (5.2.2):

dX̄(t) =
(
aC(t)X̄(t) + aP(t)E[X̄(t)]

)
dt+

(
σC(t)X̄(t−) + σP(t)E[X̄(t)]

)
.dL(t)

+ fC(t)b(t) dt+ fP(t)E[b(t)] dt+ ρC(t) dM(t), t ∈ R+,

X̄(0) = X(0). (5.2.4)

Written for each row i ∈ N, this is equivalent to:

dX̄i(t) =
∞∑

j=1

(
aC

ij(t)X̄j(t) + aP
ij(t)E[X̄j(t)]

)
dt

+
∞∑

j=1

(
σC

ij(t)X̄j(t−) + σP
ij(t)E[X̄j(t)]

)
dLi(t)

+
∞∑

j=1

(
fC

ij (t)bj(t) + fP
ij(t)E[bj(t)]

)
dt+

∞∑

j=1

ρC
ij(t) dMj(t), t ∈ R+,

X̄i(0) = Xi(0). (5.2.5)

It is clear that a priori there is no reason for (5.2.4) to be a good approximation
for (5.2.2). Therefore, in the next section, we will give precise L2-estimates in terms
of the model coefficients for the difference between the IPS and the PMFS. Moreover,
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we will determine conditions under which this difference becomes small such that
we can indeed speak of a law of large numbers.

5.3 Law of large numbers

The first main result of this paper assesses the distance between the original IPS
(5.2.2) and the PMFS (5.2.4). To formulate this we have to introduce some further
notation. For T ∈ R+ we define

va(T ) := sup
i∈N

∞∑

j=1

Aij(T ), va,d(T ) := sup
i∈N

AC
ii(T ), vσ(T ) := sup

i∈N

∞∑

j=1

Σij(T ),

vL := sup
i∈N

‖Li(1)‖L2 , vb(T ) := sup
i∈N

sup
t∈[0,T ]

‖bi(t)‖L2 , vX := sup
i∈N

‖Xi(0)‖L2 ,

vf (T ) := sup
i∈N

sup
t∈[0,T ]

∞∑

j=1

(|fC
ij (t)| + |fP

ij(t)|),

vρ,M(T ) := sup
i∈N

sup
t∈[0,T ]



∞∑

j,k=1

∣∣∣E[ρC
ij(t)ρ

C
ik(t)cjk(t)]

∣∣∣+
∣∣∣E[ρP

ij(t)ρ
P
ik(t)cjk(t)]

∣∣∣




1/2

, (5.3.1)

and introduce the rates

r1(T ) :=
∣∣∣∣A

P(T )|Cov[X(0)]|(AP(T ))′
∣∣∣∣
1/2

d
, r2(T ) :=

∣∣∣∣Σ
P(T )|Cov[X(0)]|(ΣP(T ))′

∣∣∣∣
1/2

d
,

r3(T ) :=
∣∣∣∣A

P(T )|Cov[L(1)]|(AP(T ))′
∣∣∣∣
1/2

d
, r4(T ) :=

∣∣∣∣Σ
P(T )|Cov[L(1)]|(ΣP(T ))′

∣∣∣∣
1/2

d
,

r5(T ) := sup
t∈[0,T ]

∣∣∣∣f
P(t)Cov[b(t)](fP(t))′

∣∣∣∣
1/2

d
, r6(T ) := sup

t∈[0,T ]

∣∣∣∣E
[
ρP(t)c(t)(ρP(t))′

] ∣∣∣∣
1/2

d
,

r7(T ) :=
∣∣∣AP(T )AC(T )×

∣∣∣
∞
, r8(T ) :=

∣∣∣ΣP(T )AC(T )×
∣∣∣
∞
,

r9(T ) := sup
s,t∈[0,T ]

∣∣∣∣A
P(T )|fC(s)Cov[b(s), b(t)](fC(t))′|(AP(T ))′

∣∣∣∣
1/2

d
,

r10(T ) := sup
s,t∈[0,T ]

∣∣∣∣Σ
P(T )|fC(s)Cov[b(s), b(t)]fC(t))′|(ΣP(T ))′

∣∣∣∣
1/2

d
,

r11(T ) := sup
t∈[0,T ]

∣∣∣∣A
P(T )|E[ρC(t)c(t)(ρC(t))′]|(AP(T ))′

∣∣∣∣
1/2

d
,

r12(T ) := sup
t∈[0,T ]

∣∣∣∣Σ
P(T )|E[ρC(t)c(t)(ρC(t))′]|(ΣP(T ))′

∣∣∣∣
1/2

d
. (5.3.2)
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Theorem 5.3.1. Fix some T ∈ R+ and grant the general model assumptions as
given in Section 5.2. Furthermore, assume that each of the numbers in (5.3.1) is
finite. Then (5.2.2) and (5.2.4) have a pathwise unique solution X and X̄, respec-
tively, and there exist constants K(T ) and Kι(T ), ι = 1, . . . , 12, which depend on
the model coefficients only through the numbers in (5.3.1), such that

sup
i∈N

∥∥∥(Xi − X̄i)∗(T )
∥∥∥

L2
≤ K(T )

12∑

ι=1

Kι(T )rι(T ). (5.3.3)

The proof of Theorem 5.3.1 will be given in Section 5.5. Compared to the ho-
mogeneous case of [131], we have to take care of several kinds of heterogeneous
dependencies in the system: different weights on the edges, the distinction between
core and periphery links, and possibly dependent driving noises. This explains why
we have twelve rates in contrast to a single one in (5.1.3).

Remark 5.3.2 Our calculations furnish the following constants in (5.3.3):

K(T ) :=
√

2 exp((T 1/2va(T ) + 2vσ(T )vL)2T ), (5.3.4)

and

K1(T ) := E(T )T, K2(T ) := 2vLE(T )T 1/2,

K3(T ) :=
2
3
E(T )vσ(T )V (T )T 3/2, K4(T ) :=

√
2vLE(T )vσ(T )V (T )T,

K5(T ) := T, K6(T ) := 2T 1/2,

K7(T ) :=
1
2
E(T )V (T )T 2, K8(T ) :=

2√
3
vLE(T )V (T )

K9(T ) :=
1
2
E(T )T 2, K10(T ) :=

2√
3
vLE(T )T 3/2,

K11(T ) :=
2
3
E(T )T 3/2, K12(T ) :=

√
2vLE(T )T,

where

E(T ) := eva,d(T ),

V (T ) :=
√

2e(va(T )T 1/2+2vLvσ(T ))2T
(
vX + vf (T )vb(T )T + 2vρ,M(T )T 1/2

)
.

✷
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Remark 5.3.3 There are several possibilities to extend Theorem 5.3.1 without
substantially new arguments.

(1) It is straightforward to show that Theorem 5.3.1 can be extended to the case
where the interaction matrices a and σ are replaced by (still deterministic but
possibly history-dependent) linear functionals.

(2) Suppose that L = ΓL0 with some matrix Γ ∈ R
N×N and some other Lévy process

L0 with finite variance and mean zero. Furthermore, Γ = ΓC+ΓP and accordingly
LC = ΓCL0 and LP = ΓPL0. What one would like to do when passing to the
PMFS (5.2.4) is to replace L there by LC. How does this affect the estimate
(5.3.3) in Theorem 5.3.1? A similar analysis as for Theorem 5.3.1 reveals that
an extra rate

r13 :=
∣∣∣∣Γ

PCov[L̃(1)](ΓP)′
∣∣∣∣
1/2

d

appears with constant K13 := 2vσ(T )V (T )T 1/2.

(3) Two further generalizations are discussed in Remark 5.3.5 and Remark 5.3.7
below. ✷

It is obvious that the usefulness of Theorem 5.3.1 depends on the sizes of the
rates in (5.3.2): only if they are small, the PMFS (5.2.4) is a good approximation to
the IPS (5.2.2). Moreover, there are two different views on Theorem 5.3.1: first, if
we assume that the underlying network of the IPS is static, it gives an upper bound
on the L2-error when the IPS is approximated by the PMFS; and second, if the
interaction network (i.e. a, σ, f and ρ) is assumed to evolve according to an index
N ∈ N, Theorem 5.3.1 gives conditions under which the PMFS converges in the
L2-sense to the IPS when N → ∞ (this happens precisely when all rates in (5.3.2)
converge to 0 as N → ∞, and the numbers in (5.3.1) are majorized independently
of N). It is also this second point of view that is the traditional one in mean field
analysis and that justifies the title “Law of large numbers” for the current section.

In the following subsections we will study three examples of dynamical networks
and the corresponding conditions for the law of large numbers to hold for the PMFS.

5.3.1 Propagation of chaos

We first discuss the phenomenon of chaos propagation, and our results will partic-
ularly extend the results of [66, Sect. 17.3], [87, Cor. 4.1] and [131, Thm. 1.4] by
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including inhomogeneous weights in the model. The setting is as follows:

(1) The underlying network changes with N ∈ N. In particular, we will index X

and X̄, the coefficients a, σ, f and ρ as well as the rates in (5.3.2) by N .

(2) All structural assumptions in Section 5.2 hold and the numbers in (5.3.1), some
of which now depend on N , are uniformly bounded in N .

(3) The core matrices aN,C(t), σN,C(t), fN,C(t) and ρN,C(t) are diagonal matrices for
all times t ∈ R+.

(4) For each N ∈ N, (Li, bi,Mi, ρ
N,C
ii , XN

i (0) : i ∈ N) is a sequence of independent
random elements (note that the noises indexed by a fixed i may depend on each
other).

(5) For each T ∈ R+ the following rates converge to 0 as N → ∞:

rN
a (T ) := sup

i∈N



∞∑

j=1

(AN,P
ij (T ))2




1/2

, rN
σ (T ) := sup

i∈N



∞∑

j=1

(ΣN,P
ij (T ))2




1/2

,

rN
f (T ) := sup

i∈N
sup

t∈[0,T ]



∞∑

j=1

(fN,P
ij (t))2




1/2

,

rN
ρ,M(T ) := sup

i∈N
sup

t∈[0,T ]



∞∑

j=1

E[(ρN,P
ij (t))2cjj(t)]




1/2

.

These hypotheses ensure that all pair dependencies between the processesXN
i , i ∈ N,

vanish when N → ∞. As a result, in the PMFS, the independence of the particles i
at t = 0 propagates through all times t > 0: the PMFS decouples in contrast to the
original IPS.

Example 5.3.4 In classical mean field theory as in the references mentioned in the
introduction, the N -th network consists of exactly N particles. In other words, aN

ij ,
σN

ij , fN
ij , ρN

ij and XN
i (0) are all 0 for i > N or j > N . Moreover, all pair interaction

is assumed to be of order 1/N , that is, we have for each T ∈ R+

AN,P
ij (T ) =

Aij(T )
N

, ΣN,P
ij (T ) =

Σij(T )
N

, i, j ∈ N, (5.3.5)
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where Aij(T ),Σij(T ) ∈ R+ are uniformly bounded in i, j ∈ N. Furthermore, the
driving noises are supposed to be independent for different particles and to enter
the PMFS completely. This means that (3) and (4) hold and that fN,P = ρN,P = 0.
It is easily shown that under these specifications the rates in (5) above converge to
0 as N → ∞: rN

ρ,M(T ) and rN
f (T ) are simply 0, and rN

a (T ) and rN
σ (T ) are of order

1/
√
N as N → ∞. ✷

We still need to show that under assumptions (1)–(5) above, all twelve rates
rN

ι (T ), ι = 1, . . . , 12, converge to 0 as N → ∞. Since AN,C(T ) is diagonal, we have
AN,C(T )× = 0, and since the driving noises for different particles are independent,
all covariances (or covariations) vanish outside the diagonal. Thus, we have

rN
1 (T ) ≤ vXr

N
a (T ), rN

2 (T ) ≤ vXr
N
σ (T ), rN

3 (T ) ≤ vLr
N
a (T ),

rN
4 (T ) ≤ vLr

N
σ (T ), rN

5 (T ) ≤ vb(T )rN
f (T ), rN

6 (T ) = rN
ρ,M(T ),

rN
7 (T ) = 0, rN

8 (T ) = 0, rN
9 (T ) ≤ vb(T )vf (T )rN

a (T ),

rN
10(T ) ≤ vb(T )vf (T )rN

σ (T ), rN
11(T ) ≤ vρ,M(T )rN

a (T ), rN
12(T ) ≤ vρ,M(T )rN

σ (T ),

which all converge to 0 as N → ∞ by hypothesis. The following remark continues
Remark 5.3.3 regarding further generalizations of Theorem 5.3.1.

