
Computing Refactorings of Behavior Models

Alexander Pretschner1 and Wolfgang Prenninger2

1 Information Security, ETH Z�urich, 8092 Z�urich, Switzerland
2 BMW Group, 80788 M�unchen, Germany

Alexander.Pretschner@inf.ethz.ch, Wolfgang.Prenninger@bmw.de

Abstract. For given behavior models expressed in statechart-like for-
malisms, we show how to compute semantically equivalent but struc-
turally di�erent models. These refactorings are de�ned by user-provided
logical predicates that partition the system's state space and that char-
acterize coherent parts|modes or control states|of the behavior.

1 Introduction

The use of explicit models is enjoying an increasing popularity in the develop-
ment of complex systems. Modeling languages, including UML, have matured
to a point where they are useful for many developers. Consequently, there is a
plethora of tools that enable one to specify systems with these languages. The
(behavior) models are then used to generate simulation and production code,
code skeletons, or test cases. They are also subjected to formal veri�cation tech-
nology such as model checking or automated deductive theorem proving. While
there is no �t to all needs yet, the respective technology is impressive, and sys-
tems of considerable complexity can be handled.

The increasing complexity of these systems necessitates the study of the de-
velopment of the models itself. The context of this paper is the incremental
development of models. We study one particular development step in such pro-
cesses: refactoring [1,2] denotes structural transformations of a system that do
not change its externally visible behavior, except maybe for memory allocation
or required processor cycles. Code-based examples include the de�nition of a
function or introduction of a common super class to avoid duplicate code.

We consider refactorings of �nite state machines with I/O capabilities and
access to an extra data state. This is an add-on to the transitions between the
control states in �nite state machines that are usually depicted as arrows and
bubbles. For each transition, the guard and the assignments to the data space
are speci�ed in a well-de�ned action language. Our work builds on experience
with the CASE tool AutoFocus [3] that we used to model industry-size systems
to the end of test case generation (e.g., [4,5,6]). Building a model re
ects the
process of understanding the requirements. The use of state machines forces one
to de�ne the control states of this machine early in the development. Sometimes
this decision turns out to be inadequate, and di�erent or additional control
states have to be de�ned. In the worst case, with current tools, the complete
state machine has to be redrawn, a tedious and error-prone task.

1

Control states can be interpreted as names of predicates over the state space.
Given a state machine and a set of such predicates, we show how to compute
the transitions (arrows) between the corresponding new control states. Consider
a state machine that models a stack: one control state with three looping tran-
sitions: push, pop, and get. Given two predicates that specify that the stack is
empty (p) or not empty (q), we show how to compute the transitions between
p and q. Our main motivation for refactorings of the said kind is the insight
that the control states of a behavior model were inadequately chosen. A further
motivation is the desire for complementary views on the system [7]. We do not
discuss how to pick p and q. The approach is prototypically implemented.

We present our ideas on the grounds of the simple example of a stack. As a
proof of concept, we show how our techniques have been used in the case study
of an automotive network controller [4]. We concentrate on one single
at state
machine: parallel composition and hierarchical states are not in the scope.

Our work is based on a development process that uses tables like those in SCR
[8,9,10]. Unless they grow too large, tables are easy to understand, and one of
their important advantages is that they are comparably easy to manipulate. Tool
support for manipulating and checking consistency or completeness of di�erent

avors of tables has been around for some time [11,10]. On the other hand,
tables are not always utterly convincing to customers who sometimes prefer
equivalent graphically displayed executable state machines. We also found that
converting tables into a di�erent representation, namely that of equivalent state
transition diagrams, is a valuable aid in reviewing the models. In sum, we believe
that both tables and graphically represented state machines are valuable in the
development process of models. This is consistent with the �ndings of Parnas
and his colleagues that there is a need for more than one kind of tables [12,13].

To summarize, we tackle the following problem. In the context of incremental
development, assume a state machine, or a table, and a partitioning of the state
space, to be given. How can we compute an equivalent state machine with a set
of control states characterized by a set of predicates? The solution is the formal
de�nition of the transformation and its prototypical implementation. Our contri-
bution is, to our knowledge, the �rst formal treatment of refactorings of behavior
models on the grounds of partitions of the state space. Our approach generalizes
to other formalisms as well. Statecharts, for instance, may in principle arbitrar-
ily access the data de�nitions of a UML model. By translating the statechart
into the (standard) formalism given in this paper, we can directly apply our
approach, provided that only direct assignments (and output) are allowed in the
action part of a transition

Section 2 presents the formalism of this paper and de�nes the notions of rule
systems, state machines, state transition diagrams, and tables. Section 3 con-
siders the development steps in incremental development processes of behavior
models, given by both tables and state transition diagrams. Given a partitioning
of the state space, Section 4 shows how to compute refactorings and brie
y con-
siders the implementation. Section 5 presents the application of the approach in
an industrial case study. Sections 6 and 7 present related work and conclude.

2

2 Modeling Constructs

In this section, we de�ne the notion of rule systems. Roughly, rule systems are
programs in a language of guarded commands. Tables are textual representations
of rule systems. State machines are a special kind of rule systems with state
transition diagrams as their graphical representation. The usefulness of and need
for these di�erent representations will become apparent later. Before precisely
formulating our refactoring steps, we have to introduce some formalism.

