Proc. GI workshop Rigorose Entwicklung software-intensiver Systeme, Berlin, August 2000

Heterogeneous Development of Hybrid Systems*

Istvan Péter!', Alexander Pretschner?, and Thomas Stauner?

! Lehrstuhl fiir Informationstechnik im Maschinenwesen,
Technische Universitdt Miinchen, Boltzmannstr. 15, 85748 Garching, Germany
www.itm.tum.de/~IP
2 Institut fiir Informatik,

Technische Universitdt Miinchen, Arcisstr. 21, 80290 Miinchen, Germany
www4d.in.tum.de/~{pretschn,stauner}

Abstract. Traditional approaches to the development of mixed discrete -
continuous, or hybrid, systems require an early partitioning of their models
into discrete and continuous components. We present a development process
that allows for postponing this partitioning decision. Different UML-RT based
graphical description languages for different views on the models are discussed
along the lines of an industrial case study that has been implemented within
a CASE tool that allows for both modeling and simulating hybrid systems.

1 Introduction

The development of hybrid, i.e., mixed discrete and continuous, systems is an inter-
disciplinary task. Usually engineers from different disciplines are involved and must
discuss their designs. Graphical description techniques provide a very useful means
to support this communication. Just as for safety critical discrete systems, it is fur-
thermore desirable to apply a high degree of mathematical rigor in the development
of safety critical hybrid systems.

We argue that applying conventional SW development processes to hybrid systems
results in a major drawback: These conventional processes require an early partition-
ing of the model into discrete and continuous subsystems which may result in a costly
redesign of the whole model in later stages of the development.

The development process we advocate is supported by MaSiEd [1], a ROOM-
based [20] CASE tool prototype for the development of hybrid systems that integrates
description techniques for both discrete and continuous systems. These include ar-
chitecture diagrams for the structural view as well as extended state machines and
continuous block diagrams for the specification of the behavioral view on system com-
ponents. The integration of HySCs [10], a hybrid variant of UML’s Sequence Charts
[19] into the tool, is the subject of ongoing work that allows for the description of use
cases or exemplary component interactions.

MaSiEd differs from popular tools (e.g., Matrixx /BetterState, Matlab/Simulink /
StateFlow, Statemate/VisSim) in that its hybrid notations allow for an integrated

* This work was supported with funds of the Deutsche Forschunsgemeinschaft under ref-
erence numbers Be 1055/7-1, Be 1055/7-2 and Br 887/9 within the priority programs
KONDISK and Design and design methodology of embedded systems.

development of hybrid systems. In Matlab/Simulink, for instance, components are
either discrete or continuous rather than both. Their focus clearly is on continuous
systems. Discrete switches from one continuous behavior to another (e.g., the different
modes of friction) have to be modeled explicitly in the continuous (block diagram) as
well as in corresponding discrete components. In particular, MaSiEd allows for the
integration of continuous behavior into states rather than entire components. Further-
more, its underlying object oriented design principle supports re-use of components
as well as the dynamic creation of system components (actors). These concepts are
illustrated by parts of a large industrial case study, a wire stretching plant.

For the development of safety critical systems, the use of formal methods and
notations is the prerequisite for mathematically proved assessments of a system’s
properties (e.g., model checking for discrete systems, or the determination of Eigen-
values for stability analysis in the case of continuous systems). For mixed discrete and
continuous systems, there are only very few verification techniques yet (e.g., HyTech
[3] which is not suited for large scale applications). For the applicability of future
integrated verification techniques, a common formal semantics is mandatory.

A development process that is based on a notion of iteratively refining a system’s
design, i.e., transitioning from more abstract to more concrete models, also profits
from a formal semantics. Checking consistency with a more abstract model — the
model available before a refinement step — requires the definition of correct refinement
relations [5]. Determining the correctness of such relations is impossible without a
formal semantics. The definition of such a formal semantics is the subject of ongoing
work [17].

2 A Development Process for Hybrid Systems

In this section we outline how conventional SW development processes are applied to
the design and specification of hybrid systems. We discuss advantages and drawbacks
of this approach, and present a more visionary approach preventing these drawbacks
that is supported by the CASE tool MaSiEd. It results from carrying over ideas
like graphical specification with different systems views and model based validation
based on formal methods to hybrid systems. A central characteristic of the proposed
approach is that it is based on notations that have a clearly defined semantics.