Remark 5.3.5 In the setting of this subsection there are actually no core relation-
ships between different particles: every pair interaction rate tends to 0 with large
N . If we even assume that there is no dependence at all originating from the noises
(i.e. fN,P = ρN,P = 0 above), the propagation of chaos result can easily be extended
to nonlinear Lipschitz interaction terms (suitably bounded in N) instead of the ma-
trices aN and σN . As a matter of fact, the classical method of [131, Thm. 1.4] can
be applied with obvious changes. ✷

5.3.2 Sparse interaction versus sparse correlation

The propagation of chaos result in the last subsection was based on two core hy-
potheses: asymptotically vanishing pair interaction rates and the independence of
the particles’ driving noises. The motivation for establishing Theorem 5.3.1, how-
ever, is to deal with situations where these two conditions are precisely not satisfied,
that is, when the coefficients a, σ, f and ρ of (5.2.2) are decomposed into a core
and a periphery part in a non-trivial way. In fact, in this subsection we discuss a
typical situation where the full generality of Theorem 5.3.1 is required. Before that,
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we recall that we consider networks indexed by N ∈ N, and that we are interested
in the cases when the rates in (5.3.2) vanish when N becomes large.

General assumptions

The following list of hypotheses describes the setting in this subsection.

(1) The statements (1) and (2) of Section 5.3.1 hold.

(2) M is an R
N-valued F-Lévy process, implying that cij(t) = Cov[Mi(1),Mj(1)]t.

(3) At stage N , the system consists of N0 + N particles with some fixed N0 ∈ N,
that is, we have aN

ij = σN
ij = fN

ij = ρN
ij = XN

i (0) = 0 as soon as i > N0 + N or
j > N0 +N .

(4) C := {1, . . . , N0} contains the core particles, PN := {N0 + 1, . . . , N} the periph-
ery particles, whose number increases with N . Correspondingly, aN,C and σN,C

(resp. aN,P and σN,P) characterize the influence of the core (resp. periphery)
particles in the system. In other words, j ∈ C implies that aN,P

ij (t) = σN,P
ij (t) = 0

for all i ∈ N and t ∈ R+, while j ∈ PN implies aN,C
ij (t) = σN,C

ij (t) = 0 for all
i 6= j and t ∈ R+. We assume that the diagonals of aN and σN are completely
contained in aN,C and σN,C, respectively. It follows that the partitions of aN and
σN can be illustrated as (omitting all zero rows and columns, and using ∗ for
all potentially non-zero elements):

N0 N


∗ · · · ∗ 0 · · · · · · 0
...

. . .
...

...
. . . . . .

...
∗ · · · ∗ 0 · · · · · · 0
∗ · · · ∗ ∗ 0 · · · 0
...

. . .
... 0

. . . . . .
...

...
. . .

...
...

. . . . . . 0
∗ · · · ∗ 0 · · · 0 ∗




aN,C and σN,C

,

N0 N


0 · · · 0 ∗ · · · · · · ∗
...

. . .
...

...
. . . . . .

...
0 · · · 0 ∗ · · · · · · ∗
0 · · · 0 0 ∗ · · · ∗
...

. . .
... ∗ . . . . . .

...
...

. . .
...

...
. . . . . . ∗

0 · · · 0 ∗ · · · ∗ 0




aN,P and σN,P

.

(5) There is a finite number of systematic noises, namely B1, . . . BN00 and
M1, . . . ,MN00 for some fixed N00 ∈ N independent of N , that are impor-
tant to a large part of the system, and there are idiosyncratic noises BN00+i
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and MN00+i that only affect the specific particle i ∈ {1, . . . , N}. Thus, we
assume for all i = 1, . . . , N and t ∈ R+ that ρN,P

ij (t) = fN,P
ij (t) = 0 for

j ∈ {1, . . . , N00} ∪ {N00 + i} and ρN,C
ij (t) = fN,C

ij (t) = 0 for the other values
of j. Hence, fN and ρN are of the form

N00 N00+N


∗ · · · ∗ ∗ 0 · · · 0
...

. . .
... 0

. . . . . . 0
...

. . .
...

...
. . . . . . 0

∗ · · · ∗ 0 · · · 0 ∗




fN,C and ρN,C

,

N00 N00+N


0 · · · 0 0 ∗ · · · ∗
...

. . .
... ∗ . . . . . .

...
...

. . .
...

...
. . . . . . ∗

0 · · · 0 ∗ · · · ∗ 0




fN,P and ρN,P

.

(6) We have for all T ∈ R+

AN,P
ij (T ) =

φN
ij (T )
RN

A

, ΣN,P
ij (T ) =

ψN
ij (T )
RN

Σ

, i, j = 1, . . . , N, (5.3.6)

where the rates RN
A , R

N
Σ ∈ R+ satisfy

RN
A√
N

→ ∞,
RN

Σ√
N

→ ∞, as N → ∞, (5.3.7)

and the numbers φN
ij (T ), ψN

ij (T ) ∈ R+ satisfy

φ(T ) := sup
i,j,N∈N

φN
ij (T ) < ∞, ψ(T ) := sup

i,j,N∈N
ψN

ij (T ) < ∞.

Note that we always have φN
ii (T ) = ψN

ii (T ) = 0.

(7) For different i, j ∈ N, the noisesMi andMj as well as Bi and Bj are uncorrelated.

(8) The rates rN
f (T ) and rN

ρ,M(T ) from Section 5.3.1 converge to 0 as N → ∞ for
all T ∈ R+.

(9) For each N ∈ N, the initial values (XN
i (0) : i ∈ PN) are mutually uncorrelated.

gets large, the influence of the core particles is non-negligible. On the contrary,
there is a large number of so-called periphery particles, which scarcely interact with
each other and are connected to the core particles with only a small amount of
linkages. The number of periphery particles grows with the system and their indi-
vidual influence on the system is asymptotically vanishing. Similarly, we distinguish
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between two types of noises within the components of BN and MN : systematic
noises, which may have a strong impact on a large number of particles even when N
increases, and idiosyncratic noises, which mainly affect single particles and whose
effect on the other particles diminish when N grows.

Conditions (4) and (5) determine the core–periphery structure of the IPS. In
practice, a fixed distinction between core and periphery particles is often not pos-
sible because a large number of particles may be engaged in some strong and some
weak linkages at the same time. As already pointed out, this does not affect the
applicability of Theorem 5.3.1, since the concept of core and periphery refers to the
linkages there. The choice of fixed core and periphery particles in this subsection is
only a special case thereof, intended to simplify the arguments below. Next, regard-
ing (6), one can take RN

A , R
N
Σ = N for concreteness, which can then be compared

with Section 5.3.1. Furthermore, let us point out that assumption (7) is only for
convenience (namely that fN and ρN carry the whole correlation structure of the
noises). Indeed, it is always possible (under our second-moment conditions) to re-
place any stochastic integral ρ · M , where M is a Lévy process, with an arbitrary
correlation structure by ρ′ · M ′ where M ′ consists of mutually uncorrelated Lévy
processes (of course, (8) would change accordingly). Finally, if XN(0) is indepen-
dent of the driving noises, (9) can be enforced simply by switching to the conditional
distribution given XN(0).

Under (1)–(9) it is easy to prove that the rates rN
1 (T ), rN

2 (T ), rN
5 (T ) and rN

6 (T )
converge to 0 when N → ∞. For the latter two, this can be deduced in the same way
as in Section 5.3.1 because the driving noises of different particles are uncorrelated.
For the other two, we use that the starting random variables of periphery particles
are assumed to be uncorrelated. Hence, we have by (5.3.7), as N → ∞, that

rN
1 (T ) = sup

i∈N


 ∑

j∈PN

(AN,P
ij (T ))2Var[XN

j (0)]




1/2

≤ φ(T )vX

√
N

RN
A

→ 0,

rN
2 (T ) = sup

i∈N


 ∑

j∈PN

(ΣN,P
ij (T ))2Var[XN

j (0)]




1/2

≤ ψ(T )vX

√
N

RN
Σ

→ 0.

However, the nine conditions above are in general not sufficient to imply the
smallness of the other rates in (5.3.2). We need to add extra hypotheses.
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Sparseness assumptions

For each of the remaining rates, we further examine what type of conditions are
needed to make them asymptotically small. As we shall see, it is always a mixture
of a sparseness condition on the interaction matrices AN and ΣN and a sparseness
condition on the correlation matrices fN and ρN .

rN
3 (T ) and rN

4 (T ): We first present a counterexample to show that we have to
require further conditions. Consider the simple case where Li = L1 for all i ∈ N and
that AN,P

ij (T ) = 1/RN
A for all T ∈ R+ and i, j ∈ {1, . . . , N0 +N} with i 6= j. Then

rN
3 (T ) = sup

i∈N


 ∑

j,k∈PN\{i}

(
1
ρN

A

)2

Cov[Lj(1), Lk(1)]




1/2

= vL
N

RN
A

,

which need not to converge to 0 in general. A similar calculation can be done for
rN

4 (T ). In order to make the rates rN
3 (T ) and rN

4 (T ) small, there are basically two
options: we require the interaction matrices AN,P and ΣN,P to be sparse, or we
require the correlation matrix of L to be sparse. Any other possibility is a suitable
combination of these two.

(10a) The noises (Li : i ∈ PN) corresponding to periphery particles only have sparse
correlation (which, in particular, includes the case of mutual independence as
in Section 5.3.1). More precisely, we require

pN
L := #{(i, j) ∈ PN × PN : Cov[Li(1), Lj(1)] 6= 0}|

= o
(
(RN

A )2 ∧ (RN
Σ )2

)
(5.3.8)

for large N . Then

rN
3 (T ) = sup

i∈N


 ∑

j,k∈PN

AN,P
ij (T )AN,P

ik (T )Cov[Lj(1), Lk(1)]




1/2

≤ φ(T )vL

√
pN

L

RN
A

→ 0,

and, similarly, rN
4 (T ) → 0 as N → ∞.

(10b) The matrices AN,P(T ) and ΣN,P(T ), which describe the influence of periphery
particles on the system, are only sparsely occupied, in the sense that every
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particle in the system is only affected by a small number of periphery particles.
In mathematical terms this condition reads as

pN
A,1(T ) := sup

i∈N
#{j ∈ PN : AN,P

ij (T ) 6= 0} = o(RN
A ),

pN
Σ (T ) := sup

i∈N
#{j ∈ PN : ΣN,P

ij (T ) 6= 0} = o(RN
Σ ). (5.3.9)

In this case, we get

rN
3 (T ) = sup

i∈N


 ∑

j,k∈PN

AN,P
ij (T )AN,P

ik (T )Cov[Lj(1), Lk(1)]




1/2

≤ φ(T )vL

pN
A,1

RN
A

→ 0,

and similarly rN
4 (T ) → 0 as N → ∞.

rN
7 (T ) and rN

8 (T ): These two rates express the connectivity between core and pe-
riphery particles. In general, they will be not become small with large N . For in-
stance, if AN,C

ij (T ) = 1 for all j ∈ C and i 6= j, and AN,P
ij = 1/RN

A for all j ∈ PN and
i 6= j, then

rN
7 (T ) = sup

i∈N

∑

j∈PN

∑

k∈C

AN,P
ij (T )AN,C

jk (T ) = N0
N

RN
A

,

does not necessarily converge to 0. An analogous statement holds for rN
8 (T ). For

rN
7 (T ), rN

8 (T ) → 0 we have to require that the lower left block of AN,C, which de-
scribes the influence of core particles on periphery particles, or the matrices AN,P(T )
and ΣN,P(T ), which describe the influence of periphery particles on the system, be
sparse (or a combination thereof):

