Dynamic Combination of Movement and Force
for Softness Discrimination

Markus Rank and Sandra Hirche

1 Background

Softness is an important source of information when interacting with remote or
virtual environments (VE) via a haptic human-machine-interface. For example, in
telesurgery where the surgeon operates a human-machine interface transmitting
his/her actions to a robot performing actions inside the human body, tissue soft-
ness can indicate a healthy or non-healthy condition (De Gersem, 2005). Humans
have no dedicated sense for perceiving softness; instead, inferring an objects com-
pliance haptically requires the combination and integration of information from dif-
ferent sensory sources such as positional cues, force cues, and tactile information —
see Chapter 5 for a deeper analysis of mechanisms involved in this process. For
many technical systems, including above-mentioned telesurgery setups, tactile cues
are not conveyed to the human operator, limiting the information available to in-
fer softness movement and force. In direct interaction with a physical object, the
gain and temporal relation of movement and force is determined by the objects me-
chanical impedance. A telepresence or VE system can alter the impedance by, e.g.,
time delay in the communication channel (Rank, Shi, & Miiller, 2010; Ohnishi &
Mochizuki, 2007; Pressman, Welty, Karniel, & Mussa-Ivaldi, 2007; Nisky, Mussa-
Ivaldi, & Karniel, 2008; Hirche & Buss, 2007; Rank, Shi, Miiller, & Hirche, 2010;
Hirche & Buss, 2012) which is found to make participants underestimate stiffness
under various circumstances, see also Chapters 9 and 5. Determining the limits for
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distortions caused by the technical system that do not affect the operator’s percept
is crucial to ensure a realistic interaction experience.

In the past, perceptual discrimination limits have often been characterized using
psychophysical measures such as the just noticeable difference (JND) (Gescheider,
1985; Weber, 1834), allowing a distinction between perceivable and unperceivable
differences in a physical quantity such as a force, length, or impedance by map-
ping each difference to a proportion in perceptual responses. By simplifying the
characterisation of the perceptual system to such a static mapping, valuable in-
formation about the time-series characteristics of the environment interaction is
lost. Temporal features in the interaction force and movement have though been
shown to significantly influence our perception of haptic properties such as hard-
ness (Lawrence, Pao, Dougherty, Salada, & Pavlou, 2000) and mass (Baud-Bovy
& Scocchia, 2009). Perceptual phenomena such as the haptic masking effects found
in Rank, SchauB, Peer, Hirche, and Klatzky (2012) could presumably only be under-
stood by looking at the temporal characteristics over time. In softness perception,
the amplitude of probing movements was also found to influence human’s percep-
tual performance (Tan, Durlach, Beauregard, & Srinivasan, 1995), a factor that is
not contained in a softness JND measure. To the authors best knowledge, no con-
clusive mechanism capturing the combination of movement and force to perceive
softness has been established yet.

We propose the usage of dynamic haptic perception models, using differential
equations to combine movement and force information together instead of static
perception models, e.g., the JND. In this way, the impact of interaction character-
istics on the perceptual judgment can be explicitly modelled. Looking at softness
perception from a system theoretic point of view, we propose three plausible mech-
anisms which are capable of discriminating between different soft environments.
The detection thresholds predicted by these models vary with the specific interac-
tion movement with the environment. Based on the results from three psychophys-
ical experiments, a dynamic state observer model is identified as a superior predic-
tion model compared to a comparison of identified time delay values and an internal
inverse model validation of the body and environment.

Theoretical model candidates from system theory, predicting perception thresh-
olds for temporal misalignment between limb movement and force feedback are
introduced in Section 2. Experimental data from three psychophysical experiments
on the perception of time delay in soft, damped and inertial environments is pre-
sented in Section 4, and predictions from the parameterised models are discussed.
The chapter is ended with a conclusion on the impact of the results on the design of
telepresence and VE systems.

2 Perception Model Representations

Perceiving softness generally requires a combination of force and movement cues
into a unified percept. Accounting for human perception characteristics in the de-
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sign, control and evaluation of systems for human-machine interaction such as telep-
resence or VE systems requires the formulation of quantitative perception models
capturing haptic discrimination abilities. The models proposed here are built upon
the assumption of an existing decision criterion 8. This measure is used to determine
which of two response alternatives to choose and can be found in well-established
perceptual modelling techniques, e.g. signal detection theory (Macmillan & Creel-
man, 2005) and diffusion models (Ratcliff, 1978; Pleskac & Busemeyer, 2010). The
perceptual output y, at a given response time #, is determined by

= ey

“different” if 3t € [0,,] : |8(-)| > &,
y[’ (tr) = « 2 1
same otherwise,

where € is referred to as a decision threshold and the stimulus onset time is set
tot =0.