A conventional development process. A conventional development process for hybrid
systems builds upon isolated description techniques for purely discrete and purely
continuous components. Popular in industry are tool couplings such as using State-
mate together with Matrixx or the MATLAB/Simulink/StateFlow environment [9,
7]. For the development of safety critical systems we advocate the use of formal
methods and notations wherever possible. This hinders the use of current commercial
tools such as Statemate, ObjectGeode, Rational RoseRT or Stateflow. Their nota-
tions only have a formal syntax, but the semantics remains imprecise and ambiguous,
or very compler. A semantics for the coupling with continuous tools in not defined
anyway. For continuous systems there also exist analysis and simulation tools based
on block diagram notations, e.g. MATLAB [22]. Note that we regard block diagram
descriptions of continuous systems as formal here, because a mathematical model can
be associated with individual blocks and their interconnection in a straightforward

requirements,
system environment

:

reguirements specification,
environment model
(informal text, SSDs, ...)

informal validation
and refinement

enforced early partitioning

conventional
techniques

conventional
techniques

continuous parts
(block diagrams)

discrete parts
(SSD,STD,...)

code ' code '

requirements,
system environment

l

reguirements specification,
environment model
(HyCharts, HySCs, ...)

formal validation
and refinement

late partitioning

discrete parts
(DiCharts)

code ' code code

Fig. 1. A conventional development process (top) and an integrated development process
with hybrid description techniques (bottom).

hybrid parts
(HyCharts)

continuous parts
(block diagrams)
conventional
techniques

conventional
techniques

manner. (Nevertheless, the user has to keep in mind that the selection of integration
algorithms for simulation can have a great impact on simulation results and can cause
them to differ strongly from the mathematical model.) As soon as the system under
development is partitioned into discrete and continuous parts, a formal specification
can be written down using these existing tools, see Figure 1, top. Well-known tech-

niques from the discrete and continuous world can then be applied to the respective
parts of the model. For instance, model checking and automatic test case generation
may be used for the discrete part and analysis of eigenvalues for the continuous part.

Drawbacks. So far, the only currently available technique for examining properties of
the mixed system is simulation. There are hardly any analytical methods regarding
the mixed model and there are no techniques which support design modifications that
affect both parts of the model. In fact such modifications could necessitate a redesign
of the whole model.

Furthermore, in such a development process a designer has to perform a number
of development steps informally, i.e., without documenting them with clearly defined
notations, before a clearly documented process can start, i.e., a process relying on for-
mal description techniques. In particular, these steps include partitioning the design
into discrete and continuous parts which may involve an (implicit) discretization of
some parts. This is unsatisfactory since the partitioning decisions may be difficult to
alter later on. Apart from that, the resulting coupled discrete continuous model often
is not natural for some components of a hybrid system. For example, analog to digital
(AD) and digital to analog (DA) converters, and in some systems the environment,
are inherently hybrid components.

Outlook: An integrated development process. In a development process with hybrid
description techniques, such as the one depicted in Figure 1, bottom, the designer
is able to formally specify mixed discrete continuous models at early stages of the
development process. In the context of formal methods, we refer to “refinement” as
altering (or augmenting) a system’s functionality without violating properties that
have already been established. If validation and transformation techniques, such as
simulation and refinement, are available for these description techniques, the model
can be systematically designed to meet those system requirements which affect its
discrete as well as its continuous aspects. Rudimentary versions of such techniques
already exist and are an area of current research (e.g. [4,8]). In later steps the model
can be refined into discrete, continuous, and possibly some remaining hybrid sub-
models. For the discrete and continuous submodels conventional techniques can then
be used to realize those properties which only affect the respective part. Thus, the
availability of formal hybrid description techniques and supporting methods for them
pushes the point at which systematic development, i.e. development with formal de-
scription techniques, can begin towards the beginning of the analysis phase. A parti-
tioning into discrete and continuous submodels can be postponed towards subsequent
development phases. Such a development process with hybrid description techniques
allows to obtain greater confidence in the model before a partitioning. Namely, testing
and model checking techniques can be used to analyze requirements and refinement
techniques can be used to guarantee some requirements by construction. By post-
poning implementation related questions changing requirements can more easily be
taken into account. Thus, errors made in the initial development phases can be found
earlier and are therefore cheaper to correct.

