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Abstract. This paper gives an overview of our approach to the development of
discrete-continuous systems in a general model based setting. This includes for-
malized description techniques, CASE support for modeling and simulation, and
test harness as well as test case generation. HyROOM is presented, a formally
founded notation for the integration of continuous activities into MaSiEd, a CASE
tool prototype based on the ROOM methodology. In addition, an approach to the
automated generation of test cases for discrete and also discretized hybrid systems
specified within a second CASE tool, AutoFocus, is presented.

1 Introduction

The development of hybrid systems, which operate mixed discrete and con-
tinuous data streams, is an interdisciplinary task. Engineers from different
disciplines are involved in their designs. On a conceptual level, the artifacts in
question are operational abstractions of aspects such as functionality, struc-
ture, logical and technical (deployment) architecture, data, communication,
scheduling, fault tolerance, and quality-of-service related issues.

Integration, one key aspect of model based development, is needed: it is
desirable (1) for integrating these not entirely orthogonal aspects, concerning
(2) the process and its different created artifacts over time, and (3) for dif-
ferent levels of abstractions. While not in general true, graphical description
techniques in the domain of hybrid systems turn out to ease communication
between engineers from different disciplines. The descriptions are representa-
tions of models that form the essence of the system under development during
its stages of increasing precision that eventually lead to possibly generated
production code.

It is difficult to envision model based development without machine sup-
port. Complex systems require sophisticated management and design tech-
niques for consistent models and their relationship. Simulation and code gen-
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eration facilities are desirable in integrated model based development. Re-
quirements tracing is impossible without tool support. Test case generation
should be automated and therefore a feature of an integrated tool.

Just as for safety critical discrete systems, it is desirable to apply a high
degree of mathematical rigor in the development of safety critical hybrid
systems, provided it does not lay too much burden on the engineer, and it
is simple. Formalism itself certainly does not solve any problems. Applica-
tions that require a (transparent) formalization include semantics-preserving
design steps like refactoring, refinements from continuous to discrete time
[Sta02,Sta01], and testing [PLPO01]. Consequently, the two tools presented in
this paper have been given a formal semantics.

This paper gives an overview of our activities in IMMA (Integrated Math-
ematical Machine Modeling), a project within the DFG priority program
KONDISK. We cover model based development in general, modeling and de-
scription techniques, semantics, tool support, and test case generation. The
nature of an overview article implies a high degree of abstraction. Technical
details have been previously published: [SPP01,PPS00] define the formal se-
mantics and present the case study. For refinements of HyCharts, e.g., the
transition from continuous to discrete time, see [Sta02,Sta01]; automatic test
case generation is treated in, e.g., [LP00,Pre01,PLP01,PSS00,SP02].

The paper kicks off with a brief overview of model based development
and its relationship with approaches like HW/SW codesign or Simultaneous
Engineering [BK95]. Being aware of the fact that model based development
with integration along the dimensions of time (process) and content (prod-
uct) is a rather ambitious undertaking, we then present partial approaches
to implementing this paradigm. Two CASE tools are presented, MaSiEd and
AutoFocus. MaSiEd basically integrates the Real time Object Oriented Mod-
eling methodology (ROOM) description techniques with continuous activities
as specified by Matlab block diagrams. The simplicity of the execution seman-
tics of AutoFocus, on the other hand, is the basis for effectively and efficiently
applying verification and validation techniques like model checking, theorem
proving, or test case generation.

Following a glimpse of related work, we summarize the basic ideas be-
hind model based development in Sec. 2. MaSiEd is described along the lines
of a wire stretching plant (Sec. 3). With the application of generating test
harnesses, this also includes the automated translation of hybrid scenarios
into hybrid state machines. In Sec. 4, a compositional and incremental ap-
proach to the automated generation of test sequences for hybrid systems in
AutoFocus is sketched. Sec. 5 concludes.

1.1 Related work

[Mos99] contains an overview of simulation packages for hybrid systems. The
reason for presenting yet another description technique for hybrid systems
is that in popular tools like Matrixx or Matlab/Simulink/Stateflow systems
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components are either discrete or continuous, but not both. Often these pack-
ages offer convenient, sometimes application specific, graphical description
techniques, but, with the exception of Charon [AGH*00], a formal semantics
is usually not defined for them. There are also simulation tools with a strong
formal background, see [FvBR98]. Their focus is not on visual specification.