Preliminaries The formalism borrows from Breitling and Philipps [14]. Let V
denote a �nite set of typed variables. A valuation � maps a variable to a term
of its type. AV is the set of all valuations for a set V . Let free(�) denote the set
of free variables in a logical formula �. In case an assertion � evaluates to true
when all v 2 free(�) are replaced by �(v), we write � j= �.

Variable names also occur in primed form (intuition given in the next para-
graph on rule systems). For instance, if v is a variable, then priming yields a new
variable, v0. Natural extensions apply (1) to sets of variables: V 0 = fv0jv 2 V g,
(2) to valuations: for � 2 AV , we have �0 2 AV 0 with �0(v0) = �(v) for all
v 2 V , and (3) to assertions: if � is an assertion, then �0 is the assertion that
results from priming all variables in free(�). Unprimed valuations assign values
to unprimed variables only, and primed valuations assign values to primed vari-
ables only. If an assertion � contains both primed and unprimed variables, two
valuations are needed for evaluations. We write �;
0 j= � in case � evaluates
to true when all unprimed variables v in free(�) are replaced by �(v), and all
primed variables v0 are replaced by
0(v0). Two valuations �;
 2 AV coincide on

a subset W � V , denoted �
W
=
, if 8v 2W � �(v) =
(v). Extensions naturally

apply to sequences of valuations|�1�2 : : :
W
=
1
2 : : : denotes �k

W
=
k for all

k|and to sets of sequences: for two sets of sequences of valuations Y1 and Y2,

Y1
W
= Y2 denotes 8y1 2 Y19y2 2 Y2 � y1

W
= y2 and 8y2 2 Y29y1 2 Y1 � y2

W
= y1.

T (�;X) denotes the set of terms over a signature � and a set X of variables.
We assume a �xed signature to be given|the names of the functions de�ned in
the action language and used in guards and assignments. The type of a term t is
denoted by type(t). Two terms are uni�able (l �= r) i� 9� 2 AVl[Vr ��(l) = �(r),
where Vl and Vr are the sets of variables in l and r, respectively, and Vl\Vr = ;.

Given a predicate p, p[fw=w]w2W denotes the replacement of all variables
w in W by terms fw of the same type. p0[fw=w

0]w2W applies the same notion
to replacing primed variables. Finally, function composition is denoted by �,
8x � (f � g)(x) = f(g(x)). The identity mapping is called id.

Rule Systems A rule system is a tuple R = (V; S; T). V consists of disjoint
sets of typed variables, I;O; L. They denote input, output, and local variables,
respectively. A state of R is a valuation � 2 AV that type-correctly maps all
variables in V to ground terms. � 2 AL is called a data state of R.

S is an assertion with free(S) � V . It describes the initial state(s), and we
require S to be satis�able: 9� 2 AV � � j= S.

3

T is a set of transitions. Each t 2 T is an assertion with free(t) � V [V 0.
It relates states to successor states. Unprimed variables are evaluated in the
current state, and primed variables are evaluated in the successor state.

We require all transitions in T to be of the form in ^ g ^ a ^ out . in and
out read input values and compute and write output values, respectively. g is a
guard; it de�nes conditions on the input and the current values of the variables in
L. a assigns new values to the variables in L. More precisely, in is a statement of
the form

V
i2I i

�= �i where �i is a pattern that may contain free transition-local
variables, Ht, with Ht\V = ;. We assume �i 2 T (�;Ht) and type(�i) = type(i).
The idea is that these variables are bound at runtime, and the values can be
used in the computation of guards, output values, and assignments. We naturally
extend the notions of states by stipulating that states be elements of AV [HR

where HR =
S
t2T Ht. The guard g is a conjunction of predicates over Ht [L,

with type(g) = Bool . The assignment a �
V
l2L l

0 = fl type-correctly assigns
values to the variables in L0, and it may do so by referring to the variables in
L [Ht: fl 2 T (�;L [Ht) with type(fl) = type(l). Finally, out �

V
o2O o0 = fo

assigns values to the output variables, O0. It may refer to the variables in L[Ht:
fo 2 T (�;L[Ht) with type(fo) = type(o). " denotes the absence of signals both
for input and output channels; types are lifted correspondingly.

Without loss of generality, we will assume that the action language for guards
and assignments is a simple �rst-order functional language without explicit quan-
ti�ers, i.e. all variables are free. The reason for this choice is that this is the
language supported by the CASE tool AutoFocus which was used in our studies.

A run of a rule system is an in�nite sequence of states, �1�2 : : : with �i 2
AV [HR

. The set of all runs, i.e., the semantics of a rule system, R, is denoted by
[[R]]. We require �1 j= S and 8o 2 O � �1(o) = "|output can only be produced
after or during the �rst transition. Subsequent valuations of a run, �n and �n+1,
are related by a transition in T : 8n��n; �

0

n+1 j=
W
t2T t. Clearly, there is room for

many classical constraints such as causality [15], input enabledness [16], fairness,
etc. Rule systems need not be total nor deterministic.

