TECHNISCHE UNIVERSITÄT MÜNCHEN

WACKER-Lehrstuhl für Makromolekulare Chemie

Neuartige Materialien für Kohlenstoffdioxid-Selektive Gastrennmembranen

Markus M. G. Hammann

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender:	UnivProf. Dr. Tom Nilges
Prüfer der Dissertation:	
1.	UnivProf. Dr. Dr. h.c. Bernhard Rieger
2.	HonProf. Dr. Richard W. Fischer

Die Dissertation wurde am 28. April 2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 16. Juli 2015 angenommen.

TECHNISCHE UNIVERSITÄT MÜNCHEN

WACKER LEHRSTUHL FÜR MAKROMOLEKULARE CHEMIE

Neuartige Polymere für Kohlenstoffdioxid-Selektive

Gastrennmembranen

New Polymers for Carbon Dioxide-Selective Gas Separation Membranes

Dissertation

Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften

vorgelegt von

Markus Hammann

Garching bei München, April 2015

Danksagung

Mein besonderer Dank gilt Herrn Professor Bernhard Rieger für sein Vertrauen in einen chemiebegeisterten Wirtschaftsingenieur zur Promotion in seiner Arbeitsgruppe. Herrn Dr. Carsten Troll danke ich für seine tatkräftige Unterstützung in allen erdenklichen Belangen. Meinem ehemaligen Labornachbarn Dr. Stephan Salzinger und dem Rest des Arbeitskreises danke ich für viele fruchtbare Diskussionen und einen lebhaften Arbeitsalltag. Meiner Freundin Marie und meinen Eltern Irmgard und Detlev will ich für ihre Unterstützung und ihren Rückhalt danken.

Inhaltsverzeichnis

Sym	Ibolve	erzeichnis	5
Kurz	fassu	ing	9
Abst	tract.		10
1.	Einlei	tung	11
1.	1. Č	okologische Bedeutung der CO ₂ -Abscheidung	11
1.2	2. Ir	ndustrielle Bedeutung	12
1.:	3. T	echnologievergleich	13
	1.3.1.	Druckwechseladsorption	14
	1.3.2.	Aminwäsche	15
	1.3.3.	Gaswäsche mit physikalischen Lösungsmitteln	17
	1.3.4.	Kryorektifikation	18
	1.3.5.	Membranverfahren	18
1.4	4. Z	ielsetzung	20
2.	Theor	retische Grundlagen	22
2.	1. V	erfahrenstechnische Aspekte	22
	2.1.1.	Führung der Gasströme	22
	2.1.2.	Triebkraft	23
	2.1.3.	Reihen- und Parallelschaltung	24
	2.1.4.	Membranaufbau	25
2.2	2. G	aspermeation durch unporöse Festkörper	27
	2.2.1.	Lösungs-Diffusions-Modell	
	2.2.2.	Dual-Mode-Modell	31
	2.2.3.	Facilitated-Transport-Modell	32
2.3	3. E	influss von Prozessparametern und Polymerstruktur	34
	2.3.1.	Temperatur und freies Volumen	34
	2.3.2.	Druck	37
	2.3.3.	Feuchtigkeit	37
	2.3.4.	Molekulare Struktur	38
2.4	4. S	tereoreguläre Insertionspolymerisation	39
3.	Ergeb	onisse und Diskussion	44
3.	1. N	1aterialauswahl	44

3.1.1	. Literaturüberblick	
3.1.2	. Mit nukleophilen Anionen funktionalisierte Polymere	54
3.1.3	. Kationenscreening	55
3.2. F	Poly(4-vinylphenolate)	
3.2.1	. Aromatische Modifikation	65
3.2.2	. Copolymerisation	69
3.2.3	. Permeabilität	71
3.2.4	. Stereoregularität	77
3.3. F	Poly(acrylate) und Poly(methacrylate)	80
3.4. F	Poly(vinylphosphonate)	
3.5. l	Jltradünne Selektive Schichten	82
3.5.1	. Layer-by-Layer-Selbstorganisation	82
3.5.2	. Chemische Gasphasenabscheidung	
3.6. F	Polymer / IL Komposit	
4. Zusa	mmenfassung und Ausblick	93
5. Expe	rimentalteil	
5.1. N	Materialien und Methoden	
5.2. 5	Synthese	100
5.2.1	. Trennaktive Schicht	100
5.2.2	. Stützmembranen	117
5.2.3	. Mehrschicht-Verbundmembranen	117
Literaturv	verzeichnis	121

Symbolverzeichnis

Abkürzungen

Abb	Abbildung
AG	Aktiengesellschaft
AIBN	Azo-bis-(isobutyronitril)
APDMS	3-Aminopropyldimethylethoxysilan
APDIPS	3-Aminodiisopropylethoxysilan
ATR	Attenuated Total Reflection
Bspw.	Beispielsweise
Bzw.	Beziehungsweise
CO ₂	Kohlenstoffdioxid
CH ₄	Methan
CVD	Chemical Vapor Deposition
DBPO	Dibenzoylperoxid
DEGMEMA	Di(ethylene glycol) methyl ether methacrylate
DI	Deionisiert
DIVP	Di(isopropyl) vinylphosphonat
DMAc	Dimethylacetamid
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
DRIFT	Diffuse Reflectance Infrared Fourier Transform
DSC	Differential Scanning Calorimetry
et al.	und andere
FT	Facilitated Transport
GO	Graphenoxid
GPC	Gelpermeationschromatographie

Grds.	Grundsätzlich
GTR	Gas Transmission Rate
H ₂	Wasserstoff
IL	Ionic Liquid
LbL	Layer-by-Layer
m	Multiplett
MAO	Methylaluminoxan
MAS	Magic-Angle-Spinning
MEA	Methanolamin
MeOH	Methanol
MMM	Mixed Matrix Membrane
N ₂	Stickstoff
NEP	N-Ethylpyrrolidon
NMP	N-Methylpyrrolidon
NMR	Nuclear Magnetic Resonance
[P ₄₄₄₄]	Tetrabutylphosphonium
[P ₄₄₄₁]	TributyImethyIphosphonium
[P ₄₄₄₁₄]	Tributyltetradecylphosphonium
[P ₆₆₆₁₄]	Trihexyltetradecylphosphonium
PAA	Poly(acrylsäure)
PAH	Poly(allylamin) hydrochlorid
PAN	Poly(acryInitril)
PDMS	Poly(dimethylsiloxan)
PE	Polyelektrolyt
PEG	Poly(ethylenglykol)
PEI	Poly(etherimid)

PES	Poly(ethersulfon)
PIM	Intrinsisch poröses Polymer
PSA	Pressure Swing Adsorption
PSS	Natrium Poly(styrol sulfonat)
ppm	parts per million
PVA	Poly(vinyl alkohol)
PVPhOH	Poly(4-vinylphenol)
REM	Raster Elektronenmikroskopie
S	Singulett
SD	Solution Diffusion
SILM	Supported Ionic Liquid Membrane
SNV	Standard-Normal-Variate Transformation
TGA	Thermo-Gravimetrische Analyse
THF	Tetrahydrofuran
TiBA	Triisopropylaluminium
ТМА	Trimethylaluminium
TPSE	Thermoplastisches Silikonelastomer
UV	Ultraviolett

Lateinische Buchstaben

A	Fläche	m²
с	Konzentration	mol L ⁻¹
D	Diffusionskoeffizient	m² s⁻¹
f	Freie Volumenfraktion	-
G°	Freie Standard Gibbs Energie	J mol ⁻¹
H°	Freie Standard Enthalpie	J mol⁻¹
Н	Henry-Konstante	mol L ⁻¹ bar ⁻¹

I	Membranstärke	m
К	Gleichgewichtskonstante	-
k	Geschwindigkeitskonstante	s-1
М	Molar	-
n	Stoffmenge	mol
Р	Permeabilität	barrer
pi	Partialdruck	bar
pKa	neg. dek. Log. der Säurekonstante	-
R	Ideale Gaskonstante	J mol ⁻¹ K ⁻¹
S°	Freie Standard Entropie	J mol ⁻¹ K ⁻¹
t	Zeit	S
т	Temperatur	К
u	Mittlere Geschwindigkeit	m s⁻¹
Griechische	Buchstaben	
α	Ideale Permeabilitäts-Selektivität	-
γ	Überlappungsfaktor	-
δ	Chemische Verschiebung	ppm
Δ	Differenz	-
φ	Relative Feuchtigkeit	-
φ	Facilitation Factor	-
$\widetilde{ u}$	Wellenzahl	cm⁻¹
Vf	Mittleres spezifisches freies Volumen	m³ g⁻¹
θ	Kontaktwinkel	0
ρ	Dichte	g cm³

Kurzfassung

Die energieeffiziente CO₂-Abscheidung aus Gasgemischen mit N₂, CH₄ und H₂ besitzt große ökologische und ökonomische Bedeutung. Membranen übertreffen etablierte Trennverfahren im Hinblick auf Energie- und Wartungseffizienz, unterliegen bei Gasflussraten im technisch relevanten Maßstab jedoch einer begrenzten CO₂/Leichtgas-Selektivität.

Neue, mit nukleophilen Anionen funktionalisierte Polymere wurden synthetisiert und ihre Eignung als CO₂-selektive Membranwerkstoffe untersucht. Die reversible Bildung eines Phenol-Carbonat-Komplexes durch Tetraalkylphosphonium Poly(4vinylphenolat) wurde beobachtet, welche einen hochselektiven chemischen Transportkanal für CO₂ eröffnet. Die Nukleophilie der Phenolatverbindungen wurde durch aktivierende Gruppen am Aromaten weiter gesteigert. Durch Copolymerisation mit einem Oligo(ethylenglykol) methacrylat konnten die Filmbildungseigenschaften des Materials deutlich verbessert werden.

Mittels Beschichtung PDMS-basierter Trägerfilme wurden homogene und defektfreie Verbundmembranen mit idealen CO₂/N₂-Selektivitätswerten von bis zu α_{CO_2/N_2} = 67,7 ± 1 bei 1 bar Transmembrandruck und 15 °C erzeugt. Im Literaturvergleich der Ein-Polymer-Membranen stellt dies einen bisher unerreichten Wert dar.^{1,2} Eine Poly(4-vinylphenol)-basierte Trennschicht wurde mit CO₂-reaktiven, aminosäurebasierten ionischen einer Flüssigkeit, Tributyltetradecylphosphonium Prolinat, beladen, um die unselektive Gasdiffusion durch die freie Volumenfraktion des Polymers stärker einzuschränken.

Die chemische Gasphasenabscheidung eines ultradünnen, intrinsisch unlöslichen Poly(thiophen)-Films wird als Methode vorgestellt, um Mikrodefekte poröser Stützmembranen zu verschließen. Die Beschichtung mit Graphenoxid-Nanosheets und Carbonsäure-funktionalisierten Silizium-nanopartikeln wird erprobt, um der Defektbildung bei elektrostatischen *Layer-by-Layer-Selbstorganisation in der Membransynthese entgegenzuwirken.*

Abstract

The energy-efficient removal of carbon dioxide (CO₂) from gas mixtures is of exceptional ecologic as well as economic significance. Membrane-based CO₂ separation surpasses established processes in terms of overall energy efficiency, modularity and ease of operation, but is subject to limited CO₂/light gas-selectivity under high-throughput conditions.

A series of novel materials based on anion-functionalized polymers were synthesized and characterized with regard to their aptitude as CO₂-selective membrane layers. A tetraalkylphosphonium poly(4-vinylphenolate) membrane exhibiting tunable CO_2 -affinity and competitive ideal CO_2/N_2 separation factors is presented. The reversible formation of a phenol-carbonate complex is revealed, giving rise to chemical CO₂ transport facilitation. Polymer stereoregularity is targeted to reduce polymer free fractional volume and unselective gas diffusion through the bulk. Swelling of a phenolate-ioncontaining polymer layer with an amino acid ionic liquid, tributyltetradecylphosphonium L-prolinate ([P44414][Prolinate]), as a nonvolatile, yet mobile CO₂ carrier agent is presented as a step towards a waterindependent alternative to state-of-the-art hydrogel membranes.³

Chemical vapor deposition of an ultrathin, intrinsically insoluble poly(thiophene)-film is presented as a method to cure microdefects in porous substrates during membrane manufacture. Coating with graphene oxide nanosheets and carboxylic acid-functionalized silicon nanoparticles is discussed to mitigate defect formation in electrostatic layer-by-layer selfassembled nanocomposite membranes for gas separation.

1. Einleitung

1.1. Ökologische Bedeutung der CO₂-Abscheidung

Der anthropogene CO₂-Ausstoß aus der Verwertung fossiler Brennstoffe seit Beginn der Industrialisierung, zu einem Anstieg der hat. jahresdurchschnittlichen CO₂-Konzentration in der Erdatmosphäre von ca. 280 ppm auf über 400 ppm im Jahr 2014 geführt - dies ist der höchste Wert seit schätzungsweise 20 Mio. Jahren.⁴ Von allen so genannten Klimagasen in der Erdatmosphäre liefert CO₂ den größten Beitrag zur globalen Erderwärmung, die wiederum eine Vielzahl an Folgen für ökologische und menschgemachte Systeme nach sich zieht. Der Weltklimarat identifiziert den anthropogenen CO₂-Ausstoß mit einem statistischen Signifikanzniveau von über 90% als die Ursache von -Frequenz und Intensität unter anderem _ in zunehmenden Überschwemmungen und Dürren in tropischen und subtropischen Erdregionen.⁵ Eine weitere, indirekte Folge des CO₂-Ausstoßes ist der Anstieg der durchschnittlichen Hydrogencarbonatkonzentration der Weltmeere um ca. 28% seit Beginn der Industrialisierung, die ihrerseits erhebliche Auswirkungen auf marine Ökosysteme entfaltet.⁶

Um die Folgen des Klimawandels für die Weltwirtschaft in einem beherrschbaren Rahmen zu halten, gilt ein dauerhafter Maximalwert der CO₂-Konzentration 300 atmosphärischen von ppm als wissenschaftlicher Konsens.⁷ Die Länder der Europäischen Union streben bis 2030 eine Reduktion der CO2-Emissionen um 40% im Verhältnis zum Niveau des Jahres 1990 an.8 Eine aktuelle Zunahme der Nutzung fossiler Energieträger, insbesondere von Braun- und Steinkohle zur Erzeugung von elektrischem Strom, hauptsächlich in den Schwellenaber auch in einigen Industrieländern, wird auf mittlere Sicht jedoch zu einem weiteren starken Anstieg der atmosphärischen CO₂-Konzentration führen.9

Der Energieeffizienz von CO₂-Abscheidungstechnik und ihrer Integrierbarkeit in große, CO₂-emittierende Anlagen (sog. *Large Point Sources*), kommt vor diesem Hintergrund eine entscheidende Rolle zu.

1.2. Industrielle Bedeutung

Über die Emissionsvermeidung aus der Verbrennung fossiler Energieträger durch *Post-Combustion Carbon Capture* (Trennproblem: CO_2/N_2)¹⁰ hinaus, ist die CO_2 -Abtrennung auch beim *"Sweetening"* in Erdgasförderung und Biomethanherstellung (Trennproblem: CO_2/CH_4),¹¹ zwingend erforderlich. CO_2 verringert den Heizwert der jeweiligen Produktgase und führt, in Verbindung mit Feuchtigkeit, zur Korrosion der Gas-Infrastruktur. Es gelten dementsprechend niedrige CO_2 -Grenzwerte zur CH_4 -Einspeisung in lokale Gasnetze (Tabelle 1).

Ein weiteres großindustrielles Anwendungsfeld ist die Wasserstoff (H₂)und Synthesegasproduktion (CO, H₂) durch Partielle Oxidation und Dampfreformierung aus Kohlenwasserstoffen (Trennproblem: CO_2/H_2), mittels derer aktuell rd. 95% der globalen H₂-Produktion realisiert wird.³ Die *Wassergas-Shift-Reaktion* dient in diesen Prozessen der Anreicherung des Produktgases mit H₂:

 $H_20 + C0 \rightleftharpoons CO_2 + H_2$

Um die thermodynamische Limitierung der H₂-Ausbeute und der CO-Umsetzung bei der *Wassergas-Shift-Reaktion* zu verringern, wird CO₂ als Koppelprodukt laufend aus dem Reaktionsgemisch abgeschieden.

Tabelle 1 zeigt die jährlichen Produktionskapazitäten (Stand: 2010) und das prognostizierte Wachstum der genannten industriellen Anwendungsfelder bis zum Jahr 2020.¹²⁻¹⁴ Unabhängig von zukünftigen regulatorischen Vorgaben zur CO₂-Emissionsvermeidung ergibt sich, insbesondere bei der Biomethanproduktion, ein starkes Nachfragewachstum nach CO₂-Trenntechnik auf mittlere Sicht.

Produkt	Produktion	Progn.	CO₂ nativ	CO ₂ spez.
	p.a. 2010	Wachstum	[Vol.%]	[Vol.%]
	[10º Nm³]	bis 2020 p.a.		
Biomethan	ca. 21†	13,7%	25 – 45	< 6
Erdgas	ca. 3.200	1,5%	5 – 35	< 0,5
Wasserstoff	ca. 500	10%	15 – 40	< 0,01

 Tabelle 1: Technisch bedeutende Prozesse mit Bedarf an CO₂-Abscheidungstechnik.¹²⁻

 ¹⁴ †: Nur Europa.

Zunehmend wird CO_2 nicht mehr ausschließlich als unerwünschtes Nebenprodukt, sondern auch als ungiftiger, reichlich verfügbarer C_1 -Baustein für wertschöpfende Anwendungen in Betracht gezogen. Beispiele sind die katalytische bzw. enzymatische Reduktion von CO_2 zu Ameisensäure, zu Methanol (MeOH) oder zu Methan als chemische Energiespeicher, die Umsetzung mit MeOH zu Dimethylcarbonat, sowie die direkte Copolymerisation mit Epoxiden zu Poly(carbonaten).¹⁵ Auch diese Entwicklung erfordert, neben gesetzlichen Rahmenbedingungen und Anreizen zur CO_2 -Emissionsvermeidung, effektive und kostengünstige Technik zur CO_2 -Isolierung.

1.3. Technologievergleich

Die physiko-chemischen Besonderheiten von CO₂ sind zu seiner Abscheidung nutzbar. So besitzt CO₂ im Vergleich zu den unpolaren Gasen N₂, H₂ und CH₄ ein deutlich größeres permanentes elektrisches Quadrupolmoment.¹⁶ Zudem hat CO₂ als einziges der aufgeführten Gase ein elektrophiles Zentrum, welches von Nukleophilen unter Bildung einer kovalenten Bindung angegriffen werden kann.

Gas	Permanentes elektrisches	Kinetischer	Siedepunkt bei
	Quadrupolmoment	Durchmesser	Normaldruck
	[10 ^{-₄0} Cm²]	[Å]	[°C]
CO ₂	13,417	3,30	-78,5 [†]
N ₂	4,7 ¹⁷	3,64	-196
CH ₄	-	3,80	-161,5
H ₂	1,73 ^{18,19}	2,89	-252
O ₂	-1,03 ²⁰	3,46	-183

Tabelle 2: Trennungsrelevante Eigenschaften von CO_2 , N_2 , CH_4 , H_2 und O_2 . \dagger : Sublimation.

Der CO₂-Trennschritt wird, nach dem Stand der Technik, durch Aminwäschen oder Druckwechseladsorption (*Pressure Swing Adsorption*, PSA) realisiert.²¹ Als Alternativtechnologien gelten Gaswäschen auf Basis von rein physikalischen Lösungsmitteln sowie die Membrantechnik, die Gegenstand dieser Arbeit ist.

1.3.1. Druckwechseladsorption

Die Trennung bei der PSA beruht auf der selektiven Adsorption von CO₂ an einem porösen Feststoff – häufig Aktivkohle oder Zeolithe – bei Drücken zwischen 4 und 7 bar. Bei der Entspannung auf ein Druckniveau von ca 0,05 bar desorbiert CO₂, und das Adsorbens wird regeneriert. Es werden mehrere Adsorptionstürme im Wechsel betrieben, um einen quasikontinuierlichen Betrieb zu gewährleisten.

Aus der Fahrweise mit zyklischen Druckwechseln resultieren hohe Anforderungen an Material und Konstruktion der Anlage. Der Regelbarkeit auf variierende Betriebslast sind mit ±10% enge Grenzen gesetzt. Zudem muss der Feed getrocket und entschwefelt sein, da Wasser und Schwefelwasserstoff (H₂S) bei der Adsorption mit CO₂ konkurrieren.²¹ Je nach Fahrweise tritt bei der PSA ein hoher Produktgasschlupf von bis zu 10% auf.

1.3.2. Aminwäsche

Bei der Aminwäsche wird das Rohgas, unter Umgebungsdruck und temperatur, durch eine wässrige Aminlösung - typischerweise Monoethanolamin (MEA) - gepumpt, welche unter Bildung von Carbamatsalzen und Hydrogencarbonat mit dem enthaltenen CO₂ reagiert. Welches Reaktionsprodukt dabei bevorzugt entsteht, ist durch den Grad der sterischen Hinderung des Amins beeinflussbar²² (Schema 3). Die gesättigte Aminlösung wird durch eine Desorptionskolonne zykliert und unter Wärmezufuhr regeneriert, wobei eine Erhitzung auf 140 - 160 °C notwendig ist, um das CO₂ wieder vollständig auszutreiben.²¹

Schema 2: CO₂-Abscheidung durch Gaswäsche mit wässrigen Aminlösungen.

Schema 3: Reaktionspfade der Carbamat- und Hydrogencarbonatbildung von CO₂ mit sterisch ungehinderten und gehinderten Aminen in Wasser.

Aus der hohen thermischen Stabilität der gebildeten Carbamatsalze, sowie der parasitären Wärmekapazität des enthaltenen Wassers, ergibt sich bei der Aminwäsche ein Energiebedarf, der weit über dem thermodynamischen Minimum zur CO₂-Abtrennung liegt.¹⁶ Zudem tritt durch eine Reihe irreversibler Nebenreaktionen eine Langzeitdegradation der korrosiven und hochgiftigen Aminlösung auf.^{16,23} Um einer vorzeitigen Aminzersetzung vorzubeugen, ist, wie bei der PSA, ein vorgelagerter Entschwefelungsschritt nötig.²¹

Vorteile der Aminwäsche sind, dass - von Dampfdruckänderungen der Waschlösung abgesehen - keine Druckwechsel auftreten, dass eine hohe Reinheit des Produktgases gewährleistet wird und dass kein nennenswerter Produktgasschlupf auftritt. Zudem kann zur Lösungsmittelregeneration, sofern vorhanden, die Restwärme von verbundenen Prozessen genutzt werden. Im Fall der Biomethanherstellung ist der Anteil der Anlagen, die die Aminwäsche zur CO₂-Abtrennung nutzen, in Deutschland derzeit führend und steigt weiter an.21

1.3.3. Gaswäsche mit physikalischen Lösungsmitteln

Im Unterschied zur Aminwäsche erfolgt die Abscheidung saurer Gase bei diesem Verfahren ausschließlich durch präferenzielle physikalische Dissolution. Die spezifische CO₂-Aufnahmekapazität der Lösungsmittel folgt dem Henry-Gesetz und ist proportional zum CO₂-Partialdruck, sodass die physikalische Wäsche besonders bei solchen Anwendungen in Frage kommt, wo prozessbedingt bereits ein sehr hoher CO₂-Partialdruck vorliegt.

Tabelle 3 gibt einen Überblick über etablierte physikalische CO₂-Wäschen. Nach Herstellerangaben entfällt bei den aufgeführten Prozessen die Notwendigkeit zur vorgelagerten Feinentschwefelung, was als Vorteil gegenüber der PSA und der Aminwäsche zu werten ist.²¹

Lösungsmittel	Handelsname	Absorption	Desorption
		[bar/°C]	[bar/°C]
Wasser	-	4-7 / 25	Umgebung
Poly(ethylenglykol) (PEG)	Selexol®	2-14 / 25	Umgebung
PEG-Dimethylether- Gemisch	Genosorb®	4-7 / 25	Umgebung / 80
Methanol	Rectisol®	3-7 / -40	Umgebung / -40
N-Methylpyrrolidon	Purisol®	3-7 / -15	Umgebung / -15

 Tabelle 3: Übersicht kommerzieller Gaswäschen mit physikalischen Lösungsmitteln.

1.3.4. Kryorektifikation

Die deutlichen Siedepunktdifferenzen (Tabelle 2) ermöglichen eine sehr saubere rektifikative CO₂-Abscheidung (> 99,9%) bei hohen Drücken (60 bar) und niedrigen Temperaturen (-80 °C). Dem hohen erzielten Reinheitsgrad steht dabei ein enormer Energieaufwand zur Verdichtung und Abkühlung gegenüber, sodass dieses Verfahren nur als ergänzende Stufe zur Produktgasrückgewinnung aus bereits sehr CO₂-reichen, kleinen Gasströmen interessant ist.²¹

1.3.5. Membranverfahren

Die CO₂-Abtrennung mit Membranen basiert auf der präferenziellen Durchlässigkeit einer Gas-Feststoff-Phasengrenze für CO₂ gegenüber anderen Spezies im Gasgemisch. Über die Phasengrenze hinweg wird durch Verdichtung, Evakuation oder ein Spülgas *(Sweep)*, ein Druckgradient angelegt. Der Feedgasstrom wird dadurch in ein CO₂reiches Permeat und ein CO₂-armes Retentat aufgespalten (Schema 4).

Schema 4: Funktionsweise der membranbasierten Gastrennung.

Durch ihre passive, vollkontinuierliche Betriebsweise gelten Membranverfahren als energieeffizient und wartungsarm. Ihr modularer Aufbau vereinfacht die Integration in bestehende Prozesse, sowie die flexible Skalierung durch Reihen- und Parallelschaltung.²⁴

Als Nachteil der etablierten Membransysteme gilt der Konflikt zwischen erzieltem Trennfaktor (Selektivität) und erzielter Permeabilität von CO₂. Dieser erstmals 1991 von Robeson beschriebene²⁵ und 2008 aktualisierte² empirische Trade-Off erzwingt die Abwägung zwischen Produktschlupf und CO₂-Restgehalt im Produkt auf der einen, und einer hohen Membranoberfläche bzw. eines hohen Transmembrandrucks auf der anderen Seite.