(11a) The influence of core on periphery particles is sparse. In other words, we suppose
for the maximal number of periphery particles a single core particle interacts
with through the drift:

pN
A,2 := sup

j∈C
#{i ∈ PN : AN,C

ij (T ) 6= 0} = o(RN
A ∧RN

Σ ). (5.3.10)

Then

rN
7 (T ) = sup

i∈N

∑

j∈PN

∑

k∈C

AN,P
ij (T )AN,C

jk (T ) ≤ N0φ(T )va(T )
pN

A,2

RN
A

→ 0

as well as rN
8 (T ) → 0 as N → ∞.
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(11b) AN,P(T ) and ΣN,P(T ) are sparse in the sense of (5.3.9). Then rN
7 (T ), rN

8 (T ) → 0
follow similarly.

rN
9 (T ), rN

10(T ), rN
11(T ) and rN

12(T ): Similar considerations as before show that these
four rates do not converge to 0 in general. Instead, we again need to require some
mixture of sparsely correlated driving noises and sparsely occupied matrices AN,P

and ΣN,P:

(12a) We assume that for all T ∈ R+

pN
f (T ) := sup

j∈{1,...,N00}
#{i ∈ PN : fN,C

ij 6≡ 0 on [0, T ]} = o(RN
A ∧RN

Σ ), (5.3.11)

pN
ρ (T ) := sup

j∈{1,...,N00}
#{i ∈ PN : ρN,C

ij 6≡ 0 on [0, T ]} = o(RN
A ∧RN

Σ ). (5.3.12)

Then, recalling that the components of b and M are mutually uncorrelated,

rN
9 (T ) = sup

i∈N
sup

s,t∈[0,T ]


 ∑

j,k∈PN

N00∑

l=1

AN,P
ij (T )AN,P

ik (T )
∣∣∣fN,C

jl (s)fN,C
kl (t)Cov[bl(s), bl(t)]

∣∣∣

+
∑

j∈PN

(AN,P
ij (T ))2

∣∣∣fN,C
j(N00+i)(s)f

N,C
j(N00+i)(t)Cov[bN00+i(s), bN00+i(t)]

∣∣∣




1/2

≤ φ(T )vb(T )vf (T )

√
N00p

N
f (T ) +

√
N

RN
A

→ 0,

rN
11(T ) = sup

i∈N
sup

t∈[0,T ]


 ∑

j,k∈PN

N00∑

l=1

AN,P
ij (T )AN,P

ik (T )
∣∣∣E[ρN,C

jl (t)ρN,C
kl (t)]

∣∣∣Var[Ml(1)]

+
∑

j∈PN

(AN,P
ij (T ))2

∣∣∣E[(ρN,C
j(N00+i)(t))

2]
∣∣∣Var[MN00+i(1)]




1/2

≤ φ(T )vρ,M(T )

√
N00p

N
ρ (T ) +

√
N

RN
A

→ 0,

and similarly rN
10(T ), rN

12(T ) → 0 as N → ∞.

(12b) AN,2 and ΣN,2 are sparse in the sense of (5.3.9). Then one can deduce rN
ι (T ) → 0

for ι = 9, 10, 11, 12 as before.

We conclude this subsection with two remarks.
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Remark 5.3.6 In the sparseness conditions (5.3.8)–(5.3.12) it is not essential that
the majority of entries is exactly zero. As one can see from the definition of the
rates (5.3.2), they depend continuously on the underlying matrix entries. It suffices
therefore that the matrix entries are small enough in a large proportion. ✷

Remark 5.3.7 What can be said about Theorem 5.3.1 in the general case of
nonlinear Lipschitz coefficients aN and σN , apart from the special case discussed
in Remark 5.3.5? In fact, a law of large numbers in the fashion of Theorem 5.3.1
can still be shown, but under more stringent conditions: namely we have to require
condition (10b) above in addition, with AN,P and ΣN,P now containing the Lipschitz
constants of the interaction terms. The reason is that (10b) suffices to make rN

ι

(ι ∈ {3, 4, 7, . . . , 12}) small. The remaining four rates are unrelated to aN and σN

and therefore not affected by their nonlinear structure. It is important to notice that
conditions like (10a) and (12a) are no longer sufficient to make the corresponding
rates small. The reason is that they are conditions of correlation type. Since corre-
lation is a linear measure of dependence, it is not surprising that these conditions
are not suitable for the nonlinear case. We do not go into the details here. ✷

5.3.3 Networks arising from preferential attachment

As demonstrated in the last subsection, the crucial criterion for the rates (5.3.2) in
Theorem 5.3.1 to vanish asymptotically with growing network size can be described
as a combination of sparse interaction and sparse correlation among the particles.
Condition (5.3.9) plays a distinguished role here: when valid, it implies that eight
out of twelve rates in (5.3.2) are small. Moreover, it is the key factor for a nonlin-
ear generalization of Theorem 5.3.1 to hold or not; see Remark 5.3.7. The aim of
this subsection is therefore to find algorithms for the generation of the underlying
networks such that the resulting interaction matrices satisfy (5.3.9). We will assume
that aN,P(t) = aN,P and σN,P(t) = σN,P are independent of t ∈ R+, such that also
AN,P(t) and ΣN,P(t) as well as pN

A,1(t) and pN
Σ (t) (see (5.3.9) for their definitions) are

independent of t. Furthermore, we only concentrate on pN
A,1 as the analysis for pN

Σ is
completely analogous.

We will base the creation of the IPS network on dynamical random graph mech-
anisms. Since we are mainly interested in heterogeneous graphs, we will investigate
the preferential attachment or scale-free random graph. Popularized by [10] as a
model for the world wide web network, it is by far the most successful random
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graph model in applications besides the classical homogeneous Erdős-Rényi model.
There are many similar but different constructions of preferential attachment graphs;
in the following, we rely on the construction of [32] for directed graphs. We remark
that the random graphs to be constructed will be indexed by N , corresponding to a
family of growing networks for the IPS. In particular, “time” in the random graph
process must not be confused with the time t in the IPS (5.2.2); the correct view
is rather that the IPS network has been built from the random graphs before time
t = 0, and, of course, independently of all random variables in (5.2.2).

The preferential attachment algorithm works as follows: we start with a given
graph G(0) = (V,E(0)) consisting of vertices V = N and edges E(0) = {e1, . . . , eν},
where ν ∈ N and ei stands for a directed edge between two vertices. We allow for
multiple edges and loops in our graphs. Without loss of generality, we assume that
the set of vertices in G(0) with at least one neighbour given by {1, . . . , n(0)} with
some n(0) ∈ N. Furthermore, we fix α, β, γ ∈ R+ with α+ β + γ = 1 and α+ γ > 0
and two numbers δin, δout ∈ R+. For N ∈ N we construct G(N) = (V,E(N)) from
G(N − 1) according to the following algorithm.

• With probability α, we create a new edge eν+N from v = n(N − 1) + 1 to a
node w that is already connected in G(N − 1). Here w is chosen randomly
from {1, . . . , n(N − 1)} according to the probability mass function

din
G(N−1)(w) + δin

ν +N − 1 + δinn(N − 1)
, w ∈ {1, . . . , n(N − 1)},

where din
G(v) denotes the in-degree of vertex v in a graph G. Moreover, we

define n(N) := n(N − 1) + 1 and E(N) := E(N − 1) ∪ {eν+N}.

• With probability β, a new edge eν+N from some vertex v ∈ {1, . . . , n(N − 1)}
to some w ∈ {1, . . . , n(N − 1)} is formed (the case v = w is possible). Here v
and w are chosen independently according to the probability mass functions

dout
G(N−1)(v) + δout

ν +N − 1 + δoutn(N − 1)
and

din
G(N−1)(w) + δin

ν +N − 1 + δinn(N − 1)

with v, w ∈ {1, . . . , n(N − 1)}, respectively, where dout
G (v) denotes the out-

degree of vertex v in a graph G. Moreover, we set n(N) := n(N − 1) and
E(N) := E(N − 1) ∪ {eν+N}.
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• With probability γ, a new edge eν+N from some v ∈ {1, . . . , n(N − 1)} to
w = n(N − 1) + 1 is formed. Here v is chosen randomly according to the
probability mass function

dout
G(N−1)(v) + δout

ν +N − 1 + δoutn(N − 1)
, v ∈ {1, . . . , n(N − 1)}.

We set n(N) := n(N − 1) + 1 and E(N) := E(N − 1) ∪ {eν+N}.

Evidently, we always have |E(N)| = ν + N while the number n(N) of non-isolated
vertices in G(N) is random in general.

The most important result for our purposes is the following one. We define

M in(N) := max{din
G(N)(i) : i ∈ N}, Mout(N) := max{dout

G(N)(i) : i ∈ N}, N ∈ N0,

as the maximal in-degree and out-degree in G(N), respectively.

Lemma 5.3.8. The maximum in-degree M in(N) and out-degree Mout(N) of G(N)
satisfy the following asymptotics:

cin(N)M in(N) → µin, cout(N)M in(N) → µout, N → ∞. (5.3.13)

Here the convergence to the random variables µin and µout, respectively, holds in
the almost sure as well as in the Lp-sense for all p ∈ [1,∞), and (cin(N))N∈N and
(cout(N))N∈N are sequences of random variables which can be chosen such that for
every ǫ ∈ (0, α + γ) we have a.s., as N → ∞, that

cin(N)−1 = O
(
N

α+β

1+δin(α+γ−ǫ)

)
, cout(N)−1 = O

(
N

β+γ

1+δout(α+γ−ǫ)

)
. (5.3.14)

It follows from this lemma that for every ǫ ∈ (0, α+ γ) we have a.s.

M in(N) = O
(
N

α+β

1+δin(α+γ−ǫ)

)
, Mout(N) = O

(
N

β+γ

1+δout(α+γ−ǫ)

)
, N → ∞.

In particular, if G(N) is used to model the underlying network of aN (i.e. an edge
in G(N) from i to j is equivalent to aN

ij 6= 0), we have

pN
A,1 ≤ Mout(N) = O

(
N

β+γ

1+δout(α+γ−ǫ)

)
, N → ∞.
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In other words, the first part of condition (5.3.9) holds as soon as RN
A , as specified

through (5.3.6) and (5.3.7), increases in N at least with rate

N
β+γ

1+δout(α+γ−ǫ) (5.3.15)

for some small ǫ. For example, in the classical case of Example 5.3.4 where RN
A = N ,

this is always true except in the case α = δout = 0, where all edges start from one of
the initial nodes with probability one. We conclude that in all non-trivial situations
of the preferential attachment model, the resulting networks are sparse enough for
the law of large numbers implied by Theorem 5.3.1 to be in force.

5.4 Large deviations

In Theorem 5.3.1 we have established bounds on the mean squared difference be-
tween the IPS (5.2.2) and the PMFS (5.2.4). In Sections 5.3.1–5.3.3 we have given
examples of dynamical networks in which these bounds converge to 0 as the net-
work size increases. A natural question is now whether a large deviation principle
holds as N → ∞, which would then assure that the probability of XN deviating
strongly from X̄N decreases exponentially fast in N . In the classical case of homo-
geneous networks, [50] is the first paper to prove a large deviation principle for the
empirical measures of the processes (5.1.1). For heterogeneous networks, however,
the empirical measure might no longer be a good quantity to investigate: the weight
of a particle now depends on which particle’s perspective is chosen. A sequence
of differently weighted empirical measures seems to be more appropriate, but then
their analysis becomes considerably more involved. Therefore, in this paper we take
a more direct approach and study the large deviation behaviour of the difference
XN − X̄N itself. In order to do so, we have to put stronger assumptions on the
coefficients than in the previous sections. These are as follows.

(A1) XN(0) is deterministic for each N ∈ N.

(A2) For all N ∈ N we have σN = 0. All other coefficients aN,C, aN,P, ρN,C and
ρN,P are constant in time. ρN,C and ρN,P (resp. aN,C and aN,P) only have γ(N)
(resp. Γ(N)) non-zero columns, where γ(N) forms a sequence of natural numbers
increasing to infinity and Γ(N) grows at most like exp(γ(N)).

