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ABSTRACT

This paper proposes a new modeling of the structure of speech
units as a graph consisting of base functions and a transition
network. A cluster algorithm taking into account the actual tem-
poral context of the feature vectors is used to generate the base
functions, which are approximated by normal distributions. The
subsequent maximum-likelihood training procedure establishes
the transition network and adjusts the transition probabilities.
The emerging graphs for the speech units are a structure of
branching and recombining trajectory segments describing sta-
tistical dependencies in the feature vector sequence within the
speech units as well as in the transition regions between them. A
speaker-independent evaluation shows the superiority of the pro-
posed modeling compared to mixture-state HMMs, even for an
equal number of model parameters.

1. MOTIVATION AND PRINCIPLE

The mixture-state Hidden-Markov modeling approach is based
on the assumption that speech units consist of a linear sequence
of stationary segments, whose probability density can be ap-
proximated by a superposition of base functions. Since the emis-
sion probability of a vector is conditioned only by its state, pre-
ceding and subsequent vectors can influence it only by influen-
cing the vector-state assignment (Viterbi-path). Because of the
low number of states and the high number of acoustic events re-
presented by a state, this influence is very weak. Thus, the effec-
tive model order is quite low.

To improve this fact, interesting methods have been proposed
([11.[21,[31.[4]) to constrain the probability density functions in
the states by actual predecessor feature vectors. In this work we
propose a modeling of the temporal structure of phonemes on
the level of base functions, which can be associated with acoustic
events. We define an acoustic event as a temporal segment of a
speech unit uttered by a certain speaker or a homogeneous
speaker group in a certain context or in a group of similar con-
texts. Since articulation is a natural process, normally distributed
base functions are used. To generate the base functions, a modi-
fied LBG-method taking into account the actual temporal context
of the feature vectors is proposed. This algorithm is applied in
each phoneme segment assigned to a state of a mixture-state
HMM by an initial Viterbi segmentation process. The base func-
tions emerging in two segments are connected fully, if the corres-
ponding states in the segmentation-HMM are connected by a
transition. The probabilities of all transitions leaving a base
function are initialized by an equal distribution. A Viterbi-based
maximum-likelihood training procedure [5] yields graphs for the
speech units by eliminating transitions which are never observed
and by updating the probabilities of the remaining transitions.
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These graphs can be called "Structured Markov Models”
(SMMs), because they describe the temporal structure of the
speech units with its alternative and sequential acoustic events.
In [6] an approach is shown, where words are modeled on the
level of fenones, where a fenone is a cluster in the feature space.
However, the standard LBG-algorithm is used there to generate
the base functions and the mode! for a word consists of a linear
sequence of fenones.

2. GENERATION OF BASE FUNCTIONS

The base functions should ideally meet the following require-
ments, which will be described in the next two subsections:
Firstly, we demand to have a base function for each acoustic
event whose normal distribution can be separated in the given
feature space. Secondly, the base functions should allow the for-
mation of trajectory segments in the training procedure to in-
crease the effective model order.

2.1 Cluster Algorithm

Even the first requirement is not fulfilled very well by the LBG-
algorithm [7], since in each iteration it splits each cluster, disre-
garding that some of the clusters already approximate a normal
distribution, while others should be splitted more often. Addi-
tionally, the number of clusters is not known a priori. For this
reasons the LBG-method is used to obtain a high number of ini-
tial clusters and, subsequently, the most similar cluster pairs are
merged until a distance threshold is met. Finally, the vector-
prototype assignment is optimized in the same way as in each
iteration of the LBG-algorithm. Another algorithm, performing a
merge of the most similar cluster pairs after each LBG-cluster-
doubling step, tended to be instable in some of our experiments.
The cluster-pair similarity is measured by the scale-invariant
distance measure m used in [8]. For normal distributions with
diagonal covariance matrices we obtain with D denoting the di-
mension of the feature vector space, j;; denoting component i of
the mean vector of cluster k, c;; denoting its variance, N} deno-
ting the number of vectors in cluster k and Ngey denoting the to-
tal number of vectors in all clusters:
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I and r denote two clusters and Ir denotes the merged cluster.
The merging of a cluster pair is formulated according to [9];
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Fig. 1: Calculation of mean vectors in the neighbouring seg-
ments of segment 4 of phoneme "U"; the resulting supervectors
for the clustering in segment "U", 4 are depicted in the bottom
row.