Remark 1. This formulation of the perceptual process accounts for the fact that in the
context of human-robot interaction such as telerobotics, a perceptual decision may
be held back and not responded as soon as the decision has been made. Opposing
to Ratcliff (1978); Pleskac and Busemeyer (2010), the formulation of perception
models in equation (1) thus accounts for all decisions made between the stimulus
onset up to time .

In most existing computational haptic perception models, §(-) is a static function of
the sensory input. As an example from softness perception, a static perception model
for discriminating two environments with stiffness coefficients k; and k, could be
formulated by setting 0(-) = k; — k; and setting the threshold value to the JND for
stiffness € = JINDy. As a consequence, temporal aspects of the interaction such as
movement speed, frequency, or interaction duration remain unmodelled. Instead, we
use a dynamic modelling approach to capture the decision criterion. We will limit
our considerations to ordinary differential equations.

In the following, three perception modelling candidates for the decision crite-
rion O(-) in (1) are proposed. The main inspiration for these models is drawn from
considerations how one would approach the detection of differences in a haptic en-
vironment from a system theoretic point of view. Support for the mechanism candi-
dates in terms of neurophysiological and psychophysical evidence is also reported.

Sensorimotor Control Model

The different modelling approaches are discussed using a simplified dynamic model
of the human motor apparatus considering only one arm, which is a common simpli-
fication throughout the literature (Gil, Avello, Rubio, & Florez, 2004; Yokokohji &
Yoshikawa, 1994). The state vector Xx;, consists of the hand position x;, and velocity
Xp. A block diagram of the arm, controlled to follow a specific state trajectory, is de-
picted in Figure 1. Note that we make the modelling variables’ dependency on time
only implicit in favour of a clear presentation. The control mechanism D, (Xj,, Xges )
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Fig. 1: The human arm is abstracted as a state-controlled single joint.

determines the forces which must be applied to the limb to follow a desired state
trajectory X4.s. The arm with its mechanical properties ‘Pbody(xh,xh, Sres), linearly
approximated by a mass-damper system

1
Xp = _7(fres _dhxh>
mpy

with human-like parameters (m;, = 2 kg, d;, = 2 Ns/m from Yokokohji and Yoshikawa
(1994)) is in contact with the environment. The environment dynamics are contained
in @,,,(x;,%;,) and react to the state x;, with a force f},. This feedback acts back on
the limb and influences the force moving the limb.

Physiologically, humans are equipped with multiple haptic sensors (Hale & Stan-
ney, 2004), and we will focus on sensors for the muscle force f,,, limb position x;,
and velocity x;. Dynamics and noise in the sensory estimates are not considered
explicitly, but implicitly respected in the choice of perceptual thresholds € # 0.

2.1 Feature Comparison

A straightforward way of discriminating between two soft haptic environments is
comparing their characteristic parameters 6. Such parameters include the stiffness
coefficient, or, in case a telepresence system including delayed communication is
involved, the time delay between movement and force feedback. To be able to com-
pare the two environments on a parameter basis, a system identification techmque
suitable to capture this specific property must be used, leading to estimates 61, 6.
Time delay between movement and force could well be identified using an estimate
of the covariance between a position input and a force output signal (Ljung, 1999).
Acknowledging the fundamental assumption of a decision criterion and threshold
for perceptual mechanisms in equation (1), we propose

ot = {:differ’:cnt” if 161 = 62] > s ®

same otherwise.

In studies on monkeys, correlation techniques as a normalised form of covariance
methods have been found to explain brain activity in specific brain regions associ-
ated to perception well, if the animal attends to a certain visual stimulus (Niebur
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& Koch, 1994). This could be taken as evidence for the existence of a neural sub-
strate for performing correlations efficiently in the brain. Correlation mechanisms
can furthermore explain humans’ performance in detecting temporal differences in
audio-visual signals (Fujisaki & Nishida, 2005).

Remark 2. The classical IND measure is defined in the dimension of a physical
quantity under consideration, that means the haptic environment property 8 (Weber,
1834; Jones & Hunter, 1990). In that sense, classical perception models are con-
tained in the feature comparison model proposed here and the predictions from the
feature comparison model are seen as a baseline for the other dynamic prediction
models.