A central issue of our work is the research for a convenient modeling
methodology for hybrid systems which is suitable for practice and can be
put on a formal basis (see [Sta01] for a detailed overview). Therefore, most
of the work cited above is complementary to our approach, either dealing
with the modeling and simulation of hybrid systems, or with formal models
for them. A notable exception is the work in the context of [FNW98] where
UML’s class diagrams are extended for hybrid systems and coupled with Z
specifications.

There is a large body of literature on testing labeled transition systems
(see [SP02] for an overview). Lack of space prohibits a description of all the
available frameworks, tools and techniques (e.g., Lurette [RWNH98] or TorX
[VIB'00]). The main difference with our approach is that we do not explicitly
construct labeled transition systems but rather work on composed finite state
machines that describe the behavior, which enables us (1) to compute with
sets of values by means of symbolic execution, and (2) to easily incorporate
heuristic search strategies.

2 Model Based Development

Even though the notion of model based development was coined a decade or
so ago, the search for clear definitions of this concept results in a hard time.
We give a brief overview of our understanding of this idea [SP02].

2.1 Models

Mastering the development of complex systems requires the use of suitably
chosen abstractions for describing the essence of the system under develop-
ment. This essence may differ for the points of view an engineer takes: it
may be concerned with the above mentioned aspects of structuring the sys-
tem, or with documentation, code generation, or analysis. This necessitates
projections of integrated models.

For a particular purpose, abstractions discard details that are not rele-
vant. Since they are simplifications, the artifacts under development become
manageable. Clearly, for development, simplifications cannot go too far—
remember that complexity is an essential rather than an accidental property
of software. Embedding models, or rather code that is generated from them,
into their target context (legacy systems, operating systems, sensors and ac-
tuators, different technical deployment architectures) obviously requires suit-
able concretizations. By now, we are only able to cope with them in an ad-hoc
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manner. Automatization of this task is the subject of current work since we
consider bridging the gap between the modeling and implementation levels
to be the key challenge in model based development. However, models as
simulations of actual programmable logic controllers (PLCs) allow for simul-
taneous engineering [BK95] of hardware and control systems which was one
of the driving forces behind the development of the MaSiEd tool.

Undoubtedly, the development from Assembler to higher-level program-
ming languages like Ada or C has caused an enormous increase in produc-
tivity. The essence of this transition lies in abstractions of control, data and
program structures. In terms of control flow, constructs for procedures (no
explicit call stack), repetition, sequence, alternative, and, more recently, ex-
ceptions have been incorporated into such higher languages. Structured data
types with dedicated access mechanisms exempt engineers from treating data
on a memory cell level. Many languages are equipped with abstractions for
inter-process communication—just consider monitors or Linda as an imple-
mentation of the communication paradigm in tuple spaces. Concepts like
modules allow for structuring and mastering larger projects. Abstractions are
ubiquitous: some object-oriented and declarative language implementations
provide automatic garbage collectors, and window toolkit APIs like Swing are
readily available. Java’s comprehensive libraries and the buzzword of com-
ponentware are further developments in this direction. Well understood, this
list is far from being complete.

The vision of model based development is to take these ideas a step fur-
ther. Necessarily domain-specific essential entities and their relationship are
encoded in the (syntactical) meta model. In the case of embedded systems,
these may be components, ports, connectors, etc. Concepts for describing be-
havior (functions, statecharts, Mealy machines, Petri nets) are also part of
the meta model. For some application domains, e.g., time triggered bus archi-
tectures, synchronous Mealy machines may turn out to be a good choice. For
others, like dedicated smart card operating systems with a focus on cryp-
tography, Petri nets with their possibility of implicitly encoding command
interleavings, may be a better choice.

The kind of properties, refinements, and semantics needed to describe a
system are encoded in the system model. Meta and system model together
form the product model. As stated above, in model based development, the
product-oriented point of view has to be complemented by a process-centered
perspective. Interrelated with the product model, the process model defines
the different incremental development steps (add functionality, perform a
refinement in the mathematical sense, etc.). This also includes coping with
variants and versions of a system under development [SP02].