State Machines, Tables, and State Transition Diagrams A state ma-
chine is a rule system with a dedicated variable state of a �nite type. It spec-
i�es the control state or mode of the state machine. We require an initial con-
trol state to be determined in the initial assertion S, each guard to contain a
statement state = src, and each assignment to contain a statement state 0 = dst
where src and dst are the source and destination control states of the transi-
tion, respectively. By convention, we will use overlines for the names of control
states. State machines are graphically represented by state transition diagrams
(STDs)|bubbles (control states) and arrows (transitions). Two examples of (in-
complete) STDs are given in Fig. 1. The black dot denotes the initial state.

Every state machine is a rule system, but not each rule system is a state
machine. However, there are many ways of transforming a rule system into a
state machine. The simplest one is as follows: we add state of type fsg to L, add
the conjunct state = s to the guard of each transition, and add the conjunct

4

Fig. 1. Original STD of the stack (left); refactoring (right)

state 0 = s to the assignment of each transition (assuming state 62 L; otherwise
we rename the old variable state before introducing the new one). Di�erent ways
of computing state machines from rule systems are the topic of this paper.

A table is the textual representation of a rule system in some tabular form.
Parnas has devoted considerable work to the classi�cation of tables [13]. For us,
any tabular representation will do. An example of a table is given in Tab. 1.

Name Guard Input Output Assignment

pushItem true e�= push(DATA) a'=" st'=list(DATA,st)

getItem not(isE(st)) e�= get a'=ft(st) st'=st

popItem not(isE(st)) e�= pop a'=" st'=rt(st)

idle true e�= " a'=" st'=st

Table 1. Behavior of a stack

Example Consider the speci�cation of a stack of integers. We assume a compo-
nent with one input channel I = feg with type(e) = fpush(Int); get ; pop; "g, and
one output channel, O = fag with type(a) = Int [f"g. There is one local vari-
able, L = fstg. Using functional notation, its type is recursively de�ned by data

d st = empty | list(Int, d st). Three functions are de�ned: isE(X) = (X

== empty), ft(list(X,Y)) = X, and rt(list(X,Y)) = Y. One transition-local
variable is used in the example, namely DATA in transition pushItem.

By adding a further local variable state of type(state) = fwait4Inputg to the
set L of local variables, we generate a state machine from the rule system by
also adding trivial statements state = wait4Input and state 0 = wait4Input to
guard and assignment of each row of Tab. 1. Fig. 1, left, shows the STD that
corresponds to the state machine of the stack example.

3 Incremental Development

Increments denote di�erent development stages of a system, or model, respec-
tively. To be as
exible as possible, we do not impose any constraints on these
steps (except for enforceable consistency conditions that we do not discuss here).

Development Process Our experience with building large models boils down
to the following process. Existing (informal) requirements speci�cations are read:
a �rst understanding of the system's behavior is gained. One is capable of writing

5

down statement such as \if a certain input occurs under certain conditions, then
the system's state changes as follows, by outputting certain values". These rules
are preliminary in that they are likely to be corrected later on. Reading the
requirements documents also tends to lead to a �rst natural partitioning of the
state space; for instance, one might �nd it natural to have a partitioning into on
and o� states in the model of an embedded system.

We found it useful not to exclusively use the graphical STDs in these early
stages of development. Instead, tables turned out to be tremendously useful.
The reason is that modi�cations in STDs are rather tedious: because the control
states of the state machine change, transitions or parts of transitions have to be
copied or removed multiple times. This is an error-prone and tedious task.

Nonetheless, there is no doubt that STDs are highly useful. Debugging is
sometimes easier with executable STDs than with tables. For demonstration pur-
poses with customers and domain experts, we found STDs to yield a good basis
for discussion. In addition, the graphical layout helps one to identify symmetries,
or missing symmetries which lead to corrections of the model (Section 5).

Modi�cations and Refactorings Development steps can alter interfaces, or
they alter the behavior. We do not consider architectural modi�cations such
as the addition of components here [15,17,18]. Interface modi�cations add or
delete input or output channels to or from a system. If, before deletion, the
name of a channel does not occur in a system's description, its removal does not
change the system's behavior, and neither does the introduction of a new channel.
Behavior modi�cations consist of removals and additions of traces of a model.
Syntactically, this is achieved by inserting, modifying, or deleting transitions in
T , possibly by taking into account extensions of L.

An increment ~R of a rule system R with [[R]]
I[O
= [[~R]] is called a refactoring

of R. This assumes that R and ~R de�ne the same external interface I = ~I and
O = ~O: refactorings do not modify the interface of a component. An increment
that is no refactoring is called a modi�cation. In our incremental development
process that relies on both tables (rule systems) and STDs (state machines),
there are hence four di�erent kinds of development steps: refactorings of state

machines (�S 2 f�j[[R]]
I[O
= [[�(R)]] and R is a state machineg), refactorings of

rule systems (�R 2 f�j[[R]]
I[O
= [[�(R)]] and R is a rule systemg), and modi�ca-

tions of rule systems and state machines (both denoted by � in Fig. 2). Modi�-
cations modify, add, or delete transitions, possibly with alterations of L.

Let � and ��1 denote transformations from rule systems into state machines,
and vice versa. Fig. 2 illustrates the relationship between the development steps.
As development progresses from top to bottom, modi�cations take place. Within
each row, usually di�erent refactorings of both tables and state machines are
considered, and the further can be transformed into the latter, and vice versa.