2.2 Inverse Model Verification

An alternative approach to judge whether two soft environments have the same or
different properties is the usage of a model verification technique. In system identi-
fication, verification is a standard procedure to check whether an identified system
has good generalisation capabilities (Astrom & Eykhoff, 1971). At first, a haptic
environment model is built by exploring one stimulus and identifying its parameters
by using, e.g., a covariance method as proposed in Section 2.1. Secondly, during
the exploration of another haptic environment, sensory information is compared to
a prediction of the sensory output, given the previously built internal representation
of the environment dynamics. If prediction and sensory evidence match, the envi-
ronments are considered the same. If there is a mismatch between the prediction and
feedback, the two environments are classified as different. Diverse verification meth-
ods are utilised in various technical applications, differing in the criterion which is
taken into consideration for classification.

One possibility for a perception model as proposed in equation (1) can be formu-
lated based on the force required to move along a specific trajectory. The model

Yp(tr) = 3)

“different” if 3¢t € [0, #,] : A fin(t) > A finresn
“same” otherwise,

is based on the force difference A f,,(t) = | fu(t) — f,n ()| with f,,(¢) being the effec-
tive force from all muscles acting on the limb and f,, is an estimation of the expected
force given the previously identified haptic environment. The decision threshold is
denoted A fy,.s, in this model. The main difference to the feature comparison model
proposed in Section 2.1 is the fact that the dissociation between a target and a ref-
erence environment is not the experimentally varied variable, e.g. stiffness or the
communication time delay in a teleoperation system, but the deviant force between
the two conditions.

In addition to equation (3), a perception model based on Weber’s Law is pro-
posed, respecting the fact that force discrimination levels have been found to depend
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linearly on the force level (Tan, Srinivasan, Eberman, & Cheng, 1994). A difference
between two soft environments can be perceived if the fraction of force error and
force magnitude exceeds the Weber fraction w:

“different” if Ir € (0,2, : A f(2)/ (2t
i) =1 i erfn i 6.[ el s Afn (@) ) fu(t) >w @
same otherwise

Reconstructing the motor action from a measurement of the state x;,(¢) requires
a dynamic model containing the body and the environment impedance. In motor
control literature, a model predicting motor actions (force) from an observation
of the body state x; (movement and position) is referred to as an inverse model.
There is experimental evidence for the usage of inverse dynamic models in sen-
sorimotor control by predicting the motor actions from the sensed state of the
body (Kawato, 1999; Shidara, Kawano, Gomi, & Kawato, 1993). Similarly, an in-
verse model fm,m = @, (x;,) capturing dynamics of the arm, sensors and the en-
vironment can potentially play a role in perception as well. A stiffness estimation
method on the basis of maximum force comparisons between conditions (Tan et al.,
1995; Pressman et al., 2007) can be seen as a representative of a perception model
using inverse dynamics. Model verifications are closely related to the prediction er-
ror method (PEM) which utilises the error between model predictions and sensory
information to enhance identification results. This is a well-established technique in
system identification (Ljung, 1999) and a PEM algorithm has been found to explain
the anticipatory perception of sensory events in a plausible way (Szirtes, Péczos, &
Lrincz, 2005).

2.3 State Observer Model Verification

Alternatively to the exerted muscle force f,,(f) as a decision criterion for distin-
guishing two soft haptic environments, perceptual judgments can be based on the
body state x;(f). In the proposed model of the arm in Figure 1, consisting of one
limb performing a unidirectional movement, x;,(¢) consists of the limb position x;,(¢)
and velocity xy,(). The resulting haptic perception model is given by

- ®)

(t) = “different” if 3¢t € [0,2,] : [R5 (¢) — X1 (7)| > AXthresh
il “same” otherwise,

where %;,(¢) is a prediction of the body state, given a previously experienced envi-
ronment dynamics.