(A3) All numbers in (5.3.1), which are indexed by N now, are bounded independently
of N .
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(A4) (Mi : i ∈ N) is a sequence of independent mean-zero Lévy processes whose Brow-
nian motion part has variance ci and whose Lévy measure is νi. Moreover, there
exists a real-valued mean-zero Lévy process M0 that dominates Mi, that is,
its characteristics c0 and ν0 satisfy ci ≤ c0 and νi(A) ≤ ν0(A) for all i ∈ N

and Borel sets A ⊆ R, and that has finite exponential moments of all orders:
E[euM0(1)] < ∞ for all u ∈ R+.

(A5) Assume that GN(t, s) := γ(N)eaN taN,PeaN,CsρN,C, s, t ∈ [0, T ], converges uni-
formly to a limit G(t, s) ∈ R

N×N:

sup
i,j∈N

sup
s,t∈[0,T ]

|Gij(t, s)| < ∞, sup
i,j∈N

sup
s,t∈[0,T ]

|GN
ij (t, s) −Gij(t, s)| → 0, N → ∞.

(A6) With RN(t) := γ(N)eaN tρN,P, t ∈ [0, T ], there exists R(t) ∈ R
N×N such that

sup
i,j∈N

sup
t∈[0,T ]

|Rij(t)| < ∞, sup
i,j∈N

sup
t∈[0,T ]

|RN
ij (t) −Rij(t)| → 0, N → ∞.

(A7) The following two quantities are finite:

q1 := lim sup
N→∞

q1(N) := lim sup
N→∞

sup
i∈N

γ(N)
∞∑

j=1

∑

k 6=j

|aN,P
ij aN,C

jk |,

q2 := lim sup
N→∞

q2(N) := lim sup
N→∞

sup
i,k∈N

γ(N)
∞∑

j=1

|aN,P
ij ρN,C

jk |.

(A8) Define for m ∈ N ∪ {0}

Ψm(u) :=
1
2
cmu

2 +
∫

R

(euz − 1 − uz) νm(dz), u ∈ R+.

We assume that the following holds for every d ∈ N: denoting for m ∈ N,
r ∈ [0, T ] and θ ∈ Md

T

Hm(θ, r) :=
∫ T

r

∫ T

s

d∑

i=1

Gim(t− s, s− r) θi(dt) ds+
∫ T

r

d∑

i=1

Rim(t− r) θi(dt),

the sequence
(∫ T

0 Ψm(Hm(θ, r)) dr
)

m∈N
is Cesàro summable, i.e. the following

limit exists:

lim
N→∞

1
γ(N)

γ(N)∑

m=1

∫ T

0
Ψm(Hm(θ, r)) dr. (5.4.1)
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Theorem 5.4.1. Let T ∈ R+. Under (A1)–(A8), the sequence (XN − X̄N)N∈N

satisfies a large deviation principle in (D∞T ,D∞T , J1) with a good rate function
I : D∞T → [0,∞], that is, for every α ∈ R+ the set {x ∈ D∞T : I(x) ≤ α} is compact
in D∞T (with respect to the J1-topology), and for every M ∈ D∞T we have

− inf
x∈int M

I(x) ≤ lim inf
N→∞

1
γ(N)

logP[XN − X̄N ∈ M ]

≤ lim sup
N→∞

1
γ(N)

logP[XN − X̄N ∈ M ] ≤ − inf
x∈cl M

I(x),

where intM and clM denote the interior and the closure of M in (D∞T , J1), respec-
tively. Moreover, the rate function I is convex, attains its minimum 0 uniquely at
the origin and is infinite for x /∈ AC∞T .

Remark 5.4.2 (1) We cannot drop the requirement σN = 0 or condition (A4) in
Theorem 5.4.1. If violated, the processes XN and X̄N will typically not have ex-
ponential moments of all order, whose existence is essential for our proof below.
This kind of problem does not arise when empirical measures are considered as
in [50, 96] for the homogeneous case.

(2) The Cesàro summability condition (A8) accounts for the possible inhomogeneity
of the coefficients and the distribution of the noises. It holds in particular for
the homogeneous case. Since a convergent series is Cesàro summable with the
same limit, it also holds when we have asymptotic homogeneity (in the sense
that the sequence inside the sum of (5.4.1) converges with m → ∞).

(3) With γ(N) = N and assumptions (A2)–(A4) in force, McKean’s example (5.1.1)
or the model considered in [87] both satisfy the assumptions of the theorem. In
McKean’s case our large deviation principle follows from that of [50] for the
empirical measure by applying the contraction principle.

5.5 Proofs

We start with some preparatory results that are needed for the proof of Theo-
rem 5.3.1.
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Lemma 5.5.1. Under the assumptions of Theorem 5.3.1 we have

sup
i∈N

∥∥∥X̄∗i (T )
∥∥∥

L2
≤ V (T ),

where V (T ) is given in Theorem 5.3.1.

Proof. It is a consequence of (5.2.4) and the Burkholder-Davis-Gundy inequality
that

∥∥∥(X̄i)∗(t)
∥∥∥

L2
≤
∥∥∥Xi(0)

∥∥∥
L2

+
∫ t

0

∞∑

j=1

Aij(T )
∥∥∥(X̄j)∗(s)

∥∥∥
L2

ds

+ 2Var[Li(1)]



∫ t

0



∞∑

j=1

Σij(T )
∥∥∥(X̄j)∗(s)

∥∥∥
L2




2

ds




1/2

+
∫ t

0

∞∑

j=1

∣∣∣fij(s)
∣∣∣
∥∥∥bj(s)

∥∥∥
L2

ds+ 2



∞∑

j,k=1

∫ t

0
E

[
ρC

ij(s)ρ
C
ik(s)cjk(s)

]
ds




1/2

for all t ∈ [0, T ] and i ∈ N. Therefore, if we define w(t) := supi∈N ‖(X̄i)∗(t)‖L2 , we
obtain

w(t) ≤ vX + vf (T )vb(T )T + 2vρ,M(T )T 1/2 + va(T )
∫ t

0
w(s) ds

+ 2vLvσ(T )
(∫ t

0
(w(s))2 ds

)1/2

≤ vX + vf (T )vb(T )T + 2vρ,M(T )T 1/2

+ (va(T )T 1/2 + 2vLvσ(T ))
(∫ t

0
(w(s))2 ds

)1/2

.

Now we square the last inequality, apply the basic estimate (a + b)2 ≤ 2(a2 + b2)
and use Gronwall’s inequality to deduce our claim, namely that

w(T ) ≤
√

2e(va(T )T 1/2+2vLvσ(T ))2T
(
vX + vf (T )vb(T )T + 2vρ,M(T )T 1/2

)
.

✷

Lemma 5.5.2. Assume that (M1(t))t∈R+ and (M2(t))t∈R+ are square-integrable mar-
tingales relative to the same filtration and (H1(t))t∈R+ and (H2(t))t∈R+ are predictable
processes that are respectively integrable with respect to M1 and M2 up to some time



184 5. Partial mean field limits in heterogeneous networks

T ∈ R+. Furthermore, suppose that supt∈[0,T ] E[H2
1 (t)] and supt∈[0,T ] E[H2

2 (t)] are
finite. Then for all s, t ∈ [0, T ] with s < t we have

E

[∫ s

0
H1(r) dM1(r)

∫ t

0
H2(u) dM2(u)

]
= E

[∫ s

0
H1(r) dM1(r)

∫ s

0
H2(u) dM2(u)

]

= E

[∫ s

0
H1(r)H2(r) d〈M1,M2〉(r)

]
.

Proof. The martingale property of M1 and M2 passes over to the stochastic in-
tegral processes. Thus, the second equality is a simple consequence of the classical
integration-by-parts formula, see I.3.17 and I.4.45 of [80]. The first equality holds in
a more general setting: for any martingales M1 and M2 relative to the same filtration,
we have

E[M1(s)M2(t)] = E

[
E[M1(s)M2(t) | F(s)]

]
= E

[
M1(s)E[M2(t) | F(s)]

]

= E[M1(s)M2(s)].

✷

Lemma 5.5.3. Let T ∈ R+ and assume the finiteness of the numbers (5.3.1). We
fix some j ∈ N throughout this lemma and define for t ∈ [0, T ]

Yj(t) := Y 1
j + Y 2

j (t) + Y 3
j (t) + Y 4

j (t) + Y 5
j (t)

:= (Xj(0) − E[Xj(0)]) +
∑

k 6=j

∫ t

0
aC

jk(s)(X̄k(s) − E[X̄k(s)]) ds

+
∞∑

k=1

∫ t

0

(
σC

jk(s)X̄k(s−) + σP
jk(s)E[X̄k(s)]

)
dLj(s)

+
∞∑

k=1

∫ t

0
fC

jk(s)(bk(s) − E[bk(s)]) ds+
∞∑

k=1

∫ t

0
ρC

jk(s) dMk(s).

Furthermore, introduce the integrals

Ij
0 [x](t) := x(t), Ij

n[x](t) :=
∫ t

0
aC

jj(s)I
j
n−1[x](s) ds, n ∈ N, (5.5.1)

where x : [0, T ] → R is a measurable function such that the integrals in (5.5.1) exist
for t ∈ [0, T ]. Then

X̄j(t) − E[X̄j(t)] =
∞∑

n=0

Ij
n[Yj](t) =

5∑

ι=1

∞∑

n=0

Ij
n[Y ι

j ](t), t ∈ [0, T ], (5.5.2)

where the sums converge with respect to the maximal L2-norm X 7→ ‖X∗(T )‖L2.
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Proof. We deduce from (5.2.4) that

X̄j(t) − E[X̄j(t)] = (Xj(0) − E[Xj(0)]) +
∑

k 6=j

∫ t

0
aC

jk(s)(X̄k(s) − E[X̄k(s)]) ds

+
∫ t

0
aC

jj(s)(X̄j(s) − E[X̄j(s)]) ds

+
∞∑

k=1

∫ t

0

(
σC

jk(s)X̄k(s−) + σP
jk(s)E[X̄k(s)]

)
dLj(s)

+
∞∑

k=1

∫ t

0
fC

jk(s)(bk(s) − E[bk(s)]) ds+
∞∑

k=1

∫ t

0
ρC

jk(s) dMk(s)

= Ij
1 [X̄j − E[X̄j]](t) + Yj(t).

Iterating this equality n times, we obtain

X̄j(t) − E[X̄j(t)] =
n−1∑

ν=0

Ij
ν [Yj](t) + Ij

n[X̄j − E[X̄j]](t), t ∈ [0, T ]. (5.5.3)

Next, observe that for any càdlàg process (X(t))t∈R+ with ‖X∗(T )‖L2 < ∞ we have

∥∥∥(Ij
ν [X])∗(T )

∥∥∥
L2

≤ ‖X∗(T )‖L2Ij
ν [1](T ) ≤ ‖X∗(T )‖L2

(AC
jj(T ))ν

ν!
,

which is summable in ν. Therefore, recalling from Lemma 5.5.1 that both Yj and
X̄j − E[X̄j] have finite maximal L2-norm, we can let n → ∞ in (5.5.3) and get

X̄j(t) − E[X̄j(t)] =
∞∑

ν=0

Ij
ν [Yj](t), t ∈ [0, T ],

which is the first assertion. The second part of (5.5.2) holds by linearity. ✷

Proof of Theorem 5.3.1. The existence and uniqueness of solutions to (5.2.2)
and (5.2.4) follow from the general theory of SDEs, see [118], Theorem V.7. Since the
numbers (5.3.1) are finite, there are no difficulties in dealing with infinite-dimensional
systems as in our case.