Tabelle 4: Vor- und Nachteile verfügbarer CO₂-Trenntechniken am Beispiel der Erdund Biogasaufarbeitung. (unterdurchschnittlich, -; überdurchschnittlich, +; neutral, /)

Technologie	Energie-	Trenn-	Besonderheiten
	effizienz	schärfe	
PSA	/	-	Geringe Lastenflexibilität
Aminwäsche		++	Chemikalienverbrauch;
			Wärmezufuhr anstelle von
			Druckwechseln
Physikalische	+	/	Nur bei sehr hohem p _{CO2} ;
Wäsche			Gleichzeitige H ₂ S-Entfernung
Kryorektifikation		++	Nur ergänzend
Membran-	++	/	Permeabilitäts-Selektivitäts-
verfahren			Konflikt

1.4. Zielsetzung

Die ideale CO₂-Gastrennmembran kombiniert folgende Eigenschaften miteinander:

- Hohe CO₂-Durchflussrate
- Niedrige Durchflussraten für N₂, CH₄ und H₂
- Beständigkeit gegen Korrosion, Druck und Temperatur
- Simple und kostengünstige Herstellung
- Hohe spezifische Oberfläche

Dabei kommen folgende Zielkonflikte auf: Chemisch inerte Polymermembranen unterliegen einem Trade-Off zwischen CO_2 -Permeabilität P_{CO_2} und der Selektivität $\alpha_{CO_2/x}$. Chemisch aktive, sog. *Facilitated Transport* (FT)-Membranen, sind hingegen intolerant gegenüber Veränderungen von relativer Feuchtigkeit, Temperatur und Permeatdruck (Abschnitt 3.1.1.3). Mit der Stärke der trennaktiven Membranschicht steigen Simplizität der Herstellung und Beständigkeit der Membran, jedoch sinkt gleichzeitig die CO₂-Durchflussrate (Abschnitt 2.2).

Diese Arbeit verfolgt ein neues Materialkonzept, um diesen Zielkonflikten zu begegnen. Mit nukleophilen Anionen funktionalisierte Polymere sollen ertmals gleichzeitig sowohl als mechanisch stabiler Membranwerkstoff, als auch als wasserunabhängige CO₂-Trägerfunktionen dienen. Die Auswahl von Poly(anion) und Gegenkation soll unter den Gesichtspunkten von CO₂-Affinität, sowie chemischer und thermischer Robustheit erfolgen.

Ist ein Plattform-Material gefunden und synthetisiert, soll es mittels gravimetrischer, kalorimetrischer und spektroskopischer Methoden auf seine Wechselwirkung mit CO₂ hin untersucht werden. Mittels gezielter struktureller Modifikation sollen daraufhin CO₂-Affinität und Filmbildungseigenschaften optimiert werden.

Aus dem Material sollen testweise Flachmembranen dargestellt und die Gas-Permeabilität und -Selektivität untersucht werden.

Schließlich soll, in Zusammenarbeit mit der Wacker Chemie AG und dem Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik, ein Modul aus CO₂-selektiven, anisotropischen Hohlfaser-Verbundmembran hergestellt, und, in einer Testanlage der Linde AG, unter Mischgasbedingungen charakterisiert werden.

2. Theoretische Grundlagen

Im Folgenden werden die prozesstechnischen Rahmenbedingungen und der makroskopische Aufbau technischer Gastrennmembranen vorgestellt. Anschließend wird der Zusammenhang zwischen den Betriebsbedingungen, der molekularen Struktur und der Gaspermeabilität des trennaktiven Materials sowie dessen Modellierung betrachtet.

2.1. Verfahrenstechnische Aspekte

2.1.1. Führung der Gasströme

Die räumlichen Orientierung von Permeat- und Feedstrom zueinander beeinflusst die Trennleistungen und die Anforderungen an die Membrangeometrie. Die tangentiale Anströmung der Membranoberfläche, wie sie bei Kreuz- und Gegenstrommodulen auftritt, hat sich gegenüber der radialen *(Dead-End)* Anströmung durchgesetzt, da sie den Rücktransport zurückgehaltener Verunreinigungen in die Bulkphase des Retentatstroms ermöglicht und somit die Ablagerung von Festkörperpartikeln und kondensierten Flüssigkeiten auf der Membranoberfläche, das sog. *Fouling*, verlangsamt.

Die Permeatführung im Gegenstrom, anstatt im Kreuzstrom, bewirkt eine effizientere Nutzung der Membranfläche durch einen größeren mittleren Konzentrationsgradienten über den Membranquerschnitt. Modellrechnungen von Merkel *et al.* zufolge ergibt der Einsatz von Gegenstrom- anstelle von Kreuzstrommembranen, am Beispiel der *Post-Combustion Carbon Capture*, Einsparungen von 38% der Membranfläche und 18% der Pumpleistung, bei gleichzeitiger Steigerung der CO₂-Permeatkonzentration von 28% auf 41% nach der ersten Trennstufe.²⁴

Dem Effizienzvorteil der Gegenstromführung steht beim Kreuzstrom der Vorteil einer simpleren Membrangeometrie und eines gleichmäßigeren Strömungs- und Druckprofils gegenüber, weshalb das Kreuzstromprinzip in Hohlfasern und spiralgewundenen Membranmodulen nach wie vor der Stand der Technik ist.²⁴

Schema 5: Membranbetrieb im Kreuzstrom (I.) und im Gegenstrom (r.).

2.1.2. Triebkraft

Das Membranverfahren ist auch dadurch charakterisiert, ob der treibende Partialdruckgradient durch

- (a) Kompression des Feeds
- (b) Anlegen von Vakuum auf der Permeatseite oder
- (c) Verwendung eines Sweepgases

erzeugt wird. Wie anhand von Modellgleichungen (Abschnitt 2.2) erkennbar ist, skaliert im Fall physikalischer Lösungs-Diffusions-Membranen der Permeatfluss linear mit der absoluten Partialdruckdifferenz über den Membranquerschnitt,

 $\Delta p = \overline{p} - p$

während bei FT-Membranen der Quadratwurzel des Partialdruckverhältnisses

$$\sqrt{\frac{\overline{p}}{p}}$$

eine entscheidende Rolle zukommt. Die Kapitalkosten für Kompressionstechnik liegen deutlich niedriger als für Vakuumtechnik, sodass zur Erzeugung einer hohen absoluten Druckdifferenz Option (a) im Vorteil ist.

Für Option (b) spricht dagegen, dass Permeatseitig ein wesentlich geringerer Volumenstrom zur Verdichtung anfällt – insbesondere dann, wenn die im Permeat anzureichernde Gasspezies nur einen kleinen Anteil des Feeds ausmacht. Zudem wird bei FT-Membranen der hochselektive, chemisch erleichterte CO₂-Transport durch ein geringes permeatseitiges CO₂-Partialdruckniveau stark begünstigt (Abschnitt 2.2.3). Ein geringer Anteil der im Permeat anzureichernden Gasspezies im Feed und die Verwendung einer FT-Membran sprechen deshalb für Option (b). Sollte der Feed Umgebungsdruck besitzen, ist eine geringfügige Feedkompression ergänzend nötig, um den Retentatstrom in Bewegung zu halten.

Bei Option (c) wird der CO₂-Partialdruckgradient durch kontinuierliche Verdünnung des Permeats mit einem Sweepgas erzielt. In dem Fall, dass CO₂ in einem hohen Reinheitsgrad produziert werden muss, ist dabei auf eine einfache anschließende Trennbarkeit von CO₂ und Sweepgas zu achten. Überhitzter Wasserdampf stellt hier eine Option dar, da sich dieser durch Auskondensieren unter Umgebungsbedingungen rückgewinnen lässt – seine Verwendung erfordert allerdings eine entsprechend hohe Betriebstemperatur von rd. 140 °C.

Zusammenfassend:

- Je größer der CO₂-Anteil und je weniger selektiv die Membran, desto eher lohnt sich die Feed-Kompression.
- Je geringer der CO₂-Anteil und je selektiver die Membran, desto eher lohnt sich die Evakuierung des Permeats.
- Bei ausreichend hoher Betriebstemperatur und Verfügbarkeit von überhitztem Wasserdampf bietet Sweepgas eine günstige Alternative zum Permeatvakuum.

2.1.3. Reihen- und Parallelschaltung

Durch Verschaltung mehrerer Membranmodule erhält das Membranverfahren einen wichtigen Freiheitsgrad. In Reihe geschaltete Module, die jeweils eine hohe Permeabilität und eine geringe Selektivität aufweisen, approximieren das Verhalten eines einzigen Moduls mit geringer Permeabilität und hoher Selektivität. Auf diese Weise kann die von Robeson beschriebene Trade-Off Gerade durch Reihenschaltung auf einer gegebenen Isoquante "abgeschritten" werden.²

Die Parallelschaltung mehrerer Membranmodule erlaubt die flexible Skalierung anhand des Feedgasstroms. Schema 6 zeigt beispielhaft ein über diese Freiheitsgrade optimiertes Membranverfahren zur Biogasaufbereitung unter gegebener Trennleistung und Permeabilität der Membran, Feedkomposition und Zielreinheit des Produktstromes.²⁶

Schema 6: Optimale Verschaltung eines mehrstufigen Membranverfahrens zur Biogasaufbereitung unter folgenden Rahmenbedingungen: $\alpha_{CO_2/CH_4} = 60$; $GTR_{CO_2} \approx$ 3.900 L m⁻² d⁻¹ bar⁻¹; CH₄-Rückgewinnung: 99,6%.²⁶

2.1.4. Membranaufbau

Moderne Membranmodule bestehen entweder aus mit Hohlfasermembranen bestückten druckfesten Kartuschen oder aus spiralförmig gewundenen Flachmembranen (Abbildung 1).

Abbildung 1: Hohlfasermembranmodul (links)²⁷ und spiralförmig gewundenes Flachmembranmodul (rechts).²⁸

Hohlfasermembranen sind in der Fertigung anspruchsvoller, besitzen aber durch ihre zylindrische Geometrie eine höhere mechanische Stabilität und ein günstigeres Oberflächen-Massen-Verhältnis als Flachmembranen. In dieser Arbeit werden zunächst unporöse Flachmembranen zum Screening selektiver Beschichtungen genutzt. Geeignete Materialien werden im Anschluss zum Modulbau auf eine HFM übertragen (Abbildung 2).

Abbildung 2: Fotografie einer transparenten Flachmembran (links, TUM) und REM-Aufnahme einer Dialyse-Hohlfasermembran (rechts, Fraunhofer IGB).²⁹

Bei Mehrschicht-Verbundmembranen sorgt eine, häufig poröse, Stützmembran aus einem robusten und kostengünstigen Material für mechanische Stabilität, während die funktionale Beschichtung auf der Oberdruckseite der Membran, mit einer Stärke von ca. 0,05-5 µm, den Trenneffekt hervorruft. Auf diese Weise können auch solche trennaktiven Materialien eingesetzt werden, die aufgrund mechanischer Defizite für sich allein genommen keine stabile Film- bzw. Hohlfaserstruktur ausbilden können. Bei schichtartig aufgebauten Kompositmembranen kann zudem durch Minimierung der Trennschichtdicke die Gasflussdichte maximiert werden (Abschnitt 2.2.1).¹

Um die Gasflussdichte durch die Stützmembran zu maximieren, wird häufig eine anisotropisch-poröse Struktur (Abbildung 3) angestrebt, die bspw. durch Phaseninversion erzielbar ist (Abschnitt 5.2.2).

Abbildung 3: Querschnitt einer asymmetrisch porösen thermoplastischen Silikonelastomer-Hohlfasermembran (hergestellt im iC4-Projektverbund vom Fraunhofer IGB, Stuttgart) in der REM-Aufnahme.

2.2. Gaspermeation durch unporöse Festkörper

Um Vorgaben zur Herstellung des CO₂-selektiven Materials auf molekularer Ebene herzuleiten, wird die Theorie zur Gaspermation durch eine stationäre Phase betrachtet.

Es existieren fünf mögliche Mechanismen zur Mischgastrennung mit Hilfe von Membranen: Knudsen-Separation, Größenexklusion, Lösungs-Diffusions-Separation, selektive Oberflächendiffusion und Kapillarkondensation. Die Größenexklusion und die Lösungs-Diffusions-Separation sind die Hauptmechanismen nahezu aller Gastrennmembranen und werden detailliert betrachtet. Für eine Diskussion der übrigen Mechanismen sei auf die Ausarbeitung von Kentish *et al.* verwiesen.¹

Die Trennung durch Größenexklusion (engl.: Molecular Sieving) setzt eine möglichst monodisperse Porengröße des Membranmaterials voraus, die zwischen den jeweiligen kinetischen Durchmessern der zu trennenden Gasmoleküle liegt. Da CO₂ einen geringeren kinetischen Durchmesser als N₂ und CH₄ hat, kann so eine gewisse CO₂-Selektivität gegenüber diesen Gasen erzielt werden, nicht jedoch gegenüber H₂ (Tabelle 2).

Membranen auf Basis von intrinsisch porösen Polymeren (PIMs)³⁰ und thermisch modifizierten Graphenen und Graphenoxiden³¹, sowie einige Anorganisch-Organische Hybridmembranen (MMMs),³² machen sich die Größenexklusion zunutze.

Membranen auf Polymerbasis, die die weit größte technische Bedeutung haben, sind, mit Ausnahme der erwähnten PIMs, unporös. Der Gastransport durch sie wird üblicherweise mit dem Löslichkeits-Diffusions-(SD)-Modell beschrieben. Die Trennung von Gasspezies beruht hier sowohl auf unterschiedlich schneller Diffusion der Gase als auch auf ihrer unterschiedlichen Löslichkeit in der Polymermatrix. Das SD-Modell sowie seine wichtigsten Erweiterungen werden im Folgenden detailliert beschrieben.

2.2.1. Lösungs-Diffusions-Modell

Das SD-Modell beschreibt in erster Näherung den Transport von Gasmolekülen durch einen unporösen Feststoff im Flussgleichgewicht (*steady state*). Es geht von Henry-Adsorption an der Grenzfläche der Membran zur Oberdruckseite aus, gefolgt von einer Fick'schen Diffusion des Gasmoleküls über den Querschnitt der Membran, und einer Henry-Desorption an der Grenzfläche zur Niederdruckseite. Löst man das Fick'sche Diffusionsgesetz für eine lineare Geometrie auf und setzt in die Lösung jeweils das Henry-Gesetz für die Grenzflächenkonzentrationen ein, so ergibt sich folgender Zusammenhang:

$$J_{i} = -D_{i} \frac{\partial c_{i}}{\partial x}$$
$$J_{i} = D_{i} \frac{(\overline{c_{i}} - \underline{c_{i}})}{l}$$
$$J_{i} = D_{i} S_{i} \frac{(\overline{p_{i}} - \underline{p_{i}})}{l}$$

Wobei der Ober- bzw. Unterstrich für die entsprechende Grenzfläche der Membran stehen. Es ist erkennbar, dass der Gasfluss J_i reziprok von Stärke der Membran l abhängt. Das Produkt aus Diffusions- und Löslichkeitskoeffizient wird als die Permeabilität P_i definiert. Seine Dimension ist in eckigen Klammern notiert.

$$P_i = D_i S_i; \ [\frac{V \cdot l}{A \cdot p \cdot t}]$$

Wobei V für das Gasvolumen, A für die Membranfläche, p für den Transmembrandruck und t für die Zeit steht.

Innerhalb des SD-Modells ist die Permeabilität für jedes Membran-Gas-Paar spezifisch, weshalb sie häufig zum Vergleich der Trennleistung verschiedener Membranen herangezogen wird.

Historisch hat sich in der Membranliteratur für die Permeabilität die nicht-SI-Einheit *"barrer"* (1 *barrer* \equiv 10⁻¹¹ cm² s⁻¹ mmHg⁻¹) durchgesetzt. In dieser Arbeit wird diese Größe ausschließlich für den Vergleich mit Literaturwerten herangezogen. Zur Beurteilung anisotropischer Membranen ist die Gastransmissionsrate (GTR) besser geeignet, da sie nicht zwingend die Homogenität der stationären Phase zugrunde legt. Die GTR steht mit der Permeabilität in folgendem Zusammenhang:

$$GTR_i = \frac{P_i}{l}; \left[\frac{V}{A \cdot p \cdot t}\right]$$

Die dimensionslose ideale Selektivität einer Membran für ein bestimmtes Gaspaar wird gemäß der nachstehenden Gleichung definiert und drückt das Permeabilitäts- bzw GTR-Verhältnis zweier Reingase aus.

$$\alpha_{i_{i_j}} = \frac{P_i}{P_j} = \frac{GTR_i}{GTR_j}$$

Im Hinblick auf das Membrandesign ist aus dem SD-Modell ersichtlich, dass eine Selektivität für eine bestimmte Gasspezies sowohl durch selektive Diffusion, als auch durch selektive Löslichkeit bewirkt werden kann. Die Diffusionsgeschwindigkeit jedoch folgt direkt dem kinetischen Durchmesser der Gasmoleküle (Tabelle 2). In Abwesenheit definierter Poren im Membranmedium muss eine signifikante Anreicherung von CO₂ im Permeatstrom daher über die bevorzugte Dissolution von CO₂ realisiert werden.

Durch kooperative und kompetitive Gas-Gas-Wechselwirkungen im technisch relevanten Mischgasfall kann die reale Selektivität deutlich von der idealen Selektivität, welche vom SD-Modell beschrieben wird, abweichen. Auch Wechselwirkungen zwischen dem Membranmaterial und den permeierenden Gasspezies rufen für den Gastransport wesentliche Phänomene auf, die durch das SD-Modell nicht beschrieben werden:

- Weichmachung der Membran durch eindringende Gasspezies (Plastifikation)
- Verdichtung des Membranvolumens durch den Transmembrandruck (Kompaktion)
- Sorptionsunterschiede durch morphologische und chemische Heterogenität des Membranvolumens

Insbesondere die trennaktive Schicht, die häufig aus einem glasartigamorphem Polymer besteht und sich somit nicht im thermodynamischen Gleichgewicht befindet, neigt zu "nicht-idealem" Verhalten. Ihre Permeabilitätswerte weichen daher zum Teil deutlich von der Vorhersage des SD-Modells ab. Hinzu kommen Besonderheiten im Verhalten besonders dünner Polymerfilme im Unterschied zum Verhalten der entsprechenden Polymere in Masse.³³

Zur teilweisen Abbildung dieser Phänomene wurden differenziertere Modelle entwickelt, von denen im Folgenden kurz auf das Dual-Mode-Modell³⁴⁻³⁶ eingegangen wird.

2.2.2. Dual-Mode-Modell

Zur Beschreibung des Transports von Gasmolekülen durch glasartige Polymere ist das Dual-Mode-Modell weit verbreitet.³⁶ Es geht von zwei unterschiedlich sorbierten Populationen derselben Gasspezies aus einer Henry-Population, die im dichten Anteil des Polymers gelöst vorliegt, und einer Langmuir-Population, die sich im Exzessvolumen des glasartigen Polymers befindet (Schema 9).³⁷

Durch Überlagerung beider Sorptionsarten entsteht eine für glasartige Polymere charakteristische Absorptionsisotherme (Schema 7).

Schema 7: Überlagerungseffekt Henry-(C_H) und Langmuir-(C_L) sorbierter Gaspopulationen in glasartigen Polymeren.³⁵

Die Gaspermeation durch glasartige Polymere ist dementsprechend nicht nur eine Funktion des relativen Partialdruckunterschieds, sondern auch eine Funktion der absoluten Partialdruckniveaus auf der Retentatund Permeatseite. Durch die Langmuirsorption, die im Niederdruckbereich dominiert, kann ein Löslichkeitsunterschied der Membrangrenzflächen realisiert werden, der überproportional zur Partialdruckdifferenz ist.

2.2.3. Facilitated-Transport-Modell

Das SD-Modell legt die Nonreaktivität der stationären Phase mit dem Permeat zugrunde. Auftretende Reaktionen können durch das *Facilitated-Transport-Modell* berücksichtigt werden.

Schema 8 stellt am Beispiel von Poly(allylamin) als kovalent fixierte CO₂-Trägerspezies dar, wie durch chemisch erleichterten Transport gegenüber rein physikalischem Löslichkeits-Diffusions-Transport ein vielfach höherer Trennfaktor erzielt werden kann. Darüber hinaus verdeutlicht es, dass der gleichzeitig auftretende, weniger spezifische SD-Transport bestmöglich ausgeschlossen werden muss, um die Leichtgasspezies im Retentat anzureichern.

Schema 8: Vereinfachte Darstellung des chemisch erleicherten CO₂-Transports in einer mit Wasser und Poly(allylamin) beladenen, quervernetzten Poly(vinylalkohol) Membran.³⁸

Der gesamte resultierende CO₂-Transport lässt sich mit nachstehender Gleichung ausdrücken. Sie stellt eine Erweiterung des SD-Modells um einen Term für den chemisch erleichterten Transport dar.

$$J_{CO2} = \frac{D_{CO_2}}{l} \cdot \left(c_{CO_2, l=0} - c_{CO_2, l=1} \right) + \frac{D_{X-CO_2}}{l} \cdot \left(c_{X-CO_2, l=0} - c_{X-CO_2, l=1} \right)$$

Der *Facilitation Factor* ϕ gibt an, welcher Transportmechanismus überwiegt.

$$\phi = \frac{D_{X-CO_2} \cdot (c_{X-CO_2,l=0} - c_{X-CO_2,l=1})}{D_{CO_2} \cdot (c_{CO_2,l=0} - c_{CO_2,l=1})}$$

Setzt man voraus, dass sich auf der transportrelevanten Zeitskala die Assoziationsreaktion von CO₂ und Träger an den Grenzflächen im Gleichgewicht befinden, gilt:

$$c_{X-CO_2} = K \cdot c_{CO_2} \cdot c_X$$

Nach Schultz *et al.* lässt sich im vereinfachten Fall identischer Diffusivitäten von Träger und Träger-CO₂-Komplex der *Facilitation Factor* auch ausdrücken als:³⁹

$$\phi = \frac{c_X \cdot K \cdot D_X / D_{CO2}}{(1 + K \cdot c_{CO_2})(1 + K \cdot \overline{c_{CO_2}})}$$

Wobei $\underline{c_{CO_2}}$ für die permeatseitige, und $\overline{c_{CO_2}}$ für die retentatseitige CO₂-Grenzflächenkonzentration steht. Ein größtmöglicher Wert von ϕ ist wünschenswert, um die Selektivität der Membran zu maximieren.

 ϕ durchläuft ein Maximum, wenn die Assoziationskonstante *K* von null gegen unendlich läuft. Intuitiv lässt sich dieses Ergebnis mit einer Betrachtung der beiden Grenzfälle bestätigen: Ist *K* = 0, verhält sich die Membran chemisch inert, und es tritt keine chemische Transporterleichterung auf. Strebt *K* aber gegen unendlich, findet permeatseitig keine Dissoziation statt. Die Trägerfunktionen sättigen sich mit CO₂ ab, und der Beitrag des chemisch erleichterten Transport
verschwindet ebenfalls. Der optimale Wert von *K* ergibt sich rechnerisch zu:³⁹

 $K_{opt} = (\underline{c_{CO_2}} \cdot \overline{c_{CO_2}})^{-1/2}$

2.3. Einfluss von Prozessparametern und Polymerstruktur

Die stromaufwärts vorgegeben Prozessbedingungen der CO₂-Abscheidung unterscheiden sich, je nach Anwendungsgebiet, deutlich voneinander (Tabelle 5).

Tabelle 5: Prozessbedingungen technisch relevanter Anwendungsfelder zur CO2-Abscheidung.

Eigenschaft	Biomethan	Erdgas	Rauchgas	Dampfref.
T _{Feed} [°C]	25	25	50	40-190
p _{Feed} [bar]	~13,7	~1,5	~1	20-50
φ _{Feed} [%]	25 – 45	5 – 35	100	100
Trennproblem	CO ₂ /CH ₄	CO ₂ /CH ₄	CO ₂ /N ₂	CO ₂ /H ₂
Verun-	H₂S	$C_nH_{(2+2n)}, H_2S,$	SO ₂ , NO _x ,	CO
reinigungen		MeSH	со	

Die Gaspermeabilität von Membranen ist eine Funktion von Löslichkeit, Reaktivität und Diffusivität (Abschnitt 2.2), sodass aus unterschiedlichen Prozessbedingungen grundverschiedene Materialanforderungen resultieren. In diesem Kapitel werden die Einflüsse der Prozessparameter und der Struktur des Membranpolymers auf diese Phänomene erfasst.

2.3.1. Temperatur und freies Volumen

Die Temperaturabhängigkeit des thermodynamischen CO₂-Sorptionsgleichgewichts an den Grenzflächen der Membran und innerhalb des Membranvolumens kann allgemeingültig mit der Arrhenius-Gleichung

$$K_{eq} = e^{\frac{-\Delta_r G^o}{RT}}$$

ausgedrückt werden. Mit "Sorption" bzw. "Beladung" der Membran ist dabei das Kollektiv von physikalischer und chemischer Absorption des Gases im Membranmaterial gemeint.

Als thermisch aktivierter Prozess folgt auch die Temperaturabhängigkeit der Gasdiffusion durch Flüssigkeiten und verdünnte Polymerlösungen dem Ansatz von Arrhenius. Im für Membranen relevanten Fall von Polymeren und dichten Polymerlösungen tritt jedoch eine deutliche Abweichung vom klassischen Diffusionsmodell auf. Diese Abweichung wird zumeist mit der Theorie von Cohen und Turnbull beschrieben.⁴⁰ Sie geht davon aus, dass ein Teil der freien Volumenfraktion eines Polymers durch *"Hole Free Volume"* gegeben ist, welches einer ständigen thermischen Umverteilung unterworfen ist. Die Diffusion eines kleinen Moleküls in einem Polymer findet ausschließlich innerhalb dieser Volumenfraktion statt. Sie gleicht somit der Bewegung innerhalb eines Käfigs, dessen Begrenzungen durch unmittelbar benachbarte harte Sphären gegeben sind, und einer kooperativen thermischen Bewegung unterliegen.⁴⁰

Die Gasdiffusion durch Polymermembranen ist demzufolge kein direkt thermisch aktivierter Prozess, sondern wird von der Wahrscheinlichkeit bestimmt, dass sich in unmittelbarer Umgebung des Gasmoleküls gerade ein Loch in der Polymermatrix befindet. Mathematisch lässt sich dieser Zusammenhang wie folgt ausdrücken,⁴⁰

$$D \sim u e^{(\frac{-\gamma v}{v_f})}$$

wobei *u* die mittlere kinetische Geschwindigkeit der Gasmoleküle und γ ein numerischer Korrekturfaktor \leq 1 für Überlappungen ist. ν ist das mittlere Volumen, und v_f ist das mittlere freie Volumen der Polymermatrix je Molekül. Schema 9 zeigt qualitativ, wie diese spezifischen Volumina von der Temperatur abhängen.

Wesentlich für die Membransynthese ist, dass das freie Volumen keine Zustandsgröße ist, sondern stark von der thermischen und mechanischen Historie des Materials (Herstellung aus Schmelze oder aus Lösung, Geschwindigkeit des Abkühlens bzw. der Fällung, thermische Nachbehandlung, etc.) abhängt.

Zur Berechnung der freien Volumenfraktion *f* wird das Van-der-Waals Volumen einer Wiederholungseinheit des Polymers über atomare Radii und Korrekturfaktoren für verschiedene Bindungslängen approximiert und zum experimentell ermittelten Volumen ins Verhältnis gesetzt.

$$V_{frei} = V_{exp} - V_{VdW}$$

$$f = 1 - \frac{V_{VdW}}{V_{exp}}$$

Der freie Volumenanteil vollständig kristalliner Homopolymere liegt typischerweise geringfügig oberhalb des freien Volumenanteils einer Schüttung von "harten Sphären", $f \approx 0,26$.