2.2 Process

The systematic use of models does not prescribe any particular process.
In fact, processes like the Rational Unified Process or Cleanroom operate
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with models as the basic entities. Languages/methodologies like the Spark
or Ravenscar subsets of Ada encourage the use of abstract design but, like
the RUP and Cleanroom, do not emphasize the dependency on a particu-
lar domain.! In fact, model based development should not be seen as the
philosopher’s stone for every single problem. It might turn out that it is
beneficiary only in dedicated parts of an agile family of processes. We are
concentrating on iterative processes (grow, not build software [PLP01]) with
executable artifacts right from the beginning. Briefly, due to the possibility
of frequently checking back with a customer, the key advantage of this kind
of process is intellectual control over the process. Increments occur along the
three aforementioned dimensions of level of abstraction, development over
time—versions, variants, configurations, elaboration of aspects like function,
data, etc.—, and projections for the purpose of analysis or generation. Due to
the complexity of the involved systems, CASE support for development, re-
quirements tracing, validation, and ensuring integrity is mandatory for model
based processes.

In principle, the ideas of model based development also carry over to
code-centered processes like Extreme Programming since the essence of a
model is clearly independent of its representation. However, languages used
in model based tools like AutoFocus deliberately restrict the power of general-
purpose languages, as do Spark and Ravenscar (tasking). The reason is that
this facilitates design steps that are correct by definition or that can be
validated by machines (the generation of proof obligations would be a first
step), which is in general impossible for full-fledged languages like Ada or
CT*. As a side benefit, using more abstract model-based, possibly graphical,
notations renders systems development language-independent.

3 MaSiEd (Machine Simulator/Editor)

MaSiEd is a CASE tool for modeling, simulating and analyzing the I/0O
behavior of general discrete, continuous, and hybrid systems. It has been
tailored to the needs of field bus based manufacturing systems with the aim of
testing the associated PLC software. The possibility to create virtual machine
models of manufacturing plants is a prerequisite for PLC tests.

3.1 Modeling discrete systems

The I/O behavior of modern manufacturing systems can be characterized as
a mainly event driven discrete behavior (with incorporated continuous behav-
iors; the focus, however, is on discrete systems which decreases the adequacy
of tools such as Matrixx that focus mainly on continuous parts). The MaSiEd
CASE tool enables one to model reactive systems using the real time object

! Unless safety critical software is considered a domain—Spark allows explicit code
annotations for verification purposes.
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oriented modeling methodology (ROOM [SGW94], now substantial part of
the UML-RT). ROOM’s emphasis is on the seamless use of models from the
requirement /high-level design phase down to the low-level design and testing
stages. The primary concepts of the ROOM modeling language are actors,
protocols, ports, bindings, and ROOMcharts, and they are used to model
architectures consisting of hierarchies of communicating concurrent compo-
nents.

An actor is a concurrent active object that hides its implementation from
other actors in its environment. Fig. 2, left, shows an architecture diagram
where actors are depicted as boxes. The behavior of actors is specified by
a variant of the statechart formalism called ROOMcharts. ROOMcharts ba-
sically are extended state machines with hierarchic states, but unlike state-
charts without parallel composition of states: parallel composition is defined
using architecture diagrams like in Fig. 2, left. This formalism can model
asynchronous event driven real-time systems.

3.2 Modeling continuous and hybrid systems

Even though the I/O behavior of most modern manufacturing systems can
be mainly characterized as an event driven discrete behavior, there are, in
addition, parts that have to be modeled in a continuous/hybrid manner.

The primary concepts added to ROOM in order to obtain the hybrid
ROOM (HyROOM) modeling language are block diagrams, stores, and state
activities. These concepts can be used to model hierarchies of communicating
concurrent hybrid components. In order to support the modeling task of con-
tinuous subsystems we adopted the block diagram notation (Fig. 2, bottom
right) as used in control theory. The block diagram notation is a widely used
formalism for modeling, simulating, and analyzing dynamic systems. Block
diagrams basically represent sets of differential equations. Note that block
diagrams are, among other things, a means for architectural specifications of
continuous systems.

For modeling hybrid systems, we extended ROOMcharts with the concept
of continuous activities. Fig. 2, right, shows such an extended automaton. An
ad hoc way of enabling control-loop behavior modeling is to specify a state’s
activity in the form of block diagrams. Variables assigned to connectors in the
block diagram associated to the activity can be evaluated in the transition
conditions belonging to the respective state. Numerical algorithms associated
with the block diagram stop execution upon exiting from the state. Different
actors in a model may be multi rate and thus updated at different rates.