A state observer can predict the body state from observations of the motor input
and sensory measurements, utilising a forward model of the body and environment
dynamics. A state observer with a linear dynamic model is depicted in Figure 2.
The estimated dynamics of the limb and environment are contained in the state
function ‘i’bady/e,,v (ﬁh,ﬁh, fm)- Generally, an output function is required to transform
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Fig. 2: A block diagram of a state observer.

states into measurable outputs; however, since humans possess sensors for both po-
sition and velocity, no transformation is required here. Comparing the predictions
to the actual sensory observations leads to a prediction error which is weighted
with a matrix function K(x; — %) and used to correct future estimates of the body
states. In the following, we only consider linear body and environment models and
simplify K(-) to a linear matrix multiplication K(-) = K. In case ‘i’bgdy/env (Xn, fin)
captures the body and environment characteristics exactly and the initial state esti-
mate X, (0) is correct, the state estimate over time X;,(¢) equals the real state x,(¢). If
the internal prediction model deviates from the real dynamics because the environ-
ment in the second stimulus differs from the comparison condition, the estimated
state differs from the real state.

In the case of white noise affecting the output measurement and states, the noise-
optimal choice for K is the Kalman Gain. This choice turns the observer into a
stationary Kalman filter. Kalman filters have been found to describe sensorimotor
control processes well in various situations such as the estimation of hand posi-
tion (van Beers, Sittig, & Gon, 1999) or posture (Kuo, 1995). This is a motivation
to consider such a structure as a candidate for perceptual processes as well.

3 Model-Guided Experimental Design

A percept of a soft environments can be corrupted in various ways: On the one hand,
differences in stiffness coefficient alter the force feedback magnitude under constant
exploration movement; on the other hand, temporal distortions such as time delay
between movement and force feedback is capable of completely changing the im-
pression of the environment. Although time delay in haptic feedback is not a natural
phenomenon in everyday-life haptic interactions, it is a problem in the operation of
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telepresence systems over large distances (Peer et al., 2008), e.g., space (Sheridan,
1993). We will focus on the investigation of distortions in the haptic combination
process due to temporal faults for two reasons: While it is known that time delay
between movement and force has a direct impact on the displayed softness (Hirche,
Bauer, & Buss, 2005; Hirche & Buss, 2012), the perception of time delay in hap-
tic interaction with an environment is not yet sufficiently understood. However, such
knowledge is helpful to provide guidelines and specifications for haptic telepresence
systems. As a second motivation, time delays are well-suited to dissociate between
the three perception model candidates, as will be detailed out in the following.

Experimental data from three published experiments on time delay detection in
force feedback is used to evaluate the prediction capabilities of the proposed percep-
tion model candidates: In Rank, Shi, Miiller, and Hirche (2010), soft environments
are explored with sinusoidal exploration movements. Amplitude and frequency as
well as the stiffness coefficient is varied. The applicability of the models to envi-
ronments different from softness is also examined to determine their capability to
predict perceptual thresholds in damped and inertial environments as well, using
data from Rank, Shi, and Miiller (2010).

3.1 Model-Guided Stimulus Selection

The prediction of perceptual thresholds based on the models introduced in Sec-
tions 2.1-2.3 depends on a multitude of factors, e.g., the interaction movement
speed, frequency, and amplitude. Given this high-dimensional parameter space, a
fully crossed experimental design with conditions sampled over a range of stimuli
is inappropriate. Instead, we choose a model-based selection of experimental stimuli
based on predictions for the discrimination threshold of time delay in force feedback
from the environment using a linear spring with spring constant k,. Without loss of
generality, the equilibrium point of the spring is set to the position x; = 0. The pre-
dicted perception limits of time delay on the basis of the matched filter model and
the state observer model depend on the interaction movement x;(¢) with the haptic
environment. A sinusoidal movement

xp,(t) = Asin(ot) (6)

with amplitude A and frequency @ is chosen as interaction pattern since it is easy
to understand and perform for participants in a psychophysical experiment. The
predictions following from the choice of environment and interaction movement are
discussed subsequently.

The force feedback from a soft environment with time delay 7} is expressed as

Tn(t) = kexp(t — Ty). (7
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Respecting the dynamical model of the human arm in contact with the environment
illustrated in Figure 1, the overall motor action that is required to move the limb in
contact with the environment is

fm (t) = mpXy (l) + dpxy, (l) ~+ kexp, (I — Td). )

Without loss of generality, we consider the case that the non-delayed soft environ-
ment is explored first. The delayed feedback is perceived second and the sensory
evidence from this exploration is compared to predictions from the undelayed stiff-
ness. We furthermore assume that humans have good knowledge of their body dy-
namics (inertia my;, and damping dj), and the estimate IAce of the environment stiffness
coefficient k, is sufficiently accurate from the non-delayed stimulus exploration.