It follows from (5.2.2) and (5.2.4) that the difference between X and X̄ satisfies
the SDE

d(X(t) − X̄(t)) =
(
a(t)(X(t) − X̄(t)) + aP(t)(X̄(t) − E[X̄(t)])

)
dt

+
(
σ(t)(X(t−) − X̄(t−)) + σP(t)(X̄(t−) − E[X̄(t)])

)
.dL(t)

+ fP(t)(b(t) − E[b(t)]) dt+ ρP(t) dM(t), t ∈ R+,

X(0) − X̄(0) = 0.
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Thus, denoting the left-hand side of (5.3.3) by ∆(T ), we obtain from the Burkholder-
Davis-Gundy inequality and Jensen’s inequality that

∆(T ) ≤ va(T )
∫ T

0
∆(t) dt+ 2vσ(T )vL

(∫ T

0
(∆(t))2 dt

)1/2

+

∣∣∣∣∣

∫ T

0

∥∥∥aP(t)(X̄(t) − E[X̄(t)])
∥∥∥

L2
dt

∣∣∣∣∣
∞

+

∣∣∣∣∣
∥∥∥
(
σP(X̄ − E[X̄]) . L

)∗
(T )

∥∥∥
L2

∣∣∣∣∣
∞

+ T sup
t∈[0,T ]

∣∣∣∣
∥∥∥fP(t)(b(t) − E[b(t)])

∥∥∥
L2

∣∣∣∣
∞

+
∣∣∣∣
∥∥∥(ρP ·M)∗(T )

∥∥∥
L2

∣∣∣∣
∞

≤ (T 1/2va(T ) + 2vσ(T )vL)

(∫ T

0
(∆(t))2 dt

)1/2

+
4∑

ι=1

∆ι(T ), (5.5.4)

where ∆ι(T ) stands for the last four summands in the line before. So Gronwall’s
inequality produces the bound

∆(T ) ≤ K(T )
4∑

ι=1

∆ι(T ), (5.5.5)

where K(T ) =
√

2 exp((T 1/2va(T ) + 2vσ(T )vL)2T ). We now consider each ∆ι(T )
separately.

For ι = 3 we simply have

∆3(T ) ≤ T sup
t∈[0,T ]

sup
i∈N



∞∑

j,k=1

fP
ij(t)f

P
ik(t)Cov[bj(t), bk(t)]




1/2

= Tr5(T ). (5.5.6)

For ι = 4 another application of the Burkholder-Davis-Gundy inequality yields

∆4(T ) ≤ 2 sup
i∈N



∞∑

j,k=1

E

[∫ T

0
ρP

ij(t)ρ
P
ik(t) d[Mj,Mk](t)

]


1/2

≤ 2T 1/2 sup
i∈N

sup
t∈[0,T ]



∞∑

j,k=1

E

[
ρP

ij(t)cjk(t)ρP
ik(t)

]



1/2

= 2T 1/2r6(T ). (5.5.7)

For ι = 1, we use Lemma 5.5.3 including the notations introduced there and the
fact that for all stochastic processes (X(t))t∈R+ and (Y (t))t∈R+ with càdlàg sample
paths we have

sup
r,s∈[0,T ]

∣∣∣E
[
Ij

n[X](s)Ik
m[Y ](r)

]∣∣∣ ≤ (AC
jj(T ))n

n!
(AC

kk(T ))m

m!
sup

r,s∈[0,T ]
|E[X(s)Y (r)]| (5.5.8)
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for any j, k ∈ N and m,n ∈ N ∪ {0}. In this way we obtain

∆1(T ) =

∣∣∣∣∣

∫ T

0

∥∥∥aP(t)(X̄(t) − E[X̄(t)])
∥∥∥

L2
dt

∣∣∣∣∣
∞

= sup
i∈N

∫ T

0

∥∥∥∥∥∥

∞∑

j=1

aP
ij(t)(X̄j(t) − E[X̄j(t)])

∥∥∥∥∥∥
L2

dt

≤
5∑

ι=1

sup
i∈N

∫ T

0

∥∥∥∥∥∥

∞∑

j=1

aP
ij(t)

∞∑

n=0

Ij
n[Y ι

j ](t)

∥∥∥∥∥∥
L2

dt

=
5∑

ι=1

sup
i∈N

∫ T

0



∞∑

j,k=1

∞∑

n,m=0

aP
ij(t)a

P
ik(t)E

[
Ij

n[Y ι
j ](t)Ik

m[Y ι
k ](t)

]



1/2

dt

≤ e|A
C(T )|d

5∑

ι=1

sup
i∈N

∫ T

0



∞∑

j,k=1

AP
ij(T )AP

ik(T ) sup
r,s∈[0,t]

∣∣∣E[Y ι
j (s)Y ι

k (r)]
∣∣∣




1/2

dt

=: e|A
C(T )|d

5∑

ι=1

Rι(T ). (5.5.9)

Using Lemma 5.5.1 and Lemma 5.5.2, the five terms in (5.5.9) can be estimated as
follows:

R1(T ) ≤ T sup
i∈N



∞∑

j,k=1

AP
ij(T )AP

ik(T )|Cov[Xj(0), Xk(0)]|



1/2

= Tr1(T ),

R2(T ) ≤ sup
i∈N

∫ T

0

∞∑

j=1

AP
ij(T ) sup

s∈[0,t]
‖Y 2

j (s)‖L2 dt

≤ sup
i∈N

∫ T

0

∞∑

j=1

AP
ij(T )


∑

k 6=j

∫ t

0
AC

jk(s)‖X̄k(s) − E[X̄k(s)]‖L2 ds


 dt

≤ T 2

2
V (T ) sup

i∈N

∞∑

j=1

∑

k 6=j

AP
ijA

C
jk =

T 2

2
V (T )r7(T ),

R3(T ) ≤ sup
i∈N

∫ T

0




∞∑

j,k=1

AP
ij(T )AP

ik(T ) sup
s∈[0,t]

∣∣∣∣∣E
[( (

σCX̄ + σP
E[X̄]

)
j

· Lj

)
(s)

×
((

σCX̄ + σP
E[X̄]

)
k

· Lk

)
(s)
]∣∣∣∣∣




1/2

dt

≤ sup
i∈N

∫ T

0




∞∑

j,k=1

AP
ij(T )AP

ik(T )Cov[Lj(1), Lk(1)]
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×
∫ t

0
E

[∣∣∣∣∣
(
σC(s)X̄(s) + σP(s)E[X̄(s)]

)
j

×
(
σC(s)X̄(s) + σP(s)E[X̄(s)]

)
k

∣∣∣∣∣

]
ds




1/2

dt

≤ 2
3
T 3/2vσ(T )V (T )r3(T ),

R4(T ) ≤ sup
i∈N

∫ T

0




∞∑

j,k=1

AP
ij(T )AP

ik(T )

×
∫ t

0

∫ t

0

∣∣∣∣∣∣

∞∑

l,m=1

fC
jl (s)f

C
km(r)Cov[bl(s), bm(r)]

∣∣∣∣∣∣
dr ds




1/2

dt

≤ T 2

2
sup
i∈N



∞∑

j,k=1

AP
ij(T )AP

ik(T ) sup
s,t∈[0,T ]

∣∣∣∣∣∣

∞∑

l,m=1

fC
jl (s)f

C
km(t)Cov[bl(s), bm(t)]

∣∣∣∣∣∣




1/2

=
T 2

2
r9(T ),

R5(T ) ≤ sup
i∈N

∫ T

0

(
∞∑

j,k=1

AP
ij(T )AP

ik(T )

× sup
s∈[0,t]

∣∣∣∣∣∣

∞∑

l,m=1

E

[
(ρC

jl ·Ml)(s)(ρC
km ·Mm)(s)

]
∣∣∣∣∣∣




1/2

dt

≤ sup
i∈N

∫ T

0



∞∑

j,k=1

AP
ij(T )AP

ik(T )
∫ t

0

∣∣∣∣∣∣

∞∑

l,m=1

E

[
ρC

jl(s)clm(s)ρC
km(s)

]
∣∣∣∣∣∣

ds




1/2

dt

≤ 2
3
T 3/2r11(T ).

The last step in the proof is the estimation of ∆2(T ). To this end, we make use
of the Burkholder-Davis-Gundy inequality another time and get

∆2(T ) ≤ sup
i∈N

∥∥∥
((
σP(X̄ − E[X̄])

)
i
· Li

)∗
(T )

∥∥∥
L2

≤ 2vL sup
i∈N

(∫ T

0
E

[(
σP(t)(X̄(t) − E[X̄(t)])

)2

i

]
dt

)1/2

.

The further procedure is analogous to what we have done for ∆1(T ): instead of aP

we have σP here. We leave the details to the reader and only state the result, which
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is

∆2(T ) ≤
∑

ι∈{2,4,8,10,12}

Kι(T )rι(T ).

This completes the proof of Theorem 5.3.1. ✷

Our next goal is to prove Lemma 5.3.8 concerning the rate of growth of the
maximal degree in the preferential attachment random graph as described in Sec-
tion 5.3.3. For the undirected version as in [10] the corresponding result goes back
to [105]. Indeed, the proof there basically works for our case as well, but there are
some steps that require different arguments. Thus, we decided to include the proof
to our lemma.

Proof of Lemma 5.3.8. The statement is evidently true for M in when α+β = 0
(resp. for Mout when β + γ = 0). In fact, for this extremal case, in every step of
the random graph a new edge is created pointing to (resp. from) a new node. This
means that M in(N) (resp. Mout(N)) remains constant for all N ∈ N0, and the claim
follows with cin = 1 (resp. cout = 1) identically. In the other cases, we closely follow
the proof of [105, Thm. 3.1]. In addition to the notation introduced in Section 5.3.3,
we further define for N ∈ N0 and ⋄ ∈ {in, out}:

S⋄(N) := ν +N + δ⋄n(N),

X⋄(N, j) := d⋄G(N)(j) + δ⋄, j ∈ N,

N⋄j := inf{N ∈ N0 : d⋄G(N)(j) 6= 0}, j ∈ N,

s⋄ := α1{⋄=in} + β + γ1{⋄=out},

c⋄(0, k) := 1, c⋄(N + 1, k) := c⋄(N, k)
S⋄(N)

S⋄(N) + s⋄k
, k ∈ R+,

Z⋄(N, j, k) := c⋄(N⋄j +N, k)

(
X⋄(N⋄j +N, j) + k − 1

k

)
1{N⋄

j <∞}, j ∈ N, k ∈ R+,

G(N) := σ(eν+i : i = 1, . . . , N), G(∞) := σ

(
∞⋃

N=0

G(N)

)
.

Obviously, G(N) is the σ-field of all information up to step N in the preferential
attachment algorithm, and N⋄j is a stopping time relative to the filtration (G(N))N∈N

for every j ∈ N. Analogously to [105, Thm. 2.1] one can now show that for all
k ∈ R+ and j ∈ N the sequence (Z⋄(N, j, k))N∈N0 is a positive martingale relative to
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the filtration (G(N⋄j + N))N∈N0 . As a consequence, Doob’s martingale convergence
theorem implies that

Z⋄(N, j, k) → ζ⋄(j, k) a.s. (5.5.10)

for some random variables ζ⋄(j, k). The convergence in (5.5.10) also holds in Lp for
all p ∈ [1,∞) because we have

Z⋄(N, j, k)p ≤ C(k, p)Z⋄(N, j, kp) a.s. (5.5.11)

for some deterministic constants C(k, p) ∈ R+ independent of N and j. Indeed, on
{N⋄j < ∞} we have by definition

Z⋄(N, j, k)p

Z⋄(N, j, kp)
=
c⋄(N⋄j +N, k)p

c⋄(N⋄j +N, kp)

(
X⋄(N⋄j +N, j) + k − 1

k

)p

×
(
X⋄(N⋄j +N, j) + kp− 1

kp

)−1

,

where

c⋄(N, k)p

c⋄(N, kp)
=
c⋄(N − 1, k)p

c⋄(N − 1, kp)
S⋄(N)p−1(S⋄(N) + s⋄kp)

(S⋄(N) + s⋄k)p
≤ c⋄(N − 1, k)p

c⋄(N − 1, kp)
≤ . . .