The newly introduced concept of a store enables the transfer of real val-
ued message data from state machines to block diagrams. The last message
arriving in a store can serve as input to a block diagram. Stores may be con-
nected to other actors with input for continuous or hybrid behavior or analog
outputs to external hardware.
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3.3 Modeling and simulation infrastructure

MaSiEd provides a user-friendly graphical design interface where hierarchi-
cal block diagrams and ROOM models with inheritance can be edited in the
same environment. Inheritance on both the structural and behavioral lev-
els provides a basis for reuse. In the same modeling environment, it is also
possible to capture the system requirements using HySCs (hybrid Sequence
Charts, e.g., Fig. 1, right) and later to use the captured requirements for
validating the model.

MaSiEd includes an incremental model compiler to translate HyROOM
models into CT+ source code programs that are then compiled to run on
a ROOM virtual machine. A DDE (dynamic data exchange) interface to
Matlab/Simulink enables the use of an automatic C program segment gener-
ation based on Matlab Real-Time Workshop and the evaluation of continuous
models in early stages of the development. The C code corresponding to the
block diagrams translated by the Matlab Real-Time Workshop and the Ct+
code generated from the rest of the model are combined automatically. The
generated model-specific code is linked with pre-compiled run time system
libraries (MicroRTS, developed by ObjecTime Ltd.). Once the model com-
piled, it can be downloaded from the developing environment to a target
computer running the VxWorks or RTLinux real-time operating system.

3.4 Example: Wire stretching plant

We chose to include a sketch of this industrial case study, previously described
in [SPPO1,PPS00], in order to show how different description elements—
architecture diagrams, extended state machines, continuous block diagrams,
and hybrid Sequence Charts—can be connected within the MaSiEd tool. The
system’s purpose is to wind wire of different thicknesses on reels. The case
study was done in order to test the discrete process control; the actual PLC
has been connected to MaSiEd for this purpose. The system’s structure is as
follows. The environment produces wire that enters the system at a variable
speed. This wire has to be wound up on a reel. The turning reel’s velocity
has to be almost equal to the incoming wire’s velocity in order to guarantee
a homogeneously wound wire. It’s velocity is controlled by a device between
reel and environment, called the dancer, that consists of a set of pulleys the
wire runs over (Fig. 1, left).

Not all of the pulleys are fixed so that the wire’s velocity is dependent on
the vertical position of the loose pulleys in this device. Once a reel is totally
wound up it has to exit the system. This is achieved by a table that brings a
new (empty) reel in position after the full one has been put on a belt. This
is a complex, mostly discrete process that involves moving the table, fixing
the new wheel on the motor’s axis, cutting the wire, and making the new
reel turn. There are two main conveyor belts involved in the system, one for
empty, and one for wound up reels. This part of the system is omitted here for
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Fig. 1. Dancer (left), HySC: normal operation (right)

brevity’s sake. In addition to hydraulic aggregates that guarantee the fixed
position of a (turning) reel on the axis of the associated motor—the motor
that interacts with the dancer via a controller for the turning speed—, the
last main component of this system is the PLC part with roughly 180 I/0
ports. The MaSiEd model consists of roughly 100 discrete actors, 20 block
diagrams, and about 10 hybrid actors.

3.5 Hybrid subsystem

The hybrid subsystem that consists of the dancer, the DC motor for driving
the reel, and the controller connecting the DC motor with the dancer is used
for demonstrating the different description techniques. Its basic structure is
depicted in Fig. 2, left, where continuous ports are marked with a semi-circle
around a box. The systems input is the wire’s continuously changing input
velocity, v;,. The system communicates discretely with the PLC via port
pPLC, and with the reel control via port pReelCtrl. The reel control takes
care of exchanging a full reel in the system by an empty one.