22 Context-Dependent Clustering

To meet the second requirement for the base functions, the clus-
tering for each phoneme segment must use information about the
actual context of its feature vectors. For this reason, the feature
vectors for the clustering are combined using the following
scheme:

At each position of the actual phoneme segment in the speech
data the temporal mean of the feature vectors assigned to the
predecessor segment and the mean of those assigned to the suc-
cessor segment is calculated. Each vector of the actual segment is
then combined with these two mean vectors to a supervector. The
representation of the neighbouring segments by their temporal
mean is justified, because the segmentation process yields rela-
tive homogeneous sections. This is a major difference to linear
prediction methods ([11,{21,[3]), which use a fixed predictor off-
set. Figure 1 illustrates the scheme for segment 4 of phoneme
"U". This way, the LBG cluster splitting is controlled by the
distances within the actual phoneme segment and the distances
in the neighbouring segments. The LBG algorithm will split
mainly along the dimensions of the vector space defined by the
context features, if there are very different acoustic events in the
context. This happens when the actual segment occurs in the
neighbourhood of very different segments from different pho-
nemes or in the neighbourhood of very different realizations of
one phoneme segment. In the subspace defined by the features
from the actual segment, clusters describing the own segment in
the context of certain neighbouring events emerge. The base
functions can be extracted by isolating the subspace defined by
the features from the actual segment. This way, the formation of
trajectory segments in the subsequent training procedure is pro-
moted within a temporal span of three segments. Though, it is
possible to include more than one neighbouring segment.

Up to now, the features from the actual segment and the context
features have the same influence on the clustering. However, a
control of the context influence should be possible, because the
two requirements for the base functions, good modeling of the
acoustic events within a phoneme segment and good context
properties, might be contradictory. This can be accomplished by
a weighting of the scaling factors for the context features in the
LBG-algorithm.

3.RESULTS AND INTERPRETATION

3.1 Experimental Setup

After 16kHz-sampling, windowing in 10ms steps with a 16ms
Hamming window and Fast Fourier Transformation 20 spectral
channels, zero crossing rate, total energy and two loudness fea-
tures are extracted within each window. All experiments use the
German “Diphon” database containing all possible diphon com-
binations and a natural distribution of the phoneme a priori pro-
babilities. 7771 sentences from 67 speakers are used for training
and 3301 sentences from 33 other speakers are used for evalua-
tion.

3.2 Viterbi and Forward-Backward Processing

For mixture-statt HMMs the difference between Viterbi and
Forward-Backward (F.-B.) processing is quite low because the
summing up of base function emissions in the states is the same
in both algorithms. With the base function oriented SMMs, how-
ever, Viterbi processing is much more selective. To evaluate this
effect, an SMM with 339 base functions was processed by both
algorithms. Training and evaluation must be carried out within a
phoneme segmentation determined automatically, because the F.-
B. algorithm performs no implicit segmentation. Since F.-B.
training produces almost no transitions with a probability of zero
it does not eliminate very much transitions. Viterbi processing
results in a phoneme recognition rate of 54.93%, Forward-
Backward processing yields 54.82%. This shows, that Viterbi
processing is appropriate for base function oriented models, too.
Furthermore, it confirms the theory, that the superposition of
base functions in the mixture-states of HMMs is necessary be-
cause of the variety of acoustic events represented by a state and
not because a single event can’t be modeled by a single normal
distribution. For this reason, Viterbi processing is used in all
other experiments shown in this work.

3.3 Model Structure

Figure 2 visualizes the structure of the SMM for phoneme "U"
after the Viterbi-based maximum-likelihood training. The fol-
lowing conclusions can be derived from the evaluation of several
SMMs: Firstly, the SMMs only use a small proportion of the
transitions modeled implicitly by an equivalent mixture-state
HMM and the additional degree of freedom in the transition
probabilities is used. For example, the transitions 0—6, 2—6
and 56 in SMM "U" obtain the probabilities 0.41, 0.22 and
0.13 while 196, 356 and 46 are never used. A mixture-state
HMM would force a common mean value for these transitions.
Secondly, especially consonant-SMMs show one-way transitions
between base functions originating from the same phoneme seg-
ment. In other words, we obtain a sequential structure within the
original segment.

And thirdly, at the model boundaries, groups of neighbouring
phonemes and different acoustic forms of the most frequent
neighbouring phonemes compete with each other for a specific
connection node. The proposed cluster algorithm performs a data
driven context definition by yielding specific connection nodes
for the most different acoustic events in the context, disregarding
whether these differences are caused by speaker variability or by
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Fig. 2: Segmentation HMM with 5 mixture-states and SMM
with 24 states (distance threshold: 0.003, context weight: 0.5)

different phonemes in the context. This is in contrast to contexi-
dependent HMMs (for example [8],[10],[11]).

3.4 Recognition Experiments

In this section results of unconstrained phoneme recognition ex-
periments are shown.

® Al results are compared with mixture-state HMMs contain-
ing state specific base functions.

*  The recognition and insertion rates are determined by a DP-
alignment between the recognized phoneme string and the
standard transcription. The recognition rate is defined as the
number of phonemes recognized correctly divided by the
total number of phonemes in the standard transcription and
the insertion rate is the number of inserted phonemes di-
vided by this total number of phonemes.

