
INV ITED
P A P E R

Engineering Automotive
Software
For the gigabyte of costly software that will be used in intelligent cars of the future,

new system and software development techniques and tools are required.

By Manfred Broy, Ingolf H. Krüger, Alexander Pretschner, and Christian Salzmann

ABSTRACT | The amount of software in cars grows exponen-

tially. Driving forces of this development are the availability of

cheaper and more powerful hardware, as well as the demand

for innovation through new functionality. The rapidly growing

significance of software and software-based functionality is at

the root of various challenges in the automotive industries.

These concern their organization, definition of key competen-

cies, processes, methods, tools, models, product structures,

division of labor, logistics, maintenance, and long-term strat-

egies. This paper pinpoints the idiosyncrasies of the domain,

characterizes the essentials of automotive software, and

discusses the challenges of automotive software engineering.

KEYWORDS | Road vehicle electronics; software engineering;

systems integration

I . INTRODUCTION

Just 30 years ago, the automotive industry witnessed the
first deployment of tiny little bits of software in cars. It was

used to control the engine and, in particular, the ignition.

The first software-based solutions were strictly local,

functionally and technically isolated, and did not relate to

one another. These independent and unconnected pieces

of software used to run on single dedicated controllers

Electronic Control Units (ECUs). A typical node ran a few

kilobytes of software, and there were roughly a dozen

nodes. Only a minimum of abstraction was applied, and

the focus was on minimum resource consumption.

Applications were designed directly in machine code or

the programming language C.

The basic architecture in cars was hence formed by

ECUs for dedicated tasks together with their sensors and

actuators. In order to optimize electrical wiring, bus sys-

tems were conceived and implemented. In the beginning,
they mainly connected ECUs to sensors and actuators.

Given this infrastructure, it was not long before ECUs

themselves were interconnected as well and were thus able

to exchange data (e.g., [13]). As a result, the car industry

started to introduce functions distributed over several

ECUs, connected by bus systems as the underlying

communications infrastructure. Somewhat obviously,

such functions were built bottom-up, adding more and
more ECUs to the appropriate bus, as the need arose. In

contrast, communications architectures [58]–[60], [72]

found in today’s cars are very sophisticated, integrating

multiple different bus technologies for the various safety

and comfort systems [6], [42].

Within only 30 years, the amount of software has

evolved from zero to tens of millions of lines of code. A

current premium car, for instance, implements about
270 functions a user interacts with, deployed over about

70 embedded platforms. Altogether, the software amounts

to about 100 MB of binary code [35]. The next generation

of upper class vehicles, hitting the market in about five

years, is expected to run up to 1 GB of software. This is

comparable to what a typical desktop workstation runs

today. Today, more than 80% of the innovations in a car

come from computer systems; software has thus become a
major contributor to the value of contemporary carsVbut

software has also become an increasing cost factor [73].

One reason for this trend simply is that software enables

the implementation of functionality deemed impossible

just 20 years ago. Indeed, the concept of Bintelligent

vehicle[is being promoted to assist the driver perform a

wealth of activities [62], including traffic monitoring [27],

Manuscript received May 15, 2006; revised September 19, 2006. This work was

supported in part by the University of California Discovery Grant, in part by the

Industry-University Cooperative Research Program, and in part by the California

Institute for Telecommunications and Information Technology (Calit2).

M. Broy is with Software and Systems Engineering, Institut fur Informatik, Technische

Universität München, D-85748 Garching, Germany (e-mail: broy@in.tum.de).

I. H. Krüger is with the Department of Computer Science and Engineering,

University of California at San Diego, La Jolla, CA 92093-0404 USA

(e-mail: ikrueger@cs.ucsd.edu).

A. Pretschner is with Information Security, Department Informatik, ETH Zürich,

CH-8092 Zürich, Switzerland (e-mail: pretscha@inf.ethz.ch).

C. Salzmann is with BMW AG, 80788 Munich, Germany

(e-mail: Christian.salzmann@bmw.de).

Digital Object Identifier: 10.1109/JPROC.2007.888386

356 Proceedings of the IEEE | Vol. 95, No. 2, February 2007 0018-9219/$25.00 �2007 IEEE

and parking assistance [99]. Addressing driver-distraction
[17], [57] and fatigue [40] have become important areas of

development and use of software-based systems.

Another reason is that electronics in cars help reduce

gas consumption and increase performance, comfort and

safety, as indicated by today’s numbers of increasing traffic

with decreasingly many serious accidents [37]. Informa-

tion processing technology cuts across all aspects of the car

[64] and is a persuasive, sophisticated, and differentiating
value addition to the product. Furthermore, software

enables the car manufacturers (which we will refer to as

BOEMs[in the following) and suppliers to tailor systems

to particular customers’ needs. In other words, software

can help differentiate between cars. At least in principle, it

is the software that also allows hardware to be reused

across different cars. Other than hardware, software has an

almost negligible replication cost, which is a further in-
centive to bet on software as a potential tool in cost-

reduction, while on the other hand, the development costs

of software are increasing dramatically.

The worldwide value creation in automotive electrics/

electronics, including software, amounts to an estimated

127 billion Euros in 2002 and an expected 316 billion

Euros in 2015 [30]. Software makes up an estimated 38%

of this value creation by 2010 ([50], referencing a 2001
Mercer study): software engineering for automotive sys-

tems obviously is of utmost relevance. This is also exem-

plified by Hansen’s observation that embedded software

has been an important automotive electronics topic since

the early 1990sVyet, tools supporting the automotive

software development process are exploited only to 10% of

what they could deliver [47]. The engineering of systems as

complex as found in today’s cars in a reliable and efficient
way is a very challenging task [53], [54], among others,

because the requirements profile for this system class is

diverse [46], [104]; it integrates demanding economic and

process challenges with hard technical challenges.

In this paper, we characterize a specific software

engineering discipline that takes into account the idiosyn-

crasies of the automotive domain: the market, the inter-

play of OEMs and suppliers, the heterogeneity of the
software involved, namely, infotainment as well as em-

bedded software, and the multidisciplinary nature of the

field. The purpose of this characterization is the identifi-

cation of the most pressing challenges, both in research

and practice of software engineering. As an update to and

consolidation of our earlier work [19], [23], [69], [90], this

paper presents the combined understanding of the

problem space we have gained in various collaborations
in the automotive domain.

The remainder of this paper is organized as follows.

Salient nontechnical features of the automotive (software)

domain are described in Section II. We present the most

important characteristics that have direct impact on

software engineering activities. These include division of

labor, long life in spite of short innovation cycles, unit-

based cost models, the market’s demand for many different
variants, obstacles to reuse, and a brief discussion of the

activities in the software development and maintenance

processes. In Section III, a more technology-centered

perspective is taken. We describe different types of auto-

motive software, discuss specific requirements on reliabil-

ity, safety, and security, and explain the complexity of

technical infrastructures in cars. The characterization of

the domain, as provided by Sections II and III, then leads
us to a description of trends, challenges and prospects in

Section IV. Our summary in Section V highlights systems

of systems integration as the key challenge and future

innovation area.

II . DOMAIN PROFILE: ORGANIZATION
AND ECONOMICS

A. Organization of the Development Process
Traditionally, the car industry has been organized in a

highly vertical manner (or, to use software engineering

terminology, modularly). Mechanical engineers worked

hard for over 100 years to render the various subsystems in

cars independent. This facilitated independent develop-

ment and production of the parts and gave rise to a highly

successful division of labor: today, an estimated 25% of the
value is created by the OEM who tends to concentrate on

the engine, integration, and marketing of the brand.

Enabled by the car design’s modularity, suppliers have

always taken care of a considerable part of the engineering

task, the development, and also the production. Suppliers

can use synergies in development and production, because

they usually produce similar systems for different OEMs.

This, in turn, also keeps the unit cost low for the OEMs.
For functions that do not differentiate between the dif-

ferent OEMs this synergy is greatly exploited at the

suppliers’ side. As a negative side effect, development is

geographically distributed and communication gets more

complicated. The large number of parties involved in itself

is a reason for unstable requirements. One result are

frequent changes and revisions of the requirements during

the development process.
In the past, the Bideal[of automotive development was

that the parts of cars are produced by a chain of suppliers

and more or less only assembled by the OEM. Thus, a large

proportion of the engineering and production activities are

outsourced. Cost and risk distribution can be optimized.

A car is (or better was) considered a kit of parts that

are merely assembled by the OEM. With software

becoming a major force of innovation, the OEM’s respon-
sibilities have evolved from the assembly of parts to system

integration. Traditionally unrelated and independent

functions (such as braking, steering, or controlling the

engine) that were freely controlled by the driver suddenly

related to one another, and started to interact. A telling

example for the increased interaction among previously

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 357

unrelated subsystems is the central locking system (CLS) as
found in most modern vehicles: it integrates the pure

functionality of locking and unlocking car doors with

comfort functions (such as adjusting seats, mirrors, and

radio tuners according to the specific key used during

unlocking), with safety/security functions (such as locking

the car beyond a minimum speed, arming a security device

when the car is locked, and unlocking the car in case of a

crash), and with human-machine-interface functions, such
as signaling the locking and unlocking using the car’s

interior and exterior lighting system. Many of these

functions are realized in subsystems that are still distrib-

uted according to the major mechanical breakdown of the

vehicle into engine, drivetrain, body, and comfort systems.

The car has thus turned from an assembled device into an

integrated system. Phenomena-like unintentional feature

interaction have become issues. Feature interaction [15],
[110] is the technical term created in the telecommunica-

tion domain for intentional or unintentional dependencies

between individual features, which refer to distinct

functions. Feature interactions are visible at the user level

as specific dependencies between distinct functions.

Another issue is the architecture view onto embedded

software systems where we have to understand how the

separated software components that are deployed on dif-
ferent ECUs interact to provide the distinct user functions.

Architecture verification aims at the correctness of the

designed architecture. Bringing together the implemented

software components and making sure that they interact

correctly according to the designed architecture is called

integration.

While the integration of subsystems is always a

challenging task for a complex system, the situation in
automotive software engineering is even worse, because

suppliers usually have a lot of freedom in how they realize

individual solutions. (In business IT the client would often

strongly constrain the technologies that may be used by a

supplier to facilitate integration and maintenance. The

situation is, however, similar to the relationship between

vendors of desktop operating systems and manufactures of

devices and device drivers. What is different here is that
the desktop operating systems market is close to being a

monopoly.) Furthermore, the OEM usually only has black-

box specifications of the subsystems to be integrated, and it

is difficult or impossible for the OEM to modify parts of

the subsystems. This, of course, complicates the localiza-

tion of errors. While the value of systematic software

development processes and process modelsVsuch as the

capability maturity model integration (CMMI) [1], [93]
and the software process improvement determination

(SPICE) [34] is increasingly recognized by players in the

automotive industry [48], major challenges remain at the

interface between OEMs and suppliers. Critical issues here

are the quality and precision of requirements documents,

as well as the (limited) transfer of IP among OEMs and

suppliers [102].

B. Life and Innovation Cycles
A car model is usually produced for about seven to

eight years. The customer expectation of a long lifetime

is reflected in the OEM’s duty to offer service and spare

parts over at least 15 years after the purchase of a vehicle

(compare this to an estimated lifecycle of, say, four years

for an average workstation program, with several hot

fixes during this period). The life cycle of the hardware

components, like CPUs, however, is much smaller, say
less than five years. Software may be changed at much

shorter intervals, typically several times a year. In par-

ticular, the comparatively short CPU life cycles enforce

changes in a vehicle’s software/hardware system during

the production period and maybe also during the deve-

lopment phase.