The development, process we propose in Figure 1, bottom, is based on description
techniques developed within our group in the last years. For requirements specifica-
tion and environment modeling it uses the MSC-like notation HySC [10], and the

combination of architecture diagrams and a hybrid automata variant which is sub-
sumed in HyCharts [11]. A methodological transition from HySCs to HyCharts is
ongoing work (for similar work on discrete systems see [15]). Succeeding steps in the
figure refer to HyCharts rather than to HySCs. As notations for the discrete and the
continuous part we propose DiCharts [12], a discrete-time variant of HyCharts, and
(continuous time) block diagrams, repectively, taht can be integrated easily into the
HyChart notation.

Note that the aspect of postponing the partitioning of a system into discrete and
continuous parts is related to the area of hardware/software codesign [6]. There, the
decision on which parts of a system are implemented in hardware and software is post-
poned to later phases. However, unlike hardware/software codesign the partitioning
into discrete and continuous components proposed here does not yet imply how the
components are implemented. The discrete part could be implemented in software or
on digital hardware, the continuous part can be turned into a discrete-time model
and implemented in software (or digital hardware), or it could be implemented in
analog hardware.

While there is hardly any tool support for the integrated process today, a close
coupling of discrete and continuous notations in the HyChart style is implemented
in the MaSiEd tool [2], which also allows simulation. The HyTech tool [13] (or other
tools, e.g., Uppaal or Chronos) which offers model checking of hybrid models is an-
other element needed as support for an integrated development process. Presently,
however, its application is limited due to scalability problems and deficits of the un-
derlying hybrid automata model [16]. Promising tool approaches for the future should
couple analysis algorithms like those implemented in HyTech with modular graphical
description techniques, e.g. HyCharts, in comprehensive tool frameworks.

Note that the development process for hybrid system proposed in [7] can be re-
garded as an intermediary between the two processes outlined here. There, the authors
propose to complement block diagrams and automata-based notations with formal
specifications using Z [21].

3 MaSiEd (Machine Simulator/Editor)

In this section, we present a CASE tool that partially supports the above develop-
ment process for hybrid systems. MaSiEd is a CASE tool for modeling, simulating
and analyzing the I/O behavior of general discrete, continuous, and hybrid systems.
More particularly, it has been tailored to the needs of modern (field bus based) man-
ufacturing systems with the aim of testing the associated PLC (programmable logic
controller) software. The possibility to create virtual machine models of manufactur-
ing plants is a prerequisite for PLC tests. These tests are carried out during all phases
of the machine development, in parallel with the mechanical construction using Simul-
taneous Engineering as guiding principle. The economic development of simulation
software that assures signal compatibility at the interface with the PLC needed a spe-
cial modeling language with support for (1) both event-discrete and time-continuous
modeling, (2) efficient modeling capabilities by supporting the reuse of existing ma-
chine component libraries, and (3) acceptance in the machine manufacturer domain.

Modern manufacturing systems are compound systems with elements from differ-
ent physical disciplines, e.g. mechanics, hydraulics, and electrical engineering, com-

bined with controllers. In order to obtain the required expressiveness of the modeling
language, different methodologies have been combined.

3.1 Modeling discrete systems

The I/0 behavior of modern manufacturing systems can be characterized as a mainly
event driven discrete behavior (with incorporated continuous behaviors; the focus,
however, is on discrete systems which decreases the adequacy of tools such as Matrixx
that focus mainly on continuous parts). The MaSiEd CASE tool enables one to model
reactive systems using the real time object oriented modeling methodology (ROOM
[20]). ROOM’s emphasis is on the seamless use of models from the requirement /high-
level design phase down to the low-level design and testing stages. ROOM plays as
important role in the ongoing definition of the UML dialect for real time systems.

The primary concepts of the ROOM modeling language are: actors, protocols,
ports, bindings, and ROOMcharts, and they are used to model architectures consist-
ing of hierarchies of communicating concurrent components.