≤ c⋄(0, k)p

c⋄(0, kp)
= 1,

(
x+ k − 1

k

)p(
x+ kp− 1

kp

)−1

=
Γ(kp+ 1)
Γ(k + 1)p

Γ(k + x)p

Γ(x)p−1Γ(kp+ x)
x→∞−→ Γ(kp+ 1)

Γ(k + 1)p
,

which shows (5.5.11). Next, define for N ∈ N0 and j ∈ N

m⋄(N, j) := max{Z⋄(N −N⋄i , i, 1) : i = 1, . . . , j, N⋄i ≤ N},
m⋄(N) := m⋄(N,n(N)),

µ⋄(j) := max{ζ⋄(i, 1) : i = 1, . . . , j},
µ⋄ := sup{µ⋄(j) : j ∈ N},

such that in particular the relationship m⋄(N) = c⋄(N, 1)(M⋄(N) + δ⋄) holds. It is
not hard to see that (m⋄(N))N∈N0 , as the maximum of martingale expressions, is
a submartingale relative to (G(N))N∈N0 . By definition the sequence (c⋄(N, k))N∈N0
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decreases to 0 as N → ∞; more precisely, we have

c⋄(N, k) = c⋄(N − 1, k)
S⋄(N − 1)

S⋄(N − 1) + s⋄k

≤ c⋄(N − 1, k)
ν +N − 1 + δ⋄(n(0) +N − 1)

ν +N − 1 + δ⋄(n(0) +N − 1) + s⋄k

≤
N−1∏

j=0

(1 + δ⋄)j + δ⋄n(0) + ν

(1 + δ⋄)j + δ⋄n(0) + ν + s⋄k
=

Γ
(
N + δ⋄n(0)+ν

1+δ⋄

)

Γ
(
N + δ⋄n(0)+ν+s⋄k

1+δ⋄

) ∼ N−
s⋄k

1+δ⋄

as N → ∞. As a consequence, when p is large enough,

E[m⋄(N)p] ≤ E




n(N)∑

i=1

Z⋄(N −N⋄i , i, 1)p


 ≤ C(1, p)E




n(N)∑

i=1

Z⋄(N −N⋄i , i, p)




≤ C(1, p)
∞∑

i=1

E[Z⋄(0, i, p)] ≤ C(1, p)

(
n(0) + p+ δ⋄ − 1

p

)
∞∑

i=1

E[c⋄(N⋄i , p)]

≤ C(1, p)

(
n(0) + p+ δ⋄ − 1

p

)(
n(0) +

∞∑

i=1

E[c⋄(i, p)]

)
< ∞ (5.5.12)

independently of N . This implies that the submartingale m⋄ converges a.s. and in
Lp for all p ∈ [1,∞). It follows from (5.5.12) that for j ≥ n(0) we have

E[(m⋄(N) −m⋄(N, j))p]

≤ E




n(N)∑

i=j+1

Z⋄(N −N⋄i , i, 1)p




≤ C(1, p)

(
n(0) + p+ δ⋄ − 1

p

)
∞∑

i=j−n(0)+1

E[c⋄(i, p)]. (5.5.13)

Letting N → ∞, the left-hand side of (5.5.13) converges to

E

[(
lim

N→∞
c⋄(N, 1)M⋄(N) − µ⋄(j)

)p]
,

while the right-hand side is independent of N . Now taking the limit j → ∞ and
again assuming that p is large, we obtain the desired result (5.3.13). Note at this
point that µ⋄ is indeed an a.s. finite random variable that belongs to Lp for all
p ∈ [1,∞), which is proved using a similar argument as in (5.5.12).
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It remains to prove (5.3.14). To this end, observe that by the law of large numbers
we have (n(N) −n(0))/N → α+ γ a.s. In other words, for every ǫ ∈ (0, α+ γ) there
exists a possibly random N̄ ∈ N such that for all N ≥ N̄ we have

∣∣∣∣∣
n(N) − n(0)

N
− (α+ γ)

∣∣∣∣∣ ≤ ǫ,

or, equivalently, n(N) ∈ [n(0) + (α + γ − ǫ)N,n(0) + (α + γ + ǫ)N ]. Consequently,
for all k ∈ N and N ≥ N̄

c⋄(N, k) =
N−1∏

i=0

S⋄(i)
S⋄(i) + s⋄k

≥
N̄−1∏

i=0

S⋄(i)
S⋄(i) + s⋄k

N−1∏

i=N̄

ν + i+ δ⋄(n(0) + (α+ γ − ǫ)i)
ν + i+ δ⋄(n(0) + (α+ γ − ǫ)i) + s⋄k

=
N̄−1∏

i=0

S⋄(i)
S⋄(i) + s⋄k

N̄−1∏

i=0

ν + i+ δ⋄(n(0) + (α+ γ − ǫ)i) + s⋄k

ν + i+ δ⋄(n(0) + (α+ γ − ǫ)i)

×
N−1∏

i=0

ν + i+ δ⋄(n(0) + (α+ γ − ǫ)i)
ν + i+ δ⋄(n(0) + (α+ γ − ǫ)i) + s⋄k

= c⋄(N̄ , k)
Γ
(
N̄ + δ⋄n(0)+ν+s⋄k

1+δ⋄(α+γ−ǫ)

)
Γ
(
N + δ⋄n(0)+ν

1+δ⋄(α+γ−ǫ)

)

Γ
(
N̄ + δ⋄n(0)+ν

1+δ⋄(α+γ−ǫ)

)
Γ
(
N + δ⋄n(0)+ν+s⋄k

1+δ⋄(α+γ−ǫ)

)

∼ c⋄(N̄ , k)
Γ
(
N̄ + δ⋄n(0)+ν+s⋄k

1+δ⋄(α+γ−ǫ)

)

Γ
(
N̄ + δ⋄n(0)+ν

1+δ⋄(α+γ−ǫ)

)N−
s⋄k

1+δ⋄(α+γ−ǫ) , N → ∞.

So choosing c⋄(N) := c⋄(N, 1) for N ∈ N0 fulfills (5.3.14). ✷

Finally, we turn to the proof of the large deviation result in Section 5.4.

Proof of Theorem 5.4.1. By definition, we have for t ∈ [0, T ] that

XN(t)−X̄N(t) =
∫ t

0
aN(XN −X̄N)(s) ds+

∫ t

0
aN,P(X̄N(s)−E[X̄N(s)]) ds+ρN,PM(t),

whose solution is

XN(t) − X̄N(t) =
∫ t

0
eaN (t−s)aN,P(X̄N(s) − E[X̄N(s)]) ds+

∫ t

0
eaN (t−s)ρN,P dM(s).
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In order to establish a large deviation principle, it suffices by [55, Thm. 4.6.1] to
prove such a principle in (Dd

T ,Dd
T , J1) for the first d coordinates of the process for

every d ∈ N, that is, for the Dd
T -valued process

Y N
i (t) := Y N,1

i (t) + Y N,2
i (t) + Y N,3

i (t)

:=
∫ t

0

∫ s

0

∞∑

j,k=1

eaN (t−s)
ij aN,P

jk eaN,C
kk

(s−r)
∑

l 6=k

aN,C
kl (X̄N

l (r) − E[X̄N
l (r)]) dr ds

+
∫ t

0

∞∑

j,k,l=1

eaN (t−s)
ij aN,P

jk

∫ s

0
eaN,C

kk
(s−r)ρN,C

kl dMl(r) ds

+
∞∑

j,k=1

∫ t

0
eaN (t−s)

ij ρN,P
jk dMk(s), i = 1, . . . , d, t ∈ [0, T ], (5.5.14)

where we have used the formula

X̄N
i (t) − E[X̄N

i (t)] =
∫ t

0
eaN,C

ii (t−s)
∑

j 6=i

aN,C
ij (X̄N

j (s) − E[X̄N
j (s)]) ds

+
∞∑

j=1

∫ t

0
eaN,C

ii (t−s)ρN,C
ij dMj(s),

valid for all i ∈ N and t ∈ R+. Actually, we will even prove the large deviation
principle in (Dd

T ,Dd
T , U), which is stronger. To this end, we introduce the notation

x̂(t) :=
[γ(N)T ]−1∑

k=1

x
(

k
γ(N)

)
1[ k

γ(N)
, k+1

γ(N))
(t) + x

(
[γ(N)T ]

γ(N)

)
1[ [γ(N)T ]

γ(N)
,T)(t), t ∈ [0, T ],

for x ∈ Dd
T . Then by [55, Thm. 4.2.13] and Lemma 5.5.4 below we can equally well

show a large deviation principle for Ŷ N = Ŷ N,1 + Ŷ N,2 + Ŷ N,3. The same principle
will then hold for Y N . But this is proved in Lemma 5.5.6. That the rate function for
XN −X̄N is convex with unique minimum 0 at 0 and can only be finite for functions
in AC∞T , is inherited from the rate function of Ŷ N . ✷

Lemma 5.5.4. For each d ∈ N and ι = 1, 2, 3, the Dd
T -valued processes Y N,ι and

Ŷ N,ι are exponentially equivalent, that is, for all ǫ ∈ (0, 1) we have

lim
N→∞

1
γ(N)

logP

[
sup

t∈[0,T ]
sup

i=1,...,d
|Y N,ι

i (t) − Ŷ N,ι
i (t)| > ǫ

]
= −∞.
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Proof. We start with ι = 1. Writing t̂ = [γ(N)t]/γ(N) and diag(a) := a− a×, we
obtain

sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣Y N,1
i (t) − Ŷ N,1

i (t)
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣∣∣(e
aN t − eaN t̂)

(∫ t

0

∫ s

0
e−aN saN,Pediag(aN,C)(s−r)(aN,C)×

× (X̄N(r) − E[X̄N(r)]) dr ds

)∣∣∣∣∣
∞

+ sup
t∈[0,T ]

∣∣∣∣∣e
aN t̂

(∫ t

t̂

∫ s

0
e−aN saN,Pediag(aN,C)(s−r)(aN,C)×

× (X̄N(r) − E[X̄N(r)]) dr ds

)∣∣∣∣∣
∞

. (5.5.15)

We can proceed with these two terms separately. Since |eaN t−eaN t̂|∞ ≤ vaevaT/γ(N),
we have for the first term in (5.5.15)

P


 sup

t∈[0,T ]

∣∣∣∣∣∣
(eaN t − eaN t̂)



∫ t

0

∫ s

0
e−aN saN,Pediag(aN,C)(s−r)(aN,C)×

× (X̄N(r) − E[X̄N(r)]) dr ds



∣∣∣∣∣∣
∞

> ǫ




≤ P

[
sup

t∈[0,T ]

∣∣∣aN,P(aN,C)×(X̄N(t) − E[X̄N(t)])
∣∣∣
∞
>

ǫγ(N)
va(evaT )3T 2

]

≤ P


 sup

t∈[0,T ]
sup
i∈N

∞∑

j=1

∑

k 6=j

∣∣∣aN,P
ij aN,C

jk (X̄N
k (t) − E[X̄N

k (t)])
∣∣∣ >

ǫγ(N)
va(evaT )3T 2


 =: p(N).

We note that ξN := X̄N − E[X̄N ] satisfies the integral equation

ξN(t) =
∫ t

0
aN,CξN(s) ds+ ρN,CM(t), t ∈ R+.

Hence we have

(ξN)∗(t) ≤
∫ t

0
|aN,C|(ξN)∗(s) ds+ (ρN,CM)∗(t), t ∈ R+,
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or after n ∈ N iterations,

(ξN)∗(t) ≤ (|aN,C|t)n

n!
(ξN)∗(t) +

n−1∑

m=0

(|aN,C|t)m

m!
(ρN,CM)∗(t),

(ξN)∗(t) ≤
(

I − (|aN,C|T )n

n!

)−1 n−1∑

m=0

(|aN,C|t)m

m!
(ρN,CM)∗(t),

where the last line holds when n is large enough such that (vaT )n/n! < 1. It is
not difficult to recognize that the exact value of n only affects some constants in
the subsequent arguments with no impact on the final result; we therefore assume
without loss of generality that n = 1 (i.e. vaT < 1). Then

p(N) ≤ P


 sup

i∈N

∞∑

j=1

∑

k 6=j

∞∑

l=1

|aN,P
ij aN,C

jk |(I − |aN,C|T )−1
kl

× sup
t∈[0,T ]

γ(N)∑

m=1

|ρN,C
lm Mm(t)| > ǫγ(N)

va(evaT )3T 2




≤ P


 1
γ(N)

sup
l∈N

sup
t∈[0,T ]

γ(N)∑

m=1

|ρN,C
lm Mm(t)| > ǫγ(N)(1 − vaT )

q1(N)va(evaT )3T 2


 .