In the next section, we will describe how to compute refactorings of rule sys-
tems, �R. Since state machines are rule systems, this also caters for refactorings
of state machines. However, for reasons that we will be able to explain only after
refactorings have been made precise, it is not always desirable to let ��1 = id .

6

τ, τ−1

τ, τ−1

τ, τ−1 ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

δ

δ

δ

δ δ

δ

ρ ρ ρ

ρ ρρ

ρ ρ ρ

RRR

R RR

R R R

Fig. 2. Incremental Development

Refactorings of rule systems that are not state machines appear to be of mod-
erate value: they remain textual, and we have discussed the bene�ts of graphical
representations in Section 1. Methodologically, one would prefer to get a state
machine (in fact, an STD) from a refactored rule system (in fact, a table) in
one step. Consequently, we will focus on combinations of (1) refactorings of rule
systems (tables) and (2) transformations from rule systems (tables) into state
machines (STDs). As we will see in the next section, it is su�cient to consider
refactorings of state machines de�ned by �S = � � �R � ��1. The only reason
for having included refactorings of rule systems into the left part of Fig. 2 is
precisely that we compute refactorings of state machines by relying on these �R.

4 Refactorings

In our stack example, one might want to transform the speci�cation into an
equivalent one with two control states: one speci�es that the stack is empty, and
the other one speci�es that it is not. The problem then consists of computing
the transitions between these two control states.

In this paper, the idea of refactoring state machines or rule systems is to
de�ne a set of predicates that partition the data space. In general, whether a set
of predicates forms a partitioning is undecidable. In our case studies, however, we
could easily see whether or not a set of predicates formed a partitioning. Each
of these predicates corresponds to one control state of the refactored model:
control states are projections of the data space (de�ned as the set of all possible
valuations of all variables). Once the partitioning predicates have been de�ned,
one must compute the transitions between the corresponding states.

To get an intuition of this computation, assume a set of predicates, P , that
partition the data space, and that do not constrain input nor output values. The
elements of P will form the control states of the refactored model. Let p; q 2 P .
Transitions (arrows in the graphical representation) from p to q for each pair
p; q are computed as follows. For each guard g of a row in the table, we compute
the intersection between p and g, i.e. p ^ g. We also need to make sure that q
is compatible with the assignment a �

V
l2L l

0 = fl of the transition, i.e. that

7

Name Guard Input Output Assignment

pushItem isE(st) ^ isE(list(DATA,st)) e�=push(DATA) st'=list(DATA,st)

pushItem isE(st) ^ not(isE(list(DATA,st))) e�=push(DATA) st'=list(DATA,st)

pushItem not(isE(st)) ^ isE(list(DATA,st)) e�=push(DATA) st'=list(DATA,st)

pushItem not(isE(st)) ^ not(isE(list(DATA,st))) e�=push(DATA) st'=list(DATA,st)

getItem not(isE(st)) ^ isE(st) ^ isE(st) e�=get a'=ft(st)

getItem not(isE(st)) ^ isE(st) ^ not(isE(st)) e�=get a'=ft(st)

getItem not(isE(st)) ^ not(isE(st) ^ isE(st)) e�=get a'=ft(st)

getItem not(isE(st)) ^ not(isE(st)) ^ not(isE(st)) e�=get a'=ft(st)

popItem not(isE(st)) ^ isE(st) ^ isE(rt(st)) e�=pop st'=rt(st)

popItem not(isE(st)) ^ isE(st) ^ not(isE(rt(st))) e�=pop st'=rt(st)

popItem not(isE(st)) ^ not(isE(st)) ^ isE(rt(st)) e�=pop st'=rt(st)

popItem not(isE(st)) ^ not(isE(st)) ^ not(isE(rt(st))) e�=pop st'=rt(st)

idle isE(st) ^ isE(st) e�="

idle isE(st) ^ not(isE(st)) e�="

idle not(isE(st)) ^ isE(st) e�="

idle not(isE(st)) ^ not(isE(st)) e�="

Table 2. Refactored behavior

q holds if the assignment has been computed. Overall, the predicate g ^ p ^
q0[fl=l

0]l2L has to be satis�able. With jP j new control states and t transitions,
the transformation requires the computation of t � jP j2 new transitions.

Example Consider the stack again. Suppose we want to derive a state machine
with two control states characterized by the predicates p � isE (st) and q �
not(isE (st)). Clearly, p and q partition the data space. Tab. 2 shows the result
of the refactoring where empty output (a0 = ") and trivial assignments (st 0 = st)
are, for brevity's sake, omitted. Unsatis�able transitions are canceled out.

For each transition of the original speci�cation, four new transitions are com-
puted: from p to p, from p to q, from q to p, and from q to q. For instance, the
�rst row in the table corresponds to a transition from p to p that is de�ned by
the old transition pushItem. isE (st) checks if the source control state, p, is com-
patible with the old guard, true. isE (list(DATA; st)) checks if the destination
control state, p, is compatible with the old assignment, st 0 = list(DATA; st). The
conjunction of the two terms is unsatis�able; the transition is canceled out.

As a second example, the tenth line of Tab. 2 is the transition from p to q
w.r.t. the old transition popItem. not(isE (st)) ^ isE (st) checks the compatibility
of the old guard, g, with the source control state, p. not(isE (rt(st))) checks if
the destination control state, q, is compatible with the old assignment. p^ g are
not satis�able which is why this transition is also canceled out.