An actor is a concurrent active object that hides its implementation from other
actors in its environment. Fig. 3, left, shows an architecture diagram where actors are
depicted as boxes. An actor’s interface consists of so-called ports through which it can
communicate with other actors by exchanging messages. A message is a composite
object consisting of a signal, and an optional message data attribute. Each port has an
associated protocol that restricts the types of messages flowing through the interface.
The type of an actor is defined by its interface (and the respective protocols) that
appears on the actor’s outside. Actors can be assembled into complex structures by
interconnecting their ports with communication channels called bindings (Fig. 3, left).
In a more abstract view, these networked structures can be interpreted as entity-
relationship models. Such aggregations of actors always are encapsulated within a
higher-level composite actor specification. The ability to encapsulate actor structures
with a containing actor means that an actor can be used as an abstraction facility
that replaces the underlying aggregates by a conceptual unit. Communication is also
feasible via so-called Service Access Points (SAPs) that do not have to be connected
to other components with channels. This is helpful if components like PLCs have
hundreds of ports that would clutter an architecture diagram. In order to model
dynamic structures, ROOM allows for dynamically creating and destroying actors
and their bindings at run-time.

At least bottom-level actors are associated with a behavior. The latter can initi-
ate activities by sending messages as well as responding to external messages. The
behavior of actors in ROOM is specified by a variant of the statechart [23] formalism
called ROOMcharts. ROOMcharts basically are extended state machines with hier-
archic states, but unlike statecharts without parallel composition of states: Parallel
composition is defined using architecture diagrams like in Fig. 3, left. This formalism
can model asynchronous event driven real-time systems. The behavior of an actor is
always in one of two modes: it is either waiting for an event to occur or it is busy
processing an event. All events are represented by the arrival of messages. When an
event is received, it may cause a transition of the behavior from one state to an-
other. While executing the transition the behavior may undertake a set of detail-level
actions, including sending messages to other actors. A transition that has been ini-

tiated is guaranteed to complete even if further events occur while it is in progress.
This “run-to-completion” processing model significantly simplifies the specification
of behavior.

With the exception of initial transitions that can be used whenever a new behavior
must be initialized, all other transitions are triggered by events. The trigger speci-
fication of a transition may include an optional guard condition that can be used
to refine triggering specifications. The order in which triggers are evaluated starts
with the innermost state in the current state context. If no transitions are found at
this level, the next hierarchic level is searched and so on until either a transition is
triggered or the top level is exhausted. If no trigger is satisfied in this search process,
the event simply is ignored and will have no effect on the system’s state.

For obvious reasons, time plays a major role in real-time systems. Two general
situations pertaining to time are of interest: the expiration of some time interval
and the occurrence of a set moment in time. In order to adapt them to the ROOM
behavioral model, these types of events are converted into messages. The timing
facilities are provided in ROOM as shared service of the ROOM virtual machine.

As the development progresses, more details have to be added. Detail level spec-
ifications occur in the form of action code in transitions of ROOMcharts. This level
of detail is handled quite adequately by the C++ programming language, which is
used as fine level specification language in MaSiEd.

One of the major disadvantages using ROOM to model the I/O behavior of manu-
facturing plants is the impossibility to adequately describe the behavior of continuous
components of a machine.

3.2 Modeling Continuous and Hybrid Systems

Even though the I/O behavior of most modern manufacturing systems can be mainly
characterized as an event driven discrete behavior, there are also subparts which have
to be modeled in a continuous/hybrid manner.

The primary concepts added to ROOM in order to obtain the hybrid ROOM (Hy-
ROOM) modeling language are: block diagrams, stores, and state activities. These
concepts can be used to model hierarchies of communicating concurrent hybrid com-
ponents. In order to support the modeling of continuous subsystems we adopted the
block diagram notation (e.g., Fig. 5) used in control theory. The block diagram no-
tation is a well known formalism for modeling, simulating, and analyzing dynamic
systems. Block diagrams basically represent sets of differential equations. In MaSiEd,
differential equations and difference equations can be formulated graphically in a hier-
archical manner using drag and drop operations. It is possible to use a comprehensive
block library of sinks, sources, linear and nonlinear components, and connectors, and
one can also customize and create his own blocks. Note that block diagrams are,
among other things, a means for architectural specifications of continuous systems.
After defining the model, one can simulate it, using a choice of fixed step integration
methods such as Runge-Kutta or Dormand-Prince. In order to make the modeling of
hybrid systems possible, we extended ROOMcharts, a dialect of statecharts [23] with
the concept of continuous activities. Fig. 3, right, shows such an extended automa-
ton. An ad hoc way of enabling control-loop behavior modeling is to specify a state’s
activity in the form of block diagrams (Fig. 5). Variables assigned to connectors in