Let λ(N) be positive numbers to be chosen later. Using the independence of the
Lévy processes Mi and Doob’s maximal inequality, we arrive at

p(N) ≤ exp

(
−ǫλ(N)γ(N)(1 − vaT )

q1(N)va(evaT )3T 2

) γ(N)∏

m=1

E

[
exp

(
λ(N)
γ(N)

sup
l∈N

|ρN,C
lm ||Mm(T )|

)]

≤ exp

(
−ǫλ(N)γ(N)(1 − vaT )

q1(N)va(evaT )3T 2

)

×
γ(N)∏

m=1

(
1 + E

[
exp

(
λ(N)
γ(N)

sup
l∈N

|ρN,C
lm |Mm(T )

)])

≤ 2γ(N) exp

(
−ǫλ(N)γ(N)(1 − vaT )

q1(N)va(evaT )3T 2

)
exp

(
Tγ(N)Ψ0

(
λ(N)
γ(N)

sup
l,m∈N

|ρN,C
lm |

))
.

Now define

λ(N) := γ(N)Ψ−1
0 (1)/

(
sup

l,m∈N
|ρN,C

lm |
)
, N ∈ N.

Since Ψ0 is a convex function, its inverse Ψ−1
0 is concave and therefore we have for

large N that λ(N) ≥ Ψ−1
0 (γ(N))/

(
supl,m∈N |ρN,C

lm |
)
, which increases to infinity with
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N . With this choice of λ(N) it follows that

lim
N→∞

1
γ(N)

log p(N) = −∞,

which completes the proof for the first term in (5.5.15). The second term can be
treated in analogous way: now the factor γ(N) does not come from the difference
|eaN t − eaN t̂|∞, but from the domain of integration (t̂, t]. The details are left to the
reader.

For ι = 2 similar methods apply. Also here we do not give the details. Instead,
we sketch the proof for ι = 3 where some modifications are necessary. Recalling the
meaning of Γ(N) from (A2), we have

sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣Y N,3
i (t) − Ŷ N,3

i (t)
∣∣∣

≤ sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣∣
(

(eaN t − eaN t̂)
(∫ t

0
e−aN sρN,P dM(s)

))

i

∣∣∣∣

+ sup
t∈[0,T ]

sup
i=1,...,d

∣∣∣∣
(

eaN t̂
(∫ t

t̂
e−aN sρN,P dM(s)

))

i

∣∣∣∣

≤ |eaN t − eaN t̂|∞ sup
t∈[0,T ]

sup
i=1,...,Γ(N)

∣∣∣∣
(∫ t

0
e−aN sρN,P dM(s)

)

i

∣∣∣∣

+ evaT sup
t∈[0,T ]

sup
i=1,...,Γ(N)

∣∣∣∣
(∫ t

t̂
e−aN sρN,P dM(s)

)

i

∣∣∣∣ . (5.5.16)

We can again consider these two terms separately. For the first one we have

P

[
|eaN t − eaN t̂|∞ sup

t∈[0,T ]
sup

i=1,...,Γ(N)

∣∣∣∣
(∫ t

0
e−aN sρN,P dM(s)

)

i

∣∣∣∣ > ǫ

]

≤ Γ(N) sup
i=1,...,Γ(N)

P

[
sup

t∈[0,T ]

∣∣∣∣
(∫ t

0
e−aN sρN,P dM(s)

)

i

∣∣∣∣ >
ǫγ(N)
vaevaT

]

≤ Γ(N) sup
i=1,...,Γ(N)

exp

(
−ǫλ(N)γ(N)

vaevaT

)

×
γ(N)∏

k=1

E


exp


λ(N) sup

i∈N

∣∣∣∣∣∣

∫ T

0

∞∑

j=1

e−aN s
ij ρN,P

jk dMk(s)

∣∣∣∣∣∣






= Γ(N) sup
i=1,...,Γ(N)

exp

(
−ǫλ(N)γ(N)

vaevaT

)

×
γ(N)∏

k=1

E


exp


λ(N)
γ(N)

sup
i∈N

∣∣∣∣∣∣

∫ T

0

∞∑

j=1

e−aN s
ij γ(N)ρN,P

jk dMk(s)

∣∣∣∣∣∣




 .
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Now recall from [119, Thm. 2.7(iv)] that the stochastic integral in the last line has
an infinitely divisible distribution. Moreover, the larger the integrand, the larger the
exponential moment is. Since the integrand above is uniformly bounded in i and k

by our hypotheses, the stochastic integral above can be replaced by some constant
times Mk(T ) for the further estimation. Therefore, the remaining calculation can be
completed as in the case ι = 1. For the second term in (5.5.16) the reasoning is the
same, except that the factor γ(N) is now due to the domain (t̂, t] of the stochastic
integral. Observe at this point that Mk(t) − Mk(t̂) has the same distribution as
Mk(t− t̂) and that |t− t̂| ≤ 1/γ(N). Again, we do not carry out the details. ✷

Lemma 5.5.5. For each ι = 1, 2, 3 the processes (Ŷ N,ι : N ∈ N) form an exponen-
tially tight sequence in (Dd

T ,Dd
T , U), that is, for every L ∈ R+ there exists a compact

subset KL of Dd
T (with respect to the uniform topology U) such that

lim sup
N→∞

1
γ(N)

logP[Ŷ N,ι /∈ KL] ≤ −L.

Proof. We first consider ι = 1. We will adapt the idea of [51, Lemma 4.1] to our
setting. As shown in part (I) of the proof there, it suffices to show that for every
a, ǫ ∈ (0,∞) there exist a compact set H ⊆ Dd

T , some C ∈ (0,∞) and n ∈ N such
that for all N ≥ n

P[d(Ŷ N,1, H) > ǫ] ≤ Ce−γ(N)a, (5.5.17)

where d(f,H) := inf{supt∈[0,T ] supi=1,...,d |fi(t) − gi(t)| : g ∈ H} for f ∈ Dd
T . In order

to prove (5.5.17), we first define for n ∈ N and A ⊆ R
d the set Hn(A) as the

collection of all f ∈ Dd
T of the form

f =
[γ(n)T ]−1∑

κ=1

xκ1[ κ
γ(n)

, κ+1
γ(n))

+ x[γ(n)T ]1[ κ
γ(n)

,T ], x1, . . . , x[γ(n)T ] ∈ A.

It follows from [51, Eq. (4.3)] that for N ≥ n, A ⊆ R
d and f ∈ HN(A) we have

d(f,Hn(A))

≤ sup
κ=0,...,[γ(n)T ]−1

sup
λ∈[1,

γ(N)
γ(n)

+1)
sup

i=1,...,d

∣∣∣∣∣∣
fi




[γ(N)κ
γ(n)

] + λ

γ(N)
∧ T


− fi




[γ(N)κ
γ(n)

]

γ(N)



∣∣∣∣∣∣
. (5.5.18)

Next, define K := [−1, 1]d. Then for every β ∈ (0,∞) and N ≥ n we have

P[d(Ŷ N,1, Hn(βK)) > ǫ] ≤ P[Ŷ N,1 /∈ HN(βK)]

+ P[Ŷ N,1 ∈ HN(βK), d(Ŷ N,1, Hn(βK)) > ǫ]. (5.5.19)
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The first probability is bounded as follows:

P[Ŷ N,1 /∈ HN(βK)]

= P


 sup

i=1,...,d
sup

κ=1,...,[γ(N)T ]

∣∣∣∣∣∣

∫ κ
γ(N)

0

∫ s

0

∞∑

j,k=1

eaN (κ/γ(N)−s)
ij aN,P

jk eaN,C
kk

(s−r)

×
∑

l 6=k

aN,C
kl (X̄N

l (r) − E[X̄N
l (r)]) dr ds

∣∣∣∣∣∣
> β




≤ P


 sup

t∈[0,T ]
sup

i=1,...,d

∞∑

j=1

∑

k 6=j

∣∣∣aN,P
ij aN,C

jk (X̄N
k (t) − E[X̄N

k (t)])
∣∣∣ >

β

(evaTT )2


 =: p′(N).

By the same arguments as in Lemma 5.5.4, one obtains (again assuming vaT < 1
without loss of generality)

p′(N) ≤ 2γ(N) exp

(
−βλ(N)(1 − vaT )

q1(N)(evaTT )2

)
exp

(
Tγ(N)Ψ0

(
λ(N)
γ(N)

sup
l,m∈N

|ρN,C
lm |

))
.

We choose λ(N) := γ(N) this time. Then we can make log(p′(N))/γ(N) arbitrarily
small uniformly for large N by varying the value of β.

For the second step of the proof of (5.5.17) we conclude from (5.5.18) that

P[Ŷ N,1 ∈ HN(βK), d(Ŷ N,1, Hn(βK)) > ǫ]

≤ P


 sup

κ=0,...,[γ(n)T ]−1
sup

λ∈[1,
γ(N)
γ(n)

+1)
sup

i=1,...,d

∣∣∣∣∣∣
Ŷ N,1

i




[γ(N)κ
γ(n)

] + λ

γ(N)
∧ T


− Ŷ N,1

i




[γ(N)κ
γ(n)

]

γ(N)



∣∣∣∣∣∣
> ǫ


. (5.5.20)

For the further procedure, we split the difference in the last line into two terms in
the same way as in (5.5.15). We only treat the corresponding first term. As before,
the other one can be estimated similarly. Introducing the notation tN,n

κ,λ (resp. tN,n
κ )

for the time point in the first (resp. second) parenthesis of (5.5.20), and observing

that 0 ≤ t̂N,n
κ,λ − tN,n

κ ≤ 2/γ(N) + 1/γ(n), we obtain
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P


 sup

κ=0,...,[γ(n)T ]−1
sup

λ∈[1,
γ(N)
γ(n)

+1)
sup

i=1,...,d

∣∣∣∣∣∣



(

eaN t̂N,n
κ,λ − eaN tN,n

κ

)

×
∫ t

0

∫ s

0
e−aN saN,Pediag(aN,C)(s−r)(aN,C)×(X̄N(r) − E[X̄N(r)]) dr ds




i

∣∣∣∣∣∣
> ǫ




≤ P


 sup

t∈[0,T ]
sup

i=1,...,d

∣∣∣∣∣∣

∞∑

j=1

∑

k 6=j

aN,P
ij aN,C

jk (X̄N
k (t) − E[X̄N

k (t)])

∣∣∣∣∣∣
>

ǫ

vae3vaTT 2
(

2
γ(N)

+ 1
γ(n)

)




≤ 2γ(N) exp


− ǫλ(N)(1 − vaT )

q1(N)vae3vaTT 2
(

2
γ(N)

+ 1
γ(n)

) + Tγ(N)Ψ0

(
λ(N)
γ(N)

sup
l,m∈N

|ρN,C
lm |

)
 ,

where the last line follows in similar fashion as before. With λ(N) := γ(N) we can
make, by taking n large enough, the logarithm of the last term divided by γ(N)
arbitrarily small for N ≥ n. This finishes the proof for ι = 1. The case ι = 2 is
analogous, while for ι = 3 the line of argument remains the same in principle, with
slight changes to account for the discretization of Lévy processes, cf. the proofs of
Lemma 5.5.4 and [51, Lemma 4.1]. ✷

Lemma 5.5.6. The process (Ŷ N
i : i = 1, . . . , d) satisfies a large deviation principle in

(Dd
T ,Dd

T , U) with a good convex rate function Id : Dd
T → [0,∞] such that Id(x) < ∞

implies x ∈ ACd
T . Moreover, we have Id(0) = 0 and this minimum is unique.

Proof. We apply the abstract Gärtner-Ellis theorem of [51, Thms. 2.1 and 2.4] to
Ŷ N and prove the following steps.

(1) The laws of Ŷ N , N ∈ N, are exponentially tight in (Dd
T ,Dd

T , U).

(2) For all θ ∈ Md
T the limit Λ(θ) = limN→∞(γ(N))−1ΛN(γ(N)θ) exists, where

ΛN(θ) := logE

[
exp

(
d∑

i=1

∫ T

0
Ŷ N

i (t) θi(dt)

)]
.