The inverse model verification model founds on a comparison between sensory
observation of the resulting muscular force f,(z) and the predicted force feed-
back f,,(¢). Consequently, f,,(¢) is determined by

N

Jm(t) = mpip(¢) + dpin(t) —l—lAcexh(t). ©)]

Setting IAce ~ k, and substituting x(¢) with eq. (6), the error between model prediction
and sensory feedback is calculated in agreement with (3) to

A fin(t) = |kA(sin(@t) — sin((t — Ty)))|- (10)
Model verification using a state observer relies on a prediction of the body state

&,(1) = [f4(1) (0] (11)

utilising a forward model of body and non-delayed environment dynamics. The state
prediction is the solution of the set of differential equations, expressed in matrix
form as

)= | [ (8] s e ) (] - T2
(12)

In order to be detectable, the discrepancy in the decision variable must be larger
than a threshold variable. In order to determine the amount of time delay between
movement and force feedback, the maximum deviance between prediction and sen-
sory observation is to be computed. For the inverse model, the discrepancy is at its
maximum at time %Td after the zero-crossings of the predicted (non-delayed) force
reference, which is expressed by

1
Afm,max = Afm(t”t:%Td =k,A2 Sll‘l(Ea)Td) ~ k., A®OTy. (13)
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Fig. 3: Six pairs of movement amplitudes and frequencies were chosen in such a
way that @, A and their product A have three different levels respectively.

The last step in the calculation holds for small values of @7y, which is a valid
assumption for the practically relevant range of time delays in telepresence applica-
tions and the movement frequencies considered in the experiments.

Similarly, the state observation error can be computed by solving equation (12)
for the specific interaction movement from equation (6) and the motor action
from (8). In contrast to the solution for the maximum force error in equation (13),
the maximum state error depends on the entries of the feedback matrix K. These
values are unknown. Thus, the experimental conditions are optimized for the in-
verse model, and the prediction capabilities of the state observer model are tested
post-hoc with a feedback matrix K that is identified based on experimental data.

Keeping the time delay 7; at a constant level, the maximum force error as the
prediction criterion for time delay detection is higher with a greater amplitude A,
and/or higher movement frequency @. This means in return, that time delay needed
to exceed a hypothesized perception threshold on force error is smaller with larger
A and/or higher @. Notably, the maximum force error as introduced in equation (13)
depends on the product of A and @, predicting that choosing values of A and @ such
that their product is constant (A@ = const.) results in the same detection threshold.
For testing the influence of movement amplitude, frequency and their product, a
systematic experimental design with three levels for A, three levels for w and three
levels of Aw as depicted in Figure 3 is chosen.

Another factor in the computation of the maximum force error according to equa-
tion (13) is the stiffness coefficient k.. The perception model predicts a lower time
delay detection threshold in the case where stiffness is higher.

In addition to a soft environment, the prediction capabilities of these models
in damping and inertia are tested to test for a generalisation to other experimental
conditions as well. Stimuli with a damping d,, and an inertia m, satisfy

Afm,mux A f;n,nlax

T ()| A fon (1) =A fonmar 0 S0y, ()= frmax

me
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Movement Variation Stiffness Variation Env. Variation

Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k. [N/m] 65 65 65 65 65 65 65 65 65 65 65 65 65 0 0
d[Nssm] 0 0 0 0 O 0 O O 0 O O 0 o0 £ £
melkgf 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Alem] 8.9 105132 8.6 10.78.74 14.8 14.8 144 18.5 184 18.7 11.1 11.3 11.2
s 0.71 0.70 0.68 0.93 0.92 1.24 1.06 1.08 1.12 0.84 0.85 0.84 1.03 1.05 1.08
DT [ms] 46 47 37 41 37 36 24 25 28 34 31 37 36 15 72
SE[ms] 45 73 63 50 42 58 45 65 93 93 45 95 57 26 6.1

Table 1: Mean detection thresholds (DT) and Standard Error (SE) of time delay-
induced alterations of soft environments depend on the specific interaction move-
ment and the composition of the environment.

such that the Weber fraction is equal in both conditions, resulting in a constant time
delay detection threshold in the case of a perception criterion based on Weber’s Law.

4 Experimental Investigations

Experimental data from three studies is analysed here. From Rank, Shi, and Miiller
(2010), time delay detection thresholds for sinusoidal movements with parameters
as depicted in Figure 3 is taken. In addition, detection thresholds for three levels
of stiffness under two different movement patterns are taken from Rank, Shi, and
Miiller (2010). Third, the time delay detection thresholds obtained for stiffness are
compared to those in damping and inertia environments while keeping the interac-
tion movement constant. This data is reported in Rank, Shi, Miiller, and Hirche
(2010). A summary of all experimental conditions and the detection thresholds
found in the experiments is provided in Table 1. Notably, we also report measure-
ments of participants’ mean amplitude A and frequency @ of their interaction move-
ment since these have been found to differ from the experimental instructions.