the block diagram associated to the activity can be evaluated in the transition con-
ditions belonging to the respective state. Numerical algorithms associated with the
block diagram will stop execution upon exiting from the state. Different actors in a
model may be multi rate, i.e., updated at different rates.

The newly introduced concept of a store, represented by a filled rectangle, enables
the transfer of real valued message data from state machines to block diagrams. The
last message arriving in a store can serve as input to a block diagram. Stores may
be connected to other actors with input for continuous or hybrid behavior or analog
outputs to external hardware.

3.3 Modeling and Simulation Infrastructure

MaSiEd provides a user-friendly graphical design interface where hierarchical block
diagrams and ROOM models with inheritance can be edited in the same environ-
ment. Inheritance on both the structural and behavioral level provides a basis for
reuse. It is also possible in the same modeling environment to capture the system
requirements using HySCs (hybrid Sequence Charts, e.g., Fig. 4) and later to use the
captured requirements for validating the model. Model data are stored in a rapidly
accessible repository. MaSiEd includes an incremental model compiler to translate
HyROOM models into C++ source code programs that are then compiled to run
on a ROOM virtual machine. A DDE (dynamic data exchange) interface to Mat-
lab/Simulink enables the use of an automatic C program segment generation based
on Matlab Real-Time Workshop and the evaluation of the continuous models in the
early stages of the development. The C code corresponding to the block diagrams
translated by the Matlab Real-Time Workshop and the C++-code generated from
the rest of the model are combined automatically without user intervention. The gen-
erated model-specific code uses various ROOM run-time services and is linked with
pre-compiled Run-Time System libraries (MicroRTS, developed by ObjecTime Ltd.).
Once the model compiled, it can be downloaded from the developing environment to
a target computer running the VxWorks (or RTLinux) real-time operating system.

3.4 Example: Wire stretching plant

The subject of this paragraph is the description of parts of an industrial case study
carried out at the first author’s affiliation. We chose to include it here in order to show
how different description elements — architecture diagrams, extended state machines,
continuous block diagrams, and hybrid Sequence Charts — can be connected within
the MaSiEd tool. The executable model of this section is used for real time simulation,
debugging, and testing.

The system in question is a wire stretching plant, and its main purpose is to wind
wire of different thicknesses on reels. The case study was done in order to test the
discrete process control; the actual PLC has been connected to MaSiEd for this pur-
pose. When the case study was carried out, no continuous activities could be directly
modeled within MaSiEd; the original model consisted of a discretized version (where
the discretization was done by hand during the modeling process). This was sufficient
because, as stated above, the study’s purpose was mainly to test some discrete com-
ponents of the PLC software. The work described in this paragraph is a continuation

of these efforts in order to incorporate continuous behavior that can be used to test
other parts of the PLC more adequately. After briefly explaining the overall system,
we will concentrate on a specific part of it that has been re-modeled in a hybrid man-
ner (i.e., including modeling concepts such as block diagrams. For the original study,
these continuous aspects have been ignored (or, by ad hoc discretization, abstracted
in a very rough manner). The system has been simulated in a multi media manner
for PLC testing and for understanding its operational properties.

Structure. The wire plant’s overall structure is as follows. The environment produces
wire that enters the system at a variable speed. This wire has to be wound up on
a reel. The turning reel’s velocity has to be almost equal to the incoming wire’s
velocity in order to guarantee a homogeneously wound wire. This indeed is one of the
main quality requirements. It’s velocity is controlled by a device between reel and
environment, called the dancer, that consists of a set of pulleys the wire runs over
(Fig. 2).

Not all of the pulleys are fixed so that the wire’s velocity is dependent on the
vertical position of the loose pulleys in this device (in a sense, it is comparable to a
hoist where loose pulleys can move up and down). The position of these loose pulleys
is a measurable magnitude that allows to deduce the wire’s speed behind the dancer,
when its front is the part that is closest to the environment, i.e., the wire’s original
source.