Fig. 1, right, contains a hybrid Sequence Chart (HySC [GKS00]) depict-
ing a typical use case for this system. HySCs are a variant of UML’s Se-
quence Charts [Rat97] and use the standard Message Sequence Charts (MSCs
[ITU99]) notation. Unlike MSCs, HySCs employ a synchronous time model.
They use the MSC condition boxes (depicted as hexagons) to refer to the
(qualitative) state of one or more components. Dotted parts of an axis in-
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Fig. 2. Hybrid subsystem’s architecture and reel’s behavior

dicate that the associated signals occur simultaneously. In Fig. 1, right, a
use case for the normal operation mode is specified: First, an empty reel has
to be inserted in the system (states change). Once the change is done, the
threading process starts; the wire is put onto the new reel, and it is cut from
the old one. If this process successfully completes, the actual winding process
is initiated; compared with the change state, its main characteristic is a rel-
atively high velocity of the reel. When the reel is full, the PLC re-initiates
the process of changing the reel by moving the full one out of the system
and bringing an empty one in position. For the sake of brevity, we omit the
predicates that describe the states as well as the differential equations de-
scribing the different continuous behaviors. Fig. 2, bottom right, exemplifies
the use of block diagrams. The DC motor is a standard PID controlled mo-
tor with its own controller. Its inputs are a voltage (which is proportional to
the PID controlled dancer’s height) that directly controls the motor’s angu-
lar velocity as well as the reel’s torque and inertia. We omit the (standard)
details for brevity’s sake. The motor component consists of just two states,
on, and off. The third hybrid component of interest is the reel itself. Given
the wire’s input velocity, it keeps track of the reel’s inertia, its torque, and
its continuously growing radius (wire is being wound up; e.g., Fig. 2, bottom
right).

When state change is reached, actor reel is reset: the reel’s radius is set
to zero When the new reel has been fixed to the motor, the wire then needs
to be threaded in state thread.
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3.6 From HySCs to state machines

HySCs also support test case implementation in MaSiEd. Traditional testing
of simulation models is manual, time consuming and error prone. In order to
facilitate model testing, MaSiEd supports the automatic generation of com-
plete unit and integration test harnesses directly from HySC specifications. In
contrast to the generation of test cases that we describe in the next chapter,
scenarios have to be fully described.

The algorithm used in MaSiEd for the automated synthesis of complete
unit and integration harnesses directly from HySC test case specifications is
based on the maximum progress algorithm [LMRO8]. Test case specifications
in form of HySC are analyzed with respect to their software architectural
content, including structure and behavior, and are represented in terms of
HyROOM. Every concurrent instance (axis) in the HySC specification is rep-
resented by exactly one concurrent HyROOM actor. The motivation for the
maximum progress algorithm is to determine maximum progress transitions
in the HySC specification and to map these onto HyROOM behavior de-
scriptions. This means that synthesized HyROOMchart transitions can span
events originating from more than one HySC. Since we do not use a hier-
archical state machine structure, the synthesized ROOMcharts will be flat.
One HyROOMchart per instance in the HySC specification is generated.

3.7 Semantics

MaSiEd has been given a precise formal semantics [SPP01] on the grounds of
HyCharts [GSB98]. Roughly speaking, HyCharts provide means of specifying
both structure (HyACharts) and behavior (HySCharts, DiCharts) of hybrid
systems. The semantics is given by stream processing functions [Bro01]: (in-
finite) input trajectories are mapped to output trajectories. While developed
independently, it turns out that there is a natural semantic mapping from Hy-
ROOM into HyCharts. We omit any technicalities for the sake of brevity; the
semantics is defined in [SPPO1]; applications like program transformations
are treated in [Sta02,Sta01].

4 Model Based Testing with AutoFocus

Formal methods like model checking and theorem proving are concerned with
properties of a model that provides an abstraction. Proving or approximating
properties of the actual implementation is the mandatory second step. Model
based testing includes generating test cases from models and executing them.
These test cases are used for testing different iterations (and/or projections)
of the current stage of the product. Besides disambiguating requirements, the
aim is to reach a valid model of a system. Generating test cases is thus a part
of the requirements capture as well as implementation or design activities.
Models are used for hardware-in-the-loop simulations, for generating pro-
duction code, or for validating existing systems. In the latter case, the idea
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is to perform conformance tests of a system with its model. This may require
suitable concretizations of the respective test cases. Clearly, an automatic
assignment of verdicts for functional test cases only makes sense if the same
model is not used for generating production code and test cases. Otherwise,
the system would be tested against itself (in this case, test cases may not
be suitable for establishing functional conformance, but they might help in
verifying environmental assumptions or the correctness of code generators).
Using models for verification is a natural choice if for organizational reasons,
quality assurance and implementation departments are to be separated, if
efficient code generators for a particular target language do not exist, or if
the system contains large legacy parts.