A further reason for changes is the short innovation

cycle in the automotive domain. Already, during the
production time of a vehicle new features become available

in other models and have to be ported to vehicles already

in production. The most obvious example originates in the

infotainment domain. Here, consumer electronics trends

like mp3 players or new mobile phones have to be in-

tegrated into the vehicle’s infotainment network soon after

entering the market.

Because code is today mostly written and directly opti-
mized for specific individual processors (essentially moti-

vated by the unit-based cost structure, see Section II-C),

it is difficult to port the code to another processor. Thus,

keeping pace with processor life cycles is hindered. The

integration of new functionality is made more difficult or

even impossible if memory size of the ECUs was

optimized too much during the development process.

Long vehicle life cycles and the huge number of vehicle
variants require efficient handling of compatibility,

which conflicts with the desire to optimize the unit-

based cost.

C. Cost Model
The automotive industry operates in a highly com-

petitive mass market with strong cost pressure. Here, the

rules of business of scaleVhow many units of a product
are soldVprove to be crucial. Depending on the market

segments targeted by an OEM, competition occurs over

product price, product quality, product image, and dif-

ferentiating product features. Competition over price

requires permanent optimization. Competition by dif-

ferentiation requires innovation and a strong brand

profile.

Traditionally, for all decisions to realize car functions,
the cost per unit produced plays a decisive role. A con-

sequence of the large quantities produced, production and

material cost by far outweighed engineering cost for

classical, not software-centric vehicle parts. The classical

argument is as follows. A vehicle component may be

produced over seven years or more with, for instance,

500 000 units per year. A hardware cost reduction of Euro

Broy et al. : Engineering Automotive Software

358 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

1 for 20 such components (including one processor each)
in each car would then lead to an overall cost reduction of

Euros 70 million over the production period.

For vehicle software, this argument continues to be

used as a motivation to keep the cost per unit low. As a

consequence, engineers concentrate on reducing the

amount of required memory and computation power.

There are two consequences of this approach to optimize

up to the limit. First, such optimization requires that the
software be very closely tuned towards the processors’

characteristics. Second, trying to squeeze the code into as

little memory as possible requires a further set of code

optimizations. The negative results are as follows. First, it

is very difficult to add any functionality to the system later

on. Second, it is very difficult to change parts of the code or

to fix defects. Third, the code is more complex (for

instance, in terms of strong coupling between modules)
than necessary. Fourth, some defects in the code may be a

result of the optimization itself and finding bugs may

become even more difficult, since now application logic

issues are obscured by optimization. Fifth, making re-

quired changes to the code becomes very difficult. Sixth,

reusing this code in future car models or on other pro-

cessors is almost impossible.

In sum, exclusively thinking in terms of unit-based
costs with the associated need for optimizations makes the

software complex and difficult to handle. Thus, premature

optimization has a negative effect on many classical quality

attributes for software. Time-to-market, maintenance

costs, and the risk of not finishing a development project

in time are substantially increased.

We do not argue that unit-based costs are unimportant

for software-based functions, simply because they are not,
as the above numbers show. However, they are but one

factor. For the future, the automotive industry needs

decision and cost models that also take into account rising

development costs, maintenance cost, project risk, and

time-to-market. It is likely that such models require a

more transparent cooperation between suppliers and

OEMs (cf. the collaborative development process in

Section II-F).

D. Variants
The need for differentiation in the mass market

motivates the desire for customized items. The authors

of [25] calculate for a simplified power train control appli-

cation 3488 possible component realizations by instantiat-

ing different algorithms and their variants. A premium car

typically has about 80 electronic fittings that can be
ordered depending on the country, etc. Simple yes/no

decisions for each function yield a possible maximum of

roughly 280 variants to be ordered and produced for a car.

Besides variants due to market demand, a second source of

variants is the long product life cycle. Several changes in

the software/hardware system are usually made over the

time a vehicle series is produced. This means that there are

various versions for each piece of software in a car. When
defective ECUs have to be replaced or when a software

update is performed as part of vehicle maintenance, con-

figurations containing a mixture of Bold[and Bnew[
software can be created.

Thus, we have a huge amount of variants and con-

figurations that must be handled technically and organi-

zationally. Technically, desirable configurations must be

identified and their correctness has to be established.
Obviously, an elaborate design and test methodology is

required for this. Organizationally and economically, it is

indispensable to reuse large parts of the software and

even produce the software in a way that it is future-proof

for coming new variations and compatible with old

configurations.

E. Reuse
Typically, functionality changes only to a small amount

from one vehicle generation to the next. Most of the old

functionality remains and can be found in the new car

generation, as it was in the old one. From one car gen-

eration to the next, functionality differs mostly not more

than 10%, while much more than 10% of the software is

rewritten. Nevertheless, today the process of software

reuse is not systematically planned between OEMs and
suppliers, as required, say, for software product lines

[103]. In addition, the reuse objectives of OEMs and

suppliers may be in conflict with each other.

Furthermore, too strong an optimization of the

software towards the hardware can make reuse in the

form of porting it to new hardware impossible or very

expensive. This is an enormous loss of investment. The

development cost of the electrical parts in cars today
amounts to 300 million Euros and more. Roughly one or

two thirds of that is software. Therefore, if we managed to

keep and reuse only 50% of the software in the next car

generation, this would save up to 100 million Euros in

development (compare this to the abovementioned

70 million Euros of potential savings as a result of using

cheap hardware). This may not be the decisive argument

for vehicle series that are produced in huge quantities.
However, especially for optional equipment that only has a

low take rate and, therefore, much lower production

numbers, we enter a region where the software develop-

ment cost per unit produced is higher than the amount

needed for more powerful CPUs with more memory such

that more of the software can be reused.

With the increasing importance of software, it is only a

question of time until it becomes more economical to use
more generous hardware structures and to stay away from

low-level code optimization. In the end, a lot of the code

could be generated from high-level models, which can be

reused in product line approaches (see [2], [69], and

[86]). In fact, a considerable amount of collaboration

projects between academia and industry is exploring op-

portunities for auto code generation [29], including [97].

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 359

F. Consequences for Development and Maintenance
It is obvious that there is a need for a suitable devel-

opment process that reduces complexity, enables innova-

tion, saves cost, is transparent, and addresses outsourcing.

We will now gloss over the main activities of the software

development process and show how they are impacted by

the characteristics of the domain, as explained in the

previous sections.

1) Requirements Engineering: One of the prevalent

problems in automotive software engineering is a tailored

requirements engineering process [46]. That this is

essential is quite evident because in addition to the many

functions that carry over from one car model to another,

there are many completely new and innovative functions

in newly developed cars. When introducing new functions,

of course, we have no experience with them at first. What
is the best way to work out the detailed functionality, what

are the best man-machine dialogs to access the functions,

what are the best reactions of the systems? The massive use

of software results in a much larger design and solution

space when compared to earlier cars with less software-

enabled integration between subsystems. Several chal-

lenges to expressing, managing and reusing requirements

in concrete automotive projects have been identified [104].
Therefore, requirements engineering is one of the crucial

issues [39], [44], [79] discusses a weighted requirements

framework for automotive softwareValbeit with heavy

vehicles (such as for construction, forestry, or combat) in

mind; more work in the direction of gaining a deep

understanding of the automotive systems engineering re-

quirements space is needed.

In fact, some of the requirements engineering has to be
done inside the OEMs, to capture or establish, say, intel-

lectual property at the function, systems and integration

level [102]; a further incentive for the OEM to engage in

requirements engineering is also to support systems

integration tasks, such as validation, verification and

adaptation. Supplementary requirements engineering has

to be performed by the suppliers, which usually implement

the functionality. Communication between OEMs and
suppliers has to be organized via the requirements docu-

ments, which nowadays tend to be neither sufficiently

precise nor complete. This gives rise to the issue of dis-

tributed concurrent engineering. The more complex sys-

tems become, the more important it is to use good product

models that support integrity of the information exchange

between the different parties. Because many automotive

software functions have strict quality and quality-of-service
requirements, this integrity is essential.

A requirements study [49] conducted in the domain of

heavy vehicles (trucks, say) indicates another area of

concern: in this domain, much of the ECU software is

written assuming it is safety-critical even though it is not.

Because of its limited scope this study does not generalize

to the automotive domain in its entirety; however, the

diversity in requirements among, for instance, power train
(extremely short cycle times, high throughput networks)

and body functions (typically longer cycle times, reduced

throughput demands) needs to be properly reflected in a

comprehensive automotive domain model and corre-

sponding deployment infrastructures.

Finally, getting hold of the huge variety of versions and

variants, as mentioned in Section II-D, directly impacts

requirements engineering activities.

2) Platform and Software and Hardware Architecture
Design: Designing the architecture of an automotive IT

system requires determination of the hardware architecture
that consists of ECUs, bus systems, and communication

devices, of sensors, actuators, and of the (hardware-

related) man-machine interface, or MMI. The software
infrastructure is then based on this hardware structure. It
includes the operating system, bus drivers, and additional

services. This infrastructure software, together with the

hardware, forms the implementation platform. These archi-

tectures obviously need to be described. Architecture

description languages (ADLs) [78] have long been used to

describe design and deployment architectures of software

systems. An example of a study describing the application

of an ADL to the design of an automotive vehicle appears
in [75], based on the EAST ADL [41]. While this points into

the right direction, important automotive topics, such as

failure management are left unaddressed by existing ADLs.

Finally, application software (i.e., application codeVthe

structure of all applications forms the application software
architecture) is based and executed on the implementation

platform. This demonstrates the significance of the

platform for many typical software engineering goals
such as separation of concerns, portability, reusability, etc.

In today’s cars, synergies and opportunities for reuse are

realized mainly at the level of bus drivers and hardware-

communication infrastructure, as well as by means of

operating systems for individual ECUs.

Platform software reuse is becoming common, being

explicitly supported by the Automotive Open System

Architecture (AUTOSAR) [5]. Application-level reuse is
only in its early stages. Examples include the multiple

occurrences of voice-recognition implementations across

different subsystems with MMI components, including

navigation, phone, air conditioning, and entertainment

subsystems. There is a trend to make such common

functionality available as a Bservice[via the supporting

infrastructure software [5], which requires a comprehen-

sive software and systems engineering approach that
includes identification of common functionality across

subsystems [69] and facilitates its implementation and

deployment via the implementation platform (see also

Section IV).

3) Coding: Coding means the actual production of the

program code of application or platform software.

Broy et al. : Engineering Automotive Software

360 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

Suppliers carry out most of the coding, today. Only in
extraordinary cases the OEM produces code for some of

the infrastructure as part of the platform (such as bus

gateways or communication backbones) or in innovative

applications (such as advanced driver assistance).

A lot of the code is still written by hand, although some

tools generate good quality code from models [33], [38].

Code generation is often considered not efficient enough

to exploit the ECUs in the optimal way. However, as we
have argued above, highly optimized code makes reuse and

maintenance difficult and is economically disadvantageous

in many circumstances. Example approaches to addressing

these problems for code generation from models appear in

[9], [38], and [100]. Experience with model and code

reviews in that context are documented in [97].

4) Software and Systems Integration: Examples such as
the CLS (see Section II-A) illustrate the Bscattering of

functionality[across automotive subsystems: what is

offered as a cohesive locking/unlocking functionality to

the customer in reality emerges from the interplay of

multiple components distributed over the entire vehicle

infrastructure. This scattering of functionality presents a

major challenge for the OEM in its role as the integrator to

ensure the cohesive functionality expected by the custom-
er. Since today, by their very design, architecture and the

interaction between subsystems are not precisely speci-

fied, and since the suppliers implement the subsystems in

a distributed process, it is not surprising that integration is

a major challenge.