Fig. 1, right, shows the STD of the stack as de�ned by Tab. 2 that we assume
to be extended by the respective assignments to state and state'. Transitions are
abbreviated. isFilled denotes the control state that is de�ned by not(isE (st)).

Formalization We will now make the refactoring step precise. Let P denote a
�nite set of predicates that partition the data space of a rule system R = (V; S; T)
with V = I [O[L de�ned as above. The partitioning requirement means �rstly
that P covers AL, i.e. for all states �, we have � j=

W
p2P p. Secondly, the

8

predicates in P must be pairwise disjoint, i.e. 8p; q 2 P � p 6= q) :(p ^ q). For
convenience, we also require that all predicates in P be satis�able and an initial
partition be uniquely de�ned, i.e. 9s 2 P � S) s because of the partitioning
requirement. Refactoring a rule system R = (V; S; T) w.r.t. a partitioning P of

the data space yields a rule system �R(R) = ~R = (V; S; ~T) with

~T :=
n
in ^ g ^ p ^ q0[fl=l

0]l2L ^
^
l2L

l0 = fl ^
^
o2O

o0 = fo j

(in ^ g ^
^
l2L

l0 = fl ^
^
o2O

o0 = fo) 2 T ^ fp; qg � P
o
:

The proof that the transformation is indeed a refactoring, i.e. [[R]]
I[O
= [[~R]],

is given in Appendix A. The proof only requires P to cover the state space;
partitioning ensures that no internal nondeterminism is introduced.

If one wants to perform the refactoring and generate a state machine in
one step (Section 3), then the following construction can be used. With a new

variable state 2 ~L of type(state) =
S
p2P fpg we de�ne � ��R((I[O[L; S; T)) =

(I [O [L [fstateg; ~S; ~T) with ~S = S ^ state = s for some s 2 P with S) s,
and

~T :=
n
in ^ g ^ p ^ q0[fl=l

0]l2L ^ state = p ^ state
0 = q ^

^
l2L

l0 = fl ^

^
o2O

o0 = fo j (in ^ g ^
^
l2L

l0 = fl ^
^
o2O

o0 = fo) 2 T ^ fp; qg � P
o
:

Removing state variables Assume an iterative process where a state machine,
or an STD, is generated, modi�ed, re-transformed into a table which is subse-
quently modi�ed, etc. Adding a new state variable for each transformation from
a rule system to a state machine is likely to clutter the model (more precisely,
guards and assignments of transitions). This is the only reason for not letting
��1 = id (Section 3). It is not a conceptual but rather a practical problem: we
would like the rule systems to be readable by humans, and thus contain as little
redundancy as possible.

We will now characterize the operations that, upon application of ��1 allow
one to delete state variables in rule systems that were previously introduced
by the application of � . As explained in Section 3, it is su�cient to focus on
behavior modi�cations, and to ignore interface modi�cations.

The above construction of computing a refactoring and a state machine in
one step shows that state = p whenever p holds. Conversely, we have state 0 = q
whenever q0[fl=l

0]l2L evaluates to true. In other words, the information on the
explicit state variable is indeed redundant and can be removed (it is only used
to decide whether or not to draw a transition arrow between two control states).

The same is true for modi�cations of existing transitions (including modi�-
cations of the data state L � fstateg), and also for the deletion of transitions.
New transitions between control states that are characterized by p; q 2 P are
equally unproblematic if some implementing CASE tool adds p ^ q0[fl=l

0]l2L to
the guard of a transition from p to q (by removing assignments to state and

9

state' ; this is the|informal|de�nition of ��1). The only problem occurs if a
new control state plus transitions to or from it are added at the graphical level
without giving a logical characterization of this control state. This is problem-
atic because in this case, it is not possible to automatically modify guards and
assignments as in the case of logically characterized control states.

In other words, if the CASE tool forbids the introduction of new control
states at the graphical level when no logical characterization is provided and,
instead, requires development steps of this kind to be performed at the level
of tables only, then we can work with tables and STDs in parallel, without
cluttering the model. In this case, refactorings of state machines are computed
via �S = � � �R � �

�1 rather than via �R.

Implementation As far as we know, there is no model-based CASE tool that
integrates tables and STDs. We have used Excel and AutoFocus with ad-hoc
translations between the two. While not yet integrated into the tool, the compu-
tation of refactorings is automated and includes (a) the|trivial|computation
of refactored transitions (set ~T), and (b) their simpli�cation, possibly to false.
Step (b) is particularly important because the computed transitions should be
readable by humans, and, as the examples of this paper show, there is a great
potential for the removal of redundant parts. Our simpli�cation algorithm imple-
ments the rules of Boolean algebra and includes a simple satis�ability checker.
The latter is used to remove unsatis�able disjuncts for formulas in disjunctive
normal form. The problem is generally undecidable, but one could argue that (a)
the cut-o� of in�nite data structure that can often be justi�ed by domain knowl-
edge, and (b) the simplicity of the involved functions|e.g., there is usually no
mutual recursion, and most recursions turn out to be primitive|make manual
decisions possible. Because our action language for guards and assignments is a
functional language, we have implemented the simpli�er in the functional logic
language Curry [19] (the operational semantics of which relies on narrowing [20]
which explains why it lends itself to satis�ability checking). With a restriction of
all lists to a maximum length of 5, the example in the next section is computed
in negligible time. We have not yet implemented a plugin that also takes into
account automatic layouting of computed STDs.