Once a reel is totally wound up e
it has to exit the system. This is
achieved by a table that brings a Yin
new (empty) reel in position after -
the full one has been put on a belt foqm .
by this very table. This is a com-
plex, mostly discrete process that
involves moving the table, fixing the
new wheel on the motor’s axis, cut-
ting the wire, and making the new

reel control

wire

pulley

change of
reel turn. There are two main con- height

veyor belts involved in the system,
one for empty, and one for wound
up reels. This part of the system was the focus of the original case study and is omit-
ted here for brevity’s sake.

Fig. 2: Dancer

In addition to hydraulic aggregates that guarantee the fixed position of a (turn-
ing) reel on the axis of the associated motor — the very motor that interacts with the
dancer via a controller for the winding speed —, the last main component of this sys-
tem is the PLC part with roughly 180 I/O ports. We also omit these two components
here for the sake of brevity.

Hybrid subsystem. This paragraph’s focus is on the hybrid subsystem that consists
of the dancer, the DC motor for driving the reel, and the controller connecting the
DC motor with the dancer.

Its basic structure is depicted in Fig. 3, left, where continuous ports are marked
with a semi-circle around a box. The systems input is the wire’s continuously changing

10

pPLC
. arDancer
vin vin vou
h
h
arDancerCtrl \
voltage pPLC Init “»
¥ 8]
I —I i‘ rSta 3 1 trChange
voltage
pPLC N
arDCMotor = @
torque b P
inertia omega
inerti omega trError
torque Vot
arReel
pPLC
pReelCtrl
. - J
Tl
pReelCtrl

Fig. 3. Hybrid subsystem’s architecture and reel’s behavior

input velocity, v;,. The system communicates discretely with the PLC via port pPLC,
and with the reel control via port pReelCtrl. The reel control takes care of exchanging
a full reel in the system by an empty one.

Fig. 4 contains a hybrid Sequence Chart (HySC [10]) depicting a typical use case
for this system. Hybrid Sequence Charts are a variant of UML’s Sequence Charts [19]
and use the standard Message Sequence Charts (MSCs [14]) notation. Sequence Chart
dialects are a popular means of specifying use cases. They contain several axes each
of which corresponds to one component. Time progresses from top to bottom, and a
Sequence Chart shows one (incomplete) communication schema between the involved
components. Communication is achieved with the help of events that are depicted by
arrows from one axis to another. Unlike MSCs, HySCs employ a synchronous time
model. Furthermore, they use the MSC condition boxes (depicted as hexagons) to
refer to the (qualitative) state of one or more components. Dotted parts of an axis
indicate that the associated signals occur simultaneously. In this figure, a use case
for the normal operation mode is specified: First, an empty reel has to be inserted in
the system (states change). Once the change is done, the threading process starts; the
wire is put onto the new reel, and it is cut from the old one. If this process successfully
completes, the actual winding process is initiated; compared with the change state,
its main characteristic is a relatively high velocity of the reel. When the reel is coiled
up, the PLC re-initiates the process of changing the reel by moving the full one out
of the system and bringing an empty one in position. This overall process should be
repeated perpetually. Note that this is just one use case where the possible existence
of errors has been ignored. For the sake of brevity, we also omit the predicates that
describe the states.

There are three states describing the dancer’s behavior (actually, these three states
are the main states of the whole subsystem). It can either be in a winding state

11

where the wire’s output velocity, v,y (t) should be controlled to be equal to its input
velocity, v;,, (t). The change of the loose pulleys’ height, h, makes the dancer contain
more or less wire, and it thus acts as a buffer the inertia of which is needed for
controlling the reel’s angular speed. Remember that the task is to wind the wire in
a homogeneous manner - this can be achieved if the reel rotates as fast as the wire
enters the system. In this state the relationship between h, v;,, and vy, is given by

h(t) = tto Wdt + ho where nyyeys denotes the number of loose pulleys in
the system.

If the reel is full and has to be exchanged, hySC normalProcess
the wire has to move at a very slow speed, vpmin Dancer _Reel ReelCtr pLC
(it actually never really stops). This is achieved \ \
by moving the loose pulleys downwards, and Change; changeQ
the dancer is being filled up with wire.