4.1 Results

Four substantial findings can be concluded from the experimental findings in Rank,
Shi, and Miiller (2010):

1. The detection thresholds for time delay-induced environment alterations are neg-
atively correlated with movement frequency and movement amplitude.
2. Movement amplitude and frequency influence the detection threshold separately.
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3. Within the range of experimental conditions, stiffness does not affect perceptual
discrimination abilities of time delay in force feedback.

4. A change in the environment due to time delay can be detected easiest in force
feedback from a damper, followed by time delay in force feedback from softness.
Inertia exhibits the largest detection thresholds.

In order to investigate which perception model candidate is most suited modelling
this observed behaviour, parameters for each model are identified and predictions
for the detection thresholds are obtained.

4.2 Model Predictions

Since experimental methods and the group of participants are not homogenous over
the different experiments, we fit mean detection thresholds individually for each
experiment. To compare the prediction quality between models, the mean squared
error (MSE) is computed. In the following, the individual identification procedures
and the prediction results are discussed in detail.

4.2.1 Feature Comparison Model

Humans may perceive time delay in a haptic environment per se and compare indi-
vidual estimates obtained from haptic exploration of the standard and comparison
environment. The correlation techniques discussed in Section 2.1 are indeed well-
suited to infer a time delay between movement and force feedback. While an un-
certainty in time delay detection performance due to noise in the biological system
could lead to a detection threshold different from zero, there is no apparent reason
why the uncertainty about the time delay should change with input amplitude, fre-
quency, magnitude, or the type of environment. The predicted time delay detection
threshold based a this method is thus constant over conditions. Identification of the
only free parameter in this model is achieved by solving

and
argmin Y (pT,—DT°) (14)
DTo cond j—|

where N4 is the number of conditions in the respective experiment, and DT? is the
(constant) time delay detection threshold. The solution to this optimisation problem
is the mean time delay over all conditions within one experiment. Predictions from
this perception model result in a MSE of 127.34 ms?.
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4.2.2 Inverse Model Verification

The parameterisation of this model, given the experimental results in Table 1 is the
result of a nonlinear constrained optimisation problem

Neond
argmin Y (pT; fDTl-f)z (15)
DT,‘f A fthresh cond i=1

s.t.maxA fo, i(t) = max | f,ui(¢) ffmyi(t)| = A finresh Vi € [1,Neond]

where A fi,sn s the (constant) detection threshold for the difference between the
delayed and non-delayed exerted force and DTif the corresponding time delay
value causing A finesn- The predicted motor action on the basis of the measured
state x;(¢) is computed for each individual experimental condition, indexed by i,
and denoted fm,(t) A numeric optimisation algorithm based on the interior-point
method is used to find the optimal parameterisation fitting all experimental condi-
tions (Byrd, Hribar, & Nocedal, 1999). Using the dynamic inverse model to explain
average detection thresholds for time delay perception results in lower prediction
errors (96.7 ms) compared to the feature comparison model prediction. The mean
force difference thresholds for the experiments are 1.4 N for the first, 1.2 N for the
second, and 1.7 N for the third experiment.

Force difference perception for experiments with slowly-changing forces is
known to follow Weber’s Law (Tan et al., 1994). The Weber fraction of A f;,(¢) could
thus be an explaining model for the detection thresholds of time delay as well. The
optimisation problem to be solved is similar to equation (15), namely

Nmnd
argmin Y (DT;—DT}")? (16)
DT w =1
Afmi(t) .
s.t.max ———= =wVi € [1,N,
fm,i (l) [ cond]

with w the Weber fraction. Indeed, the model fit for the experiment with different
stiffness levels is admittedly good, with a MSE of only 4.5 ms?, but the model per-
forms poor in all other conditions, yielding to a total MSE of 127.7 ms?. This makes
the prediction model based on an inverse model and a threshold based on Weber’s
Law approximately equally successful as the thresholds predicted by a covariance
model.