Im Fall von amorphen Polymeren, der für diese Arbeit besonders relevant ist, entsteht zusätzliches freies Volumen durch statische und dynamische strukturelle Unordnung,⁴¹ wie ebenfalls in Schema 9 zu sehen ist. Im Rahmen der vorliegenden Arbeit wird die freie Volumenfraktion der Polyelektrolyte nach einer von Zhao *et al.* vorgeschlagenen Methode approximiert.^{42,43}

Über das freie Polymervolumen beeinflusst die Temperatur sowohl Sorption als auch Diffusion in der Membran. Eine Studie von Rowe *et al.* bildet die kombinierten Temperatureffekte auf die Permeabilität ab, um die Vergleichbarkeit von bei unterschiedlichen Temperaturen charakterisierten Literaturbeispielen zu verbessern.⁴⁴

2.3.2. Druck

Die Absorption steigt mit dem Druck im Niederdruckbereich überproportional, und im Hochdruckbereich proportional an. Die Überproportionalität im Niederdruckbereich ist umso ausgeprägter, je stärker die chemische Wechselwirkungen zwischen Gas und Membranwerkstoff sind. (Abschnitte 2.2.2, 2.2.3)

Bei gegebener Gleichgewichts-Assoziationskonstante in FT-Membranen existieren optimale Grenzflächenkonzentrationen (Abschnitt 2.2.3) des zu transportierenden Gases, die wiederum von den (Partial-)druckniveaus auf Retentat- und Permeatseite abhängig sind.

Eine Änderung der Diffusivität kann bei hohem Druck durch Deformation von geschlossenporigem Membranvolumen stattfinden.⁴⁵ Dieser Fall ist jedoch für diese Arbeit nicht von Bedeutung, weil nur mit Transmembrandrücken von bis zu 1 bar gearbeitet wurde.

2.3.3. Feuchtigkeit

In Anwesenheit von Feuchtigkeit wird die Sorption wesentlich durch Koadsorption von Wassermolekülen beeinflusst (Abschnitt 2.2.3). Die Bildung und der Zerfall jeder CO₂-Carrier-Verbindung ist Bestandteil eines Mehrkomponenten-Reaktionsgleichgewichts, dessen Lage vom Wassergehalt des Systems abhängt. Die Bildung von Hydrogencarbonationen aus Wasser und CO₂ unter Protonierung der

Lewis-basischen Trägerfunktion stellt dabei die wichtigste Teilreaktion dar.

 $H_2O + CO_2 + X - HCO_3^{\ominus} + XH^{\oplus}$

X = Lewis-Base

In dem Fall, dass sowohl CO₂ als auch Wasserdampf aus einem Mehr-Komponentengemisch präferenziell durch die Membran permeieren, findet eine effektive Verdünnung des Permeats mit Wasserdampf statt, die den CO₂-Partialdruckgradienten über die Membran und somit den CO₂-Fluss erhöht.²⁴

Die Beeinflussung der Diffusivität findet über die Plastifikation des Membranmaterials durch Wasserdampf (Steigerung) als auch durch die konkurrierende Besetzung des *Hole Free Volume* in der Polymermatrix (Absenkung) statt.

2.3.4. Molekulare Struktur

Die molekulare Struktur der Membranwerkstoffe beeinflusst die CO₂-Sorption durch ihre Polarität, sowie durch die Konzentration und Aktivität ihrer nukleophilen Funktionen (Abschnitt 2.2).

Mit dem polaren Charakter nehmen die Wechselwirkungen mit dem permanenten elektrischen Quadrupolmoment der CO₂-Moleküle zu, was zu einer höheren CO₂-Löslichkeit im Material führt. Empirisch belegt ist ein Ansteig der CO₂-Aufnahme und damit auch der Löslichkeitsselektivität gegenüber Leichtgasen durch Halogenierung⁴⁶ und durch ionische Funktionen.⁴⁷

Wie in Abschnitt 2.3.1 gezeigt, ist die Diffusivität sowohl der "freien" Gasmoleküle als auch der mobilen Trägerkomplexe über

$$D \sim u e^{(\frac{-\gamma v}{v_f})}$$

mit der freien Volumenfraktion des Polymers verbunden. Das strukturelle freie Volumen wird eingeschränkt durch:⁴⁸

- Ausbildung von Wasserstoffbrücken / Dipol-Dipol Interaktionen
- Erhöhung der Kettensteifigkeit durch aromatische Ringe im Polymerrückgrat, Sterik, etc.
- steigende Taktizität (bei zwei Substituenten in α-Position)
- steigenden Verzweigungs und Vernetzungsgrad
- steigende Molmasse aufgrund des sinkenden Anteils flexibler Kettenenden

Ein hoher Verzweigungs- und Vernetzungsgrad wirkt zudem der Plastifikation durch eindringende Gasspezies entgegen.³⁸ Die aufgeführten Polymereigenschaften bewirken analog eine hohe Glasübergangstemperatur T_g, sodass ein hoher T_g-Wert gleichzeitig ein guter Indikator für einen hohen Diffusionswiderstand ist.³⁵

2.4. Stereoreguläre Insertionspolymerisation

Die wichtigsten Systeme zur stereoregulären Polymerisation beruhen auf Homogen-Organometallkatalysatoren, die eine sterische Information enthalten. Ein bis heute verbreiteter Verlauf der übergangsmetallkatalysierten Polymerisation wurde von Cossèe und Arlman vorgeschlagen. Dabei handelt es sich um einen Koordinations-Insertions-Mechanismus (Schema 13).⁴⁹

Schema 10: Polymerisation nach dem Cossèe-Arlman Mechanismus.^{49,50}

Nach der Aktivierung des Metallocendichlorids koordiniert im ersten Schritt die π-Bindung des Olefins an das Metallzentrum. Durch die Bindung des Olefins wird gleichzeitig die Bindung zur wachsenden Polymerkette geschwächt.⁵⁰ Im nächsten Schritt findet eine 1,2-Insertion des Olefins in die Metallalkylbindung statt. Die Insertion verläuft über einen viergliedrigen Übergangszustand, und kann auch als Migration des Alkylrests zum Olefin aufgefasst werden. Nach dem Insertionsschritt wird die zuvor freie Koordinationsstelle von der nun um zwei Kohlenstoffatome verlängerten Polymerkette besetzt. Die vor der Insertion vom Alkylrest besetzte Koordinationsstelle wird nach der Kettenverlängerung zur neuen freien Koordinationsstelle.^{49,50}

Kaminsky und Brintzinger stellten 1985 fest, dass bei der Verwendung verbrückter, chiraler Metallocene mit C₂-Symmetrie die Insertion von Olefinen isoselektiv erfolgt.⁵¹ Da die Strukturen der Chelatliganden Henkeln ähneln, werden diese C₂-symmetrischen Katalysatoren auch *ansa*-Metallocene genannt.⁵¹ Meist werden verbrückte *Bis*(indenyl)liganden verwendet, die an verschiedenen Positionen Substituenten tragen können.⁵⁰ In der vorliegenden Arbeit wurden die *ansa*-Metallocene **1** und **2** als Katalysatoren verwendet (Abb. 8 und 9).

Am Beispiel der Polymerisation von Propen mit *rac*-[C₂H₄(1-Ind)₂]ZrCl₂ **1** konnte geklärt werden, warum die Polyinsertion von Propen isospezifisch verläuft⁵² - der Mechanismus lässt sich ebenso auf Styrol und dessen Derivate übertragen.⁵⁰

Aufgrund der Ethylen-Verbrückung des *Bis*(Indenyl)-Liganden kann dieser, im Gegensatz zu unverbrückten η^5 -Cyclopentadienylliganden, nicht frei rotieren, sondern ist in seiner Position fixiert.⁵³ Nach der Aktivierung des chiralen Katalysators orientiert sich die wachsende Polymerkette, die ebenfalls an das Zirkoniumzentrum koordiniert, so im Raum, dass sie einen möglichst großen Abstand zu dem großen und unbeweglichen *Bis*(Indenyl)-Liganden hat.^{50,52-54} Die anschließende Koordination des Olefins erfolgt aus sterischen Gründen so, dass der Substituent des Olefins und die wachsende Polymerkette *anti* zueinander stehen (Schema 14). Die *anti-*Stellung ist dabei um 3 bis 4 kJmol⁻¹ stabiler als die *syn*-Stellung und damit stark bevorzugt.^{50,52,53}

Abhängig davon, welches der beiden Enantiomere von *rac*-[C₂H₄(1-Ind)₂]ZrCl₂ betrachtet wird, handelt es sich bei der günstigsten Anordnung um die *si*- oder *re*-Koordination. Schema 14 zeigt jeweils die energetisch günstigsten Anordnungen bei der Propenkoordination an die beiden Enantiomere des Racemats.⁵⁰ Die energetisch günstigste Anordnung der Liganden wirkt sich auch auf den viergliedrigen Übergangszustand der Insertion und damit auf die Taktizität des Polymers aus.^{50,52-54}

Das Prinzip der Stereokontrolle lässt sich auch auf heterogene Ziegler-Natta-Katalysatoren wie das verwendete System TiCl₄/TMA übertragen, wobei die Ausrichtung des Polymerrests und des Olefins im Raum nicht durch verbrückte Liganden, sondern durch die Festkörperstruktur der Titanverbindung bedingt wird.^{50,52}

re-Koordination (R,R)-Enantiomer

si-Koordination (S,S)-Enantiomer

Schema 11: Stabilste Koordination von Propen an rac-[C2H4(1-Ind)2]ZrCl2.50

Aus Schema 11 geht auch hervor, dass bei C₂-symmetrischen Katalysatoren mit verbrückten *Bis*(Indenyl)-Liganden die beiden nach dem Cossèe-Arlman Mechanismus alternierenden freien Koordinationsstellen homotop sind und damit vor der Insertion immer dieselbe Relativkonfiguration erzwingen. Das Monomer und der Polymerrest stehen somit stets *anti* zueinander, unabhängig davon,

welche Koordinationsstelle vom Olefin besetzt wird.^{50,52,53} Aus diesem Grund erfolgt auch die Insertion immer isoselektiv.

Da der Katalysator die enantioselektive Olefininsertion bewirkt *(enantiomorphic site control)* und nicht der Substituent am Polymer *(chain-end control)*, führt ein Insertionsfehler nicht zu einer Umkehr der Konfigurationspräferenz.⁵⁰

Die Polyinsertion steht in Konkurrenz zur β -Hydrid-Eliminierung. Dabei entsteht unter Hydridtransfer auf das Übergangsmetall aus der koordinierten Polymerkette das zugehörige α -Olefin. Die Reaktion verläuft, wie die Insertion auch, über einen viergliedrigen Übergangszustand (Schema 12).⁵⁴ Nach der Bildung des Olefins ist die Polymerisation beendet.

L= Ligand P = Polymerkette

Schema 12: β-Hydrid-Eliminierung.54

Eine weitere wichtige Abbruchsreaktion ist die σ -Bindungsmetathese, der Austausch des Polymers durch eine Alkylgruppe des Aluminiumorganyls, das als Cokatalysator dient. (Schema 16).⁵⁰

Schema 13: Transfer der Polymerkette auf das Aluminiumorganyl am Beispiel von TMA.⁵⁰

Darüber hinaus kann die Polymerisation auch durch Anwesenheit acider Verbindungen abgebrochen werden (Schema 14).

$L_2M - P - HCl, MeOH \rightarrow H-P$

Schema 14: Abbruch durch Brønsted-Säuren.50

Säuren protonieren zudem die Alkylaluminiumverbindung, sodass die Polymerisation durch kontrollierte Zugabe von Brønsted-Säuren gezielt beendet werden kann.⁵⁰

3. Ergebnisse und Diskussion

3.1. Materialauswahl

Aus der Parameteranalyse in Kapitel 2.3. folgt für die Materialauswahl:

- Je polarer und nukleophiler das Membranmaterial, desto höher ist die Beladungspräferenz für CO₂.
- Je kompakter und dichter eine FT-Membran ist, desto höher ist der *Facilitation Faktor* und damit die CO₂-Selektivität.

Für die Verfahrenstechnik folgt:

- Mit sinkender Temperatur sinkt die Diffusivität und steigt die CO₂-Löslichkeitsselektivität.
- Ein niedriges permeatseitiges CO₂-Partialdruckniveau ist umso wichtiger, je stärker die physikochemischen Wechselwirkungen zwischen CO₂ und Membran sind.

Die Patentliteratur gibt einige erfolgreiche Strategien wieder, die sich an diesen Vorgaben orientieren. Ein Überblick dient der Materialauswahl in dieser Arbeit.

3.1.1. Literaturüberblick

Die Vielzahl der veröffentlichten CO₂-Membranmaterialien wird, entsprechend ihrer Trennleistung, in den *"Robeson Plots"*² fortlaufend eingetragen und verglichen.

Abbildung 4: Trade-Off-Geraden für die Gaspaare (im Uhrzeigersinn): CO₂/CH₄, CO₂/N₂, H₂/CO₂.² Abszisse: Permeabilität in barrer (10⁻¹¹ cm³ cm cm⁻² s⁻¹ mmHg⁻¹); Ordinate: Selektivität der entspr. Gaspaare.

3.1.1.1. Polymermembranen

Die ersten Membranen zur CO₂-Abtrennung wurden auf der Basis von aus der Umkehrosmose bekannten Celluloseacetatmembranen entwickelt.^{55,56} Die CO₂-Trennleistung reiner Celluloseacetatmembranen nimmt unter Dauerlast jedoch stark ab, da sie durch CO₂-Beladung zur Plastifikation mit einhergehendem Verlust der porösen Morphologie und zur Kompaktion unter dem Transmembrandruck neigen.¹ In der Folge wurden Membranen zunehmend aus Polymeren mit höherer chemischer und mechanischer Beständigkeit hergestellt (Tabelle 6).

Bezeichnung	Strukturmotiv	Patente
Poly(amide)	H H H	57-63
Poly(semicarbazide)		64
Poly(carbonate)		65-69
Poly(arylate)	n o o	70,71
Poly(aniline)	(72,73
Poly(pyrrole)		74
Poly(sulfone)		75-82
Poly(imide)	(83-86

 Tabelle 6: Übliche Werkstoffe von Ein-Polymer-Membranen.

Innerhalb einzelner Polymerklassen kommt es durch die Modifikation mit sterisch anspruchsvollen Substituenten (Morphologie) oder mit funktionalen Gruppen (Reaktivität) zu weiterer Variation. Zudem unterscheiden sich Membranen gleichen Ausgangsmaterials wesentlich durch eine voneinander abweichende Herstellungshistorie, bspw. durch unterschiedliche Lösungsmittelsysteme oder thermische Nachbehandlung. Durch Blending und Copolymerisation hergestellte Mehr-Polymermembranen werden die Vorteile gummi- und glasartiger Polymere miteinander kombiniert. Eine harte Polymerkomponente bildet eine mechanisch robuste Trägerstruktur aus, innerhalb derer die weiche Komponente semipermeable Mikrodomänen formt. Mit dieser Strategie wurden die Trennleistung von Ein-Polymer-Membranen übertroffen.⁸⁷⁻⁹² Kommerziell verfügbare Mehr-Polymer-Membranen zur CO₂-Abtrennung werden bspw. aus Poly(ether-block-amid) (*PEBAX®*) hergestellt.

3.1.1.2. Anorganische und Organisch-Anorganische Hybridmembranen (MMMs)

Anorganische Membranen zur Gastrennung existieren in nichtporöser und in poröser Form. Nichtporöse Membranen aus Palladiumlegierungen werden in der H₂-Abscheidung, nichtporöse Perovskitmembranen in der O₂-Abscheidung angewendet.⁹³

In der CO₂-Abtrennung sind anorganische Membranen besonders für Hochtemperaturanwendungen interessant, die für Polymermembranen nicht zugänglich sind. Eine hohe CO₂-Beladung der Membran wird durch Funktionalisierung der Poren mit einem CO₂-affinen, elektronenreichen Metalloxid erreicht.⁹⁴ Mit Bariumtitanat (BaTiO₃) funktionalisierte Membranen mit Porengrößen von 1 nm erreichen auf diese Weise einen Trennfaktor CO₂/H₂ von 18,4 bei 500 °C.⁹⁴ Damit liegen sie in der Nähe des *"Robeson Upper Bound"* und sind in der Trennleistung mit Polymermembranen vergleichbar.

Durch Dispersion anorganischer Partikel in einer kontinuierlichen Polymerphase werden hybride, sog. *"Mixed Matrix Membranes"* (MMMs) erhalten.⁹⁵ Es sind drei Effekte des Einschlusses anorganischer Partikel auf die Trennleistung der resultierenden Membran beschrieben:

 Induktion einer Größenselektivität durch Funktion als Molekularsiebe

- Erhöhung der Permeabilität auf Kosten der Selektivität durch Störung von Ausrichtung und Zusammenlagerung der Polymerketten
- Verringerung der Permeabilität durch Funktion als Gasbarrieren

Literaturbeispiele für dispergierte mikroporöse Partikel sind die Zeolithe 4A,⁹⁶ KFI, H-ZK-5, Na-SSZ-13, SAPO-34 und SAPO-44.⁹⁷ Der ideale Größenwert für die dispergierten Partikel liegt laut Rojey et al. zwischen 200 und 900 Å.98 Da eine mangelnde Kompatibilität der Partikel mit der Polymerphase nach Abzug des Lösungsmittels zur Entstehung von Mikrohohlräumen und somit zu unselektiver Bulk-Permeation führt,⁹⁶ ist ein Ziel der MMM-Forschung die Kompatibilisierung der Partikel mit der Polymerphase, bspw. durch chemisches Aufpfropfen von Organosiliziumverbindungen auf die Partikeloberfläche.⁹⁷ Ein Beispiel für den positiven Effekt der Kompatibilisierung des Systems Na-SSZ-13 / Poly(vinylacetat) auf die CO₂-Trennleistung ist in Tabelle 7 dargestellt.⁹⁹

Tabelle 7: Effekt der Oberflächenfunktionalisierung von Molekularsieben mit 3-Aminopropyldimethylethoxysilan (APDMS) bzw. 3-Aminodiisopropylethoxysilan (APDIPS) auf die CO₂/N₂-Selektivität einer MMM. Kontinuierliche Phase: Poly(vinylacetat).⁹⁹

Anorg. Partikel	Selektivität (CO ₂ /N ₂)
Na-SSZ-13	34,7
Na-SSZ-13 * APDMS	51,2
Silicalit	32,3
Silicalit * APDIPS	36,9
Silicalit * APDMS	43,1

3.1.1.3. Membranen mit chemisch erleichtertem Transport (FT-Membranen)

Aus der Biochemie ist eine Vielzahl von Prozessen bekannt, die mittels Permeat-spezifischer Trägerverbindungen den Transport einer ausgewählten Substanz über einen Konzentrationsgradienten beschleunigen. Beispiele sind der Transport von elementarem Sauerstoff durch Blut mit Hilfe des Hämoglobins^{100,101} und der Transport von Kaliumionen durch lipide Zellwände mit Hilfe von Valinomycin.^{102,103} Die Bindungsselektivtät des Valinomycins für Kaliumionen im Verhältnis zu Natriumionen beträgt 10⁶ - es stellt somit ein exzellentes Vehikel für den selektiven Kaliumtransport durch die Zellwand dar. In Abschnitt 2.2.3 wird die Theorie zum chemisch erleichterten Transport näher beschrieben.

Im Labormaßstab ist es mit FT-Membranen gelungen, den von Robeson beschriebenen Trade-Off zwischen Permeabilität und Selektivität der CO₂-Abscheidung deutlich zu überwinden.³ Aufgrund von Problemen der mechanischen und chemischen Stabilität hat bislang jedoch keine Übertragung in den industriellen Maßstab stattgefunden.

Die CO₂-reaktive Komponente aller bislang beschriebenen FT-Membranen besitzt eine nukleophile Funktion, um das elektronenarme Kohlenstoffatom des CO₂ kovalent zu binden. Es sind sowohl innerhalb der Polymermatrix fixierte als auch frei bewegliche Trägerverbindungen beschrieben. Die Funktionsweise einer im Polymer verankerten Trägerverbindung, das *"Hopping"*, ist in Schema 8 illustriert.

Das erste Patent, das eine CO₂-Membran mit chemisch erleichtertem Transport abdeckt, stammt aus dem Jahr 1967¹⁰⁴ und beschreibt mit wässriger Carbonatlösung gequollene Zelluloseacetatfilme. CO₂ wird an der Grenzfläche adsorbiert und reagiert mit Wasser und in Anwesenheit von Carbonat zum Hydrogencarbonat. Carbonation und Wasser fungieren gemeinsam als Träger und erhöhen so die effektive CO₂-Beladung der Membran.

 $CO_3^{2-}(aq) + CO_2(aq) + H_2O \rightleftharpoons 2 HCO_3^{-}$

Diese Reaktion läuft auf der Feed-Seite der Membran mit positivem Nettoumsatz ab. Die HCO₃⁻-Anionen diffundieren auf die Permeatseite

der Membran, wo aufgrund des niedrigeren CO₂-Partialdrucks die Rückreaktion stattfindet und CO₂ wieder in die Gasphase übergeht. Der Transport ist innerhalb des Membranvolumens folglich nicht mehr nur durch den CO₂-Konzentrationsgradienten getrieben, sondern zusätzlich durch den Konzentrationsgradienten des CO₂-Komplexes, in diesem Fall HCO₃⁻.

Durch Einschluss von Katalysatoren, welche sowohl die Hin- als auch die Rückreaktion beschleunigen, bspw. Arsenitsalze, wird die kinetische Limitierung der langsamen HCO₃-Bildung verringert und eine weitere deutliche Steigerung der CO₂-Permeabilität erzielt (Tabelle 8).

Die Sättigung des Membranvolumens mit Wasser trägt auf eine zweite Art zur CO₂-Selektivität bei: Es besetzt die freie Volumenfraktion der Polymermatrix und schränkt so die physikalische Diffusion der unpolaren Gasspezies ein.

Tabelle 8: Steigerung von CO₂-Permeabilität und –Selektivität einer mit Wasser gequollenen Celluloseacetatmembran durch Beladung mit Kaliumhydrogencarbonat (KHCO₃) und Natriumarsenit (NaAsO₂).¹⁰⁴

Träger / Füllstoff	CO2-Permeabilität [barrer]	α_{CO_2/O_2} [-]
H ₂ O	400	22
2 M KHCO ₃	500	78
2 M KHCO ₃ +	2.000	600-800
0,5 M NaAsO ₂		

In allen FT-Membranen der Patentliteratur verbleibt eine grundsätzliche Wasserabhängigkeit der Membran. Die Austrocknung durch Ausrinnen oder Verdampfen der wässrigen Flüssigphase führt dementsprechend zu einem nahezu vollständigen Funktionsverlust. So berichten Wang *et al.*, bei einer FT-Verbundmembran aus Poly(sulfon) und quervernetztem

Poly(vinylamin), von einem CO₂-Permeabilitätsverlust von über 90% nach 35 Betriebstagen unter einem CO₂/CH₄-Feed.¹⁰⁵

Mit Trägerverbindungen (bspw. Glycidinyl, Poly(etherimin), Amino-Isobutyrsäure) beladene Hydrogelsysteme aus partiell quervenetzten hydrophilen Polymeren verringern die Anfälligkeit für Austrocknung, weil sie in der Lage sind, große Wassermengen aufzunehmen und über einen langen Zeitraum zu speichern.^{3,106,107} Tabelle 9 führt Hydrogel-basierte Membranen auf,¹⁰⁷ deren Trennleistungen zu den bisher höchsten der Literatur zählen.

Zwar treten im anwendungsrelevanten Bereich ohnehin häufig wassergesättigte Feed-Ströme auf (Tabelle 5), jedoch macht die Wasserabhängigkeit den Prozess störungsanfällig, mit entsprechend höheren Anforderung an die Mess- und Regeltechnik sowie an die Wartung. Zudem disqualifiziert die Wasserabhängigkeit FT-Membranen für Betriebstemperaturen jenseits von 100 °C, wie sie bspw. in der Dampfreformierung auftreten (Abschnitt 2.3).

Tabelle 9: CO₂/H₂-Trennleistung Poly(vinylalkohol)-basierter Hydrogelmembranen in Abhängigkeit der eingesezten CO₂-Transportverbindungen Glycin, Polyethylenimin, Dimethylglycin, Kaliumhydroxid und Aminoisobuttersäure.¹⁰⁷

Polymermatrix	Trägerverbindungen	Permeabilität	Selektivität
		(CO ₂)	(CO ₂ /H ₂)
(→) n OH	$H_2N \longrightarrow OH (M_H)_n$	194	28
	$H_2N \longrightarrow OH (N) H n$	186	31
		338	~1.780
	H ₂ N OH (n NH ₂ KOH	~6.200	~260
	H ₂ N OH (n NH ₂ KOH	~8.280	170

Eine aktuelle Entwicklung zur Verbesserung der chemischen Transporterleichterung ist der Einsatz von sterisch gehinderten Aminen. Als sterisch gehindert gelten in diesem Zusammenhang entweder primäre Amine, deren Aminogruppe an ein tertiäres Kohlenstoffatom gebunden ist, oder sekundäre Amine, deren Aminogruppe an mindestens ein sekundäres oder tertiäres Kohlenstoffatom gebunden ist.¹⁰⁸

Durch die sterische Hinderung wird die Stabilität des zwitterionischen Übergangszustands herabgesetzt und so die Gesamtreaktion beschleunigt. Aus der Wäsche mit sterisch gehinderten Aminen in wässriger Lösung ist zudem bekannt, dass durch den alternierten Reaktionsmechanismus eine höhere Amineffizienz (bis zu 100%) und somit, im Membrankontext betrachtet, eine höhere spezifische CO₂- Beladung der Membran erzielt werden kann. Bei Membranen, die mit sterisch gehinderten Aminen beladen sind, tritt in Abwesenheit von Wasser ebenfalls eine erhebliche Verminderung der Trennleistung auf.¹⁰⁶ Gedanklich kann dieser Effekt auf die fehlende Okkupation der freien Volumenfraktion durch Wasser, sowie auf die unterbleibende Bildung von HCO₃⁻ als zusätzlicher mobiler Spezies erklärt werden.

3.1.1.4. Geträgerte Ionische Flüssigkeiten (SILMs)

Ein weiterer, aktueller Ansatz im Membrandesign ist die Nutzung lonischer Flüssigkeiten (ILs).¹⁰⁹⁻¹¹³ CO₂ weist, insbesondere bei höherem Partialdruck, eine außergewöhnlich hohe Löslichkeit in ILs auf. Der sehr geringe Dampfdruck von ILs und ihre relativ hohe thermische Beständigkeit machen sie darüber hinaus als alternative Lösungsmittel für CO₂-Wäschen interessant.