First, a virtual integration and architecture verification

is not possible today, a result of the very lack of precise

specifications. Second, in turn, the subsystems delivered
by the suppliers do not always fit together smoothly, and

integration may fail. Third, due to the missing guidelines

for architecture development, there is no guiding blue

print to make the design consistent when errors are

corrected.

5) Quality Assurance: A critical issue is, of course, system

quality. For software there is a rich spectrum of quality
aspects (see [20]). Examples are reliability, maintainabil-

ity, reusability, portability, and many more.

The car industry is highly cost-aware. As a result, to

save engineering effort, quality issues are not always

observed in a way advisable for software systems (see

[20]). On the long run, this proves counterproductive

for the overall cost structure. The focus on quality and

the established certification processes and extensive
software and systems redundancy to achieve error tol-

erance in the avionics industry are, by the way, the rea-

sons for airplanes’ reliability outmatching cars’ reliability

by far.

6) Maintenance: A further critical challenge is that cars

are in operation over two or three decades. This means we

have to organize long-term maintenance. Today, an OEM’s
vehicle fleet is predominantly maintained by vehicle

dealers following prescribed semi-automated procedures.

With the increasing amount of software in a vehicle, this

vehicle more and more inherits the characteristics of a

complex IT system. There is a difference with the desktop

software market, however. It is likely that future main-

tenance of on-board software will continue not to be

delegated to the users. Among others, this is a consequence
of the OEM’s desire to create an overall brand Bexpe-

rience[to which the customer can relate as a Bpackage.[
Therefore, new software maintenance processes are

needed that enable effective maintenance, also without

direct vehicle access by the OEM and without software

professionals at the dealer’s office.

a) Compatibility: Updating software in cars in itself is

a challenge. Today new versions of software are brought in
during maintenance by Bflashing[techniques for replacing

the software of an ECU. When doing this, one has to be

sure that the new versions correctly interoperate with the

old version. In other words, we have to answer the

question whether the new version is compatible [8], [96]

with the one we had before. Because of the substantial

scattering of functionality in cars today, this is difficult. A

lot of the problems we see today in the field are indeed
compatibility problems.

b) Defect Diagnosis and Repair: An interesting

observation states that today more than 50% of the ECUs

that are replaced in cars are technically error-free (they are

replaced when the customer brings the car to a garage to

fix a problem of maintenance). They are replaced simply

because the garage could not find better ways to fix the

problem. However, often the problem is not rooted in
broken hardware but rather ill-designed or incompatible

software.

This clearly demonstrates that we need much better

adapted processes and logistics to maintain the software of

cars. Understanding how we do a further development of

the software architecture in cars, understanding the con-

figurations and version management, and making sure that

not only extremely well-trained people in garages really
can handle the systems, is a major challenge.

c) Changing Hardware: Hardware has to be replaced

in cars if it is broken. Moreover, over the production time

of a car model, which is about seven years, not all the ECUs

originally chosen are available in the market over the

whole production period. Some of them will no longer be

produced and have to be replaced by newer types. Already

after the first three years of production, 20%–30% of the
ECUs in the car typically have to be replaced by newer

ECU models due to discontinuation of an ECU’s specific

technology. As a result in the current state of affairs,

software has to be reimplemented, since it is tightly

coupled with the ECU. Thus software quality attributes

like portability and reusability become increasingly

important for the car industry.

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 361

III . DOMAIN PROFILE: TECHNOLOGY

A. Software Application Domains
(and Required Skills)

Automotive software is very diverse, ranging from

entertainment and office-related software to safety-critical

real-time control software. It can be clustered according to

the application area and the associated nonfunctional

requirements. The following five clusters are usually
distinguished.

1) Multimedia, telematics, and MMI software: typ-

ically soft real-time software which also has to

interface with off-board IT, dominated by discrete-

event/data processing.

2) Body/comfort software: typically soft real-time,

discrete-event processing dominates over control

programs.
3) Software for safety electronics: hard real-time,

discrete event-based, strict safety requirements.

4) Power train and chassis control software: hard

real-time, control algorithms dominate over

discrete-event processing, strict availability

requirements.

5) Infrastructure software: soft and hard real-time,

event-based software for management of the IT
systems in the vehicle, like software for diagnosis

and software updates.

As the five vehicle software clusters suggest, automo-

tive software engineering requires skills from various

disciplines. Since the software/hardware systems of the

five clusters are distributed, consisting of a high number of

separated functions and processes that exchange informa-

tion over several communication links, they show all the
details and complexities of distributed computer networks.

Hence, computer science and computer engineering skills

are required.

On the other hand, the systems are connected to sensors

and actuators that input and output physical data in real-

time and where the software/hardware systems have to

respond to these inputs in a classical control theory man-

ner. As a result, control theory knowledge is required. For
some functions, like power train control software, an

understanding of mechanical engineering is also important.

In any case this means that knowledge from different

engineering disciplines is required for automotive software

engineering.

Historically, the methods and approaches as well as the

models of control theory are quite different from the

models of information processing. In control theory, tradi-
tionally tools like MATLAB/Simulink [4], [105] are used to

model the control theory equations. In contrast, in busi-

ness information processing engineers are increasingly

eager to use UML-like [83] models and all kinds of other

discrete data flow or state machine models. In cars, these

separate engineering cultures have to be united to reflect

all relevant aspects of the different engineering domains.

What is needed in the end is a comprehensive model of the
car where some of the issues are mapped into control

theory and others are represented by discrete models of

data processing. On a limited scale, these problems have

been addressed in the past, notably in the synchronous

programming community. The Esterel language [10], [14],

for instance, separates control from data processing, and is

widely being applied to industrial designs in airplanes,

trains, and cars [56]. Esterel has a formal semantics [11]
and an extensive set of tools [36] that is certified to pre-

serve correctness of programs, which is particularly im-

portant in avionics. As more government mandates and

standards arise in the automotive domain, similar

certifications will become necessary here as well. LUSTRE,

another synchronous language [26], [51], is based on the

same principles as Esterel. LUSTRE has a suite of tools to

convert high-level specifications into Simulink and to
make them amenable to the formal analysis and code

generation techniques developed for synchronous lan-

guages [26].

B. Reliability, Safety, and Security
It does not come as a surprise that reliability and safety

concerns are important for all functions relevant to

driving, from engine control and passenger safety func-
tions to forthcoming X-by-wire [107], [109] functions

where mechanical transmission is replaced by electrical

signals, e.g., drive-by-wire (steering signals are electron-

ically transmitted to the wheels) or brake-by-wire (braking

signals are electronically transmitted to the brakes). How-

ever, with the development of infotainment functionality,

the car is becoming an information hub where functions of

cell phones (UMTS [65], Bluetooth [12]), Laptops
(Wireless LAN [28], [31]), and PDAs are interconnected

via and with the car information systems. Increasingly, the

on-board electronics systems together with the customer’s

mobile phone establish communication links beyond car

boundaries; this results in the car transitioning from a pure

information hub to an information/communication hub.

This transition brings with it all the potentials and chal-

lenges of both local and wide-area networking combined
with specific automotive applications, including remote

diagnostics, access, global positioning, and emergency ser-

vices as they are offered in vehicles already today. There-

fore, personalization and the related privacy and security

issues are becoming most important, notwithstanding

usability issues. These topics are still under research even

in their more traditional home grounds of Internet-

enabled business information systems; their inherently
crosscutting nature make them particularly challenging to

address in automotive architectures with a high degree of

scattered functionality.

A goal of a software engineering discipline for

automotive systems must be to differentiate between the

various software domains in the car (i.e. infotainment,

driving functionality, etc.) and offer the proper reliability,

Broy et al. : Engineering Automotive Software

362 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

safety, and security techniques, both for the software
infrastructure and the development process.

C. Hardware and Technical Infrastructure
Today’s cars exhibit a very complex technical infra-

structure. We find, for instance, five bus systems and more

as communication platform for ECUs. We find real time

operating systems, and a lot of system-specific technical

infrastructure on which the applications are based. Be-
cause of the resulting scattering of functionality, relatively

simple applications get highly complex: they have to be

distributed, and they have to communicate over a complex

infrastructure.

One of the problems of this infrastructure is the sig-

nificant amount of multiplexing on the bus level to effi-

ciently support communication among the dozens of ECUs

for thousands of software-enabled tasks in parallel. The
same holds for the individual ECUs where there are tasks

and schedulers to manage (virtual) parallelism. We can

thus find all the problems of distributed systems, in a

situation where physical and technical processes have to be

controlled and coordinated by the software, some of them

being highly critical and hard real-time.

What creates the crucial problems due to the multi-

plexing on the bus-level? Among other things, the trans-
mission time of messages exhibit jitter so that systems

appear to be nondeterministic. In many cases, timing

deadlines cannot be guaranteed. On one hand the reli-

ability of the bus systems today is not good enough, on the

other hand, due to the unpredictable load time guarantees

cannot be provided. Therefore, a lot of interesting po-

tentials for improvement looking at drive-by-wire systems

are not realized so far. Time-synchronous bus systems like
TT-CAN [60], [67], [74], or FlexRay [80] are current

attempts at solving these problems. In the long run, a

combination of deployment technologies, supporting both

loose and tight coupling with respect to time and

messages/data, is necessary to reflect the coordination

and quality requirements of all automotive application

clusters identified above [42].

IV. CURRENT TRENDS AND PROSPECT

The increase of software and functionality in cars is not

close to an end. Just to the contrary, we expect a substan-

tial growth in the future, and see the future development

to be driven by the following trends:

1) high demand for new innovative or improved

functionality;
2) quickly changing platforms and system infra-

structures;

3) rapid increase in development cost in spite of a

heavy cost pressure;

4) demand for higher quality and reliability;

5) shorter time-to-market;

6) increased individualization.

These trends are likely to impact the fields as explained in
the following paragraphs.

A. Likely Future Functionality
Software will remain the innovation driver in cars for

the next two decades, leading to many new software-based

functions in cars in the future. Each new software-based

function entering the vehicle enables several further fea-

tures. This accelerates the development.

1) Crash Prevention, Crash Safety: Already today the

safety standards in cars are very high. Statistics [37] show

that in spite of increased traffic, the numbers of fatalities,

injuries, and accidents have continually decreased, and

there is some general agreement that this is at least in part

due to software-based functions in cars. Nevertheless,

there is potential for future improvement. New genera-
tions of crash prevention, pre-crash, and crash mitigating

functions are in preparation.

2) Advanced Energy Management: Hybrid cars are only in

their infancy. In future cars, we can expect a technical

infrastructure that takes care of many in-car issues like

energy consumption, car calibration, and management of

the available electrical energy.

3) Advanced Driver Assistance: The complexity of soft-

ware systems in cars is perceived to be rather high for their

drivers, passengers, but also for maintenance. Various

driver assistance functions at all levels can help, support-

ing instantaneous driver reactions but also providing short-

term driving assistance in, for instance, lane departure or

tour planning. With increased technical potential for inter-
car and car-to-infrastructure communication, opportuni-

ties for distance Blook-ahead[and coordinated driving

through congested or dangerous intersections will be

realized. This will also have an impact on the MMI (see

below) to alert the driver of detected dangers, and to offer

means for addressing these dangers in the full spectrum

from manual to completely automatic intervention.

New pixel-light approaches are based on the principle
of a video-projector that is controlled by a complex

software system. Such headlights can be used to realize

revolutionary new driving assistance systems, where for

example people or animals are detected and the according

region is high beamed where at the same time the rest of

the lighted area is low beamed. It is also possible with this

approach to include navigation signs (arrows, etc.) into the

light beam.