4.2.3 State Observer Model Verification

In contrast to the matched filter perception model, the state observer model uti-
lizes an estimation of the body state for the decision about the environment time
delay. The difference between the observed state and actual state heavily depends
on the choice of the feedback matrix K, as discussed in Section 2.3. The model
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predicts perception limits based on a threshold in the state estimation error. The
state x,,(7) consists of two components, namely the limb position x;,(z) and veloc-
ity x(¢). While deviations between the observed state and the measured state could
be principally based on a generic threshold both on position and velocity, individual
models considering a threshold on x;, and x;, are considered here:

Ncond
argmin (DT; — DT )? (17)

X . 4
DT; lanh,thresh-,K cond |

s.t.maxAxh(t) = max \xh(t) —)eh(l‘)‘ = Axh,thresh Vie [1,Nc(md}

and

cond
argmin Z (DT; — DT;*)? (18)

X . !
DT; 2 :Axh.thresh K cond i=1

s.t.maxAxh(t) = max ‘xh(l‘) 7)5;,([)‘ = Axh,thresh Vie [LNcond}-

The problems formulated in (17) and (18) have five free parameters to be optimised.
Due to the comparably low number of experimental conditions which are avail-
able for model fitting and the fact that the optimisation problem may indeed be
non-convex, the solution can depend on the chosen initial values. Suitable values
are found from an initial grid search procedure, meaning a simulation of the state
space observer model for different feedback matrices K. Observation errors Axy,(r)
and Axy(t) are computed for every candidate of K and the values resulting in the
lowest variance for the state error between all conditions of each experiment is taken
as initial values for the optimisation problems stated in equations (17) and (18). Only
one feedback matrix K for all experiments is fit to keep the number of variables com-
putationally tractable and reduce the problem of overfitting. We do, though, allow
for different threshold values xp, shresh» Xn hresn in the three experiment to account
for the differences in experimental methods. As a result, the state observers with
feedback matrices

11.8 36.3 0 9.8] (19)

Ky, = [33.3 31.1} »and Ky, = [9.4 11.4

for predictions based on x; and xj, respectively, make predictions with the lowest
mean squared error. Threshold values for the position-based observer are 0.10, 0.02,
and 0.07 m. Velocity thresholds are 0.15, 0.04 and 0.07 % The MSE values
are 98.3 ms? for the state observer using the position error as decision variable,
and 85.7 ms? for the velocity-based threshold. Predictions from all models in all
experimental conditions are compared in Figure 4.
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Fig. 4: Prediction errors, grouped by experimental condition (1-15, see Table 1).
Prediction errors are high in environments different than softness (14-15).

4.3 Discussion

Comparing the predictions from all models introduced in Sections 2.1-2.3 leads to
the conclusion that the state observer model with a detection mechanism on the ob-
servation error in limb velocity is most successful in capturing the observed percep-
tual behaviour. While in the first experiment, conditions with comparable maximum
force errors would lead to similar detection thresholds, the inverse model verifica-
tion method would predict a decreasing detection threshold for an increase in stiff-
ness. However, the second experiment fails to show such behaviour. In general, all
dynamic perception models except the model verification model using a threshold
based on Weber’s Law outperform the static feature comparison model.

The state observer verification model is most successful in predicting detection
thresholds for time-delay induced changes in the environmental characteristics, but
it also has most degrees of freedom. Claiming the superiority of this model over
its alternatives is thus admittedly difficult. Statistical tests such as the Akaike infor-
mation criterion fail here due to the inhomogeneity of the dataset with respect to
participants and methods. However, considering the technical application motivat-
ing the perceptual modelling, valuable predictions can still be drawn the practically
relevant set of movement stimuli and haptic environments presented here.

An analysis of the prediction errors in the individual experimental conditions re-
veals that all proposed models capture the time delay detection thresholds with a
significantly lower MSE for the soft environments compared to inertia and damping
(Welch’s t-test, #(0.14) = 15.7, p < 0.001). One reason for this lack of generality
could be our implicit assumption of an internal representation of the environment
that can generate a noise-free and temporally accurate prediction of the reference
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to the actual sensory feedback. It is known that especially time perception can be
easily disturbed by many factors including attention to the stimulus, the frequency
of events occurring etc (Grondin, 2010). The difference between the soft, damped
and inertial stimuli used in the studies described lies in the relative phase between
the position and force signals, thus in their inherent characteristic temporal relation
to each other. Modelling temporal uncertainties and noise on the perceptual signals
during the exploration may bring further insights into the mechanisms involved in
the combination of movement and force into a coherent percept of haptic environ-
ments.