Die hohe CO₂-Löslichkeit wird vorteilhaften intermolekularen Wechselwirkungen zwischen den ionischen Ladungen der ILs mit dem permanenten Quadrupolmoment des CO₂ zugeschrieben, insbesondere zwischen einem elektronenreichen IL-Anion und dem elektronenarmen Kohlenstoffatom des CO₂.¹¹⁴⁻¹¹⁶ Diese Wechselwirkungen allein bewirken jedoch bei niedrigen CO₂-Partialdrücken,¹¹⁷ die bei der Rauchgas- und Biogasaufbereitung auftreten, keine ausreichende CO₂-Aufnahme.¹¹⁸ Aus diesem Grund wurden in jüngerer Zeit verstärkt solche ILs untersucht, die über ihre ionischen Gruppen hinaus nukleophile Gruppen enthalten. Einige Amin-funktionalisierte ILs, bspw. [P₆₆₆₁₄][Prolinat], reagieren bereits bei niedrigem Partialdruck nahezu quantitativ mit CO2.¹¹⁸ Dai et al. haben in diesem Zusammenhang berichtet, dass die Reaktionswärme und der Gleichgewichtsumsatz der Reaktion von [P66614][Phenolat] mit CO₂ durch Substitution von elektronenziehenden oder –schiebenden Gruppen am Aromaten gesteuert werden kann.¹¹⁹

Auf porösen Unterlagen geträgerte ILs, sog. Supported Ionic Liquid Membranes (SILMs), erreichen Trennleistungen oberhalb derer klassischer Polymermembranen.¹²⁰ Inkrementelle Verbesserungen des Trenneffekts werden durch strukturelle Erhöhung der CO₂-Affinität sowie durch Verringerung der Viskosität der verwendeten ILs erreicht.¹²¹

Da die Immobilisierung der Flüssigphase in der unterstützenden porösen Feststoffphase bei SILMs allein auf Kapillareffekten beruht, tritt bei erhöhtem Transmembrandruck ein Austrag der mobilen Phase auf Kosten der Trennleistung auf. Noble et al. konnten zeigen, dass ILs jedoch auch bei hohen Transmembrandrücken vollständig in der Membran verbleiben, wenn diese aus ionisch funktionalisierten Polymeren, sog. Polyelektrolyten, besteht. Die bessere mechanische Stabilität gegenüber der Kapillarmethode wird elektrostatischen zwischen Wechselwirkungen der festen und flüssigen Phase zugeschrieben.¹²²

3.1.2. Mit nukleophilen Anionen funktionalisierte Polymere

Chemisch inerte Löslichkeits-Diffusions-Membranen unterliegen einem unerwünschten Trade-Off zwischen Selektivität und Permeabilität (Abschnitt 3.1.1.1), der nur durch FT-Membranen überwunden wird (Abschnitt 3.1.1.3). Sämtliche existierende FT-Membranen auf Polymerbasis sind jedoch durch die Abängigkeit von Wasser als immobilisierte Flüssigphase limitiert. Ionische Flüssigkeiten (ILs) bieten hier quasi-nonvolatile Alternative an (Abschnitt eine 3.1.1.4). Polymerisierte ILs vereinen die hohe CO₂-Löslichkeit von ILs mit der mechanischen Stabilität von Polymeren, und können darüber hinaus auch bei hohen Transmembrandrücken eine IL-Flüssigphase elektrostatisch immobilisieren (Abschnitt 3.1.1.4).

Der Neuheitswert dieser Arbeit besteht in dem erstmaligen Einsatz von mit nukleophilen Anionen funktionalisierten Polymeren, welche die Wasserunabhängigkeit, CO₂-Löslichkeit und mechanische Stabilität von Poly(IL)-Membranen mit dem chemisch erleichterten CO₂-Transport von FT-Membranen vereinen.

Die in der Literatur beschriebenen Polyelektrolyt-Systeme basieren ausnahmslos auf chemisch inerten, kationisch funktionalisierten Polymeren – zumeist auf Derivaten von Poly(vinylimidazolium). Im Zusammenhang mit der elektrostatischen *Layer-by-Layer* Beschichtung CO₂-selektiver Membranen tritt einzig sulfoniertes Poly(styrol) (PSS) als anionisch funktionalisiertes Polymer auf, dessen Anion jedoch zu schwach nukleophil ist, um als CO₂-Träger bei niedrigem Partialdruck zu funktionieren. In der Literatur liegt somit eine Lücke für mit nukleophilen Anionen funktionalisierte Polymere als *"Fixed-Site Carrier"* für den chemisch erleicherten CO₂-Transport durch Membranen vor.

Als Ausgangspunkt dieser Arbeit werden die deprotonierte Form der Poly(vinylphosphonsäure), der Poly(acrylsäure), der Poly(methacrylsäure), des Poly(4-vinylphenols) sowie des Poly(vinylalkohols) gewählt, und durch ein Kationenscreening ein geeignetes Gegenkation bestimmt.

3.1.3. Kationenscreening

Die Auswahl des Gegenkations findet unter den Gesichtspunkten der zu erwartenden CO₂-Löslichkeitsselektivität,

$$S_{CO_2/N_2} = \frac{H_{CO_2}}{H_{N_2}}$$

sowie der thermischen und chemischen Stabilität statt.

Ein mit COSMO-RS® durchgeführtes theoretisches Ionenscreening mit 73 verschiedenen Kationen zum rationalen Design von ILs zur CO₂-Wäsche von Sumon *et al.* kommt zu dem Schluss, das quaternäre Phosphoniumkationen eine besonders hohe CO₂-Löslichkeitsselektivität erwarten lassen.¹²³ Für Phosphorbasierte Kationen spricht auch deren hohe Temperaturstabilität im Vergleich zu Stickstoffbasierten Kationen.¹²⁴ Auch anderweitig wurde bereits von besonders hohen CO₂-Löslichkeiten von ILs mit [P₆₆₆₁₄] berichtet.¹²⁵
 Tabelle 10: Mit COSMO-RS® modellierte CO₂-Löslichkeitsselektivitäten quaternärer

 Phosphoniumkationen.¹²³

Kation	S _{CO2/N2} [-]
Tetrabutylphosphonium ([P ₄₄₄₄])	42,4
Trihexyltetradecylphosphonium ([P66614])	39,9
Benzyltriphenylphosphonium ([BnPh ₃ P])	56,5

In der Synthese hat sich gezeigt, dass das Hydroxid-Intermediat des laut dem Screening von Sumon *et al.* aussichtsreichsten, arylsubstituierten Phosphoniumkations, [BnPh₃P][OH], in Anwesenheit von Wasser zum zügigen oxidativen Zerfall unter Bildung von Triphenylphosphinoxid und Benzol neigt. Der Mechanismus dieser Zerfallsreaktion wird von McEwen *et al.* dargelegt.¹²⁶

Die Wasserstabilität von [P₆₆₆₁₄][Poly(4-vinylphenolat)] konnte hingegen bestätigt werden, indem es für 48 h in einem Soxhlet-Extraktor Wasserdampf ausgesetzt wurde. Das anschließend aufgenommene ³¹P-NMR Spektrum zeigte keinerlei Zerfall unter Phosphinoxid-Bildung. Im weiteren Vorgehen wurden foglich nur Alkylsubstituierte Phosphoniumkationen berücksichtigt.

Die Synthese erweitert damit einen für mono-ILs beschriebenen Synthesepfad¹²⁷ auf Polyelektrolyte und erlaubt deren simple und quantitative Herstellung aus Brønstedt-sauren Polymeren.

AusgehendvonPoly(4-vinylphenol)wurdenfolgendeTetraalkylphosphoniumPoly(4-vinylphenolat)-Salze synthetisiert:

- TributyImethyIphosphonium Poly(4-vinyIphenolat) ([P₄₄₄₁][PVPhO])
- Tetrabutylphosphonium Poly(4-vinylphenolat) ([P₄₄₄₄][PVPhO])
- TributyItetradecyIphosphonium Poly(4-vinyIphenolat) ([P₄₄₄₁₄][PVPhO])
- Trihexyltetradecylphosphonium Poly(4-vinylphenolat) ([P₆₆₆₁₄][PVPhO])

Der Einfluss des Kations auf die CO₂-Absorptionskapazität des Materials bei 35 °C und 1 bar CO₂-Druck wurde gravimetrisch untersucht (Tabelle 11).

Probe	ρ	v _m	CO ₂ -Aufnahme		
	[g cm ⁻³]	[-]	[gew%]	[mol%]	[V(STP)/V]
[P ₆₆₆₁₄][Poly(VPhO)]	1,02±0,02	0,052	2,3	31,9	11,8
[P ₄₄₄₁₄][Poly(VPhO)]	0,98±0,02	0,186	2,7	32,1	13,4
[P ₄₄₄₁][Poly(VPhO)]	0,99±0,04	0,274	1,1	8,3	5,6
[P ₄₄₄₄][Poly(VPhO)]	0,99±0,02	0,229	0,6	4,9	3,0

Tabelle 11: Dichte (ρ), Freies mittleres Volumen (v_m) und CO2-Absorption inAbhängigkeit der Länge der Alkylreste am Phosphoniumkation.

Die CO₂-Absorptionskapazität steigt mit der Länge der Alkylreste und mit zunehmender Asymmetrie des Kations an. Diese Trends stimmen mit Ergebnissen aus der IL-Literatur überein.¹²⁸ Beide Effekte sind vermutlich auf die resultierende sterische Frustration des Phenolat-lons zurückzuführen, die dessen nukleophilen Charakter und damit auch CO₂-Affinität steigert. Die CO₂-Absorptionskapazität von [P₆₆₆₁₄][Poly(VPhO)] in Höhe von 0,32 CO₂-Molekülen pro Wiederholungseinheit des Polyelektrolyten liegt in der gleichen Größenordnung wie die des korrespondierenden monomolekularen Systems [P₆₆₆₁₄][Phenolat] unter äquivalenten Messbedingungen.¹¹⁹ Dies ist ein Hinweis darauf, dass die sterische Verfügbarkeit und Wechselwirkung mit CO₂ nur geringfügig durch die Fixierung der reaktiven Phenolatgruppe an ein Polymerrückgrat abnehmen.

Es wurde eine höhere Temperaturstabilität der stärker symmetrischen Kationen festgestellt, wie Tabelle 12 zeigt. Zur besseren Vergleichbarkeit mit existierender Literatur wurde für die weiterführenden Untersuchungen das gemeinhin am häufigsten genutzte Gegenkation [P₆₆₆₁₄] verwendet.

Substanz	Thermische Zersetzungspunkte [°C]	
	T _{dec,1}	T _{dec,2}
[P ₆₆₆₁₄][Poly(4-vinylphenolat)]	179	580
[P ₄₄₄₁₄][Poly(4-vinylphenolat)]	161	599
[P4441][Poly(4-vinylphenolat)]	124	582
[P4444][Poly(4-vinylphenolat)]	214	583

 Tabelle 12: Thermische Stabilität der Polyelektrolyte in Abhängigkeit des Kations.

3.2. Poly(4-vinylphenolate)

Tabelle 13 zeigt die Gleichgewichts-CO₂-Aufnahme bei 1 bar und 35 °C, bezogen auf das Polymergewicht und auf die Zahl der Phenolatgruppen.

Tabelle 13: CO_2 -Aufnahme in unsubstituiertem, methoxysubstituiertem und dimethoxy-substituiertemTrihexyltetradecylphosphoniumPoly(4-vinylphenolat)([P₆₆₆₁₄][1a]-[1c])bei 35 °C und 1 bar CO₂-Druck

Substanz	CO₂-Aufnahme	
	[gew%]	[mol%]
[P ₆₆₆₁₄][1a]	2,3	31,9
[P ₆₆₆₁₄][1b]	1,7	24,4
[P ₆₆₆₁₄][1c]	0,7	10,8

Schema 15 bildet die Strukturen der vorbereiteten Polymere ab. Die Hauptparameter, die im Rahmen dieser Studie verändert wurden, sind (a) der Grad der Methoxy-Substitution der phenolischen Monomere und (b) die Anwesenheit eines Di(ethylenglykol) methyl ether methacrylat (DEGMEMA) Co-Monomers.

Schema 15: Deprotonierung von Poly(4-vinylphenol), Poly(4-vinylphenol-codi(ethylenglykol) methyl ether methacrylat), und methoxysubstituierter Derivate mit Trihexyltetradecylphosphonium Hydroxid ([P₆₆₆₁₄][OH]).

Der Auswahl des Co-Monomers DEGMEMA ging eine Copolymerisations-Vorstudie mit sechs möglichen Co-Monomeren voraus, deren Ziel es war, die mechanischen Eigenschaften des Produktmaterials zur Filmbildung zu verbessern. Dabei wurden besonders Acrylate und Methacrylate betrachtet. deren Copolymerisationsparameter mit Styrolen eine alternierende Copolymerisation begünstigen.¹²⁹ Die im Rahmen dieser Vorstudie synthetisierten Copolymere sind im Experimentalteil detailliert aufgeführt (Abschnitt 5.2.1).

2-Methoxy-4-vinylphenol wurde von Sigma Aldrich erworben. 4-Vinylphenol und 2,6-Dimethoxy-4-vinylphenol wurden entsprechend einer Literaturvorschrift¹³⁰ mittels einer Knoevenagel-Reaktion aus den korrespondierenden Benzaldehydverbindungen synthetisiert (Schema 16).

Schema 16: Synthese von Poly(4-vinylphenol) (1a), Poly(4-vinylphenol-*co*-di(ethylene glycol)methyl ether methacrylat) (DEGMEMA) (2a) und ihrer mono- und dimethoxy-substituierten Derivate (b,c).

Homo- und Copolymerisationen wurden frei radikalisch mit Azo-bis-(isobutyronitril) (AIBN) als Initiator in entgastem Isopropanol oder Benzol durchgeführt. Die erhaltenen Polymere wurden mit einer, im Bezug auf die Phenolgruppen, äquimolaren Trihexyl-Menge von tetradecylphosphonium Hydroxid [P₆₆₆₁₄][OH] titriert und für mindestens 24 h bei 60 °C Hochvakuum getrocknet, im um flüchtige Restbestandteile zu entfernen (Schema 15). Die erhaltenen Substanzen [P₆₆₆₁₄][1a] und [P₆₆₆₁₄][2a] sind leicht gelbstichig, [P₆₆₆₁₄][1b] und $[P_{66614}][2b]$ sind bräunlich und die Substanzen $[P_{66614}][1c]$ and $[P_{66614}][2c]$ sind tiefbraun. Als Reaktionsnachweis diente eine ATR-IR Messung, die die vollständige Deprotonierung der Phenolgruppen durch das Verschwinden der PhO-H-Schwingungsbande bestätigte (Abbildung 5).

Abbildung 5: Verschwinden der O-H-Schwingungsbande des Poly(4-vinylphenols) durch Deprotonierung mit Trihexyltetradecylphosphonium Hydroxid ([P_{66614}][OH]).

Die CO₂-Aufnahmekapazität des Mebranmaterials ist die wesentliche Zielgröße, wie aus der Betrachtung des SD- und des FT-Modells hervorgeht (Abschnitt 2.2). Sie wurde für die dargestellten Substanzen mit einer kommerziell erhältlichen Absorptionswaage der Fima Setaram bestimmt. (Abbildung 6)

Abbildung 6: CO₂-Aufnahme der Substanzen [P₄₄₄₁][1a]-[P₆₆₆₁₄][1a] sowie [P₆₆₆₁₄][1a]-[P₆₆₆₁₄][2c] bei 35 °C und 1 bar CO₂-Druck.

Die Substanzen [P₆₆₆₁₄][2a], [P₆₆₆₁₄][2b] and [P₆₆₆₁₄][2c] zeigten unter CO₂-Atmosphäre eine rasche Gewichtszunahme während der ersten Minuten, gefolgt von einem markanten Übergang zu einer langsameren Gewichtszunahme, die innerhalb der zwölfstündigen Absorptionsphase keine volle Sättigung erreichte. Dieses Verhalten korrespondiert mit einer zügigen Henry-artigen Sorption an der Polymer-Gas-Grenzfläche, gefolgt von einer sukzessiven Plastifizierung und Langmuir-artigen Lückensorption im Polymerinneren (Abschnitt 2.2.2). Eindringende Gasspezies können zudem durch Plastifikation im zeitlichen Verlauf das Verhältnis von besetztem zu freiem Polymervolumen verschieben und so die effektive Sorptionskinetik beeinflussen. Neyertz *et al.* haben berichtet, dass in glasartiges Polymer eindringendes CO₂ sich selbst zusätzliches freies Volumen schafft und so sukzessive die Langmuir-Population erhöht,¹³¹ was den Dual-Mode Verlauf der Sorption über die Zeit alterniert. Dieser Verlauf ist charakteristisch für ein glasartiges, unporöses Polymer und damit kongruent mit dem mechanisch festeren Charakter dieser Verbindungen im Vergleich zu [P₆₆₆₁₄][1a]-[1c]. Dieser Unterschied geht auf einen geringeren Anteil an [P₆₆₆₁₄] in den Copolymeren zurück, welches als starker Weichmacher fungiert. Der weichmachende Effekt [P₆₆₆₁₄] auch den deutlich niedrigeren von lässt sich an Glasübergangstemperaturen von [P₆₆₆₁₄][1a]-[1c] beobachten (Tabelle 14).

Substanz	T _m beobachtbar	T _g des korresp.	T _g [°C]
		Polymers [°C]	
[P ₆₆₆₁₄][1a]	Ja	169,08	-21,03
[P ₆₆₆₁₄][1b]	Ja	97,41	-28,75
[P ₆₆₆₁₄][1c]	Ja	75,40	-57,88
[P ₆₆₆₁₄][2a]	Nein	57,7	-30,3
[P ₆₆₆₁₄][2b]	Nein	44,7	-30,8
[P ₆₆₆₁₄][2c]	Nein	46,07	-50,2

Tabelle 14: Schmelzübergänge (T_m) und Glasübergänge (T_g) der Substanzen[P_{66614}][1a]-[P_{66614}][2c] und T_g -Werte der korrespondierenden Polymere 1a-2c.

Sowohl die initiale Sorptionsgeschwindigkeit als auch die Sorptionsgeschwindigkeit im "zweiten Modus" hängen zusätzlich von der spezifischen Oberfläche der Proben ab, welche jedoch kein kontrollierter Parameter in dieser Studie war. Die beobachtete Gewichtszunahme war in allen Fällen vollständig reversibel unter milden Bedingungen (60 °C, Vakuum). Dies ist grds. vorteilhaft für die Anwendung als CO₂-selektives Membranmaterial, da es auf eine vollständige Abgabe von CO₂ unter permeatseitigen Bedingungen und damit einen großen räumlichen CO₂-Konzentrationsgradienten hinweist, um den Transport über den Membranquerschnitt zu treiben.

Um den CO₂-Adsorptionsmechanismus auf molekularer Ebene zu untersuchen, wurden die gravimetrischen Untersuchungen um ¹³C Magic Angle Spinning-Kernspinresonanzspektroskopische (13C-MAS-NMR) mit ¹³C-markiertem CO₂ und um Infrarotspektroskopische (ATR-FTIR) Messungen ergänzt. ¹³C MAS NMR Spektroskopie lässt, in monomolekularen Übereinstimmung mit dem System.^{119,132} die Ausbildung eines Phenol-Carbonat Komplexes in Anwesenheit von CO2 erkennen (δ = 162.00 ppm). Das erhaltene Spektrum weist außerdem darauf hin, dass physisorbiertes oder gasphasiges CO₂, dessen Signal bei δ = 124,88 ppm zu erwarten wäre,¹³² im Feststoff nur in vernachlässigbarer Konzentration auftritt.

Abbildung 8: ATR-IR Spektren von [P₆₆₆₁₄][1a] (unten), [P₆₆₆₁₄][1a]-CO₂ (mitte) sowie das Differenzsspektrum mit Zuordnung der Schwingungsbanden (oben).

Das ATR-FTIR Spektrum von $[P_{66614}][1a]$ nach der Aufnahme von CO_2 zeigt sowohl eine deutliche symmetrische COO-Streckschwingung bei 1.360 cm⁻¹ als auch eine COO-asymmetrische Streckschwingung bei 1.620 cm⁻¹, die ebenfalls der Carbonatbildung zugeordnet werden können. Die Abwesenheit von gasförmigem oder physisorbiertem CO_2 , das eine klare asymmetrische Streckschwingung in der Spektralregion zwischen 2.200 und 2.400 cm⁻¹ hervorrufen würde, bestätigt erneut, dass diese Effekte praktisch nicht zur Zunahme des Probengewichts unter CO₂-Atmosphäre beitragen. Der elektronische Effekt der Reaktion des Phenolat-Ions mit CO₂ auf den Aromaten lässt sich anhand der alternierten C=C-Ringstreckschwingung bei 1.510 cm⁻¹ beobachten.

3.2.1. Aromatische Modifikation

Eine besondere Bedeutung kommt der Steuerbarkeit der Nukleophilie des Phenolats durch elektronenschiebende oder -ziehende Gruppen am Aromaten zu. Da die Fähigkeit, selektiv CO₂ aus einer Mischgasphase zu lösen, für ein Membranmaterial ebenso relevant ist wie für ein Lösungsmittel in der Gaswäsche, lassen sich Erfolge in der CO₂-Lösungsmittelentwicklung in den Membrankontext übertragen. Wie in Abschnitt 2.2.3 gezeigt, existiert eine optimale Gleichgewichtskonstante für das Assoziationsgleichgewicht zwischen CO₂ und der Trägerfunktion, die von den CO₂-Druckniveaus auf Retentat- und Permeatseite abhängt.

 $K_{opt} = (\underline{c_{CO_2}} \cdot \overline{c_{CO_2}})^{-1/2}$

Diese Gleichgewichtskonstante ist synthetisch über den pK_a-Wert des Phenolats steuerbar, wie Dai *et al.* für das monomolekulare System gezeigt haben.¹¹⁹

Mit einer Kinetik 0. Ordnung in CO₂, welches im Dai-Experiment¹¹⁹ fortwährend im Überschuss durch das IL gepumpt wurde,

$$\frac{\partial c_{PhO-CO_2}}{\partial t} = k_{01} c_{CO_2}^0 c_{PhO} - k_{10} c_{PhO-CO_2}$$

und mit der Gleichgewichtsbedingung,

$$\frac{\partial c_{PhO-CO_2}}{\partial t} = 0$$

lässt sich die Gleichgewichts-Assoziationskonstante schreiben als:

$$K = \frac{k_{01}}{k_{10}} = \frac{c_{PhO-CO_2}}{c_{PhO}} = \frac{n_{PhO-CO_2}}{n_{PhO}}$$

Damit lässt sich die molare Absorption der von Dai *et al.* untersuchten phenolischen ILs in Gleichgewichts-Assoziationskonstanten übersetzen:

IL	NPhO-CO2 / (NPhO + NPhO-CO2)	К
[P ₆₆₆₁₄][4-MeO-PhO]	0,92	11,5
[P ₆₆₆₁₄][4-Me-PhO]	0,91	10,1
[P ₆₆₆₁₄][4-H-PhO]	0,85	5,7
[P ₆₆₆₁₄][4-CI-PhO]	0,82	4,6
[P ₆₆₆₁₄][2-CI-PhO]	0,67	2,0
[P ₆₆₆₁₄][4-CF ₃ -PhO]	0,61	1,6
[P ₆₆₆₁₄][4-NO ₂ -PhO]	0,30	0,4

Tabelle15:MolareCO2-AufnahmeundkorrespondierendeGleichgewichts-Assoziationskonstante verschieden substituierter phenolischer ILs.

Geht man von prozesstypischen CO₂-Partialdrücken und von den idealen Gasdichten entsprechenden Grenzflächenkonzentrationen aus, ergibt sich für die theoretisch optimalen Gleichgewichtsassoziationskonstanten der in Abbildung 9 dargestellte Zusammenhang.

Abbildung 9: Optimale Gleichgewichtskonstante der Träger-CO₂-Assoziationsreaktion für eine FT-Membran im *Post-Combustion* ($\overline{p_{co_2}}$ = 120 mbar), Biomethanherstellung ($\overline{p_{co_2}}$ = 3,35 bar) und Dampfreformierung $\overline{p_{co_2}}$ = 17,50 bar) in Abhängigkeit des CO₂-Partialdrucks auf der Permeatseite.

Vergleicht man nun die von Dai *et al.* erreichten (K < 12) mit den theoretisch optimalen K-Werten (K >> 20), wird deutlich, dass eine noch stärkere Assoziation von CO_2 an die Trägerfunktion wünschenswert ist.

In Übertragung dieses Konzepts auf das polymere System, wurden +M-aktivierte mono- und dimethoxy-substituierte Poly(4-vinylphenole) synthetisiert und hinsichtlich ihrer CO₂-Aufnahmekapazität charakterisiert. Überraschend führte im Fall der Homopolymere [P₆₆₆₁₄][1a]-[1c] die Anwesenheit aktivierender Methoxysubstituenten zu einer Abnahme der CO₂-Aufnahmekapazität (Abbildung 6). Ein möglicher Grund für diese Beobachtung ist eine veränderte Morphologie des Polymers bei Raumtemperatur, die durch die Modifikation ausgelöst wird. DSC-Messungen zeigten bei der Erwärmung von sowohl [P₆₆₆₁₄][1b] [P₆₆₆₁₄][1c] einen verstärkten (teil-)kristallinen als auch von Phasenübergang im Vergleich zu [P₆₆₆₁₄][1a], was diese Hypothese

unterstützt, da kristalline Domänen vermutlich weniger zugänglich für eindrigende CO₂-Moleküle sind als amorphe Domänen.

In den DEGMEMA-Copolymeren, welche keine (teil-)kristallinen Phasenübergänge aufwiesen, ist der aktivierende Effekt der Methoxysubstituenten dagegen deutlich feststellbar (Abschnitt 3.2.2).

3.2.2. Copolymerisation

Dem Poly(styrol) verwandt, kann Poly(4-vinylphenol) sowohl durch π-π-Stapelung, als durch intermolekulare Wasserstoffauch brückenbindungen, die freie strukturelle Volumenfraktion minimieren. Die Gasdiffusivität in Polymeren ist primär eine Funktion der freien Volumenfraktion (Abschnitt 2.3). sodass eine Störung der Polymerpackung die Gaspermeanz stark erhöhen kann. Dies ist zwar für einige inerte Membranmaterialien vorteilhaft^{134,135} stellt jedoch für den chemisch erleichterten Transport einen unerwünschten Konkurrenzeffekt dar (Abschnitt 2.3.4).

Die Präsenz von weichmachendem [P₆₆₆₁₄], das im Fall von [P₆₆₆₁₄][1a] den höchsten Massenanteil hat, besitzt im Vergleich zu kleineren Phosphoniumkationen einen deutlich stärkeren, steigernden Effekt auf die GTR-Werte (Tabelle 17). Es resultiert ein Zielkonflikt zwischen sterischer Frustration der Phenolationen einserseits und Verlust der Dichtigkeit der Polymermatrix andererseits.

Auch auf die mechanische Robustheit der aus $[P_{xxxx}]$ [1a] gerakelten Filme (Abschnitt 3.2.3) zeigen sich deutliche Auswirkungen der Länge der Alkylreste am Phosphoniumion – Sie reichten von brüchig (bei $[P_{4444}]$ [1a]) bis weich und verformbar (bei $[P_{66614}]$ [1a]). Dies führte jeweils zu einer Anfälligkeit zur Ausbildung von Haarrissen bzw. inhomogenen Stellen in der Beschichtung.