4) Man-Machine-Interfaces (MMIs): Cars get more com-

plex also due to softwareVbut they also get more safe and

convenient due to software. In order to get easy access to

this convenience, we have to offer those functions to

drivers and passengers such that they do not have to expe-

rience and operate all this complexity explicitly. Adaptive

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 363

context-aware assistance systems that grasp the situation
and are able to react within a wide range without too much

explicit interaction by the driver or the passengers can lead

to a new quality of MMIs.

One problem results from the sheer number of

functions. To reduce the number of buttons and instru-

ments, new concepts are needed. Today’s MMI concepts

are very much influenced by the interaction devices of

computer systems like mice or touch pads we are used to
today in controlling complex computer systems. The

challenge here is not so much, how to avoid buttons, but

how to organize the huge number of functions in a way

easy to understand for the user.

But quite obviously, these are merely first steps. Multi-

functionality of cars needs flexible ways of addressing and

operating and interacting with all those functions. What

makes the situation more difficult than in classical com-
puters is, of course, that car drivers cannot pay as much

attention to secondary tasks as computer users can.

Because they must concentrate on the traffic and driving,

drivers should be confronted with a user interface which

allows them to deal with the many functions in a car in a

way that takes not too much of their attention compared to

attention given to the traffic-in other words, road-safety

concerns demand reduced driver distraction.

5) The Programmable Car: Equipped with various actu-

ators and sensors, as premium cars are today, we get

already close to a point where we can create new functions

for cars by merely introducing new software. Examples

range from simple functions such as allowing remote con-

trol of the vehicle via cellular networks (as it is used already

today for remote unlocking or vehicle location tracking)
to more complex ones such as downloading updates to car

software to change the Bfeel[of a car by means of mod-

ified suspension and other car characteristics. This comes

close to the vision of the programmable car.

6) Personalization and Individualization: A promising is-

sue is personalization and individualization of cars. Drivers

are quite different. When cars get more and more complex,
of course, it is crucial to adapt the ways cars have to be

operated to the individual demands and expectations of the

users. An example here is adaptation to individual braking

habits to ensure timely reaction before an accident occurs.

7) Interconnected Car Networking: Another notable line

of innovation is the networking of on-board and off-board

systems. Using wireless connections, in particular, peer-to-
peer solutions, we can connect cars, which gives many

possibilities to improve traffic safety or to find new solu-

tions in the coordination of traffic far beyond the classical

road signs of today. For instance, in the long-term future

when we can imagine that all road signs are complemented

by digital signals between cars, we can have a completely

different way of coordinating traffic.

8) X-by-Wire: While it is true that potential X-by-wire
[107], [109] applications were marketed more aggressively

some time ago, this does not mean that the arguments for

this technologyVreduction of massive material and hence

weight; increase in flexibilityVhave turned wrong.

Instead, the challenges behind this technology have turned

out to be greater than expected, and we expect to see a

renaissance when a better software engineering discipline

materializes.

B. Integrated Comprehensive Data Models
Currently, in cars a highly distributed, rather uncoor-

dinated data management takes place. Each of the ECUs

contains and manages its own data. A substantial amount

of this data is exchanged via the various bus-systems

present in the vehicle. Overall, however, the available

vehicle-data is not organized as a distributed database with
some means to achieve data integrity, for instance. Instead,

all the different ECUs and functions keep a significant

portion of their data separately. This can lead to the

schizophrenic situation where some ECUs, according to

their local data, define the car to be moving, while others

define the car to have stopped.

We consider it an interesting exercise to design the

architecture of a car in a way that there is an integrated
interfunction data model that includes sensor fusion and

overall car data management. With the increasing push

towards sensor networks and corresponding data models

and infrastructures outside the vehicle today it is very likely

that a similar approach will find its way into automotive

systems development.

C. Architecture
In premium cars, we find up to 2000 software-based

functions (the 270 user functions mentioned above are a

result of combining these 2000 software functions, which

are not all directly user interaction functions). Those

functions address many different issues including classical

driving tasks but also other features in comfort and info-

tainment and many more. Most remarkably, these

functions do not stand alone, but exhibit a high depen-
dency on each other; we have demonstrated this scattering

of functionality using the CLS in Section II-A. In fact,

many functions are very sensitive with respect to other

functions operated at the same time.

So far, the understanding of these feature interactions

between the different functions in the car is still in its

infancy. We hope to develop much better models to un-

derstand how to describe a structured view on multifunc-
tional systems like those found in cars.

Due the multifunctionality and all the related issues we

need a sophisticated structural view onto the architecture

in cars that addresses all the aspects that are relevant. In

such an architecture (see [106]), we distinguish ingredi-

ents that we briefly explain in the following. A modeling

approach has to be expressive enough to deal with all the

Broy et al. : Engineering Automotive Software

364 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

mentioned aspects of architecture. The different levels are

shown in Fig. 1.

1) Functionality Level-Users View: The usage view aims at

capturing all the software-based functionality offered by

the car to the users. Users include not only drivers and

passengers but also garage and maintenance staff, perhaps

even the people in production and many more. We call this

the user or functionality level (see [89]).

The functionality level provides a specific perspective
on the car that captures its family of services and aims at

understanding how the services are offered and how they

depend on and interfere with each other. This can be

modeled by so-called feature or function hierarchies. If

data- or message-flow among services can already be iden-

tified, techniques such as Message Sequence Charts [61]

can be used to capture services and their interactions [2].

2) Design Level-Logical Architecture: The design level

addresses the logical component architecture. In a logical

architecture, the functional hierarchy is decomposed into a

distributed system of interacting components.

At the design level, we describe the distributed archi-

tecture of a system, independent of whether the compo-

nents are implemented by hardware or software, and also

independent of how many different components imple-
ment the function. The logical architecture can be de-

scribed by a number of interfaces for communicating state

machines with input and output that realize the functions

in the system. Via their interaction, they realize the

observable behavior described at the functionality level. In

fact, these interactions can be used to define the system’s

decomposition into services [2], [22]. The logical archi-

tecture describes abstract solutions and to some extent the
protocols and abstract algorithms used in these solutions.

This promotes conceptual reuse for services that differ only

in the way they are deployed from one vehicle line to
another; it also opens the potential for identifying common

services needed across the vehicle infrastructure [69].

3) Cluster Level: In the clustering level, we rearrange the

logical architecture in a way that prepares the deployment

and the step towards the software architecture. This means

that we further decompose software components until a

sufficiently fine-grained granularity is reached and then
rearrange them into clusters. The clusters form the units of

deployment.

4) Software Architecture: The software architecture

consists of the classical division of software in platforms

like operating systems and bus drivers on one side and the

application software represented by tasks, which are

scheduled by the operating system, on the other side.
This software has to be deployed onto the hardware.

The high-level software architecture is derived quite

straightforwardly from the logical architecture. In some

sense, it is a representation of the logical architecture by

programs. How easy and directly this can be done and how

difficult the encoding is depends very much on the pro-

gramming language used. If appropriate tools are available,

the code can be generated to a large extend from the
logical architecture.

Another viewpoint is the target code in terms of the

tasks and processes, as well as the scheduling. This is de-

rived from the high-level software architecture and closely

related to the software infrastructure such as the operating

system and, in particular, the scheduler [2], [88].

5) Hardware Level-Hardware Architecture: The hardware
architecture consists of all the devices including sensors,

actuators, bus systems, communication lines, ECUs, MMI,

and many more. We can separate between the macroscopic

view of the hardware architecture, being the network of

busses (mostly, CAN, MOST, Flexray, and LIN), the ECUs,

the gateways that route and adapt the signals between sev-

eral domains and busses, and the sensors and actors that are

connected within the network. Within one ECU, we can
define the microscopic hardware architecture that exists of

the processor, the hardware I/O is the memory layout, etc.

Note that the specific automotive requirements on

hardware must be specified and satisfied in the hardware

architecture, such as electromagnetic compatibility, tem-

perature tolerance, or the packaging (physical construction

space) of the device.

6) Deployment-Software/Hardware Codesign: Finally, we

need a deployment function that relates hardware to

software. The hardware/software and the deployment

function together have to represent a concrete realization

of the logical architecture that just describes the

interaction between the logical components. Many studies

and experiments deal with design and analysis from a

Fig. 1. Different levels of abstraction in architecture [19].

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 365

system-level perspective [66]. The design of automotive
systems has became a driver for electronic design

automation (EDA) and co-design research as the boundary

between hardware and software and the distributed nature

of computing in a car becomes very similar to that found in

chip design [45], [112]. Furthermore, there have been

numerous efforts in building frameworks to link control

theory with implementation languages for both hardware

and software [32]. Any deployment architecture has to
take into account the network topologies and technologies

as different functionalities have different communication

requirements [6].

D. Model-Based Development
In contrast to classical business IT, the automotive

domain has a history of model-based approaches: in order

to integrate one software unit into the car, a supplier must
design, integrate, and test against the units of another

supplier. Since the code inside the units (e.g., ECUs) is the

intellectual property of the suppliers, the other suppliers

(or the OEM) often will not get the code of the others’

units. As a consequence both have to build up some kind of

Bblack box model[which they code/integrate/test against.

This black box model of an ECU usually exists as a descrip-

tion of the ECU’s messages on the bus and a semiformal
description of the behavior of the ECU, namely, when and

in which context the messages are sent.

This is the major reason for the success and the

popularity of model-based approaches in today’s automo-

tive software domain. To integrate more complex systems

that go beyond today’s applications, we will need more

detailed specifications to augment the black box models

and give us more information on internal states and
behavior to be able to guarantee compatibility and reuse of

units. We, therefore, expect the architecture of the sys-

tems, including detailed models of black-box and white-

box behaviors, to become increasingly important.

The high degree of interaction between OEMs and

suppliers makes the need for clear interfaces and speci-

fications evident. Models that take into account the static

and dynamic aspects of the subsystems appear as an
attractive way to specify the subsystems’ architecture,

syntactic interfaces, and behavior [7], [102]. We work with

a chain of models for the classical activities.

1) Requirements Modeling.

2) Design Modeling.

3) Implementation Modeling.

4) Modeling Test Cases.

An attractive vision is an integrated modeling approach
that captures the relationship between all the models, and

where parts of some models are generated from the models

used in previous activities.

Today models and model-based development are ap-

plied only at particular stages of the development process.

So a lot of its benefits get lost that could be exploited if we

had integrated model chains. Since the models are only

semiformal and the modeling languages are not formal-
ized, a deeper benefit is not achieved. Typical examples are

consistency checking or the generation of tests from

models [21], [87]. Another issue is that models could help

very much in the communication between the different

companies such as OEMs and first and second tier

suppliers; also here, models are used only in a limited

way so far.

Pragmatic approaches such as UML (see [90]) and
other modeling approaches used in industry are not good

enough. Such approaches are not based on a proper

theory and sufficient formalization. As a result, tool

support is ineffective, possibilities to do analysis with

models are weak, and the precision of the modeling is

insufficient.

Unfortunately, what we can find in modeling today

does not directly improve the quality of the development
processes and of the software intensive products. This is

because it does not give precise and uniform views on

systems.

There is a need for dedicated modeling languages for

both the structural and the behavioral (functional) aspects

of a system, where the behavior can be of a discrete,

continuous, or mixed discrete-continuous nature. These

modeling languages should obviously be sufficiently
domain-specific to cater for recurring patterns in the

description of the related systems. For instance, graphical

notations can be linked to formal models to perform

schedulability analysis [63], [95], relying mostly on the

abstract semantics. Needless to say, this applies to both

OEMs and suppliers. For various reasons, there also seems

to be some reluctance to using technology and concepts

that have been around for quite some time. An attempt at
generating code for scheduling and analysis that sepa-

rates the supplier and integrator, such that corresponding

tests can be done on the composite system has been

proposed in [55] and more subsequent insights on the

fundamental optimization versus composition tradeoff are

available in [76].