So far, all found effects had been attributed to the time delay introduced be-
tween position and force feedback. However, using a regular exploration strategy
with fixed frequency makes time delay indissociable to a non-linear spring, similar
to Leib, Nisky, and Karniel (2010). The detection could thus as well be a measure
of non-linearity in the environment characteristics rather than actual delay. Further
studies are required to actually dissociate between these possibilities.

5 Implications for Telepresence Systems

Time delay is a critical issue for haptic telepresence systems operating over long
distances (Peer et al., 2008; Hirche & Buss, 2012; Sheridan, 1993). Challenges to
be dealt with include technical issues such as system instability and, on the side of
the human operator, impaired perception of the environment’s haptic properties, es-
pecially softness (Hirche & Buss, 2007, 2012). High-fidelity telepresence systems
must aim for a high degree of transparency, that means, that the operator can not dis-
tinguish whether he/she directly interacts with the environment or by means of the
technical system. Towards this ultimate goal, our findings provide valuable insights
for the design and control of telepresence system that allow an unaltered perception
of a remotely explored softness. First of all, the operator’s movement must be taken
into consideration to evaluate whether a time delay in the communication channel
affects softness perception or not. A haptic task which requires only slow move-
ments can tolerate longer delays in the feedback than a highly dynamic task requir-
ing movements with a high frequency. Not only the task can limit the amplitude and
movement frequency, but also the haptic interface. A smaller workspace on the one
hand, and high friction or uncompensated inertia on the other hand can influence
the detection thresholds. The workspace dimensions of the local haptic interface
determine the maximum movement amplitude, and detection thresholds increase.
With larger inertia and damping of the local haptic interface, the achievable human
movement frequency decreases, resulting in a higher detection threshold for time
delay.

The finding that a scaling of the stiffness coefficient within the investigated range
does not influence the sensitivity of temporal perception is interesting for the appli-
cation in a specific teleoperation application, namely micromanipulation. In this
area, small forces arising in a micro-scale environment must be augmented for
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the user to provide a perceptible haptic impression (Ando, Korondi, & Hashimoto,
2001). For the case of delayed haptic feedback, our finding suggests that the scaling
factor can be chosen irrespective of haptic latency. Note, however, that we only vali-
dated this hypothesis for a limited range of stiffnesses. In extreme scenarios, such as
stiff contact with a rigid object, an infinitesimally small time delay may result in an
unstable system, which completely changes the characteristics of the system. The
human operator may then be able to infer the time delay from increasing oscillations
in the force feedback.

Although none of the current model candidates is capable of entirely predicting
thresholds for time delay detection in force feedback, the finding of such a dynamic
model would have direct application for the design of communication algorithms,
or haptic rendering systems as well: The greatest benefit of these models lies in
the possibility to consider the influence of interaction movements on the perceptual
threshold explicitly. In this way, more accurate predictions whether a time delay
in the haptic feedback is perceivable or not can be utilised during the execution
of a task, and appropriate measures can be taken, for example in communication
Quality-of-Service control algorithms. We take this as a motivation to work further
towards this ultimate goal.

6 Conclusions and Open Problems

Humans do not possess a dedicated sense for haptic environment properties such
as stiffness, damping, or inertia. Instead, temporal and magnitude information from
movement and force feedback must be combined together to infer such measures.
System theoretic perception models capable of combining these information sources
have been proposed in this chapter. We tested the ability of all model candidates
to predict time delay detection thresholds in force feedback. Taking together the
results of six psychophysical experiments on time delay perception thresholds, a
dynamic state observer model has been identified as the model capturing human
discrimination performance best when movement and force feedback are temporally
misaligned.

Although all model candidates have been tested for a number of different move-
ments, the pattern was so far restricted to sinusoids of different amplitudes and
frequencies. For a more general applicability to haptic telepresence systems, other
movements must be considered as well. Ultimately, perceptual responses for time-
delayed feedback from arbitrary voluntary explorations shall be predictable. Fur-
thermore, the modelling performance in the third experiment, considering time de-
lay perception levels in stiff, damped and inertial environments have not been cap-
tured well by either model proposed so far. Alternative models with other decision
criteria could further improve the prediction performance. Together with a dynamic
perception model for the influence of magnitude information on the combination of
movement and force, conclusions about perception mechanisms for abstract envi-
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ronments containing arbitrary combinations of stiffness, damping and inertia could
be eventually drawn.
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