Aufgrund dieser Beobachtungen wurden die phenolischen Monomere im Verhältnis 1:1 mit DEGMEMA copolymerisiert, um dessen gute Filmbildungseigenschaften zu nutzen und gleichzeitig polare
Ethylenglykolgruppen einzuführen, deren vorteilhafte Wechselwirkung mit CO₂ bereits in anderen Polymermembranen dokumentiert wurde¹³⁶ und auch bei der physikalischen CO₂-Wäsche zum Tragen kommt (Tabelle 3).

DSC-Messungen der Copolymere belegen einen plastifizierenden Effekt des DEGMEMA bei den Copolymeren 2a-2c, wie sich anhand der deutlichen Senkung der T_g Werte gegenüber den Homopolymeren 1a-1c zeigt. Nach der Behandlung der Phenolgruppen mit [P₆₆₆₁₄][OH] kehrt sich der Einfluss des DEGMEMA auf den T_g-Wert jedoch um, da der Gewichtsanteil des weichmachenden [P₆₆₆₁₄] bei [P₆₆₆₁₄][2a]-[2c], entsprechend der Stoichometrie der Phenolgruppen, deutlich geringer ist (Tabelle 14).

Zusätzlich zeigen die DSC-Ergebnisse, dass die Anwesenheit von DEGMEMA die amorphe Struktur des Materials stabilisiert, da bei $[P_{66614}][2a]$ -[2c] im Gegensatz zu $[P_{66614}][1a]$ -[1c] kein (teil-)kristalliner Übergang mehr sichtbar ist (Tabelle 14).

Auf die Stabilität der entstehenden Filme wirkte sich DEGMEMA ebenfalls vorteilhaft aus, sodass keine Defektbildung bei der Handhabung mehr beobachtet wurde.

Die DEGMEMA-enthaltenden Polyelektrolyte $[P_{66614}][2a]-[2c]$ wiesen eine ähnliche massenbezogene CO₂-Aufnahmekapazität auf, wie die DEGMEMA-freien Polyelektrolyte $[P_{66614}][1a]-[1c]$. Da ein Kontrollexperiment zeigte, dass DEGMEMA-Homopolymer allein keine messbare CO₂-Aufnahme unter gleichwertigen Messbedingungen besitzt, lässt sich die Absorption ausschließlich der 4-Vinylphenolat-Fraktion des Materials zurechnen. Dies impliziert, dass DEGMEMA die CO₂-Aufnahme ausschließlich durch morphologische Effekte verbessert (Tabelle 16).

Probe	ρ	f	CO ₂ Absorption		
	[g cm⁻³]	[-]	[gew.%]	[mol%]	[V(STP)/V]
[P ₆₆₆₁₄][2a]	0,97±0,01	0,138	2,6	47,5	12,7
[P ₆₆₆₁₄][2b]	0,99±0,02	0,128	2,0	36,5	10,0
[P ₆₆₆₁₄][2c]	1,00±0,05	0,126	3,4	65,2	17,2
Poly(DEGMEMA)	k.A.	k.A.	-	-	-

Tabelle 16: Dichte (ρ), freie Volmenfraktion (f) und CO₂ Absorption der DEGMEMAenthaltenden Polyelektrolyte [P₆₆₆₁₄][2a]-[2c] nach 12 h bei 35 °C und 1 bar CO₂-Druck.

3.2.3. Permeabilität

Aus den Substanzen [P₆₆₆₁₄][1a]–[2c] wurden durch Rakeln aus 10 gew.% MeOH-Lösungen Beschichtungen mit Stärken zwischen ca. 3 und 9 µm auf quervernetzten thermoplastischem Silikonelastomerfilmen (TPSE) hergestellt. Abbildung 10 zeigt eine REM-Querschnittsaufnahme einer TPSE/[P₆₆₆₁₄][2a] Verbundmembran.

Abbildung 10: REM-Aufnahme des Querschnitts einer Verbundmembran aus [P₆₆₆₁₄][2a] (Beschichtung) und TPSE.

Sowohl Poly(phenole) als auch Poly(vinylphenole) und deren Derivate sind dafür bekannt, auf vielen verschiedenen Materialien gut haftende,

homogene Beschichtungen auszubilden,¹³⁷ wie ihre Anwendung als Klebstoffe¹³⁸ und Coating-Materialien¹³⁸⁻¹⁴⁰ widerspiegelt. Damit übereinstimmend, zeigten alle Beschichtungen aus [P₆₆₆₁₄][1a]–[2c] eine sehr gute Adhäsion auf der TPSE-Oberfläche.

Die GTR-Werte von CO₂ und N₂ der hergestellten Kompositfilme wurden in einem GDP-Gerät der Firma Brugger (konstantes Volumen, variabler Druck) gemessen (Tabelle 17). Die Filmproben wiesen nach mehreren Messzyklen keine Abnahme der Selektivität und keine Hysterese in Bezug auf die vorangegangenen Messbedingungen auf. Nichts desto trotz verbleibt zu prüfen, ob eine Zunahme der Gaspermeabilität durch CO₂-induzierte Plastifizierung und ein damit einhergehender Selektivitätsverlust, wie er für andere Polyelektrolyt-basierte Membranen beobachtet wurde,¹⁴¹⁻¹⁴³ unter Mischgasbedingungen möglicherweise auch in diesem System auftritt.

Die GTR-Werte der Membranen auf Basis der DEGMEMA-enthaltenden Polyelektrolyte [P₆₆₆₁₄][2a], [P₆₆₆₁₄][2b] und [P₆₆₆₁₄][2c] sind allesamt geringer als diejenigen der DEGMEMA-freien Membranen. Dies deckt sich mit dem weniger viskosen Charakter und der geringeren freien Volumenfraktion dieser Materialien, der durch den geringeren [P₆₆₆₁₄]-Anteil hervorgerufen wird.

Große Diskrepanzen zwischen den GTR-Werten werden teilweise durch variierende Stärken der Polyelektrolyt-Beschichtung hervorgerufen. Ideale Permeabilitäts-Selektivitäten sind nicht von schwankenden Beschichtungsstärken betroffen, und daher besser zum Vergleich der Membranleistungen geeignet. Abbildung 11 zeigt die bei 15 °C gemessenen CO₂-Permeabilitätswerte sowie die idealen Selektvitätswerte im Vergleich zum 2008 *Robeson Upper Bound* für das Gaspaar CO₂/N₂.²

Abbildung 11: Trennleistungen von (v.l.n.r.) [P₆₆₆₁₄][2c]-[1a] im Robeson Trade-Off-Plot im Vergleich zum empirischen *Robeson Upper Bound* von 2008.

Die DEGMEMA-enthaltenden Membranen auf Basis von $[P_{66614}][2a] [P_{66614}][2c]$ zeigten höhere α_{CO_2/N_2} - Werte als ihre DEGMEMA-freien Pendants. Diese Beobachtung ist konsistent mit ihrer höheren volumetrischen CO₂-Beladung sowie mit einer der Kernhypothesen dieser Arbeit, dass ein geringeres v_m zu einer geringeren "freien" Bulkdiffusion und somit zu einer verbesserten CO₂-Selektivität beiträgt (Tabelle 16).

Die markante Zunahme der Selektivität, insbesondere im Fall der **DEGMEMA-enthaltenden** Membranen. Reduktion bei der der Messtemperatur von 25 °C auf 15 °C, suggeriert einen Wechsel des Gastransportregimes in diesem Temperaturbereich (Abbildung 12). Dies kann dadurch erklärt werden, dass sowohl die Diffusivität beider Gasspezies als auch die Löslichkeit bzw. Beladung des Membranvolumens mit beiden Gasspezies unterschiedlich stark von der Temperatur abhängig sind (Abschnitt 2.3.1), was den CO₂-Transport gegenüber dem N₂-Transport bei geringeren Temperaturen begünstigt.⁴⁴

Dieser Effekt wurde bereits für die Niedrigtemperatur-Anwendung von Polyimid-basierten Membranen beschrieben.¹⁴⁴ Als exotropischer und endothermer Prozess findet die Bildung des Phenol-Carbonatkomplexes bei niedrigeren Temperaturen zu einem höheren Grad statt, was zu einem erhöhten CO₂/N₂-Beladungsverhältnis der Membran führt. Dennoch war die Größe der Temperatureffektes unerwartet.

Abbildung 12: Sprunghafter Anstieg der idealen CO₂/N₂-Permeabilitätsselektivität von $[P_{66614}][2c]$ bei Abkühlung unter ca. 15 °C (\blacksquare CO₂; \diamondsuit N₂; \bigtriangleup α_{CO_2/N_2}).

Der Temperatureffekt auf die Selektivität soll kurz thermodynamisch diskutiert werden: Die Gleichgewichtskonstante der CO₂-Sorption ist über

$$K_{eq} = e^{\frac{-\Delta_r G^o}{RT}}$$

Mit der Temperatur verbunden. Mit der allgemeinen Gleichung

$$\Delta_r G^o = \Delta_r H^o - T \Delta_r S^o$$

folgt:

$$K_{eq} = e^{(\frac{-\Delta_r H^o}{RT} + \frac{\Delta_r S^o}{R})}$$

Da die Adsorption von Gasen stets ein exothermer Prozess ist, verschiebt sich das Sorptionsgleichgewicht mit steigender Temperatur auf die Seite der Edukte. Für das binäre Gasgemisch CO₂/N₂ lässt sich eine ideale Sorptionsselektivität formulieren:

$$S_{CO_2/N_2} = \frac{K_{CO_2}}{K_{N_2}}$$

Durch Kombination der beiden oberen Ausdrücke und unter Vernachlässigung der Differenz zwischen den gasspezifischen Standard-Adsorptionsentropien erhält man

$$S_{CO_2/N_2} = e^{(\frac{\Delta_r H_{N_2}^o - \Delta_r H_{CO_2}^o}{RT})}$$

und

$$\frac{\partial S_{CO_2/N_2}}{\partial T} = \frac{\Delta_r H^o_{CO_2} - \Delta_r H^o_{N_2}}{RT^2} e^{\left(\frac{\Delta_r H^o_{N_2} - \Delta_r H^o_{CO_2}}{RT}\right)}$$

Aus der Ungleichheit der Absorptionsenthalpien

$$\Delta_r H^o_{CO_2} \ll \Delta_r H^o_{N_2}$$

folgt unmittelbar, dass:

$$\frac{\partial S_{CO_2/N_2}}{\partial T} < 0$$

Die Beobachtung, dass die ideale Sorptionsselektivität für CO₂ über N₂ (oder über ein anderes schwach wechselwirkendes Gas) mit abnehmender Temperatur deutlich ansteigt, stimmt demnach mit der Thermodynamik der Sorption überein.

Selektive	GTR [Ld ⁻¹ m ² bar ⁻¹]			α_{CO_2/N_2}		
Schicht	15 °C	C 25 °C		15 °C	25 °C	
	CO ₂	N ₂	CO2	N ₂		
[P ₆₆₆₁₄][1a]	742	35,0	770	57,0	21,20	13,51
[P ₆₆₆₁₄][1b]	430	28,5	463	35,0	15,09	13,23
[P ₆₆₆₁₄][1c]	385	17,3	487	25,7	22,23	18,95
[P ₆₆₆₁₄][2a]	282	6,50	303	12,2	43,38	24,85
[P ₆₆₆₁₄][2b]	207	4,80	160	5,34	43,13	29,96
[P ₆₆₆₁₄][2c]	199	2,94	347	11,3	67,69	30,71

Tabelle 17: Gasflussdichten (GTR) und ideale Permeabilitätsselektivitätswerte (α_{CO_2/N_2}) durch Verbundmembranen der Materialen [P₆₆₆₁₄][1a]-[2c] bei 15 °C und bei 25 °C.

Die Membran mit der höchsten CO_2/N_2 -Permeabilitätsselektivität, [P₆₆₆₁₄][2c], wurde auch unter CH₄ und unter H₂ vermessen (Tabelle 18). Die Positionierung in den 2008 *Robeson-Plots* für die entsprechenden Gaspaare (Abbildung 13) dient dem Literaturvergleich. Es ist erkennbar, dass die Trennleistung über CH₄, ähnlich der über N₂, sehr nahe am 2008 *Robeson Upper Bound*² liegt. Der Diffusionswiderstand gegenüber H₂ ist hingegen offenbar zu gering, um eine bedeutende präferenzielle CO₂-Permeation zu gewährleisten.

Tabelle 18: GTR-Werte und ideale Permeabilitätsselektivitäten $\alpha_{CO2/CH4}$ und $\alpha_{CO2/CH4}$ von [P₆₆₆₁₄][2c] bei 15 °C und 1 bar Transmembrandruck.

Messgröße	CO2	N ₂	CH₄	H ₂
GTR [Ld ⁻¹ m ² bar ⁻¹]	199	2,94	7,65	97,6
$\alpha_{CO_2/X}$	-	67,69	26,01	2,04

Abbildung 13: Platzierung der idealen Trennleistung von TPSE/ $[P_{66614}][2c]$ im 2008 *Robeson Upper Bound* für die Gaspaare CO₂/CH₄ (l.) und H₂/CO₂ (r.).²

3.2.4. Stereoregularität

Es wurden vielversprechende Ergebnisse unter Verwendung von Poly(4vinylphenolaten) erzielt. Isotaktisches i[P₆₆₆₁₄][PVPhO] sollte, analog zu isotaktischem gegenüber ataktischem Poly(styrol), eine höhere Dichte und starrere Ketten aufweisen als das bislang verwendete ataktische [P₆₆₆₁₄][PVPhO]. Dadurch wäre auch der strukturelle freie Volumenanteil in i[P₆₆₆₁₄][PVPhO] geringer, was wiederum die unselektive, physikalische Diffusion von Gasen durch den Polymerfilm verlangsamen und zu einem größeren CO₂-*Facilitation Factor* führen sollte (Abschnitt 2.2.3). Daher liegt die Vermutung nahe, dass der Trennfaktor von CO₂ und einem schwach wechselwirkenden Gas durch i[P₆₆₆₁₄][PVPhO] höher ist als in ataktischem [P₆₆₆₁₄][PVPhO]. Membranen auf Basis stereoregulärer Polymere sind bislang nicht in der Literatur vertreten.

Im Gegensatz zu unsubstituierten α-Olefinen wie Ethen oder Propen, die nur durch Übergangsmetallkatalyse polymerisiert werden können, können Styrolderivate auch kationisch,¹⁴⁵ anionisch,¹⁴⁶ radikalisch¹⁴⁷ und thermisch¹⁴⁸ polymerisieren (Schema 17).

Als Initiatoren für die kationische Polymerisation können Carbeniumionen oder Säuren fungieren.¹⁴⁵ Für die anionische Polymerisation eignen sich Metallorganyle wie *n*-Butyllithium (*n*-BuLi) als Initiatoren.146 Als Radikalstarter (Init) häufig werden Azo-bis-(isobutyronitril) (AIBN) oder Dibenzoylperoxid (DBPO) verwendet.147 Bei allen genannten Polymerisationsmechanismen stabilisiert der Phenylrest die Intermediate.¹⁴⁵⁻¹⁴⁷ Dies ist bei aliphatischen Resten, wie bei Propen, nicht der Fall.

Schema 17: Von oben nach unten: Mechanismen der kationischen, anionischen und radikalischen Styrolpolymerisation.¹⁴⁵⁻¹⁴⁷

Abhängig von Substituenten am Phenylrest und dessen elektronischen Eigenschaften, verändert sich auch die Reaktivität der Monomere. Dies wird im Folgenden anhand von Substituenten in *para*-Stellung diskutiert, da in der Arbeit nur *para*-substituierte Styrolderivate als Monomere verwendet wurden.

Substituenten mit +M-Effekt können π -Elektronendichte in das π -System, bestehend aus dem Aromaten und der vinylischen Doppelbindung, schieben. Dadurch stabilisieren sie insbesondere Kationen und Radikale. Substituenten mit einem -M-Effekt stabilisieren Anionen, indem sie π -Elektronendichte aus dem delokalisierten System ziehen.¹⁴⁹

Die Synthese der isotaktischen Polyelektrolyte verläuft über die Deprotonierung von isotaktischem Poly(4-vinylphenol). 4-Vinylphenol kann allerdings nicht direkt isotaktisch polymerisiert werden, da es mit einem pK_a-Wert von ca. 10 eine zu starke Säure ist und damit den Katalysator irreversibel deaktiviert, weshalb die Hydroxygruppe geschützt werden muss.¹⁵⁰

Unter den stark basischen Reaktionsbedingungen der koordinativen Polymerisation sind insbesondere Ether- und Silyletherschutzgruppen stabil und zugleich nicht acide. Daher wurden in der vorliegenden Arbeit Methoxy- (MeO), *tert*-Butoxy- (*t*BuO) und *tert*-Butyldimethyl-silyloxygruppen (TBDMSO) als Schutzgruppen verwendet (Schema 18). Dabei handelt es sich um Substituenten mit unterschiedlichem starkem +M-Effekt.¹⁵¹

Durch den zusätzlich zum +M-Effekt auftretenden elektronenschiebenden +I-Effekt des direkt an den Sauerstoff gebundenen Alkylrests in Etherschutzgruppen, können die mit der *tert*-Butoxy- und der Methoxygruppe geschützen Vinylphenole sehr gut Kationen stabilisieren.^{149,151} Der induktive Effekt ist bei der *tert*-Butoxy-Gruppe auf Grund der höheren Anzahl an Resten stärker ausgeprägt als bei der Methoxyschutzgruppe, wodurch das *tert*-Butoxy-geschützte Monomer reaktiver ist.¹⁵¹

Bei Silylethern bildet sich durch Überlappung eines freien Elektronenpaares des Sauerstoffs mit einem leeren d-Orbitalen des Siliciums einen partielle Doppelbindungscharakter aus.¹⁵² Dadurch wird der +M-Effekt der TBDMS-Schutzgruppe im Vergleich zu den Etherschutzgruppen abgeschwächt.¹⁴⁹ Damit ist das TBDMS-geschützte 4-Vinylphenol von allen verwendeten Monomeren am wenigsten reaktiv.

4-tert-Butoxystyrol

4-Methoxystyrol

4-(*tert*-Butyldimethylsilyloxy)styrol

Schema 18: Verwendete Monomere zur stereoregulären Polyinsertion, geordnet nach Reaktivität.

Nach der Polymerisation der geschützten Monomere kann durch säurekatalytische (Silyl-)Etherspaltung mit Salzsäure die Hydroxy-Funktionalität wieder vollständig hergestellt werden.¹⁵⁰

[P₆₆₆₁₄][PVPhO] sollte über die Polymerisation der Isotaktisches 4-Hydroxystyrole Gruppe-IV-Katalysatoren geschützten mit den Titantetrachlorid (TiCl₄), rac-Dichloro[dimethylsilanebis(4-(3,5dimethylphenyl)-7-methoxy-2-methylinden-1-yl)]hafnium(IV) und *rac*-Dichloro[ethylen*bis*(indenyl)]zirconium(IV) hergestellt werden. Trimethylaluminium (TMA), Triethylaluminium (AIEt₃), Methylaluminoxan (MAO) und Triisobutylaluminium (TiBA/Ph₃C[B(C₆F₅)₄]) wurden als Co-Katalysatoren eingesetzt. Abweichend von Angaben aus der Literatur konnten unter den genannten Bedingungen jedoch keine Poly(4vinylphenole) mit signifikantem stereoregulärem Anteil synthetisiert werden, wie durch ¹³C-NMR-Messungen durchgängig bestätigt wurde, vermutlich, da die Neigung der Monomere zur kationischen Polymerisation unter den stark basischen Reaktionsbedingungen überwog.

3.3. Poly(acrylate) und Poly(methacrylate)

Mit Aminen beladene, Poly(vinylalkohol)-basierte Hydrogele mit einem hohen Anteil an Poly(acrylsäure) weisen einige der bislang höchsten erreichten Permeabilitätsselektivitäten für CO₂ auf.¹⁵³ Die Anwesenheit von Wasser, welches gut durch Poly(acrylsäure) und deren Salze aufgenommen und retentiert wird, ermöglicht die Reaktion von CO₂ zu HCO₃⁻ als mobile Trägerspezies. Zudem sorgt es für ein Aufquellen der Polymermatrix unter Füllung der Mikrohohlräume, wodurch die physikalische Diffusion der zurückzuhaltenden Gasspezies stark eingeschränkt, und der *Facilitation Factor* gesteigert wird (Abschnitt 2.2.3). Da Hydrogelmembranen im technischen Maßstab jedoch schwer zu verarbeiten sind und bei dauerhaftem Einsatz durch Austrocknung ihre Funktionalität verlieren (Abschnitt 3.1.1.3), wurde in dieser Arbeit ein Ansatz unter Abwesenheit von Wasser, mit sterisch frustrierten Poly(acrylat)-Anionen als CO₂-affine Funktionen gewählt.

Sowohl in der Synthese, als auch in der Charakterisierung, wurde ein ähnliches Vorgehen wie bei den Poly(4-vinylphenolaten) gewählt. Die resultierenden Polyelektrolyte sind wasserunlöslich und, je nach verwendeter Phosphoniumspezies und Molekulargewicht, bei Raumtemperatur glasartig bis hochviskos. Alle weiteren Ergebnisse sind Gegenstand einer noch ausstehenden Publikation von Castillo *et al.* (Stand: Februar 2015).

3.4. Poly(vinylphosphonate)

Formal ist Poly(vinylphosphonsäure) zweifach pro Wiederholungseinheit deprotonierbar. Somit ist ein Polymer mit einer sehr hohen Ladungsdichte denkbar. welche eine besonders hohe Löslichkeitspräferenz für polare Gase wie CO₂ erwarten ließe. Poly(vinylphosphonsäure), die entsprechend einer Vorschrift von Rieger et al. synthetisiert wurde,¹⁵⁴ ließ sich mit wässriger NaOH-Lösung jedoch nur einfach pro Wiederholungseinheit deprotonieren. Dies kann auf intraund intermolekulare elektrostatische Abstoßung zwischen den negativ geladenen Wiederholungseinheiten zurückgeführt werden, die eine hohen Dissoziationsenergie des zweiten Protons bewirkt.¹⁵⁵

Eine Modellrechnung mit Hilfe von Marvin Sketch® sagt einen pK_a-Wert der zweiten Deprotonierung von ca. 16 voraus. Die zweifach deprotonierte Form würde somit in Gegenwart von Luftfeuchtigkeit vollständig rückprotoniert werden. Die Lewis-Acidität der einfach deprotonierten Form (pK_a \approx 3,6) liegt wiederum in einem Bereich, der keine ausreichende CO₂-Koordination bei anwendungsrelevantem, niedrigen Partialdruck ermöglicht.

Aufgrunddessen, sowie aufgrund der Sprödigkeit und resultierenden schlechten Filmbildungseigenschaften der Poly(vinylphosphonsäure), wurde ihr Einsatz als Beschichtungsmaterial verworfen.

3.5. Ultradünne Selektive Schichten

Die Flussdichte des Permeats durch Verbundmembranen ist reziprok von der Stärke der selektiven Schicht abhängig (Abschnitt 2.2.1). Ein wesentlicher Trend in der Membranforschung ist deshalb die Synthese von Verbundmembranen mit ultradünner selektiver "Haut", bis in den Bereich von nur wenigen molekularen Schichten (< 10 nm).³¹ Die skalierbare Herstellung von defektfreien, robusten Beschichtungen mit Stärken im Nanometerbereich ist eine große praktische Herausforderung für das Design neuer Membranen.

3.5.1. Layer-by-Layer-Selbstorganisation

Die elektrostatische Selbstorganisation von Polyelektrolyten auf ladungstragenden Oberflächen wurde erstmals von Decher et al. zur gezielten Herstellung von Bulk-Oberflächen-Hybridmaterialien eingesetzt.156-158 Ihre Haupttriebkraft ist die geringere spezifische Hydratisierung ionisierter Makromoleküle in wässriger Lösung im Vergleich zu ihren kleineren, anorganischen Gegenionen (Na+, Cl-). Bei der Anlagerung der Makromoleküle an eine entgegengesetzt geladene Grenzfläche kommt es durch die Freigabe dieser Gegenionen zu einem Entropiegewinn.

Durch iteratives Dipcoating eines oberflächenaktivierten Substrats mit einer Polykationen- und einer Polyanionenlösung entstehen spontan Doppellagen der Polyelektrolyte auf der Substratoberfläche (Schema 19). Für die Membranherstellung ist dieses Verfahren attraktiv, weil es definierte Beschichtungen mit funktionalen Polymeren mit Filmstärken im Nanometerbereich zugänglich macht.

Im Bereich der Wasserentsalzung sowohl durch Umkehrosmose,¹⁵⁹ als auch durch Vorwärtsosmose,¹⁶⁰ wurden mit LbL-Membranen zuletzt große Fortschritte erzielt. Der Transfer der LbL-Technologie auf die Gastrennmembranen wird jedoch dadurch vereitelt, dass LbL-Filme, in wässriger Umgebung noch stark gequollen, in trockener Umgebung zur Ausbildung von Mikrodefekten neigen.¹⁶¹

Ein Lösungsansatz zur Vermeidung dieser Defekte besteht bspw. in der Einstellung stark voneinander abweichender pH-Werte der Polyelektrolytlösungen mit dem Ziel, eine Struktur aus ineinander verschränkten und verknäulten Polyelektrolytschichten zu realisieren, die auch in trockener Umgebung defektfrei bleibt.¹⁶¹

Der Ansatz dieser Arbeit ist die Verwendung von Zwischenlagen anionisch oberflächenfunktionalisierter Gasbarrieren-Nanopartikel, um der Defektbildung im trockenen Zustand entgegenzuwirken (Schema 19).

Schema 19: Verwendete Materialien zur elektrostatischen *Layer-by-Layer* Nanokompositsynthese.

In einer Machbarkeitsstudie wurden exfoliertes Graphenoxid (GO) und Carboxy-dekorierte Siliziumnanopartikel (Si-COOH) (d \approx 50 nm) als Zwischenlagen verwendet. Polyelektrolytlösungen- und Nanopartikeldispersionen (2 mg mL⁻¹) in deionisiertem Wasser wurden im Ultraschallbad vorbereitet. Mit 0,1 M NaOH- und HCI-Lösungen wurde jeweils ein pH-Wert von 7 eingestellt, um sowohl beide Polyelektrolytarten, als auch die Oberflächen-Carboxygruppen beider Nanopartikelarten zu ionisieren.

Asymmetrisch-poröse Substratfilme aus Poly(acrylnitril) (PAN) wurden mittels Phaseninversion (Abschnitt 5.2.2) aus N-Methylpyrrolidon und Wasser gewonnen. Quervernetzte PDMS-Vollfilme wurden von Wacker Chemie zur Verfügung gestellt. Beide Filme wurden einer Oberflächenaktivierung mittels basischer Partialhydrolyse in wässriger NaOH-Lösung unterzogen (Abschnitt 5.2.3). Zur Beschichtung wurde das Dipcoating-Verfahren eingesetzt, mit einer jeweiligen Verweilzeit des Substrats von 5 min in der PE-Lösung. Bei jedem Wechsel zwischen PE-Lösungen wurde der Substratfilm gründlich mit deionisiertem Wasser abgespült, um überschüssige, lose assoziierte Polyelektrolyte zu entfernen. Dipcoats wurden mit der Sequenz "(PAH/PSS)₂ (PAH/X)₂ (PAH/PSS)₂" durchgeführt, wobei "X" für die jeweilige Nanopartikelart steht.