Currently, we are unable to generate test cases from MaSiEd models. The
main reason is the use of C** as transition annotation language which in
general eludes automated formal analysis. This is why we implemented a test
sequence generator for the CASE tool AutoFocus [HSE97] which uses a func-
tional language for guard specifications instead. The remainder of this section
briefly describes AutoFocus, and explains how test case generation with Con-
straint Logic Programming (CLP) is performed. Note that what we do here
is different from the generation of test harnesses from HySCs as described
above where full discrete control and continuous signal information is to be
provided. The technique described here aims at computing this information.

4.1 AutoFocus

Similar to MaSiEd, the main description elements of AutoFocus are concerned
with structure, behavior, data, and interaction specifications as encoded in
the meta model. Hierarchic system structure diagrams depict components
(actors, capsules). They encapsulate data and behavior, and they thus provide
a means of functionally decomposing a system. Bottom level components are
assigned a behavior in terms of a Mealy-like state machine. Transitions consist
of statements that read input channels, of a guard for establishing whether
or not a transition may fire, assignments that update local variables, and of
statements that compute outputs.

Guards and assignments are specified in a Haskell-like functional lan-
guage. Components communicate over typed channels. The rationale for using
a functional language for typing is that in embedded systems, data modeling
with elaborate constructs like class diagrams is rarely necessary. Simple sum
and product types turn out to be sufficient.

Similar to clock-synchronous hardware circuits, all components perform
their computations simultaneously: they read values from their input chan-
nels, compute updates for local variables and output channels, and write these
updates so that at the next clock tick, the values are available. This results
in a time-synchronous communication scheme with buffer size one—staying
with the analogy of clocked hardware, each channel contains an implicit latch,
or shift register, respectively. The rationale behind choosing this admittedly
restricted semantics is that it is exactly this simplicity that allows AutoFocus
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models to be formally analyzed, e.g., model checked, or used for test case
generation. By using recursive list types, it is also possible to implement
asynchronous communication. This semantics is inherently discrete. Contin-
uous system parts are coped with by discretization [PSS00]. Matlab block
diagrams are automatically translated.

4.2 Test case generation

It turns out that the simple clock-synchronous semantics is naturally encoded
by Horn clauses with axiomatizations of natural numbers or reals [LP00].
The resulting CLP code may be used for simulation by giving inputs to the
system for each step, similar to what is done with other simulation code
generators as well. It is also possible to partially specify inputs, outputs,
or constraints over them—for instance, a maximum number of signals to
occur, or temporal dependencies—without specifying their exact timing. By
enumerating all traces of a bounded length, the LP engine then computes
those traces that satisfy the constraints imposed on inputs, outputs, states,
transitions, or local variables.

Conceptually, the generation of test sequences is hence achieved by for-
malizing the test purpose by means of existential specifications of the kind
“siven a set of constraints, make the system reach state g1, ¢z, etc.” where
each g; specifies a desired constrained value of the variables for control states,
data states, inputs, or outputs. The resulting I/O traces are the test sequences
we are interested in. These existential test case specifications are sufficient
for covering use cases from requirements capture activities or finding test
sequences that satisfy a given coverage criterion. These can be reduced to a
set of test case specifications, each of which makes the system reach a certain
state or condition.

Computationally, this would be too simple to work efficiently. In fact, our
approach is akin to bounded explicit model checking or other state space
exploration techniques. State space explosion is the commonly accepted hin-
drance of these approaches for acceptance in the industrial practice. We use
dedicated heuristic A*-like search algorithms in order to find those g; we are
interested in [Pre01]. Furthermore, our system allows for explicitly specify-
ing environmental and efficiency constraints for manually pruning the search
tree. In terms of continuous or hybrid subsystems, environmental and effi-
clency constraints may include gradients of the respective curves, or restrict
certain values to given intervals. This kind of constraints is taken care of by
predefined constraint solvers connected to typical available CLP systems.