*  The recognition rates of the different models are compared
over the number of base functions and over the total number
of model parameters, because SMMs have more transition
parameters than mixture-state HMMs.

In figures 3 and 4, e denotes the results of the mixture-state
HMMs, x that of the SMMs without context-dependent cluster-
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Fig. 3: Recognition rates over number of base functions
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Fig. 4: Recognition rates over total number of model parameters

ing and + that of the SMMs with context-dependent clustering
using a context weight of 0.5.

The comparison at a constant number of base functions as well
as at a constant number of parameters shows, that the SMMs
with context-dependent clustering yield higher recognition rates
than mixture-state HMMs and SMMs without context-dependent
clustering. Mixture-state HMMs show significant saturation ef-
fects with a rising number of base functions. The SMMs, how-
ever, yield an increase of 2 points in the recognition rate with
each doubling of the number of base functions in the examined
range. For a low number of base functions the SMMs have a
worse insertion rate compared to the mixture-state HMMs. How-
ever, with the number of base functions rising, this difference
decreases to 0.4% (for about 3000 base functions).

Moreover, it is very interesting, that the increase in the number
of transitions within and between the SMMs is linearly over the
number of base functions and not quadratically. This shows that
with a rising number of base functions, mixture-state HMMs
model implicitly more and more transitions between base func-
tions which are never observed. With 500 base functions the
number of transitions within and between the SMMs is about
50% of the number of implicit base function transitions in the
corresponding mixture-state HMMs. With 2776 base functions
this value decreases to about 12%.

4. COMPARISON TO TRAJECTORY MODELING

There are 2 basic problems with trajectory modeling. First, one
has to choose proper segments for the trajectory clustering. Using
segments associated with HMM states [12] or entire phonemes
(131,[141,[15] has the consequence that only statistical depen-
dencies within the choosen segments are included. Therefore,
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{15] uses “transition tracks™ describing the transition between
two phonemes. However, the transition region influences the
scoring twice, once by the phoneme trajectory and once by the
transition track.

The method proposed in this work uses segments associated with
HMM-states, but an arbitrary number of neighbouring segments
(the context reach), which is not limited by phoneme or word
boundaries, can influence the clustering. This way, the clustering
yields points of a trajectory, each obtaining a normal distribution
modeling the error. The combination of this points to a structure
of branching and recombining trajectory segments is done by the
subsequent data driven training step, which is not influenced by
any boundaries, too. This yields trajectory segments within the
phonemes as well as trajectory segments describing the transition
between different acoustic forms of two phonemes. The tradeoff
between the desirable parameter tying resulting from trajectory
recombination on the one hand and a high effective model order
on the other hand can be controlled by the parameters context
weight and context reach. A weakness of the proposed method
lies in the separation of trajectory point generation and trajectory
structure combination, which causes additional transitions (with
a low probability) to and from trajectory points with overlapping
error distributions. However, our experiments show that the
number of transitions in the models increases linearly over the
number of base functions (i. e. trajectory points) and not quad-
ratically. Therefore, this problem becomes less important with
the number of base functions rising.

The second problem with trajectory modeling is the time align-
ment for trajectory clustering. Speaking rate blurs the trajectories
without such a procedure [12]. In [13] and [15] all vector se-
quences are interpolated linearly to obtain a fixed number of
trajectory points and [14] proposes a post-training performing a
nonlinear alignment against the trajectory points generated by
linear interpolation. Nevertheless, the mapping to a fixed num-
ber of trajectory points is not optimal.

In the method proposed in this work each trajectory obtains its
own number of points automatically, depending on its data vec-
tors. The alignment against the points is nonlinear (Viterbi).

5. DISCUSSION

An optimal representation of all temporal constraints in the
speech process could be achieved theoretically by storing an in-
finite number of feature vector trajectories for large units, for
example sentences, and comparing the unknown vector se-
quences to all these trajectories by DP matching. Of course, this
is not possible. The method proposed in this paper represents the
reference trajectories as a graph of normally distributed acoustic
events. It is based on the assumption, that the position of a fea-
ture vector within a normal distribution does not influence the
probability of neighbouring vectors. However, the selection of a
distribution by the Viterbi algorithm imposes restrictions on the
possible neighbouring distributions. This way, each vector influ-
ences the probability of its neighbours. The reach of this influ-
ence is called the effective model order. It depends on the
emerging model structure which in turn depends on the number
of context segments and the context weight used in the clustering
process, on the number of base functions, and on the data itself.

The most important result of this work is, that a modeling of the
structural aspects of the speech units becomes more and more
important when the number of base functions rises. This can be

seen clearly from the saturation effects in the recognition rate
and the high number of incorrect implicit base function transi-
tions in the mixture-state HMM approach. The proposed struc-
tured Markov Models are advantageous especially with a high
number of base functions.
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