Die partiell hydrolysierten PAN-Membranen wurden, im feuchten Zustand noch flexibel, im trockenen Zustand brüchig und neigten zur Rissbildung. Beschichtete wie unbeschichtete PAN-Membranproben wiesen dementsprechend keine Gasbarriereeigenschaften und damit auch keine CO₂-Selektivität auf. Die GTR-Werte der beschichteten PDMS-Membranen konnten bestimmt werden (Tabelle 19).

Tabelle 19: Reingasselektivitäten (α_{CO_2/CH_4}) und Kontaktwinkel mit Wasser (θ) von
unbehandeltem, sowie elektrostatisch LbL-beschichtetem PDMS-Vollfilm.

Probe	α_{CO_2/CH_4} [-]	θ [°]
PDMS	3,75 ¹⁶²	98 ± 1
PDMS-(PAH/PSS)2(PAH/GO)2(PAH/PSS)2	4,93	76 ± 1
PDMS-(PAH/PSS)2(PAH/Si-COO)2(PAH/PSS)2	4,33	76 ± 1

Anhand der deutlich verringerten Kontaktwinkel ist erkennbar, dass in beiden Fällen eine, zumindest partielle, Oberflächenfunktionalisierung stattgefunden hat. Mit bloßem Auge war eine ebenmäßige Färbung der zuvor transparenten PDMS-Vollfilme entsprechend der Nanopartikellösungen erkennbar. Die nur marginale Steigerung der CO₂/CH₄-Reingasselektivität durch die Oberflächenbehandlung bei gleichzeitiger Absenkung der CO₂-Permeabilität zeigt jedoch an, dass die Beschichtung, ebenso wie vergleichbare Literatursysteme, zwar zustande gekommen ist, in trockener Umgebung aber Defekte der ausgebildet hat. Abbildung 14 verdeutlicht den Effekt Oberflächenbehandlung auf die CO₂/CH₄-Trennleistung.

Abbildung 14: Einordnung der CO₂/CH₄-Trennleistung unbehandelter und elektrostatisch LbL-beschichteter PDMS-Filme in den 2008 *Robeson Plot.*²

Um das Potenzial der elektrostatischen LbL-Selbstorganisation für CO₂-Gastrennmembranen zu nutzen, ist ein Screening der experimentellen Parameter (PE-Konzentrationen, pH-Werte, Zwischentrocknung etc.) mit einer schnellen Dichtigkeitsprüfung der resultierenden Membranen notwendig. Die kovalente Nach-Vernetzung der eingesetzten PEs, bspw. thermisch oder durch UV-Bestrahlung, ist eine weitere Möglichkeit, der Defektbildung vorzubeugen.

3.5.2. Chemische Gasphasenabscheidung

Durchgängig π-konjugierte Polymere besitzen interessante optische und elektronische Eigenschaften, die im Hinblick auf eine Vielzahl von Anwendungen (Festkörper-Laser, org. Solarzellen, etc.) erforscht werden.¹⁶³⁻¹⁶⁵ In dieser Arbeit steht ihre Eigenschaft im Vordergrund, durch oxidative Grenzflächenpolymerisation ultradünne, thermisch und chemisch robuste Filme auszubilden.¹⁶⁶

Poly(thiophen) ist – in der unsubstituierten Form – intrinsisch unlöslich und temperaturstabil. Hwang *et al.* haben von der Ausbildung kurzer

Poly(CO₂)-Ketten, unter initialer Nutzung des freien Elektronenpaars von Thiophen-Funktionen, unter einem CO₂-Druck um 15 bar berichtet.¹⁶⁷ Im Membrankontext ist diese vorteilhafte Wechselwirkung mit CO₂ bislang noch nicht genutzt worden.

Eine Poly(thiophen)-Beschichtung auf einer porösen Poly(propylen) (PP)-Stützmembran wurde in Anlehnung an eine Literaturvorschrift mittels *"oxidative Chemical Vapor Deposition"* (oCVD) im Hochvakuum dargestellt (Abschnitt 5.2.1.2).¹⁶⁶ Eine Beschichtungssequenz bestand dabei aus Bedampfung mit dem Oxidationsmittel Antimonpentachlorid (SbCl₅), anschließendem Spülen mit Argon, erneuter Evakuation auf 0,1 mbar, Bedampfung mit Thiophen, Spülen mit Argon und erneuter Evakuation.

Bereits während des ersten Evakuationszyklus trat eine deutliche, homogene Rotfärbung der zuvor weißen PP-Stützmembran auf, die sich mit den darauffolgenden Bedampfungssequenzen verstärkte. Die Rotfärbung weist auf eine gleichzeitige Chlorid-Dotierung während der oCVD hin.

Schema 20: Oxidative Polymerisation und Chlorid-Dotierung von Thiophen mit Antimonpentachlorid (SbCl₅).

Eine REM-Aufnahme des Querschnitts zeigt eine homogene Poly(thiophen)-Deckschicht mit einer Stärke von < 40 nm (Abbildung 15).

Abbildung 15: REM-Bruchkantenaufnahme einer Poly(thiophen)-beschichteten PP-Stützmembran.

GTR-Messungen zeigten jedoch keine wesentliche Änderung der Permeabilitätseigenschaften des PP-Substrats mit Poly(thiophen)-Schicht, was auf eine unvollständige Bedeckung, bzw. auf anschließende Rissbildung hinweist. Somit kommt diese nur als Zwischenschicht zur Post-Funktionalisierung mit einem dichteren Material in Betracht. Dennoch zeigt sie deutlich das Potenzial der oCVD zur Synthese von Gastrennmembranen auf.

3.6. Polymer / IL Komposit

Die trennaktive Schicht einer FT-Membran muss, neben einer chemischen Transportfunktion, auch gute Gasbarriereeigenschaften für Leichtgase aufweisen (Abschnitt 2.3.4). Um den in dieser Hinsicht erfolgreichen Hydrogeleffekt der von Ho *et al.* entwickelten PVA-basierten Membranen³ in einem wasserfreien System zu simulieren, wurde ein unpolar-protisches Polymer, Poly(methyl methacrylat-co-4-vinylphenol), mit Tributyltetradecylphosphonium Prolinat ([P₄₄₄₁₄][Pro]) aufgequollen.

Das entstehende Gemisch ließ sich, aus methanolischer Lösung, sowohl zu freistehenden, transparenten Filmen als auch zu stabilen Coatings auf PDMS-Trägern verarbeiten – das Ausgangspolymer allein war dazu zu brüchig. Dabei trat auch bei einem [P₄₄₄₁₄][Pro]-Gehalt von 80 gew.% keine Leckage der IL auf.

DSC-Messungen zeigen, erwartungsgemäß, sinkende Glasübergangstemperaturen mit steigendem [P₄₄₄₁₄][Prolinat]-Anteil (Tabelle 20). Eine deutliche Verbreiterung der Glasübergänge deutet auf einen steigenden Vernetzungsgrad des Polymers hin,⁴⁸ was durch die quervernetzende Wirkung intermolekularer Wasserstoffbrückenbindungen mit [P₄₄₄₁₄][Prolinat] erklärt werden kann (Schema 21). Diese begünstigen gleichzeitig die Immobilisierung der IL im Polymer.

ATR-IR-Spektren des Gemischs zeigen O-H- und N-H Schwingungsbanden bei v > 2.500 cm⁻¹, die jedoch ebenso von der intramolekularen Wasserstoffbrückenbindung des Prolinat-Ions herrühren können.

Schema 21: Wasserstoffbrückenbildung und CO₂-Reaktivität von Poly(MMA-co-VphOH) / [P₄₄₄₁₄][Pro].

Die Abwesenheit eines IL-spezifischen Phasenübergangs in den DSC-Thermogrammen spricht für die Homogenität der IL/Polymer-Mischung.

Tabelle 20: Gewichtsanteil, Mengenverhältnis zwischen Amino- und Phenolgruppenund Glasübergangstemperaturen verschiedener [P44414][Pro] / Poly(MMA-co-VphOH)Mischungen.

w _{[P44414][Pro]} [%]	N _{Pro} /N _{PhOH} [-]	T _g [°C]
-	-	111,5
20	0,107	91,8
40	0,286	40,9
60	0,643	-5,2
80	1,715	-25
100	∞	-49,2

Die Viskosität der IL (Abbildung 16) stieg bereits bei Zugabe von wenigen gew.% Poly(MMA-co-VphOH) über den Messbereich des eingesetzten Viskosimeters an, was ebenfalls als Hinweis auf starke IL-Polymer-Wechselwirkungen gewertet werden kann.

Abbildung 16: Viskosität von Tributyltetradecylphsophonium Prolinat ([P₄₄₄₁₄][Pro]).

Die CO₂-Aufnahme des Materials über die Zeit wurde gravimetrisch bestimmt (Abbildung 17). Die auch nach über 10 h unvollendete Absorption weist auf eine *Dual-Mode*-Sorption mit sehr niedriger CO₂-Diffusivität hin. Im Hinblick auf die CO₂-Permeabilität ist diese Beobachtung ambivalent: Sie zeigt einerseits auf eine gute Besetzung der freien Polymer-Volumenfraktion durch IL, die die unspezifische Gasdiffusion einschränken sollte. Andererseits spiegelt sie auch eine niedrige Mobilität der CO₂-Trägerspezies, bzw. ein langsames "*CO₂-Hopping"*, wider.

Abbildung 17: CO₂-Aufnahme eines 1:1-Gemischs von [P₄₄₄₁₄][Pro] und Poly(MMA-co-VPhOH) bei 35 °C und 1 bar CO₂-Druck.

Die Permeabilitätswerte von Polymer / IL-Kompositmembranen mit unterschiedlichem IL-Anteil (Tabelle 21) bei 15 °C und 1 bar Transmembrandruck zeigen den erwünschten, positiven Effekt der IL-Beladung.

Tabelle 21: CO₂- und CH₄-Permeabilitätswerte verschiedener [P₄₄₄₁₄][Pro] / Poly(MMA-co-VPhOH) Komposite

<i>W</i> [<i>P</i> 44414][<i>Pro</i>]	GTR _{CO2}	GTR _{CH4}	α_{CO_2/CH_4}
[%]	[L m ⁻² d ⁻¹ bar ⁻¹]	[L m ⁻² d ⁻¹ bar ⁻¹]	[-]
10	236	55	4,28
20	288	40	7,20

Die Selektivitätswerte bewegen sich insgesamt jedoch auf einem im Literaturvergleich niedrigen Niveau (Vgl. Abbildung 14). Um den Effekt zu maximieren, ist ein sehr hoher IL-Anteil anzustreben, der eine mit einer Flüssigphase vergleichbare Gaspermeabilität bei gleichzeitiger mechanischer Stabilität bewirkt. Durch kovalente Quervernetzung des Polymers, ähnlich den Hydrogelsystemen, könnte die mechanische Stabilität auch bei sehr hohen IL-Anteilen bewahrt werden.

4. Zusammenfassung und Ausblick

Neue Polyelektrolyte auf Basis von Poly(4-vinylphenolaten) wurden mittels einer einfachen und quantitativen Anionentausch-Methode synthetisiert. Die erhaltenen Materialien zeigten eine mit Polymeren bisher unerreichte, reversible CO₂-Aufnahmekapazität, und konnten zu defektfreien, homogenen Filmen verarbeitet werden. Beides sind wichtige Voraussetzung zur Verwendung in CO₂-selektiven Verbundmembranen. Mittels ATR-IR und ¹³C-MAS-NMR Spektroskopie wurde belegt, dass die Phenolatgruppen mit CO₂ reversibel zu Phenol-Carbonaten reagieren. Die Gleichgewichtskonstante dieser Assoziationsreaktion, eine der wesentliche Stellgröße Membrantrennleistung, wurde durch Hinzufügen von aktivierenden Methoxy-Gruppen am Aromaten gesteigert. Durch Copolymerisation mit Oligo(ethylene glycol) methacrylat wurde die mechanische Beständigkeit der Beschichtungen verbessert. Mit dünnen Polyelektrolyt-Filmen beschichtete TPSE-Stützmembranen wiesen hohe CO₂-Durchflussraten und ideale CO₂-N₂ Selektivitäten von bis zu α_{CO_2/N_2} = 67,7 auf. Die Ergebnisse der Phenol-Modifikation und Copolymerisation deuten darauf hin, dass Poly(4-vinylphenolat)-basierte Membranen sehr gut an verschiedene Prozessbedingungen und Anwendungen angepasst werden können.

Eine Stärke von Phenolat als CO₂-Trägerfunktion, gegenüber den in der Literatur üblichen Aminen, ist die Unabhängigkeit des Reaktionsmechanismus von Wasser (Abschnitt 3.1.1.3). Dennoch ist zu erwarten, dass Feuchtigkeit auch die Trennleistung der Poly(4vinylphenolat)-Membranen, über HCO₃⁻-Bildung und kompetitive Sorption, beeinflusst (Abschnitt 2.3.3). Neben dem bisher betrachteten Reingasfall sollte zudem auch der Mischgasfall untersucht werden, um CO2-induzierte Plastifikationseffekte auf die Selektivität zu bewerten 2.2.2). Die Charakterisierung (Abschnitt unter möglichst anwendungsnahen Bedingungen (Mischgase und Feuchtigkeit),

idealerweise unter Dauerlast im *Steady State*, ist deshalb ein wichtiger nächster Schritt, der aktuell durch den Membranmodulbau (Fraunhofer IGB) und den Testanlagenbau (Linde AG) ermöglicht wird.

Auf dem Weg zu einem dichter gepackten selektiven Membranmaterial wurde versucht, 4-Vinylphenol stereoregulär zu polymerisieren (Abschnitt 3.2.4). Jedoch konnte auch unter den mildest-möglichen Reaktionsbedingungen kein signifikanter stereoregulärer Anteil realisiert werden, da die über den +M-Effekt des Sauerstoffatoms aktivierten Monomere zur unkontrollierten, ataktischen Polymerisation neigen. Die Post-Polymerisations-Funktionalisierung von iso- oder syndiotaktischem Poly(styrol) mit Hydroxyfunktionen, bspw. mittels Friedel-Crafts-Acylierung, wäre ein aussichtsreicher Alternativweg.

Schema 22: Hydroxy-Funktionalisierung und anschließende Deprotonierung von stereoregulärem Poly(styrol) mittels Friedel-Crafts-Acylierung.

Die Beladung eines Phenolhaltigen Polymers mit einer CO₂-reaktiven lonischen Flüssigkeit führte, unter Bewahrung der mechanischen Stabilität, zu einer deutlichen Erhöhung der CO₂/CH₄-Selektivität - jedoch auf einem insgesamt niedrigen Niveau. Eine quervernetzte phenolhaltige Polymermatrix könnte einen hohen IL-Anteil mechanisch stabilisieren und zu einer signifikanten Steigerung der CO₂-Trennleistung führen.

Die CO₂-Abscheidung ist nur eine unter mehreren denkbaren Anwendungen mit nukleophilen Anionen funktionalisierten von Polymermembranen. Die elektrostatische Immobilisierung von Edelmetallkationen im Poly(4-vinylphenolat), zur chemisch erleichterten Olefin-Paraffin-Trennung (Schema 23), ist eine Möglichkeit, das Materialkonzept auf ein anderes Anwendungsfeld zu übertragen.

Schema 23: Denkbare Anwendung des Membranmaterials zur Immobilisierung Olefinselektiver Edelmetallkationen.

Die Potenziale zweier neuer Methoden zur Synthese ultradünner CO₂-Trennmembranen, der chemischen Gasphasenabscheidung und der elektrostatischen *Layer-by-Layer*-Selbstorganisation, wurden aufgezeigt. Weitere Screening-Arbeit ist erforderlich, um geeignete Stoffsysteme und Reaktionsparameter zur reproduzierbaren und defektfreien Beschichtung zu ermitteln.

5. Experimentalteil

5.1. Materialien und Methoden

Sofern nicht anderweitig erwähnt, wurden alle Chemikalien im höchsten verfügbaren Reinheitsgrad von Sigma-Aldrich oder ABCR erworben und ohne weitere Aufreinigung verwendet. Tributyltetradecylphosphonium Chlorid ([P₄₄₄₁₄][Cl]) wurde von der Firma Cytec zur Verfügung gestellt.

Isopropanol und Benzol zur frei radikalischen Polymerisation wurden mit mindestens zwei *freeze pump thaw*-Zyklen entgast. Die zur metallorganischen Polymerisationskatalyse verwendeten Lösungsmittel wurden einem Solvent-Purification-System 800 der Firma Braun entnommen und über aktiviertem Molsieb (3 Å) gelagert. Käuflich erworbene Monomere wurden vor Verwendung bei 2·10⁻² mbar und 50 °C destilliert und über Calciumhydrid gelagert.

Metallorganisch katalysierte Polymerisationsreaktionen wurden unter Standard-Schlenk-Bedingungen durchgeführt. Die verwendeten Kolben und Schlenkrohre wurden dreifach unter Hochvakuum ausgeheizt und mit Argon geflutet. Metallorganische Feststoffe wurden in Gloveboxatmosphäre aufbewahrt. Als Kühlmedien wurden Eisbäder (0 °C) und Isopropanol/Trockeneisbäder (-25 °C bzw. -78 °C) verwendet. Alle Polymere und ionische Flüssigkeiten wurden nach der Synthese für mindestens 24 h im Hochvakuum getrocknet, um Lösungsmittelreste und andere volatile Komponenten zu entfernen.

Kernspinresonanzspektroskopie (¹H, ³¹P, ¹³C-MAS)

¹H and ³¹P NMR Spektren wurden auf einem Bruker ARX-500 oder einem Bruker AVIII-300 Spektrometer bei 300 K bzw. 430 K aufgezeichnet, Tetramethylsilan und 85 gew.% Phosphorsäure dienten jeweils als Referenz. ¹³C MAS NMR Spektren wurden auf einem Bruker ARX-125 Spektrometer mit mindestens 20.000 Scans aufgezeichnet.

Thermoanalytische Methoden

Dekompositionstemperaturen von Polymeren wurden auf einem TGA-Q5000 Gerät der Firma TA-Instruments unter N₂-Atmosphäre gemessen. Glasübergangstemperaturen und andere Phasenübergänge wurden mit einem DSC-Q2000 Gerät, ebenfalls von der Firma TA-Instruments, bestimmt. Dabei wurden mindestens zwei Messzyklen mit einer Heizbzw. Kühlrate von 10 K min⁻¹ in einem Temperaturbereich von mindestens -100 bis +150 °C durchgeführt.

Absorptionsmessungen

Absorptionsmessungen wurden gravimetrisch mit einem Labsys evo®-Apparat der Firma Setaram im Fluss-Modus durchgeführt. Ca. 20 mg Probe wurden in einen Aluminium- oder Platinumtiegel gefüllt und in die Messzelle eingehängt. Diese wurde für 2 h bei 120 °C evakuiert und zum Ende der Evakuationsphase auf 35 °C abgekühlt. Zur Einleitung der Adsorptionsphase wurde die Messzelle für 5 min mit 200 mL min⁻¹ CO₂ gespült und anschließend für 12 h bei 35 °C und 1 bar mit 16 mL min⁻¹ CO₂ kontinuierlich durchströmt. Das Probengewicht wurde mit einer Auflösung von 1 s⁻¹ über den gesamten Verlauf des Experiments aufgezeichnet. Zur Korrektur von Auf- und Abtriebseffekten wurde vom Ergebnisdatensatz der Datensatz einer Blankmessung mit identischem Experimentverlauf subtrahiert.

Infrarotspektroskopie

Attenuated Total Reflectance-Fourier Transformierte Infrarot Spektroskopie (ATR-FTIR) wurde mit einem Vertex 70 Spektrometer der Firma Bruker auf einer Platinum-ATR Bühne durchgeführt. Zur ATR-FTIR-Charakterisierung der CO₂-Sorption wurden etwa 50 mg Probenmaterial in eine Harrick Praying Mantis Diffuse Reflectance Infrared Fourier Transform (DRIFT-IR) Zelle gegeben und für 2 h bei 120 °C im Hochvakuum evakuiert. Nach Abkühlung auf 35 °C wurde eine Probe entnommen und unverzüglich ein ATR-IR Spektrum gemessen. Anschließend wurde die DRIFT-Zelle erneut evakuiert und über Nacht bei 35 °C unter 1 bar CO₂-Druck gesetzt, bevor erneut eine Probe entnommen und unmittelbar ein Spektrum aufgenommen wurde. Zur besseren Vergleichbarkeit der Spektren wurde ein Blankspektrum subtrahiert und eine Standardabweichungs (SNV)-Normierung durchgeführt.

Permeabilität

Gaspermeabilitäten wurden mit Hilfe eines kommerziellen GDP-C Apparats der Firma Brugger bestimmt, der zur Temperaturkontrolle an einen Thermostaten angeschlossen wurde. Zur Messung wurde eine Membranprobe zwischen zwei selbstklebenden Aluminiumfolien mit einer kreisförmigen Stanzung von 1 cm Durchmesser eingeklebt und in die Testkammer eingespannt. Die Kammer wurde auf Retentat- und Permeatseite für mindestens 10 Minuten unter Hochvakuum gesetzt, bevor die Retentatseite für 120 s mit 200 mL min⁻¹ Messgas geflutet und auf einen Druck von 1 bar stabilisiert wurde. Vor einem Wechsel des Messgases durchlief der Aufbau zwei Spülungs- und Evakuationszyklen. Der Druckanstieg auf der Permeatseite wurde mit einer Frequenz von 1 s⁻¹ aufgezeichnet. Die Dicke der Membranbeschichtungen wurde mit einem Mitutoyo MDC-25 PJ Micrometer bestimmt.

Zur schnellen Defektkontrolle von Membranproben wurde zusätzlich eine selbst gebaute Membranzelle eingesetzt. Die Verschaltung ist in Schema 24 dargestellt.

Schema 24: Messaufbau zur schnellen Defektkontrolle von Membranproben.

Rasterelektronenmikroskopie (REM)

Die Homogenität und Defektfreiheit der Polymerbeschichtungen wurde stichprobenartig mit einem JEOL-JSM 7500F Elektronenscanmikroskop kontrolliert.

Flash-Chromatographie

Für die Flash-Chromatographie wurde eine IntelliFlash 310 der Firma Varian verwendet. Die UV/Vis-Sensoren zur Detektion der Fraktionen wurden auf 280 nm eingestellt.

Reaktionsmikrowelle

Als Reaktionsmikrowelle diente eine "Discover" der Firma CEM.

Zentrifuge

Zur fest-flüssig-Trennung feiner Suspensionen wurde eine Universal 32 R Zentrifuge der Firma Hettich verwendet, typischerweise wurde für 4-6 Minuten bei 9000 U min⁻¹ zentrifugiert.

Phaseninversion

Als Phaseninversion wird die Entmischung einer anfangs homogenen Polymerlösung durch Kontakt mit einem Nicht-Lösungsmittel bezeichnet. Beim Ausfallen des Polymers bildet sich dabei eine anisotropisch-poröse Struktur aus. Eine Voraussetzung ist die Mischbarkeit von Lösungsmittel und Nichtlösungsmittel. In dieser Arbeit kamen (DMF), Dimethylacetamid (DMAc), N-Methylpyrrolidon (NMP) oder N-Ethylpyrrolidon (NEP) als Lösungsmittel und Wasser als Nichtlösungsmittel zum Einsatz.

Dichtebestimmung

Die Dichtewerte der von Materialien zur Berechnung von v_m wurden mittels einer Flotationsmethode abgeschätzt: Mit einer ATR-IR-Presse wurde ein Pressling von ca. 100 mg Polymer vorbereitet und in ein

Dimethylsulfoxid (DMSO)–Bad eingetaucht. Nachdem der Pressling an die Oberfläche des DMSO-Bads trieb, wurde unter vorsichtigem Rühren Toluol zugetropft. Sobald der Pressling wieder in das Bad einsank und im Lösungsmittelgemisch suspendiert blieb, wurde seine Dichte entsprechend der Dichte des Lösungsmittelgemischs eingeschätzt.

5.2. Synthese

Der Syntheseteil dieser Arbeit gliedert sich in die Darstellung der trennaktiven Substanzen, der Trägermembranen und der Zusammenführung beider Schichten zur Kompositmembran.

5.2.1. Trennaktive Schicht

5.2.1.1. Monomere

4-Vinylphenol und 2,6-Dimethoxy-4-vinylphenol wurden gemäß einer Literaturvorschrift¹³⁰ ausgehend den korrespondierenden von Benzaldehyden mit einer Knoevenagel-Reaktion dargestellt. In einem typischen Ansatz wurden 5,68 g Syringealdehyd (32,8 mmol, 1 Äq.), 13,66 g Malonsäure (132,1 mmol, 4 Äg.) und 11,16 g Piperidin (132,1 mmol, 4 Äg.) in einen 100 mL Rundkolben gegeben. Das Gemisch wurde für 8 Minuten in einem 200 W-Mikrowellenreaktor refluxiert. Nach Abkühlung wurde das Produktgemisch in Eiswasser gegeben, mit 3 x 40 mL Ethylacetat extrahiert, mit gesättigter NaCI-Lösung gewaschen und über Natriumsulfat getrocknet. Lösungsmittelrückstande wurden im Vakuum entfernt und der Rückstand mit einem Flash-Chromatographen gereinigt (2:1 Hexan / Ethylacetat). 2,92 g (16,2 mmol, 49%) einer dunkelroten, viskosen Flüssigkeit wurden erhalten.

4-Vinylphenol: (300 MHz, MeOH-d4) δ (ppm) = 7,34 – 7,21 (2H, m), 6,87 – 6,72 (2H, m), 6,65 (1H, dd), 5,58 (1H, dd), 5,04 (1H, dd).

2,6-Dimethoxy-4-vinylphenol: 300 MHz, MeOH-d4) δ (ppm) = 6,71 (2H, s), 6,62 (1H, dd), 5,61 (1H, dd), 5,07 (1H, dd), 3,84 (6H, s).

Diisopropylvinylphosphonat (DIVP) wurde entsprechend einer Literaturvorschrift synthetisiert: ¹⁶⁸

1. Stufe: Diisopropyl-2-bromethylphosphonat

$$\begin{array}{ccc} PrOi & OiPr & C_2H_4Br_2 & O & OiPr \\ I & OiPr & 145 \ ^\circ C & Br & Br \end{array}$$

In einem 1 L Rundkolben mit aufgesetzter Vigreux-Kolonne und Destillationsbrücke werden 250 mL Triisopropylphosphit (1 mol, 1 Äg.) und 350 mL 1,2-Dibromethan (4 mol, 4 eq) unter kräftigem Rühren auf 145 °C (Ölbadtemperatur) erhitzt. Nach Ende der Destillation von entstehendem 2-Propylbromid wird das Reaktionsgemisch weitere 4 Stunden bei dieser Temperatur gerührt, auf Raumtemperatur gekühlt und über Nacht gerührt. Leicht flüchtige Bestandteile werden am Rotationsverdampfer bei 40 °C (20 mbar) entfernt. Bei der anschließenden fraktionierten Destillation wird restliches 2-Propylbromid (b.p. 59 °C), überschüssiges Dibromethan (b.p. 39 °C bei 20 mbar) und schließlich Diisopropyl-2-bromethylphosphonat (b.p. 70 °C bei 0,15 mbar) erhalten (0,8 mol, 80%).