The domain profile (Sections II and III) as well as the

architectural layers we have introduced above indicate the
set of structural and behavioral properties that need to be

captured in adequate automotive software models. In

particular, many properties of relevance are crosscutting in

nature: fail-safety is a prominent example.

Of course, the desired degree of completeness of these

models must be defined. The increasingly popular se-

quence diagrams, for instance, are intuitive as a represen-

tation for partial interaction patterns. Models in the form
of state machines, for instance, can capture complete

behaviors succinctly; however, because of their higher

complexity, are harder to build, understand, verify, and

maintain. Of course, with the proper semantic foundation,

extended sequence diagrams can be used to describe

complete behaviorsVand state machines can be used to

describe partial behaviors as well. However, there is a

Broy et al. : Engineering Automotive Software

366 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

tradeoff between the strengths and weaknesses of the
respective description techniques, depending on the types

of properties they are intended to capture. The Bhome

ground[for sequence diagrams is the depiction of the

partial participation of distributed entities in a collabora-

tion; the home ground for state machines is the repre-

sentation of complete behaviors of individual entities. To

support a comprehensive, architecture-centric develop-

ment process for automotive systems, different viewpoints
on the overall architecture should be supported and used.

Seamless combinations of structural, state- and

interaction-oriented description techniques can help

adjust the abstraction level to the desired degree in

capturing both per-entity and crosscutting properties.

Modeling notations such as the UML are a far cry from

achieving this kind of seamless model combinations [18];

in particular, they lack any notion of service/function
hierarchy that could support the upper layers of the

automotive architecture we have outlined in Section IV-C.

Suitable description techniques are just a small part of

the problem; the more difficult problem is related to

identifying the kinds of properties that need to be con-

sidered and the appropriate level of abstraction that is used

when models are built, regardless of the language-this

defines the level of automation we can obtain in verifi-
cation and validation, as well as in code generation [29].

In this vein, research must be performed to find out the

cost-effectiveness of using models. With models, code

must be built and maintained, but also all costs that relate

to code will be multiplied by a constant factor between 1

and 2 because these costs also relate to the models.

(Because models are simplifications, we would argue that

maintaining a simple artifact is less costly than maintain-
ing a more complex artifact). This clearly involves tool-

related issues (see below).

Finally, a union of control theory and data processing

models, in particular, discrete event processing, has not

been fully achieved yet. It is also not clear which

engineering discipline is the critical one for the architec-

ture of the software/hardware systems in cars. It is possible

that there are small control loops in the Bleaves[of the
software/hardware systems of cars, and that these sepa-

rated control processes are connected at the level of data

processing in classical software architectures. However,

this is mere conjecture so far. More work is needed to find

the right architectural patterns of heterogeneous systems

of that kind. A starting point in obtaining these patterns is

the collection of a comprehensive automotive domain
model.

E. Cost Model
To make benefits of modular and reusable software

clear, a comprehensive model of the costs of software over

the entire life cycle of a product must be available. The

status quo of cost modelsVthe basis for any software de-

velopment and the respective software architectureV

focuses on the early stages (e.g., development) of the
software. It does not fully include the later phases, such as

maintenance, and their relationship to modularity and

reuse.

A cost model, which contrasts the efforts in the

development phase with the benefits in the maintenance

phase and the saving in reuse within other precut lines,

clearly does not yet exist for the automotive world. This is

somewhat surprising since only by reasoning on the basis
of such a model [43], we can make plausible the necessary

investments in research and engineering.

F. Processes
A key issue is process-orientation and software devel-

opment processes. So far, the processes in the car industry

are not entirely adapted to the needs of software intensive

systems and software engineering.
The development and engineering processes are

distributed due to the heavy involvement of first and

second tier suppliers. In addition, they are concurrent due

to pressing time to market needs.

Consequent process orientation would, in the long run,

require a deep understanding of the product models and

their relationship. The product data of course need a com-

prehensive coherent and seamless model chain. Here, we
find an exciting dependency between engineering support

software and embedded on board software.

Despite the UML’s shortcomings overall, some of its

notations have proven quite useful, especially for commu-

nicating interaction scenarios (and their variants) between

the system and the environment, among the OEM and

suppliers [52], [85]. Furthermore, work on the formali-

zation of requirement specification graphs aims at
establishing increased requirements traceability by pro-

viding a visual language to guide the safety and risk

analysis process [71]. Further analyses based on these

techniques enable the engineers to reason about hostile

scenarios such as the interaction of car electronics with

intruder attempts, in a way that is modularizable with the

rest of the system [3]. These powerful techniques help the

car companies to manage crosscutting concerns of product
lines [101].

G. Model-Based Middleware
The heterogeneity in the car brings with it a huge

amount of complexity. To manage this complexity and to

increase the reuse of software in the embedded automotive

domain a clear separation of concerns [84] is needed that

supports a uniform way of designing the application
towards a uniform software platform.

The application logic, for instance, must be indepen-

dent from the underlying communication infrastructure,

all applications should, system-wide, react uniformly to

exceptional events (such as physical read/write errors on

the bus), etc. Especially this is a challenge in the auto-

motive software domain, since in today’s premium cars up

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 367

to five different bus systems exist, with each bus having its
own characteristics and protocols.

Separation of concerns can be reached on several

levels, including architecture, design, and implementation

(language dependent). Popular techniques, well known

from business IT, are middleware layers and the corre-

sponding component orientation.

An automotive middleware, however, must fit other

requirements than middleware known from business IT
(such as the common request broker architecture, CORBA

[82], and web services [92], [108]). Not flexibility at run-

time, but flexibility at design time is needed, since the car

is mostly a static system. The following issues need to be

considered for automotive middleware.

• Resource optimization: due to the unit-based cost

structure, modularity must not be overly expensive

with respect to resource consumption.
• Adaptability to different domains: real-time and non-

real-time, safety-critical, and non-safety-critical

software is integrated within one system.

• Optimizability to hardware but also transferability
from one hardware platform to another: due to the

lifecycle gap and the hardware–software correla-

tion, the software must be transferable from old

platforms to new ones, but still optimizable to-
wards the hardware.

• Extensibility: again, due to the lifecycle gap, it must

be possible to upgrade a system during its lifetime

and extend it with new features.

A promising approach is model-based middleware for

embedded systems. This includes a component model, a

middleware that separates the application from the

communication logic, and a model that is independent of
the latter implementation language.

In contrast to classical middleware initiatives, such as

CORBA or the Java 2 Enterprise Edition (J2EE) [98],

model-based middleware differs in being much less dy-

namic. The goal is not to change system or component

structure at runtime, but to have more flexibility for the

distribution of software components over different ECUs,

while designing the board net (the set of implemented
functions and their mapping to hardware, including

communication dependencies) of a car. This certainly is

a restriction; yet, it enables us to perform an approach that

is suitable to fit the lean resource consumption that is

required in the embedded environment.

To achieve the goal of little overhead, a code generation

framework is used that generates a specific, optimized

middleware layer for a specific board network, based on a
model-based specification of the board net and its

dependencies.

In contrast to other middleware approaches, there is no

single instance in the system that handles the communi-

cation dynamically (like an object request broker, or ORB,

in CORBA), but the middleware layer is generated stati-

cally for this special configuration of the system. This leads

to lean, highly optimized middleware portion inside every
ECU that minimizes the overhead that comes along when

using middleware.

The consequence is that middleware can be only as

flexible and optimized as allowed by the expressiveness of

the underlying model. Therefore, a powerful meta or

domain-model is needed that allows us to express all

required aspects of the system, including, but not limited

to communication variants, timing aspects, safety, and
redundancy.

The goal of a uniform, lean middleware layer that

manages communication and exception aspects in a

system-wide uniform way is only possible by increasing

the expressive power of automotive modeling approaches

towards formal, model-based system specifications sup-

porting code generation in an optimized and validated

way. The abovementioned AUTOSAR [5] partnership,
consisting of various OEMs and suppliers, is a promising

step towards an open architecture that features such a

model-based middleware layer. It provides a basis and an

enabler for further aspects such as timing and redundancy

aspects that can be included in the metamodel to further

increase expressiveness.

H. Reuse
Reuse comes in different forms. At the level of

programming or modeling languages, recurring patterns

of behavior in a domain can be encapsulated into concise

language constructs. In terms of research, this necessitates

the analysis of domains where such patterns can be

identified, and then the definition of these patterns. The

tradeoff between the benefits of general-purpose languages

on the one hand and the benefits of domain-specific
languages on the other hand has to be evaluated. Domain-

specific design patterns must be defined in places where it

makes no sense to encode recurring patterns into

dedicated language constructs.

Reuse is also facilitated by standardized architectures

[5] that allow for coordinated and standardized interfaces.

At the level of requirements engineering, there definitely

is a need for further research into product lines. Research
remains to be done to cleanly relate feature graphs to

artifacts of the design activities, as well as to identify

means for efficient exploration of architectural variants

[66], [68]. The organizational structure of the develop-

ment process, with its interplay between OEMs and

suppliers and the resulting conflicting desires for reuse,

must also be taken into account, and could, in a second

step, possibly be reshaped (trends are described in a recent
study [30]).

Of course, reuse at an even finer granularity must also

be supported, and certainly so at the level of code. Along

with well-designed libraries, this asks for research in the

area of programming languages that (also for embedded

systems) naturally support: 1) reuse, as provided by object-

oriented languages, by particularly emphasizing run-time

Broy et al. : Engineering Automotive Software

368 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

performance problems and late binding in terms of safety;
2) efficient exception handling; and 3) worst-case execu-

tion time predictability.

Research into reuse must be based on studies of the

cost effectiveness, and hence related to research into cost

models. It is unclear to date to what extent and where at

least ad hoc reuse occurs today, and how OEMs and

suppliers profit from different forms of reuse [2].

I. Tool Support and Integration
Today we find a huge family of tools in use, but unfor-

tunately these tools are often not integrated. Therefore,

there are a number of attempts to create pragmatic tool

chains by connecting the tools in a form where the data

models of one tool are exported and imported by the next

tool. Other efforts aim at product line reuse of function-

ality and architectures [50].
Unfortunately, this does not help if there is no

semantic understanding of how the different tools could

use joint concepts [25]. On the other hand, if such a

semantic integration is established, model-based tool

chains can help in modeling, automatic generation, valida-

tion and verification of automotive software and its

crosscutting properties [2], [24], [81], [111]. The specifi-

cation and verification framework described in [91]
integrates model-based engineering with model checkers

and theorem provers such that properties can be proved

about a design. The framework uses control descriptions

in MATLAB, Simulink, and Stateflow [4] and translates

these artifacts to the appropriate format for formal

analysis.

J. Improved Quality and Reliability

1) Number of ECUs: The car of the future will certainly

have many fewer ECUs in favor of more centralized

multifunctional multipurpose hardware, fewer communi-

cation lines, and fewer dedicated sensors and actuators.

Having gotten to more than 70 ECUs in a car today, the

further development will rather go back to a small number

of ECUs by keeping only a few dedicated ECUs for highly
critical functions and combining other functions into a

small number of ECUs, which then would be rather not

special purpose ECUs, but very close to general-purpose

processors. Such a radically changed hardware would allow

for quite different techniques and methodologies in

software engineering. Because of the reduced complexity,

this in itself will help with improving quality. However,

other steps are likely to be taken, as discussed in the
following.