This not only reflects the need for manual intervention; experiences with
industrial partners have shown that test engineers are in fact capable of iden-
tifying those parts of a system that may be sliced away. Constraints are used
for taking care of temporal dependencies, numerical properties, excluded or
enforced occurrences of certain signals. Furthermore, they allow to compute
with and efficiently store sets of states [Pre01].
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Test case specifications may also include restrictions of the search space.
They are provided directly as constraints with temporal operators, as se-
quence diagrams, or as finite state machines. In this latter case, the test case
specification often is a combination of a partial environment model and the
formalized test purpose. When testing protocols, for instance, the test case
specification, given as an automaton, specifies certain typical runs or threat
scenarios. It is also possible to define transition probabilities. As in the case of
general models, the essence of a test case specification clearly is independent
of its representation, be it a formula, a sequence diagram, or a state machine.

Specifications do not contain only existential properties. Universal prop-
erties like invariance, safety, or liveness are also specified. Since testing is,
by definition, a finite activity, these properties cannot be tested exhaustively.
We thus approximate the universal property by a set of existential properties.
Justified by the success of limit testing in the setting of testing transforma-
tive systems, we compute traces that come as close as possible to a state
that violates the invariance. This is done on the grounds of the same A* like
heuristics used for finding particular elements in the state space [Pre01].

4.3 Process: procedure, regression tests, compositionality

Test sequence generation proceeds as follows. The automatically translated
AutoFocus model is conjoined with the (existential) test case specification,
environmental and efficiency constraints. The resulting test sequences are
used for debugging the model itself. This is done by (manually) comparing
every I/0 sequence to what one would have expected—at this stage, there
usually is no formal operational specification to compare with. Instead, the
model itself is the executable specification.

In an incremental setting, models are developed iteratively. For the sake
of brevity, we only consider increments that add functionality to a model. If
feedback from the customer suggests changes in increment Z,,, it becomes a
modified part of increment Z,,41. Z,, might also remain unchanged in 7, ;.
For each Z;, we consider functional and structural® test case specifications
to be given by the engineer. The test case specifications are then used for
computing actual test sequences.

These traces can be computed separately for each of the increments. Va-
lidity of the traces has to be checked manually. Tt is, however, possible, to
use test sequences for increments Z;, 7 (Z;), with j < n for regression testing
increments Zj, for k > n. We simply feed the test sequences |Ji_, 7(Z;) into
Tn+1, and are hence able to automatically assign verdicts to these tests. Z,, 1
is checked for conformance with 7; for j < n.

These verdicts have to be taken with caution. The problem is that adding
functionality may actually restrict the behavior of a system; false negatives

2 When adequately modeled, structural coverage criteria like state coverage may
well be considered as functional tests. This is because each control state encodes
a certain functional unit.



14 Klaus Bender et al.

are the result. This is, for instance, the case if a timer that periodically emits
a timeout is composed to a system Z,,. The test sequences for Z,, may consist
of traces that respond to timeouts that occur erratically.

By inverting the above idea, we get a compositional approach to gener-
ating test cases. Consider a system 7,1 consisting of increment Z,, that is
composed with a component k such that there is a channel between the two
in each direction. It is then possible to use T (Z,) for generating test cases for
k and for Z,, 1. We can use the outputs of 7(Z,,) as a driver for k, and thus
get new test sequences for k, and, consequently, for Z,,1. Conversely, we can
use the inputs of 7 (k) as putative outputs of Z,,. Remember that using CLP
allows us to partially specify outputs and make the system compute those
fully instantiated I/O traces that eventually result in the specified output.
Ignoring the problem of running into the same problem as with regression
testing, we directly get new test sequences for Z,, and for Z,, ;.

4.4 Example

We do not give the AutoFocus diagrams of our case study here since, apart
from block diagrams, they are almost identical to the MaSiEd specification.
Neither do we provide any actual test case specifications or computed test
sequences for this system since this would require a rather deep level of tech-
nicality. We do, however, give some informal test purposes that readily trans-
late into formalized test case specifications and that we have used for test
sequence generation. Among others, test purposes include the following. For
each of the discrete PLC, environment, and other components coverage on
states, transitions, or guards is a test case specification. Reflecting the com-
position of components, these unit test sequences are combined in order to
derive new test sequences for the connected components, as described above.
Furthermore, for the dancer, there are HySCs from the requirements capture
activities. We easily translate these into automata and use them as test case
specification such the diagram depicted in Fig. 1, right. As a last example,
in terms of universal properties, we compute a test suite for the property
whenever state Error is reached, we can escape from it. Clearly, many more
test case specifications are conceivable. For the sake of brevity, we omit the
discussion of assessing the quality of a test suite.