(3) The mapping Λ is Cd
T -Gâteaux differentiable, in the sense that for all θ ∈ Md

T

there exists xθ ∈ Cd
T such that for all η ∈ Md

T

δΛ(θ; η) := lim
ǫ→0

Λ(θ + ǫη) − Λ(θ)
ǫ

=
d∑

i=1

∫ T

0
xθ

i (t) ηi(dt). (5.5.21)
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Part of the claim is that the limit in (5.5.21) exists. Furthermore, we have that
Λ(0; η) = 0 for all η ∈ Md

T .

(4) We have {x ∈ Dd
T : Λ∗(x) < ∞} ⊆ ACd

T , where

Λ∗(x) := sup
θ∈Md

T

(
d∑

i=1

∫ T

0
xi(t) θi(dt) − Λ(θ)

)
, x ∈ Dd

T .

(5) For every α ∈ R+ the set {x ∈ Dd
T : Λ∗(x) ≤ α} is compact in (Dd

T ,Dd
T , U).

Part of the Gärtner-Ellis theorem is that the rate function Id is given by Λ∗, the
convex conjugate or Fenchel-Legendre transform of Λ. Since Λ is a convex function
in θ satisfying (3), the conjugate Λ∗∗ of Λ∗ is again Λ, see [121, Thm. 12]. Thus, by
the first corollary to Theorem 1 in [8], we have Id(0) = Λ∗(0) = 0 and this minimum
is unique.

Let us now prove (1)–(5) above. Part (1) has been proved in Lemma 5.5.5. For
(2) we first compute Λ. For all θ ∈ Md

T we have (recall that t̂ := [γ(N)t]/γ(N)])

ΛN(γ(N)θ)

= logE


 exp




d∑

i=1

∫ T

0


γ(N)

∞∑

j,k=1

∫ t̂

0
eaN (t̂−s)

ij ρN,P
jk dMk(s)

+
∫ t̂

0

∫ s

0
γ(N)

∞∑

j,k,l,m=1

eaN (t̂−s)
ij aN,P

jk eaN,C(s−r)
kl ρN,C

lm dMm(r) ds


 θi(dt)






=
γ(N)∑

m=1

logE


 exp




d∑

i=1

∫ T

0



∫ t̂

0
γ(N)

∞∑

j=1

eaN (t̂−s)
ij ρN,P

jm dMm(s)

+
∫ t̂

0

∫ s

0

∞∑

j,k,l=1

γ(N)eaN (t̂−s)
ij aN,P

jk eaN,C(s−r)
kl ρN,C

lm dMm(r) ds


 θi(dt)




 (5.5.22)

by the independence of the processes Mm. By a stochastic Fubini argument (see
[118, Thm. IV.65]), the term within the exponential in the previous line can also be
written as (š denotes the smallest multiple of γ(N) that is larger or equal to s)

∫ T̂

0



∫ T̂

r

∫ T

š

d∑

i=1

GN
im(t̂− s, s− r) θi(dt) ds

+
∫ T

ř

d∑

i=1

RN
im(t̂− r) θi(dt)


Mm(dr), (5.5.23)
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and has an infinitely divisible distribution such that its logarithmic Laplace exponent
in (5.5.22) is explicitly known. Denoting the parenthesis in (5.5.23) by HN

m (θ, r), it
is given by

∫ T̂
0 Ψm(HN

m (θ, r)) dr. We claim that this term converges uniformly in m

to
∫ T

0 Ψm(Hm(θ, r)) dr. Indeed, by the dominating property of M0, the claim follows
as soon as we can prove that HN

m (θ, r) → Hm(θ, r) as N → ∞, uniformly in m ∈ N

and r ∈ [0, T ]. This in turn follows from

|Hm(θ, r) −HN
m (θ, r)|

≤
∣∣∣∣∣

∫ T

T̂

∫ T

s

d∑

i=1

Gim(t− s, s− r) θi(dt) ds

∣∣∣∣∣

+

∣∣∣∣∣

∫ T̂

r

∫ š

s

d∑

i=1

Gim(t− s, s− r) θi(dt) ds

∣∣∣∣∣

+

∣∣∣∣∣

∫ T̂

r

∫ T

š

d∑

i=1

(Gim(t− s, s− r) −GN
im(t− s, s− r)) θi(dt) ds

∣∣∣∣∣

+

∣∣∣∣∣

∫ T̂

r

∫ T

š

d∑

i=1

(GN
im(t− s, s− r) −GN

im(t̂− s, s− r)) θi(dt) ds

∣∣∣∣∣

+

∣∣∣∣∣

∫ ř

r

d∑

i=1

Rim(t− r) θi(dt)

∣∣∣∣∣+
∣∣∣∣∣

∫ T

ř

d∑

i=1

(Rim(t− r) −RN
im(t− r)) θi(dt)

∣∣∣∣∣

+

∣∣∣∣∣

∫ T

ř

d∑

i=1

(RN
im(t− r) −RN

im(t̂− r)) θi(dt)

∣∣∣∣∣

≤ d sup
i,m∈N

sup
s,t∈[0,T ]

|Gim(t, s)|
(

1
γ(N)

sup
i=1,...,d

|θi|([0, T ]) + sup
i=1,...,d

∫ T̂

r
|θi|([s, š)) ds

)

+ d sup
i=1,...,d

|θi|([0, T ])


T sup

i,m∈N
sup

s,t∈[0,T ]
|Gim(t, s) −GN

im(t, s)|

+
vaT

γ(N)
sup

N,i,m∈N
sup

s,t∈[0,T ]
|GN

im(t, s)| +
1

γ(N)
sup
i,j∈N

sup
t∈[0,T ]

|Rij(t)|

+ sup
i,j∈N

sup
t∈[0,T ]

|Rij(t) −RN
ij (t)| +

va

γ(N)
sup

N,i,j∈N
sup

t∈[0,T ]

|RN
ij (t)|


,

where all terms converge to 0 by hypothesis independently of m and r. For the
second summand one has to notice that the integral term equals

∫ T̂
r

∫ t
t̂ 1 ds |θi|(dt)

and thus converges to 0 uniformly in i and r with rate 1/γ(N). Since the value
of Cesàro sums remains unchanged under uniform approximations, it follows from



202 5. Partial mean field limits in heterogeneous networks

assumption (A8) of Theorem 5.4.1 that

Λ(θ) = lim
N→∞

1
γ(N)

γ(N)∑

m=1

∫ T

0
Ψm(HN

m (θ, r)) dr = lim
N→∞

1
γ(N)

γ(N)∑

m=1

∫ T

0
Ψm(Hm(θ, r)) dr.

Next, we prove the Cd
T -Gâteaux differentiability of Λ. First, regarding the ex-

istence of δΛ(θ; η) in (5.5.21), we note that the mappings Md
T → L∞(N × [0, T ]),

θ 7→ (Hm(θ, r) : m ∈ N, r ∈ [0, T ]), are continuous linear operators and therefore
Fréchet differentiable, which is stronger than Gâteaux differentiability. Together with
the fact that Ψm is differentiable with locally bounded derivative, and cm ≤ c0 and
νm ≤ ν0 for all m ∈ N, this implies that for every θ and η

ǫ−1
∫ T

0
(Ψm(Hm(θ + ǫη, r)) − Ψm(Hm(θ, r))) dr

converges uniformly in m ∈ N as ǫ → 0. This in turn proves the Gâteaux differen-
tiability of Λ. Moreover, it enables us to compute the derivative explicitly. Using the
chain rule for Fréchet derivatives, we obtain

δΛ(θ; η) = lim
N→∞

γ(N)∑

m=1

∫ T

0
lim
ǫ→0

Ψm(Hm(θ + ǫη, r)) − Ψm(Hm(θ, r))
ǫ

dr

= lim
N→∞

γ(N)∑

m=1

∫ T

0
Ψ′m(Hm(θ, r))Hm(η, r) dr

= lim
N→∞

γ(N)∑

m=1

∫ T

0
Ψ′m(Hm(θ, r))



∫ T

r

∫ T

s

d∑

i=1

Gim(t− s, s− r) ηi(dt) ds

+
∫ T

r

d∑

i=1

Rim(t− r) ηi(dt)


 dr

= lim
N→∞

γ(N)∑

m=1

d∑

i=1

∫ T

0



∫ t

0

∫ s

0
Ψ′m(Hm(θ, r))Gim(t− s, s− r) dr ds

+
∫ t

0
Rim(t− r) dr


 ηi(dt)

=
d∑

i=1

∫ T

0

∫ t

0
lim

N→∞

γ(N)∑

m=1



∫ s

0
Gim(t− s, s− r)Ψ′m(Hm(θ, r)) dr

+Rim(t− s)Ψ′m(Hm(θ, s))


 ds ηi(dt),



5.5. Proofs 203

where all interchanges of integration, summation and taking limits are justified by
dominated convergence. From the last line we deduce the existence of xθ ∈ Cd

T satis-
fying (5.5.21). Since Hm(0, r) = 0 and Ψ′m(0) = 0, we have δΛ(0; η) = 0 identically.

Next, we demonstrate (4), namely that Λ∗ only assumes finite values on the set
ACd

T , that is, Λ∗(x) < ∞ implies that for every ǫ ∈ (0,∞) there exists δ ∈ (0,∞)
such that whenever n ∈ N, 0 ≤ a1 < b1 ≤ . . . ≤ an < bn ≤ T and

∑n
j=1(bj − aj) < δ,

we have
∑d

i=1

∑n
j=1 |xi(bj) − xi(aj)| < ǫ. In order to do so, we follow the strategy

of proof in [51, Thm. 3.1]. We consider θi :=
∑n

j=1 ξ
j
i (δbj

− δaj
) where ξj

i ∈ R
d is

arbitrary. Then we evidently have θi((r, T ]) =
∑n

j=1 ξ
j
i 1[aj ,bj)(r). Using the notation

CT := T sups,t∈[0,T ] supi,m∈N |Gim(t, s)| + supt∈[0,T ] supi,m∈N |Rim(t)|, it follows that

Λ(θ) ≤ sup
m∈N

∫ T

0
Ψm(Hm(θ, r) dr ≤

∫ T

0
Ψ0

(
CT

d∑

i=1

θi((r, T ])

)
dr

=
∫ T

0

n∑

j=1

Ψ0

(
CT

d∑

i=1

ξj
i

)
1[aj ,bj)(r) dr ≤ sup

j=1,...,n
Ψ0

(
CT

d∑

i=1

|ξj
i |
)

n∑

j=1

(bj − aj)

=: C(T, ‖ξ1‖1, . . . , ‖ξn‖1)
n∑

j=1

(bj − aj),

where ‖ξj‖1 :=
∑d

i=1 |ξj
i |. As a consequence, we deduce from the definition of Λ∗ that

for all τ ∈ (0,∞) and ‖ξj‖1 ≤ τ

d∑

i=1

n∑

j=1

ξj
i (xi(bj) − xi(aj)) ≤ C(T, τ, . . . , τ)

n∑

j=1

(bj − aj) + Λ∗(x).

Taking ξj
i as the τ times the sign of xi(bj) − xi(aj), it follows that

d∑

i=1

n∑

j=1

|xi(bj) − xi(aj)| ≤ τ−1C(T, τ, . . . , τ)
n∑

j=1

(bj − aj) + τ−1Λ∗(x). (5.5.24)

If Λ∗(x) < ∞, we can now choose τ first and then δ to make the left-hand side
arbitrarily small.

It only remains to prove (5), the compactness of the level sets of Λ∗. By step (4)
and the lower semicontinuity of Λ∗, its level sets are closed subsets of ACd

T . Thus,
the Arzelà-Ascoli theorem provides a compactness criterion. First, observe that for
all t ∈ [0, T ] we have for x ∈ ACd

T with Λ∗(x) ≤ α that

d∑

i=1

|xi(t)| = sup
θ∈Θt

d∑

i=1

∫ T

0
xi(t) θi(dt) ≤ α+ sup

θ∈Θt

Λ(θ) < ∞,
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where Θt is the finite collection of all θ for which each coordinate is either δt or −δt.
Second, for the proof of the uniform equicontinuity of the functions x ∈ ACd

T with
Λ∗(x) ≤ α, we recall from (5.5.24) that

d∑

i=1

|xi(t) − xi(s)| ≤ τ−1C(T, τ, . . . , τ)(t− s) + τ−1α,

which converges to 0 independently of x when s ↑ t and τ → ∞. ✷
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