5 Example: MOST NetworkMaster

This section illustrates the methodological bene�ts of our approach when ap-
plied to the behavior model of a network controller for automotive infotainment
systems, the MOST NetworkMaster (NM) [21]. The model was the basis for
model-based testing of an NM implementation [4]. The functionality of the net-
work is divided into function blocks which reside on the network's devices. The
NM is a special function block responsible for network management. Here we
consider only the model of the NM's main service: setting up and maintaining
the central registry. The central registry contains all function blocks and their
associated network addresses currently available in the network.

10

We do not show any complex modeling details here and describe only the
main local variables of the model. The model de�nes the variable mode which
models the �ve modes of the NM: in mode o� the NM is switched o�; in mode
init the NM performs a system con�guration check during startup|all devices
are asked for their function blocks; in mode cfgOk the NM has set up the network
to normal operation, i.e. all devices are allowed to communicate freely; in mode
ncd the NM performs a system con�guration check after a network change, i.e. a
device has left or jumped in the network; and in mode delayed the NM requests
periodically devices which have not answered to any request yet. Furthermore
the model de�nes the variable wa which stores the network address from which
the NM expects an answer to its last request. There are four additional variables
for storing the central registry and other informations about the system.

In an advanced modeling stage the NM's service is speci�ed by a table with
17 rows where most guards contain four or �ve atoms. We transformed this table
into di�erent state machines for a review of the model. We choose the partition-
ing P1 which divides the state space according to the �ve modes of the NM.
Fig. 3, left, depicts the respective state machine. In addition, we choose a sec-
ond partitioning P2 which distinguishes between states (1) requestingDevices �
wa = empty ^ mode 2 finit ;ncd ; delayedg where the NM requests devices, (2)
waitForStatus � wa 6= empty ^mode 2 finit ;ncd ; delayedg where the NM waits
for an answer, and the states (3) o� and (4) cfgOk where the NM is in modes
o� or cfgOk. Fig. 3, right, depicts the state machine w.r.t. partitioning P2.

Fig. 3. STD of the NM w.r.t. partitioning P1 (left); w.r.t. partitioning P2 (right)

P1 allows us to study symmetries w.r.t. mode switching. For example, upon
each network reset, the NM returns to mode init (transitions with names ending
in NotOk). We would have detected an error in the model if one of these transi-
tions had been missing. By means of P2, we can observe that the NM can enter
state requestingDevices from state cfgOk only if a network change occurs (tran-
sitions beginning with NCD) or if there are devices which have not answered yet
(transition swDelay). There would be an error if there were further transitions.

This example reveals that speci�c symmetries can be found and analyzed by
building di�erent abstract views of behavior models. By reviewing this kind of
abstractions, the model can be analyzed easily if some transitions must or must

11

not exist for symmetry considerations. The abstract view reveals relations in the
model which would have stayed hidden in the detailed view of tables.

6 Related work

Refactorings: Suny�e et al. consider the refactoring of statecharts on the grounds
of hierarchical states [22]. Roughly, sets of states are merged, and the new tran-
sitions are computed. This di�ers from our work in that they do not consider
arbitrary new de�nitions of states (our sets P that cover the state space). In the
context of inductive veri�cation, Cheng considers refactoring a parameterized
process into a set of constant processes [23]. In our context, this would amount
to refactoring one state machine into more than one state machine. Van Gorp
et al. propose extensions to the UML meta model such that pre- and postcondi-
tions for behavior-preserving transformations can be expressed [24]. This work is
not concerned with refactorings of state machines. In a similar vein, Correa and
Werner discuss refactorings of OCL expressions and class structures, without
explicitly taking into account state machines [25]. Philipps and Rumpe present
a set of transformation rules for data
ow networks and formally show that the
transformed system is a re�nement of the original one [18]. Their work di�ers
from ours in that we actually compute the refactoring of a behavior model.

Tables and Incrementality: Shen et al. [12] are concerned with transforma-
tions of tabular speci�cations of a system. They concentrate on transformations
between di�erent kinds of tables [13] rather than transforming tables into graph-
ical representations in the form of extended state machines. Their transforma-
tions are refactorings in their own right. Prowell and Poore use incrementally
discovered equivalence classes on I/O sequences to specify the I/O behavior of
a system [26]. One could directly use such canonical sequences as states. Janicki
and Sekerinski claim that this leads to complex state machines even for small
systems [27]. In that paper, the trace assertion method is revisited, and by di-
rectly catering for certain signal interleavings, the authors propose to interpret
certain so-called step-traces as states. Both approaches do not seem to see a need
for refactorings at all, but they also advocate the use of di�erent speci�cations.