5 Conclusion

Major advances in software and systems engineering seem to be bound to the
use of abstractions as the key metaphor. Artifacts at increasing levels of ab-
straction enable intellectual control over highly complex systems. Integrated
tool support, ranging from specification, implementation, verification to re-
quirements tracing and documentation is desirable for an efficient workflow.

We have presented our approach to model based development which relies
on suitably chosen abstractions for the essential constructs in a particular
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domain. Tool support for modeling, simulation, code generation, and test case
generation for two CASE tools, MaSiEd and AutoFocus, has been presented.
Whether or not CASE support with graphical description techniques
rather than using dedicated IDEs like Forte or Eclipse is the right choice, is
not obvious. In a model based setting, IDEs for language subsets like Spark or
Ravenscar in addition to test tools may turn out to be the more practicable
approach. The arguments that graphical description techniques facilitate the
understanding of a system loose validity with increasing complexity of the
system under development. In fact, misuse of hierarchic statecharts makes
system designs foggy, as does misuse of inheritance in class diagrams.

The step from models to implementations may involve adding technical
details that are not relevant in early development phases. Real time issues
demonstrate, however, that low level technical details may have to be con-
sidered right from the beginning. We are convinced that in many areas, it is
possible to achieve a seamless integration of abstract models and low level
technical issues (for instance, this is certainly true for PLCs as considered in
the case study of this paper, or for smart cards). If, in general, this turns out
be an illusion, then model based development boils down to a philosophy of
the activities of requirements engineering, and clearly remains most valuable
in that it allows for intellectually mastering the complexity of large systems.

We are convinced of the necessity of a transparent, precise semantics.
However, simplicity should be a key factor when formalizing it—otherwise,
there is a formal semantics, but engineers will not have the time to deeply
understand it. A clear understanding of the meaning of an artifact is the
prerequisite for transformations, be they refinements [Sta01,5ta02] or refac-
torings. They are also necessary for code generation and validation techniques
like test case generation and execution. Formal semantics for the two tools
have been defined but are not part of this paper.

MaSiEd was presented, a tool for modeling and simulation of hybrid sys-
tems specifically targeting at the application field of process automation.
Roughly, MaSiEd integrates the ROOM virtual machine with Matlab block
diagrams. The modeling concepts, an extension of ROOM, have been de-
scribed and demonstrated along the lines of an example system taken from
an industrial case study.

In terms of ROOM based modeling, [PSS00] as well as the case study in
this paper showed that the clear distinction between structure and behavior
results in the need of copying the same set of states from one component
to another in the same subsystem. This problem is alleviated by the use of
MaSiEd’s inheritance mechanism, but the general problem still persists (it
does not in statecharts for there is no clear differentiation between structure
and behavior as well as no concept of interfaces).

Finally, AutoFocus was presented. Due to the simplicity of its semantics,
it is possible to derive test sequences for discrete or discretized systems. The
idea is to use a combination of symbolic execution and state space exploration
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with heuristic search on the grounds of Constraint Logic Programming. The
embedding of this approach into an incremental model based development
process was described. This technique is a complement to the generation
of HyROOMCharts from HySCs (i.e., test harnesses from scenarios) since
in this latter case, complete information about signals and their temporal
dependencies have to be provided. The AutoFocus based approach aims at
computing this complete information.

In industrial practice, test cases are seldom developed systematically. If
they are, engineers often use coarse discrete abstractions (e.g., “quickly ac-
celerate” or “slowly accelerate”) of a system in order to identify interesting
scenarios. Clearly, (mis)using condition or state boxes of HySCs to this end
directly lends itself to the specification of test cases with HySCs. The test case
generation procedure profits from this abstractions since the model becomes
less complicated.

Future work includes machine support for sound refinements and refactor-
ings of hybrid systems. The integration of hybrid class diagrams into MaSiEd
is the subject of current work. In terms of the test case generator, we cur-
rently assess its applicability in various industrial projects. The question of
how to automatically extract “good” test suites is yet unsolved; we consider
the analysis of error classes in a particular domain a first step in the right
direction.
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