2) Automatic Test Case Generation: The amount of

quality assurance in cars is enormous. Today the industry

relies very much on hardware and software as well as

system-in-the-loop techniques (HIL/SIL). subsystems are

executed under simulated environments in real-time.

However, this technology is coming to its limits because
of the growing combinatorial complexity of software in

cars. More refined test techniques can help here [16],

where tests are generated from models and test execution

is automated [21], [70], [87].

3) Architecture and Interface Specification: A critical issue

for the precise modeling of architectures is the mastering

of interface specifications. So far, interface specification
methods in software engineering, in general, are not good

enough. This fact is, in particular, particularly problematic

for the car industry, because of its distributed mode of

development.

The OEM today has to identify the required function-

ality and has to build the logical architecture, and then

distributes the development of the components that

correspond to the components of the logical architectures
to the suppliers. The suppliers do the implementation,

even supply the hardware and bring back pieces of

hardware and software that then have to be integrated

into the car and connected to the bus systems. Since the

interfaces are not properly described, the integration

process becomes a real challenge. A lot of configuration,

testing, and experimentation has to be performed, a lot of

change processes are needed to understand and finally
work out the integration process.

4) Error Diagnosis and Recovery: Today the amount of

error diagnosis and error recovery in cars is limited. In

contrast to avionics, where hardware redundancy and to

some extent also software redundancy is a standard tech-

nique, in cars we do not find an extensive error treat-

ment. In the CPUs some error logging takes place, but
there is neither any consideration nor logging of errors

at the level of the network and the functional distri-

bution; there is neither a comprehensive error diagnosis

nor any systematic error recovery beyond individual

CPUs.

There are some fail-safe and graceful degradation

techniques found in cars today, but a systematic and

comprehensive error treatment is missing.
One result of this deficiency is the before-mentioned

maintenance problem. Today, as mentioned above, more

than 50% of the hardware devices that are replaced in

garages are physically and electrotechnically without

defects. They are changed, since a successful diagnosis,

error tracing, and error location did not work, and thus by

replacing the CPU software is replaced, too, such that the

error symptom disappearsVbut often further, different
errors show up later.

5) Reliability: Today the reliability of software in cars

does not reach the high level of avionics software where a

reliability of 109 hours mean time between failures and

more is state-of-the-art. In cars, we do not even know these

figures. Only adapted quality processes can improve the

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 369

situation, with Toyota being quite successful with reviews
based on failure modes, for instance.

The high reliability in the avionics field is of course, to

a large extent, due to the use of very sophisticated error

tolerance methods and redundancy techniques, as well as a

sophisticated way of error modeling [like Failure mode

effect analysis (FMEA)] [77], [94] also heavily applied in

the automotive industries, but rather not at the level of

software). In cars today, errors are merely captured within
processors in so-called error logging stores. A consequent

combination of modeling techniques with FMEA is a

promising line of research.

What we need in the long run are comprehensive error

models in cars, and also software for the detection and

possibly mitigation of errors. On such models, we can base

techniques to guarantee fail-safe and graceful degradation

and, in the end, also error avoidance by the help of
redundancy. Another issue is error logging to arrive at

better error diagnosis for maintenance.

V. EVOLUTION, STATE-OF-THE-ART,
AND OUTLOOK

Automotive electrics and electronics have come a long way

since the introduction of electrical headlights. The
requirements portfolio for automotive systems is increas-

ingly driven by software-enabled features-think of the

possibilities for flexibly integrating entertainment devices

into today’s cars, as compared with the birth pains

experienced when trying to integrate cellular phones

well into the 1990s.

As we have laid out in the organizational/economical

and technical domain profiles of Sections II and III,
respectively, the requirements space for automotive

software is unique in its combination of innovation and

cost-driven mass-market characteristics with high de-

mands at safety, reliability, usability, and a wide spectrum

of other quality properties. Customer demands and

government regulations lead to increased demands for

flexible addition and modification of car featuresVthis is

possible only through software.
The automotive industry has adapted to the demand

for value-added functionalityVinitially, by means of a

purely (hardware) component-oriented approach, driven

by communication technologies, and the corresponding

networking protocols and layouts. This has led to a

fixed electrics/electronics vehicle architecture, which

has actually hindered exploitation of the flexibility of

softwareVmany constraints are forced upon the automo-
tive software engineer, not out of technical necessity, but

to accommodate design decisions about hardware layout

and functionality distribution made early on in a multiyear

development cycle. This is still state-of-the-art across a

wide industry segment.

The true revolution in the automotive domain

happening now is driven by the increasing scattering of

functionality, as well as by the recognition of software and
its traditional benefits as a major asset for future growth of

this industry segment. In fact, efforts such as AUTOSAR

show that there is an industry-wide understanding that

the automotive platform needs to become software-

friendly.

With this recognition comes the need and opportunity

to exploit the advances of software engineering to manage

automotive software complexity-from the development
process to deployment to maintenance. The approaches

we have discussed as current trends and prospects in

Section IV are the beginning of an era of the software-

defined vehicle.

A thorough understanding of automotive software and

systems requirements based on the overview we have

provided here is the first step towards a comprehensive

automotive domain model. This domain model, in turn, is
the basis for a systematic development approach that

decouples functional from deployment aspects, thus

liberating both OEMs and suppliers from technology

lock-in, promoting conceptual reuse, and enabling the rich

set of analysis, synthesis, verification and validation, and

maintenance techniques that has emerged over the past

few years in Internet-wide business intelligence systems.

The convergence between technologies, systems, and
development processes between technical, embedded

automotive applications and rich Internet-based business

applications is on the horizon.

VI. CONCLUSION

Software is playing an increasing role in an economically

highly interesting market. We have highlighted some of
the salient features of software engineering for automotive

systems and shown how they impact current software

engineering. All features, taken on their own, can be found

in other domains as well, but the combination makes for a

unique discipline. The heterogeneity of the process and its

playersVOEMs and suppliers-as well as that of the

productVcontrol and infotainment softwareVdemand

tailored solutions in the areas of integration and evolution,
including reuse.

In order to argue for new methodologies, tools, and

techniques, we have emphasized the need for a compre-

hensive domain and cost model that augments the existing

unit-based perspective to the more comprehensive views of

the life cycle of a vehicle, a vehicle series, or multiple

vehicle series.

We have provided ample evidence that software
engineering for automotive systems provides an excit-

ing platform for researchers with lots of open

problems to be solved. We believe that model-based

approaches with precise interface specifications at the

levels of systems, architectures, and single units are a

particularly promising avenue for future research and

development. h

Broy et al. : Engineering Automotive Software

370 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

Acknowledgment

The authors would like to thank colleagues from

various companies from the automotive industry for
enlightening discussions and colleagues from the project

Mobilsoft for input. The authors are grateful to F. Doucet,
T.-J. Huang, and M. Meisinger for their help with this

manuscript.

RE FERENCES

[1] D. Ahern, A. Clouse, and R. Turner,
‘‘CMMi distilledVAn introduction to
multi-discipline process improvement,[
in SEI Series in Software Engineering,
Reading, MA: Addison-Wesley, 2001.

[2] J. Ahluwalia, I. H. Krüger, M. Meisinger, and
W. Phillips, BModel-based run-time
monitoring of end-to-end deadlines,[in Proc.
Conf. Embedded Syst, Softw, (EMSOFT), 2005,
pp. 100–109.

[3] I. Alexander, BMisuse cases-use cases with
hostile intent,[IEEE Software, pp. 58–66,
Jan. 2003.

[4] A. Angermann, M. Beuschel, M. Rau, and
U. Wohlfahrth, Matlab-Simulink-Stateflow.
München, Germany: Oldenbourg Verlag,
2003.

[5] AUTOSAR consortium, 2006. [Online].
Available: www.autosar.org.

[6] J. Axelsson, J. Fröberg, H. Hansson,
C. Norström, K. Sandström, and B. Villing,
BA comparative case study of distributed
network architectures for different
automotive applications,[MRTC,
Tech. Rep. 478, 2003-01-28, 2003.

[7] A. Bauer, M. Broy, J. Romberg, B. Schätz,
P. Braun, U. Freund, N. Mata, R. Sandner,
and D. Ziegenbein, BAuto-MoDe-notations,
methods, and tools for model-based
development of automotive software,[in
Proc. SAE 2005 World Congr., Detroit, MI,
Apr. 2005, pp. 33–42.

[8] M. Bechter, M. Blum, H. Dettmering, and
B. Stützel, BCompatibility models,[in Proc.
2006 Int. Workshop. Softw. Eng. for
Automotive Syst., Shanghai, China,
May 2006, pp. 5–12.

[9] M. Beine, R. Otterbach, and M. Jungmann,
BDevelopment of safety-critical software
using automatic code generation,[presented
at the Proc. SAE World Congr., 2004, paper
2004-01-0708, publication SP-1852:
In-vehicle networks and software, electrical
wiring harnesses, and electronics and
systems reliability.

[10] G. Berry and G. Gonthier, BThe ESTEREL
synchronous programming language: Design,
semantics, implementation,[Sci. Comput.
Program, vol. 19, no. 2, pp. 87–152,
Nov. 1992.

[11] G. Berry, BThe Constructive Semantics of
Pure Esterel, Draft Book,’’ Jul. 2, 1999,
ver. 3.

[12] Bluetooth CIG, Specification of the
Bluetooth System, ver. 1.1, Feb. 22, 2001.
[Online]. Available: www.bluetooth.com.

[13] Robert Bosch GmbH, CAN Specification
Ver. 2.0, 1991.

[14] F. Boussinot and R. de Simone, ‘‘The
ESTEREL language,[INRIA, Tech.
Rep. 1487, Jul. 1991.

[15] T. Bowen, F. Dworack, C. Chow, N. Grifeth,
G. Herman, and Y. Lin, BThe feature
interaction problem in telecommunication
systems,[in Proc 7th Int. Conf. Softw. Eng.
Telecommun. Switching Syst., 1989,
pp. 59–62.

[16] E. Bringmann and A. Krämer, BSystematic
testing of the continuous behavior of
automotive systems,[in Proc. 2006 Int.

Workshop Softw. Eng. Automotive Syst.,
Shanghai, China, May 2006, pp. 13–20.

[17] C. Brooks and A. Rakotonirainy, BIn-vehicle
technologies, advanced driver assistance
systems and driver distraction: Research
challenges,[in Proc. Int. Conf. Driver
Distraction, Sydney, Australia, 2005.

[18] M. Broy, BArchitecture driven modeling in
software development,[in Proc. 9th Int. Conf.
Eng. Complex Comput. Syst., Florence, 2004,
pp. 3–14.

[19] VV, BChallenges in automotive
software engineering,[in Proc. 28th Intl.
Conf. Softw. Eng., Shanghai, China, 2006.

[20] M. Broy, F. DeiQenböck, and M. Pizka,
BA holistic approach to software quality at
work,[in Proc. 3rd World Congr. Softw.
Quality, Munich, Germany, 2005.

[21] M. Broy, B. Jonsson, J.-P. Katoen,
M. Leucker, and A. Pretschner,
BModel-based testing of reactive systems,[
in Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, 2005,
vol. 3472.

[22] M. Broy and I. Krüger, BInteraction
interfacesVTowards a scientific foundation
of a methodological usage of message
sequence charts,[in Proc. Formal Engineering
Methods (ICFEM’98), J. Staples,
M. G. Hinchey, and S. Liu, Eds., 1998,
pp. 2–15.

[23] M. Broy, A. Pretschner, C. Salzmann, and
T. Stauner, BSoftware-intensive systems in
the automotive domain: Challenges for
research and education,[presented at the
Proc. SAE World Congress, 2006,
paper 2006-01-1458.