¹H-NMR: (CDCl₃): 1,25 (d, 12H, C*H*₃), 2,16-2,34 (m, 2H, C*H*₂-P), 3,40 (q, 2H, C*H*₂-Br), 4,60 (sex, 2H, C*H*-O).

³¹**P-NMR:** (CDCl₃): 23,29.

2. Stufe: DIVP

In einem 1 L Rundkolben mit aufgesetztem Rückflusskühler wird Diisopropyl-2-bromethylphosphonat mit einem 10%-igen Überschuss an Triethylamin in Toluol gelöst (Konzentration ca. 1 mol L⁻¹) und das erhaltene Gemisch unter kräftigem Rühren für 6 Stunden refluxiert (120 °C Ölbadtemperatur), auf Raumtemperatur gekühlt und über Nacht gerührt. Das entstehende Triethylamin-hydrobromid wird abfiltriert und mit Toluol gewaschen. Das Lösungsmittel wird am Rotationsverdampfer entfernt und das Produkt nach fraktionierter Destillation als farblose Flüssigkeit erhalten (b.p. 39 °C bei 0,15 mbar, 0,73 mol, 91%).

¹**H-NMR:** (CDCl₃): 1,20 (d, 12H, C*H*₃), 4,44-4,69 (m, 2H, C*H*₂-O), 5,78-6,33 (m, 3H, vinyl-*H*).

¹³**C-NMR:** (CDCl₃): 23,9 (s, 4C, CH₃), 70,3 (s, 2C, CH₂-O), 127,5 (d, 1C, CH-P), 134,2 (s, 1C, CH₂(Vin)).

³¹P-NMR: (CDCl₃): 15,67.

5.2.1.2. Polymere

Poly(vinylphosphonsäure) wurde mittels Übergangsmetallkatalytischer Polymerisation von Diisopropylvinylphosphonat und anschließender thermischer Entschützung gemäß einer Vorschrift von Rieger *et al.* hergestellt.¹⁵⁴

Ataktisches Poly(4-vinylphenol), Poly(2-Methoxy-4-vinylphenol), Poly(2,6-Dimethoxy-4-vinylphenol) sowie deren Co-polymere mit DEGMEMA wurden frei radikalisch mit Azo-bis-(isobutyronitril) (AIBN) als Initiator in entgastem Isopropanol oder Benzol synthetisiert. Die entstandene Polymerlösung wurde in deionisiertes Wasser gegeben, das ausgefallene Polymer wurde abfiltriert und über Nacht im Hochvakuum bei 60 °C getrocknet.

GPC (2b):
$$\overline{M_n} = 3,48 \ 10^4 \text{ g mol}^{-1}; \ \overline{M_w} = 4,98 \ 10^4 \text{ g mol}^{-1}; \ \text{PDI} = \frac{\overline{M_w}}{\overline{M_n}} = 2,35$$

Isotaktisches Poly(4-vinylphenol) sollte, unter anderem (), mit *rac*- $[C_2H_4(1-Ind)_2]ZrCl_2$ 1, TiBA und Trityl tetrakis(pentafluorophenyl)borat synthetisiert werden.

Schema 25: Polymerisation von 4-tert-Butoxystyrol mit rac-[C2H4(1-Ind)2]ZrCl2 1, TiBA und Ph3C[B(C6F5)4].

In einem ausgeheizten Schlenkrohr wurden 4,58 mg *rac*-[C₂H₄(1-Ind)₂]ZrCl₂ (7,50 μ mol, 1 Äq.) abgewogen und in 10 mL trockenem Toluol gelöst. Die Lösung wurde mit 2 mL (2 mmol, 267 Äq.) einer 1 M TiBA Lösung in Toluol versetzt.

In einen weiteren ausgeheizten Schlenkkolben wurden 5 mL (26,6 mmol, 2,1·10³ Äq.) des Monomers und 8 mL (8 mmol, 800 Äq.) der TiBA-Lösung gegeben. Zum Schutz vor Licht wurde der Kolben mit Aluminiumfolie umwickelt. Um den Katalysator zu aktivieren wird die Lösung eine halbe Stunde bei 60 °C erhitzt.

In einem weiterem ausgeheiztem Kolben wurden 15 mL trockenes Toluol, 5 mL trockenes 4-*tert*-Butoxystyrol (4,68 g, 26,6 mmol) und 8 mL 1 M TiBA-Lösung (8 mmol, 1,070 Äq.) gegeben.

Anschließend wurden 3,46 mg Trityl tetrakis(pentafluorophenyl)borat (3,75 µmol, 0,50 Äq.) in 1 mL Toluol zur Katalysatorlösung gegeben. Beide Lösungen wurden vereinigt und unter Schutz vor Licht für 20 min auf 60 °C erhitzt.

Nach Abkühlen auf Raumtemperatur wurde zur Deaktivierung des Katalysators eine Lösung aus 30 mL MeOH und 1 mL konz. Salzsäure zugetropft, wobei ein weißer Feststoff ausfällt. Anschließend wird das Polymer mit einem Büchnertrichter von der Lösung abgetrennt. Es wurden 3 g (64%) Poly(4-*tert*-Butoxystyrol) erhalten.

IR: \tilde{v} (cm⁻¹) = 2.924 (w), 1.612 (w), 1508 (s), 1.447 (w), 1.364 (m), 1.235 (s), 1.161 (s), 897 (s), 832 (s).

2,00 g des erhaltenen Poly(4-*tert*-Butoxystyrol) wurden mit 30 mL Toluol und 10 mL 4 M Salzsäure (30 mmol, 7,02 Äq.) versetzt und für 4 Stunden unter Rückfluss auf 60 °C erhitzt. Der entstandene hellbraune Feststoff wurde mit einem Büchnertrichter abgetrennt und im Vakuum getrocknet. Dabei wurden 605 mg Poly(4-Vinylphenol) (88%) erhalten.

IR: \tilde{v} (cm⁻¹) = 3366 (br, m), 2925 (w), 1612 (w), 1511 (s), 1447 (w), 1364 (m), 1234 (s), 1161 (m), 829 (s).

¹**H-NMR** (300 MHz, DMSO-*d*₆): δ (ppm) = 9,24-8,79 (m, 1H, H7), 6,91-5,96 (m, 4H, H4, und H5), 2,29-0,74 (m, 3H, H1 und H2). ¹³**C-NMR** (75 MHz, DMSO-*d*₆): δ (ppm) = 154,98 (s, C6), 128,54-127,70 (m, C3), 115,22-114,35 (m, C4 und C5), 29,44 (s, C1), 22,67 (s, C2).

Poly(4-vinylphenol-*co*-hexylacrylat) PVPhOH-*co*-HA

Poly(4-vinylphenol-co-di(ethylenglycol)methylethermethacrylat PVPhOH-co-PEGMA

Poly(2-methoxy-4-vinylphenol-co-hexylacrylat) PMVPhOH-co-HA

Poly(2-methoxy-4-vinylphenol-co-hexylmethacrylat) PMVPhOH-co-HMA

Schema 26: Synthetisierte Copolymere zur Verbesserung der Filmbildungseigenschaften von Poly(4-vinylphenol).

Tabelle22:ÜbersichtübereingesetzteMonomermengenundAusbeutederCopolymerisationsreaktionen.

Monomere	Masse [mg],	Ausbeute [%]	
	Volumen ^[a] [ml]		
4-Vinylphenol	174	73 (≙ 293 mg)	
Hexylacrylat (98 %)	231, 0,26		
4-Vinylphenol	156	90 (≙ 360 mg)	
DEGMEMA (95 %)	257, 0,25		
4-Vinylphenol	165	71 (≙ 283 mg)	
Hexylmethacrylat (98 %)	239, 0,28		
----------------------------------	-------------	----------------------	-------
2-Methoxy-4-vinylphenol (≥ 98 %)	181,6, 0,16	60 (≙ 238	8 mg)
DEGMEMA (95 %)	234, 0,23		
2-Methoxy-4-vinylphenol (≥ 98 %)	360, 0,32	56 ^[b] (≙	405
Hexylacrylat (98 %)	374, 0,41	mg)	
2-Methoxy-4-vinylphenol (≥ 98 %)	191	32 ^[c] (≙	128
Hexylmethacrylat (98 %)	217, 0,25	mg)	

[a] wenn Edukt flüssig.

[b] in 3 ml Ethanol polymerisiert, Ansatzgröße 720 mg.

[c] zweimal mit Pentan umgefällt und über Nacht bei 70 °C am Hochvakuum getrocknet.

Poly(4-vinylphenol-co-hexylacrylat)

¹**H-NMR** (250 MHz, Methanol- d_4) δ (ppm) = 7,00 – 6,30 (br, 4H, Ar-H, H-A), 4,13 – 3,54 (br, 2H, -OCH₂, H-B), 2,39 – 1,13 (br, 14H, -OCH₂-(C H_2)₄-CH₃, -CH-C H_2 -, H-C), 0,94 (s, 3H, -CH₃, H-D).

Poly(4-vinylphenol-co-DEGMEMA)

¹**H-NMR** (250 MHz, Methanol-*d*₄) δ (ppm) = 7,02 - 6,38 (br, 4H, Ar-H, H-A), 4,16 - 3,33 (br, 11H, -O-C*H*₂-C*H*₂-O-C*H*₂-O-C*H*₃, H-B), 2,75 - 1,19 (br, 5H, -C*H*₂-C*H*-C*H*₂-, H-C), 1,11 - 0,42 (br, 3H, -CH₃, H-D).

Poly(4-vinylphenol-co-hexylmethacrylat)

¹**H-NMR** (250 MHz, Methanol- d_4) δ (ppm) = 7,02 - 6,31 (br, 4H, Ar-H, H-A), 4,11 - 3,68 (br, 2H, -OCH₂-, H-B), 2,76 - 1,20 (br, 13H, -OCH₂-(C H_2)₄-CH₃, -C H_2 -C H_2 -C H_2 -, H-C), 1,13 - 0,39 (br, 6H, -CH₃, H-D).

Poly(2-methoxy-4-vinylphenol-co-DEGMEMA)

¹**H-NMR** (250 MHz, Methanol- d_4) δ (ppm) = 6,93 – 5,98 (br, 3H, Ar-H, H-A), 4,21 – 3,44 (br, 14H, -O-C H_2 -C H_2 -O-C H_2 -O-C H_3 , Ar-O-CH₃, H-B), 2,79 – 1,21 (br, 5H, -C H_2 -C H_2 -C H_2 -, H-C), 1,19 – 0,36 (br, 3H, -CH₃, H-D).

Poly(2-methoxy-4-vinylphenol-co-hexylacrylat)

¹**H-NMR** (250 MHz, Methanol- d_4) δ (ppm) = 6,79 – 5,94 (br, 3H, Ar-H, H-A), 4,10 – 3,48 (br, 5H, -OCH₃, -OCH₂-, H-B), 2,43 – 1,11 (br, 14H, -OCH₂-(C H_2)₄-CH₃, -C H_2 -, H-C), 0,92 (s, 3H, -CH₃, H-D).

Poly(2-methoxy-4-vinylphenol-co-hexylmethacrylat)

¹**H-NMR** (250 MHz, Methanol- d_4) δ (ppm) = 6,86 – 5,94 (br, 3H, Ar-H, H-A), 3,91 – 3,48 (br, 5H, -OCH₃, -OCH₂-, H-B), 2,74 – 1,09 (br, 13H, -OCH₂-(C H_2)₄-CH₃, -C H_2 -C H_2 -C H_2 -, H-C), 1,09 – 0,33 (br, 6H, -CH₃, H-D).

Poly(2-methoxy-4-vinylphenol) (1b): (250 MHz, MeOH-*d*₄): δ (ppm) = 6,88 – 5,80 (3H, m), 3,84 – 3,45 (3H, m), 2,40 – 0,81 (3H, m).

Poly(2,6-dimethoxy-4-vinylphenol) (1c): (300 MHz, MeOH-*d*₄): δ (ppm) = 1,68 (3H, m), 3,65 (6H, m), 5,95 (3H, m).

Poly(2,6-dimethoxy-4-vinylphenol-*co*-di(ethylene glycol) methyl ether methacrylate) (2c): (¹H, 300 MHz, MeOH- d_4): δ (ppm) = 1,33 (8H, br), 3,64 (17H, br), 6,24 (2H, br).

5.2.1.3. Poly(elektrolyte)

Analog zu einer Literaturvorschrift¹²⁷ wurden Tetraalkylphosphonium hydroxid-Lösungen mit Hilfe eines OH--Anionentauscherharzes, Amberlyst 26®. ausgehend von den entsprechenden Phosphoniumhaliden vorbereitet und zu einer äquimolaren Menge (im Bezug auf enthaltene Phenolgruppen) Polymer gegeben. In einer typischen Prozedur wurde eine bekannte Menge [P66614][CI] in MeOH gelöst und auf eine frisch regenerierte und mit MeOH vorgespülte Ionentauschersäule gegeben. Es wurde mit MeOH nachgespült, bis das Eluent ein pH-Indikatorpapier nicht mehr verfärbte. Vor der weiteren Verwendung wurden Halidreste im Eluent mit Hilfe eines qualitativen Silbernitrattests ausgeschlossen. Im Fall von [P₄₄₄₁][CO₃CH₃] wurde kein Anionentausch durchgeführt. 1 Äq. Poly(4-vinylphenol), im Bezug auf die Zahl der Phenolgruppen, wurde hinzugefügt. Die Lösung wurder 24 h bei Raumtemperatur gerührt, das Lösungsmittel abrotiert und das Produkt für mindestens 24 h bei 60 °C im Hochvakuum getrocknet, um einen bräunlichen Feststoff zu erhalten. Die vollständige Deprotonierung der Phenolgruppen wurde mittels ATR-IR Spektroskopie anhand des Verschwindens der O-H Schwingungsbande bestätigt.

Tributylmethylphosphonium Poly(4-vinylphenolat) ([P₄₄₄₁][1a]): (³¹P, 360 MHz, MeOH-d4): δ (ppm) = 33,13 (1P, s)

Tetrabutylphosphonium Poly(4-vinylphenolat) ([P₄₄₄₄][1a]): (¹H, 360 MHz, MeOH-d4) δ (ppm) = 6,70 - 6,25 (4H, br), 2,29 - 2,15 (8H, m), 1,68 - 1,14 (19H, m), 0,96 (12H, m), (³¹P, 360 MHz, MeOH-d4): δ (ppm) = 33,14 (1P, s)

Tributyltetradecylphosphonium Poly(4-vinylphenolat) ([P₄₄₄₁₄][1a]): (¹H, 360 MHz, MeOH-d4) δ (ppm) = 6,70 – 6,25 (4H, br), 2,29 – 2,15 (8H, m), 1,68 – 1,14 (39H, m), 0,96 (12H, m), (³¹P, 360 MHz, MeOH-d4) δ (ppm) = 33,14.

Trihexyltetradecylphosphonium Poly(4-vinylphenolat) ([P₆₆₆₁₄][1a]): (¹H, 360 MHz, MeOH-d4) δ (ppm) = 6,70 – 6,25 (4H, br), 2,29 – 2,15 (8H, m), 1,68 – 1,23 (48H, m), 0,96 (12H, m), (³¹P, 360 MHz, MeOH-d4) δ (ppm) = 33,13, (¹³C CPMAS-NMR 4mm rotor, 12 kHz, 35400 scans) δ (ppm) = 15,1, 23,8, 30,8, 33,0, 40,0, 49,7, ~119,0, ~120,0, ~132,0.

Trihexyltetradecylphosphonium Poly(4-vinylphenolat)-CO₂ ([P₆₆₆₁₄][1a]-CO₂): (¹³C CPMAS-NMR 4mm rotor, 12 kHz, 45800 scans) δ (ppm) = 15,1, 23,8, 30,8, 33,0 40,0, ~117,0, ~127,0, ~133, 158,6, 162,2.

TrihexyltetradecylphosphoniumPoly(2-methoxy-4-vinylphenolat)([P66614][1b]): (1H, 360 MHz, MeOH-d4) δ (ppm) = 6,70 - 6,25 (3H, br),3,81 (3H, m), 2,29 - 2,15 (8H, m), 1,68 - 1,23 (48H, m), 0,96 (12H, m),(31P, 360 MHz, MeOH-d4) δ (ppm) = 33,15.

TrihexyltetradecylphosphoniumPoly(2,6-dimethoxy-4-vinylphenolat)([P66614][1c]): (1H, 360 MHz, MeOH-d4): δ (ppm) = 5,99 (2H, br), 3,71 (6H,m), 2,29 - 2,15 (8H, m),1,68 - 1,23 (48H, m), 0,96 (12H, m), (31P, 360MHz, MeOH-d4, 300K): δ (ppm) = 56,72, 34,62.

Trihexyltetradecylphosphonium Poly(4-vinylphenolat co-di(ethylene glycol) methyl ether methacrylat) ([P₆₆₆₁₄][2a]): (¹H, 250 MHz, MeOH-d4) δ (ppm) = 7,02 - 6,38 (4H, br), 4,16 - 3,33 (11H, br), 2,75 - 1,19 (5H, br), 2,29 - 2,15 (8H, m), 1,68 - 1,23 (48H, m), 1,11 - 0,42 (3H, br), 0,96 (m, 12H), (³¹P, 360 MHz, MeOH-d4) δ (ppm) = 33,13.

Trihexyltetradecylphosphonium Poly(2-methoxy-4-vinylphenolat-codi(ethylene glycol) methyl ether methacrylat) ([P₆₆₆₁₄][2b]): (¹H, 360 MHz, MeOH-d4): δ (ppm) = 6,70 - 6,25 (3H, br), 4,16 - 3,33 (11H, br), 3,81 (3H, m), 2,75 - 1,19 (5H, br), 2,29 - 2,15 (8H, m), 1,68 - 1,23 (48H, m), 1,11 - 0,42 (3H, br), 0,96 (m, 12H), (³¹P, 360 MHz, MeOH-d4) δ (ppm) = 33,15

Trihexyltetradecylphosphonium Poly(2,6-dimethoxy-4-vinylphenolat codi(ethylene glycol) methyl ether methacrylat) ([P₆₆₆₁₄][2c]): (¹H, 360 MHz, MeOH-d4): δ (ppm) = 5,99 (2H, m), 3,71 (6H, m), 4,16 – 3,33 (11H, br), 2,75 – 1,19 (5H, br), 2,29 – 2,15 (8H, m), 1,68 – 1,23 (48H, m), 1,11 – 0,42 (3H, br), 0,96 (m, 12H), (³¹P, 360 MHz, MeOH-d4): δ (ppm) = 56,72, 34,62.

Poly(4-vinylphenol): (ATR-IR, cm⁻¹) 3.050-3.600 broad, 3.020, 2.820, 1.600, 1.510, 1.450, 1.380, 1.230, 1.170, 1.130, 1.040, 830, 720.

Trihexyltetradecylphosphonium Poly(4-vinylphenolat) ([P₆₆₆₁₄][1a]): (ATR-IR, cm⁻¹) 1.930, 1.900, 1.840, 1.600, 1.450, 1.230, 1.170, 1.040, 830, 720.

Trihexyltetradecylphosphonium Poly(4-vinylphenolat) ([P₆₆₆₁₄][1a]-CO₂): (ATR-IR, cm⁻¹) 1.930, 1.900, 1.840, 1.600, 1.510, 1.450, 1.230, 1.170, 1.040, 830, 720

Tributyltetradecylphosphonium Prolinat

In einem Schlenkkolben wurde L-Prolinat in MeOH gelöst und 1 Äq. Tributyltetradecylphosphonium Hydroxid ([P₄₄₄₁₄][OH]) zugegeben. Die Reaktionslösung wurde für 2 h bei Raumtemperatur gerührt und im Anschluss das Lösungsmittel sowie alle flüchtigen Stoffe bei 60 °C im Hochvakuum für mindestens 5 h entfernt.

Poly(vinylphosphonsäure)

Alle Metallkomplexe zur Polymerisationskatalyse von Diisopropylvinylphosphonat (DIVP) wurden entsprechend von Literaturvorschriften synthetisiert.^{154,168}

Die Polymerisationsreaktion wurde unter Standard-Schlenkbedingungen in Toluol bei 50 °C unter Verwendung einer Katalysatorkonzentration von 0,625 mg mL⁻¹ durchgeführt. Durch Zugabe von DIVP wurde die Polymerisation gestartet und durch Zugabe einer geringen Menge MeOH abgebrochen. Die Produktlösung wurde zu Hexan gegeben. Der ausgefallene weiße Feststoff wurde abdekantiert und über Nacht bei 70°C im Hochvakuum getrocknet. Poly(DIVP) wurde im Keramikofen mit einer Heizrate von 20 °C min⁻¹ auf 350 °C erhitzt und 30 min bei dieser Temperatur konstant gehalten. Nach Abkühlung wurde Poly(vinylphosphonsäure) als grauer Feststoff erhalten.

Polyallylamin hydrochlorid (PAH)

PAH wurde gemäß einer Literaturvorschrift unter Schlenk-Bedingungen dargestellt.¹⁶⁹ In einem 500 mL Schlenkkolben wurden 112 mL (1 mol) 85 gew.% Phosphorsäure vorgelegt und im Eisbad gekühlt. 37,6 mL (28,6 g, 0,5 mol) Allylamin wurde unter Rühren langsam zugetropft. Als Radikalinitiator wurde 2,2`-Azobis(2-methylpropionamidin) dihydrochlorid in 6 mL DI-H₂O gelöst und zugegeben. Anschließend wurde die Lösung mit 2 *freeze pump thaw-*Zyklen entgast. Die Polymerisation wurde bei 50 °C für mindestens 40 h durchgeführt. Anschließend wurde zur entstandenen hochviskosen Lösung unter Rühren ein Überschüss konzentrierter HCI gegeben. Durch Ausfällen in einem Überschuss MeOH wurde ein weißer Feststoff erhalten, der gründlich mit MeOH gewaschen und schließlich über Nacht im Hochvakuum bei 60 °C getrocknet wurde.

NMR: ¹H-NMR (300 MHz, D₂O): d [ppm] = 7,65 (s, 2H, NH2), 2,94 (s, 2H, C3-H), 1,92 (s, 1H, C2-H), 1,39 (s, 2H, C1-H).

GPC: $\overline{M_n} = 9,179 \ 10^4 \text{ g mol}^{-1}; \ \overline{M_w} = 1,039 \ 10^5 \text{ g mol}^{-1}; \ \text{PDI} = \frac{\overline{M_w}}{\overline{M_n}} = 1,251$

Abbildung 18: Gelpermeationschromatographiekurve von Poly(allylamin hydrochlorid).

Poly(thiophen)

Poly(thiophen) wurde in Anlehnung an eine Literaturvorschrift mittels "oxidative Chemical Vapor Deposition" (oCVD) im Hochvakuum dargestellt.166 In einem typischen Experiment wurde ein Membransubstrat in einem Dreihalskolben vorgelegt, der über Neoprenschläuche mit zwei Schlenkkolben verbunden war. In diesen wurde bei Thiophen bzw. Antimonpentachlorid (SbCl₅) vorgelegt. Der Aufbau wurde gründlich mit Argon gespült und auf 0,1 mbar evakuiert. Eine Bedampfungssequenz bestand aus der Bedampfung mit SbCl₅ für 3 min, anschließendem Spülen mit Argon, erneuter Evakuation auf 0,1 mbar, der Bedampfung mit Thiophen für 3 min, Spülen mit Argon und erneuter Evakuation.

Poly(anilin) / Poly(p-phenylendiamin)

Poly(anilin) und Poly(p-phenylendiamin) wurden gemäß einer Literaturvorschrift mittels Grenzflächenpolymerisation dargestellt.¹⁷⁰

Tabelle 23: Glas (T_g)- und Schmelzübergänge (T_m) der in dieser Arbeitsynthetisierten Poly(4-vinylphenole) 1a-2c und TetraalkylphosphoniumPoly(4-vinylphenolate) [P_{xxxx}][1a]-[P_{xxxx}][2c].

Substanz	T₅[°C]	T _m [°C]
1a	169,08	-
1b	97,41	-
1c	75,40	-
2a	57,70	-
2b	44,70	-
2c	46,07	-
[P ₆₆₆₁₄][1a]	-64,47	31,43
[P ₄₄₄₁₄][1a]	-69,95	30,18
[P ₄₄₄₁][1a]	-83,35	-
[P ₄₄₄₄][1a]	-75,54	-
[P ₆₆₆₁₄][1b]	-61,22	21,15
[P ₆₆₆₁₄][1c]	-57,88	13,04
[P ₆₆₆₁₄][2a]	-30,03	-
[P ₆₆₆₁₄][2b]	-30,08	-
[P ₆₆₆₁₄][2c]	-50,20	-

Tabelle24:MittelsLösungsmittelflotationapproximierteDichtederTetraalkylphosphoniumPoly(vinylphenolate)[Pxxxx][1a]-[2c]

Substanz	ρ [g cm⁻³]
[P ₄₄₄₁₄][1a]	0,98±0,020
[P ₄₄₄₁][1a]	0.99±0,04†
[P ₄₄₄₄][1a]	1,00±0,018
[P ₆₆₆₁₄][1a]	1,02±0,015
[P ₆₆₆₁₄][1b]	1,00±0,04†
[P ₆₆₆₁₄][1c]	0,98±0,05†
[P ₆₆₆₁₄][2a]	0,97±0,005
[P ₆₆₆₁₄][2b]	0,99±0,020
[P ₆₆₆₁₄][2c]	1,00±0,05†

	Coun	tperl	ffecti	ve Re	peatir	וg Uni	-		<	olume Ca	culation											
Substance	C	I	0	Ρ	Ŋ	Ra	Rna	ΣV_Bonc		92*Nb 1	4.7*Ra 3.8*	Rna V		6	M_ru	σ	<	_	`	FFV	CO2-Solubility	CO2-Solubility
	#	Ŧ	Ŧ	Ŧ	æ	Ŧ	Ŧ	[A^3]	Ξ	÷]	-	A^3]	A^3]	Ξ	[g/cm^3]	[cm^	3/g] [A^3/molecule]		[wt%]	[V(STP)/V]
[P4441][1a]	2	1 27	1	-	ភ្ល	9	_) 666	,74	349,28	14,7	0	302,8	393,	6 326,4	0,99		1,010	547,5	0,2	3 1,:	1 5,5
[P4444][1a]	2	4 33	1		6	1) 771	,91	390,72	14,7	0	366, 5	476,	4 368,5	0,99		1,010	618,1	0,2	3 0,0	3
[P44414][1a]	ω	4 53	1		90	1) 1122	,47	568,32	14,7	0	539,5	701,	3 508,8	0,98		1,020	862,1	0, 19	9 2,	7 13,4
[P66614][1a]	4	0 75	р. Ц		11	1		1405	,19	674,88	14,7	0	715,6	930,	3 603,0	1,02		0,980	981,7	0,0	5 2,3	3 11,8
[P66614][1b]	4	1 7.	2	1	118	3		1454	,96	698,56	14,7	0	741,7	964,	2 633,0	1		1,000	1051,2	0,0	3 1,	7 8,6
[P66614][1c]	4	2 79	ω	<u>ц</u>	12	2 1		1504	,72	722,24	14,7	0	767,8	998,	1 663,1	0,98		1,020	1123,5	0,1:	1 0,	7 3,5
[P66614][2a]	4	6 6	, л		14	1) 1765	,06	852,48	14,7	0	897,9	1167,	2 791, 2	0,97		1,031	1354,5	0, 1,	4 2,0	5 12,7
[P66614][2b]	л	1000 1000 1000 1000 1000 1000 1000 10	6	<u>ц</u>	148	3) 1814	,83	876,16	14,7	0	924,0	1201,	2 821, 2	0,99		1,010	1377,5	0,1		2 10,0
[P66614][2c]	л	1 95	7		15	2 1) 1864	,59	899,84	14,7	0	950, 1	1235,	1 851,3	1		1,000	1413,6	0,1	3,	1 17,2
Poly(DEGMEMA)	1	9 16	4		ω	0	-	359	,87	177,6	0	0	182,3	236,	9 188,2	1,02		0,980	306,4	0,2	8	0,0
1 1 1	C	т	0	Ρ																		
Bondi radii [A] [Bondi, 1964]	1,	7 1,2	2 1,52	1,8																		
VdW Volume [A^3]	20,	6 7,2	14,7	24,4																		
Atom mass [unit]	12,0	1	16	31																		
V_CO2 STP [cm^3/g]	505,	1																				
Na	6E+2	ω																				
conversion factors																						
A^3 to cm^3	1E-2	4																				
unit to gram	2E-2	4																				

5.2.2. Stützmembranen

Flache Stützmembranen aus Thermoplastischem Silikon Elastomer (TPSE), Poly(dimethylsiloxan)-block-Poly(harnstoff), wurden von der Wacker Chemie AG zur Verfügung gestellt. Sie wurden durch Rakeln aus einer 20 gew.% Lösung in THF mit anschließender Trocknung synthetisiert.