This state, threading, comprises (a) ejecting the
full reel, (b) cutting the wire, (c) moving an
empty reel in position, and (d) threading the @@
wire into this new reel. Its continuous behavior

is described by h(t) = [Lmn=veul®) g4 4 po. sgThreadbons

to 2 Mpuleys sgStartWind
. . . na——

The third state, error, is reached if the pul- ,
sgStartWind :

leys cannot move further because they have s
reached their limits, hg + hy,q,- Once error
is entered h(t) becomes immaterial since the
normal operation mode is stopped. The model
therefore simply leaves h(t) constant. Note that

the dancer’s ROOMchart has not been de- ———1
picted here; it resembles the reel’s one (Fig. 3, plcReelFul
left). The fact that many components in a hy- ‘
brid system share the same structure (in terms change change; [
of states) seems to be a common feature of [[

ROOM based modeling (e.g., [18]), not only for . '
hybrid systems. We found that ROOM’s inher- ~ Fi8-4: Use case: normal operation
itance mechanism is helpful here for it allows one not to re-draw almost the same
states for each component of system. In this case, we chose a top level behavior for
the whole subsystem with three states, and this schema has been refined for the reel
where state change is decomposed into two states, change and thread. The dancer’s
controller, on the other hand, consists of the same three states as the dancer itself.
For the sake of clarity, we chose to describe a rather “flat” model here.

sgChangeDone
sgStartThread

wind wind

sgReelFull

The last hybrid component of interest is the reel itself. Given the wire’s input
velocity, it keeps track of the reel’s inertia, its torque, and its continuously growing
radius (wire is being wound up), R(t). It also yields the wire’s output speed described
by the algebraic constraint vy, (t) = R(t) - w(t). vout(t) is fed back into the dancer.

If the reel is turning, its radius changes according to R(t) = fti, c-w(t)dt+ Ry where
c is a factor determined by the wire’s physical properties. Fig. 5 shows a Simulink
block diagram for this formula where constant ¢ has been replaced by its actual value
that results from various physical properties. It is associated with state wind in Fig. 3,
right. State associated with continuous activity are marked with a sine symbol in the

12

4% 0.5*pi*W*rho*(RM-R0M)+J0 M
inertia

omega material

"®

friction

Fig. 5. Reel’s dynamic in state wind

extended state machine’s diagram. The integration takes place in the block labeled
%. F is the force the wire applies to the reel, and By, is a friction constant.

If the reel’s radius changes, its mass also does. This is why in addition to the
radius there are two further outputs for torque and inertia; these values are inputs
to the motor’s controller.

The reel can find itself in four different states: wind, change, thread, and error
(Fig. 3, right). The reel (or connected sensors, respectively) tells component reel
control when it is full; the control then initiates actions necessary for changing the
reel and threading the wire into an empty one. It also tells the dancer about this
change of state (via the PLC, causing a switch from one differential equation to
another).

4 Conclusions

There is an increasing need for appropriate description techniques for hybrid systems.
We have argued that simply glueing concepts from continuous modeling to discrete
modeling or vice-versa results in a disadvantegeous development process: Its main
drawback is the need for an unappropriately early partitioning of system models
into discrete and continuous submodels. A development process that does not suffer
from this major drawback has been presented together with (1) a combined notation,
HyROOM, and (2) a CASE tool that partially supports it. This UML-RT based CASE
tool supports different views on a model, including architecture, behavior, data, and
interaction views.

Thus far, the only scalable validation technique for hybrid systems consists of
simulation, or testing, respectively. The definition of a denotational formal semantics
[17] for HyROOM may result in a possible connection of hybrid model checkers (e.g.,
HyTech, Uppaal, Kronos) to MaSiEd. It is also vital in the formal definition of refine-
ment relations between models of different degree of abstraction at different stages
of the development process. The existing semantics is complete with the exception
of dynamically creating objects (specified by HySCs). The full integration of HySCs
into MaSiEd is part of ongoing work. HySCs may be used for the automatic creation
of automaton skeletons [15] as well as the specification of test cases for the (semi-)
automatic generation of test cases.