[24] J. Botaschanjan, L. Kof, C. Kühnel, and
M. Spichkova, BTowards verified automotive
software,[in Proc. 2nd Int. Workshop Softw.
Eng. Automotive Syst. SEAS’05, 2005, pp. 1–6.

[25] K. Butts, D. Bostic, A. Chutinan, J. Cook,
B. Milam, and Y. Wang, BUsage scenarios
for an automated model compiler,[in
Proc. EMSOFT 2001, vol. 2211, LNCS,
T. A. Henzinger and C. M. Kirsch, Eds.,
2001, pp. 66–79.

[26] P. Caspi, A. Curic, A. Maignan, C. Sofronis,
S. Tripakis, and P. Niebert, BFrom simulink
to SCADE/lustre to TTA: A layered approach
for distributed embedded applications,[in
Proc. 2003 ACM SIGPLAN Conf. Language,
Compiler, and Tool for Embedded Syst.,
2003, pp. 153–162.

[27] C. Chan and B. Bougler, BEvaluation of
cooperative roadside and vehicle-based
data collection for assessing intersection
conflicts,[in Proc. IEEE Intell. Vehicles
Symp., 2005, pp. 165–170.

[28] B. P. Crow, I. Widjaja, L. G. Kim, and
P. T. Sakai, BIEEE 802.11 wireless local area
networks,[IEEE Commun. Mag., vol. 35,
no. 9, pp. 116–126, Sep. 1997.

[29] K. Czarnecki and U. Eisenecker, Generative
Programming. Reading, MA:
Addison-Wesley, 2000.

[30] J. Dannenberg and C. Kleinhans,
BThe coming age of collaboration
in the automotive industry,[Mercer
Manage. J., vol. 18, pp. 88–94, 2004.

[31] A. Dornan, The Essential Guide to Wireless
Communication Applications: From Mobile

Systems to Wi-Fi. Upper Saddle River, NJ:
Prentice-Hall, 2002.

[32] L. Fanucci, A. Giambastiani, F. Iozzi,
C. Marino, and A. Rocchi, BPlatform based
design for automotive sensor conditioning,[
in Proc. Conf. Design, Automation and Test
in Europe, vol. 3, 2005, pp. 186–191.

[33] M. Eckrich, J. Schäuffele, and
W. Baumgartner, BNew steering
systemVBMW on the road to success
with ASCET-SD, ES1000 and INCA,[
RealTimes, vol. 1, pp. 20–21, 2001.

[34] K. El Eman, J. N. Drouin, and W. Melo,
SPICE: The Theory and Practice of Software
Process Improvement and Capability
Determination. Los Alamitos, CA: IEEE
Computer Society Press, 1997, p. 450.

[35] B. Emaus, BHitchhiker’s guide to the
automotive embedded software universe,[
in Proc. Keynote Presentation at SEAS’05
Workshop. [Online]. Available: http://www.
inf.ethz.ch/personal/pretscha/events/seas05/
bruce_emaus_keynote_050521.pdf.

[36] Esterel Technologies Inc. [Online]. Available:
http://www.esterel-technologies.com.

[37] European Commission/Directorate General
Energy and Transport. (2006, Jul.). Road
safety evolution in EU. [Online]. Available:
http://ec.europa.eu/transport/roadsafety/
road_safety_observatory/doc/historical_
evol.pdf.

[38] A. Ferrari, G. Gaviani, G. Gentile,
M. Stefano, L. Romagnoli, and M. Beine,
BAutomatic code generation and platform
based design methodology: An engine
management system design case study,[
presented at the Proc. SAE World Congr.,
2005, paper 2005-01-1360.

[39] A. Fleischmann, J. Hartmann, C. Pfaller,
M. Rappl, S. Rittmann, and D. Wild,
BConcretization and formalization of
requirements for automotive embedded
software systems development,[in Proc. 10th
Australian Workshop Requirements Eng.,
K. Cox, J. L. Cybulski et al., Eds., Melbourne,
Australia, 2005, pp. 60–65.

[40] L. Fletcher, L. Petersson, and A. Zelinsky,
BRoad scene monotony detection in a fatigue
management driver assistance system,[in
Proc. IEEE Intell. Vehicles Symp., 2005,
pp. 484–489.

[41] U. Freund, H. Lönn, E. Silva, J. Migge,
M. Weber, M.-O. Reiser, M. von der Beeck,
B. Godard, and D. Bugnot, BThe
EAST-ADLVA joint effort of the European
automotive industry to structure distributed
automotive embedded control software,[
in Proc. 2nd Eur. Congr. Embedded Real
Time Soft., Toulouse, France, 2004.

[42] J. Fröberg, K. Sandström, C. Norström,
H. Hansson, J. Axelsson, and B. Villing,
BCorrelating business needs and network
architectures in automotive applicationsVA
comparative case study,[in Proc. 5th IFAC
Int. Conf. Fieldbus Systems and Their
Applications (FET), Aveiro, Portugal, 2003,
pp. 219–228.

[43] J. Fröberg, K. Sandström, and C. Norström,
BBusiness situation reflected in automotive
electronic architectures: Analysis of four
commercial cases,[in Proc. 2nd Int.

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 371

Workshop Softw. Eng. Automotive Syst.,
St. Louis, MO, May 2005, pp. 1–6.

[44] E. Geisberger, BRequirements
Engineering eingebetteter
SystemeVein interdisziplinärer
Modellierungsansatz,[Dissertation
TU München, München, Germany,
2005.

[45] P. Giusto, A. Ferrari, L. Lavagno,
J.-Y. Brunel, E. Fourgeau, and
A. Sangiovanni-Vincentelli, BAutomotive
virtual integration platforms: Why’s, what’s,
and how’s,[in Proc. IEEE Intl. Conf. Comput.
Design: VLSI in Comput. Processors, 2002,
pp. 370–378.

[46] K. Grimm, BSoftware technology in an
automotive company: Major challenges,[
in Proc. 25th Int. Conf. Softw. Eng, 2003,
pp. 498–503.

[47] Hansen, BSoftware-defined features,[The
Hansen Report on Automotive Electronics.
A Business and Technology Newsletter,
vol. 18, no. 4, May 2005.

[48] VV, BSoftware process standards gaining
influence,[The Hansen Report on Automotive
Electronics. A Business and Technology
Newsletter, vol. 18, no. 6, Jul./Aug. 2005.

[49] K. Hänninen, J. Mäki-Turja, and M. Nolin,
BPresent and future requirements in
developing industrial embedded real-time
systemsVInterviews with designers in the
vehicle domain,[presented at the 13th
Annu. IEEE Int. Conf. Workshop Eng.
Comput. Based Syst., Potsdam, Germany,
2006.

[50] B. Hardung, T. Kölzow, and A. Krüger,
BReuse of software in distributed embedded
automotive systems,[in Proc. EMSOFT,
2004, pp. 203–210.

[51] N. Halbwachs, P. Caspi, P. Raymond, and
D. Pilaud, BThe synchronous data-flow
programming language LUSTRE,[Proc.
IEEE, vol. 79, no. 9, pp. 1305–1320,
Sep. 1991.

[52] G. Halmans and K. Pohl, BCommunicating
the variability of a software-product family to
customers,[Softw. Syst. Modeling, vol. 2,
no. 1, pp. 15–36, Mar. 1, 2003.

[53] G. R. Hellestrand, BThe engineering of
supersystems,[IEEE Comput., vol. 38, no. 1,
pp. 103–105, Jan. 2005.

[54] VV, BSystems architecture: The empirical
wayVAbstract architecture to optimal
systems,[in Proc. 5th ACM Int. Conf.
Embedded Syst., Sep. 2005, pp. 147–158.

[55] T. A. Henzinger, C. M. Kirsch, and S. Matic,
BComposable code generation for distributed
Giotto,[in Proc. 2005 ACM SIGPLAN/SIGBED
Conf. Languages, Compilers, and Tools for
Embedded Syst., Chicago, IL, Jun. 2005,
pp. 21–30.

[56] W. Hohmann, BSupporting model-based
development with unambiguous
specifications, formal verification and
correct-by-construction,[in Proc. Embedded
Softw. World Congr. Exhibition, Detroit, MI,
Mar. 2003.

[57] K. Huang, M. M. Trivedi, and T. Gandhi,
BDriver’s view and vehicle surround
estimation using omnidirectional video
stream,[in Proc. IEEE Intell. Vehicles Symp.,
Columbus, OH, Jun. 9–11, 2003.

[58] ISO, Road VehiclesVInterchange of Digital
InformationVPart 1: Controller Area
Network Data Link Layer and Medium
Access Control, Standard ISO/CD 11898-1,
International Organization for
Standardization.

[59] ISO, Road VehiclesVController Area
Network (CAN)VPart 2: High Speed

Medium Access, Standard ISO/CD 11898-2,
International Organization for
Standardization.

[60] ISO, Road VehiclesVController Area
Network (CAN)VPart 4: Time Triggered
Communication, Standard ISO/CD 11898-4,
International Organization for
Standardization, 2001.

[61] ITU-TS, Recommendation Z.120: Message
Sequence Chart (MSC), Geneva
Switzerland, 1999.

[62] A. Jameel, M. Stuempfle, D. Jiang, and
A. Fuchs, BWeb on wheels: Toward
internet-enabled cars,[Computer, vol. 31,
no. 1, pp. 69–76, 1998.

[63] M. Jersak, K. Richter, R. Ernst, J. Braam,
Z. Jiang, and F. Wolf, BFormal methods for
integration of automotive software,[in Proc.
Conf. Design, Automation and Test in Europe,
Mar. 2003, Designers’ ForumVVol. 2.

[64] R. K. Jurgen, Automotive Electronics
Handbook. New York: McGraw-Hill, 1999.

[65] H. Kaaranen, S. Naghian, L. Laitinen,
A. Ahtiainen, and V. Niemi, UMTS Networks:
Architecture, Mobility and Services. New
York: Wiley, 2001.

[66] K. Keutzer, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli, BSystem-level
design: Orthogonalization of concerns
and platform-based design,[IEEE Trans.
Comput.-Aided Design of Integr. Circuits
Syst., vol. 19, no. 12, pp. 1523–1543,
Dec. 2000.

[67] H. Kopetz, ‘‘The time-triggered approach
to real-time system design,[in Predictably
Dependable Computing Systems, ser. ESPRIT
Basic Research Series. Berlin, Germany:
Springer-Verlag, 1995.

[68] I. H. Krüger, R. Matthew, and M. Meisinger,
BEfficient exploration of service-oriented
architectures using aspects,[in Proc. Int.
Conf. Softw. Eng., 2006, pp. 62–71.

[69] I. Krüger, E. Nelson, and K. V. Prasad,
BService-based software development for
automotive applications,[in Proc.
CONVERGENCE, 2004, pp. 309–317.

[70] K. Lamberg, M. Beine, M. Eschmann,
R. Otterbach, M. Conrad, and I. Fey,
BModel-based testing of embedded
automotive software using Mtest,[presented
at the Proc. of SAE World Congress 2004,
Detroit, MI, 2004, SAE Tech. Paper Series
2004-01-1593.

[71] W. Längst, A. Lapp, K. Knorr, H.-P.
Schneider, J. Schirmer, D. Kraft, and
W. Kiencke, BCARTRONIC-UML models:
Basis for partially automated risk analysis in
early development phases,[in Proc.
Workshop on Critical Systems Development
With UML, 2002, pp. 3–18.

[72] G. Leen, D. Heffernan, and A. Dunne,
BDigital networks in the automotive
vehicle,[Comput. Control Eng. J., vol. 10,
no. 6, pp. 257–266, Dec. 1999.