Quervernetzte PDMS-Vollfilme wurden, ebenfalls von der Wacker Chemie AG, durch Rakeln einer Mischung aus Vinyl- und Si-Hfunktionalisierten PDMS-Ölen und einem Hydrosilylierungskatalysator mit anschließendem Tempern für 10 min bei 80 °C hergestellt.

Trägermembranen aus Poly(acrylnitril) (PAN) und Poly(etherimid) (PEI) wurden wie folgt hergestellt: 18 g Polymer und 2 g Lithiumchlorid (LiCl) wurden über Nacht unter Rühren in 80 g NMP gelöst. Zur Entfernung von Luftbläschen wurde der Kolben mit der Lösung für 10 Minuten einem Ultraschallbad ausgesetzt. Die hochviskose Polymerlösung wurde auf eine Glasplatte gegeben und mit einem Edelstahlrakel (Rakelhöhe 100 µm) zu einem Film gezogen. Die Glasplatte mit dem Film wurde zur Phaseninversion in ein deionisiertes Wasserbad gegeben. Nach wenigen Minuten wurde der, nun weiße, Polymerfilm abgelöst, gründlich mit deionisiertem Wasser gewaschen und für mindestens 24 h getrocknet. Im Fall von PEI-Trägermembranen wurde auf LiCl als Porenbildner verzichtet.

Hohlfasermembranen wurden vom Fraunhofer Institut für Grenzflächenund Bioverfahrenstechnik aus 20-40 gew.% TPSE-Lösung in N-Ethylpyrrolidon gesponnen und in einem Wasserbad ausgefällt. Als Additive zum Einstellen der Viskosität und des Fällungsverhaltens kamen Poly(ethylenglykol) und Poly(vinylpyrrolidon) zum Einsatz.

5.2.3. Mehrschicht-Verbundmembranen

Die Erhöhung der Oberflächenenergie der Trägermembran vor der Aufbringung der selektiven Schicht trägt zur Vermeidung von Beschichtungsdefekten bei. Zur Erhöhung der Ladungsdichte an der Oberfläche ist sie für die elektrostatische *Layer-by-Layer*-Beschichtung vorteilhaft. Beim Rakeln unterstützt die Oberflächenaktivierung die Spreitung von polaren Lösungsmitteln. In dieser Arbeit kamen zur Oberflächenaktivierung die Behandlung mit Sauerstoffplasma sowie die partielle basische Hydrolyse von Polyacrylnitril (PAN) und Polydimethylsiloxan (PDMS)-Trägerfilmen zum Einsatz.

Bei der Corona-Plasma-Behandlung wird das zu beschichtende Material vorübergehend mit einem "Vorhang" aus ionisierter Luft in Kontakt gebracht, die mit hochfrequenter elektrischer Spannung erzeugt wurde. Dies sorgt für eine temporäre Verdichtung ionischer und reaktiver Funktionen an der Festkörperoberfläche.

Partielle Hydrolyse in wässriger NaOH-Lösung:

Schema 27: Partielle basische Hydrolyse von PAN und PDMS zur Oberflächenaktivierung im LbL-Verfahren.

Zur Erhöhung der Oberflächenladungsdichte wurden PAN- und PDMS-Filme für 45 min bei 40 °C in wässrige 1,5 M NaOH-Lösung eingelegt. Zu Beginn wurden im Ultraschallbad Luftbläschen von der Filmoberfläche entfernt.

Stichprobenartige Ermittlung der Schichtdicke

Tabelle 25: Stichprobenartig per REM ermittelte Beschichtungsstärke der PDMS-Verbundmembranen aus [P66614][1a]-[2c].

Polyelektrolyt	d [µm]

[P ₆₆₆₁₄][1a]	5,15
[P ₆₆₆₁₄][1b]	4,40
[P ₆₆₆₁₄][1c]	3,98
[P ₆₆₆₁₄][2a]	3,69
[P ₆₆₆₁₄][2b]	5,51
[P ₆₆₆₁₄][2c]	8,85

Abbildung 19: Querschnitts-REM-Aufnahme einer PDMS/[P₆₆₆₁₄][2b]-Verbundmembran.

Abbildung 20: Querschnitts-REM-Aufnahme einer PDMS/[P₆₆₆₁₄][2c]-Verbundmembran.

Abbildung 21: Querschnitts-REM-Aufnahme einer PDMS/[P₆₆₆₁₄][2a]-Verbundmembran.

Literaturverzeichnis

(1) Scholes, C. A.; Kentish, S. E.; Stevens, G. W. *Recent Patents on Chemical Engineering* **2008**, *1*, 52.

(2) Robeson, L. M. Journal of Membrane Science 2008, 320, 390.

(3) Zou, J.; Ho, W. S. W. Journal of Membrane Science **2006**, 286, 310.

(4) Schnoor, J. L. *Environmental science & technology* **2007**, *41*, 1503.

(5) Ipcc In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global

and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., White, L. L., Eds.; Cambridge University Press: Cambridge, United Kingdom, and New York, NY, USA, 2014, p 1.

(6) Hall-Spencer, J. M.; Rodolfo-Metalpa, R.; Martin, S.; Ransome, E.; Fine, M.; Turner, S. M.; Rowley, S. J.; Tedesco, D.; Buia, M. C. *Nature* **2008**, *454*, 96.

(7) Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F. S., 3rd; Lambin, E. F.; Lenton, T. M.; Scheffer, M.; Folke, C.; Schellnhuber, H. J.; Nykvist, B.; de Wit, C. A.; Hughes, T.; van der Leeuw, S.; Rodhe, H.; Sorlin, S.; Snyder, P. K.; Costanza, R.; Svedin, U.; Falkenmark, M.; Karlberg, L.; Corell, R. W.; Fabry, V. J.; Hansen, J.; Walker, B.; Liverman, D.; Richardson, K.; Crutzen, P.; Foley, J. A. *Nature* **2009**, *461*, 472.

(8) Union, K. d. E., Ed. 2014.

(9) Technology, M. I. o. *The Future of Coal – Options for a Carbon Constrained World*, Massachusetts Institute of Technology (MIT), 2007.

(10) Okabe, K.; Kodama, S.; Mano, H.; Fujioka, Y. Energy Procedia 2009, 1, 1281.

(11) Baker, R. W.; Lokhandwala, K. *Industrial & Engineering Chemistry Research* **2008**, 47,

2109.

(12) van Foreest, F. *Perspectives for biogas in Europe*, 2012.

(13) Normung, D. I. f.; Normung, D. I. f., Ed.; Beuth Verlag: 2008.

(14) EIA, U. US Energy Information Administration, Washington, DC 2013.

(15) Kai Man Kerry Yu, I. C., Joseph Gabriel, and Shik Chi Edman Tsang *ChemSusChem* **2008**, 893.

(16) D'Alessandro, D. M.; Smit, B.; Long, J. R. Angewandte Chemie 2010, 49, 6058.

- (17) Chowdhury, P.; Bikkina, C.; Gumma, S. *The Journal of Physical Chemistry C* **2009**, *113*, 6616.
 - (18) Poll, J. D.; Wolniewicz, L. *The Journal of Chemical Physics* **1978**, *68*, 3053.
 - (19) Orcutt, R. H. *The Journal of Chemical Physics* **1963**, *39*, 605.
 - (20) Couling, V. W.; Ntombela, S. S. Chemical Physics Letters 2014, 614, 41.

(21) UMSICHT, F. 2012.

(22) Gangarapu, S.; Marcelis, A. T.; Zuilhof, H. *Chemphyschem : a European journal of chemical physics and physical chemistry* **2013**, *14*, 3936.

(23) Strazisar, B. R.; Anderson, R. R.; White, C. M. *Energy & Fuels* **2003**, *17*, 1034.

(24) Merkel, T. C.; Lin, H.; Wei, X.; Baker, R. Journal of Membrane Science 2010, 359, 126.

(25) Robeson, L. M. Journal of Membrane Science **1991**, *62*, 165.

(26) Scholz, M.; Alders, M.; Lohaus, T.; Wessling, M. *Journal of Membrane Science* **2015**,

474, 1.

(27) MICRODYN-NADIR; img_113_7.jpg, Ed. 2015.

(28) Inc., C. M. T.; Module-Autopsy-587x250.jpg, Ed.; CMT Membrane Technologies Inc.: 2012.

(29) IGB, F.; Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik.

(30) Du, N.; Park, H. B.; Robertson, G. P.; Dal-Cin, M. M.; Visser, T.; Scoles, L.; Guiver, M. D. *Nature materials* **2011**, *10*, 372.

(31) Kim, H. W.; Yoon, H. W.; Yoon, S.-M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S.; Choi, J.-Y.; Park, H. B. *Science* **2013**, *342*, 91.

(32) Ordonez, M. J. C.; Balkus Jr, K. J.; Ferraris, J. P.; Musselman, I. H. *Journal of Membrane Science* **2010**, *361*, 28.

(33) Horn, N. R.; Paul, D. *Polymer* **2011**, *52*, 5587.

(34) Tang, J.; Shen, Y.; Radosz, M.; Sun, W. *Industrial & Engineering Chemistry Research* **2009**, *48*, 9113.

(35) Kanehashi, S.; Nagai, K. Journal of Membrane Science 2005, 253, 117.

(36) Guo, J.; Barbari, T. A. *Macromolecules* **2009**, *42*, 5700.

(37) Michaels, A. S.; Vieth, W. R.; Barrie, J. A. Journal of Applied Physics 1963, 34, 1.

(38) Zhao, Y.; Winston Ho, W. S. *Journal of Membrane Science* **2012**, *415–416*, 132.

(39) Schultz, J. S.; Goddard, J. D.; Suchdeo, S. R. *AlChE Journal* **1974**, *20*, 417.

(40) Turnbull, D.; Cohen, M. H. *The Journal of Chemical Physics* **1970**, *52*, 3038.

(41) Williams, M. L.; Landel, R. F.; Ferry, J. D. *Journal of the American Chemical Society* **1955**, *77*, 3701.

(42) Recio, R.; Lozano, Á. E.; Prádanos, P.; Marcos, Á.; Tejerina, F.; Hernández, A. *Journal of Applied Polymer Science* **2008**, *107*, 1039.

(43) Zhao, Y. H.; Abraham, M. H.; Zissimos, A. M. *The Journal of Organic Chemistry* **2003**, *68*, 7368.

(44) Rowe, B. W.; Robeson, L. M.; Freeman, B. D.; Paul, D. R. *Journal of Membrane Science* **2010**, *360*, 58.

(45) Persson, K. M.; Gekas, V.; Trägårdh, G. Journal of Membrane Science **1995**, 100, 155.

(46) Mohr, J. M.; Paul, D. R.; Mlsna, T. E.; Lagow, R. J. *Journal of Membrane Science* **1991**, *55*, 131.

(47) Bara, J. E.; Hatakeyama, E. S.; Gin, D. L.; Noble, R. D. *Polymers for Advanced Technologies* **2008**, *19*, 1415.

(48) Koltzenburg, S.; Maskos, M.; Nuyken, O. *Polymere: Synthese, Eigenschaften und Anwendungen*; Springer, 2014.

(49) Cossee, P. J. Catal. **1964**, *3*, 80.

(50) Baugh, L. S.; Canich, J. A. *Stereoselective Polymerization with Single-Site Catalysts*; CRC Press: Boca Raton, 2007.

(51) W. Kaminsky; K. Kuelper; H. Brintzinger; Wild, F. Angew. Chem. Int. Ed. 1985, 24, 507.

(52) Coates, G. W. Chem. Rev. 2000, 100, 1223.

(53) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253.

(54) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem.

Int. Ed. 1995, 34, 1143.

(55) Gene, R.; R, W. E.; R, W. C.; Google Patents: 1969.

(56) Sidney, L.; Srinivasa, S.; Google Patents: 1964.

(57) Elfert, K.; Wolf, G. D.; Bentz, F.; Kunzel, H. E.; Google Patents: 1980.

(58) H, H.; Google Patents: 1974.

(59) Harris, J. E.; Berger, A.; Chopdekar, V. M.; Matzner, M.; Spanswick, J.; Google Patents:

1987.

(60) Hayes, R. A.; Google Patents: 1991.

(61) Herbert, H. H.; W, R. J.; Google Patents: 1975.

(62) Manos, P.; Google Patents: 1987.

(63) Steadly, H.; Laccetti, A. J.; Google Patents: 1988.

(64) Herbert, H. H.; William, R. J.; Google Patents: 1971.

(65) Anada, J. N.; Feay, D. C.; Bales, S. E.; Jeanes, T. O.; Google Patents: 1989.

(66) Beck, H. N.; Sanders, E. S.; G, G. L. I. I.; Google Patents: 1990.

(67) Jeanes, T. O.; Google Patents: 1990.

(68) Sanders, E. S.; Overman, D. C.; Google Patents: 1995.

(69) Sanders, E. S.; Wan, H. S.; Beck, H. N.; Google Patents: 1990.

(70) Chen, N.; Tien, C. F.; Patton, S. M.; Google Patents: 1993.

(71) Tien, C. F.; Surnamer, A. D.; Google Patents: 1991.

(72) Hachisuka, H.; Nitto Denko Corp., Japan . 1999, p 9 pp.

(73) Illing, G.; Google Patents: 2001.

(74) Koros, W. J.; Walker, D. R. B.; Google Patents: 1993.

(75) Bikson, B.; Coplan, M. J.; Gotz, G.; Google Patents: 1985.

(76) Chiao, C. C.; Google Patents: 1988.

(77) Chiao, C. C.; Google Patents: 1989.

(78) Coplan, M. J.; Park, C. H.; Williams, S. C.; Google Patents: 1983.

(79) Kawakami, J. H.; Bikson, B.; Gotz, G.; Ozcayir, Y.; Google Patents: 1991.

(80) Quentin, J. P.; Google Patents: 1977.

(81) Rose, J. B.; Google Patents: 1981.

(82) Rose, J. B.; Google Patents: 1981.

(83) Hayes, R. A.; Google Patents: 1987.

(84) Kohn, R. S.; Coleman, M. R.; Chung, T. S.; Google Patents: 1991.

(85) Chung, T. S.; Chng, M.; Shao, L.; Google Patents: 2004.

(86) Lee, Y. M.; Park, H. B.; Lee, C. H.; Google Patents: 2004.

(87) Macheras, J. T.; Google Patents: 1997.

(88) Maeda, M.; Google Patents: 1999.

(89) Simmons, J. W.; Google Patents: 2003.

(90) Langsam, M.; Google Patents: 1999.

(91) Dabou, X. S.; Kaldis, S. P.; Kapantaidakis, G. C.; Sakellaropoulos, G. P.; Google Patents:

1998.

(92) Ekiner, O.; Simmons, J.; Google Patents: 2006.

(93) Shreiber, E. H.; Eardley, E. P.; Srinivasan, V.; Van Hassel, B. A.; Shah, M. M.; Praxair Technology, Inc., USA . 2002, p 20 pp.

(94) Ku, A. Y. C.; Molaison, J. L.; Ramaswamy, V.; Ruud, J. A.; Schick, L. A.; Google Patents: 2007.

(95) Zimmerman, C. M.; Singh, A.; Koros, W. J. *Journal of membrane science* **1997**, *137*, 145.

(96) Hasse, D.; Kulkarni, S.; Corbin, D.; Patel, A.; Google Patents: 2003.

(97) Sterzel, H. J. D.; Sanner, A. D.; Google Patents: 1988.

(98) Rojey, A.; Deschamps, A.; Grehier, A.; Robert, E.; Google Patents: 1990.

(99) Kulkarni, S. S.; Hasse, D. J.; Corbin, D. R.; Patel, A. N.; L'Air Liquide - Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude, Fr. . 2003, p 12 pp.

(100) Scholander, P. F. Science 1960, 131, 585.

(101) Wittenberg, J. B. The Journal of biological chemistry 1966, 241, 104.

(102) Tosteson, D. C.; Cook, P.; Andreoli, T.; Tieffenberg, M. *The Journal of general physiology* **1967**, *50*, 2513.

(103) Shemyakin, M. M.; Ovchinnikov, Y. A.; Ivanov, V. T.; Antonov, V. K.; Vinogradova, E. I.; Shkrob, A. M.; Malenkov, G. G.; Evstratov, A. V.; Laine, I. A.; Melnik, E. I.; Ryabova, I. D. *The Journal of membrane biology* **1969**, *1*, 402.

(104) Reinhard, D. L.; Robb, W. L.; Google Patents: 1967.

(105) Google Patents: 2002.

(106) Zhao, Y.; Winston Ho, W. Journal of Membrane Science **2012**, 415, 132.

(107) Ho, W. S. W.; The Ohio State University Research Foundation, USA . 2006, p 29 pp.

(108) Sartori, G.; Savage, D. W. *Industrial & Engineering Chemistry Fundamentals* **1983**, *22*, 239.

(109) Gin, D. L.; Noble, R. D. Science 2011, 332, 674.

(110) Carlisle, T. K.; Wiesenauer, E. F.; Nicodemus, G. D.; Gin, D. L.; Noble, R. D. *Industrial & Engineering Chemistry Research* **2012**, *52*, 1023.

(111) Wang, M.; Janout, V.; Regen, S. L. Chemical Communications 2013, 49, 3576.

(112) Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. *Journal of Membrane Science* **2012**, *415–416*, 168.

(113) Wang, Y.; Janout, V.; Regen, S. L. Chemistry of Materials 2010, 22, 1285.

(114) Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J.

Journal of the American Chemical Society 2004, 126, 5300.

(115) Sharma, P.; Park, S. D.; Baek, I. H.; Park, K. T.; Yoon, Y., II; Jeong, S. K. *Fuel Processing Technology* **2012**, *100*, 55.

(116) Wu, C.; Senftle, T. P.; Schneider, W. F. *Physical Chemistry Chemical Physics* **2012**, *14*, 13163.

(117) Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. *Accounts of Chemical Research* **2007**, *40*, 1208.

(118) Goodrich, B. F.; de la Fuente, J. C.; Gurkan, B. E.; Lopez, Z. K.; Price, E. A.; Huang, Y.; Brennecke, J. F. *The Journal of Physical Chemistry B* **2011**, *115*, 9140.

(119) Wang, C.; Luo, H.; Li, H.; Zhu, X.; Yu, B.; Dai, S. *Chemistry – A European Journal* **2012**, *18*, 2153.

(120) Close, J. J.; Farmer, K.; Moganty, S. S.; Baltus, R. E. *Journal of Membrane Science* **2012**, *390*, 201.

(121) Scovazzo, P. Journal of Membrane Science **2009**, 343, 199.

(122) Carlisle, T. K.; Nicodemus, G. D.; Gin, D. L.; Noble, R. D. *Journal of Membrane Science* **2012**, *397*, 24.

(123) Sumon, K. Z.; Henni, A. Fluid Phase Equilibria 2011, 310, 39.

(124) Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. *Journal of Physical and Chemical Reference Data* **2006**, *35*, 1475.

(125) Carvalho, P. J.; Álvarez, V. H.; Marrucho, I. M.; Aznar, M.; Coutinho, J. A. P. *The Journal of Supercritical Fluids* **2010**, *52*, 258.

(126) McEwen, W. E.; Kumli, K. F.; Blade-Font, A.; Zanger, M.; VanderWerf, C. A. *Journal of the American Chemical Society* **1964**, *86*, 2378.

(127) Fukumoto, K.; Yoshizawa, M.; Ohno, H. *Journal of the American Chemical Society* **2005**, *127*, 2398.

(128) Ramdin, M.; de Loos, T. W.; Vlugt, T. J. H. *Industrial & Engineering Chemistry Research* **2012**, *51*, 8149.

(129) Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R. *Polymer handbook*; Wiley New York, 1999; Vol. 89.

(130) Bernini, R.; Mincione, E.; Barontini, M.; Provenzano, G.; Setti, L. *Tetrahedron* **2007**, *63*, 9663.

(131) Neyertz, S.; Brown, D. Macromolecules 2013, 46, 2433.

(132) Masterson, D. S.; Porter, N. A. The Journal of Organic Chemistry 2004, 69, 3693.

(133) Fabris, M.; Lucchini, V.; Noè, M.; Perosa, A.; Selva, M. *Chemistry – A European Journal* **2009**, *15*, 12273.

(134) Merkel, T. C.; Freeman, B. D.; Spontak, R. J.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A. J. *Science* **2002**, *296*, 519.

(135) Thran, A.; Kroll, G.; Faupel, F. *Journal of Polymer Science Part B: Polymer Physics* **1999**, *37*, 3344.

(136) Bara, J. E.; Gabriel, C. J.; Lessmann, S.; Carlisle, T. K.; Finotello, A.; Gin, D. L.; Noble, R. D. *Industrial & Engineering Chemistry Research* **2007**, *46*, 5380.

(137) Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B. *Angewandte Chemie International Edition* **2013**, *52*, 10766.

(138) Sheehan, M. T.; Shah, B. N.; Google Patents: 1989.

(139) Kishimura, S.; Katsuyama, A.; Sasago, M.; Google Patents: 2002.

(140) Lindert, A.; Cormier, G. J.; Pierce, J. R.; Google Patents: 1994.

(141) Simons, K.; Nijmeijer, K.; Bara, J. E.; Noble, R. D.; Wessling, M. *Journal of Membrane Science* **2010**, *360*, 202.

(142) Horn, N. R.; Paul, D. R. *Polymer* **2011**, *52*, 5587.

(143) Bos, A.; Pünt, I. G. M.; Wessling, M.; Strathmann, H. *Journal of Membrane Science* **1999**, *155*, 67.

(144) Weinberg, M. G.; Google Patents: 1993.

(145) Kricheldorf, H. R.; Nuyken, O.; Swift, G. *Handbook of Polymer Synthesis*; CRC Press: New York, 2004.

(146) Hsieh, H.; Quirk, R. P. *Anionic Polymerization: Principles and Practical Applications*; CRC Press: New York, 1996.

(147) Moad, G.; Solomon, D. H. *The Chemistry of Radical Polymerization*; Elsevier: Amsterdam, 2005.

(148) Russell, K. E.; Tobolsky, A. V. Journal of the American Chemical Society **1953**, 75, 5052.

(149) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. *Organic Chemistry*; Oxford University Press: New York, 2001.

(150) Kawabe, M.; Murata, M. Macromol. Chem. Phys. 2001, 202, 3157.

(151) Katritzky, A. R.; Topsom, R. D. J. Chem. Ed. 1971, 48, 427.

(152) Holleman, A. F.; Wiberg, E. *Lehrbuch der Anorganischen Chemie*; de Gruyter: Berlin, 1995.

(153) Nakabayashi, M.; Okabe, K.; Mishima, T.; Mano, H.; Haraya, K. C. O. N. I. O. M.; Google Patents: 1995.

(154) Salzinger, S.; Seemann, U. B.; Plikhta, A.; Rieger, B. Macromolecules 2011, 44, 5920.

(155) Bingöl, B.; Meyer, W. H.; Wagner, M.; Wegner, G. Macromolecular Rapid

Communications **2006**, 27, 1719.

(156) Decher, G.; Hong, J.-D. *Makromolekulare Chemie. Macromolecular Symposia* **1991**, *46*, 321.

(157) Decher, G.; Hong, J. D. *Berichte der Bunsengesellschaft für physikalische Chemie* **1991**, *95*, 1430.

(158) Decher, G.; Hong, J. D.; Schmitt, J. *Thin solid films* **1992**, *210*, 831.

(159) Park, J.; Park, J.; Kim, S. H.; Cho, J.; Bang, J. *Journal of Materials Chemistry* **2010**, *20*, 2085.

(160) Duong, P. H. H.; Zuo, J.; Chung, T.-S. Journal of Membrane Science 2013, 427, 411.

(161) Kim, D.; Tzeng, P.; Barnett, K. J.; Yang, Y.-H.; Wilhite, B. A.; Grunlan, J. C. Advanced Materials **2014**, *26*, 746.

(162) Berean, K.; Ou, J. Z.; Nour, M.; Latham, K.; McSweeney, C.; Paull, D.; Halim, A.; Kentish, S.; Doherty, C. M.; Hill, A. J.; Kalantar-zadeh, K. *Separation and Purification Technology* **2014**, *122*, 96.

(163) Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Andersson, M. R.; Pei, Q.; Heeger, A. J. *Science (Washington, D. C.)* **1996**, *273*, 1833.

(164) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.

(165) Clarke, T. M.; Durrant, J. R. Chem. Rev. (Washington, DC, U. S.) 2010, 110, 6736.

(166) Nejati, S.; Minford, T. E.; Smolin, Y. Y.; Lau, K. K. S. ACS Nano 2014, 8, 5413.

(167) Hwang, C.-C.; Tour, J. J.; Kittrell, C.; Espinal, L.; Alemany, L. B.; Tour, J. M. *Nat Commun* **2014**, *5*.

(168) Seemann, U. B.; Dengler, J. E.; Rieger, B. *Angewandte Chemie International Edition* **2010**, *49*, 3489.

(169) Harada, S.; Hasegawa, S.; Google Patents: 1985.

(170) Haldorai, Y.; Lyoo, W.; Shim, J.-J. Colloid Polym Sci 2009, 287, 1273.