Logical Characterization: The state invariants in timed and hybrid automata
[28,29] are directly related to our logical characterization of refactorings. How-
ever, we are concerned with discrete systems, and we use the invariants in a
methodologically di�erent manner, namely to the end of refactoring. Further-
more, state invariants in timed and hybrid systems need not cover the state
space. Lamport uses TLA predicates|invariants|to characterize control states
[7] in predicate-action diagrams. Except for the concrete language, this is similar
to what we do in this paper. However, Lamport is not concerned with refactor-
ings. Finally, the predicates that we use to characterize control states relate
to the \rea�rmed invariants" in the context of STeP [30], namely local invari-
ants PC = i) I (i) that describe properties I(i) at program location i and that
are de�ned on data variables only. These special invariants are dubbed \mode
invariants" in the SCR context [31].

12

7 Conclusions and Future Work

The starting point of our work is the observation that current model-based CASE
tools provide insu�cient support for the incremental development of STDs when
it comes to fundamental changes of the control states. These might become neces-
sary if a better understanding of the systems suggests a di�erent, more adequate,
perspective on the state space. Refactorings of STDs are hence motivated by a
better understanding of the system rather than by a \model smell" [1, p. 75].

We have shown a way of computing refactorings of state machines on the
grounds of predicates that describe parts of the state space: local invariants. Our
incremental development process is based on both tables and STDs. We have
argued that there is room for both representations, and that it is bene�ciary to
use them in parallel: because of their clear structure, tables are sometimes easier
to grasp|and STDs help with identifying symmetries and, possibly together
with simulation traces in the form of sequence diagrams, also with conveying
fundamental ideas behind the model. Refactoring tables that do not represent
state machines appears to be of modest value. Bene�ts do become apparent when
the simultaneous transformation into STDs is considered.

Because the computed refactorings are meant to be readable by humans,
we have shown how refactoring steps can be performed with both representa-
tions while reducing to a minimum the number of conjuncts in guards that are
introduced by the computation of a refactoring. We singled out one particu-
lar development step|the introduction of transitions from or to control states
with no logical characterization|that should be performed at the level of tables
rather than state machines.

Our experience with behavior models of embedded systems that we built to
the end of generating test cases suggests that the cost of building and main-
taining the models is likely to turn out as a critical parameter. In many cases,
the potential of considerable reuse will drive the decision for or against this or
comparable technologies. CASE tool support for (1) quick and easy development
of new models and, in particular, (2) comfortable modi�cation of existing mod-
els then appears as an indispensable prerequisite for cost-e�ectively handling
their development. Refactorings of behavior models, like the work presented in
this paper, are one step towards more comfortable and cheaper model-based
development processes.

Future work is bound (1) to extended implementations of the satis�ability
checker that is needed for the reduction of refactored transitions, (2) to the tight
integration of our approach into a CASE tool that, in particular, must include
the automatic layouting of computed STDs, and (3) to an extension to other
formalisms, e.g., statecharts with OCL. While we believe that working with
logical characterizations of control states is a viable option to refactoring state
machines, we need more experience to identify situations where which model
refactorings are of considerable methodological value, where not, and why.

Acknowledgments J. Philipps pointed us to Lamport's work on predicate-action
diagrams. B. Sch�atz and B. Seybold provided useful comments on this paper.

13

References

1. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
(1999)

2. Mens, T., Demeyer, S., Du Bois, B., Stenten, H., Van Gorp, P.: Refactoring: Cur-
rent Research and Future Trends. In: Proc. ETAPS 2003 Workshop on Language
Descriptions, Tools and Applications. (2003)

3. Huber, F., Sch�atz, B., Einert, G.: Consistent Graphical Speci�cation of Distributed
Systems. In: Proc. Formal Methods Europe. (1997) 122 { 141

4. Pretschner, A., Prenninger, W., Wagner, S., K�uhnel, C., Baumgartner, M., Z�olch,
R., Sostawa, B., Stauner, T.: One evaluation of model-based testing and its au-
tomation. In: Proc. 27th Intl. Conf. on Software Engineering. (2005) 392{401

5. Philipps, J., Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S., Scholl, K.:
Model-based test case generation for smart cards. In: Proc. 8th Intl. Workshop on
Formal Methods for Industrial Critical Systems. (2003) 168{192

6. Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S.: Model Based Testing for
Real|The Inhouse Card Case Study. J. STTT 5 (2004) 140{157

7. Lamport, L.: TLA in Pictures. IEEE TSE 21 (1995) 768{775
8. Heninger, K.: Specifying Software Requirements for Complex Systems: New Tech-

niques and Their Application. IEEE TSE SE-6 (1980) 2{13
9. Parnas, D., Madey, J.: Functional Documents for Computer Systems. Science of

Computer Programming 1 (1995) 41{61
10. Heitmeyer, C., Je�ords, R., Labaw, B.: Automated Consistency Checking of Re-

quirements Speci�cations. ACM Trans. on SW Eng. and Meth. 5 (1996) 231{261
11. Parnas, D., Peters, D.: An Easily Extensible Toolset for Tabular Mathematical

Expressions. In: Proc. TACAS'99. (1999) 345{359
12. Shen, H., Zucker, J., Parnas, D.: Table transformation tools: Why and how. In:

Proc. 11th Annual Conf. on Computer Assurance. (1996) 3{11
13. Parnas, D.: Tabular Representations of Relations. Technical Report CRL-260,

Telecommunications Research Institute of Ontario (1992)
14. Breitling, M., Philipps, J.: Step by step to histories. In: Proc. Algebraic Method-

ology And Software Technology. Volume 1816 of Springer LNCS. (2000) 11{25
15. Broy, M., St�len, K.: Speci�cation and Development of Interactive Systems { Focus

on Streams, Interfaces, and Re�nement. Springer (2001)
16. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.