[73] G. Leen and D. Heffernan, BExpanding
automotive electronic systems,[IEEE
Comput., vol. 35, no. 1, pp. 88–93, Jan. 2002.

[74] VV, BTTCAN: A new time-triggered
controller area network,[Microprocessors
and Microsystems, vol. 26, no. 2,
pp. 77–94, Mar. 17, 2002.

[75] H. Lönn, T. Saxena, M. Nolin, and
M. Törngren, BFAR EAST: Modeling an
automotive software architecture using
the EAST ADL,[in Proc. Workshop Softw.
Eng. Automotive Syst., pp. 43–50, 2004.

[76] S. Matic and T. A. Henzinger, BTrading
end-to-end latency for composability,[in
Proc. 26th IEEE Int. Real-Time Syst. Symp.,
Dec. 5–8, 2005, pp. 99–110.

[77] R. E. McDermott, R. J. Mikulak, and
M. R. Beauregard, The Basics of FMEA.
New York: Quality Resources, 1996.

[78] N. Medvidovic and R. N. Taylor,
BA classification and comparison framework
for software architecture description
languages,[IEEE Trans. Softw. Eng.,
vol. 26, no. 1, pp. 70–93, Jan. 2000.

[79] A. Möller, M. Åkerholm, J. Fröberg, and
M. Nolin, BIndustrial grading of quality
requirements for automotive software
component technologies,[in Proc. Embedded
Real-Time Systems Implementation Workshop
in Conjunction With the 26th IEEE Int.
Real-Time Syst. Symp., Miami, Dec. 2005.
[Online]. Available: http://www.cs.york.ac.
uk/rtslab/demos/ertsi/final_papers/
anders_moller.pdf.

[80] R. Mores, G. Hay, R. Belschner,
J. Berwanger, C. Ebner, S. Fluhrer, E. Fuchs,
B. Hedenetz, W. Kuffner, A. Krüger,
P. Lormann, D. Millinger, M. Peller,
J. Ruh, A. Schedl, and M. Sprachmann,
BFlexRayVThe communication system for
advanced automotive control systems,[SAE,
Doc. No. SAE 2001-01-0676, 2001.

[81] S. Neema, J. Sztipanovits, G. Karsai, and
K. Butts, BConstraint-based design-space
exploration and model synthesis,[in Proc.
EMSOFT, 2003, pp. 290–305.

[82] Object Management Group OMG, CORBA:
The common object request broker,
architecture and specification,
Framingham, 1995.

[83] Object Management Group OMG, UML 2.0
Superstructure Specification, 2003, OMG
Adopted Specification ptc/03-08-02.

[84] D. Parnas, BOn the criteria to be used to
decompose systems into modules,[Commun.
ACM, vol. 15, pp. 1053–1058, 1972.

[85] F. Pettersson, M. Ivarsson, and P. Öhman,
BAutomotive use case standard for embedded
systems,[in Proc. 2nd Int. Workshop Softw.
Eng. Automotive Syst., 2005, pp. 1–6.

[86] K. Pohl and A. Reuys, BConsidering
variabilities during component selection in
product family development,[in Proc. 4th
Workshop on Product Family Eng., 2002,
pp. 22–37.

[87] A. Pretschner, W. Prenninger, S. Wagner,
C. Kühnel, M. Baumgartner, B. Sostawa,
R. Zölch, and T. Stauner, BOne evaluation
of model-based testing and IST automation,[
in Proc. 27th Int. Conf. Softw. Eng., St. Louis,
2005, pp. 392–401.

[88] J. Romberg, BSynthesis of distributed
systems from synchronous dataflow
programs,[Ph.D. dissertation, Fakultät für
Informatik, Technische Universität,
München, Germany, 2006.

[89] S. Rittmann, A. Fleischmann, J. Hartmann,
C. Pfaller, M. Rappl, and D. Wild,
BIntegrating service specifications on
different levels of abstraction,[in Proc.
IEEE Int. Workshop Service-Oriented
Syst. Eng., 2005, pp. 63–70.

[90] C. Salzmann and T. Stauner, BAutomotive
software engineering,[in Languages for
System Specification: Selected Contributions on
UML, SystemC, System Verilog, Mixed-Signal
Systems, and Property Specification From
FDL’03, pp. 333–347, 2004.

[91] S. Sims, R. Cleaveland, K. Butts, and
S. Ranville, BAutomated validation of
software models,[in Proc. 16th IEEE
Int. Conf. Automated Softw. Eng., 2001,
p. 91.

[92] J. Snell, D. Tidwell, and P. Kulchenko,
Programming Web Services With SOAP.
Sebastopol, CA: O’Reilly, 2002.

Broy et al. : Engineering Automotive Software

372 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

[93] Software Engineering Institute,
Capability Maturity Model Integration,
CMMI, Version 1.1, Carnegie Mellon Univ.,
Pittsburgh, PA, 2003.

[94] D. H. Stamatis, Failure Mode and
Effectanalysis: FMEA From Theory to
Execution. Milwaukee, WI: ASQC Quality
Press, 1995.

[95] J. Staschulat, R. Ernst, A. Schulze, and
F. Wolf, BContext sensitive performance
analysis of automotive applications,[in Proc.
Conf. Design, Automation and Test in Europe,
Mar. 2005, vol. 3, pp. 165–170.

[96] T. Stauner, BCompatibility testing of
automotive system components,[in Proc.
5th Int. Conf. SW Testing (ICSTEST),
Düsseldorf, 2004.

[97] I. Stürmer, M. Conrad, I. Fey, and H. Dörr,
BExperiences with model and autocode
reviews in model-based software
development,[in Proc. SEAS’ Workshop,
2006, pp. 45–52.

[98] Sun Microsystems. (2006). Java 2
Platform, Enterprise Edition (J2EE).
[Online]. Available: http://java.sun.com/
javaee/index.jsp.

[99] Y. Suzuki, T. Fujii, and M. Tanimoto,
BParking assistance using multi-camera
infrastructure,[in Proc. IEEE Intell. Vehicles
Symp., 2005, pp. 106–110.

[100] J. Thate, L. Kendrick, and S. Nadarajah,
BCaterpillar: Automatic code generation,[

presented at the Proc. SAE World
Congress, 2004, paper 2004-01-0894,
publication SP-1822: Electronic
Engine Controls.

[101] S. Thiel and A. Hein, BModelling and using
product line variability in automotive
systems,[IEEE Software, vol. 19, no. 4,
pp. 66–72, Jul./Aug. 2002.

[102] K. Tindell, H. Kopetz, F. Wolf, and R. Ernst,
BSafe automotive software development,[
in Proc. Design, Automation and Test in Eur.
Conf. Exhibition, 2003, Munich, Germany,
Mar. 2003, pp. 616–621.

[103] S. Voget and M. Becker, BEstablishing a
software product line in an immature
domain software product lines,[in Proc. 2nd
Int. Conf. Software Product Lines, San Diego,
CA, Aug. 19–22, 2002, pp. 60–67.

[104] M. Weber and J. Weisbrod, BRequirements
engineering in automotive development:
Experiences and challenges,[IEEE Softw.,
2003, vol. 20, pp. 16–24.

[105] R. Weeks and J. J. Moskwa, Automotive
Engine Modeling for Real-Time Control Using
MATLAB/SIMULINK, 1995, SAE
Paper 950 417.

[106] D. Wild, A. Fleischmann, J. Hartmann,
C. Pfaller, M. Rappl, and S. Rittmann,
An Architecture-Centric Approach Towards
the Construction of Dependable Automotive
Software, SAE, Tech. Paper Series 2006,
2006.

[107] C. Wilwert, N. Navet, Y.-Q. Song, and
F. Simonot-Lion, ‘‘Design of automotive
X-by-wire systems,[in The Industrial
Communication Technology Handbook,
R. Zurawski, Ed. Boca Raton, FL:
CRC Press, 2004.

[108] World Wide Web Consortium (W3C),
Web services architecture, Working
Group Note. [Online]. Available: http://
www.w3.org/TR/ws-arch.

[109] X-by-Wire Consortium, X-by-WireVSafety
Related Fault Tolerant Systems in
VehiclesVFinal Rep., Project BE95/1329,
Contract BRPR-CT95-0032, 1998.

[110] P. Zave, BFeature interactions and formal
specifications in telecommunications,[
IEEE Computer, vol. 26, no. 8, pp. 20–28,
1993.

[111] D. Ziegenbein, P. Braun, U. Freund,
A. Bauer, J. Romberg, and B. Schätz,
BAutoMoDeVModel-based development
of automotive software,[in Proc. Conf.
Design, Automation and Test in Europe,
Mar. 2005, vol. 3, pp. 171–177.

[112] H. Zeng, A. Davare, A. Sangiovanni-
Vincentelli, S. Sonalkar, S. Kanajan, and
C. Pinello, Design Space Exploration of
Automotive Platforms in Metropolis, Society
of Automotive Engineers Congress,
Apr. 2006.

ABOUT T HE AUTHO RS

Manfred Broy is a Professor at the Department of

Informatics, Technische Universität München,

Garching, Germany. His research interests are

software and systems engineering comprising

both theoretical and practical aspects. He is

leading a research group working in a number of

industrial projects that apply mathematically

based techniques to combine practical ap-

proaches to software engineering with mathemat-

ical rigor. There, the main topics are requirements

engineering, ad hoc networks, software architectures, componentware,

software development processes, and graphical description techniques.

In his group, the CASE tool AutoFocus was developed. Today one of his

main interest is the development of a modeling theory for software and

systems engineering.

Ingolf H. Krüger received the M.A. degree from

the University of Texas, Austin, in 1996 and the

Ph.D. degree from the Technische Universität

München, Garching, Germany, in 2000.

He is an Assistant Professor in Residence in the

Department of Computer Science and Engineer-

ing, Jacobs School of Engineering, University of

California at San Diego (UCSD), leading the

Service-Oriented Software and Systems Engineer-

ing Laboratory. He also directs the Software and

Systems Architecture and Integration functional area within the

California Institute for Telecommunications and Information Technology

(Calit2). He is a member of the UCSD Divisional Council of Calit2. His major

research interests are service-oriented software and systems engineer-

ing for distributed, reactive systems, software architectures, description

techniques, verification and validation, and development processes. The

application domains to which he applies his research results span the

entire range from networked embedded systems to Internet-wide

business information architectures.

Dr. Krüger together with M. Broy organized the Automotive Software

Workshops 2004 and 2006, San Diego, CA.

Alexander Pretschner received the M.S. degree

in computer science from RWTH Aachen, Aachen,

Germany, and the University of Kansas, Lawrence,

and the Ph.D. degree in computer science from

the Technische Universität München, Garching,

Germany.

He works as a Senior Researcher at ETH Zürich,

Zürich, Switzerland, concentrating on model-

based testing and usage control. He has organized

several workshops in the field of software engi-

neering for automotive systems.

Christian Salzmann received the M.S. degree in

computer science degree from Karlsruhe Univer-

sity, Karlsruhe, Germany, and the University of

Massachusetts, Dartmouth, and the Ph.D. degree

in software engineering from the Technische

Universität München, Garching, Germany, in 2002.

Until 2006, he was affiliated with BMW Car IT,

where he was heading the automotive infrastruc-

ture group. Since 2006, he has been with BMW AG,

München, where he is responsible for the devel-

opment of central gateways.

Dr. Salzmann is the organizer of several ICSE Workshops on

automotive software engineering and a member of the Special Interest

Group on automotive software of the German BGesellschaft für

Informatik.[

Broy et al. : Engineering Automotive Software

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 373