13

In terms of modeling, ROOM based modeling turned out to be prone to copying
state structures. This seems to be the case in particular for controller components
that are connected to hybrid parts of the system. We found MaSiEd’s design decision
to support re-use helpful not only in this context. Finally, discussions often arose
when it came to the question whether to model a state by a variable or a proper
state (a circle in the behavioral view). Along side the tight integration of HySCs into
MaSiEd and means to automatically generate test cases, a clarification of this last
point in terms of design heuristics will be part of our future work.

References

1. J. Albert and Tomaszunas. Komponentenbasierte Modellbildung und Echtzeitsimula-
tion kontinuierlich-diskreter Prozesse. In Proc. VDI/VDE GMA-Kongreff Mef- und
Automatisierungstechnik, Ludwigsburg, Germany, 1998.

2. J. Albert and J. Tomaszunas. Komponentenbasierte Modellbildung und Echtzeitsimu-
lation kontinuierlich-diskreter Prozesse. In Proc. of VDI/VDE GMA Kongrefl Mef3- und
Automatisierungstechnik, 1998.

3. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an algorith-
mic approach to the specification and verification of hybrid systems. In Hybrid Systems
I, LNCS 736. Springer-Verlag, 1993.

4. M. S. Branicky. Stability of switched and hybrid systems. In Proc. 83rd IEEE Conf.
Decision and Control, 1994.

5. M. Broy. A Logical Basis for Modular Systems Engineering. In Calculational System
Design, volume 173 of NATO Science Series F. I0S Press, 1999.

6. K. Buchenrieder and J. Rozenblit. Codesign: An overview. In Codesign — Computer-
aided HW/SW Engineering. IEEE Press, 1995.

7. M. Conrad, M. Weber, and O. Miiller. Towards a methodology for the design of hy-
brid systems in automotive electronics. In Proc. of the International Symposium on
Automotive Technology and Automation (ISATA’98), 1998.

8. DFG. Priority program KONDISK (analysis und synthesis of continuous-discrete sys-
tems). www.ifra.ing.tu-bs.de/kondisk/, 2000.

9. M. Fuchs, M. Eckrich, O. Miiller, J. Philipps, and P. Scholz. Advanced design and
validation techniques for electronic control units. In Proc. of the International Congress
of the Society of Automotive Engineers. SAE International, 1998.

10. R. Grosu, I. Kriiger, and T. Stauner. Hybrid Sequence Charts. In Proc. of ISORC 2000.
IEEE, 2000.

11. R. Grosu, T. Stauner, and M. Broy. A modular visual model for hybrid systems. In
Proc. of FTRTFT’98, LNCS 1486. Springer-Verlag, 1998.

12. R. Grosu, Gh. Stefidnescu, and M. Broy. Visual formalisms revisited. In Proc. of
Int. Conf. on Application of Concurrency to System Design (CSD’98), 1998.

13. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In TACAS
95: Tools and Algorithms for the Construction and Analysis of Systems, LNCS 1019.
Springer-Verlag, 1995.

14. ITU. ITU-T Recommendation Z.120: Message Sequence Charts (MSC), November 1999.

15. I. Kriiger. Using MSCs for design and validation of distributed software components.
PhD thesis, Technische Universitdt Miinchen, 2000.

16. O. Miiller and T. Stauner. Modelling and verification using linear hybrid automata - a
case study. Mathematical and Computer Modelling of Dynamical Systems, 6(1):71-89,
2000.

17. 1. Péter, A. Pretschner, and T. Stauner. ROOM for Hybrid Systems: A formal grasp,
2000. TU Miinchen, Internal report.

14

18. A. Pretschner, O. Slotosch, and T. Stauner. Developing Correct Safety Critical, Hybrid,
Embedded Systems, 2000. New Information Processing Techniques for Military Systems,
NATO Research. To appear.

19. Unified modeling language, version 1.1. Rational Software Corporation, 1997.

20. B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling. John
Wiley & Souns Ltd, Chichester, 1994.

21. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition, 1992.

22. The MathWorks Inc. MATLAB. www.mathworks.com/ products/matlab/, 2000.

23. M. von der Beeck. A comparison of statecharts variants. In Proc. of FTRTFT 94, LNCS
863. Springer-Verlag, 1994.