In: Proc. 6th annual ACM symp. on principles of distr. computing. (1987) 137{151
17. Philipps, J., Rumpe, B.: Re�nement of information
ow architectures. In: Proc.

ICFEM'97. (1997)
18. Philipps, J., Rumpe, B.: Re�nement of pipe and �lter architectures. In: FM'99,

LNCS 1708. (1999) 96{115
19. Hanus, M.: Functional Logic Language Curry. Language Hompage: http://www.

informatik.uni-kiel.de/�mh/curry/ (2005)
20. Hanus, M.: The integration of functions into logic programming: From theory to

practice. J. Logic Programming 19,20 (1994) 583{628
21. MOST Cooperation: MOST Speci�cation, Rev. 2.2. http://www.mostnet.de/

downloads/Specifications/ (2002)
22. Suny�e, G., Pollet, D., Le Traon, Y., J�ez�equel, J.M.: Refactoring UML models. In:

Proc. 4th Intl. Conf. on the Uni�ed Modeling Language. (2001) 134{148
23. Cheng, Y.P.: Refactoring design models for inductive veri�cation. In: Proc. Intl.

Symp. on Software Testing and Analysis. (2002) 164{168

14

http://www.informatik.uni-kiel.de/~mh/curry/
http://www.informatik.uni-kiel.de/~mh/curry/
http://www.mostnet.de/downloads/Specifications/
http://www.mostnet.de/downloads/Specifications/

24. van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards Automating Source-
Consistent UML Refactorings. In: Proc. UML. (2003) 144{158

25. Correa, A., Werner, C.: Applying Refactoring Techniques to UML/OCL Models.
In: Proc. 7th Intl. Conf. on the Uni�ed Modeling Language. (2004) 173{187

26. Prowell, S., Poore, J.: Foundations of Sequence-Based Software Speci�cation. IEEE
TSE 29 (2003) 1{13

27. Janicki, R., Sekerinski, E.: Foundations of the Trace Assertion Method of Module
Interface Speci�cation. IEEE TSE 27 (2001) 577{598

28. Lynch, N., Vaandrager, F.: Forward and backward simulations for timing-based
systems. Volume 600 of Springer LNCS. (1991) 397{446

29. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138 (1995) 3{34

30. Manna et al., Z.: STeP: the Stanford Temporal Prover. Technical Report STAN-
CS-TR-94-1518, Dept. of Computer Science, Stanford University (1994)

31. Je�ords, R., Heitmeyer, C.: Automatic Generation of State Invariants from Req.
Speci�cations. In: Proc. 6th Intl. Symp. on Foundations of SW Engineering. (1998)

A Proof

We show that the given transformation w.r.t. a partitioning P is indeed a refac-

toring, i.e., [[R]]
I[O
= [[~R]]. We prove the stronger claim, [[R]] = [[~R]]. Restrictions

to the I/O behavior are necessary only if the set of local data state variables, L,
is modi�ed. We have moved modi�cations of this set|more precisely, of state
variable state|into the mappings � and ��1 that transform rule systems into
state machines, and vice versa. We need to show that for all pairs of subsequent
states, �
, of runs in R, there is a transition ~t of ~R with �;
0 j= ~t, and vice
versa. Both directions are proved by induction.

\�". In order to show [[R]] � [[~R]], we �rst show that the �rst state of a run
of the further also is the �rst state of a run of the latter. This follows directly
because R and ~R have the identical assertion S for initial states.

For the induction step, consider two subsequent states � and
 of a run of
R, i.e., : : : �
 : : : 2 [[R]]. By de�nition, there must be a transition t 2 T with
�;
0 j= t where �;
 2 AV [Ht

. Let t � in ^ g ^ a ^ out . We have to show that
there are p; q 2 P with �;
0 j= p ^ q0[fl=l

0]l2L.
Since P partitions the data space, AL, there must be p; q 2 P s.t. � j= p and

 j= q, or equivalently,
0 j= q0. By de�nition, a �
V
l2L l

0 = fl, and because
t implies a, it is the case that �;
0 j= t implies �;
0 j=

V
l2L l

0 = fl. Hence
�;
0 j= p ^ q0 ^

V
l2L l

0 = fl.
By de�nition, we have q0[fl=l

0]l2L � q0 ^
V
l2L l

0 = fl. Consequently, �;

0 j=

p ^ q0[fl=l
0]l2L. �;

0 j= t implies �;
0 j= in ^ g ^ out . Altogether, this yields
�;
0 j= in ^ g ^ p ^ q0[fl=l

0]l2L ^ a ^ out . This shows that if
 is reachable
from an initial state � in R, then this is also the case in ~R.

\�". In order to show [[R]] � [[~R]], we already know that the �rst state of a
run of ~R also is one of a run of R. Consider subsequent states �;
 of a run of
~R. There is a ~t 2 ~T with �;
0 j= ~t. By construction of ~T , there also is a t 2 T
with ~t) t, and consequently, �;
0 j= t.

15

	Computing Refactorings of Behavior Models
	Alexander Pretschner and Wolfgang Prenninger

